THE PET
REVEALED

A NICK HAMPSHIRE PUBLICATION

THE PET’
REVEALED

First Edition October 1979
Second Edition January 1980

The programs presented in this book have been included
for their instructional value, they have been checked
out with care, however, they are not warrented for any
purpose. While evry precaution has been taken in the
preparation of this book, the publisher assumes no
responsibility for any errors or omissions. Neither is
any liability assumed for damages or other costs
resulting from the use of the information contained
herein. No patent liability is assumed for the
information contained herein nor do the publishers
assume any liability for infringement of patents or
other rights of third parties resulting from use of that
information. No licence is granted by the equipment
manufacturers under any patent or patent rights and
manufacturers reserve the right to change circuitry and
scftware at any time without notice. Readers are refered
to current manufacturers data for exact specifications.

COPYRIGHT 1980 COMPUTABITS LTD. World rights reserved.
No part of this publication may be copied, transmitted
or stored in a retrieval system or reproduced in any way
including but not limited to; photocopy, photography,
magnetic or other recording, without prior written
permission from the publishers, with the exception of
material entered and executed on a computer system for
the readers own use.

Published by: Computabits Ltd, P.O.Box 13, Yeovil,
Somerset, England.

PET is a Trademark of Commodore Ltd

FORWARD

This book is a collection of discoveries about the PET,
how and why it works, and how to use these facts to
write better programs and perform more interesting
functions. This is the second edition covering both old
and new ROM machines, if in doubt as to which ROMs are
in your machine then PEEK(50003), in old ROMs this is O,
in new ROMs 1. Although the majority of these facts have
never been oficially published by Commodore 1 would like
to thank Commodore U.K. for their assistance in
providing much of the information contained in "PET
Revealed". Especially Nick Green and Mark Clark of
Commodore who were helpfull in providing that
information and also in proof reading the manuscript. I
would also like to thank Commodore for their permission
to publish the circuit diagrams. The discovery of page
zero locations and ROM subroutines is principally the
work of Jim Butterfield while the Trace programs are the
work of Brett Butler, my thanks to them both. I would
also like to thank Mark Witkowski for providing some of
the other programs and also proof reading the
manuscript. It may interest you to know that this book
was typeset using a PET system running Commodore's word
processor interfaced to a daisywheel printer

Nick Hampshire.

CONTENTS

SECTION l.....The PET System Hardware. pl

Basic elements - CPU - Memory - Input and Output - Video
circuit - System memory map.

SECTION 2..... The 6502 Microprocessor. pl7

An overall view - The accumulator and arithmetic unit -
Processor status register and flags - Branching and
Jumps - Addressing modes - The Index register - The
Stack register - Interrupts - Data modify instructions -
Machine code on the PET - Hand assembling programs.
SECTION 3.....The PET operating System. p43

Routines from PET Basic - Variable memory map - Basic
tokens - Program storage format - Overlays - Data
storage - Numeric and string variables - Arrays -
Garbage collection - Adding commands to Basic -~ Trace.
SECTION &..... The User Port. p&3

User port connections - Video output circuit - Parallel
user port - The 6522 VIA - User port memory map -
Programming the user port - Handshaking on the 6522 -
Serial I/O - 1/O port expansion - Communication between

processors - KIM to PET data handshaking - Summary of
6522 registers.

SECTION 5.....The IEEE port and the 6520. P119

The 6520 and its registers - The PET keyboard -
Modifying keyboard functions - Cassette unit - Merge -
IEEE port - IEEE connections - IEEE signals - IEEE
commands - IEEE to RS232 conversion - IEEE bus
handshaking - The video display - Double density
plotting.

APPENDIX.

A. PET circuit diagrams.

B. Coding form.

C. 6502 instruction set.

D. Hex-decimal conversion tables.

E. Table of PET codes.

PET SYSTEM HARDWARE

Any computer system large or small, consists of just
four basic elements or building blocks. These are 1)
Central Processing Unit, 2) Storage or Memory, 3) Input
and, 4)Output.

The Basic Elements.

The Central Processing Unit or CPU as it is commonly
known, can loosly be regarded by analogy to a human
being as the "brain" of the computer. It is inside the
CPU that instructions are processed and the arithmetic
done. The functioning of other parts of the computer are
also controlled by the CPU. The computer stores the
instructions which it has been given and the data on
which these instructions operate in memory. This memory
can be divided into two general categories, main memory
and auxiliary backup storage. All the instructions and
data required by the machine to perform its current task
are stored in main memory. Auxiliary memory provides a
permanent storage for sets of data or instructions which
may be required by the computer at a later date.
Auxiliary storage in the PET consists either of a
cassette deck or a floppy disk unit. In the cassette
deck the data and programs are stored on magnetic tape,
in the floppy disk drive on a magnetic disk. Using these
devices the contents of the auxiliary storage can be
brought back into main memory as the need arises.

The input allows one to put instructions or
information - data - into the computer's main memory.
This is most commonly done through a typewriter like
keyboard. However inputs can come from other sources
besides a keyboard, it could come from the closing of a
switch,from a piece of test equipment or even from
another computer. The input 1is also used when
information and instructions are transfered from
auxiliary memory to main memory.

The output is used by the computer to display the
results of its computation. This can be on one of
several devices,a video screen,a printer, or to output

the contents of main memory into auxiliary memory. As
with input,the output can be to a single device such as
a light, to a piece of equipment which the computer is
controlling or to another computer.

These then are the basic elements of any computer
system and Fig 1 shows how they are connected together
and how they interact with the human user. We will now
consider in more detail how these four basic elements
are implemented on the PET.

The CPU.

The principle component of the CPU circuitry in the
PET is the 6502 microprocessor. The internal functioning
of this device will be looked at in more detail in
chapter 2. For the moment consider this %0 pin
integrated circuit as a "black box", since all we are
interested in are the inputs and outputs. These can be
divided into four distinct groups, there are eight data
lines, 16 address lines, 10 control lines and 3 power
supply lines, the remaining three IC pins are not
connected and have no function, a block diagram of the
6502 is shown in Fig 2. Each of these groups forms what
is known as a "bus" which can be defined as being a set
of parallel paths used to transfer binary information
between the devices in a system.

The "ADDRESS BUS" is used to carry the address
generated by the microprocessor to the address inputs of
the memory and input/output (I/O) devices. The address
bus on the PET is unidirectional since the 6502 is the
only component for all the system, except the video
circuitry, capable of generating addresses. Since there
are 16 address lines the processor can access, i.e. Read
or Write into up to a total of 2'® or 65,536 words of
memory, I/O registers etc. If you look at the circuit
diagram for the CPU section of the PET you will notice
that the address lines A0 to Al5 are divided into two
groups. The bottom twelve lines A0 to All go to a
unidirectional buffer the purpose of which is to
increase the power available on each address line. The
top four address lines however go to a demultiplexer,
this decodes the binary number present on these four
address lines, and gives an output on one of the sixteen
output lines corresponding to that number. The function
of this is to divide the memory area into sixteen blocks
each of 4096 bytes of memory, each of which can be
selected by means of one of the output lines from the
demultiplexer. Why the designers have done this will
become obvious when we look at the memory circuitry.

The "DATA BUS" consists of eight bidirectional data
lines. During a "WRITE" operation these lines transfer
data from the processor to the memory location selected
by the address lines. During a "READ" operation data is

Blank

l Sync Interrupt 41
g IEEE port
Video Video .
Displ RAM { 10
Circuit — ROM RAM Circuits || User port
O Cassette
decks
I ,\ t 4(\ A(\»I £ M ,\; T /\ AM
Data bus
Address bus
R/W
Interrupt |y f J
Fig 1.1 PET System Design. Clock
Generator Microprocessor
Vss 1 40 RES
RDY 2 39 ¢2 (out)
gl(out) |3 38 S.0
IRQ 4 37 0 (in)
N.C 5 36 N.C
NM1 6 35 N.C
SYNC 7 34 R/W
Vcce 8 33 DO
A0 9 32 D!
Al 10 31 D2
A2 11 30 D3
A3 12 29 D4
Al 13 28 D5
A5 14 27 D6
A6 15 26 D7
A7 16 25 Al>5
A8 17 24 Ally
A9 18 23 Al3
Al0 19 22 Al2
All 20 21 Vss
Fig 1.2 6502 Pinout

transfered from memory to the processor along the same
lines. The data bus is thus used to carry all data or
instructions to and from the processor,memory, and
periferal 1/O chips. As with the address lines the data
lines have insufficient power on leaving the
microprocessor or memory chips to drive the devices to
which they are sending data. A bidirectional buffer is
therefore used to raise the power Jevels on the data
bus.

To wunderstand the operation of the control lines
which comprise the "CONTROL BUS" we must look at each
one individualy. On the PET only 5 or 6 of the control
lines are used (depending on the model), it will be
instructive if we look at all ten since it throws light
on some of the Ilimitations of the machine. Since the
data bus is bi-directional the processor must have some
method of signalling to memory or I/O as to which
direction data transfer will take place,i.e. whether
memory or I/O is to be "read" or "written" to. This
function is performed by the first of our control lines,
the R/W or "READ/WRITE" output from the processor. When
this line 1is high (i.e. when the measurable voltage
level is greater than 2.4 volts) all data transfers will
take place from memory to the processor. If the R/W line
is low, there is less than 2.4 volts present, then the
processor will write data out to memory.

The processor must not only be able to determine the
direction of data transfer, but also the timing of that
transfer. It is no use the data arriving at the
processor if the processor is not expecting it. Timing
is done by the system clock and requires two control
lines.o0 is the clock input to the microprocessor from
the clock generation circuitry and ¢2 the clock output
to memory etc. Known as a two-phase clock system it
consists of two non overlapping square waves, one wave
is on the ¢0 line (the ol line is identical but not used
on the PET)the other wave is on the ¢2 line. 60 and ol
are known as the PHASE ONE clock pulses and o2 is the
PHASE TWO clock pulse, on the PET both these lines have
a clock frequency of 1MHz. All the address lines change
when there is a positive or high pulse on the phase one
line, and data is transfered when there is a positive
pulse on the phase two line.

The next group of three control lines are all inputs
to the processor and are used to force the processor to
perform a program starting at a predetermined location
in memory. The first of these is the RST or RESET line
which is used to initiate the processor when the machine
is first switched on. Obviously when a microprocessor is
first switched on the contents of all its internal
registers are unknown. There is thus no way that the
processor knows which location in memory is the begining
of the program (it is assumed that, like the PET
operating system and Basic, this program is stored in

read only memory). This then is the function of the
reset line and 1its associated circuitry and software.

The reset circuitry on the PET consists of a 555
timer IC, wired in such a way that when power is first
switched on, the reset line is held low for a length of
time sufficient to allow the PETs circuitry to come to a
fully powered up state. The line then goes high, upon
which the processor delays for six clock cycles. It then
starts execution of a program whose starting address is
stored in memory locations 65,533 and 65,534, these two:
addresses are known as the reset vector. In machines
using the old ROMs this vector is set to hexadecimal
FD38 and in new ROM machines to hex FCDI, this is the
begining address of the power on reset subroutines.

Whereas the reset line is used to initialise the
processor before it starts the execution of a program
the two Interrupt lines cause the processor to stop its
current program execution and start a new program at a
specified location. The two Ilines are entitled IRQ
(Interrupt Request) and NMI (Non Maskeble Interrupt).
The NMI line is not implemented on the 8K PET but is
available to the user on the memory expansion port of
the 16 and 32K machines. The accessability of the NMI
line to the wuser on the dynamic RAM machines is very
useful, it allows the wuser to easily interface circuitry
requiring an interrupt.

On the PET the IRQ line is very important since the
whole system is designed around the use of interrupts.
The scanning of the keyboard, reading and writing to the
cassette and internal clock update are all controlled by
interrupts. Whenever the interrupt line goes from a high
to a low state the processor will finish its current
instruction, saving the address of that instruction in
an area of memory reserved for such purposes. The
processor will then start execution of a program whose
starting address is stored in the top two bytes of
memory (65,535 and 65,536), this is known as the
interrupt vector. The contents of the interrupt vector
in machines with the old ROMs is hexadecimal E66B, and
in machines with the new ROMs hex E6IB. This is the
start of the interrupt servicing routine. A separate
interrupt vector is used by the NMI, located at 65,531
and 65,532, the contents being hex FEFC.

Interrupts are usually generated by an I/O device as
a means of signalling to the processor that there is an
input present on that device. Therefore in its simplest
form an interrupt servicing routine is a program which
reads the input register of the I/O device and stores
this value in a specific memory location. Having done
this we want the processor to continue the execution of
the original program, this is done by having the last
instruction in the interrupt servicing routine as a
return from interrupt instruction. The only difference
between the NMI and IRQ lines is that a programmer can

disable the IRQ line whereas an input on the NMI line
will always interrupt the processor.

None of the remaining three control lines, RDY or
READY input, an output SYNC and 5.0 or Set Overflow are
used by the PET. When the RDY line is pulled low during
a phase one clock cycle it performs the function of
halting the processor which will not then execute any
instructions until the RDY line goes high. The RDY line,
like the NMI line, is available on the memory expansion
connector of the dynamic RAM machines, but not on the
old 8K machines. A pulse appears on the SYNC output
during the phase one of an OP-CODE fetch and stays high
for the remainder of the cycle. The SYNC output can be
used in conjunction with the RDY input to manually
single step the processor instruction by instructioion
through a program, a function unfortunately not
available on the PET. The S.0 input is a means of
externally setting the overflow flag in the processor,
it is designed to be used by future I/O devices in the
6500 series family of ICs. The power requirements for
the 6502 are very simple, the system bus requires just a
single 5 volt power supply line and a ground line. In
fig 2. VCC is the 5 volt line and VSS is the ground.

Memory

v As we have seen the sixteen lines of the address bus
allow the processor to access up to 65,536 words or
bytes of memory, the basic 8K PET uses 23,576 of these
locations. We can divide the memory occupying this space
into three types, Random Access Memory or RAM, Read Only
Memory or ROM, and 1/0 registers. The users programs
and data are stored in RAM, this type of memory allows
the wuser to both read data from and write data to a
memory location, in the 8K PET there is 8K of RAM (1K is
1024 memory locations).

RAM however has disadvantages, when the power to the
machine is turned off the contents of RAM memory is
erased. If only RAM memory were used we would not have a
computer like the PET, which powers up straight into
BASIC when the power 1is turned on. This requires
programs to be permanently stored in the machines
memory. ROM performs this function, permanently storing
the operating system software, (this includes things
like the power-on reset program) and the BASIC
interpreter. As its name implies the processor can not
write data into ROM memory it can only read the contents
of these locations, ROM memory in the PET occupies 14K
or 14,336 bytes of memory.

The PET is designed around a system of computer
architecture known as "memory mapped I/0", briefly, all
input and output from the computer is treated as memory
locations. In the PET memory 2048 bytes are dedicated to
this purpose and are divided between four /0 devices,

four bytes each to the two PIAs sixteen bytes to the VIA
and the remaining 1024 bytes to the video circuitry, we
shall be examining these in detail later.

The designers of the PET have split the total memory
area into sixteen blocks, each of 4K bytes. This is done
by feeding the four most significant address lines into
a demultiplexer, from which each of the sixteen output
lines can be used to select a unique 4K memory block.
There are several versions of the PET, the principle
difference between them, besides changes in the:
software, is the use of different types of RAM chip. The
old 8K machines used4K bit static RAMs, these were one
of two types the 6550 and the 2114, Both these chips are
functionally indentical in most respects since they are
organised as 1K by 4 bits. The latest versions of the
static RAM 8K machines used the 6550.

A 4K RAM block in th old machines consists of eight
memory chips organised in pairs, where each pair
contains IK by 8 bits of memory. Since 1K (1024) is
equal to 2'° any memory location within the 1K block can
be accessed by using the bottom ten lines of the sixteen
line address bus. Each memory chip has a set of inputs
known as '"chip select inputs" there are four on the
6550, these can be used to selectively turn a particular
chip off or on and are thus functionally similar to the
address inputs. It is these chip select inputs which
are used to turn on a particularr 1K pair of memory
chips, the location of that 1K being determined by
address lines 10 and 11 and one of the sixteen 4K block
select lines. Herein lies the reason for the division of
memory into 4K blocks, since there are only four chip
select lines on the 6550 the processor could only access
2* xlK or 16K of memory if we connected these inputs to
lines 10, 11, 12 and 13 of the address bus. Obviously
this is wunsatisfactory, and can be remedied if the
memory is divided into 4K blocks each of which is
selected by a single line going to one of the chip
select inputs on the chips in that block. For the 6550
to be turned on two of the chip select lines must be
connected to 5 volts and the other two to 0 volts or
ground. With careful wiring, this fact can be used to
remove any need for decoding of the two address lines
(10 and 11) thereby simplifying the circuit and reducing
the number of components.

The new 32K and 16K dynamic RAM machines use the
4116 memory chip and the dynamic 8K the #%108. These two
RAM chips are pin compatable, with the 4116 having 16K
bits of memory and the 4108 8K bits. This is useful
since it allows the same circuit board to be used for
all sizes of machine. Memory on the 16 and 32K machines
is organised as two banks each of 16K bytes, only one
bank being implimented in the 16K. The #4K block select
lines are not used in the dynamic machines and are
replaced by a bank select «circuit controlled by address

lines 14 and 15. The circuit diagrams show the circuits
for the dynamic RAM systems implemented as a 32K
machine.

The operating system and Basic are stored in ROM, on
the old 8K machines in seven 16K bit chips of the 6540
type, in the new dynamic PET, in four chips of the 2332
type. The 6540 ROMs are organised as 2K byte memory
blocks thus any address can be accessed using the bottom
eleven lines of the address bus. The chip select lines
on the 6540 are used to select the 4K block being
accessed and to determine which of the two chips in the
4K block is to be read. The inputs to the chip select
lines of the 6540 being provided by address line 11 and
block select lines 12,13,14, and 15.

In the dynamic RAM PET the 2332 ROMs used are
organised as 4K byte blocks with the chip select lines
on each ROM being connected to one of the block select
lines. Sockets are provided for seven ROMs, though only
four are required for the operating system and Basic. Of
the extra empty sockets, one in memory area B000 to BFFF
hex is required for the Commodore program security ROM.
The other two empty sockets are available for user
written machine code software which can be programmed
onto a 2732 EPROM (this is pin compatable with the 2332
ROM).

The designers of the PET have given the user the
capability of expanding the amount of memory, either
RAM,ROM or I/O, up to a maximum user memory area of 44K
bytes. On all models this extra memory circuitry can be
connected to the address, data and control buses of the
PET via the memory expansion connector on the side of
the machine. In the new dynamic PET, memory can also be
expanded by either inserting extra RAM chips into the
sockets provided or exchanging the 4108 chips for
4116,this will double memory capacity. As already
mentioned ROM memory can be expanded on these machines
by utilising the empty ROM sockets.

The number of bytes of user memory available is
displayed on the screen when the machine is switched on,
this is a fairly good way of detecting any memory
faults. If on an 8K machine the number of bytes free is
less than 7167 then there is a memory fault in the byte
at location - number of bytes free + 1025. Some memory
faults are however not detected by the system
diagnostics, to find some of these a slightly more
sophisticated diagnostic program 1is required. One way of
doing this is to load each byte with - 10101010 - or
decimal 853, then test if the byte contains this bit
pattern. If it does, then the same byte is loaded with -
01010101 - or decimal 170 and again tested. Other values
used to load and test each byte are 0 and 255. This
procedure will detect most faults due to pattern
sensitivity or leaky bit locations.

The following Basic program will test the memory of

51
10

20

21

22

23

24

25

26

27

30

110
120
130
140
200
210
220
230
300
350
400
410
420
430
440
450
460
500
510
520
530
540
550
560
600
605

a standard 8K PET, and indicate the location and bit
pattern of the fault. It is written in Basic and
therefore prevents one from testing -the bottom 2K of
memory, rewritten in machine code this problem could be
overcome. The program also detects time dependent
errors by displaying the time taken to test each IK
block. Though this program tests only an 8K machine it
could be modified for larger machines. The program
starts by requesting the start and end memory locations
of the test.

NPUTA,B

PRINT" [CLEAR]":TI$="000000"
FORI=ATOB

FORY=1TOk

READN

POKEI,N:X=PEEK(I)
IFX=NTHEN26

GOSUB200

NEXT

RESTORE

DATA0,85,170,255
PRINT"[HOME,DOWN 11]";I-1024,I,TI$

NEXT

PRINT"END OF TEST"

END
IFX=10RX=20RX=40RX=80RX=810RX=840RX=870RX=93THEN300

IFX=1620RX=1640RX=17 10RX=1740RX=2470RX=2510RX=2530RX=254 THEN300
IFX=160RX=320RX=640RX=1280RX=210RX=690RX=1170RX=213THEN350
IFX=420RX=1380RX=1860RX=2340RX=1270RX=1910RX=2230RX=239THEN350
A$="I":GOTOLOO

Ag=ngn

IFI<=2047THEN500

IFI<=3071THEN510

IFI<=4095THEN520

IFI<=5119THEN530

IFI<=6143THEN5S40

IFI<=T167THEN550

GOTO0560

B$="2":GOTO600

B$="3":GOTO600

B$="4":GOTO600

B$="5":GOT0O600

B$="6":GOT0600

B$="7":GOT0600

B$="8":GOTO600

PRINT"YOU HAVE A FAULT AT ADDRESS ";I;"IN ROW ";A$;B$;".",N,X
RETURN

Input and Output.

The input and output devices on the PET are the
keyboard, the two cassette decks (one internal one
external), the user port, the IEEE 488 interface and the
video display. These devices all have one thing in
common, whether they are input or output, they are all
located within the addressable space and are thus
treated by the operating system software as memory
locations. This use by the designers of memory mapped
I/0 means that we can look at the PET [/0 in two ways,
first as a standard logic circuit. Second and more
interestingly from the PET users point of view we can
look at the PET 1/0 as a memory map, from which we can
see the exact function of every bit in every location
figure 4 is such a map.

The main I/0 of the PET, excluding the video
circuitry, is performed by three LSI integrated
circuits, they are two 6520 Peripheral Interface
Adapters (PIA) and one 6522 Versatile Interface Adapter
(VIA). To the processor these chips look like RAM memory
located in the upper half of memory block 15 and are
selected by address line 11 and select line 15 connected
to two of the chip select inputs on each chip, (in the
case of the 6522 these lines are combined by an'AND'
gate whose output goes to the chip select). Each of the
three chips is exclusively accessed by connecting the
remaining chip select input to one of the address lines,
thus PIA number | uses A4, PIA 2 uses A5 and VIA AS6.

Within each I/0 chip there are a set of register,
there are four in a PIA and sixteen in a VIA, these are
memory locations accessed by the processor. These
registers are addressed by the bottom two address lines
in the case of a PIA and the bottom four for a VIA ,
data enters or leaves via the eight bit data bus. As
with RAM memory the data direction on the data bus is
controlled by the R/W line and its timing by the o2
clock line. Unlike RAM the 1/0 chips have a control line
output, this is the IRQ Iline which signals to the
processor that an input is present on one of the chips.

The peripheral 1/0 of all these ICs are identical
the difference between them lying in the use of the
internal registers and the effect they have on the
outputs, these will be looked at in chapters &% and 5.
The output from each chip consists of two eight bit
bidirectional 1/0 ports and four control lines, two to
each port. Each line in the eight bit port can be
programmed by the user to be either an input or an
output, the eight lines could be all inputs, all
outputs, or a mixture of both. Of the four control lines
on each chip, two function as interrupt inputs and the
other two can be either interrupt inputs ‘or peripheral
control outputs.

10

The keyboard is wired as a ten row eight column
matrix, when a key is depressed one of the row lines is
connected to one of the column lines. The eight column
lines which are normally at a high logic load are
connected to a peripheral 1/0 port on 6520 (1) and are
configured by the operating system software as inputs.
If there was a low voltage on all the row lines, then an
input, where an input is a low logic load from a column
line to the processor, could come from any .one of ten
keys on that column line. This is overcome by haying one
row line "off" at a time, and scanning this line across
all ten lines. Only when the row line on which the
depressed key lies is "off" will there be an output on
one of the column lines. The ten row lines are obtained
from the demultiplexed output of four lines on the
second I/0 port on 6520 (l). Though the keyboard is
organised as an eight by ten matrix only 73 of the
possible 80 keys are used on the PET. The control,
scanning and decoding of the keyboard are all done by a
set of subroutines within the operating system software
which tests the keyboard about sixty times a second for
an input. These subroutines are called by an interrupt,
generated by the clock circuitry and input to the
processor via the CBI pin on 6520 (l). It is this
interrupt software which, besides scanning the keyboard
also updates the PETs rea! time clock and controls the
blinking of the cursor. Chapter 3 will deal with this
and other operating system software.

The IEEE 488 port uses the second of the 6520 PIA
chips to provide the majority of the required I/0 lines.
One of the eight bit 1/0 ports on the 6520 is designated
py the operating system software as input and the other
as output, a bi-directional data buffer is used to
connect each input line to its equivalent output line.
This creates a true eight line bi-directional data bus
and conforms generaly to the IEEE 488 standards. A
similar data buffer 1is used to provide the four
bi-directional control lines used by the port, the eight
input and output lines supplying this buffer are made up
of the three control lines of the 6520 and five lines
from one of the /0 ports on the 6522. The remaining
three control lines of the IEEE port are not
bi-directional in nature and are provided by one of the
control inputs on 6520 (2), by an output of the current
state of the reset line and by a single line from the
second output port. of 6520 (l1). Two of the control line
inputs to the IEEE port function as processor
interrupts, these can be used by devices connected to
this port to signal to the PET that they are ready to
input or accept data. By generating an interrupt the
processor can be forced to jump to the relavent
subroutines, either user written, or within the
operating system which control the functioning of the
IEEE 488 port.

11

Al

ER810

E&11

E&12

Eg13

E820

E&2]1

E&22

E823

Fig 1.3 SYSTEM

PIA 1 (6520)

I/0O MEMORY MAP

T T Ll

L

Diagnostic IEEE Cassette Sense
KEYBOARD ROW T PA
Sense EOI in 12 . f#1 . SELEC ‘
T T T
Tape #1 Screen blank output (old 8K only) DDRA Cassette #!
Input flag IEEE EOI out CA2 Access Read control CAl
T y ’ + -
KEYBOARD ROW INPUT
t 1 +
Retrace Cassette {1 motor output DDRB Retrace interrupt
1 flag CB2 Access Control CBl
PIA 2 (6520)
1 1 | M T
IEEE INPUT
i I]
J] T
ATN IEEE NDAC DDRA IEEE ATN in
I flag out CA?2 Access Control CAl
] ! 1
IEEE OUTPUT
¢ 4 +
SRQ [EEE DAV DDRB IEEE SRQ in
I flag out CB2 Access Control CBl
1 | 1

59408

59409

59410

59411

59424

59425

59426

59427

el

E840

E841

E842

E843
E84l

E&845
E&46

E847

E&48

E849

E84A

E84B

E84C

E84D

E84E

E84F

DAV NRFD Retrace Cassette Cassette ATN NFERD NDAC
in) in in ##2 motor output out out in PB
DATA DIRECTION REGISTER B (FOR E840)
DATA DIRECTION REGISTER A (FOR E&4F)
TIMER I LOW
WRITE HIGH
TIMER 1 M i T Low
LATCH HIGH
TIMER 2 LOW
HIGH
SHIFT REGISTER
Tl control' One shot T2 control Shift st ¢ l' PB PA' Latch
PB7 out : Free run PB6 sense 11T register contro — contro
CB2 (PUP) contro! in/out CBIl in CA2 (graphics/lower case) CAl in
Cass #2 in/out polarity
IRQ Tl T2 CBIl cassette #2 SR CAl CA2
Status Interrupt Interrupt Interrypt Interrup Interrupt Interrupt
Enable Tl int T2 int CBl int CB2 int SR int CAl int CA2 int
clear/set enable enable enable enable enable enable enable
PARALLEL USER PORT I/O (port A)
7 6 5 4 3 2 1 0

VIA (6522)

59456

59457

59458

59459
59460

59461

59462

59463

59464
59465

59466

59467

59468

59469

59470

59471

The wuser port serves two functions, firstly as a
user programmable eight line 1/0 port with two
associated control lines. Secondly as a source of the
relavent lines required by the service engineers
diagnostic equipment. The programmable I/0 and control
lines are provided by one half of the 6522 VIA chip. Of
the control lines, one is an interrupt input, and the
other can be either an interrupt or an output line. When
the processor is interrupted by one of these lines it
halts, and jumps to a machine code interrupt handling
subroutine which has been written by the user. The
starting address in the old 8K PET 1is contained in
memory locations 537 and 538 decimal. In the new dynamic
PET the locations used are 144 and 145 decimal. Of the
diagnostic lines the most interesting to the user are
-three video output lines which with a bit of simple
circuitry allow the screen to be displayed on an
external video monitor.

The circuitry which interfaces with the two cassette
decks, one internal one external, is identical for each
cassette deck. Just four lines are used, three outputs,
and one input. The outputs which come from the 1/0 port
lines of the 6522 and 6520 (1) are cassette write, this
is common to both decks, motor control and cassette
switch. The input from each deck is the cassette read
line and these go to the remaining interrupt inputs one
on the 6522 and the other on 6520 (l). Thus during a
read operation every time a pulse is input from tape via
the cassette electronics the processor is interrupted,
and the tape read subroutines called. These convert the
serial stream of pulses into eight bit words which are
then stored in the correct memory location.

The Video Circuitry.

The video display also uses a memory mapped
technique, 1K of memory is used from &8000-83E7 hex
(32,768-33,768 decimal) where each byte contains the
coded representation of a character in a particular
position on the screen. There are 25 lines each of 40
characters on the PETs display a thousand characters in
all, thus a 1000 memory locations are required by the
video circuitry. The processor can write any character
to any location on the screen simply by placing the
correct byte of data into the correct memory location.
This can be simply demonstrated using the POKE command
in Basic, POKE 33268,42 will print an asterisk in the
middle of the screen.

A unique function of this block of memory is that it
is not only accessed by the processor but also by the
video circuitry. There are two seperate ten line address
buses, one from the processor, and the other from a
video address generator crcuit. Normally the memory
locations are accessed about sixty times a second. There

14

are two seperate ten line address buses, one from the
processor, and the other from a video address generator
circuit. Normally the memory locations are accessed
about sixty times a second. There are two address bus
inputs and two data buses, one going to the processor
and the other to the address inputs of a special ROM
chip known as a character generator. Each character is
stored in the video RAM as a coded byte of data, the
code used is ASCII (American Standard Code for
Information Interchange), each letter or number, and in
the case of the PET, graphics character, has a unique
eight bit code.

The character generator has eleven address lines the
upper eight of which are connected to the video RAM data
bus, the bottom three to a binary counter, the input to
which comes from the video timing circuit. The eight
output lines from the character generator are connected
to a parallel in/serial out shift register. This
converts each byte of data into a stream of pulses, and
combined with some timing pulses, provides the inputs to
the PET TV monitor. Each character is stored in the
character generator as eight bytes of data, this is the
reason for the bottom three address lines being
connected to a binary counter, and can be thought of as
an eight by eight matrix. Each bit in the matrix
corresponds to a point on the screen, a pixel, the PET
screen is 320 pixels wide and 200 deep. A bit can be
either 'on' giving a bright dot on the screen or ‘off'
leaving a dark space. If you look carefully at the
screen you will see that each character is built up from
dots organised as eight rows and eight column.

All this requires very accurate and complex timing,
the majority of the video circuit is devoted to this
purpose. This circuit which is crystal controlled for
great accuracy also provides the oO clock line to the
processor and the keyboard interrupt. As there are two
address, and two data busses, going into and out of the
video RAM, some method must be used to avoid conflicts
between the processor and the video circuitry. On the
address bus a data selector chip is used, this acts like
a change over switch and is controlled by a single input
line, which is in fact memory block select. If this line
is in a 'high' state then the video RAM address lines
are connected to the processor address lines, if it is
in a low state, then they are connected to the video
address generator. A tri state buffer is placed on the
data bus between the video RAM and the processor, this
acts like a valve opening and connecting the two busses
when the processor is accessing the video RAM. The
opening and closing of this valve is controlled by the
Read/Write line and memory block select line number
eight. The random flashes seen when the computer is
PEEKing to the video RAM is because in a static RAM
machine the data bus is still connected to the character

15

generator while the processor is accessing memory.
The PET as a system.

The aim of this chapter has been to give an outline
of the PETs circuitry, and how the different sections of
that circuitry form a complete system. To anyone other
than a service engineer an intimate knowledge of the
PETs <circuitry is interesting but unnecessary.

The reason being that from the users point of view
the entire circuitry can be looked at in terms of a
memory map. The design of the whole machine relies upon
the operating system software, we have seen this in the
extensive use of interrupts and the fact that 1/0 uses
memory locations. This means that an ingenious user
"could change the design of the machine simply by
rewriting the operating system software. Armed with such
a memory map a PET user can, even trom a Basic program,
control the machines 1/0 in an infinite variey of ways,
opening up a whole new range of applications.

16

THE 6502 MICROPROCESSOR

When a program is run on the PET all the
instructions are performed by one component, the
microprocessor. This particular device, there are a
range of different microprocessors, is manufactured by
MOS Technology and known as the 6502. It is an eight bit
microprocessor, eight bits meaning that during each
instruction or operation cycle, eight bits of data are
operated upon or transferred simultaneously. In Chapter
l, the microprocessor was considered as being just a
"black box" with inputs and outputs. However, to use the
PET to its maximum potential, a knowledge of the
internal functioning of the microprocessor is vital,
particularly if the user is writing programs in machine
code.

An Overall View

A block diagram of the internal structure (or system
architecture as it is called) is shown in figure 2.I.
This may appear rather complex, but it can be divided
into two sections. One called the control section, the
other the register section. The control section lies on
the right side of the drawing, the register section on
the left. All the processing is carried out within the
register section of the chip, instructions obtained from
program memory are implemented by a series of data
transfers within this section. Each of the 56 different
instructions which the 6502 recognises involves a unique
set of data transfers. It is the control section which
recognises the instruction, and initiates the correct
sequence of data transfers. The instructions enter the
processor via the data bus and are latched into the
instruction register to be decoded by the control logic.
Since most instructions require more than one data
transfer within the register section, a source of timing
signals is required to ensure the correct sequence, this
is done by the timing control unit.

Each data transfer which takes place within the
register section, is the result of the decoding of the

17

AQ el

A2 i

A]

“‘ﬁ

A5]

Ad @]

A7 ———o

1ayv

A8 ——y

A9 ¢—r—ou

A10 e

All — g

“24_—ﬂ

A1S et

HEYV

18

SN8 SS3IYAQY TYNUHIING

HOIH

|

sna SS3yadv 1VNYILNI

MO

X
INDEX
REGISTER

[0

Y
INDEX
REGISTER

[O

STACK
POINT
REGISTER

N

il

Viva TVYNY3ILINI

INTERRUPY
LOGIC

INSTRUCTION
DECODE

| SE—————] :) 4

Y

ALY
| S
o
[=
(7]
]
ACCUMULATOR TIMING
- CONTROL
PCL ﬁ
PCH d
| S STATUS cLOCK
REGISTER GENERATOR go 1N
(% INPUT — | . @1 ouT
DATA
LATCH - L g20uT
‘L———’ le
pATA BUS K] INSTRUCTION ~——— DBE
BUFFER po—I| REGISTER
—
A L 4
00
— D1
- D2
+03
—t D4
—p D5
— D6
-t D7
Fig2.1 Diagram

6502 Block

instruction register and the timing control unit by the
control logic, whose outputs enable the relevant
registers. When programming at a machine level a primary
concern is the control and manipulation of data within
the processors registers. To understand the function of
the microprocessors instruction set, one must understand
the function of its registers.

The Accumulator and the Arithmetic Unit

Figure 2.1. shows that the registers communicate
with each other via an internal eight line data bus,
connected to the computer system data bus by the data
bus buffer. One of the simplest types of data transfer
is between memory, and an internal register, such as the
accumulator.

The accumulator has no exact function, a kind of
general purpose register, it is here that data on which
operations are being performed is stored. If you want to
move a byte of data from one part of memory to another
it has to be temporarily stored in the accumulator.
Similarly the accumulator is used to store the
intermediate and final results of a logic or
arithmetical operation.

Data tranfers between the accumulator and memory,
which, since the PET is a memory mapped system also
includes 1/0, are very important and account for about
40% of all the instruction used in a machine code
program. To move a byte of data from one memory location
to another then two instructions are required:

LDA,M]1 - Load accumulator with contents of f{first
memory location

STA,M2 - Store contents of accumulator in second
memory location :

Memory locations Ml and M2 are accessed by one of a
variety of addressing modes, these will be looked at
later in the chapter. Having loaded a byte of data into
the accumulator the processor can be instructed to
perform arithmetic or logical operations upon it.
Although these are the kind of functions expected of a
computer, only about three percent of all instructions
in a program fall within this category. Since the 6502
is an eight bit machine all the arithmetic and logical
operations are between two eight bit numbers, the
numbers used are limited to a range of between 0 and
255, a limitation which has to be overcome by
programming techniques.

The problem of being unable to store a number
greater than 255 in the accumulator or memory occures
when adding two numbers whose sum is greater than 255.
This is overcome by giving the accumulator a nineth bit,
called the carry. The carry bit, or flag as it is known,

19

is one bit in the processor status register, and is set
when the contents of the accumulator exceeds 255. All
this applies to the performance of binary arithmetic by
the processor, the 6502 is fairly unique in that it can
also do decimal arithmetic. In this mode each byte
contains two binary coded decimal numbers and can have a
range from 0 to 99. As in the binary mode when the
addition of two numbers gives a result greater than 99,
the carry flag is set to indicate the fact. The
processor is placed in the decimal mode by a '"set
decimal mode" instruction, SED, which turns on another
bit within the processor status register.

There are two basic arithmetic instructions, ADC -
which is add memory to accumulator with carry, and SBC -
which is subtract memory from accumulator with borrow.
Both instructions can be either binary or decimal in
nature and can use a variety of addressing modes to
indicate the memory location. :

The ADC instruction adds the value of the data in
the memory location, plus the carry from the previous
operation, to the value in the accumulator, storing the
result in the accumulator. If the result exceeds 255 in
the binary mode, or 99 in the decimal mode, then the
carry flag is set,if the result is zero then the =zero
flag is set. An example, if we want to add the two
numbers, 25 and 189, and store the result in memory
location 10 (decimal) we could use the following
sequence of instructions:

CLC 18 (this clears the carry flag)

LDA 25 A9 19 (Load accumulator with 25)

ADC 189 69 BD (Add 189 to accumulator and
carry)

STA 10 8D 0OA 00 (Store result in location 10)

The instructions in the left column are in mnemonic
code, followed by a decimal number or memory location.
The same sequence of instructions appears on the right,
written in a numerical form, in this case wusing
hexadecimal notation, showing how instructions and data
would be stored in memory. Addition of two numbers with
values greater than 255 needs a process known as
multiple precision addition, calling for the use of the
carry flag. Adding two sixteen bit numbers, requires two
additions. The carry is first cleared and the two lowest
order bytes, (a sixteen bit number would be stored in
two bytes of memory) added together. The result of this
addition is stored in a memory location as the low order
~yte of the result. Now the two high order bytes are
added, plus any carry generated by the first addition,
the sum stored as the high order byte of the result.
Using this method numbers of any size can be added

20

together, whether the processor is in binary or decimal
mode.

Addition can be performed on signed numbers,
positive numbers added to negative numbers, or two
negative numbers added. The sign is stored as bit seven
of the highest order byte, a zero for positive and a one
for negative. Addition takes place as in ordinary
arithmetic, the only exception being that the carry flag
for the highest order byte is replaced by the overflow
flag. This performs the same function but records an
overflow or carry from bit seven, rather than bit eight.
Negative numbers are stored not as ordinary binary
numbers but as two's compliment, which is best described
as the inverse of that number minus one. All the ones
become zeros and vice versa for all bits, except bit
one, thus binary five 1is normally 0000010l - in twos
compliment form it becomes: 11111011.

The SBC instruction subtracts the value of data in a
memory location, and borrow, from the value in the
accumulator, storing the result in the accumulator.
Two's compliment arithmetic is used throughout. The
borrow flag is the same as the carry flag used in
addition, whereas before an addition the carry flag is
always cleared, before a subtraction it is always set.
The result of subtraction affects the carry or borrow
flag, it is set if the result is greater than or equal
to zero. Similarly for subtraction of signed numbers the
overflow flag is set if the result exceeds +127 or -127
for single precision seven bit arithmetic. The SBC
instruction can be used with either binary or decimal
numbers with both multiple precision and signed
arithmetic. To subtract two decimal numbers, say, 18
from 27 wuse the following sequence of instructions, the
decimal mode is used to illustrate its function:

SED F8 (set decimal mode instruction)

SEC 38 (set borrow flag)

LDA 27 A9 27 (load accumulator with 27)

SBC 18 E9 18 (subtact 18 from accumulator
and borrow)

STA 10 8D OA 00 (store result in location 10)

The instructions on the Jleft are in mnemonic code, on
the right in hexadecimal, note that in the decimal mode
the hexadecimal and decimal numbers are the same.

The 6502 instruction set does not include
instructions to perform multiplication or division.
Users requiring them must write subroutines to perform
these functions, or use the subroutines within PET
basic. Multiplication is a process of repeated addition:
3 x 5 is the same as 5 + 5 + 5 , for large numbers this
could be a lengthy process, and programming tricks are

21

required to minimise this. Division is a process of
repeated subtractions: 15 / 5 can be performed as the
following sequence, 15 - 5 = 10, 10 - 5 = 5, 5 - 5 = 0 ,
since three subtractions were required,the answer 1is 3.
As with multiplication, programming techniques are
needed to reduce the time taken to divide large numbers.

Besides arithmetic operations the ALU or
Arithmetic/Logic Unit can perform logical operations
between data in memory, and the accumulator. consisting
of three instructions AND, OR and EOR. The AND
instruction performs a bit by bit logical AND operation
between a memory location and the accumulator,storing
the result in the accumulator. This operation can be
used to reset or mask a single bit or group of bits in a
memory location. In the decimal mode each byte holds two
digits, the AND instruction can be used to extract one
digit. Where there is a zero in the operand, there is a
zero in the result. To mask out the most significant
decimal digit stored in the bottom four bits, the
accumulator is ANDed with 00001111 or hexdecimal OF.

LDA 25 A9 25 (load the accumulator
with decimal 25)

AND OF (hex) 29 FO (AND the accumulator
with 00001111 binary)

STA 10 8D 0A 00 (store the result in

location 10)

On running this program location 10 will contain 05, the
2 being masked out and replaced by a 0.

An OR instruction performs a binary OR on a bit by
bit basis between the contents of the accumulator and a
memory location, the result is stored in the
accumulator. The main use of this instruction is to set
a bit or group of bits in a memory location, a logical 1
in the operand field produces a 1 in the corresponding
bit of the result. The EOR or Exclusive OR instruction
is identical to the OR, except that a logical 1 appears
in the result only if there is a 1 in the operand field,
and a 0 in the accumulator for the corresponding bit.
The main use of the EOR instruction is to produce the
two compliment of a byte.

The Processor Status Register and the use of Flags.

The processor status register occupies a very
important position in the system architecture of the
6502. It is an eight bit programmable register, unlike
the other registers, its function lies between the
control and register section of the processor. It is the
only register which actually affects the control logic.
Seven of the eight bits are used, and each bit, or flag,

22

has a specific function. Since they are very important
it is worthwhile looking at these flags in greater
detail.

Flags fall into three catagories, those controllable
only by the programmer, those controllable by both
programmer and processor, and lastly those controlled
solely by the processor. Only one flag falls into the
first catagory, the Decimal mode or D flag, occupying
bit three of the status register. This flag controls
whether the processor performs binary or decimal
arithmetic. It can be set by a SED instruction, after
which all arithmetic is performed in the decimal mode,
until the D flag is cleared by a CLD or clear decimal
mode instruction.

Three flags fall into the second category: Carry,
Overflow and Interrupt disable. The Carry or C flag is
located in bit 0 of the status register, it is modified
either by the results of certain arithmetic operations
or by the programmer. The carry is also used as a nineth
bit during arithmetic operations or by the shift and
rotate instructions. The instruction used to set the
carry flag is SEC, it can be cleared by CLC. The
overflow or V flag occupies bit six of the status
register, and 1is used during signed binary arithmetic to
indicate that the result was of greater value than could
be contained within the seven bits of the signed byte.
The V flag has the same meaning as the carry flag, but
also indicates that a sign correction routine must be
used if this bit is "on", since the overflow will have
erased the sign in bit seven. The programmer can only
clear the V flag, using the CLV instruction. The
interrupt disable, I flag, controls the operation of the
microprocessor interrupt request input and is located in
bit two of the status register. Interrupts as seen in
Chapter 1 play a very important part in the PET's
design, and each time there is an -interrupt the I flag
is set by the processor. This stops the processor being
interrupted by more pulses on the IRQ line, until the
interrupt handling program has been completed with a
return from interrupt instruction clearing the 1 flag.
The 1 flag can also be set by the programmer with an SEI
instruction if for some reason he wants to prevent the
processor being interrupted, as during a precision timed
loop subroutine. At the end of such a program the
interrupt line can be returned to its normal function by
clearing the 1 flag with a CLI instruction.

The last three flags: Zero, Negative and Break, are
controlled solely by the processor. The Zero and
Negative flags are either set or reset by nearly every
processor operation. The Zero or Z flag is set by the
processor whenever the result of an operation is 0, as
when two numbers of the same value are subtracted from
each other. The Negative or N flag is set equal by the
processor to bit seven of the result of an operation.

23

One of its primary uses 1is during signed binary
arithmetic, if the N flag is set then the result is a
negative number. The break or B flag is set by the
processor during an interrupt service sequence. The Z
flag occupies bit one, the N flag bit seven and the B
flag bit four of the status register.

The status register contains seven status bits or
flags, each having its own meaning to the programmer at
a particular point in the programe. Although the carry
and overflow flags are used in arithmetic operations the
major use of flags is in combination with the
conditional branch instructions. This gives the
programmer the capability of incorporating decision
making instructions within a program. To test a flag,
and, depending on the state of that flag, take one of
two courses of action. A conditional branch is
functionally the same as the IF... THEN GOTO...
statement in Basic, there are a range of these
instructions performing different functions and testing
different flags. Anyone writing a machine code pragram
must keep track of the expected state of all flags at
every instant throughout the program. Failure to do this
is one of the commonest causes of a program not working
or producing the wrong result. An example would be
failure to clear the carry flag before an addition, on
odd occasions it would have been set by a previous
instruction, and thus give rise to erroneous results.

Branches, Jumps and the Program Counter

To understand the use of branch and jump
instructions the concept of program sequencing must be
understood, and its control by another of the processor
registers, the program counter. Figure 2.l. shows the
program counter, or PC, as two eight bit registers. Like
the other registers they communicate with the data bus,
but the outputs are also connected to the sixteen
address lines of the processor. One of the PC registers
is connected to the bottom eight address lines and is
called PCL, the other which is called PCH is connected
to the eight high address lines. Although two eight bit
registers, they function like a single sixteen bit
register. It is the program counter which controls the
addresing of memory by being a program or data address
pointer, as such it contains the address of the next
memory location to be accessed.

At the beginning of a program the PC must contain
the address of the first instruction. This is one of the
functions of the operating system reset software, it Iis
also performed by the SYS and USR commands when entering
a machine code program from Basic. The instruction
fetched from memory is stored in the instruction
register, to be decoded by the control logic. This
process takes one clock cycle, during which time the

24

program counter is incremented by one to point to the
next memory location. The processor usually requires
more than one byte to interpret an instruction, this
first byte contains the basic operation and is known as
the OP CODE. The following one or two bytes, known as
the OPERAND, contain either a byte of data or the
address of the data on which the operation will occur.
An instruction may require up to three sequential memory
locations, the program counter first points to the OP
CODE which is fetched from memory and stored in the
instruction register. The PC is incremented and points
to the next memory location, the contents of which are
fetched and stored in the ALU, in a three byte
instruction this will be the low order address of the
data. The program counter is again incremented and the
high order address fetched from the third memory
location. The processor then latches the two bytes of
the address onto the address bus via the ALU, fetches
the data, and performs the operation. Having completed
the operation, which wusually takes about four clock
cycles, the processor increments the program counter to
point to the next instruction and the process is
repeated. In this manner the program counter will
continue to advance until it reaches the maximum memory
location, fetching instructions and addresses.

A sequential program would lack a feature
fundamental to computing, the ability to test the result
of an operation, and implement various options based on
the results of the test. Firstly flags can be used to
test the result of an operation, secondly the contents
of the program counter must be changed to point to the
start of a new program. The simplest way of changing the
contents of the program counter is with the IJMP or Jump
to new location instruction. This as its name implies
does not perform any tests on the results of a previous
operation. It simply loads a new sixteen bit address
into the program counter thereby forcing the processor
to start operating at the new address.

There are eight different conditional branch
instructions, they can be divided into four groups, each
testing the state of one of the status register flags.
The four flags tested by the conditional branch
instructions are: Carry, Zero, Negative and Overflow,
one instruction tests if the flag is set, and the other
if it is clear. The two instructions for the Carry f{flag
are BCC or Branch on Carry Clear and BCS or Branch on
Carry Set. The Operand contains the address to which the
program jumps if the condition being tested is true. The
addressing mode used is unique to conditional branch
instructions, it 1is called relative addressing.

In relative addressing the new address is stored as
just one byte, which is added to the current contents of
the program counter. To enable the program to branch
both forwards and backwards the relative address can be

25

either a positive or a negative number. The fact that
relative branch addresses are stored as a signed single
byte limits the maximum size of the branch to either 128
bytes forwards or backwards, this may seem a limitation
but in practice it is not.

The eight conditional branch instructions are:

BMI - Branch on Reult Minus
Testing the N flag

BPL - Branch on Result Plus

BCC - Branch on Carry Clear
Testing the C flag

BCS - Branch on Carry Set

BEQ - Branch on Result Zero
Testing the Z flag

BNE - Branch on Result Not Zero

BVS - Branch on Overflow Set
Testing the V flag

BVC - Branch on Overflow Clear

Most operations involve the setting of one or more
flags, but a small group of test instructions are
specifically designed to set flags for testing by a
branch instruction. The most commonly used is the
Compare Memory and Accumulator or CMP instruction. It
allows the programmer to compare a value in memory to
one in the accumulator without altering the value in the
accumulator. If the two values are equal the Z flag is
set, otherwise it is reset. The N flag is set equal to
bit 7 and the carry flag is set when the value in memory
is less than or equal to that in the accumulator. The
BIT instruction tests single bits in memory with the
corresponding bits in the accumulator.

Addressing Modes

At this stage it is a good idea to look at the
various addressing modes used by the processor, so far
we have met only absolute and relative addressing. There
are thirteen different addressing modes and most
instructions can be performed in more than one mode. The
LDA instruction can use one of eight different modes of
addressing. The simplest mode is implied addressing
which is used exclusively by single byte instructions
operating on the internal processor registers. In an
instruction like CLC (Clear Carry) no data is accessed
therefore no address is required. It is implied that a
register, in this case the - Status Register is to be
operated upon. Immediate addressing is used whenever the
programmer wants to perform an operation using a
constant. To put a value of, say 25, in the accumulator
we would use the LDA instruction in the Immediate mode.
This form of addressing was used in the examples of the
operation of arithmetic and logical instructions, data

26

being stored in the byte immediatly following the
OPCODE.

Neither the Immediate or Implied addressing modes
use a memory address where data is stored, and are of
little use in operations with variables. To address any
location in memory would require a full sixteen bit or
two byte address stored in the operand part of the
instruction. This address points to a memory location
where the variable upon which the operation being
performed is currently located, or is to be stored. This
form of addressing is known as Absolute addressing. A
shortened form of absolute addressing can be used when
the memory location being accessed lies on page zero of
memory. This is the only case where the concept of
paging has any importance in the 6502, page zero is just
the bottom 256 memory locations. This is called Zero
Page Addressing, and uses a single byte address to point
to the location of data within page zero. It is a two
byte instruction therefore much faster than absolute
addressing, it is thus good practice to store all
variables in page zero. The remaining non-indexed
addressing mode is Relative addressing already met with
in conditional branch instructions.

The Index Registers and Indexed Addressing

So far, none of the instructions looked at have
accessed more than one byte of data,since the operand
field contains a fixed address. This poses problems if
ccessing a sequential block of data such as a table or
an input buffer. One method would be to use a string of
load instructions in the form, load data from address |
- perform operation - load data from address 2 - perform
operation and so on. This is obviously highly wasteful
of memory space, it would be more efficient if this
program was written as a loop. To do so would require
that the address stored as the operand field of the Iload
instruction is incremented each time the program goes
round the loop. In this way the operand address will
always be pointing to the next byte of data to be
accessed. This method is useful, but, execution time is
considerably greater than in the straight line
programming technique, also it is often undesirable to
use a self modifying program.

A more sophisticated approach 1is the use of a
counter, the contents of which are automatically added
to the address in the operand field of the instruction.
Such a counter is called an Index register. There are
two index registers in the 6502, both are eight bit
registers, labelled X and Y. They are used by
instructions in one of the indexed addressing modes. The
simplest is absolute indexed addressing, in this mode
the contents of one index register is added to the
address in the operand field of the instruction, giving

27

a new address from which data is to be accessed. The
fact that the Index registers are only eight bit
registers limits the maximum size of data block accessed
using indexed addressing to 256 bytes. In practice the
majority of tables are shorter and it is not a
significant limitation.

The index registers are controlled and manipulated
by a range of special instructions. A number can be
loaded to, or stored from the index register and a
memory location, by the LDX, LDY and STX, STY
instructions. Similarly the contents of the index
registers can be compared with a value in memory to test
if a conditional branch should take place by using the
CPX and CPY instructions. The contents of an index
register is changed to point to the next address by
incrementing or decrementing it by one. To count up, the
instruction used is INX or INY, to count down, DEX or
DEY. The remaining index register instructions allow the
transfer of the contents of the accumulator into one of
the index registers and vice versa. TAX and TAY transfer
the accumulator contents into X and Y registers
respectively and TXA, TYA transfer the index register
contents to the accumulator.

In some programs it may be necessary to have a
computed address rather than a base address with an
offset, as in absolute indexed addressing. This is done
using indirect addressing, instructions in this mode
have just a single eight bit address field which points
to the effective address as two bytes in page zero. The
data address is thus not stored directly in the operand
field of the instruction but, indirectly in page zero,
all the indirect acesses are indexed except for the IJMP

instruction. Two modes of indirect addressing are
possible, indexed Indirect and Indirect Indexed
Addressing.

In Indexed Indirect addressing index register X is
added to the operand zero page address. This points to
locations where the sixteen bit data address is stored.
One of the major uses of this addressing mode is in
retrieving data from a table or list of addresses, as in
polling 1/0 devices or performing string operations. In
Indirect Indexed addressing the sixteen bit address
pointer in page zero is first accessed then offset by
the contents of index register Y to give the true data
address. The location of the pointer is fixed, whereas
in the indexed indirect mode it is variable being offset
by the contents of index register X. Indirect indexed
addressing combines the advantage of an address that can
point anywhere in memory with the offset capability of
the index register. It is a particularly powerful method
of accessing the nth element of a table, providing the
start address is stored in page zero.

28

The Stack Register and its Use.

The stack register is the last of the processor
registers, and is mainly concerned with the handling of
interrupts and subroutines. It is an eight bit register,
its function 1is identical to that of the program counter
since it is an address generator. It is used to point to
an address in page | of memory,(locations 256 to 511),
known as the stack. The stack is a set of memory
locations starting at 511 and f{filled downwards from that
location with a maximum size of 255 bytes. It is
organised as a LIFO or last in first out structure,
which means that the last byte of data stored on the
stack is the first byte to be accessed. Every time data
is pushed onto the stack the stack pointer is
decremented by one, and each time data is pulled off the
stack, the stack pointer is incremented by one. The
addressing of the stack is independent of the program
and based purely upon chronological events. The stack is
used as a temporary data store, the most common data
being re-entrant addresses generated by subroutines and
interrupts. Every time a subroutine 1is called in a
machine code program the current contents of the program
counter is saved. On returning from the subroutine the
program can be re-entered at the correct location.
Similarly every time the processor is interrupted the
current address in the program counter is saved before
the processor performs the interrupt servicing routine.
A subroutine may call other subroutines, requiring the
storage of several re-entrant addresses in the stack.
The last re-entrant address stored is the first address
reloaded into the program counter at the end of the
subroutine, hence the LIFQO structure of the stack. The
calling of subroutines by other subroutines is termed
"subroutine nesting" and is a common occurrence in
machine code programs. The size of the stack in the 6502
limits the user to 127 levels of nesting, usually far
more than is needed.

A subroutine is called by a JSR or Jump to
Subroutine instruction. This pushes the current contents
of the program counter onto the stack. A location stored
as the operand field is then loaded into the program
counter. This causes the processor to jump to a new
section of the program and start execution from the
location in the program counter.

The return from a subroutine to the main program is
accomplished by the RTS or Return from Subroutine
instruction. This Jloads the return address from the
stack into the program counter. It also increments the
program counter to point to the instruction following
the JSR. The stack pointer is also incremented to point
to the next subroutine address if any.

The stack can be used by the programmer as a
temporary storage location for data passed to a

29

subroutine. The programmer needs a set of instructions
to allow him to put data onto the stack and read it
back. The current contents of the accumulator can be
transferred to the next location on the stack by the PHA
or Push Accumulator onto Stack instruction. Data can be
read from the current location pointed to by the stack
pointer, into the accumulator, by the PLA or Pull
Accumulator from Stack instruction. Both instructions
automatically cause the stack pointer to be incremented
or decremented by one. An example of data storage in the
stack is saving the contents of the processor status
register when a subroutine is called. The contents of
the status register can be pushed onto the stack by the

PHP - Push Processor Status on Stack instruction. Then
transferred from the stack back to the status register
by the PLP - Pull Processor Status from Stack
instruction.

It has been assumed in the f{first part of the
chapter that the stack pointer points to a fixed
location, automatically incremented or decremented by
the processor. But to use the stack pointer the
programmer has to be able to change its contents. The
stack pointer is loaded by transferring the contents of
the X index register to the stack pointer with a TXS -
Transfer Index X to Stack Pointer instruction. This
instruction is used at the beginning of a program to
initialise the stack pointer, it is performed
automatically on the PET as part of the power up reset
routine. Re-initialising the stack on the PET could
cause problems, frequently resulting in a crash and
should thus be avoided. The current contents of the
stack pointer can be read by loading it into the X index
register with a TSX - Transfer Stack Pointer to Index X
instruction.

Interrupts

The processing of interrupts is fundamental to the
operation of the PET system. As seen in chapter 1 all
I/0 is interrupt driven, a knowledge of interrupts is
thus required by anyone using the user port or the other
I1/0. There are three input lines which can cause the
processor to halt on completion of the current
instruction. Store the program counter on the stack and
branch to an interrupt servicing routine at an address
pointed to by the contents of one of the interrupt
vectors. These three lines are Reset, Interrupt Request
and Non-Maskable Interrupt (NMI is only implemented on
the new dynamic PET). The reset line is only used when
the machine is powered up, therfore not of much interest
since it is not under user control. It is the two
interrupt request lines which are of major interest, for
not only is the IRQ the source of all system interrupts,
but both lines can also be controlled by the programmer.

30

The only way a programmer can change the sequence of
operations is to load a new address into the program
counter. If this were true then an external event could
not effect the program sequence, unless the program was
written to periodically check for an input. Most inputs
are asynchronous, meaning that for an input to occur at
the same time as the program is checking for inputs is
extremely unlikely. If an input pulse occurred just
after an input check, then not until the next check
would that pulse be input to the computer. During the
interval between checks data at the input may have
changed resulting in the loss of information. To
overcome such a data loss the processor could be
programmed to wait for the data, but this would mean the
processor spending most of its time doing nothing.

Interrupts are used to solve this problem, by having
a special line signal the processor whenever an input
occurs. This considerably simplifies programming, making
it unnecessary to repeatedly wuse an input testing
subroutine or have the computer wait for an input. The
two interrupt lines used to signal to the processor that
an input is present are the IRQ line and the NMI line.
By pulling an interrupt line low for at least 20
microseconds an input device can signal that it wishes
to send data to the processor. This forces the processor
to finish 1its current instruction, store the program
counter and status register on the “stack and jump to a
memory location pointed to by the interrupt vector.
There are two interrupt vectors that for the IRQ line is
located at 65,535 and 65,536, for the NMI line at 65,531
and 65,532. The processor could be interrupted again
before it was able to retrieve data from the first
input. To prevent this the programmer can disable the
IRQ line and prevent further interrupts by setting the I
flag in the processor status register. This is done by
the first instruction in the 1iInterrupt handling
subroutine, SEI-Set Interrupt Disable. A CLI - Clear
Interrupt Disable instruction clears the [flag and
allows the processor to be interrupted as normal. Having
obtained data from the input the interrupt software can
process it for use by the main program or respond with
an output from an [/O port. Control is returned to the
main program by the RTI-Return from Interrupt
instruction. This pulls the contents of the processor
status register and program counter off the stack
restoring the processor to its pre-interrupt state.

The PET has six sources of interrupt, two from each
of the three peripheral 1/0 chips, any one of them can
interrupt the processor. Since all interrupt lines are
tied together giving a single IRQ input to the
processor, a means of finding out which device produced
the interrupt is needed. This can be done by hardware,
but on the PET is done by software, using an interrupt
polling routine. This simply means that the interrupt

31

software tests each of the 1/0 devices in turn to find
out which device generated the interrupt. The 1/0
devices are tested in fixed order of priority, the
highest priority device being tested first and the
lowest last. The purpose being that if two devices
generate interrupts at the same time then the processor
looks at the highest priority, the most important,
device first. The scan interrupt in the PET has highest
priority, except when using the cassettes when the read
interrupt is highest. Each 1/0 chip has two interrupt
inputs and one output connected to the IRQ line. An
interrupt from an external device sets either bit 6 or
bit 7 of the peripheral 1/0 chip status register. It
also generates the interrupt to the processor. To test
which device generated the interrupt the computer simply
reads the contents of each of the 1/0 status registers
testing for bit 7 being set. Having determined which
device caused the interrupt the appropriate program can
be performed.

An interrupt sequence can also be generated by the
programmer without an input being present in the IRQ
line, by use of the BRK - Break command. This
instruction performs a software interrupt and causes
program control to be transferred to the address stored
in the interrupt vector. The main use of this
instruction is in debugging a program, however since it
calls one of the interrupt routines its use on the PET
is not recommended. For PET users a similar function is
provided in the machine code monitor with none of the
attendant problems of the BRK instruction.

Data Modify Instructions

A small group of instructions remain which have not
been looked at, they are not associated with any
particular processor register and are classified as
read/modify/write instructions. They all read data from
a memory location or accumulator, modify it in a
particular way and store the modified data back into
memory or the accumulator. These instructions perform
four different data modifications, shift, rotate,
increment and decrement. A shift instruction is one
which takes the contents of the accumulator or a memory
location and shifts all bits one bit to the left or
right. An example is the LSR-Logical Right instruction,
here the data in the accumulator or memory is moved one
bit to the right, bit 0 is placed in the carry flag and
bit seven set to zero. Similarly the ASL-Arithmetic
Shift Left instruction moves the data one bit to the
left, bit seven is stored in the carry flag and bit 0
set to zero. Repeated shifts in the same direction will
eventualy result in the entire byte being set to zero.
Herein lies the difference between a shift and a rotate
instruction. In a rotate instruction the contents of the

32

carry flag is stored in the bit emptied by the shift,
thus no data 1is lost in a rotate instruction. The
ROL-Rotate Left instruction shifts the contents of the
accumulator or addressed memory left 1 bit with the
carry stored in bit 0 and bit 7 stored in the carry
flag. With ROR-Rotate Right instruction the data is
shifted right 1 bit with bit 0 shifted into the carry
and the carry shifted into bit 7. The shift and rotate
instructions have a unique form of addressing, in
addition to the normal forms and known as accumulator
mode addressing. It indicates that the instruction is to
operate on the accumulator rather than on a memory
location.

Besides shift and rotate the contents of a memory
location can be incremented or decremented.
INC-Increment Memory by One adds one to the contents of
the addressed memory location. DEC-Decrement Memory by
One subtracts one in twos compliment form from the
contents of the addressed memory location. The main use
of increment and decrement is with counters such as
table pointers.

Machine code on the PET

A great advantage of the PET over other small micro
computer systems is that it can be programed in both
Basic and machine code. This gives the programmer the
powerful option of using machine code subroutines in a
Basic program. The PET normally runs in the Basic mode
and there are five ways of accessing the machine code
environment. The first two use commands in Basic, these
are, USR and SYS. Both commands access a machine code
subroutine whose address is specified in the command or
in a specific page zero location. The next three methods
involve adding machine code subroutines into the
operating system. The first being to add a program into
the interrupt servicing routines, these are called sixty
times a second by the scan interrupt signal. This method
allows for example, the scanning of 1/0 ports for an
input, or selectively disabling certain keys on the
keyboard. Any situation where a program must be run
concurrently with the main program could use this
method. The second methods involves inserting extra code
into the CHARGOT subroutine which gets each line of
Basic from memory prior to its execution by the
interpreter. By intercepting each line of Basic before
it is executed new Basic instructions can be added. The
instruction being performed by a user written machine
code subroutine. Both the method of inserting code into
the interrupt routine and the addition of extra code
into the CHARGOT subroutine will be dealt with in full
later on. Lastly, on new ROM machines the NMI line can
be used to force the computer to jump to a NMI interrupt
handling routine. One use of this is to provide the

33

machine with a reset button, by connecting a switch
between the NMI line and ground a manual interrupt can
be generated. To use the reset, the NMI RAM vector
(locations 148 and 149) must contain the start address
of the monitor. If a program crashes, pressing the reset
switch will cause it to jump into the monitor program.

The main reason for using machine code subroutines
is that Basic is too slow for many purposes, especially
when using the 1/0 ports. A machine code routine is more
than 100 times faster than the same program written in
Basic. Another reason for using machine code is that one
may want to change the operating system or use some of
the operating system subroutines. Thirdly, a reason used
by some commercial software producers is that machine
code programs can be protected from illegal copying.

The best place to put small machine code programs is
in the second cassette buffer, assuming that is that the
second cassette is not being used. This 192 byte memory
block extends from location 826 to 1018. If the program
is longer than 192 bytes or the second cassette buffer
is being used then the progam is best located at the top
of memory. This area is used by Basic to store character
strings and to avoid these overwriting the machine code
program the top of memory pointers must be changed. The
top of memory pointers are set during power up
diagnostics to the highest usable RAM location. By
lowering the value of these pointers a block of memory
can be reserved exclusivly for use by a machine code
program. The operating system will regard the new top of
memory pointers as containing the highest memory
location usable by Basic. In the old 8K machines these
pointers were stored in locations 134 and 135, and in
the new machines in 52 and 53. The pointer is stored as
the low order byte in 52 (134) and the high order byte
in 53 (135). As an example the following commands will
lower the top of memory on a 32K machine by 256 bytes:

POKE 52,255:POKE 53,126

Of - the two Basic commands used to call a machine
code subroutine, SYS and USR, by far the most powerful
and flexible is SYS. With the SYS command one simply
specifies the subroutine starting location, thus if it
starts at location 826 it can be called with SYS(826).
Variables can be transferred between a Basic program and
a machine code program by using PEEK and POKE. These
read or write single or multiple byte values into memory
locations allocated for the purpose and acessed by both
programs. Transferring variables in this manner is
easier than wusing the single floating point variable
provided for the USR function. It also allows the
transfer of more than one variable which USR does not.
The only requirement with a SYS subroutine is that the
last instruction in the subroutine is a RTS - return

34

from subroutine since this automatically returns control
to the Basic program. Another virtue of SYS is that it
is far easier to have more than one machine code
subroutine in a Basic program.

The easiest way of entering a machine code program
is to incorporate it into the Basic program using a
simple loader, to POKE the values byte by byte into the
correct locations, you will find several examples
elsewhere in this book. Another way is to use the
machine code monitor,this is ROM based in the new
machines, users of old machines will require a tape
version. The monitor allows machine code program to be
directly written into memory using hexadecimal code.
Also it allows programs to be saved and loaded onto tape
in machine code format. Both methods are ideal when
writing and entering short - less than 100 bytes -
machine code programs, however for longer programs an
assembler is essential. An assembler - the Commodore’
disk based 6502 assembler is highly recommended - allows
a program to be written using the mnemonics with lables
for variables and jump locations. These are converted by
the assembler to binary values which when loaded into
memory constitutes the program. Another useful aid to
have besides the assembler and monitor is a
disassembler. This converts the machine code program
back into mnemonics, a function which helps with program
fault diagnosis.

Some techniques for hand assembling and writing machine
code programs.

The prospect of writing a machine code program even
a small one may seem fairly daunting but providing one
uses an orderly and disciplined approach to the problem
it need not be hard. A machine code program differs from
a Basic program in the approach taken to its writing.
Whereas a rough Basic program can be written then
polished up by inserting extra lines and changing
existing lines. A machine code program must be written
as the final version since any changes will require
rewriting the whole program. This is because machine
code unlike Basic code is dependent on the exact
position of instructions in memory. Adding a couple of
instructions into the middle of a program will
necessitate the changing of all jump, branch and data
addresses. This plus a far greater attention to details
like current flag status, means that the program must be
very carefully planned before it is written. Unless this
is done, writing a machine code program will require far
greater effort than is necessary and the product far
more prone to error.

Stage one in planning a program is to define what
the program is required to do, breaking the problem down
into a series of steps. To demonstrate this consider the

35

C o

CHAR =0

LOC*=0

Store GHAR in LOC 432768

increment LOC

o)

Load acc with 255

Store acc in CHAR

Load index X Reg with 255

Increment CHAR

No

o

Initial Version

Fig 2.2

36

Diagrams

Load acc with CHAR

Store acc in 32768 X

Decrement CHAR

Decrement Index X

No

Final Version

Display

following example, to display all the ASCII characters
on the screen:

Set LOC to 32768 - set CHAR to zero - store character
code CHAR on screen at location LOC - increment CHAR -
if CHAR 1is greater than 255 then all characters have
been displayed and program ends, if not then go back and
display next CHAR.

From this description we have defined that two variables
CHAR and LOC are required, also the program structure
requires a loop with a conditional test. For a short
program like this a written description is not really
required since one can easily remember what one wants
the program to do. For longer programs it is an
essential part of the process. From the written
description one can construct a flow diagram such as the
example in Figure 2. The flow diagram can be regarded as
a pictorial version of the written description and as a
result simpler to follow.

For long programs the flow diagram and written
description can get very involved and confusing. It is
good practice to split such a program into a series of
self contained blocks or subroutine modules. Each module
is then treated as a complete program, making program
writing and debugging easier. The flow diagram shows the
logical pathways through a program and most logical
errors can usually be detected at this stage, saving a
considerable amount of programming time.

Having drawn a flow diagram the next stage is the
construction of a table of variables and locations of
system subroutines called. In the example no system
subroutines are used but two variables are required:

LOC - pointer to location in screen memory where
character is to be stored.

CHAR - Value for ASCII character "to be displayed on
screen.

It is important that the table contains all variables
required, since when writing the program exactly the
right amount of space in memory must be left to contain
them.

Having defined the logical flow of the program, the
variables used and any system subroutines called, a
start can be made on writing the program code. Probably
the best way 1is first to draw an expanded versions of
the flow diagram. Breaking down each logical step into a
series of substeps corresponding to a machine code
instruction. In Figure 2 notice that the variable LOC is
now stored as the contents of the X index register.
Indexed addressing being the easiest way of putting data
into successive memory locations. Also the index
register (i.e. LOC) is loaded with 255 and decremented,

37

CODING FORM
PROGRAM DisPLAY
DATE _30 /6 /79 PAGE _ |
M‘;gDRELSSSB OPCODE| LABEL MNEMONIC M%%E OPERAND NF LCAG|S CYCLE COMMENT
03 4 0 —_— CHAR — VARIABLE FoR ASCit CHARACTER
! A9 DisPLAY LDA # 255 START— SET 4P LooP CounNT
2 FF — AND cHARACTER NALUuE
3! gD aTA ABS| CHAZ INITIALISE CHAR
‘41 40 —
5] 03 —
61 A2 LDx | # 255 SET INDEX REGISTER To 255
7 FF —
81 AD | NextcdAR| [LDA | ABs| cHAR GET CHAR
9 40 — B)
Al 03 —
Bl gp STA |A8s.x| 98000 ,x SToRE AT 3R74% + INDEX
ci 00 — INTo__ViDEo__MEHORY
°| 80 —
E CE DEC AB3| CHAR PuT NEXT AScu
F 40 — | CHARACTER — IN CHAR
50] 03 — ‘
! CA DEX IMP PoINT To NEXT ScREEN
2] Do BNE | RE.| NEXTCHAR LocATioN — LAST CHAeaTER 7
3| F4 —
4| 60 | END RT3 | 1P END & RETURN _FRort SuBRpuimE,
5
6
7
° 8

38

Fig 2.3 Example of Hand Coded Program

rather than 0 and incremented as in the original flow
diagram, since it is easier to test for zero than for
255.

For the actual hand assembly and coding of a program
it is advisable to use a coding form such as that shown
in Appendix B. It helps to considerably reduce the
number of errors occuring at this stage. On the f{first
page of the coding form a list of all variables, /0
locations and system subroutine entry points used should
be written. Each variable being assigned the number of
bytes of memory which it will require. Most will be
single byte but some will be two or three byte precision
and in the case of character variables or data buffers
memory required could be large. When storing a multiple
byte numerical variable it is good practice to store the
bytes in fixed order, with the least signifiant byte in
the first location and the most signifiant byte in the
last location. It is easier this way to keep track of
which part of a variable is being dealt with. Also index
registers can be used to access successive bytes of a
variable in the same order that they are processed.

Program variables can be stored in any part of RAM
memory not ocupied by either programs or system
variables. For maximum speed and reduced program size
variables should be stored in page zero of memory, the
bottom 255 bytes. On the PET page zero is currently
occupied by system variables. Thi$ area can be utilised
by wusing two subroutines, one at the beginning of the
program and the other at the end. The first disables the
system by setting the interrupt flag with an SEI
instruction. Then relocates the entire contents of page
zero to the top of RAM memory. Leaving page zero free
for use by the rest of the program. The last subroutine
performs the reverse process, replacing the system
variables into page zero prior to re-enabling the system
with a CLI instruction. Having decided where variables
are to be stored they should be allocated memory
locations and the address column on the coding form
filled in accordingly.

Using the second expanded flow diagram one can start
writing the code onto the coding form wusing the
instruction mnemnics. The first step is to enter the
starting location of the program into the address
column, then enter the first instruction into the
mnemonic column. The addressing mode of the instruction
should be entered into the relevant column. This is
important since one must be able to calculate how many
bytes are required by that instruction, to determine on
which line (i.e. at which address) the next instruction
should be entered. The label column will contain an
entry only if that address is the start of a subroutine
or the destination of a jump or branch instruction. On
the flow diagram the position of labels is indicated
where an operation has more than one entry or exit

39

point. The label used can be any name but preferably one
descriptive of the function of the subroutine or loop.
In the example the beginning of the program is given the
label DISPLAY and the entry point of the loop is called
NEXTCHAR. Entries in the operand column will only be
required for instructions referencing other locations in
the program and will consist of symbolic labels and
variable names. As program code is entered on the coding
form the comment column should also be completed. Either
with simple references to the flow diagram or a more
complete description. At a later date the function and
logical flow of the program can thus be easily followed
without relying on memory.

Once witten, the program should be checked for
logical errors, before being assembled. It will involve
less work if errors are detected prior to assembly. The
process of hand assembling is done in two stages, the
first consists of using the instruction set list to
obtain the opcode value for each mnemonic with the
specified addressing mode. This hexadecimal value is
entered into the opcode column of the coding form on the
same line as the mnemonic. If the addressing mode is
other than "implied" or "acumulator" then the following
one or two bytes will be used to store an address or a
value specified in the operand column. 1f the addressing
mode is immediate, then the operand column contains a
hexadecimal value which is transferred to the opcode
column on the line following that of the instruction
code.

The number system used must always be noted, the
conventions are that a number prefixed with a % is in
binary format, with a $ in hexadecimal format and if no
prefix is given then in decimal format. Convention also
dictates that an instruction in the immediate mode is
identified by a # sign in the address mode column, all
other address modes are just an abbreviation of the
name. For all other modes the symbol contained in the
operand column will correspond to either a lable or
variable. If a wvariable, then the address of the
variable can be obtained from the variable table on the
first page of the coding form. If the instruction is a
jump or branch then the addressing mode used will
transfer program control to another section of the
program, the operand column will thus contain a label.
Since a lable needs the calculation of a jump address it
is left until the second part of the assembly procedure.
It should be noted that the 6502 requires that all
addresses are stored in the form "least significant
byte" first, then "most significant byte" thus address
0340 hexadecimal is stored as 40 03.

At the end of the first stage of the assembly
process, the opcode column on the coding forms should
contain a list of hexadecimal values, one for each
location in memory. The exceptions being jump and branch

40

adresses which are calculated in the second stage. Jump
addresses pose no problem since they are stored in
either indirect or more commonly absolute mode. Their
entries in the opcode column can be obtained from the
address of the relavent label. The conditional branch
instructions all use relative addressing, where the
branch, either forward or backward, is calculated from
the location of the branch instruction rather than a
fixed location in memory. It is the offset from the
current location, which can be up to 127 bytes away,
either forward or backward, which must be calculated by
the programmer. Great care should be taken with this,
any error will cause program control to be transferred
to the wrong place, with resultant errors or program
crash. To calculate the value for a forward branch one
counts the number of bytes from the location of the
branch instruction, to the location of the label in the
branch operand column, and subtract 2 from this value.
If the branch is backwards then the offset is calculated
by counting the number of bytes from the branch
instruction to the label, then adding 1 and subtracting
from 255. The result when converted into hexadecimal can
be stored in the opcode column after the branch
instruction.

Once all jump addresses have been calculated and a
complete list of opcode values obtained the program can
be entered into the computer. Before this is done it is
advisable to recheck the program, especially the opcode
listing for errors (make sure that you can distinguish
between 8 and B or A and &4). The opcode listing is best
entered into the PET using the machine code monitor -
this is the main reason why the opcode was produced
using hexadecimal notation. Once entered, the program
should be saved before it is run since it is very rarely
that a machine code program runs perfectly first time.
The contents of memory should then be checked against
the opcode listing for any program entry errors, if any
are found they should be corrected and the program
resaved. One can then try running it. If there is a
program error it will probably crash the machine, if so
reload the p ogram and the monitor and carefully recheck
the logic flow, the coding and the contents of memory.
In my experience the three most common causes of fatal
program errors are - entry errors, coding errors, and
wrongly calculated jump and branch addresses.

The best way of detecting errors 1is to
systematically work through the program inserting a
break instruction at points where program failure may
have occurred. This will cause the program to return to
the monitor, allowing the contents of variable locations
to be checked and gradually isolating the fault to a
small section of code. Another way of isolating errors
is to run the program from different locations, though
this does require a careful choice of entry points.

41

Having detected and removed any fatal errors one may
find that the program still does not run properly and
produces strange results. Non fatal errors are most
commonly caused by either a mistake in the basic logic
flow, ignoring the current flag status, using the wrong
variable, and quite commonly using the wrong branch
instruction.

Successful machine code programming is not hard it
requires just a strict adherance to a method and
constant attention to detail plus plenty of practice.
The methods outlined above should enable PET users to
expand their machines capabilities by using machine code
subroutines.

42

THE PET OPERATING SYSTEM

Of the 64K addressable memory space on the PET, 14K
is occupied by read only memory-ROM. This contains the
operating system and Basic software, it extends from
address 49152 to 65536 with a gap between 59392 and
61439, locations used by the I/0 chips. One can divide
this 14K ROM memory area into two parts, one occupied by
Basic and the other by the operating system. The area
occupied by Basic starts at 49152 and ends at 57623 (in
the new ROMs) a total of 8471 bytes. The operating
system starts at 57624 and ends at 65536 less the 2048
bytes used by the 1/0, a total of 5864 bytes. The
purpose of the operating system software is to control
system functioning and includes all 1/0 operations, such
as keyboard scanning, display generation, cassette and
IEEE input/output, as well as power on reset system
initialisation and diagnostics. The Basic routines are
solely associated with processing the commands in a
Basic program stored in the RAM memory area. They
consist of a set of subroutines each capable of
executing a specific Basic command.

It is a combination of all the programs stored in
this 14K of ROM which allows the user to simply switch
on the machine and immediately write or run a program.
The structure of the PET's ROM based software is of
interest to the wuser for two reasons. Firstly because it
helps to show how the system works. Secondly because
manv of the subroutines can be used in machine code
programs. A knowledge of the location of these
subroutines 1is essential if they are to be used.
Unfortunately as most users are aware one is unable to
look at any one of the ROM areas using the PEEK command.
This is not really a problem since it is easy to examine
these areas of memory using the machine code monitor. In
this way one can gradually build up a table of the
subroutine entry points and deduce the function of the
various subroutines. A process aided by relocating
sections of the code and dissassembling. The following
list has been built up of the major subroutines and
their entry points:

43

hh

000

001-002

System variables memory map(RAM) - old ROM machines

$4C constant (6502 JMP instruction)

USR function address lo,

Terminal I/0 maintenance

003
oou
005
006
007
008
009
010-089
090
091
092
093
094
095
096
097
098
099
100
101
102-103
104-111
112-113
114-115
116-121

Active I/0 channel #
Nulls to print for CRLF (unused).
Column Basic is printing next

Terminal width (unused).
Limit for scanning source colmns (unused)
Line number before storage buffer.
$2C constant (special comma for INPUT process).
BASIC INPUT buffer (80 bytes).
General counter for BASIC.
$00 used as delimeter (scan between quotes flag).
General counter for BASIC.

Flag to remember dimensioned variables.
Flag for variable type:

hi

(search char ':!'

(integer address from Basic)

or endline)

input buffer pointer.

Oznumeric;

1st char of name
1=string.

Flag for integer type: 80=zinteger; 00=floating point.
Flag to crunch reserved words (protects "& remark).
Flag which allows subscripts in syntax.

Flags INPUT or READ: O=Input; 64=Get;

Flag sign of TAN.
Flag to suppress OUTPUT (+normal;-suppressed).
Index to next available descriptor.
Pointer to last string temporary lo; hi.

Table of double byte descriptors which point to variables.

Indirect index #1 loj; hi.
Indirect index #2 loj; hi.
Pseudo register for function operands.

Data storage maintenance

122-123
124-125
126-127
128-129

Pointer
Pointer
Pointer
Pointer

to
to
to
to

152=Read.

start of BASIC text area loj; hi type

start of variables lo;

array table lo;

end of variables loj

hi byte.

hi byte.

hi byte.

cn

130-131
132-133
134-135
136-137

138-139
140~-141
142-143
144145

Pointer to start of strings loj; hi byte.

Pointer to top of string space 1lo; hi byte.

Highest RAM adr lo;hi byte.

Current line being executed. A zero in 136 means statment
executed in a direct command.

Line # for continue command lo; hi.

Pointer to next STMNT to execute loj; hi.

Data line # for errors loj; hi.

Data statment pointer lo; hi.(145-memory address of data line)

Expression evaluation

146147
148-149
150-151
152-153
154-155
156
157-158
159-160
161
162
163
164-165
166-171
172-173
174-175
176-181
182
183
184-189
190
191
192-193

RAM subroutines

194-199
200
201-202

Source of INPUT 1lo; hi.

Current variable name.

Pointer to variable in memory lo; hi.

Pointer to variable referred to in current FOR-NEXT
Pointer to current operator in table loy hi.

Special mask for current operator.

Pointer for function definition loj; hi.

Pointer to a string descriptor loj; hi.

Length of a string of above string.

Constant used by garbage collect routine.(30r7 for grbg clect)
$4C constant (6502 JIMP inst).

Vector for function dispatch 1loj; hi.

Floating accumulator # 3 '

Block transfer pointer # 1 lo;hi.

Block transfer pointer # 2 lo; hi.

Floating accumulator # 1(FAC#1)(USR function evaluated here).
Duplicate copy of sign of mantissa of FAC # 1.

Counter for # of bits to shaft to normalize FAC # 1.
Floating accumulator # 2.(FAC#2)

Overflow byte for floating argument.

Duplicate copy of sign of mantissa.

Pointer to ASCII rep of FAC in conversion routine lo; hi.

CHARGOT RAM code. Gets next character from BASIC text.
CHARGOT RAM code regets current characters.
Pointer to source text lo; hi.

9%

203-223

0S page
224-225
226
227-228
229-233
234

235

236

237

238

239

240
241-242
24324y
245

2U6
24T7-248
249-250
251-254
255
Page 1

Next random number in storage

zero storage

Pointer to start of line cursor loc lo; hi.

Column positionof cursor.(0-79).

General purpose start address indirect loj; hi.

General purpose end address direct lo; hi.

Flag for quote mode on/off.

timer 1 interrupt sttus: O=disabled

EOT character received

character error received

current file name length.

Current logical file number.

Current primary address.

Current secondary address.(241 device no; 242 max line length)
Pointer to start of current tape buffer lo; hi.

Current screen line #.

Data temporary for 1/0.

Pointer to start loc for 0.S. lo-hi.(tape start adress/pointer)
Pointer to current file name lo; hi.

Tape variable storage.

Overflow byte BASIC uses when doing FAC to ACIII conversions.

62 bytes on bottom are used for error correction in tape reads. Also, buffer for
ASCII when Basic is expanding the FAC into a printable number. The rest of page
1 is used for storage of BASIC GOSUB and FOR NEXT context and hardware stack for

the machine.

Page 2
512-514
515
516
517-518
519-520
521

24-hour clock in 1/60 secs

Matrix co-ordinates of last key down (row/col; 255=no key)
Shift key status: O=no shift; 1=shift

Correction factor for clock, LSB, MSB

Interrupt driver flag for cassette # 1,switches; # 2 switches
(519 for cassette#1 on; 520 for cassette#2 on)

Keyswitch PIA duplicate of 59910

LY

522
523
524
525
526
527-536
537-538
539-540
541
542
543
544545
546
547
548
549
550
551
552
553-577
578-587
588-597
598-609
608
610
611
612
613
615-615
616
617-619
620
621
622
623
624
625-626
627
628
629

timing constant buffer

Flag # means verify not load into memory.

I/0 status byte.

Index into keystroke buffer.

Flag to indicate reverse-field on.

Interrupt driven key stroke buffer.

IRQ RAM VECTOR 1loj hi.

BRK instruction RAM VECTOR loj; hi.

(IEEE mode)

(end of line for input pointer; # characters on screen line)
o

(cursor log row/col, used in input routines)

(PBD image for tape I1/0)

Keyboard input code.

Blink cursor flag.

Count down to flip cursor. Cursor blink duration.
Screen value of input character when cursor moves on.
Flag for cursor on/off.

(EOT bit received, tape write)

Table of LSB of start address of video display lines (25).
Table of logical addresses.

Table of primary addresses.

Table of secondary addresses.

Input from screen/keyboard flag. O=keyboard; 1=screen.
Index into LA,FA,SA, tables

Default input device #.

Default output device #.

Computation of parity on cassette write.

o

Tape buffer item counter.
>

Serial bit count.

Count of redundant tape blocks.

p

(cycle counter,flip for every bit coming from tape)
Count down synchronization or cassette write.

Index next character in/out tape buffer # 1; # 2.
Countdown synchronization on cassette header.

Flag to indicate bit/byte error.

Flag to indicate tape routine reading shorts.

8N

630-631
632

633
634.825
836-1017
1018-1023

C000-C091
C092-C18F
C190-C2AB
C2AC-C2D9
C2AD-C31C
C31D-C329
C32A-C356
C357-C388
€389-C391
C394-C3A9
C3AC-CU2E
C430-Cl60
CL462-ClUT76
CcuU79-clu8C
C48D-C521
C522-C550
C551-C599
C59A-C5A7
C5A8-Cc6U7
C6U9-C68F
C692-C6BY
C6B5-COEF
C6F2-CT70A
C70D-C71B
C71C-CT742
CTL45-CT5E
CT5F-CT76D
CTT70-CT772

Index to addresses to correct on tape read pass 1; pass.

Flag for cassette read-tells current function-countdown,read,etc
Count of seconds of shorts to write before data.

Buffer for cassette # 1 (192 bytes)

Buffer for cassette # 2 (192 bytes)

Unused.

Subroutine 1ocatidns in old ROM machines

keyword action addresses

table of reserved words

error messages

peeks at the stack for active FOR loop

'open up' a space in Basic for insertion of a new line

tests for stack-too-deep and aborts if found.

check available memory space

sends a canned error message from C190 area, then drops into:
signals 'ready' (C38B entry for basic warm start).

gets a line of input, analyses it, executes it

handles a new line of Basic from keyboard; deletes old line etc.
corrects the chaining between Basic lines after insert/delete
receives a line from the keyboard into the Basic buffer

gets each character from Kkeyboard

looks up the keywords in an input line and changes to "tokens"
searches for the location of a Basiec line from number in 8,9
implements NEW command -~ clears everything

sets the Basic pointer to start-of-program

performs LIST command

executes a FOR statement

continues to build FOR wvectors

reads and executes the next Basic statement, find next line, etc.
executes the Basic Command as a subroutine

performs RESTORE

handles STOP, END, and BREAK procedures

performs CONT

set pause after carriage return (never called)

performs CLR

6h

CT75-CT7D
C780-CT79A
C79D-C7C9
C7CA-CT7FD
C7TFE-C81E
Cc820-C840
c843-c862
C863-C894A
C89D-C91B
C91C-C9TE
C97F-C982
C985-C996
C999-CA24
CA27-CAl
CALL_CAT6
CATT7-CA9E
CA9F-CAC5
CAC6-CADF
CAEO-CB14
CB17-CB21
CB24-cC11
cc12-cc35
CC36-CC8F
CC92-CCB5
CCB8-CD38
CD3A-CD9C
CD9C-~-CDB9
CDBC-CDCO
CDC1~CDE7
CDE8-CDF6
CDFT7-CEO4
CE05-CEOC
CEOB-CEOD
CEOE-CE10
CE11-CE1B
CE1C-CE20
CE21-CE27
CE28-CE39
CE3B-CE96
CE97-CED5

performs RUN

performs GOSUB

performs GOTO

performs RETURN

scans for start of next Basic line

performs IF

performs ON

gets a fixed point number and stores in 8,9
performs LET

check numeric digit/move string pointer

performs PRINT#

performs CMD

performs PRINT

print string from address in Y,A

print a character

handles bad input data

performs GET

performs INPUT#

performs INPUT

prompts and receives the input

performs READ

canned messages: EXTRA IGNORED;REDO FROM START
performs NEXT

checks Basic format,data type, flags TYPE MISMATCH
inputs and evaluates any expression (numeric or string)
pushes a partialy evaluated argument to the stack
evaluates a numeric variable, pi, or identifies other symbols
value of pi in floating binary

checks for special characters at start of expression
performs NOT function

performs various functions

evaluates expression within parentheses()

checks for right parentheses)

checks for left parentheses (

checks for comma

prints SYNTAX ERROR and exits

sets up function for future evaluation

set up a variable name search

check for special variables,TI,TI$,and ST
identifies and sets up function references

0¢

CED6-CF05
CF06-CF6D
CF6E-CFTA
CF7B-DOOE
DOOF-DOT8
D079-D087
D088-p098
D099-D0O9C
D09D-DOBS8
D0OB9-D263
D26U4-D277
D278-D284
D285-D28A
D28B-D294
D295-D348
D349-D36A
D36B-D3D1
D3D2-D403
D404-D5C3
D5C4-D5D7
D5D8-D653
D654-D662
D663-D6T2
D673-D68YU
D685-D6C3
D6C4-D6CF
D6E6-D701
D702-D71D
D7 1E-D890
D891-D8RBRE
D8BF-D8FC
D8FD-D95D
D95E-D988
D989-D9B3
D9B4~-DIED
D9E1-DA73
DAT4~DA9S8
DA99-DACD
DACE-DADD
DADE-DAEC

performs the OR and AND function

performs comparisons

sets up DIM execution

searches for a Basic variable

creates a new Basic variable

logs Basic variable location

array pointer subroutine

is 32768 in floating binary

floating point to fixed point conversion for singal values
locates and/or creates arrays

performs FRE function

converts fixed point to floating

performs POS function

checks direct/indirect command, gives 'ILLEGAL DIRECT'
executes DEF statements and evaluates FN(X)
performs STR$ function

scans and sets up string elements

builds string vectors

does 'garbage collection' -discards unwanted strings
performs CHR$ function

performs LEFT$, RIGHT$, MID$, functions

performs LEN, gets string length

performs ASC function

gets a single byte value from Basic

evaluates VAL function

gets two arguments (16 bit and 8 bit) from Basic
performs PEEK and POKE

executes WAIT statement

performs addition and subtraction

contains floating-point constants

performs LOG function

performs multiplication

loads secondary acumulator from memory ($B8 to $BD)
test and adjust primary/secondary accumulators
routines to multiply or divide by 10

performs division

loads primary accumulator from memory ($b0-$B5)
transfers primary accumulator to memory

transfers secondary accumulator to primary
transfers primary accumulator to secondary

s

DAED-DAFC
DAFD-DB29
DB2A-DB2C
DB2D-DB6C
DB6D-DB9D
DBYE-DBCY
DBC5-DCUF
DC50-DC8Y
DCYLU-DCAE
DCAF-DDE2
DDE3-DE23
DE24_DE2D
DE2E-DE66
DE67-DET 1
DEAO-DEF2
DEF3-DF3C
DF45-DF9D
DF9E-DFAY
DFA5-DFED
DFEE-E019
EOLU8-EOTT
EOB5-EOCC
EOD2-E172
E19B-E1BB
E1BC-E1EO
E1E1-E27C
E27D-E3C3
E3C4-E3EQ
E3EA-E52F
E530-E5DA
ESDB-E66A
E66B-E67D
E67TE-E683
E685-E73E
E73F-ETAB
ETAC-ETB9
E7DE-E7EB
FOB6-F1CB
F1CC-F22F
F230-F27C

rounds the primary accumulator

extracts primary signj; performs SGN function
performs ABS

compares primary accumulator to memory

Convert Floating point to fixed, unsigned

perform INT function

convert ASCII string to floating point

get new ASCII digit

print Basic Line number

convert floating point to ASCII string (at 0100 up)
conversion constants - decimal or clock

evaluation SQR function

evaluation of power function

negate (monadic =)

perform EXP function

perform function series evaluation

perform RND calculation

evaluate COS function

evaluate SIN function

evaluate TAN function

evaluate ATN function

Basic scan program, transferred to 00C2-00D9
completion of power-on-reset; memory test, etc.
partial test for TI and TI$

input/read/get director

initialize I/0 registers, clear screen, reset subroutines
receive input f om keyboard/screen

set up new screen line

output character to screen

check or and perform screen scrolling

start new screen line

interrupt entry

interrupt return

hardware interrupt routine: cursor flash, tape monitor, keyboard
convert keyboard matrix to ASCII

write-on-screen subroutine

print canned monitor message

IEEE-488 channel open, test, close

get input character from keyboard, screen cassette, IEEE
output character to screen, cassette, IEEE

vAS

F27D-F2A3
F2A4-F2AA
F2AB-F2B7
F2B8-F2C7
F2C8-F329
F32A-F33E
F33F-F345
F346-F3FE
F3FF-FU21
FU22-F432
FU433-F461
FU62-FU49Y
F495-F4BA
FUBB-F4D3
FUD4-F529
F52A-F5AD
FS5AE-F5E2
FS5E3-F5EC
F5ED-F6U4C
F64D-F666
F667-F67C
F6TD-F694
F695-F69D
F69E-FT1B
FT1C-F735
F736-F78A
F78B-F7DB
F7DC-F82C
F82D-F83A
F83B-F85D
F85E-E870
F871-F87E
F87F-F8B8
F8B9-F8D1
F8D2-F912
F913-F91D
F91E-F92D
F92E-F95E
F95F-FBFB
FBDC-FBEUY

restore normal 1/0, clear IEEE channels
abort (not close!) all files

locate logical file table entry

transfer file table entries to Device, Command
perform file CLOSE

test stop key

test if direct/indirect command for suppressing file advice
perform file LOAD

print "SEARCHING.."

print "LOADING.." or "VERIFYING"

get parameters for LOAD and SAVE

perform IEEE sequences for LOAD, SAVE, and OPEN
search for specific tape header

perform VERIFY

get parameters for OPEN and CLOSE

perform OPEN

search for any tape header

clear tape buffer

write tape header

get start and end addresses from tape header
set buffer start address

set tape buffer start and end pointers
perform SYS command

perform SAVE

find unused secondary address

update clock

set input device

set output device

bump tape buffer counter

walt for cassette PLAY switch

test cassette switch line

wait for cassette RECORD and PLAY switches
read tape initiation routine

write tape initiation routine

complete tape read or write

wait for I/0 completion

test stop key and abort if necessary
subroutine to set tape read timing

interrupt routine for tape read

save memory pointer

119

FBES5-FBEB
FBEC-FBFF
FCOO-FC1B
FC1C-FCFA
FCFB~FD15

'FD16-FD37

FD38-FD4T
FDUB-FDTB
FD7C-FD8F
FD90-FD9A
FD9B-FFB1

JUMP TABLE:

FFCO
FFC3
FFC6
FFC9
FFCC
FFCF
FFD2
FFD5
FFD8
FFDB
FFDE
FFE1
FFE4
FFE7
FFEA
FFED-FFFA
FFFA-FFFB
FFFC-FFFD
FFFE-FFFF

set ST error flag

subroutine to count 8 serial bits per byte

subroutine to write a bit to tape

interrupt 1 for tap write - entry at FC21
terminate I/0 and restore normal vectors

subroutine to set interrupt vector

power-on reset entry; test for diagnostic

diagnostic routine
checksum routine

pointer advance subroutine
diagnostic routines

OPEN

CLOSE
set input device

set output device

restore normal I/0 devices
input character (from screen)
output character

LOAD

SAVE

VERIFY

SYS

test stop key _

get character from keyboard buffer
abort all I/0 channels

update clock

turn off cassette motors

NMI vector (mangled)

reset vector

interrupt vector

Ui9

0000-0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
OOO0E
0011-0012
0013
0014-0015
0016-001E
001F-0020
0021-0022
0023-0027
0028-0029
002A-002B
002C-002D
002E-002F
0030-0031
0032-0033
0034-0035
0036-0037
0038-0039
003A-003B
003C-003D
003E-003F
0040-0041
0042-0043
0044-0045
0046-0047
0048-0049

System variables memory map (RAM) - New ROM machines.

1
no

W O~ oI &==w O

10

USR Jump instruction lo-hi

General counter for Basic. Search character ':' or endline

Scan-between-quotes flag. 00 as delimeter

Basic input buffer pointer; # subscripts

Default DIM flag. First character of array name
Variable flag, type: FF=string, OO=znumeric
Integer flag, type: 80=zinteger, 00=floating point
DATA scan flag; LIST quote flag; memory flag
Subscript flag; FNx flag

Flags for input or read, O==zinput: 6U=z=get:
ATN sign flag: comparison evaluation flag
input flag; suppress output if negative
current I1/0 device for prompt-suppress
Basic integer address (for SYS, GOTO etc)
Temporary string descriptor stack pointer
Last temporary string vector

Stack of descriptors for temporary strings
Pointer for number transfer

Misc.number pointer

product staging area for multiplication
Pointer: Start-of-Basic memory

Pointer: End-of-Basic, Start-of-Variables
Pointer:End-of-Variables,Start-of-Arrays
Pointer: End-of-Arrays

Pointer: Bottom-of-Strings (moving down)
Utility string pointer

Pointer: Limit of Basic Memory

Current Basic line number

Previous Basic line number

Pointer to Basic statement (for CONT)
Line number, current DATA line

Pointer to current DATA item

Input vector

Current variable name

Current variable address

Variable pointer for FOR/Next

152=read

Y save register-new operator save; current operator pointer

012"y T4 Special mask for current operator; comparison symbol

49

Q04B-004C 75-76 Misc numeric work area; function definition pointer,lo-hi
O0OUD-00UE 77-78 Work area; pointer to string description

004F 79 Length of above string

0050 80 constant used by garbage collect routine, 3 or 7
0051-0053 81-83 Jump vector for functions

0054-0058 84-88 Misc numeric storage area

0059-005D 89-93 Misc numeric storage area

005E-0063 94-99 Accumulator#1: E,M,M,M,M,S

0064 100 Series evaluation constant pointer

0065 101 Accumulator hi-order propogation word

0066-006B 102-107 Accumulator#2

006C 108 Sign comparison, primary vs. secondary

006D 109 Low-order rounding byte for Acc#1

006E~Q006F 110-111 Cassette buffer length/Series Pointer

0070-0087 112-135 Subrtn: Get Basic Char; 77,78=pointer

0088-008C 136-140 RND storage and work area

008D~008F 141-143 Jiffy clock for TI and TI$

0090-0091 144-145 IRQ RAM vector,lo-hi; hardware interrupt vector
0092-0093 146-147 Break interrupt vector

0094-0095 148-149 NMI RAM interrupt vector,lo-hi

0096 150 Status word ST

0097 151 Which key depressed: 255=no key

0098 152 Shift key: 1 if depressed.

0099-009A 153-154 Clock correction factorj;lsb-msb; 1/30 sec increment
009B 155 Keyswiteh PIA duplicate of 59410 STOP and RVS flags
009C 156 Timing constant buffer

009D 157 Load=0, Verify=1

009E 158 # characters in keyboard buffer

009F 159 Screen reverse flag

00AOQ 160 IEEE-488 output flag: FFz=character waiting

00A1 161 End-of-line-for-input pointer

00A3-00AM4 163-164 Cursor log (row,column)

0045 165 IEEE-488 output character buffer

0046 166 Key image

00AT 167 O=flashing cursor, else no cursor

00A8 168 Countdown for cursor timing

00A9 169 Character under cursor

00AA 170 Cursor blink flag

00AB

171

EQOT bit received

9¢

00AC

00AD
OO0AE
OO0AF
00BO
00B1
00B2
00B4
00B5
00B7
00B9
00BA
00BB
00BC
00BD
OOBE
OOBF
00CO
00C1
00C2
00C3
00C4-00C5
00C6
00CT7-00C8
00C9-00CA
00CB-00CC
00CD
OO0CE
OOCF
00DO
00D1
00Db2
00D3
00D4
00D5
00D6-00D7
00D8
00D9
OODA-00DB
00DC

172
173
174
175
176
177
178
180
181
183
185
186
187
188
189
190
191
192
193
194
195
196-197
198
199-200
201-202
203-204
205
206
207
208
209
210
211
212
213
214-215
216
217
218-219
220

Input from screen/input from keyboard

X save flag

How many open files; pointer into file table
Input device, normally O

Output CMD device, normally default of 3

Tape character parity

Byte reveived flag

Tape buffer character

Pointer in filename transfer

Serial bit count

Cycle counter

Countdown for tape write; sync on tape header
Tape buffer#1 count

Tape buffer#2 count

Write leader count; Read passl1/pass?2

Write new byte; Read error flag

Write start bit; Read bit seq error

Pass 1 error log pointer

Pass 2 error correction pointer

Current function; 0-Scan; 1-15=Count; $40=Load; $80=End
Read checksum; Write leader length

Pointer to screen line

Column position of cursor on above line (0-79)
Utility pointer: tape buffer,scrolling

Tape end address/end of current program

Tape timing constants

Flag for quote mode O=direct cursor, else programmed cursor
Timer 1 enabled for tape read; 00=disabled
EOT signal received from tape

Read character error

characters in file name

Current logical file number

Current secondary addrs, or R/W command
Current device number

Line length (40 or 80) for screen

Start of tape buffer, address

Line where cursor lives

Last key input; buffer checksum; bit buffer
Pointer to current file name

Number of keyboard INSERTs outstanding

LS

00DD
OODE
OODF
O0E0-OOF8
00F9
OOFA
00FB-00FC
0100-010A
0100-013E

0100-01FF

0200-0250
0200-0201
0202
0203
0204
0205
0206
0207-0208
0251-025A
025B-0264
0265-026E
026F-0278

027A-0339
033A-03F9
O03FA-0O3FB

O400-TFFF
8000~8FFF
9000-BFFF
CO00-EOF8
EQF9-ETFF
E810-E813
E820-E823
E8U40-E8LF
FOOO-FFFF

221
222
223
224-248
249
250
251-252
256-266
256-318

256-511

512-592
512-513
514
515
516
517
518
519-520
593-602
603-612
613-622
623-632

634-825

826-1017

Write shift word/Receive input character
#blocks remaining to write/read

Serial word buffer

Screen line table: hi order address & line wrap
Interrupt driver flag for cassette#1 status switch
Interrupt driver flag for cassette#2 status switech

Tape start address

Binary to ASII conversion area

Tape read error log for correction

Processor stack area

Basic input buffer
Program counter

is processor status

is accumulator

X index

Y index

stack pointer

user modifiable IRQ
Logical file number table
Device number table
Secondary address,
Keyboard input buffer

Tape#1 buffer
Tape#2 buffer

1018-1019 Vector for Machine Language

1024-32767

32768-36863
36864-49151
49152-57592
57593-59391
59408-59411
59424-59427
59U456-59471
61440-65535

Video RAM-
Available
Microsoft
Keyboard, screen, i:
PIA 1 - Keyboard 1/0

PIA 2 - IEEE-488 1/0
VIA - I/0 and timers

Reset, tape,

or R/W cmd,

table

Monitor

Available RAM including expansion
ROM expansion area

Basic interpreter
interrupt programs

diagnostices, monitor

8¢

C000-CO45
cCou46-Cc073
COT4-C091
C092-C192
C193-C2A9
C2AA-C2D7
C2D8-C31A
C31B-C327
C328-C354
C355-C388
C389-C3AA
C3AB-CUY1
CLL42-CUbE
CLU6F-ClU9L
CL95-C52B
C52C-C55A
C55B-C576
C577-C5A6
C5A7-C5B4
C5B5~C657
C658~C6HFF
C700-CT72F
C730-CT73E
C73F-C76A
C76B-C784
CT785-CT78F
C790-CT7AC
CT7TAD-C7D9
C7DA-CTF2
C7F3-C80D
C80E-C810
C811-C82F
C830-C842
C843-C852
C853-C872
C873-C8AC
C8AD-C927

Subroutine locations in new ROM machines

Action addresses for primary keywords
Action addresses for functions

Hierarchy and action addresses for operators
Table of Basic keywords

Basic messages, mostly error messages
Search stack for FOR or GOSUB activity
Open up space in memory

Test: stack too deep?

Check available memory

Send canned error message, then:

Print Ready.

Handle new Basic line from keyboard
Rebuild chaining of Basic lines in memory
Receive line from keyboard

Change keywords to Basic tokens

Search Basic for a given Basic line number
Perform NEW, then:

Perform CLR

Reset Basic execution to start-of-program
Perform LIST

Perform FOR

Execute Basic statment

Perform Restore

Perform STOP and END

Perform CONT

Perform RUN

Perform GOSUB

Perform GOTO

Perform RETURN, and perhaps:

Perform DATA, i.e., skip rest of statment
Scan for next Basic statment

Scan for next Basic line

Perform IF, and perhaps:

Perform REM, i.e., skip rest of line
Perform ON

Get fixed-point number from Basic

Perform LET

6S

C928-C936 Add ASCII digit to accumulator #1
C937-C98A Continue to perform LET

C98B-C990 Perform PRINT#

C991-C9A4 Perform CMD

C9A5-CA1B Perform Print

CA1C-CA38 Print string from memory

CA39-CA4E Print single format character (space, cursor-right,?)
CA4F-CA7C Handle bad input data

CATD-CAA6 Perform GET

CAAT-CACO Perform INPUT#

CAC1-CAF9 Perform INPUT

CAFA-CB06 Prompt and receive input

CBO7-CBFB Perform READ; common routines used by INPUT and GET
CBFC-CC1F Messages: EXTRA IGNORED, REDO FROM START
CC20-CC78 Perform NEXT

CCT79-CC9E Check data type, print TYPE MISMATCH
CC9F-CDEB Input & evaluate any expression (numeric or string)
CDEC-CDF1 Evaluate expression within parentheses ()
CDF2-CDF4 Check right parenthesis)

CDF5-CDF7 Check left parenthesis (

CDF8-CE02 Check for comma

CEQ3-CE07 Print: SYNTAX ERROR and exit

CEO8-CEOE Set up function for future evaluation
CEOF-CE88 Search for variable name

CE89-CEC7 1Identify and set up function references
CEC8-CECA Perform OR

CECB-CEF7 Perform AND

CEF8-CF5F Perform comparisons,string or numeric
CF60-CF6C Perform DIM

CF6D-CFF6 Search for variable location in memory
CFF7-D000 Check if ASCII character is alphabetic
D001-DOT77 Create new Basic variable

D078-D088 Array pointer subroutine

D089-D08C 32768 in floating binary

D0O8D-DOAB Evaluate expression for positive integer
DOAC-D227 Find or create array

D228-D258 Compute array subscript size

D259 Perform FRE

D26D-D279 Convert fixed point to floating point
D27A-D27F Perform POS

09

D280~D28C
D28D-D2BA
D2BB-D2CD
D2CE-D33E
D33F-D34E
D34F-D360
D361-D3CD
D3CE-D3FF
D400-D496
D497-DUDF
D4E0-D516
D517-D553
D554-D57C
D57D-D5BY
D5B5-D5C5
D506-D5D9
D5DA-D605
D606-D610
D611-D63A
D63B-D655
D656-D65B
D65C-D66YU
D665-D6T4
D675-D686
D687-D605
D6C6-D6D1
D6D2-D6ET
D6E8-D706
DT707-D70F
D710-D72B
D72C-D732
D733-D744
D745-D76D
D76E-D852
D853-D889
D88A-D88E
D88F-D8CT
D8C8-D8F5
D8F6-D936
D937-D964

Check if direct command, print ILLEGAL DIRECT
Perform DEF '

Check FNx syntax

evaluate FNx

Perform STR$

Calculate string vector

Scan and set up string

Subroutine to build string vector

Garbage collection subroutine

Check for most eligible string collection
Collect a string

Perform string concatenation

Build string into memory

Discard unwanted string

Clean the descriptor stack

Perform CHR$ ‘

Perform LEFT$

Perform RIGHT$

Perform MID$

Pull string function parameters from stack
Perform LEN

Move from string-mode to numeric-mode
Perform ASC

Input byte parameter

Perform VAL

Get two parameters for POKE or WAIT
Convert floating point to fixed point
Perform PEEK

Perform POKE

Perform WAIT

Add 0.5 to accumulatori#?

Perform subtraction

Microsoft joke

Perform addition

Complement accumulatori#?

Print OVERFLOW and exit

Multiply-a-byte subroutine

Function constants: 1, SOR(.5),SOR(2), -00.5. etc.
Perform LOG

Perform multiplication

19

D965-D997
D998-D9C2
D9C3-D9DF
D9EO-DI9ED
DYEE-DAOY
DAO5-DAO9
DAOA-DA12
DA13-DA1D
DA1E-DAAD
DAAE-DAD2
DAD3-DBO7
DB08-DB17
DB18-DB26
DB27-DB36
DB37-DB44
DB45-DB63
DB64-DB66
DB67-DBAb
DBAT-~DBDT
DBD8-DBFE
DBFF-DC89
DC8A-DCBE
DCBF-DCCD
DCCE-DCD8
DCD9-DCES8
DCE9-DE1C
DE1D-DE5D
DESE-DE67
DE68-DEAO
DEA1-DEAB
DEAC-DED9
DEDA-DF2C
DF2D-DFT76
DF77-DFT7E
DFT7F-DFDT
DFD8~DFDE
DFDF-E027
E028-E053
EO54-E08B
EO8C-EOBB

Multiply-a-bit subroutine

Load accumulator #2 from memory

Test and adjust accumulators #1 and #2

Handle overflow and underflow

Multiply by 10

10 in floating binary

Divide by 10

Perform divide-into

Perform divide-by

Load accumulator #1 from memory

Store accumulator #1 into memory

Copy accumulator #2 into accumulator #1
Copy accumulator #1 into accumulator #2
Round off accumulator #1

Compute SGN value of accumulator #1

Perform SGN

Perform ABS

Compare accumulator #1 to memory

Convert floating-point to-fixed-point

Perform INT

Convert string to floating-point

Get new ASCII digit

String conversion constants: 99999999,999999999,

Print IN, followed by:

Print Basic line number

Convert number or TI$ to ASCII
Constants for numeric conversion
Perform SQR

Perform power function

Perform negation

Constants for string evaluation
Perform EXP

Function series evaluation subroutines
Manipulation constants for RND
Perform RND

Perform COS

Perform SIN

Perform TAN

Constants for trig evaluation: pi/2, 2#pi,

Perform ATN

.25,

1E+9

ete.

a9

EOBC-EQF8

EOF9-E110
E111-E115
E116-E1B6
E1B7-E1DD
E1DE-E228
E229-E256
E257-E284
E285-E2F3
E2F4-E33E
E33F-E34B
E34C-E384A
E38B~E395
E396-E3B3
E3B4-E3D7
E3D8-E518
E519-E53E
E53F-E5B9
E5BA-E61A
E61B-E62D
E62E-E6EQ
E6EA-EBFT
E6F8-ET69
E76A-ET796
E797-ETAb
ETAT-ETF6
ETF7-ETFF
FO00-FOB5
FOB6-FOED
FOEE-F127
F128-F135
F136-F155
F156-F163
F164-F16E
F165-F17E
F17F-F18B
F18C-F1DO
F1D1-F1EO
F1E1-F231
F232-F26D

Constants for ATN series evaluation

Subroutine to be moved to zero page ($70 to$87)
Initial RND seed

Initialize Basic system

Messages: BYTES FREE, ### COMMODORE BASIC ###
Initialize I/0 register, and:

Clear screen, and:

Home cursor

Input from screen or keyboard; wait for input completion
Input from screen

Test for quotation mark and reverse quote-flag

Set up screen print parameters

Prevent 80-character line from getting any longer
Extend 40-character line to 80 characters

Back into the previous line (via DEL or CURSOR LEFT key)
Handle ASII character for screen output

Go to next line on screen

Scroll the screen

Open a line on the screen (via INSERT key)

Main interrupt entry point

Hardware interrupt: service clock,keyboard,cassettes
Print character on screen :

Table: decoder for keyboard matrix

MLM subroutine: output hex digits

MLM subroutine: swap TMPO and TMP2

MLM sibroutine: input hex digits

MLM subroutine: print ?

Monitor messages, mostly for Input/Output

Set up IEEE for Talk, Listen etc

Send character to IEEE-488 bus

Output character immediate mode to IEEE-488 bus

Send errors: WRITE TIMEOUT, DEVICE NOT PRESENT, etc
Send canned I/0 message

Send immediate mode Listen command, then secondary address
Output character deferred mode to IEEE-488

Drop IEEE channel: send Unlisten or Untalk

Input character from IEEE-U488 bus

GET a character

INPUT from any device

OUTPUT a character to any device

£9

F26E~-F283
F284-F28C
F28D-F2A8
F2A9-F300
F301-F30E
F30F-F314
F315-F31C
F31D-F321
F322-F3C1
F3C2-F409
FL4OA-FL43D
FU3E-FU5F
FL460-F465
FU66-Fu93
FU4QU-F4BE
F4B7-FUCD
FUCE-F50D
F50E-F515
F516-F520
F521-F5A5
F5A6-F5D9
F5DA-F63B
F63C-F655
F656-F66B
F66C-F683
F684-F68C
F68D-F69D
F69E-F728
F729-F76C
F76D-F76F
F77T0-FT7BB
F7BC-F805
F806-~F811
F812-F834
F835-F846
F8UT-F854
F855-F885
F886-F8E5
F8E6~F8EF
F8FO~F8FF

Abort all files, and;

Restore normal I/0 devices

Find file table entry; set parameters from file table
Perform CLOSE

Test STOP key

Action STOP key

Send message if direct mode

Test if direct mode

Perform program loading

Perform LOAD

Subroutines: Print SEARCHING...j; Print LOADING or VERIFYING
Get Load or Save parameters

Get a byte parameter

Send program name to IEEE-488 bus

Find a specific tape header

Perform VERIFY

Get parameters for OPEN, CLOSE

Abort calling subroutines if end-of-line (default parameters)
Confirm comma, else send SYNTAX ERROR

Perform OPEN

Find any tape header

Write tape header

Get start and end program addresses from tape header
Set cassette buffer address according to device number
Set tape start and end addresses from buffer address
Perform CMD .

Set tape start and end addresses from Basic pointers
Perform SAVE

Update TI and TI$, and copy STOP key to work area

TI constant: limit of clock (24 hours)

Set input device

Set output device

Advance tape buffer pointer (for INPUT#, GET#, and PRINT#)
Wait: PRESS PLAY ON TAPE#

Test if cassette button(s) pressed

Wait: PRESS PLAY & RECORD ON TAPE#

Initiate tape read

Initiate tape write

Test for I/0 interrupt completion

Test stop key

79

F900-F930
F931-FA56
FA57-FBT75
FB76-FBTE
FBTF-FB83
FB84-FB92
FB93-FBAE
FBAF-FCLO
FCU1-FCT7A
FCT7TB-FC95
FC96-FCA5
FCA6-FCB3
FCBU4-FCC5
FCC6-FCDO
FCD1-FCFD
FCFE-FDOO
FDO1-FD10
FD11-FFBO
FFB1-FFBF

*%% %% JUMP
FFCO
FFC3
FFC6

OPEN
CLOSE
Set input device

Set expected timing for next input bit from tape
Interrupt entry: Read tape bits

Store received tape characters

Set tape read/write address back to starting point
Flag I/0 error into ST

Reset 8-counter and flags for a new byte

Write a transition to cassette tape

Write interrupt 2: write data to tape

Write interrupt 1: Write tape shorts (leader)
Terminate tape: restore normal interrupt vector
Set interrupt vector from table

Turn off cassette motors

Perform running checksum calculation

Check: read/write pointer at 1limit?

Power on reset entry point

NMI interrupt entry point

Table of interrupt vectors

Machine Language Monitor (MLM) - see Commodore documentation
Commodore copyright statement

TABLE¥ %#%%

FFC9 Set output device

FFCC Restore default I1/0 devices
FFCF Input character

FFD2 Output character

FFD5 LOAD

FFD8 SAVE

FFDB VERIFY

FFDE SYS

FFE1 Test STOP key

FFE4 Get character

FFET Abort all I/0 activity

FFEA Clock update

FFFO-FFF9 Unused

FFFA-FFFF Hardware vectors: NMI, Reset, Interrupt

When the PET is switched on a reset is generated by
the system hardware causing the processor to jump to a
subroutine whose location is pointed to be the contents
of the reset vector. The subroutine called is part of
the operating system and performs the functions of
testing memory, determining how much space is available
and initialising variables in the bottom 634 bytes of
memory.

Memory is tested by the simple method of writing a
value into a memory 'location and reading it back again.
If the value read back is different the operating system
decides it has found the top memory. This feature is
useful since it automatically isolates any memory fault
giving dropped or transposed bits. It is not able to
detect many of the more obscure memory faults or faults
in the bottom IK of memory. The highest usable RAM
address is then stored in locations 52 and 53 (in old
ROM machines 134 and 135). By changing the contents of
these locations the user can lower the top of memory to
leave space for machine code programs or data stored
using POKE. It is the highest RAM address, less the
amount of memory used for variables and cassette
buffers, a total of 1024 bytes, which is displayed on
the screen on system power up. The pointer to the start
of user memory is stored in locations 40 and 41 (in old
ROM machines 122 and 123). The setting of pointers to
the top and bottom of memory 1is part of system
initialisation and is required prior to the system
running a Basic program.

All variables required by Basic and the operating
system are stored in the lowest 643 bytes of memory. The
most commonly used variables, buffers, counters etc, are
stored in page zero of memory, the bottom 256 bytes. The
reason page zero is used for common variables rather
than any other area of memory 1is that the
microprocessors zero page addressing capability is much
faster and more efficient in memory usage than
addressing to other parts of memory. The location and
function of most variables has been determined and is
shown in the previous table. A knowledge of these
locations is very useful to the PET user since by
changing their contents one can change the system's
operation. The majority of POKE commands contained in
this book are located in this area of memory.

The section of memory not used by system variables
is available to the wuser, on a 32K PET this is from
location 1024 to 32768 a total of 31744 bytes. This
memory space is however not completely available for
program storage being also required for the storage of
string and numeric variables. It is no use writing a
program 7K long and trying to run it on an 8K PET, this
will just result in the operating system giving an out
of memory error. The Basic program is stored from
location 1025 upwards and the strings and variables are

65

stored from top of memory downwards. When a program line
is entered on the keyboard it is f{first written into the
keyboard buffer. The operating system then transfers it
byte by byte as it is entered onto the screen. The line
however is not entered into memory until a carriage
return is pressed. This causes the operating system to
transfer the program line just entered from the screen
into memory, where it can be executed with a run
command. Each line is stored in a specific format using
a compressed version of the Basic text. This reduces the
memory requirements of a program and allows longer
programs to be run. The compression of Basic text
involves conversion of the Basic commands into single
byte tokens. The command PRINT instead of being stored
as five ASCII characters is stored in a single byte as
the decimal value 153. When a program is listed the text
compression process is reversed, as far as the user is
concerned the program is stored in the same form as it
was written.

A useful result of text compression is a shorthand
way of writing Basic commands, either in a program or
direct command mode. This relies on the fact that the
routine which converts commands to tokens looks only at
the first two or three characters of a command word.
Other characters in the command word are there for the
users convenience only. Normally if we entered only the
first couple of characters of a command the computer
would respond with a syntax error message. This can be
done though by using a simple method of fooling the
error detection routines. The method used 1is this, to
enter any Basic reserved word type the f{first letter of
the word then depress the shift key and type the second
letter. By wusing just the first two letters there could
be confusion between commands which share the first two
letters. For example STOP and STEP, in these cases the
first two letters should be typed followed by the third
with the shift key depressed. The following is a list of
Basic commands and their abbreviated form with the
numerical value of the command token in both decimal and
hexadecimal.

Command Abbreviation Decimal Hexadec imal
token token
~——END:Cont. En 128 80
o ra _FOR -7 Fo 129 81
At eevien =T NEXT . Ne 130 82
ot el f e DATA Da 131 &3
INPUT# In 132 84
INPUT - INp 133 85
DIM Di 134 86
READ Re 135 87

66

LET
GOTO
RUN

IF
RESTORE
GOSUB
RETURN
REM
STOP
ON
WAIT
LOAD
SAVE
VERIFY
DEF
POKE
PRINT#
PRINT
CONTe
LISTe
CLR

Le
Go
Ru
If
REs
GOs
RE t
REM
St
On
Wa
Lo
Sa
Ve
De
Po
Pr

Co
Li
Cl

Sy

CLo
Ge
NEw
Ta
To
Fn

Th
No
STe

An
Or

INt
Ab
Us
Fr
POs

Rn
LOg
Ex

Si
TAn

136
137
138

139 -

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
175
176
178
180
181
182
183
184
185

186 -

187
188
189
190
191
192

88
89
8A
gB
8C
&D
8E
8F
90
91

92

93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0Q
Al
A2
A3
A4
A5
A6
A7
A8
A9

AB
AC

AF
BO
B2
B4
B5
Bé6
B7
B8
B9
BA

BB

BC
BD

BE
BF

CcO

67

ATN At 193 Cl

PEEK Pe 194 C2
LEN Le 195 C3
STRS STr 196 C4
VAL Va 197 C5
ASC As 198 Cé6
CHRS Ch 199 ' C7
LEFTS LE f 200 C8
RIGHTS Ri 201 C9
MIDS Mi 202 CA

The token value given to a Basic command is a
pointer into a table of reserved command words located
between 49298 and #9551. By subtracting 127 from the
token value the number of the word in that table can be
obtained. It should be noted that the technique of using
token to represent words can give the programmer a very
powerful method of generating print statements without
consuming a large amount of memory. This can prove
especially wuseful in games programs, such as Adventure,
which require a lot of text generation. By constructing
a table of, say, 200 common words each time one of these
words appears in a print statement it is represented by
a number which points to its location in the table.
Obviously some sort of output subroutine is required to
convert the token back into a word but the saving in
memory space can be considerable.

Having converted the Basic command into a single
byte token thereby compressing the Basic text, the line
is stored together with the line number and a link
address at a location just above that of the last line
entered, or if it is the first line at location 1025
upwards. Assumeing that it is the first line of the
program which is being entered, then it will be entered
into the following locations in the following format:

1024 - contents O
1025 - 1ink address low
points to starting

}location of next line
1026 - link address high

1027 - line number low
1028 - line number high
1029 - start of compressed Basic text.

Number of bytes occupied variable.
End of line flagged by a zero byte.

68

A Basic program is stored as a series of blocks each
of variable length and representing one line in the
program. Each block having a fixed format and all blocks
being connected via a linked list structure. Each line
in a program 1is stored in memory in the correct position
dictated by the magnitude of its line number, thus it
will be the line with the lowest number which is stored
at the bottom of memory - location 1025 up. The line
number is stored in byte 3 and 4 of a block in binary

format, this means that the largest line number that can’

be wused in a program is 65535, any number above that
will give a syntax error. When a program is run the
current line number being executed is stored in
locations 54 and 55 (in old ROMs 136 and 137). A direct
mode of operation for the processor is indicated when
the contents of these two bytes is zero. The double byte
link address points to the starting byte of the next
line. As each line is executed this address is stored in
locations 119 and 120 (in old ROMs 201 and 202), where
it is accessed when the operating system fetches the
next line. The link address of the last line of a
program points not to another link address as in a
normal program line, but to two bytes the contents of
which are zero.

The storage of a program within memory is best
illustrated by the following diagram:

Start 1025

1024
Link Line

0 address no Text 0
Link Line
address| no Text 0
Link Line
address no Text 0

C:::: 0 0 *» END

69

A knowledge of how a program is stored in memory is
useful enabling us to perform several operations which
the system does not otherwise allow, for example: line
renumbering and overlays. Line numbers can be changed
simply by changing the contents of bytes three and four
of each block (line). The beginning of each line is
located using the link address obtained from the
previous line. The following is a simple renumbering
program, it requires the top and bottom line numbers to
be renumbered, the new starting line number and line
number increment.

60000 INPUT"START AT LINE ";S
60005 INPUT"END AT LINE ";E
60010 INPUT"NEW LINE START";L
60015 INPUT"LINE INCREMENT";I
60020 A=1025:B=256

60030 Q=PEEK(A+2)+B¥*PEEK(A+3)
60033 IFQ SGOT060030

60037 IFQ EGOT060000

60040 POKEA+2,L-INT(L/B)#*B
60045 POKEA+3,INT(L/B)

60050 L=L+I:A=PEEK(A)+B*PEEK(A+1)
60055 IFA=0GOT060000:GOT060030

To use this program first load into the PET then
list on the screen, (this is a simple way of merging the
renumber program onto the end of the program to be
renumbered). The program to be renumbered is then loaded
and the renumber program merged with it by placing the
cursor over each line on the screen and pressing return.
Having done this the renumber program can be run with
the command RUN 60000. It should be noted however that
this renumber program 1is very simple and will not
renumber any of the jump addresses stored in the Basic
text. To do this the program must examine the tokens
used in the Basic text area, looking for GOTO or GOSUB
commands and renumber their jump addresses. Anyone
intending to add this function to the above program
should note that whereas the line number is stored in a
binary format the jump line is stored in ASCII and is
thus of variable length.

Another function which can be performed by
manipulating the way a program 1is stored is creating
program overlays. This means calling a program segment
from tape or disk and running this program whilst
retaining the common subroutines and data used by the
previous program segment. By using overlays the
programmer can create programs which are much larger
than the maximum core size of the machine, without
having to manually dump out and reload the data. On the
PET, a program can be loaded using the LOAD command
within a previous program. If the new program is

70

shorter, then part of the previous program not replaced
by the new program is still retained in memory. But the
remaining part of the old program is not accessible
normaly by the new program. One can, providing the new
program is shorter than the old, use the data generated
by the old program in the new program, none of the data
areas being affected by loading a new program.

To create an overlay; a) ensure that common
subroutines are stored at the end of the old program; b)
ensure that the new overlay program is shorter than the
old program and does not erase any of the subroutines or
data. Lastly a link address must be created between the
end of the new program and the start of the subroutines,
to replace the end of program marker put there by the
operating system. The reason for common subroutines
being stored at the end of the old program is that a new
program is always loaded into memory starting at address
1024. Thus it is always the lowest line numbers which
are replaced. Also the subroutines should have line
numbers much higher than any line numbers used in the
overlay program. This is because the operating system
requires that lines are stored in strict sequence of
line number. When new lines are entered, the operating
system moves all lines with higher line numbers up in
memory, recalculating the link addresses and inserting
the new line in the correct position.

Assuming the above criteria have been met, then to
link two programs together the location of the two link
address bytes of the last line in the overlay program
must be known. Also the starting address of the
subroutines in the original program must be determined.
The following program can be used to find these
locations and their contents, it can be merged onto the
end of a program using the same method used in the
renumber program.

60000 INPUT "LINE TO BE EXAMINED";L
60010 A=1025:B=256

60020 Q=PEEK(A+2)+B¥PEEK(A+3)

60030 IFQ=LTHENGOTO60060

60040 A=PEEK(A)+B¥*PEEK(A+1)

60050 GOT060020

60060 PRINTA;PEEK(A),A+1;PEEK(A+1)
60070 PRINT:GOTO60000

By running this program we can look at a particular line
number and determine the location and contents of its
link address. The program gives the line number, the
starting location in memory of that line, plus the
contents of the two link address bytes. Using this
routine with the original program the start address of
the subroutines can be found. The link byte location of
the last line of the overlay can also be found using

71

this program. To connect the two program segments, the
start address of the subroutine segment is loaded into
the link bytes of the overlay, using POKE commands as
follows, X is the start address and A the link byte
location:

POKE A,X - INT (X/256)*256: POKE A+l, INT (X/256)

The two programs will now run as one, providing no lines
are entered or deleted, this will require the addresses
to be recalculated. The technique of altering the link
addresses can be used to produce some other interesting
ideas, such as making sections of a program unlisted and
unrunnable to anyone who does not have the key, where
the key consists of a link address which must be
" inserted into the correct location. Thus for example a
commercial software vendor can add an undetectable line
of code to a program containing a unique number used to
indentify that program and prevent illegal copying.

Data storage.

The entire area of memory not used for program
storage is available for storage of data. Firstly, it is
worth looking at the simplest form of data storage -
using data statements. A data statement is stored as
part of a program in the Basic text area of memory. The
data is accessed by the program using the READ command.
Data stored in data statements though can only be added
to by adding program lines. Another limitation is that
data can only be accessed from data statements in a
serial mode. This means that to find one particular item
the whole table of data must be read. The pointer to the
current data statment is stored in locations 62 and 63
(in old ROMs 144 and 145). Manipulation of the contents
of these locations could provide the user with a means
of overcoming the serial search limitation.

Data not stored within the program as data
statements, is stored by the program in the area of
memory above the Basic text area, as variables.
Variables can be divided into two groups, simple
variables of the kind used in the following statement;
LET X=47 where X is a simple variable. Secondly array
variables which are defined by a DIM statement and
contain more than one value. The number of values being
determined by the number of elements in the DIM
statement. For both groups of variables there are three
types of data, these are: - real or floating point
numbers - integer numbers - and character or string
variables, where words are being stored rather than
numbers.

Simple variables of whatever data type are stored
immediately above the Basic. program text area at an
address pointed to by the contents of locations 42 and

72

43 (in old ROMs 124 and 125). The amount of memory used
to store these variables depends on the number of
variables used by a program. Each variable occupies
seven bytes of memory and the next free location in the
simple variable storage area is pointed to by the
contents of locations 44 and 45 (in old ROMs 126 and
127).

The array variables are stored above the simple
variables and thus start from the location pointed to by
44 and 45. The amount of memory used to store the array
variables depends on the number of array variables the
number of elements in each and the data type of each
variable. The top of the storage area used for array
variables, which is also the beginning of the unused
storage area of memory, is pointed to by locations 46
and 47 (in old ROMs 128 and 129). Since array variables
are stored directly above simple variables, whenever a
new simple variable is encountered in a program the
operating system shifts the entire array variable
storage area up seven bytes in memory, thereby opening
up a space to accomodate the new variable. This dynamic
re-allocation of data storage space is one of the
reasons why a machine code subroutine can not be stored
in unusued memory space, unless placed above the address
stored in the top of memory pointers in locations 52 and
53 (in old ROMs 134 and 135). The re-allocation of
memory space slows down a program since every time a new
variable is encountered processing stops while the data
is moved. When processing speed is important, such as in
real time applications, this rather inconsistent
variation in speed can be a problem. It is overcome by
initialising all the variables - using dummy constants
if necessary - at the beginning of the program.

Single value variables are divided into three
distinct data types, each being stored in a different
format. The only thing all three have in common is that
each variable stored requires seven bytes of memory.
Both integer and floating point numbers stored as single
value variables have both the name and the value stored
within the seven bytes allocated to each variable. An
integer variable 1is distinguished from a floating point
variable by adding 128 to the ASCII value of the
variable name. The formats used are:

INTEGER VARIABLES

T 1
first second high low
character in variable order byte of binary 0 0 0
name (the ASCII representation of
value + 128) integer value
1 1

73

FLOATING POINT VA RIABLE

1] 1 1 1]

first second binary binary mantissa in packed
character in variable | exponent BCD giving eight digit
name + 129 precision. First bit of first

byte is sign bit.

i 1 1 A

From this, one can see that there is no saving in memory
usage by using single value integer variables instead of
floating point variables. When the data being stored
consists of a string of alphanumeric characters then the
variable is stored using: the character format. In this
format the data is not stored within the seven bytes
allocated for variable storage. What is stored is a
pointer to an address in memory where this string of
characters is stored. Character strings are in fact
stored in an area right at the top of memory and
extending downwards towards the area occupied by the
array variables. By using this method string variables
need not be of a fixed length thereby considerably
reducing the amount of memory needed to store them. The
format used for a string variable is:

STRING VARIABLES

T 1
first second number low high
character in variable of order byte of
name, 128 added to characters address where 0 0
ASCII value of second string is stored
characteL only.)

Since the number of characters in the string is stored
as a single byte it is not possible to have a character
string longer than 255 characters. This should be
considered when adding two string variables together
where both are fairly long. Though the area at the top
of memory is allocated for the storage of strings, not
all string variables are stored there. Thus all strings
defined within the program are retrieved, when required
from the program text area. This is done by having the
variable address pointers point to the location in Basic
text rather than the top of memory. What is stored at
the top of memory are calculated string variables. The
area of memory occupied by these strings can be
determined by looking at the contents of locations 48

74

and 49 (in old ROMs 130 and 131) this is the start
address of the string area, and 50 and 5! (in old ROMs
132 and 133)which is the end address.

The three data types encountered as simple single
value variables can also be stored as multiple value or
array variables. Whereas simple variables of whatever
data type all occupy the same amount of memory for each
variable, the memory requirement for an array is
different for each type of data. An array is stored as;
an array header plus a set of elements each roughly
corresponding to a simple variable. The array header
contains the array name, the number of dimensions in the
array, the number of elements in each dimension together
with a pointer to the start of the next array. Array
header are the same for all data types. As with simple
variables the array data type is coded into the array
name. In a floating point array both characters are the
normal ASCII code, in an integer 128 is added to the
ASCII value of both characters, and in a character array
128 is added to the ASCII value of the second character
only. The general format of an array is:

Array Element Element Element Element
header #0 #1 #2 ; #N

| ganwi?®’|

I @

Here N is used to /designate’ the last element in an array
and corresponds to the value used in the DIM statement
at the beginning of the program when the array was
initialised. The array header for whatever data type has
the format:

i] T
first second low high number high low expans-
characters in pointer to first of number of ion
array name, byte of next dimens- | elements in the bytes
plus data type array ions in | last specified
coding if any array dimension of
the array

1 2 3 4 5 6 7 8 9

In a one dimensional array the array header occupies

seven bytes,’
extra two bytes
elements in that dimension,
long. Similarly
be eleven bytes
by DIM D(A,B)

but if two dimensions are specified then an
required to specify the number of

are

long.
the number

if there are

making the header
three dimensions
In a two dimensional
of elements in B is stored

nine bytes
it would
array set up

in

75

bytes 6 and 7 of the header, the number of elements in A
is stored in bytes & and 9. The format for each element
in an array is identical since all elements are of the
same data type, though the format is different for each

data type:

FLOATING POINT ARRAY ELEMENT

1 . T

binary binary mantissa, first byte bit 7
exponent is used to indicate the sign.

plus 129

INTEGER ARRAY ELEMENT

high low
order byte of binary
integer value

CHARACTER ARRAY ELEMENT

—_
number low high
of byte of address
characters where string is

in string stored
i

NOTE: a negative integer whether in an array or a simple
variable is stored as a twos complement number, thus no
sign bit is used and negative integers can not exceed
32768.

An annoying limitation of array variables in old ROM
machines is the maximum of 255 elements in an array
(this has been overcome in the new ROM machines). One
fairly simple way of overcoming this problem is to
construct ones own arrays using the PEEK and POKE
commands, then the only restriction is the amount of
free memory available in the system. Since data is to be
stored without wusing the Basic arrays or variables an
area of memory must be set aside exclusively for the
storage of the new arrays. The way to do this is to
lower the top of memory pointers until it is just above
the maximum area required for program storage, strings
and variables. This can be calculated by using the FRE
command to determine the program size and adding to it

76

the amount of memory required to store variables and
strings. The space required for storage of simple
variables is obtained by counting the number of
variables and multiplying by seven. If array variables
are used then the memory requirements depend on the data
type and number of dimensions, but can be calculated as
the header, plus the number of elements, times the
number of bytes in each element. The amount of memory
required for string storage is obtained by counting the
maximum number of characters which will be stored as
strings,(only calculated or input strings need be
counted). Having obtained a figure for the maximum
amount of memory required to run the program this can be
subtracted from the total user memory area to give the
amount of free memory.

To use this free memory area, one must first
calculate the number of bytes required to store each
variable in the proposed array. Great care must be taken
with this if the maximum amount of data is to be stored
in a given area of memory. The method used to store the
data will also affect the speed with which data can be
accessed from the array. If linear search techniques are
used this could slow down a program considerably. If the
array consists of a table of character strings then one
of two methods could be used. The choice depends on
whether access speed is more important than amount of
data stored per K byte. -

The first method is to store character strings of
any length, with a maximum size of say 255 bytes, the
first byte of each string indicating the length of that
string. Searching through a file stored using this
method requires a slow linear search, since the contents
of the first byte of each string is used to point to the
start of the next string. The second method is to
allocate a fixed amount of memory space to each string,
the number of characters depending on what is being
stored, however all elements in the array must have the
same space allocated to them. The search procedure here
is very easy since if we want the contents of element 14
it is located at an address which can be calculated by
adding the array starting address to 14 times the number
of bytes in each element. The only problem with this
method 1is that character strings shorter than the
maximum will leave unused spaces in memory and if longer
then it is impossible to store the extra charaters.

Elements in a numerical array can be stored as
either binary numbers or as ASCII values the method used
depending on the maximum size of the numbers stored.
Whichever method is used it is preferable to have all
elements in the array the same size. If numbers are
stored as binary then a three byte element can be used
to store numbers in the range +65535 to -65535 the first
byte being used to store the sign. To find element
number N in an array one simply calculates its starting

77

position by adding the array starting address to N times
the number of bytes in each element. Using this method
one can create a thousand element array for numeric
variables in the range +-65536 in 3K of memory or if all
values are positive then it could be stored in just 2K.

Programs involving extensive string manipulation can
suffer from seemingly inexplicable and often lengthly
pauses in their operation. This is caused by an
operating system function known as garbage collection.
Every time a character string is input or calculated it
is stored at the bottom of the character string storage
area. If AS is input at the beginning of the program,
and then at the end another AS string is input, the
second input is not stored on top of the first but at
the end of the string storage space, leaving the first
string still stored in memory. Obviously if the program
involves a fair amount of string manipulation the entire
free memory space will become full of string storage, a
large proportion of which will be "garbage" i.e. strings
no longer required. To avoid running out of memory the
system must perform at this point a "garbage collection”
routine. Garbage collection reclaims all the unused
memory and -compacts the string storage at the top of
memory. This subroutine which is located at D400 to
D496(D404 to D5C3 in old ROMs) is lengthy and time
consuming especially in large programs and the main
reason why such programs execute at a much slower rate
than small programs. One can force garbage collection to
take place by performing the command FRE (O), which
calculates the amount of free memory space, this is
useful if you don't want a real time program interrupted
by the garbage collection process. ,

When the command RUN is typed on the screen followed
by a carriage return, the operating system interprets
this as a direct command. It then searches through the
list of reserved words to find the address of the
subroutine to perform the command. The RUN subroutine is
located at address C785 (C775 in old ROMs)its first
function is to set all the pointers to the start of the
program, abort all active 1/0 channels and restore all
subroutine and data pointers. Having done this, the
first line of the Basic program is fetched using a
subroutine located in page zero of memory. The command
is executed, and the next line fetched, with the line
fetch subroutine checking for spaces and more than one
command on a line.

The line fetch subroutine in page zero is of great
interest, since it opens up the possibility of adding
additional commands to Basic. For this reason it is
worth looking at the subroutine closely, it is loaded
into memory from locations 112 to 117 (in old ROMs 194
to 199) during system initialisation. The reason why
this subroutine is relocated from ROM to RAM is that it
requires a variable load address. This points to the

78

current byte of Basic program text being accessed. The
variable load address or pointer to source text Iis
stored in locations 119 and 120 (in old ROMs 201 and
202). The first function of the subroutine is to
increment this pointer to point to the next location,
which 1is then read and stored in the processors
accumulator. The remainder of the subroutine checks to
see if the <character obtained is either a colon,
indicating the end of a statement, or a space, if a
space then the next character is obtained. The
subroutine is as follows, new ROM version:

0070 CHAR E6 77 INC Z $77 :increment character

pointer low byte

DO 02 BNE $02 s:test if low byte=255
if true then

E6 T8 INC Z $78 :increment character
pointer high byte

GET AD %% %% [DA *¥¥¥ :get character from

address in 119-120

C9 3A CMP IMM $3A :is character a colon

BO 0A BCS END :if so then End

C9 20 CMP IMM $20 :is character a space
FO EF BEQ CHAR :if so goto CHAR

38 SEC

E9 30 SBC $30

38 SEC

E9 DO SBC $DO

END 60 RTS :return to main program

(the asterisks are used to show that the contents of
bytes 201 and 202 are variable).

By inserting extra code into this subroutine,(this
is done by replacing the first six bytes with a couple
of jumps to user written code) each Basic command can be
intercepted before it is performed. The first subroutine
would be the main block of new code, performing whatever
function one wants to add to the PET commands. The
second subroutine consists of the six bytes replaced by
the two JSR instructions. Thus if the new program starts
at location 7A00 hex than the following six bytes would
be inserted into the CHARGOT area:

0070 CHARGOT 20 00 1A JSR 1A00 :main subroutine
20 00 1F JSR 1F00 :update pointer

subroutine
GET AD %% %% [DA EEEd

1F00 POINTER E6 77 INC Z $77 :increment 119

79

DO 02 BNE $02 :if low byte =255 then
E6 78 INC Z $78 :increment 120
END 60 RTS :return to main program

An easy way of detecting new commands is to precede
them by a particular character, eg. an asterisk. Then
use a small subroutine to detect if the first character
in a command is an asterisk. If so, then the command is
executed by the new software rather then the existing
interpreter. A vector plotting command could be added,
to plot line vectors on the screen using double density
graphics (see the program for this in the section on the
video display). A command like *PLOT XI1,Y1,X2,Y2 could
be used where X and Y are co-ordinate values for the end
points of the line. The range of commands is very large,
including functions like the example just given, also
commands governing the operation of peripherals such as
A/D converters, or disk units. The ability to intercept
each command before it is executed need not be applied
to adding extra commands to Basic. It can also be used
to monitor the execution of a program, allowing one to
construct a powerful diagnostic aid known as a trace
program, which slows down the running of a Basic program
and displays each line on the screen as it is executed.
The following programs perform this function, since they
are fairly lengthy machine code programs I will not give
the full source text, only the loader written in Basic.

The f{first commands set the top of memory pointers so
that trace will not be erased by any Basic variables or
strings since it resides above the top of memory
pointer. The trace program should be loaded first before
entering or loading the program which is to be tested
using trace. Once trace and the program to be examined
are loaded, then trace can be activated. In the {first
program which is for old ROM machines trace is enabled
by the command--- SYS (7876), this inserts the new code
into the CHARGOT subroutine as explained above. The
second program is a version of trace for new ROM
machines. In this version to allow machines of different
sizes to run trace the SYS locations are calculated by
the Basic loader and should be noted prior to running.
Having activated trace the program to be examined can by
run by typing RUN in the normal manner, the program will
then be executed. Each line being executed is displayed
in two lines of reverse field background at the top of
the display at the rate of about one line every second.
The rate of program execution can be speeded up in the
old ROM version by pressing the shift key, the new ROM
version requires a speed flag to be reset using POKE.
Program execution can be stopped in the normal manner by
pressing the stop key.

It should be noted that when trace has been
initialised it affects the operation of the cassettes

&0

and the 1/0 thereby rendering it impossible to either
load or save a program. To overcome this problem a
disable subroutine has been built into trace. This
subroutine returns the CHARGOT subroutine area to its

normal state and can be called in the old ROM version by
a --- SYS(7861).

1 REM TRACE FOR OLD ROM MACHINES

10 FORQ=7853T08191

20 READA

30 POKEQ,A

40 NEXTQ

50 END

100 DATA 162, 5, 189, 181, 224, 149, 194, 202, 16, 248, 169
110 DATA 239, 133, 210, 96, 169, 172, 133, 134, 169, 30
120 DATA 133, 135, 169, 255, 133, 124, 160, 0, 162, 3
130 DATA 134, 125, 162, 3, 32, 239, 30, 208, 249, 202
140 DATA 208, 248, 32, 239, 30, 32, 239, 30, 162, 5

150 DATA 189, 249, 31, 149, 194, 202, 16, 248, 169, 242
160 DATA 133, 210, 76, 106, 197, 230, 124, 208, 2, 230
170 DATA 125, 177, 124, 96, 230, 201, 208, 2, 230, 202
180 DATA 96, 32, 197, 0, 8, 72, 133, 79, 138, 72

190 DATA 152, 72, 166, 137, 165, 136, 197, 77, 208, 4
200 DATA 228, 78, 240, 107, 133, 77, 133, 82, 134, 78
210 DATA 134, 83, 173, 4, 2, 208, 14, 169, 3, 133

220 DATA T4, 202, 208, 253, 136, 208, 250, 198, 74, 16
230 DATA 246, 32, 201, 31, 169, 160, 160, 80, 153, 255
240 pATA 127, 136, 208, 250, 132, 76, 132, 84, 132, 85
250 DATA 132, 86, 120, 248, 160, 15, 6, 82, 38, 83

260 DATA 162, 253, 181, 87, 117, 87, 149, 87, 232, 48
270 DATA 247, 136, 16, 238, 216, 88, 162, 2, 169, 48
280 DATA 133, 89, 134, 88, 181, 84, 72, T4, T4, TU

290 DATA T4, 32, 211, 31, 104, 41, 15, 32, 211, 31

300 DATA 166, 88, 202, 16, 233, 32, 217, 31, 32, 217
310 DATA 31, 165, 75, 197, 201, 240, 55, 165, 79, 208
320 DATA 4, 133, 77, 240, 47, 16, 42, 201, 255, 208

330 DATA 8, 169, 94, 32, 225, 31, 24, 144, 33, 41

340 DATA 127, 170, 160, 0, 185, 145, 192, 48, 3, 200
350 DATA 208, 248, 200, 202, 16, 244, 185, 145, 192, 48
360 DATA 6, 32, 223, 31, 200, 208, 245, u1, 127, 32

370 DATA 223, 31, 165, 201, 133, 75, 104, 168, 104, 170
380 DATA 104, 40, 96, 168, 173, 64, 232, 41, 32, 208
390 DATA 249, 152, 96, 9, 48, 197, 89, 208, U4, 169

400 DATA 32, 208, 2, 198, 89, 41, 63, 9, 128, 132

410 DATA 81, 32, 201, 31, 164, 76, 153, 0, 128, 192

420 DATA 79, 208, 2, 160, 7, 200, 132, 76, 164, 81

430 DATA 96, 76, 255, 30, 32, 248, 30, 36, 239, 255
READY.

8l

1 REM TRACE FOR NEW ROM MACHINES
10 E=52
15 D=2

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
400
410
420
430
440
450
460
500
510
520
530
600

DATA-342,162,5,189,249,224,149,112,202,16,2u48
DATA169,239,133,128,96,173,-342,133,52,173, =341
DATA133,53,169,255,133,42,160,0,162,3, 134,43
DATA162,3,32,-271,208,249,202,208,248,32,-271
DATA32,-271,76,121,197,162,5,189,-6,149,112,202
DATA16,248,169,242,133,128,96,230,42,208,2,230
DATAL43,177,42,96,230,119,208,2,230,120,96,32
DATA115,0,8,72,133,195,138,72,152,72, 166,55, 165
DATASY4,197,253,208,4,228,254,240,106,133,253
DATA133,35,134,254,134,36,165,152,208, 14,169
DATA3,133,107,202,208,253,136,208,250,198,107
DATA208,246,32,-54,169,160,160,80,153,255, 127
DATA136,208,250,132,182,132,37,132,38,132,39
DATA120,248,160,15,6,35,38,36,162,253,181,40
DATA117,40,149,40,232,u48,247,136,16,238,216
DATA88,162,2,169,48,133,103,134,102,181,37,72
DATATY,TU,TU,T4,32,-44,104,41,15,32,-44,166
DATA102,202,16,233,32,-38,32,-38, 165, 184,197
DATA119,240,55,165,195,208,4,133,253,240,47
DATA16,42,201,255,208,8,169,105,32,-30,24, 114
DATA33,41,127,170,160,0,185,145,192,48,3,200
DATA208,248,200,202,16,244,185,145,192,48,6
DATA32,-32,200,208,245,41,127,32,-32,165,119
DATA133,184,104,168,104,170,104,40,96,168,173
DATA6Y4,232,41,32,208,249,152,96,9,48,197,103
DATA208,4,169,32,208,2,198,103,41,63,9,128
DATA132,106,32,-54,164,182,153,0, 128,192, 195
DATA208,2,160,7,200,132,182,164,106,96,76
DATA-255,32,-262
S2=PEEK(E)+PEEK(E+1)%#256:S1=S2+D-344
FORJ=S1T0S2-1

READX: IFX>00RX=0THENGOTOU450
Y=X+S2:X=INT(Y/256) : Z=Y-X¥256

POKEJ,Z:J=J+1

POKEJ, X

NEXTJ ,

PRINT"INITIALISE WITH SYS(";S1+17")"
PRINT"ENABLE WITH SYS(";S1+56M")"
PRINT"DISABLE WITH SYS(";31+2n) "
PRINT"CHANGE SPEED WITH POKE";S1+125-D", X"
END

READY.

82

THE USER PORT 4

An understanding of the functioning and programming
of the wuser port and the 6522 VIA is vital for anyone
wishing to use the PET to control or communicate with an
external device. The user port is the central edge
connector coming from the main PET logic board at the
rear of the machine. It has 24 edge connections 12 on
the top and 12 on the bottom, with a .156 inch spacing
between the centre of each contact. We can divide the 24
contacts into two distinct groups, the 12 top contacts
and 12 bottom contacts. The top 12 connections are
primarily intended for use when servicing the PET, the
bottom 12 lines make up the parallel user port. A brief
description of each contact is shown in Figure 4.1, the
top connections are labeled 1 - 12 and the bottom A - N.

Connections 1 - 12 and their uses.

The top connections are of little use to the average
user and in general should be treated with caution.
However, on the old 8K static RAM machines they were
designed as part of the internal diagnostics. For this
purpose a special connector is used to jumper some of
the top contacts to the bottom contacts. With this
connector in place the PET when powered up instead of
jumping to the BASIC routines jumps to the diagnostic
routines contained in the PETs ROM. The diagnostic
routine checks the RAM, parity of the ROM, keyboard
scanning, TV display (making sure all bits turn on and
off at all locations on the screen), Read/Write of both
cassette ports, user and IEEE port. If all functions of
the PET main logic board are working correctly on
completion of the test the red LED on the board will
turn on. In fact two diagnostic connectors are required
to do this, one on the user port, the other on the
keyboard connector in place of the keyboard cable. If
you wish to run the diagnostics you will have to make up
your own connectors with the following connections wired
together:

83

10

A

o]

Z Z CRQIMmQgO

Ground

T.V.video

IEEE-SRQ

IEEE-EOI

Diagnostic
Sense

Tape {2
READ

Tape Write

Tape #1
READ

T.V.

Vertical

T.V.
Horizontal

11,12 GND

GND
CAl
PAO
PAI
PA2
PA3
PA4
PA>5

PA6
PA7

CB2

GND

Digital ground

Video output used for external display
used in diagnostic routine for verifying
the video circuit to the display board.

Direct connection to the SRQ signal on
the IEEE-488 port. It is used in verifying
operation of the SRQ in the diagnostic
routine.

Direct connection to the EOI signal on the
IEEE-488 port. It is used in verifying
operation of the EOI in the dignostic
routine.

When this pin is held low during power up
the PET software jumps to the diagnostic
routine, rather than the BASIC routine

Used with the diagnostic routine to
verify cassette tape #2 read function.

Used with the diagnostic routine to
verify operation of the WRITE function of
both cassette ports.

Used with the diagnostic routine to
verify cassette tape #1 function.

T.V. vertical sync signal verified in
diagnostic. May be used for external
T.V. display.

T.V. horizontal signal vertified in
diagnostic may be used for T.V. display.

Digital ground

Digital ground

Standard edge sensitive input of 6522VIA.
Input/output lines to peripherals,

and can be programed independently
of each other for input or output.

Special 1/0 pin of VIA.

Digital ground

84

Fig 4.1

User Port Connections

User port connector - 2-B, 3-C, 4-D, 5-11, 6-7-8, 9-K,
10-L

Keyboard connector - 1-9-17, 2-10-18, 3-11, 4-12, 5-13,
6-14, 7-15, 8-16, connector key 1in position 19.

When power 1is applied to the PET the screen will
initially be cleared and the red LED will be off. The
diagnostic will begin by testing the screen while doing
this a small white square will sweep across all the
locations on the screen. On the cursor reaching the
bottom right of the screen the display will be filled
with a full character test pattern. This should be
checked visually to make sure all the characters are
present and no bits are flickering on the screen. The
red LED should be lit indicating that the main logic
board has passed the diagnostic test. If a fault is
present it can be tracked down with a set of diagnostic
programs loaded into the PET from tape, of course no
diagnostic routines will work if the processor is not
functioning or there is no power. All new machines
require diagnostic programs to be loaded from either
tape or disk. v
Although primarily intended for use by the
diagnostics the top connections of the user port can be
used for other purposes. One of the most useful, with
particular applications in schools, is the ability to
use three of these lines to drive an external large
screen TV monitor. These three lines provide the user
with the vertical sync signal on output 9, the
horizontal drive on 10 and the video output on line 2.
To drive a standard TV monitor (not a domestic TV set)
these signals must be combined to give a single
composite video output which can be connected directly
to the monitor input. The circuit to do this is shown in
Figure 4.2, it will require a 5 volt power supply which
can come from a battery or from pin 2 on the 2nd.
cassette connector. You may encounter problems with the
horizontal hold but this can wusually be cured by
adjusting the value of RIl. Other problems may occur as a
result of using very cheap monitors or converted TV
sets. If you intend building this circuit then the
actual layout of components is not critical and it is
most easily constructed on a piece of Veroboard.
The only other lines of interest on the top surface
of the user port connector, are lines 6, 7 and 8, these
are all associated with the operation of the two
cassettes. Line 6 is the read input from cassette #2 and
line 8 is the read input from cassette #1, line 7 is the
common write output to both cassette decks(dynamic
machines only). These lines are of interest to the user
for several reasons, line 7 could be used as an extra
1/0 line. The most interesting application lies in using
these lines to allow two or more PETs to communicate

&5

HORIZONTAL

[VIDEO OUTPUT CIRCUIT

14

7 4066 e +5V

VERTICAL é 'I 8
9 < >—— ———————————————————— A

[—_._-—--——-——-"'-"""." 6802

COMPOSITE VIDEO

.,M__‘
o

ouTPUT

OUTPUT WAVEFORM

VIDEC DOTS
— T 2v

HORIZONTAL SYNC
PULSES

i

I

VERTICAL
INTERVAL

86 . .
Fig 4.2 Video output circuit

with each other. This would allow one master PET to
control a number of slave machines a situation which
would find great use in education. "communicate" meaning
that data and programs can be transferred from one
machine to another. This is done by connecting the write
output of one machine to the read input of another, and
vice versa to give bi-directional communication. At the
time of writing several people are experimenting with
this idea, though the results look promising no working
system has yet been constructed.

The parallel user port, connection A - N.

The bottom 12 connections comprise the user port
proper, and are of interest to everyone wishing to use
the PET to control external devices. As seen from Figure
4.1 these 12 lines consist of two ground lines, two
handshaking lines and eight input/output lines. Since
the I/0 lines are under full program control they can be
configured as any combination of inputs or outputs. This
means that the user port should not be considered as an
eight line data bus like the IEEE, but rather as a set
of eight independent I1/0 lines. Examples of the kind of
devices which could be connected to the user port are:
lamps - switches and other on/off sensing devices -
motors - anolog to digital or digital to analog
converters. Some of these devices could be controlled
with programs written in Basic, but the majority would
require the control program to be written in machine
code since Basic is not fast enough for most
applications. To write programs either in Basic or
machine code for controlling devices through the user
port the programmer must have a thorough understanding
of the functioning of the 1/0 chip from which the user
port lines originate.

The 6522 Versatile Interface Adapter

The lines on the bottom side of the user port
originate from a 6522 VIA or Versatile Interface Adapter
chip, located in system memory between addresses 59456
and 59471. A block diagram of the 6522 is shown in
Figure 4.3, it is a very complex chip with sixteen
different addressable registers. Each bit within these
registers has a specific function, either as an input,
an output or to control the operation of the 6522. A
memory map of the addressable registers is shown in
Figure 4.4, the registers are of six basic types; 1/0,
data direction, peripheral control, shift register,
timers and timer control registers.

The diagram in Figure 4.3 can be divided into two,
on the left are the connections to the processor, the
processor interface. On the right the outputs of the
6522, or the peripheral interface. The main components

&7

BUS

DATA

DATA
BUS
BUFFERS

v
>
o

n/w_____J_'—_—

CLK g

RS

RS 2

RS 3yl

CHIP

ACCESS
CONTROL

INTERRUPT
CONTROL
FLAGS INPUT
LATCH
ENABLE ouTPUT BUFFERS
> K> PORT A
PA
DATA DIR
PORT A
REGISTERS
PERIPHERAL
X » CA1
AUXILIARY boRT A >
CA2
FUNCTION CORT B
CONTROL
HANDSHAKE
CONTROL
1
LATCH HIGH : LOW
‘
COUNTER HIGH | LOW SHIFT REG >
" —»CB2
TIMER 1
INPUT
LATCH
ATCH ouTPUT BUFFERS
e Hov C: PORT B
PB
COUNTER HIGH | LOW DATA DIR
TIMER 2 PORT B8
REGISTERS

Fig4.3 6522 Block Diagram

88

of the processor interface are the eight bi-directional
data lines. These are connected directly to the
processor data bus and are used to transfer data between
the VIA and the processor. As with any memory, the
processor treats the 6522 as a sixteen byte block of
memory, the direction of data transfer is controlled by
the R/W line, the exact timing of a transfer being
controlled by the 02 clock line. The individual
registers are addressed by the register select lines
connected to the bottom address lines AO - A3. The exact
location of the 6522 within memory space is determined
by decoding some of the address lines and connecting
these to the chip select inputs. The registers of the
6522 will only be accessed if chip select CSl is high
and CS2 low. CSl is connected via an AND gate to address
lines 11 and 6, and CS2 to memory block select line E.
As with all the I/0 chips the 6522 can generate a
processor interrupt by pulling the IRQ line low. This
occurs whenever an internal interrupt flag is set as a
result of an input on one of the peripheral control
lines. :
The peripheral interface consists of two eight line
I/0 ports, port A and port B, together with their
associated control lines. The eight lines of port A can
be individually programmed to act as either inputs or
outputs under control of the data direction register.
Input data is latched onto an internal register under
control of the CAI line and the polarity of any outputs
is controlled by the contents of the output register.
The two port A control lines CAl and CA2 act either as
interrupt inputs or handshake . outputs. In the interrupt
mode each line controls an internal interrupt flag, CAl
also controls the latching of input data on port A.

The eight 1/0 lines of port A plus control line CAl
go to the user port. Control line CA2 is connected to
the character generator and controls the lower
case/graphics mode. Port B is identical to port A except
that the polarity of an output on line PB7 can be
controlled by the interval timers and the second
internal counter can be programmed to count pulses input
on line PB6. The peripheral B control lines CBl and CB2
perform the same functions as CAl and CA2 but in
addition can act as a serial port under control of the
shift register. The lines of port B perform a wide range
of system and I/0 functions thus:

PBO - NDAC input from IEEE port
PB1 - NRFD output to IEEE port
PB2 - ATN output to IEEE port
PB3 - cassette write output

PB4 - cassette #2 motor control
PB5 - Video on control

PB6 - NRFD input from IEEE port
PB7 - DAV input from IEEE port

&9

Control line CB!l is the read input for cassette 2 while
CB2 is the second control line on the wuser port.

Using the Parallel 1/0 ports..

Three registers are directly associated with each of
the eight line peripheral I/0 ports, they are the data
direction register, input register and output register.
The data direction registers DDRA, DDRB, are used to
specify whether a particular line acts as an input or
output. Each bit in the DDR corresponds to a line in the
1/0 port, if the contents of that bit is a 0 then the
corresponding line is an input, if the contents is a |
then it will be an output. If DDRA was loaded with
00001111 by a POKE 59459,15 then lines PAO - PA3 on the
user port would be configured as outputs and PA4 - PA7
as inputs. Each line on the port is connected to a
corresponding bit in both the output and input
registers, each being enabled or disabled by the output
of the data direction register. If an I/O line is
programmed as an output by the contents of the DDR then
the voltage on that line is controlled by the
corresponding bit in the output register, 0 causes the
line to go high, a 1 low. Any data written into output
register bits corresponding to lines programmed as
inputs will have no effect on those lines. As an example
four lines PAO - PA3 of the user port are configured as
outputs with POKE 59459,15 then:-

POKE 59471,255 PAO0-3 go high, PA4-7 are unaffected
or POKE 59471,0 PAO-3 go low, PA4-7 are unaffected
or POKE 59471,3 PAO-1 are high, PA2-3 are low,

PA4-7 are unaffected

In this manner any one or more lines on either of
the peripheral ports can be configured as an output by a
program. Also under program control the voltage on
output lines can be set either high or low. This allows
the programmer colossal flexibility in the use of I1/0,
in one instant a line can be configured as an output in
"the next the same line can be an input.

If a line 1is configured as an input by the data
direction register then the corresponding bit in the
input register will reflect the voltage level on that
line. Reading the input port will transfer the contents
of the input register onto the processor data bus. Since
data is being input to the VIA asynchronously an input
may be changing as the processor is reading it, the
resulting input being erroneous. Synchronisation is
established by wusing handshaking lines. CAl acts not
only as an interrupt imput but at the same time latches

90

16

E840

E841

E842

£843
ES4Y
£845

E846

- E847

E848
E849

E84A

E84B

E84C

E84D

E84E

E84F

DAV NRFD ‘Retrace | Cassette Cassette ATN NFRD NDAC
in) in in #2 motor output out out in PB
DATA DIRECTION REGISTER B (FOR ES840)
DATA DIRECTION REGISTER A (FOR ES84F)
TIMER | LOW
WRITE HIGH
TIMER 1 ' LOW
LATCH HIGH
TIMER 2 LOW
HIGH
SHIFT REGISTER
Tl control‘ One shot | T2 control Shift ist trol PB PA' Latch
PB7 out , Free run| PB6 sense 11t register contro . contro
CB2 (PUP) control in/out CBI1 in CA2 (graphics/lower case) CAl in
Cass #2 in/out polarity
IRQ Tl T2 CBl cassette #2 SR CAl CA2
Status Interrupt Interrupt Interrypt ' : Interrupt Interrupt Interrupt
Enable Tl int T2 int CBl1 int CB2 int SR int CAl int CA2 int
clear/set enable enable enable enable enable enable enable
PARALLEL USER PORT 1/0 (port A)
7 6 5 [/ 3 2 1 0

VIA (6522)

59456

59457

59458

59459
59460

59461

59462

59463

59464
59465

59466

59467
59468

59469

59470

59471

any input data into the input register. The peripheral
ports can be in either a latched or unlatched mode,
depending on the state of the latch enable flags in the
auxiliary control register. In the latched mode, the
enable flag is 0. Data present on the peripheral port
input lines will be latched into the input register when
the CAl or CBIl interrupt flag is set by an active
transition from high to low on the CAl or CBl line. As
long as the CAl or CBIl interrupt flag is set, data on
the peripheral input lines can change without raffecting
data in the latched input register. Data can also be
latched into the register by setting the CAl or CBI
interrupt flag from a program, similarly program
instructions can be used to clear the interrupt flag.

When wusing a handshaking line to control the
latching of data into the input register from an
external device, it is important to make sure that data
on the input lines has stabilised prior to an active
transition on the hankshake line. The input of data on
ports A and B is identical except that whereas in port B
the state of the output lines is always reflected into
the corresponding bit of the input register, in port A
this may not always be the case.

Inputting data from the user port is considerably
more complex than outputting, since it can be done in
two ways. Firstly by reading the input port, secondly by
an interrupt service routine. The method employed
depends primarily on the frequency that the input will
be read by the program, also whether the programmer can
allow the processor to wait for an input. If all the
program requires is the current state of one or more
input lines where the exact timing of that input is not
important, then simply reading the input will suffice.
If however a series of inputs occurring at a particular
time are to be recorded, then the computer must stop and
repeatedly test for an input. When one occurs it is
stored in the relavent location, the processor then
returns to look for another input. Two methods can be
employed to do this, if processor time is not important
then one simply repeatedly scans the input. On each scan
the contents of bit 1 of the interrupt flag register is
tested to see if any data has been latched into the
input register by a transition on CAIl. If it has then
the input register is read, otherwise the processor
repeats the test loop waiting until an input occurs.
Such a program could be written in either Basic or
machine code the choice depending on the frequency of
the inputs. In Basic the maximum {frequency is about
40Hz, in machine code 50KHz. It is often not practical
to make the processor wait for an input, to overcome
this the input scanning routine can be made part of the
interrupt sequence occuring 60 times a second in the
PET. Such a machine code program incorporated in the
interrupt software will search for an input every

92

sixtyth of a second independent of any program or use to
which the machine is being put (with the exception of
Loading and Saving programs or data, and communication
on the IEEE port).

The simplest form of input is to read the contents
of the input register whenever the contents are required
by the program. It may be necessary at a particular
point in a program to know if a switch connected to one
of the input lines is 'on' or 'off'. Where 'on' means
that the line is at a high logic level (+5 volts) and -
'off' is a low level (0 volts). Since the state of the
switch changes infrequently there is no need to latch
the data on the input line into the input register with
the aid of handshaking line CAl. A program to test the
state of a switch connected to line 7 of the input port
could be like this:

100 POKE 59459,127

105 REM SET DDRA: PA7 IS AN INPUT, REST OUTPUTS
110 A=999

120 K=PEEK(59471): REM READ INPUT REGISTER

130 C=128 AND K:REM MASK OFF BITS O TO 6

140 IF A=C THEN 160

145 REM TEST FOR STABILITY OF INPUT DATA BY LOOKING
146 REM AT THE INPUT TWICE AND CHECKING FOR A CHANGE
150 A=C:GOT0120 .

160 IFC=128 THEN PRINT "SWITCH ON":GOTO180

165 REM PRINT RESULT

170 PRINT"SWITCH OFF"

180 END

Note that because the values of bits 0 to 6 of the input
register are unknown these must be masked off by ANDing
the input with binary 10000000 - decimal 128. If the
result of this logical operation is 128 then bit 7 of
the input register is set and therefore the switch is
on, if not then by default the switch is off. The reason
the input is read twice is to make sure that the state
of the input was not changing at the same instant it was
being read. Rather than just reading the current state
of an input the programmer may want the computer to wait
until a specific input occured like a switch being
turned on. This could be done in several ways all of
which involve the processor repeatedly reading the input
register and testing for the required input. Since the
processor is waiting for an input there is no need to
latch the input into the input register with a pulse on
the CA1l line, unless the input is of very short duration
and likely to be missed. If as in the last example a
switch is connected to line 7 of the user port which is
defined by the data direction register as an input then
either one of the following two lines in Basic will
cause the computer to wait for an input.

93

110 IF (PEEK (59471) AND 128) THEN 110
or
100 WAIT 59471,128

In the first example the switch is normally open and the
voltage on the input line floats to a high level. This
line of program causes the processor to halt until the
switch is closed and the input line connected to ground.
In the second program line the reverse is true, the
switch is normally closed and the input connected to
ground. This line causes the processor to wait until the
switch is opened. Both lines of program will scan the
input port looking for the correct input on one or more
lines about a hundred times a second. If the data
expected by the program on the input lines is present
for less than one fiftieth of a second the inputs must
either be latched or the scanning program written in
machine code. The WAIT statement should be used with
care since the processor will wait until the contents of
a specified memory location contains a particular value.
One cannot break out of the Wait statement by pressing
the Stop key on the keyboard, any mistakes in coding or
failure to input the right value will cause the machine
to crash.

The methods of inputting data looked at so far would
be used with sensor devices connected to the computer.
In these applications it is the state of the line, i.e.
either logic high or logic low at a particular time
which is of interest, rather than the changing of the
state of that line with respect to time. Sampling the
input data at regular intervals can be done by using a
timed program loop to repeatedly read the input register
and store each input in a table. As an example: an eight
bit analog to digital converter connected to the user
port. A record of the voltage is to be kept sampled once
every second with a maximum of 100 samples. Each sample
is stored in a dimensioned array, the timing of each
sampling is controlled by wusing the jiffy clock
(variable TI) on the PET.

10 DIMA(100)

100 FORQ=1T0100

110 T=TI

120 IFTI<T+60THEN120
130 K=PEEK(59471)
140 A(Q):K

150 NEXTQ

A large number of data inputs from external devices
fall into this catagory of sampling at regular time
intervals. Intervals in Basic being as small as 1/30
second and in machine code 1/25000 of a second. In some
cases instead of sampling the input register at regular

94

intervals one wants to read and store every data input.
This requires that data on the input lines is latched
into the input registers by a pulse on the CA1l line.
Every time data is latched in by a pulse on this line,
the computer reads and stores that data. As an example,
an ASCII encoded keyboard is connected to the user port,
a key could be pressed at any time, but since the timing
and input character is unknown it is impossible to use a
programmed wait. It is also unlikely that the data will
be present on the input lines for very long and the
duration could be variable. If the duration is short a
scanning program may miss the data, if the duration is
long then the same data will be recorded more than once.
The methods looked at so far are obviously unsuitable
for this purpose. Each data input is accompanied by a
pulse on the CAl line to latch the data into the input
register. Every time there is an active transition on
this line bit 1 in the interrupt flag register is set,
one can test for an input by testing if that flag is
set. The interrupt flag register is located at address
59469 decimal and the setting of this flag can be
detected by one of the following two lines of program
causing the processor to wait for the flag to be set;

100 IF PEEK(59469) AND 2 THEN 110 : GOTOI100
or
100 WAIT 59469,2

The CAl flag is set by an active transition on the CAl
line, this can be either a negative or positive
transition depending on the contents of bit 0 of the
peripheral control register. If set to 0 then a negative
transition sets the flag,- a negative transition is one
where the voltage on the CAl line falls from +5 volts to
ground. A positive transition will set the flag if bit 0
of the PCR s set to l. Which transition is chosen
depends on the external circuitry and can by set be one
of the following two program lines:

100 POKE 59468,PEEK(59468) AND 254
sets bit 0 of PCR to 0 for negative transition.

100 POKE 59468,PEEK(59468) OR 1
sets bit 0 of PCR to 1 for positive transition.

When the correct transition occurs on the CAl line, bit
1 of the interrupt flag register is set, and will remain
set until Data register A with handshake control is read
or written to. This register located at address 59457 is
used instead of the input register at 59471 whenever
inputs are latched in under control of line CAl. Whether
a transition on CAl causes data on the input lines to be
latched or not depends on whether bit 0 of the Auxiliary

control register is set. If the contents of bit 0 of the

95

ACR is a zero then a transition on CAl will not cause
data on the input lines to be latched into the input
register. If the contents of bit 0 of the ACR is | then
data will be latched thus;

100 POKE 59467,PEEK(59467) AND 254
inputs not latched

100 POKE 59467,PEEK(59467) OR 1
inputs latched by a CAl transition

When using CAl as a handshaking line, bit zero of both
the peripheral control register and the auxiliary
control register must be set to the right level before
any inputs take place. The following program is an
~example of how data could be input from an external
keyboard to form a string AS.

10 POKE 59467,PEEK(59467)0R1:REM LATCH INPUT

20 POKE 59468 ,PEEK(59468)AND254

25 REM NEGATIVE TRANSITION ON CA1

30 POKE 59459,0:REM SET PAO-7 AS INPUTS

100 WAIT 59469,2:REM WAIT FOR SETTING OF CA1 FLAG
110 K=PEEK(59457) :REM READ INPUT, RESET CA1 FLAG
120 K$=CHR$(K)

130 A$=A$+K$:REM ADD INPUT TO STRING A$

140 IFK=13 THEN 200:REM END IF CARRIAGE RETURN
150 GOTO100

200 END

Since data is unlikely to come from the keyboard faster
than two or three characters per second this Basic
program would be adequate. The program could even handle
data from a slow speed paper tape reader(the output from
this device is identical to that from a keyboard)
connected to the user port. If the paper tape reader's
speed is gradually increased, data will start to be lost
at a point where the input frequency exceeds the minimum
execution time of the input program loop. If data is to
be input to the PET at high frequency - greater than
about 10 bytes per second - then the input program must
be written in machine code. Using a machine code
subroutine to perform the data input function in a Basic
program poses several problems. Unless data is processed
by the subroutine, the input must be in descrete blocks
of, say 255 bytes, with a delay between each block
sufficient to allow the Basic program to process the
last block of data. Each data block must be stored in an
area unused by Basic from which it can be accessed by
the Basic program with a series of PEEK commands.
Another requirement is that the computer must not be
interrupted during data transfer otherwise data will be
lost. This is very important on the PET since the

96

machine is interrupted sixty times a second as part of
the keyboard scanning routine. The interrupt can be
disabled by having the first instruction of the machine
code subroutine an interrupt disable instruction.
Similarly the last instruction must restore the
machine's capability of being interrupted. The following
is a machine code version of the previous Basic program.
It is designed to be Jlocated in the area used by
cassette #2 input buffer, data input by the program is
stored in the top 256 bytes of RAM.

033A 78 SETUP SEI
AD 4B E8 LDA E84B
09 01 ORA 01
8D 4B E8 STA E84B
AD 4C E8 LDA E8U4C
29 FE AND FE
8D 4C E8 STA E84C
A9 00 LDA O
8D 43 E8 STA E843
A2 00 LDX 00
AD 4D ES8 TESTCA1 LDA E84D
29 02 AND 02
FO FA BEQ TESTCA1
AD 41 E8 READ LDA E841
9D 00 1F STA 1F00,X
E8 INX
DO F1 CLI
60 RTS

This subroutine can be called by the main program with a
SYS 826 command (assuming that the subroutine is located
at decimal 826 upwards). Care must be taken that the
area in which data is stored is not also required by
Basic, this can be prevented by resetting the highest
RAM address pointer. Thus to set aside the top 256
bytes of memory the following two commands must be
executed at the beginning of the Basic program: POKE
52,255 and POKE 53,126. The Basic program can then
access this data and store it as a 255 element array
with the following line:

100 FOR X=1 TO 255:A(X)=PEEK(7936+X):NEXT X

One point to watch when using a subroutine which
disables the scan interrupt is that it also stops the
jiffy clock. This could cause problems if you are using
the clock for any time control purpose. The only cure is
to determine the time taken to run the machine code
subroutine and add this to the contents of the jiffy
clock register in locations 153 and 154 (in old ROMs 517

97

and 518). Machine code subroutines for data inputs are
also useful when precision timing is required,
accuracies in the order of ten microseconds can be
achieved. This is the kind of precision timing required
in the measurement of pulse widths or transient event. A
useful application requiring this kind of input is
measuring the position of a potentionmeter wiper arm,
the potentiometer being part of a position sensing
feedback or a joystick input device. Although this may
seem like an analog to digital conversion problem there
is a far easier solution involving the use of a 555
timer IC. A pulse input to the 555 is output after a
delay, the length of which is proportional to the values
of an R/C network. By varying the resistance value one
can vary the delay time.

+5v
1K ohm %" 20K ohm
4 8
PA | ¢—d 3 7
555 6 1. 0.1mitd
PAO 2 5 T
1
GND

The output or trigger pulse comes from PAO on the user
port, the input pulse goes to PAl. The following program
measures the delay time which is proportional to the
current position of the potentiometer arm.

03EO- COUNT tdelay time
033A 78 START SEI
A9 01 LDA 01
8D 43 E8 STA E8.43
8D U4F E8 STA E84F
A9 00 LAD 00
8D EO 03 STA COUNT
8D U4F E8 STA E8U4F
A9 01 LDA 01
8D UF E8 STA E84F
EE EQ 03 TEST INC COUNT
AD 4F E8 LDA E84F
29 02 AND 02
FO 07 BEQ TEST
58 CLI
60 RTS

98

The program can be run with a SYS(826) and the delay
value obtained with a PEEK 992, note however that the
machine will crash if no input is obtained on PAIL.

It is frequently undesirable to halt the processor
while waiting for an input especially in real time
control .applications. This can be overcome by using the
system interrupts. The best method is to add an extra
subroutine into the keyboard scanning interrupt routine,
the input port will then be automatically scanned sixty
times a second. This is especially useful in
applications 1involving the counting of slow but
unpredictable events such as those occurring in many
biology and psychology experiments. For example the
computer is being used to control the environment of an
animal cage and we want to measure the activity of the
animal. This is done by counting the number of times it
breaks a light beam crossing the cage. The animal may
spend long periods of time asleep and thus not cause any
interruptions of the light beam. It is not therefore
practical to have the processor wait for an input, since
while waiting it is unable to perform its normal
function of controlling the cage environment. The
problem is overcome by scanning the current state of the
photodetector as part of the keyboard scanning routine
initiated sixty times a second by the scan interrupt. In
this example the photodiode is connected to line PAO on
the user port via a Schmitt trigger circuit acting as a
level detector, so that line PAO goes to a high state
only when the light beam is interrupted. The following
program counts the number of times the beam is
interrupted:

03F0 COUNT ttotal number of beam
03F1 COUNT+1 tinterrupts.
03F8 LAST :last input state
033A* A9 00 START LDA O

8D 43 E8 «STA E843

AD UF E8 LDA E84F

29 01 AND 01

FO 16 BEQ EXIT

CD F8 03 CMP LAST

FO 16 BEQ END

8D F8 03 STA LAST

18 CLC

6D FO 03 ADC COUNT

8D FO 03 STA COUNT

A9 00 LDA O

6D F1 03 ADC COUNT+1

8D F1 03 STA COUNT+1

99

A9 00 EXIT LDA O
8D F8 03 STA LAST
UCc 2E Eb6 END JMP E62E

When loaded into memory this program 1is started by
putting the beginning address into the IRQ RAM wvector.
If the subroutine is located at hex 033A and upwards the
following two Basic commands would be used to start the
routine:

in new ROMs - POKE 144,58:POKE 145,3
in old ROMs - POKE 537,58:POKE 538,3

The subroutine will now be automatically executed every
sixtieth of a second without being called from Basic
program. The results are accessible at any time by
PEEKing the contents of COUNT and COUNT+l. When using a
program which is part of the interrupt scan routine care
must be taken to avoid using the interrupt disable
command in another subroutine or disabling the scan
interrupt input PIA 1, both these will stop the program.

In some applications it is desirable to use the CAl
input to generate an interrupt rather than use any of
the methods looked at so far. Using an external
interrupt onto the IRQ line is one of the most difficult
ways of inputting data into the PET and should in my
experience be used only when absolutely necessary. The
reason for this caution is that it is very easy to crash
the system with an external interrupt. Also to use the
IRQ line it is best if all normal system interrupts are
disabled, this means that the keyboard, system clock
(TI), tape decks and IEEE port will not function.

Normally the CAl line does not act as an interrupt
but just latches data from the input lines into the
input register. For CAl to function as an interrupt the
correct flag in the interrupt enable register must be
set. This flag is bit 1 of location 59470 and can be set
with a POKE 59470,131, note- bits in this register can
only be set if bit 7 is also set. Since the interrupt is
generated by the setting of the CAl flag, the active
transition of this line must also be selected by writing
a 0 or 1 into bit 0 of the peripheral control register.
Having performed these two operations any input on the
CAl line will generate a system interrupt. The PET will
stop and jump to an interrupt servicing routine whose
address is pointed to in locations 144 and 145 (in old
ROMs 537 and 538),however without a user generated
routine the PET will crash. The interrupt routine can be
located in any area of protected memory, eg. the second
cassette buffer. The only requirement is that the last
instruction is a jump to the system interrupt subroutine

100

at hex E61B (in old ROMs E67E). Every time there is an
interrupt the wuser written interrupt handling routine
will be performed, this is the source of most problems
encountered in using an external interrupt, the reason
being that interrupts are generated by more than one
device within the PET. The operating system thus has to
be able to determine which device generated the
interrupt, and the user port is not a recognised system
interrupt. A user port interrupt will often cause the
machine to crash, also user interrupt handling routines -
must be able to determine the source of the interrupt.
If this is not done then the 60Hz keyboard scan
interrupt will have the same effect as a user port
interrupt. One way round this problem is to connect the
interrupt line to one of the input lines on the port and
on each interrupt test if that line has changed state.
Alternatively other sources of interrupts can be
disabled, the keyboard scan interrupt is disabled with a
POKE 59411,58 stopping the keyboard being used and
halting the real time clock. The scan interrupt can be
restored to its normal function only by executing the
following command within a program:

100 POKE.59411,61

On dynamic RAM machines there is no need to use the IRQ
line since the NMI interrupt is- available. The NMI
interrupt has a higher priority than the IRQ, meaning
that an interrupt on the NMI line is executed in
preference to one on the IRQ even though they may occur
simultaneously. The NMI line can be accessed on the
memory expansion connector, a processor interrupt will
result from a positive going pulse on this line. The
processor will jump to an interrupt subroutine whose
address is stored in the NMI RAM vector, locations 148
and 149. Unless the subroutine disables the interrupts
they will occur normally and will only affect the
execution of the NMI interrupt subroutine by causing a
delay every sixtyth of a second. Use of the NMI
interrupt is highly recommended in any application
involving asynchronous inputs via the wuser port.

Handshaking on the 6522.

Handshaking is a term used to describe methods of
ensuring the synchronisation of input and output pulses
between the computer and an external device. There are
two handshaking lines on the user port. The CAl line
functions as an input only, acting either as an
interrupt to the PET system or latching data currently
on the input lines into the input register. The CAl line
is a suitable handshaking line when data is coming from
an external source into the PET. When the PET is the
originator of data then it must also have an output

101

handshaking line, for this purpose one. can use the CB2
line. The CB2 line can function in either an input or
output mode, the mode being determined by the contents
of bit 7 of the peripheral control register. If bit 7 is
a zero then CB2 acts as an input, if a one then as an
output. There are four different input modes and four
different output modes, these are determined by the
contents of bits 5 and 6 of the PCR. The CB2 line can
also act in a free running or serial output mode under
control of the 6522 internal shift register.
Only the manual output modes and the free running
serial modes are of practical use on the PET. The
remaining two modes are concerned with the setting of
the CB2 line by writing to, or reading the B output
register. They are of little use since we want to
handshake outputs on port A, the user port. The simplest
method of outputting on the CB2 line is to toggle it off
and on under manual or program control. Before doing
this the shift register must be disabled by setting bits
2, 3 and 4 of the Auxiliary control register to =zero.
This can be done from Basic with :

POKE 59467, PEEK (59467) AND 227

If bit 5 of the PCR is set to zero then the CB2 line is
low and if set to one then CB2 is high, bits 6 and 7 of
the PCR are set to one in both modes. To set CB2 high
from Basic the following command can be wused:

POKE 59468, PEEK(59468) AND 31 OR 224
CB2 can be set low with
POKE 59468, PEEK(59468) AND 31 OR 192

To handshake a byte of data from the eight user port
lines to an external device the data must be loaded into
the output register. Then the CB2 line must change
state, from say low to high, signalling to the external
device that data is present. If the other device is
another PET then CB2 could be connected to the CAl line
of the second PET. A transition on the CB2 line would
latch the data on the parallel lines into the second
PETs input register. This principle applies to any
external device wusing a 6522 or PIA type chip.
The following Basic program will do this and since the
output 1is parallel fairly high data transmission rates
can be achieved even with a basic program.

100 POKE59459,255 :REM SET DDR 0-7 AS OUTPUTS

110 POKE59467,PEEK(59467)AND227 :REM DISABLE SHIFT REG
120 POKE59468,PEEK(59468)AND310R192 :REM SET CB2 LOW
130 POKE 59471,X :REM WRITE VARIABLE X TO ORA

140 POKE 59468,PEEK(59468)AND310R224 :REM SET CB2 HIGH

102

Start

Set PCR bit 5to1

Disable Shift reg

by clearing ACR bits 2,34

Load Shift reg

with hex FO

Load T2 with Delay

Clear ACR bit 3 - set

bits 2,4 - start shift

I's

No

shift done?

Get new data Fig4.5 Flow diagram of

Music program

No

Stop

103

The 6522 has an internal parallel input serial
output shift register. Data is loaded into the shift
register in the same way that it would be loaded into
any other eight bit register. The data is then shifted
out onto the CB2 line under control of either timer 2,
the system clock or an external clock. Of the four
serial output modes the free running mode is the
simplest, and the only mode easily controlied from
Basic. In this mode the shift register acts in a
cyclical manner with the output from bit eight being fed
back o bit zero. Tre rate at which data is shifted
out onto the CB2 line is determined by the contents of
timer 7. This timer is a presettable counter, counting
the number of clock pulses. On each clock pulse the
counter is decremented, if the contents is zero a pulse
" is output to the shift register thereby shifting the
contents one bit to the right. At the same time the
timer is reset to its initial value and the process
repeated. In this way a repeated pattern of eight bits
can be <hifted out onto the CB2 line at a particular
frequency and totally independent of processor control.
The output will continue until either the timer or shift
register are changed, or disabled. By loading the shift
register with 00001111 and the timer with 255 a square
wave can be output on CB2 with a frequency of #90Hz. The
highest frequency is obtained by setting the shift
register to 01010101 and the timer to | giving a square
wave onutput of 500KHz. This free running output on the
CB2 line is a wuseful source of clock pulses for an
external device, ensuring full synchronisation with the
PET timing. On the more entertaining level this mode can
be used to create a simple music generator, by varying
the output frequency on CB2. The following is a machine
code program to do this:

3 SYSTEM LOCATIONS

ACR = $E8BLB
SR = $E8.4A
TIM2 = $E8u8
;s VARTIABLES
1900 YTEMP :temporary Y register
1901 TEMPO tdelay count for tempo
1910 A9 10 SETUP LDA #10
8D 4B E8 STA ACR
A9 FO LDA #FO
8D 4A E8 STA sr
AO 00 LDY #0
191C B9 00 E8 GETNOTE LDA NOTE,Y
8D 48 E8 STA TIM2
FO 20 BEQ END
c8 INY
1925 B9 00 1A GETDUR LDA DUR,Y
c8 INY
1929 AA DUR TAX
8C 00 19 STY YTEMP

104

192D A9 03 LOOP LDA #03 tadjust for tempo

8D 01 19 STA TEMPO
1932 AO FB LOOP1 LDY #FB
1934 88 LOOP2 DEY

DO FD BNE LOOP2

CE 01 19 DEC TEMPO

DO F6 BNE LOOP1

CA DEX

DO EE BNE LOOP
193F AC 00 19 RESTORE LDY YTEMP

DO D8 BNE GETNOTE
1944 A9 00 END LDA #0

8D 4B E8- STA ACR

8D 4A E8 STA SR

8D 48 E8 STA TIM2

60 RTS
1A00 ;START OF SCORE TABLE

NOTE1,DUR1,NOTE2,DUR2,NOTE3..ETC

The circuit used to generate the sound is very simple
consisting of a single transistor amplifier and a small
8 ohm speaker.

+5v

CB2 . AN N Any PNP transistor

8 ohm speaker

v
™~

..||!l

The shift register has been designed to allow the
CB2 line to act as a synchronous serial communications
port. This is the function of the remaining three shift
register output modes.

The first mode 1is similar to the free running mode,
data being shifted out under control of timer 2. Instead
of recirculating indefinately only eight shift pulses
are generated, then the shift register is automatically
disabled. At the same time that the shift register is
disabled the shift register interrupt flag is set. The
CB2 line then goes to a state determined by the contents

105

of bit 5 of the PCR. In any practical application this
output mode must be controlled from a machine code
program. The flow diagram for such a program is shown in
Figure 5. This outputs data in a serial format, if the
timing and formatting is correct this could be used by
an external device such as a terminal. An interesting
feature of this mode is that the shift pulses generated
by timer 2 are output on line CBIl, the cassette read
line. It can be accessed by the user from the top
connections of the user port or from the second cassette
port (note that this is the reason why the cassette will
not function in any of the CB2 output modes). This is a
useful feature since it allows serial data output on the
CB2 line to be synchronised with the system clock
thereby opening up a whole range of possible low cost
I1/0 configurations. The remaining two shift register
output modes on the CB2 line are very similar except
that the shift timing is derived from different sources.
One comes from the 1MHz system clock, the other from an
external clock connected to the CBIl line. All four shift
register output modes are controlled by the contents of
bits 2, 3 and 4 of the Auxiliary control
register-ACR-which can be loaded by ANDing the contents
with decimal 227 and then ORing it with the required ACR
value. In the free running mode, which is the only mode
that can be realistically controlled from Basic, the ACR
can be set with the command:

POKE 59467,PEEK(59467) AND 227 OR 16

1f the other ACR functions are not used POKE 59467,16

will suffice - the following is a summary of the four
modes:
ACR bits Mode OR value decimal
4 3 2
1 0 O Free running under control of T2 16
1 0 1 Shift out 8 bits; shift rate controlled 20
. by T2 shift pulses generated on CBI 20
1 1 0 Shift out at system clock rate 24
1 1 1 Shift out under control of an external
clock input on CBlI 28

The CB2 line can also act as an input, there are four
input modes under control of PCR bits 5, 6 and 7. With
the shift register disabled it is however only practical
to use two of these modes on the PET. One mode detects a
negative transition on the CB2 line, the other a
positive transition. An input sets bit 3 of the
Interrupt flag register. An input on the CB2 line could
be used as a system interrupt by setting bit 3 of the
Interrupt enable register. This will however encounter
the same problems as an interrupt on the CAl line and is
thus probably best avoided. As in the output mode the

106

shift register can be disabled by setting bits 2, 3 and
4 of the Auxiliary control register to zero. This can be
done with the Basic command: ’

POKE 59467, PEEK(59467) AND 227

To detect an input with a negative transition one must
first set bits 5, 6 and 7 of the PCR to zero with the
command:

POKE 59468, PEEK(59468) AND 31

To detect a positive -transition bit 6 of the PCR is set
to one and bits 5 and 7 set to zero with the command:

POKE 59468, PEEK(59468) AND 31 OR 64

The result of either of these two transitions can be
detected by testing if bit 3 of the Interrupt flag
register is set with one of the following commands:

100 IF PEEK (59469) AND 8 THEN 110
110
or 100 WAIT 59469,8

Having detected a transition the interrupt flag must be
reset before another transition can be detected. The
reset is done by reading the port B 1/0 register (note
care should be taken not to write to this register) this
can be done with the command: :

Q = PEEK (59456)

The CB2 line can also be used as a serial input
using the shift register to convert the stream of pulses
into eight bit blocks of data. There are three modes of
serial input each wusing a different source of shift
pulses. As with serial output these sources are: timer
2, the,system clock, and an external clock input on CBI.
Except for the last mode the shift pulses are output on
the CBIl line. In the timer 2 mode the shifting rate is
controlled by the contents of T2. The time between
transitions on the output clock on CBl is a function of
the contents of T2 and the IMHz system clock. In the
system clock input mode data is shifted onto the shift
register at half the system clock rate or 500KHz. The
shifting operation in both modes is initiated by either
reading or writing the shift register in location 59466.
The data is shifted into the shift register on the
trailing edge of each shift pulse. The first bit of the
input data being shifted into bit zero is the most
significant bit. Also data transitions should occur
before the leading edge of the shift pulse. After eight
shift pulses the shift register interrupt flag, bit 2 of

107

the interrupt flag register, will be set and the output
clock pulses on CBl will stop. To shift data in under
control of an external clock CBl becomes an input and
data is shifted in during the first system clock cycle
following the leading edge of the CBl shift pulse. As
with the other serial modes data is shifted into bit 0
of the shift register first. Unlike the other modes the
shift register is not disabled, though the interrupt
flag is set, after 8 shift pulses. The interrupt flag
can be reset by reading the shift register. When using
an external clock data transfer rates should thus be
kept fairly low. All shift register input modes are best
controlled by a machine code program unless data rates
are very slow. These modes are controlled by bits 2, 3
and 4 of the Auxiliary control register and can be
summarised as follows:

ACR bits Mode

4 3 2

0 0 1 Shift in under control of timer 2, shift pulses
output on CBl.

0 1 0 Shift in at system clock rate, shift pulses output
on CBI.

0 1 1 Shift in under control of external input on CBI.

The serial 1/0 capability of the CB2 and CBl lines
can be used as the basis for a range of interesting and
useful 1/0 configurations both between PETs and between
PET and peripheral devices. One application is to use
these lines for data and program communication between
two machines. To do this the corresponding CBl and CB2
lines are connected and also one of the user port lines,
say, PAO on each machine. The CB2 line is used as a
bidirectional data communications line while the CBI
line is the clock line used to synchronise data transfer
betwen the two computers. The line between the two PAOs
is the "busy" line and is used to signal to the
transmitting machine that the receiving machine is ready
for data. input.

CB2 DATA CB2
PET 1 CBl CLOCK CBl1 PET 2
USER PORT USER PORT
PAO BUSY PAO

108

The software required to control such a communications
system is not complex and could if one were prepared to
accept a very slow and inefficient system be written in
Basic. This software relies on two rules, one for the
transmitter and one for the receiver. The rule for the
transmitter is that data output is under control of
timer 2 and does not begin transmitting data until the
busy line goes "low". The rule for the receiver is that
data 1is shifted into the receiving machine under the
control of an extenal clock. This is derived from the
CB1l shift pulse output on the transmitting machine,
thereby ensuring that the data is fully synchronised.
The "busy" line should be kept "high" until th receiving
machine is ready to accept an input. This fairly simple
method of communicating between two machines could
probably be expanded to allow the construction of small
networks of PETs by using a separate "busy" line for
each computer. The software for either two machines
communications or network communications is best written
in machine code and could be called as a subroutine from
a Basic progam when required. Or it could be
incorporated into the scan interrupt routine for
automatic operation. More ambitiously instructions could
be added to Basic by calling the machine code subroutine
from a section of code added to the CHARGET subroutine
in page zero of memory.

The serial 1/0 capability of the CB2 line and its

accompanying clock pulses on CBl can be used to greatly
expand the number of I/0 lines available on the user
port with only the minimum of extra circuitry. This
technique 1is especially useful in applications requiring
a great many single line inputs and outputs. For example
input switches and status lamps, where data inputs or
outputs are unlikely to change very frequently. The
method relies on inputting or outputting all data in a
serial form via the CB2 line. This data 1is then
converted to or from parallel form by an eight bit shift
register, data being shifted in or out under control of
clock pulses from CBl. The shift enable input is derived
- from one of the user port lines, allowing up to eight
blocks of shift registers where each block has either an
input or an output function. With one shift register per
block this gives a maximum of 64 I/0 lines. A suitable
integrated circuit for outputs would be a 74164 and for
inputs a 74166. The number of input or output lines can
be increased by chaining two or more shift registers
together under control of a single enable line. The
serial input of one register being connected to the
serial output or last parallel output line of the next
register.
With this technique the software required to input and
output data is very simple and easily written in Basic.
The following is a Basic program to output a variable X
and the circuit used by the program:

109

A B cC D E F G H

PET

LWL

74166 S
CcB2 ! . .
Parallel in serial out o
clock s/t . mhlh—__—-ll"
7 15
CB1
PAO
PA1
8]2
clock b
74164
! cir .i—_—_. 5

Serial 1n paraliel out

TTTTTTT

A B C D E F G H

10 REM program to output variable X
100 POKE 59459,2 : REM set DDR for PA1 as an output
110 POKE 59471,2 : REM output chip enable on PA1
120 POKE 59464,64 : REM set timer 2, value optional
130 POKE 59467,PEEK(59467)AND 227 OR 20 : REM set ACR for
SR output under T2
140 POKE 59466,X : REM write variable into shift register

10 REM program to input variable X
100 POKE 59459,1 : REM set DDR for PAO as an output

110 POKE 59471,1 : REM output chip enable on PAO

110

120 POKE 59467,PEEK(59467)AND227 OR 4 : REM set ACR for

input under T2
REM wait for SR interrupt flag set
REM read contents of SR

130 WAIT 59469,4"
140 X=PEEK(59466)

Obviously one need not use these particular user port
lines, any line will do, in the two examples program
lines 100 and 110 must be altered accordingly. Line 100
sets the data direction register for all the input and
output enable lines and need only be done once at the
beginning of the program.

PET - KIM Data Handshaking Via The User Port.

The following application is an example of how the
user port can be used to interface the PET to another
computer, in this case a Kim 1. The application involves
transferring blocks of 128 bytes of data from the Kim to
the PET once every ten seconds, with the transfer
lasting about 100 milliseconds. The eight lines of the
User port are connected, together with the two
handshaking lines CAl and CB2, to ten of the Kim 1/0
port lines. A further I/0 port line on the Kim is used
to generate an interrupt request signal and is connected
to the IRQ line on the PET memory expansion connector.

1 CAl PB2
PAO-7 Data lines PAO-7 ||
- KIM-1
User Port ¢ K D
CB?2 PB
PET M Data request } Programmable
) 1/0 lines
Expansion 1} [IRQ PBQ
Connector | ’

The interrupt is used to ensure that the PET
services the Kim request to transfer data as rapidly as
possible, thereby ensuring the minimum amount of time
spent by either processor waiting for the other. The
flow diagram of the handshaking routines of both
processors is shown in Figure #.6. To ensure that the
routine is executed as a result of an interrupt
generated by the Kim, and not by the PET system
interrupts, the internal vector pointers must first be
reset. This is done by a small subroutine - INTDIS -
which is called at the beginning of any Basic control
program by a SYS(839), the vectors can be reset by
another subroutine - INTEN - called by SYS(826).

The subroutine INTDIS also performs the function of
resetting the top of memory pointers to leave a 128 byte
block of unused memory space at the top of memory for
data storage. The program 1is fairly short and can be

111

KIM PET

Con D oD

Contfigure PiA Detect IRQ

Piace $ FD on

data lines Is $ FD

on data
?

lines

Pul! 1RQ tlow Yes

Send 'Data request

high on CB2

Data request

on PB1*%

Data vatid

on CAl1 ?

Puil IRQ high

Set Data request

low on CB2
‘
N Data request Read data
on PB1? set CAl low
>
Yes

Store data in

memory
Send new data .

i

Set Data valid

128 bytes

received ?

high on PB2

128 bytes

Set Finished flag
sent ?

(metwen)

Cﬂetuln j

112 Figd4.6 Kim-PET Data Handshaking

033A 78
A9

0347

035C

038F

8D
A9
8D
60
78
A9
8D
A9
8D
A9
85
A9
85
58
60
AD
C9
DO
AO
A9
0D
8D
A9
2D
FO
A9
2D
8D
AD
99
c8
Cco

85
19
E6
1A

5C
19

1A
TF
86
1F
87

41
FD

00
E1
4c
hc
02
4p
F9
DF

4
41
80

80
DE
FF
8F
85

02

02

02
02

E8

E8
E8

E8

E8

E8
1F

03
E6

INTEN

DATAIN

DATA1

DATA?2

END

SEI

LDA $85
STA $0219
LDA $E6
STA $021A
RTS

SEI

LDA $5C
STA $0219
LDA $03
STA $021A
LDA $7F
STA,z $86
LDA $1F
STA Z $87
CLI

RTS

LDA $E8U1
CMP $FD
BNE END
LDY $0
LDA $E1
ORA $E8U4C
STA $E8UC
LDA $02
AND $E84D
BEQ DATA1
LDA $DF
AND $E8BUC
STA $E8BUC
LDA $E8U41

STA,Y $1F80:

INY

CPY $80
BNE DATA1
LDA $FF
STA $038F
JMP $E685

END FLAG POINTER

tre-enable system interrupt
:low order byte of vector

thigh order byte’ of vector

tdisable system interrupt
:low order byte of vector

thigh order byte of vector

:low order top of memory
:pointer location 134
thigh order top of memory
tpointer location 135

:data handshake routine
:start read data lines
:if not $ FD goto END
:set index to zero

:if FD on data lines set
:CB2-data request-high

twait for data valid on CA1
:if not goto DATA1

:pull CB2 low and remove
:data request

:input data and store in top
of memory using index pointer
¢tincrement index
:is index =
:goto DATA1
:set flag to 255 and store
:in location 911

:jump back to Basie

128 if not then

113

Summary of the Registers in the 6522.

Parallel port PB
59456 Hex E840

7 6 5 4 3 2 1 0
DAV | NRFD | RETRACE | Cass #2 | Cassette | ATN | NRFD | NDAC
in in in | Motor Output out out oin

This register contains the contents of the input and
output lines of port B of the 6522. It can be read but
should not be written to with the exception of bit four
which turns the motor of cassette 2 off and on. Reading
this register causes the CB2 interrupt flag to be reset.

Parallel port PA with handshake control
59457 Hex E841

7 6 5 4 3 2 1 0

User Definable 1/0 Lines

This is one of two registers which contain the contents
of the 1input and output lines of port A. The two
registers are identical except that this register has
control over the handshake lines. When data is input
using the CAl line to latch data into the 1/0 register,
the fact that data has been input is signalled by the
setting of the CAl interrupt flag. This flag is cleared
by reading address 59457.

Data direction register for port B
59458 Hex E842

This register should not be used on the PET.

Data direction register for port A.
59459 Hex E843

This register controls each of the eight lines on port A
and determines whether they are acting as inputs or as
outputs. A one in any of the eight bits of this register
sets the corresponding line into the output mode and a
zero puts it into the input mode.

Timer 1.
lower order byte 59460 Hex E844
higher order byte 59461 Hex E845

114

This sixteen bit register is one of two internal timers
on the 6522. However this is of no, (or limited) use on
the PET since it generates timed interrupts and/or
output on line 7 of port B which is the DAV input line.

Timer 1| latch.
lower order byte 59462 Hex E846
higher order byte 59463 Hex E847

This sixteen bit lach is used to store data which will
later be loaded into the counter of timer 1, since this
timer is not used on the PET the latch is of little use.

Timer 2.
lower order byte 59464 Hex E848
higher order byte 59465 Hex E849

This is the second of the two internal timers on the
6522 and as with timer | the majority of its functions
are not usable on the PET. The lower order eight bits of
timer 2 can be used to generate shift pulses for the
internal shift register thus allowing variable speed
serial I/0 on the CB2 line. The timer can be loaded by
POKEing a value between 1 and 255 into location 59464.

Shift regisfer
59466 Hex E84A

The internal eight bit shift register is a very useful
feature of the 6522 since it allows serial data transfer
into and out of the CB2 line. This is controlled by
either timer 2, the system clock or an external clock.
The mode of operation of the shift register is
controlled by the contents of bits 2, 3 and 4 of the
Auxiliary control register. In some modes the completion
of the shift operation is signalled by the setting of
the shift register interrupt flag in bit 2 of the IFR.
The shift register may be loaded by POKEing the data
into location 59466.

Auxiliary control register
59467 Hex E84B

7 6 5 4 3 2 1 0

Timer | control | Timer 2 | Shift Register mode | Port B | Port A
control control latch latch
enable enable

The function of the auxiliary control register is to

115

control the mode of operation of the other 6522
registers. However, on the PET it is only practial to
control two of these registers, the shift register and
the port A latch enable. Bit 0 is the port A latch
enable which when set to | allows data to be latched
into the input register by a pulse on the CAl line. When
set to zero the input register will directly reflect the
data on the input lines. A similar function is performed
by bit 1 to control the latching of data into port B,
but the contents of this bit should not be altered. Bits
2, 3 and 4 control the operation mode of the shift
register. There are eight modes of operation and they
are best summarised as follows:

ACR bits 4 3 2 Shift register mode SR interrupt flag
0 0O Shift register disabled = ccccieniiniiininin.
0 0 1 Shift in under control of T2 set after 8 shifts
01 0 Shift in under system clock set after 8 shifts
0 1 1 Shift in under control of set after & shifts
external clock pulse
1 0 0 Free running output at rate .ccccceccereccenneieecens

determined by T2

1 0 1 Shift out under control of T2 set after 8 shifts
1 1 0 Shift out under system clock set after 8 shifts
1 1 1 Shift out under control of set after 8 shifts

external clock pulse

Bits 5, 6 and 7 control the functioning of the two
timers neither of which can be used on the PET. The
auxiliary control register can be loaded from Basic by
using the following command format --- POKE 59467,
PEEK(59467) AND ... OR ... where the dots are variables,
the value of which depends on the bits being changed.

Thus if changing the shift register to free running mode
it would be AND 227 OR 16.

Peripheral control register
59468 Hex E84C

7 6 5 4 3 2 1 q

CB2 control CBl CA2 control CAl
control (graphics / lower case) | control

The peripheral control register controls the functioning
of the four handshaking lines on the 6522. All four
lines can be controlled by the user on the PET. Bit zero
selects which active transition of the CAl line sets the
CAl interrupt flag. A one in this bit sets the flag on a
positive transition (low to high) and a zero sets the
flag on a negative transition (high to low). Bit 4 of
the PCR performs the same function for the CBl line,
this is the read line for cassette 2 but can be used as

116

an 1/0 line if this cassette is not used. CA2 is
connected to the character generator and controls
whether the display is in the graphics or lower case
mode, the display mode can be changed by toggling this
line. Though the CA2 line can funtion as both an input
and an output, on the PET it can only function in the
manual output mode. The display can be put in the lower
case mode with a POKE 59468,14 and in the graphics mode
with a POKE 59468,12. This is the norma! method used
where the contents of all the other bits in the PCR are
zero if however the CAl, CBl or CB2 controls are set
then they must be masked out with an AND 225, thus to
put the display in lower case becomes POKE 59468,
PEEK(59468) AND 225 OR 14. The CB2 line is totally under
user control and can act as either an input or an
output. There are eight modes of operation, four of them
can be used on the PET, they can be summarised as
follows:

PCR bits CB2 operation mode

7 6 5

0 0 O Input mode sets CB2 interrupt flag on negative transition
flag, reset by reading port B register.

0 1 0 Input mode, sets CB2 interrupt flag on positive transition
flag , reset by reading port B register.

1 1 0 Manual output mode, CB2 is held low.

1 1 1 Manual output mode, CB2 is held high.

Interrupt flag register
59469 Hex E84D

7 6 5 A 3 2] 0
IRO status | TL | T2 1 cB1 [cB2 [SR | cAl [cA2
interrupt flags

The four handshaking lines, the shift register and the
two timers are all able to generate a system interrupt
by setting a bit in interrupt flag register. Providing
the corresponding bit in the interrupt enable register
is set this will cause an interrupt to be generated.
Reading the interrupt flag register will then indicate
which register or handshake line initiated the
interrupt. The setting of a particular flag will also
show when an operation has been completed or a
particular event has occurred. As a PET user the most
useful flags are the CB2, SR, and CAl, the use of these
flags has been dealt with in the review of the relavent
registers. Note that bit 7 of this register is not an
interrupt flag but shows the current status of the IRQ
output to the processor it is only set by a system
interrupt it can only be cleared by clearing all the
flags in the register.

117

Interrupt enable register
59470 Hex ES84E

When a bit in this register is set and the corresponding
bit in the interrupt flag register is also set, then and
only then will a system interrupt be generated. In the
PET this register should not be used since enabling any
of the interrupts will invariably cause a system crash.

Parallel port PA
59471 Hex E84F

7 6 5 4 3 2 | 0

User Definable - I/O Lines

This is the second of the two registers containing the
contents of the input and output lines of port A. This
register has no control over the handshaking lines. The
d rection of the data transfer in this port s
controlled as in the other port A register by the
contents of Data direction register A. Data may be
directly read or written into this register using PEEK
or POKE commands.

118

THE IEEE PORT AND 6520s

A total of three peripheral I1/0 chips are used on
the PET, the 6522 which we looked at in Chapter 4 and
two 6520 PIAs. The primary function of one PIA being to
control the keyboad, the other the IEEE 488 port. The
6520 is a simpler version of the 6522, like that chip it
has two eight bit bi-directional 1/0 ports with
handshaking lines. It has six internal registers (three
for each 1/0 port) though only four can be directly
addressed by the processor at any one time. The internal
architecture of this chip is shown in Figure 5.1. The
registers are two peripheral registers, two data
direction registers and two control registers. Registers
are selected by address line 0 and 1, together with bit
2 in the control register thus:

Address lines CRA bit 2 CRB bit 2 Register selected
Al A0
0 0 1 X Peripheral register A
0 0 0 X Data direction register A
0 t X X Control register A
| 0 X | Peripheral register B
1 0 X 0 Data direction register B
1 1 X X Control register B

Each 1/0 line on the 6520 can be independently
programmed as either input or output by setting the
corresponding bit in the data direction register to zero
for an input and one for output. The data direction
register is first enabled by writing a zero into bit 2
of the control register for the port. Having set the
data direction register this bit must be reset to a one
before the I/0 port can be read or written to. It is not
advisable to alter the data direction of the I/0 lines
on either 6520 in the PET.

The two control registers are the most important
registers of the 6520 allowing the processor to control
the operation of the four peripheral control lines CAl,
CA2, CBl and CB2, as well as controlling the generation
of interrupts and enabling the data direction register.
The two control registers, one for each port are

119

120

IRQO A=
INTERRUPT je—— CA}
CONTROL STATUS A lgeep CA2
: REGISTER A —
D0 «———p DATA
o1 DIREC TION
REGISTER A
D2 a— <i —
D3 ‘_T DATA BUS
D4 *—»p BUFFERS
D5 «—p P O
[P — > |
D7 < | —
BUFFERS |j¢—» 3
PA ———
ouTPUT 4
p REGISTER A le——» 5
— 6
—» 7
BUS INPUT |___J
REGISTER [
Je—— 0o
f— 1
o e o 2
ouTPUT N
;> REGISTER B BUFFERS {é—— 3
P B —— 4
CSO -——pt y 5
CS 1 it ¢
cs2 —>» ‘ 7
N — CHIP
ACCESS
RS | ——M
CONTROL
_—
R/W ——P _ DATA
ENABLE —— DIRECTION
REGISTER B
RESET ——»
CONTROL 1
REGISTER B INTERRUPT [¢—— CBI
e ! STATUS B j&—pCB2
IRQ B -
Fig 5.1 6520 Block Diagram

PORT A

PORT B

identical and have the following format:

7 6 5 4 3 2 1 0
IRQ1 | IRQ 2 CA2 or CB2 DDRA or B CAl or CBI
A orB|l| AorB control access contro!

Bit 2 is used to select whether the processor addresses
the peripheral 1/0 register or the Data direction
register, both registers being located at the same
processor address. The interrupt flags in bits 6 and 7
are set by an active transition on the interrupt or
peripheral control lines (when programmed as inputs).
These flags can not be set by the processor and can be
reset only by reading the relavent I1/0 register.

The CAl and CBl lines act as interrupt inputs only,
an active transition on one of these lines will set bit
7 of the relevent control register to logic 1. The
transition is controlled by bit 1 of the control
register, if bit 1 is set to a logic 0 then the
interrupt flag is set on a negative transition, if bit 1
is set to | then a positive transition will set the
flag. The setting of the interrupt flag will cause a
system interrupt to be generated on the IRQ line only if
bit zero of the control register is set to a logic 1.
The IRQ output can be disabled by setting this bit to
logic 0. Note that great care should be taken when using
system interrupt on the PET, polling techniques being
always used in preference.

The CA2 and CB2 lines can act as either totally
independent interrupt inputs or as peripheral control
outputs, the mode of operation being determined by bit 5
of the port's control register. If bit 5 is set to 0
then CA2 and CB2 are in the input mode, set to 1 they
are in the output mode. In the input mode an active
transition on one of these lines will set the interrupt
flag in bit 6 of the control register. The active
transition is selected by bit 4 of the control register,
a zero will set the flag on a negative transition, a one
will set it on a positive transition. An input on either
CA2 or CB2 will result in a system interrupt being
generated on the IRO line unless the interrupts are
disabled by setting bit 3 of the control register to
zero. If either interrupt flags are set when the
relevent bit of control register (either bit 0 or 3) has
disabled the interrupt, then enabling the interrupt will
immediately cause the IRQ lines to go low and generate
an interrupt.

In the output mode CA2 and CB2Z are slightly
different in their function and must therefore be looked
at separately. The CA2 line operates in the output mode
when bit 5 of the control register is set to 1. There
are three output modes for this line, they are

12]

44

E810

E811

E&12

E813

E820

E821

E822

E823

Fig 5.2 SYSTEM

/0 MEMORY MAP

PIA 1 (6520)
Diagnostic IEEE Cassette Sense
' KEYBOARD ROW SELECT PA
Sense EQI in #2 . #1 . .
1§ Y T
Tape #1 Screen blank output (old 8K only) DDRA Cassette #1
Input flag IEEE EOI out CA2 Access Read control CAl
} 1 . . L
T 4 ¥
KEYBOARD ROW INPUT
t } +
Retrace Cassette {#1 motor output DDRB Retrace interrupt
I flag CB2 Access Control CBl
PIA 2 (6520)
1 1 1 I
JEEE INPUT
: = ’
ATN IEEE NDAC DDRA IEEE ATN in
I flag . out CA2 Access Control CAl
[1 1
IEEE OUTPUT
—+ t +
SRQ IEEE DAV DDRB IEEE SRQ in
1 flag . out CB2 Access - Control CBl1
1 1 (|

59408

59409

59410

59411

59424

59425

59426

59427

determined by the contents of bits 3 and 4 of the
control register. By setting bit 4 to 1, CA2 can be
manually toggeled by clearing or setting bit 3. Putting
a zero into bit 3 will set CA2 low, a one in bit 3 will
set CAZ2 high. The second output mode is a pulse output
mode in which the CA2 line goes low for one clock cycle
after a read peripheral register A operation. This mode
can be initiated by setting bit 4% of the control
register to O and bit 3 to l. The pulse mode can be used
to indicate to a peripheral device that data has been
read or used to clock a shift register or c¢ounter
thereby allowing sequential data input on the 1/0 lines.
In the third and last mode the CA2 line is set high by
an active transition on the CAl input setting the CAl
interrupt flag. It can be set low again by the processor
reading the peripheral A 1/0 register. This handshaking
mode allows the CAZ2Z line to signal to the peripheral
device that it is ready to accept new data. The
handshake on read mode can be initiated by setting both
bits 3 and 4 of the control register to zero. The output
modes of the CB2 line differ in that -the pulse output
mode occurs when the processor writes data to the
peripheral 1/0 register B, similarly in the handshaking
mode the CB2 line goes low when the processor writes to
peripheral 1/0 register B. :

The operation of the 6520 is reletivly simple
compared to the 6522, it has many useful features such
as its control of the handshaking lines. Of the two 6520
PIA chips in the PET, the f{first controls the keyboard
and the majority of the lines to cassette 1 as well as
the diagnostic input and the retrace interrupt. The
second 6520 is devoted entirely to the IEEE 488 1/0
port. The location of these two PIA chips and the
function of each bit is shown in Figure 5.2.

The Keyboard.

The keyboard on the PET has 73 keys, 64 print
character keys plus 9 function keys(like cursor control
and reverse). The keyboard is scanned 60 times a second
by the processor via a 6520 PIA to check for a key
depression. All eight lines on the B port of 6520 number
1 are configured as inputs while lines 0 to 3 of port A
are configured as outputs and connected to a four line
to ten line decoder. The keyboard is organised in 2 x 5
blocks which are repeated eight times across the
keyboard as in Figure 5.3. thus an input line is
connected to all the keys in each 2 x 5 block. Key
number one in all eight blocks are connected together as
are the eight number two keys and so on for all ten keys
in each block (note that seven keys are not
implemented). The keyboard can be visualised as an eight
by ten matrix with eight row lines being connected to
the eight inputs on port B and the ten column lines

123

rBo

|

P81

r82 P83 raq P8BS

PB6

»B?

T

Keyboard Decode

L
(MM E)[) (@M A])(e)
EEEREEEREEE
EEEEEEEEEE)(,
EEEEEEEHEEL
EEEEEC]EEEE)

[o[a]

(23]

(=)

(a)(s)

(5]

(5)(7]

&

(e){=)(=])(s]

PIA Data register addresses PA =59408 PB =59410

Fig 5.3 PET keyboard layout showing column and row connections.

Numeric
overprint

is content
of PAO-PA3
when key

is scanned.

124

connected to the ten line decoder output from bits 0 to
3 of port A.

By pressing a key, contact is made between one of
the row lines and one of the column lines. If the column
line is at a logic 1 then the row line on which the
depressed key lies will also be at a logic 1, setting
one of the input lines of port B high. If all the column
lines were high then a high on one of the row inputs
could come from one or all of ten keys being pressed. By
having only one column line high at a time an input can
come from the depression of only one specific key. The
ten column lines are thus scanned by sequentially
turning each line on and testing for an input on port B
input lines. If an input is found the current column
number is recorded together with the input line number
for decoding by the operating system. In practice the
PET scans a single line at logic zero across the ten
column lines which are normally at logic one. The
keyboard scanning and decoding subroutine is part of the
retrace interrupt initiated once every sixtieth of a
second by an interrupt on the CBl pin of PIA I. The
keyboard can thus be disabled by setting bit zero of the
port B control register to 0 which disables the CBI
interrupt. This is very useful since it allows one to
protect a program from unauthorised data entry or from
being aborted by accidently pressing the stop key. The
keyboad can be disabled by the following command from a
Basic program: 100 POKE 59411, 60 keyboard function can
be enabled again with the command: 100 POKE 59411, 6l.
The scanning process can best be shown by disabling the
retrace interrupt and using a Basic program to perform
the same function as the keyboard scanning subroutine in
the operating system. The following program while not
performing exactly the same function prints out the
column and input port B value every time a key
depression is sensed:

10 POKE 59411,60 : REM DISABLE KEYBOARD INTERRUPT
20 FOR Q=1 TO 500: REM DO 50 TIMES

30 FOR S=0TO9 : REM SCAN COLUMNS 0 TO 9

40 POKE 59408,S

50 I=PEEK(59410) : REM LOOK FOR INPUT ON PORT B
60 IF I< 255 THEN PRINT"INPUT",S,I:5=9:GOTO110

70 NEXTS

110 NEXTQ

120 POKE 59411,61
READY.

This program has a major fault, pressing the key for
a long time will generate multiple inputs. In a Basic
program this is not really a problem since having found

125

an input, control would normally jump out of the input
loop and Basic is too slow for the key still to be
pressed on the next scan. However, the operating system
scans the keyboard once every sixtyth of a second and it
is unlikely that a key depression would be shorter than
about 10 keyboard scans. Also when a key is pressed
there is bound to be some key bounce which when the
keyboard is being scanned could frequently lead to
multiple closures being input to the processor. The
operating system software is so written that no keyboard
scans are accepted until the last key pressed is
released. Unless a later scanned key is pressed, this
key 1is then interpreted as being the next key closed
even if the first key 1is still being pressed. To
demonstrate: press the Q key then while still pressing Q
.press the A key. Although the Q key is already pressed
an A will be printed on the screen, if the A Kkey is
released then another Q will be printed. Protection from
noise generated by contact bounce is implemented by the
operating system checking that the same key is pressed
for more than one scan. At the end of each scan the 6520
is left with column 9 on, this column contains the
Stop/Run key which can be tested before doing a full
keyboard scan. This is useful since with the keyboard
disabled or when operating in machine code the column 9
keys can be used. as inputs without having to scan the
keyboard. To do this one simply reads 1/0 port B of PIA
1 thus: I = PEEK (59410) and if I = 239 then the Stop
key has been pressed and if I = 251 then the Space key
etc. The subroutine which tests for a depression of the
Stop key is located at Hex F8FO0 (in old ROMs F32A). The
Stop key can be disabled without affecting the rest of
the keyboard, this 1is wuseful since it allows the
programmer to prevent a program being aborted by the
user accidently pressing the stop key, whilst still
retaining full use of the keyboard. This is done by
changing the jump address of the interrupt. The keyboard
is scanned by an interrupt service routine the address
of which is pointed to by the contents of locations 144
and 145 (old ROMS 537 and 538). The f{first function of
this routine is to test for a depression of the stop
key. We can thus disable the stop key by changing the
interrupt jump address to point to a location after the
stop key detection subroutine call using: POKE 144, 22%,
the stop key can be enabled by a POKE 144,

The only other keys not decoded to give an ASCII
character are the two shift keys. The keyboard scanning
routine on detecting that either of these keys has been
pressed sets a flag in location 152(old ROMs 516). If
the decoding subroutine which converts the keyboard
matrix co-ordinates into ASCII characters detects that
this flag is set, then the program will set bit seven of
the associated character thereby converting it to upper
case or graphics. It should be noted that two versions

126

49

2257 U

of the ASCII code are used in the PET, one by the
operating system and Basic and the other by the video
display. It is bit six which is set to give upper case
or graphics in the video ASCII code. This knowledge
allows one to rectify the slightly annoying feature of
the old 8K PET (which has been rectified on the 16 and
32K machines) of having to shift to print lower case,
this is done by reversing the contents of bit seven of
every character input, thus :

5 POKE59468, 14

10 GETA$:IFA$=""GOTO10

20 A=ASC(A$)

30 IFA>128THENB=A-128:G0T050
40 B=A+128

50 A$=CHR$(B)

60 PRINTAS$;

70 GOTO10

READY.

or: To reverse the upper and lower case of all the
characters on the screen then one can PEEK the screen
contents and reverse bit six, thus:

10 FORI=0T0999

20 IFPEEK(32768+I)AND64=64THENGOSUB100
30 GOSUB200 ’

35 NEXTI

40 END

100 POKE32768+I,PEEK(32768+I)AND63

110 RETURN

200 POKE32768+I,PEEK(32768+I)0R64

210 RETURN
READY.

The reverse field display key has an associated
. ASCII character for the reverse "on" mode and another
for the reverse "off" mode there is also a reverse
field flag in location 159(old ROMs 526). When the RVS
key is pressed it is decoded as an ASCII characer with a
value of decimal 18, the operating system on recognising
this character will set the flag in location 159. This
flag is set to indicate to the operating system that all
subsequent characters displayed must be reverse field. A
character is displayed as a reverse field character if
bit seven of the screen ASCIl code is set. The reverse
field flag in 159 is reset by either a shifted RVS
character or by a carriage return. The reverse field
"off" character has an ASCII code value of 146. To
. summarise the display can be put into reverse field by
putting an RVS character into the print string or by a
CHRS(18); which performs the same funtion. It can also
be done by a POKE ,255. All three modes are reset by
a carriage return, t reverse the whole screen or a

/59 127

particular section of the screen then one would have to
use the following method:

10 FOR I = 32768 TO 33769
20 POKE I, PEEK (1) OR 128
30 NEXT 1

The function of all remaining keys is obvious and
they are all, including the screen edit keys, decoded to
give their own ASCIl code. The edit keys are used by the
screen edit subroutines of the operating system,
allowing the cursor to be moved around the screen under
manual or program control. They also allow insertion and
deletion of characters or clearing the screen. When used
within a string the edit characters are displayed as
cryptic graphic characters which can cause a problem
when getting a printed listing of a program on a non
graphics printer. The ASCII codes can be used to replace
the graphics characters producing the same effect, to
move the cursor down use: PRINT CHRS (17) ; the other
ASCII codes are as follows: ’

Cursor up 145 Cursor down 17
Cursor left 157 Cursor right 29
Insert character 148 Delete character 20
Cursor home 19 Screen clear 147

Carriage return 13

The operating system having performed the keyboard
input and character decoding puts the encoded character
into a ten character keyboard buffer ready for use by
the main program. This buffer is loaded every time a key
depression is sensed by the scan subroutine and is
unloaded as soon as the characters can be transferred to
the screen or to the relevent Basic buffer. The keyboard
buffer is organised as a first in first out queue with
the address of the last entry being pointed to by the
contents of location 158 (old ROMs 525), the buffer is
in locations 623 to 632(old ROMs 527 to 536). If the
first character in location 623 is taken out all the
other characters are moved down one place in the queue,
the location pointer in 525 being decremented by one.
The keyboard queue can cause problems when running a
program since any key pressed before an Input or Get
command, will be in the keyboard buffer, giving rise to
erroneous inputs. This problem can be overcome by
setting the keyboard buffer location pointer to zero
just before an Input or Get command this will clear the
keyboard buffer of any contents and can be done by a
POKE 158,0.

The keyboard buffer can be utilised to create a
useful family of programs - programs which actually
write their own program lines. This may sound
contradictory but there are a great many uses for this

128

kind of program, perhaps the most useful of these is the
automatic writing of Data statements containing values
input or calculated by the program itself. The following
program will convert a machine code program into Basic
data statements.

60000 INPUT" [CLEAR] START#,STEP";S,T
60010 INPUT"START ADDRESS DECIMAL";B
60020 F=B:L=F+10

60030 INPUT"END ADDRESS DECIMAL";E
60050 PRINT" CDOWN 4 »

60060 POKE831,INT(E/256)

60070 POKE832,E-INT(E/256)%256

60100 POKE828,T:GOT060500

60200 S=PEEK(826)*256+PEEK(827)
60300 T=PEEK(828)

60310 L=PEEK(829)%*256+PEEK(830)
60330 E=PEEK(831)¥256+PEEK(832)
60340 IFL>=EGOT062000

60350 F=L+1:L=L+10

60400 PRINT" [CUP] "
60500 PRINTS;

60600 PRINT"DATA";

60700 FORP=FTOL:PRINTPEEK(P);" [CLEFT],"; :NEXTP
60800 PRINT"[CLEFT}] "

60900 PRINT"GOT060200 [CUP 4] »;

61000 POKE158,2:POKE623,13:POKE624,13
61100 S=S+T

61200 POKE826,INT(S/256)

61300 POKE827,S-INT(S/256) %256

61400 POKE829,INT(L/256)

61500 POKE830,L-INT(L/256)%256:END
62000 STOP

Another use would be in the insertion of algebraic
functions into say a graph plotting program, allowing a
function in a particular line to be changed either
manually or automatically from data without having to
use a lot of Gosub and Goto statements. The method is
very simple relying on the fact that a line is entered
into a program from the screen only after a carriage
return is pressed. A program line put on the screen with
a print statment can be entered into the main program by
clearing the keyboard queue and placing a carriage
return into location 623 of the buffer thus

100 PRINT" clear,cdown 3 lines "AS" chome " : POKE
525,1:POKE 527, 13:END

Where AS is the line to be entered into the program or
an operation in the immediate mode like GOTO 50 (this

129

would cause the program to jump to line 50). It should
be noted that entering a new line in this manner will
destroy all the data and the contents of the subroutine
return stack. These values must be stored before this
program 1is executed to be retrieved after execution.
This is done in the following example which is an auto
line numbering program allowing one to write a program
without having to enter the line number for each new
line.

60000 INPUT" [CLEAR] START#,STEP";S,T
60050 PRINT" [CDOWN 4]

60100 POKE828,T:GOT060500

60200 S=PEEK(826)*256+PEEK(827)

60300 T=PEEK(828)

60400 PRINT" (CUP] "
60500 PRINTS;

60700 GETD$:IFD$=""THEN60700

60800 PRINTD$;:IFASC(D$)<D13THEN6OTOO
60900 PRINT"GOTO060200[CUP 3]";

61000 POKE158,2:POKE623,13:POKE62U, 13
61100 S=S+T

61200 POKE826,INT(S/256)

61300 POKE827,S-INT(S/256) %256 :END

The END command in line 61130 initiates the entry of the
new program line, the line number and line increment are
stored by poking their values into locations in the
second cassette buffer. Line 61091 is an immediate
command executed after the program line entry, to return
the line numbering program back to 61030 ready for
another line entry. If this is incorporated as part of a
program then the display on the screen can be disabled
(in old static RAM PETs only) by the command POKE
59409,53.

The function of the screen editor subroutine is to
transfer the contents of the keyboard buffer to the
screen at a position on the screen indicated by the
flashing cursor. The editor routines are normally active
when no Basic program is running and also during a Basic
Input command, in both modes the screen data is entered
into. the program by a carriage return. Before data is
entered into the program it can be edited using the
screen edit commands in conjunction with the cursor
control command. All line editing is done between the
keyboard and the screen memory thereby greatly reducing
the complexity of the operating system and the Basic
interpreter. The screen editor is not used by the GET
command, hence the absence of a cursor during a GET
operation. A cursor can however be added to this command
in old ROM machines by activating the cursor blink flag

130

prior to the GET statement with a POKE 548,0. The cursor
can also be utilised to prevent the abortion of a
program by accidently pressing the return key during an
INPUT command. This can be done by formating the Input
statement in the following manner:

100 INPUT " cright 3 spaces * cleft 3 spaces ";AS

This line produces a blinking cursor over an asterisk
which disables the stop and return keys, if one of these
keys is pressed the command returns with an error
message - Redo from start - and a new input prompt. A
Keyboard function not implemented on the PET but which
the user may like to add is a repeat key, which allows
printing of a row of identical characters without having
to repeatedly press the same key. Since there are no
unused keys on the keyboard one can not have a special
key as a repeat key. Instead, holding a key down for a
long enough period must be used to generate repeated key
presses. To do this one must over-ride the operating
system which prevents multiple key closures being
registered by inserting extra code into the keyboard
scanning interrupt routine.

The program is written in machine code and located
in the second cassette buffer. The program consists of
two parts, an initialisation routine to enable the
repeat key, called by a SYS(832). The second part of the
program performs the repeat key function, this tests for
a key depression, if found the program delays before
repeated characters are generated. Another character is
generated by fooling the operating system that the key
is not pressed, this is done by writing 255 into
location 151 which is the register of the matrix
co-ordinates of the last key pressed, a 255 in this
location means that no key is pressed. Having generated
another character, the program delays before the next
repeated character, both delay timings can be varied by
changing the relevent values. Once this program has been
entered and run it will stay in the machine until the
machine is switches off or the program is erased by
writing into the second cassette buffer (it should be
noted that repeat will affect the operation of both
cassettes, IRQ vectors should be re-initialised before
using cassettes). The following three programs are
first: a machine code listing of repeat for new ROM
machines, followed by a Basic loader version of the same

program and lastly a Basic loader of repeat for old ROM
machines.

REPDEL = $02
DELAY = $01
KEY = $00
TRQSUB = $E62E
131

IRQV = $90
LSTKEY = $97
BLINK = $A8

;s REPEAT KEY ENABLE

0340 178 REPON SEI
A9 A4F : LDA # REPEAT
85 90 STA IRQV
A9 03 LDA # REPEAT +1
85 91 STA IRQV+1
A9 01 LDA #1
85 02 STA REPDEL
58 CLI
60 RTS

s REPEAT KEY FUNCTION

O34F A5 97 REPEAT LDA LASTKEY
Cc5 00 CMP KEY
FO 09 BEQ REP1
85 00 STA KEY
A9 10 LDA #$10
85 01 STA DELAY
4C 2E E6 REPEND JMP IRQSUB
C9 FF REP1 CMP #$FF
FO F9 BEQ REPEND
A5 01 LDA DELAY
FO 04 BEQ REP2
C6 01 DEC DELAY
DO F1 BNE REPEND
Cc6 02 REP2 DEC REPDEL
DO ED BNE REPEND
A9 04 LDA #$04
85 02 STA REPDEL
A9 00 LDA #$00
85 97 STA LSTKEY
A9 02 LDA #$02
85 A8 STA BLINK
DO DF BNE REPEND

5 REM REPEAT FOR NEW ROM MACHINES

10 FORQ=832T0891

20 READA

30 POKEQ,A

40 NEXTQ

50 STOP

100 DATA120,169,79,133,144,169,3,133,145,169
110 DATA1,133,2,88,96,165,151,197,0,240,9
120 DATA133,0,169,16,133,1,76,46,230,201,255
130 DATA240,249,165,1,240,4,198,1,208,241
140 DATA198,2,208,237,169,4,133,2,169,0,133
150 DATA151,169,2,133,168,208,223

132

10 DATA120,56,169,233,237,26,2, 141
15 DATA26,2,88,96.173.35,2,201,255
20 DATA208,12,169.,0,141,119,3,169
25 DATA9O, 141,120,3,208,25,238,119
30 DATA3,173,120,3,205,119,3,176, 14
35 DATA169,6,141,120,3.162,255, 142
B0 DATA3,2,232,142,119,3,76,133,230
45 FORI=889TO94T

50 READJ

55 POKEI,d

60 NEXTI

All devices which the PET communicates with are
assigned numbers (except the user port), the keyboard is
device 0. This can be used to produce some interesting
and useful techniques involving fooling the operating
system into thinking that program entry is via the
keyboard when in fact it is from another device. These

techniques can be used to merge programs together - this
method will be looked at in the section on cassette
usuage - and inputting programs from another computer

connected to the PET via say the IEEE port. This is done
by changing the default input device number in location
175 (old ROMs 611). Normally set to 0, the keyboard
device number, this location if changed to ! will fool
the system into accepting data from cassette #1 but
treating it as if it came from the keyboard. It is
however not as simple as poking a | into location 175
since the operating system automatically resets this
location. Instead one must repeatedly force this input
into the PET using the methods already mentioned for
automatic line entry. The device number entered into
location 175 need not be confined to 1 or 0, it could be
2 if we wanted to input from cassette #2, or 5 to input
from a device specified as device 5 on the IEEE port
etc.

The Cassette Units.

The standard 8K PET has a single internal cassette
unit with the facility of adding another unit via an
edge connector at the rear of the machine. New dynamic
RAM machines with large keyboards have no internal
cassette deck but edge connectors are provided for two
external units. The two cassette decks are controlled by
1/0 lines from the 6522 VIA and the 6520 PIA #l. Each
deck is connected to the PET by six lines - Write, Read,
Motor, Sense and two power lines, ground and +5 volts -
of these lines only the Write line and the power lines
are common between the two cassette units. The
connections can be summarised as follows:

Cassette #1 Cassette #2
Read CA1l of 6520 #1 - Read CBIl of 6522
Write PPB3 of 6522 Write PB3 of 6522
Motor CB2 of 6520 #1 _ Motor PB4 of 6522
Sense PA4 of 6520 #! Sense PA5 of 6520 #1

133

The casette motor power supply lines are connected to
the interface chips via a three transistor driver used
to boost the power and voltage allowing the motor to be
driven directly. The output to the motor is an
unregulated +9 volts at a power rating of up to 1000ma,
(if the second cassette deck is not used this output
could be used to power a small external circuit on say
the user port). The motor on cassette #1 can thus be
turned on and off by toggling the CB2 line on 6520 #1 -
POKE 59411,53 should turn the motor on and POKE 59411,61
turn it off, however this will not work unless the scan
interrupt is disabled since this automatically turns the
motor off.

The sense line input is connected to a switch on the
cassette deck which senses when either the Play, Rewind
or Fast Forward buttons have been pressed. The switch is
only required to sense the pushing of the Play button
during a read or write to tape routine this is done by a
subroutine at F835 (old ROMs F85E). If either the
rewind or fast forward button is pressed accidently
instead of the play button the system will be unable to
tell the difference and will act as if the play button
was pressed. For a similar reason during a record
routine the record button must be pressed before the
play button since recording will start as soon as the
sense switch is closed by pressing the play button.

The functioning of the read and write lines Iis
controlled entirely by the operating system, the only
hardware required being signal amplification and pulse
shaping circuitry. These circuits are contained on a
small PC board within the cassette deck their function
being to give correct voltage and current to the record
head and amplify the input from the read head to give a
5 volt square wave output able to produce an interrupt
on the CAl or CBl lines.

In normal usage the two cassette decks are assigned
1/0 device numbers, the internal cassette is device
number 1, the external cassette device number 2. The
device number together with the logical file number and
the secondary address is used when saving or retrieving
data files from one or other of the two cassette decks.
The logical file number can be any number from | to 255
and is used to allow multiple files to be kept on the
same device, it is of little use with casette tape and
primarily intended for use with floppy disk units. It is
usual to have the logical file number the same as the
device number, the logical file number of the current
file is stored in location 210(old ROMs 239). The
secondary address is important since it determines the
operational mode of the cassette, the current secondary
address is stored in location 212 and 213 (old ROMs 241
and 242) the normal default value being zero.. If the
secondary address is zero then the tape is opened for a
"read" operation, if set to | then it is opened for a

134

"write" operation and if 2 then it is opened for a
"write" with an end of tape header being forced when the
file is closed.

The operating system on the PET is configured to
allow two different types of file to be stored on
cassette: program files and data files. These names are
however rather misleading since a program can be stored
as a data file and data can be stored as a program file.
The difference between these two file types is not in
their application but in the way the contents of the
machine's memory is recorded. Instead of program and
data files we must look upon them as Binary and ASCII
files. A binary file is wusually used to store programs
since a binary f{file is created by the operating system
to store the contents of memory between a starting
location and an end location. Called a binary file
because the basic statements stored on this file are not
stored in the same manner as they are listed on the
display or were entered on the keyboard, they are
instead stored in the partially encoded form which is
used to store the commands within memory. Because the-
program is stored in a partially encoded form a binary
file 1s a quicker and more efficient way of storing
programs, and essential if saving and loading machine
code programs and data. The starting address from which
a binary file will be saved is stored in locations 251
and 252 (old ROMs 247 and 248), normally these will be
set to 0 and 4 thereby pointing to the start of the
Basic text area at 1024. They can be altered to point to
any location in memory. The end address of the area of
memory to be saved is stored in locations 201 and 202
(old ROMs 229 and 230) normally when saving a Basic
program these are set to the last address of the last
statement. Like the beginning, the end address can be
altered to any desired address. To change either of
these addresses one can not use the.normal save routine
since this automatically initialises these locations.
Instead one must write a small machine code
initialisation routine incorporating the desired
operating system subroutines (see No copy program). By
default a Save command will write a binary file and a
Load command will read a binary file.

An ASCIlI file is normally used to store data (but
can be wused to store programs see Merge procedure) the
format being the same as that displayed on the screen or
entered on the keyboard. ASCII files are created or read
almost exclusively by instructions from within a Basic
program. A binary file is created or read exclusively by
direct instructions, though the Load and Save
instructions can be used within a program. An ASCII file
must first be opened with an Open statement which
specifies the logical file, device number, secondary
address and file name. This is then interpreted by the
operating system allowing the user to read or write the

135

file to the specified device. Data is written to an
ASCI1 file on a particular device with a command to
Print to the specified logical file number, and data is
read by a Read from logical file command. Whereas a
binary file is loaded with the contents of successive
memory locations, an ASCII file is loaded with a string
of variables. Storing these individually would require
the tape to be turned on and off repeatedly storing a
few bytes of data at a time. The PET overcomes this by
having a 192 byte tape buffer for each cassette deck
into which all data to be written to, or read from tape
is loaded, only when this buffer is full is the tape
motor turned on. Data is stored on tape in blocks of 192
bytes and since the motor is turned on and off between
blocks a two second interval must be left between blocks
to allow the motor to accelerate and decelerate. The
beginning of the 192 character buffer for cassette #1
starts at address 634 and for cassette #2 at location
826. The pointer to the start of these buffers is
located at address 214 and 215(old ROMs 243 and 244).
The number of characters in a buffer is stored in
locations 187 for buffer #1 and 188 for buffer #2 (old
ROMs 625 and 626), these locations can be used by the
programmer to control the amount of space left in a data
file. If having opened a file on cassette #1 the command
POKE 625,191 is eéxecuted then the contents of the tape
buffer even if empty is loaded onto the tape. If records
are kept in multiples of 191 bytes we can very easily
keep nul or partially filled records allowing future
data expansion.

Whether the file being stored is binary or ASCII the
recording method used is the same involving an encoding
method unique to Commodore and designed to ensure
maximum reliability of recording and playback. Each byte
of data or program is encoded by the operating system
using pulses of three distinct audio frequencies, these
are: long pulses with a frequency of 1488Hz, medium
pulses at 1953Hz and short pulses at 2840Hz. All these
pulses are square waves with a mark space ratio of I:l,
one cycle of a medium frequency is 256 microseconds in
the high state and 256 microseconds in the low state.
The operating system takes about 9 milliseconds to
record a byte of data consisting of the eight data bits,
a word marker bit and an odd parity bit. The databits
are either ones or zeros and are encoded by a sequence
of medium and short pulses: a "1" is one cycle of a
medium length pulse followed by one cycle of a short
length pulse and "0" is one cycle of a short length
pulse followed by one cycle of a medium length pulse.
Each bit consists of two square wave pulse cycles, one
short and one medium with a total duration of 864
microseconds as in the following diagram:

136

256 ps 176 ps

256 ps ; 176 ps

176 ps 256 ps

176 ps , 256 ps

The odd parity bit is required for error checking
and is similarly encoded, its state being determined by
the contents of eight data bits. The word marker is used
to separate each byte of data and also to signal to the
operating system the beginning of each byte. The word
marker is encoded as one cycle of a long pulse followed
by one cycle of a medium pulse thus :

336 ps 256 us

336 ps , 256 ps

Since a byte of data is recorded in just 8.96
milliseconds a 191 byte block of data in an ASCII f{ile
should be recorded in just over 1.7 seconds, however on
timing such a recording we find it takes 5.7 seconds.
There are two causes for this discrepency in timing,
firstly to reduce the possibility of audio dropouts the
data is recorded twice, secondly a two second
interrecord gap is left between each record of 192
bytes. The extensive use of error checking techniques is
one reason why the tape system on the PET is so much
better than that available on most other popular
computers. There are two levels of error checking, the
first divides the data into blocks of eight bytes and
then computes a ninth byte which is a checksum digit,
this is obtained by adding the eight bytes together and
taking the least significant byte of the result. If when
the tape is read one bit in the eight bytes is dropped
and a zero becomes a one and the same procedure is
applied to calculate the check digit, the result will be
different to that stored in byte nine, the check digit
of that block computed when the tape was recorded. The

"1"

"O"

second level of error checking involves recording each -

block of data twice and if an error was detected by the
check digit performing a verification process between
the two blocks.

The use of pulse sequences rather than two
frequencies as in a standard FSK recording has a great

137

advantage since it allows the operating system to easily
compensate for variations in recording speed. Normally a
hardware phase locked loop circuit would be used to lock
the system onto the correct frequencies coming from the
tape head, the PET however uses software to perform this
process. A ten second leader is written on the tape
before recording of the data or program commences. This
leader has two functions, first it allows the tape motor
to reach the correct speed and secondly the sequence of
short pulses written on the leader is used to
synchronise the read routine timing to the timing on the
tape. The operating system can thus produce a correction
factor which allows a very wide variation in tape speed
without affecting reading. The system timing used to
perform both reading and writing is very accurate, based
as it is on the crystal controlled system clock via the
internal timer #1 on the 6522 chip. Interrecord gaps are
only used in ASCII files and their function is to allow
the tape motor time to decelerate after being turned off
and accelerate to the correct speed when turned on prior
to a block read or write. Each interrecord gap is
approximately two seconds long and is recorded as a
sequence of short pulses in the same manner as the ten
second leader. There is also a gap between blocks, when
the first block of 192 bytes is recorded it is followed
by a block end marker which consists of one single long
pulse followed by 50+ cycles of short pulses then the
second recording of the 192 block starts, this is
identical to the first block.

The first record written on the tape after the ten
second leader in both ASCII and binary files is a 192
character file header block. The file header contains
the name of the file, the starting memory location, and
the end location. In an ASCII file these addresses are
the beginning and end of the tape buffer, in a binary
file they point to the area of memory in which the
program is to be stored.

The file name can be up to 128 bytes long, the
length of the f{file name is stored in location 209(old
ROMs 238), and when read is compared with the requested
file name in the Load or Open command. If the name is
the same then the operating system will read the f{ile,
if different then it will search for the next ten second
interfile gap and another header block. The f{file name s
stored during a read or write operation in a block
memory, the starting address of which is stored
locations 218 and 219 (old ROMs 249 and 250), on
completion of the operation these are reset to point to
a location in the operating system. The starting
location is normally set to the beginning of the user
memory area, address 1024, however it can be changed to
point to any location, a method employed when recording
programs .in machine code using the monitor,and also in
the Nocopy program shown later in this chapter. The

138

starting address is pointed to by the contents of
locations 251 and 252 (old ROMs 247 and 248). The end
address being stored in locations 201 and 202 (old ROMs
229 and 230) normally this is the highest byte of memory
occupied by the program, however it can be altered to
point to any address providing it is greater than the
start address.

Normally any program running on the PET whether in
Basic or machine code can be saved on tape, this fact
has deterred many programmers from writing quality
commercial software for the machine since it is 3o easy
to make a copy. However machine code programs can be
made uncopyable by using a special save routine, the
program when recorded changes the file header contents
in such a way that prevents any further copies of the
tape being made. The program works by setting the start
address to a location just below the user memory area,
instead of 1024 locations 251 and 252 now contain 1021
so that the program starts at this address. If we try
running a program from this location we will simply get
an out of memory error since the operating system now
looks upon location 1024 as being the highest memory
location. To overcome this a jump instruction -Hex 4C-
is put at address 1024. When the program is run it works
perfectly normally, however, when an attempt is made to
save the program the machine will respond with an out of
memory error. The start location can be lower than 102],
this allows the second cassette buffer to be used as
well as the main memory. The following program will
create a binary tape of the entire memory contents from
location 826 to 8192 and gives it the file name "SAVE",
the locations and file name can be changed by the user
by changing the relevant locations.

033A A9 UucC LDA UcC

8D FD 03 STA O3FD :store jump instruction
in 1021

A9 01 LDA 01

85 D4 STA Z D4 tcurrent secondary address
in 212

A9 67 LDA 67

85 DA STA Z DA :LSB of ile name location
in 218

A9 03 LDA 03

85 DB STA Z DB :tMSB of file name location
in 219

A9 02 LDA 02

85 D1 STA Z D1 :file name length in
location 209

A9 3A LDA 3A

85 FB STA Z FB :LSB of start address
in location 251

A9 03 LDA 03

85 FC STA Z FC :MSB of start address

in location 252

139

A9 00 LDA 00
85 C9 STA Z C9 ¢:LSB of end address in
location 201

A9 20 LDA 20

85 ca STA Z CA tMSB of end address in
location 202

A2 00 LDX 00

20 9E F6 JSR F69E :jump into "Save" subroutine

4c 8B C3 JMP C38B :jump to "Ready" subroutine

53 BYT :S - first character of
file name

41 BYT sA

56 BYT '

45 BYT :E

Since this program is of use only with machine code
programs the Nocopy program is best entered and saved
using the machine code monitor. To demonstrate its
function, use the monitor to enter the program and then
save the monitor and the Nocopy program with a SYS(826)
from the Basic mode. Switch the PET off and reload using
the new tape, you will find it impossible to make a copy
of this new tape in the conventional manner, further
copies can only be made by the Nocopy program.

Whenever a Basic program is loaded into the PET it
will always start at location 1024 meaning that we can
not merge programs together since if we load another
program it will simply overlay the f{first program. The
secret of merging two programs is, having loaded a
program new lines can be entered from the keyboard and
existing lines amended. By changing a few locations we
can fool the operating system into accepting data from
the cassette as if it were the keyboard. This requires
that the subroutines or program which we want to merge
into our main program are stored as ASCII tapes rather
then the normal binary tape. The reason being that the
contents of the tape must be the same sequence of
characters entered on the keyboard and not the
compressed form stored on a binary tape. A program can
be easily saved as an ASCII tape by using the following
sequence of commands:

OPEN 1,1,1 : CMD 1 : LIST
This lists the program to cassette #1 rather than the
screen or a printer, when the program has been recorded
the PET can be returned to normal operation by the
command:

PRINT #1 : CLOSE 1

Using this process one can build up a library of useful

140

and/or common subroutines, however, one must be careful
to number the lines according to some method whereby
subroutines are divided into groups each with its own
unique block of line numbers. The reason being that
using this merge routine subroutine line numbers which
are the same as line numbers in the main program will
erase the main program lines. Also if the line number of
the subroutine and the main program overlap even though
none of them have the same number the subroutine lines
will be inserted between those of the main program.
Another point to watch is the use of variable names in a
subroutine, these should conform to a standard where a
particular variable name is always used exclusively to
perform a particular function in all subroutines and
programs. This helps to avoid the confusion which can
result from using the same variable for two purposes.
The process of merging a subroutine stored as an
ASCII file into a main program stored in the PETs memory
is quite simple but must be done exactly as follows
otherwise the process will not work. The first step is
to insert the subroutine program tape, rewind and type

OPEN 1

The Pet will respond with a prompt to press the PLAY
button on the cassette, do this and then wait for the
tape to stop. In my experience there are times when the
tape deck motor does not stop after ten or fifteen
seconds as it should , in this case press the Stop key,
rewind, and repeat the above process. By opening the
file in this manner the operating system reads the tape
header and initialises the system to read data from the
tape. Then it stops the tape in the interrecord gap
prior to the first 192 byte record. For the processor to
read this record and interpret it as program lines
entered on the keyboard, requires a little trick
incorporating the methods used for automatic line entry.
Before a record can be read the default input device
number in location 175 (old ROMs 611) must be changed
from 0, this is the keyboard, to 1 which is the device
number for cassette #l. This can not be done by a POKE
175,1 the system will crash by responding with READY
then SYNTAX ERROR then PRESS PLAY ON TAPE 3. One must
catch the system between the ready response and the
syntax error and enter another POKE 175,1 thereby
maintaining the stability of the system with a device
number of 1. This is possible by forcing a carriage
return into the keyboard buffer and moving the cursor
back to the "home" position, when the processor responds
by printing READY the cursor is placed on the beginning
of the line containing the POKE 175,1 command which it
then executes again. To do this the screen is cleared,
the cursor moved down four lines and the following line
entered: ’

141

POKE 175,1:POKE 158,1: POKE 623,13:?" home cursor "

The reason for moving the cursor down four lines is to
provide space for the READY response to be printed.
Instead of pressing return after entering this line
press "cursor home", then move the cursor down six lines
and enter the same line again. Make sure the play button
on the cassette is still down then press return, the
tape should move and the subroutine entered. This line
is entered twice so that when the line which has just
been processed is four lines down from the top it will
automatically execute another line which is six lines
down from the top of the screen and vice versa. For this
reason two identical lines must be put on the screen one
on line four the other on line six. When the merge is
completed the message ?SYNTAX or ?70UT OF DATA will be
printed on line five and the tape should stop if not
then press the RUN/STOP key. Normal operation of the PET
can be resumed by closing the f{file with the command:

CLOSE 1

On listing the program you should find that the
subroutine has been inserted into the correct position
in the main program.

The IEEE Port.

The IEEE-488 port is the principle 1/0 port on the
PET, designed to allow the PET to be connected to a wide
range of peripheral devices ranging from printers and
the PET floppy disk to scientific instruments. The
IEEE-488 bus or as it is sometimes known the HP-IB bus
was developed by Hewlett Packard in the early 1970s to
simplify the integration of instruments, calculators and
computers into systems. It has since been adopted as an
international standard bus, the standards being laid
down by the American Institute of Electrical and
Electronic Engineers and given the standard number 4383,
This means that it should be possible to connect any
IEEE 488 device to any other IEEE 488 device. This has
prompted many manufacturers throughout the world to
produce equipment with IEEE 488 interfaces. This fact
coupled with a belief that the IEEE 488 bus will become
the only standard way of interfacing computers and
peripherals prompted Commodore to use this bus on the
PET in preference to say an RS232 1/0 port. The use of
an IEEE 488 port on the PET has met a mixed reception
(some claiming Commodore's decision to use it, a stroke
of genius, others claiming it a disaster). However, it
is not hard to construct an IEEE 488 to RS232 interface
and in this way the PET user can have the best of both
worlds.

The sixteen active lines of the IEEE port are

142

principally derived from 6520 #2. Only four lines are
connected directly to the interface chips or the
processor control bus, the remainder being connected to
the system via three quad line bi-directional buffer
ICs. The bi-directional buffers are used to combine two
lines, one input and one output, from the peripheral 1/0
chips to produce the bidirectional lines required by the
IEEE bus. From the processors view the IEEE port
consists of eight data input lines and eight data output
lines plus four handshake outputs and four handshake
inputs, the remaining four control lines are
unidirectional. The bi-directional buffer chips are
tri-state devices, in the non active state the
bi-directional lines on the IEEE port are at a high
impedance state. This means that they have a voltage
level intermediate between the high state and a low
state allowing any device to hold the bus in a "true" or
logical "1" state. The standard IEEE connector is not
used on the PET, instead as with other 1/0 port
connectors it is a 12 position 24 contact edge connector
with a .156 inch space between the contact centres. If
the IEEE port is to be used with instrumentation then
the user must add a standard connector which is a 24
contact type 57 Microribbon connector the connections
for which are shown in the following diagram.

Signal ground 24 12 Shieid to earth ground
11 23 11 ATN
10 22 10 SRO
Twisted pair with — 9 21 9 IFC
(grouned near 8 20 8 NDAC
termination) 7 19 7 NRFD
F———t b
6 18 6 oav
17 5
REN
€Ot
o8 16 4 0a
o7 15 3 D3
06 14 2 02
DS 1 b1

IEEE Connector

E
®)
[~

The maximum length of cable used to connect devices
together on the IEEE bus should not exceed more than 5
metres and the length of the cable between the PET and
the last device on the bus should not exceed 15 metres.
A great virtue of the IEEE port is that one can use it
to connect more than one device to the computer hence

143

the reason why it is often referred to as the IEEE bus.
Each device is identified on the bus by its device
number, the PET allows the user to connect up to 15
different devices onto the IEEE bus. An example of the
way such devices are connected onto the PET IEEE bus is
shown in the following diagram. Each device is connected
in parallel to the 16 lines of the bus these sixteen
lines being the sole communication link between the
devices and the PET controller.

T IA

Device 4

Tatk and listen

Device 5

Listen only —-— IFC

ATN

SRQ bus
REN
EOI PET

00-D7 Data bus
Device 15

DAV
Tatk only 4 JI NRFD 3 Handshake bus
—J

NDAC

b
-

-
L]

The devices connected onto the IEEE bus must be capable
of performing at least one of the following functions:

LISTENER - A device which is defined as a listener must
be capable of receiving data from other devices
connected to the bus. The best example of a device which
acts solely as a listener is a printer.

TALKER - A device capable of transmitting data to other
devices on the IEEE bus. An example of this is a digital
voltmeter, others would be a counter or a paper tape
reader.

CONTROLLER - A device which manages the communications
over the IEEE bus such as addressing devices and sending
commands. The PET is the only device which can act as a
controller, the controller of course can also act as
either a talker or listener.

Although up to 15 devices can be put onto the IEEE

144

bus only one device at a time can act as a talker, all
other devices can simultaineously act as listeners
allowing data to be input to more than one device at a
time. ,
The sixteen signal lines of the IEEE bus can be
divided into three groups, these are: the data
transmission bus, the transfer bus and the management
bus; the remaining eight lines on the 24 line connector
are grounds. The data bus consists of eight
bi-directional lines for transmission of data signals in
a bit parallel mode, the signals are active low and the
most significant bit is on line D108. The data is
transmitted one byte at a time as a seven bit ASCIl code
with the eighth bit available for a parity check, the
data transmission rate is controlled by the slowest
device on the bus at a particular time. Although the
maximum data transfer rate on the IEEE bus is about 1M
bytes per second the PET is limited by the processor
speed, practical limits are about 5000 bytes per second,
in Basic this is reduced to 100 bytes per second. The
data bus is also used to transmit peripheral addresses,
these are device addresses used to enable a device to be
accessed on the bus. Also control information, both are
distinguished from data by having the ATN line low
during transfer. The transfer bus consists of three
lines used to control the transfer of data over the data
bus, as with the data lines these signals are active
low. The function of the transfer bus lines can be
summarised as follows:

DAV Data Valid

When this line is low it signals that there is valid
data on the data bus.

NRFD Not ready for data

This line is kept low for as long as one or more devices

on the IEEE bus defined as listeners are not ready to
accept data. As soon as all devices are ready NRFD goes

high

NDAC Data not accepted

This line is held low by a listening device while
reading data, as soon as the data has been read the

listener sets NDAC high thus signalling to the talker
that the data has been accepted.

Since data is transferred on the IEEE bus in an

145

PET Bus IEEE PET Description
contact label contact
label number
1 DATA D101 1 Data INPUT/OUTPUT LINE #1
2 D102 2 Data INPUT/OUTPUT LINE #2
3 D103 3 Data NPUT/OUTPUT LINE #3
y D104 Yy Data INPUT/OUTPUT LINE #U4
5 MANAGER EO1 5 End of identify
6 TRANSFER| DAV 6 Data valid
T NRFD 7 Not eady for data
8 NDAC 8 Data not accepted
9 MANAGER C I terface
Same as PET reset
10 SRQ 10 Service request
11 ATN 11 Attention
12 SHIELD| 12 Chassis ground and IEEE
cable shield
A DATA D105 13 Data INPUT/OUTPUT LINE #5
B D106 14 Data INPUT/OUTPUT LINE #6
C D107 15 Data INPUT/OUTPUT LINE #7
D D108 16 Data INPUT/OUTPUT LINE #38
E MANAGER REN 17 Remote enable (REN) always
ground in the PET
F GROUNDS | GND6 18 DAV ground
H GNDT 19 NFRD ground
J GND8 20 NDAC ground
K GND9 21 IFC ground
L GND10 | 22 SRQ ground
M GND11 23 ATN ground
N LOGIC
GND 24 | Data ground (D101.8)
Fig 5.4 IEEE Port Connections

146

asynchronous mode the function of the -three lines of the
transfer bus is to handshake data transfers between a
talker and a listener. The timing of the handshaking
sequence is very important and is best illustrated by
showing the actual waveforms of the three transfer bus
lines and the data bus lines over two cycles of a
handshaking sequence where two bytes of data are
transferred from one talker to one or more listeners.

Data lines . | I

DAV

With the PET there are some constraints on the timing of
the handshaking sequence which must be observed if loss
of data is to be avoided, these are:

1) when the PET is a listener the DAV line must go low
within 64 milliseconds after it has set NFRD high.
2) when the PET is a talker then NADC must go high
within 64 milliseconds after it has set NRFD high.
The five lines which comprise the management bus are to
give device commands and to control the current state of
the data bus the functions of these lins can be
summarised as follows: '

Period when all listeners Period when all listeners Period when data

accept data guaranteed valid

ready for data

ATN Attention

This line is set low by the controller when it is
sending commands and peripheral addresses on the data
bus. As soon as ATN goes high the previously assigned
devices can transfer data between themselves and the
controller.

EOI End of Identify

This line is set low by the talker while the last byte
of data is being transfered and thus indicates to the
listener that it is the end of the message.

147

IFC Interface Clear

The IFC line on the PET is connected to the systems
reset, thus when the PET is switched on this line goes
low for about 100 milliseconds. By setting the IFC line
low all devices connected to the IEEE bus are
initialised to an idle state.

SRQ Service Request

Some devices connected to the IEEE bus have the ability
to request service from the controller and it does this
by setting the SRQ line low. This line however is not
implemented by Basic on the PET but it is connected to
the CBIl input on 6520 #2 and can be used by writing a
machine code subroutine to test the state of this line
as part of the 60Hz keyboard scan interrupt. If more
than one device can set the SRQ line low then the
controller must poll the devices to find which one
requested service, the controller does this by
transmitting the serial poll mode command which is hex
18. Each device is then polled by setting ATN,
addressing the device as a talker and then removing ATN,
if it was that device which set SRQ then it will respond
by setting data line 7 low. The serial poll mode is
disabled by the controller transmitting command hex 19.

REN Remote Enable

This line is held low by the PET and is not under user
control

The PET -as the only active controller allowed on the
bus manages all communications between devices, doing
this by sending commands to these devices via the data
lines. Commands are distinguished from data by the state
of the ATN line, when this is low the data bus is in the
command mode and the controller the only active device,
all other devices are waiting for instructions. These
commands are performed automatically by the operating
system of the PET when the IEEE bus is being used under
Basic. A knowledge of the commands is required if the
bus is to be controlled under machine code.

The simplest group of commands are address and
unaddress, there are four of these commands: talker
address, listener address, unlisten address and untalk
address. The talker address is transmitted as a seven
bit code and enables a specific device to talk, since
only one device at a time can act as a talker this
command automatically unaddresses and disables the
previous talker. The talker address is functionally the

148

same as the device number used in Basic but whereas a
device number can be any number from &4 to 30, the talker
address is any one of a group of 31 seven bit byte ASCII
characters which are defined as talk addresses by bit
six = 0 and bit seven = 1. Each device has its own
unique talk address which can be set by the user and
will be used by the controller software to select that
device. The listener address is also transmitted as a
seven bit code used to enable a specific device to act
as a listener. A listener address is the same as the
device number used in Basic and can be any one of a
group of 31 seven bit byte ASCII characters defined as
listener addresses by having bit six = | and bit seven =
0. Note that in Basic the difference between a talker
and a listener is determined by the contents of the
secondary address which the operating system translates
into the values of bit six and seven. When a device can
act as both talker and listener then they are assigned
addresses which are identical except for the contents of
bits six and seven. A device selected as a listener by
the ASCII character "&" has a talker address selected by
the character "F". Both talker and listener addresses
can be changed by the user, this is normally done by
adjusting a set of switches or jumpers within the
instrument.

A device selected by a listen or talk address can be
deselected by an unaddress command. The unlisten command
which is hexadecimal 3F clears the bus of all listeners.
The untalk command which is hexadecimal 5F disables the
current talker so that no talker remains on the bus,
this effect can also be achieved by selecting an unused
address.

A device need not be addressed to respond to a set
of commands known as universal commands, and all devices
on the bus will respond to one of these commands from
the controller irrespective of whether they are
addressed or not. There are five universal commands and
their functions are summarised as follows:

DCL Device Clear Hex 14
This command returns all devices on the IEEE bus capable
of responding to a predetermined state irrespective of
whether they are addressed or not.

SPE Serial Poll Enable Hex 18
This enables the serial poll mode on the bus, it is only
used when the SRQ line is implemented on the PET, this

mode enables the controller to find which device
generated the service request.

149

SPD Serial Poll Disable Hex 19

The serial poll mode set by the SPE command is disabled
by this command.

LLO Local LOckout Hex 11}

The local reset button on the {front panel of a
responding device can be disabled by this command.

PPU Parallel Poll Unconfigured Hex 15

This provides all devices on the IEEE bus capable of
responding to this command with the ability to uniquely
identify 1itself if it requires service and the
controller is requesting a response. This command
differs from service request since it requires the
controller to periodically conduct a parallel poll. This
command is not implemented on the PET by Basic.

The remaining set of IEEE commands are all addressed
commands and affect only those devices which have
previously been defined as listeners. The virtue of
addressed commands is that they allow the controller to
initiate an action in either a single instrument or a
simultaneous action in a group of instruments. There are
five addressed commands and their functions can be
summarised as follows:

SDC Selective Device Clear Hex 04

This command returns all addressed devices on the IEEE
bus capable of responding to a predetermined state.

GTL Go to Local Hex 01

Returns the addressed devices to local control.

GET Group Execute Trigger Hex 08

Initiates a simultaineous pre-programmed action by a
group of addressed devices.

PPC Parallel Poll Configure Hex 05

This performs a similar function to the parallel poll
unconfigured command, it permits a single DIO line to be

150

assigned to each instrument (maximum number of devices
is thus eight) for the purpose of responding to the
paratlel poll.

TCT Take Control Hex 09

This command alows the active controller of the IEEE bus
to transfer control to another device. This can not be
implemented on the PET since the operating system only
allows the PET to act as the active controller.

Other commands specific to a particular device can
be given on the IEEE bus, these are the secondary
address commands used in the OPEN statement to instruct
an inteligent peripheral to function in one of a number
of different modes. The form and nature of a secondary
address command whether given from Basic or machine code
depends entirely on the device. Each device has its own
conventions which can only be obtained by consulting the
manual for the device. A secondary address can have a
value between 0 and 31 in Basic. Note that when the
Basic secondary address is transmitted it is as the OR
of hex FO since bits 4,5,6 and 7 must be set.

The OPEN command in Basic is used to select a device
on the IEEE bus which has a device number between 4 and
30. If the device number is less than 4 the operating
system will instead address either the keyboard,
cassettes or screen. The operating system is also
initialised so that the device will communicate with a
particular logical file having a number between | and
255. The use of a secondary address and a file name is
optional, however, a secondary address is only sent if a
file name is used, the .operating system then sends a
listen command to the specified device followed by the
secondary address. If there is no response by the device
to the ATN command the operating system will respond
with a "DEVICE NOT PRESENT" error and set bit 7 of the
status byte. Having initialised the system and a
specified device for data transfer on the IEEE bus and
perhaps set the addressed device to a particular
function by using the secondary address, data can be
transfered using either the INPUT #, PRINT# or GET #
commands. When one of these commands is encountered in a
program the operating system will go through the
IEEE-488 input initiation routine. The INPUT# and GET #
commands specify a particular logical file number, the
input initiation routine sends a talk command to the
device specified in the OPEN command for that logical
file, setting the addressed device as a talker and the
PET as a listener. The PET then waits for the DAV line
to be set low indicating that the talker has placed a
single byte of valid data on the bus. An input on the

151

Talk Addresses

1.
[
- -+
— o
(&) ©
n 1 ¥
- 2
O mMOAEHKUIIHSDS M JIdZZ20MMC@mNBEDE=ENKMHN
—
OO OO~ OO~ OO~ OO ~0O0O O~ 0O~ 0O 0O—O«—0O
2 -
DIOO OO~ OQrr OO~ OO OO0~ OO0+ v— OO0
3.
LDIO O OO =~ O0O0OO0OO0O™vrmm™mr OO0 rrrm OO0 O ™ v
=
o] eNoNoNoNoNoNoNol ol ol ol ol ol ol e leololoNoRoNeNoll il ol ol ol ol dl o
n
4
]
m

b7 dé b5

b8

COO0OO0O OO0 0OO0O0O0O0O0O0O0Om M I rm I ™ & vy v v

[ojeolojojojojojojojojejojolololololofolojojojojojolololoNoNeNe]

Al el el el 2 50 2t i el e i sl sl i el et sl el 2l s 2 A e ol i S el

B D B B B b4 D DG B D B D B B b B B D B B D D B B D b B B B4 b B

Table of IEEE Device Talk Addresses

152

Listen Addresses

ASCII

Character

Pt
V) =& I NBRE =~ w0 + I e NO~ QNMINW D~ OV o0 o]

Bits

bl

(gV}}

O~ O~ O O O~ O~ 0O~ 0O~ O O~ O~ OO ~0OrrO—0O

OO0~ OO~ O0OO0O OO~ OO0~ OO0 ™00 — 00—

b7 b6 b5 by b3

b8

O OO0 OO0 O0OO0Or OO0 00— OO0« v v

OO0 00000 T e rmermr e 000000007 — — v+ v

sNeolejoNojojojojojololooleNoNol ol ol ol ol ol S S e it it ot i g

T ™ ™ = — T T F T ™ — — = — ™ = T = — T * = ™ — = — — T =

ejeojoojojojojolojofeoolojojelololololofoNoNololooRoloNoN e

P PG DG PG PG PG DG DG DR D DG DG DG D D D] D B DA B DA Dd DG DG B D D DY b B

don't care

X =

Table of IEEE Device Listen Addresses

153

DAV line must be received within 64 milliseconds if that
byte of data is to be placed in the Basic input buffer.
If not received within that period then the IEEE input
sequence will be terminated and the error handling
routine will set the status byte in Basic variable ST to
2, indicating a talker time out. The status byte is
stored in location 150 (old ROMs 524) and the setting of
bit 1 by a time out error can be used to prevent the
program returning to command mode after the error. This
is done by following the INPUT # or GET # command
immediately with a test of the status byte and if bit 1
is set then control returns to the INPUT or GET command,
thus:

100 INPUT # 5,5,2,"A"
110 IF ST =0 THEN 120: GOTO 100
120....

If the Basic command was INPUT # then having fetched
one character and placed it in the input buffer, the
IEEE input routine is called again and another character
input. This process is continued until the input routine
senses a low level on the EOI line which indicates the
end of information transfer. Note: not all devices
generate an EOI signal. On sensing an EOI pulse the
operating system will set bit six of the status byte and
will force carriage return into the buffer until the
current command is terminated. The INPUT # command is
limited by the length of the input buffer which prevents
the transfer of more than 80 characters at a time unless
a carriage return separates each 80 character block. Any
attempt to write more than 80 characters into the buffer
which is located between locations 512 and 591 (old ROMs
10-89) will result in system malfunction. If the IEEE
device sends more than 80 characters without a carriage
return between blocks, then the GET command must be
used, since this command only calls the IEEE input
routine once and thus only inputs one character each
time the command is executed. By repeatedly performing
the GET # command strings of data can be built up which
avoid the buffer size limitations but are unfortunately
rather slow. At the end of an input command whether it
was INPUT # or GET # an IEEE termination routine is
called which returns the default input device number in
location 175 (old ROMs 611) to 0 thereby restoring the
functioning of the keyboard. An untalk command is then
set to the IEEE bus freeing it for the next command.

Having opened a logical file to a specific device
the PET can output data to that device with a PRINT #
command which calls an IEEE output subroutine. This sets
the device specified for the logical file in the PRINT #
command into a listener mode. The operating system then
changes the default output device number in 176 from 3
which is the video display to the device which has just

154

been addressed as a listener on the IEEE bus. Basic can
now transfer the data one character at a time to the
IEEE output routine which waits for the NRFD line to go
low indicating that all the listening devices on the bus
are ready to accept data. A single byte of data is then
put onto the bus and a DAV pulse generated to indicate
that valid data is now on the bus. The IEEE output
routine then waits for the NDAC line to go high showing
that the data has been received by the listener, however
if the NDAC pulse is not received within 64 milliseconds
of the NRFD line going low then an error is generated
and bit 0 of the status byte is set indicating a
listener time out. To stop the system returning to
command mode immediately follow the PRINT command with a
test for setting of bit 0 of the status byte. When all
characters have been transferred by Basic the operating
system transfers control to an IEEE end routine which
sends an EOI pulse along with the last character stored
in the output buffer in location 217 (old ROMs 246).
Having done this an unlisten command is sent to the bus
thereby freeing it for a subsequent operation and the
default 1/0 device is reset to 3 thereby re-enabling
output on the screen.

Having finished all inputs or outputs between a
logical file in the PET and one or more devices on the
IEEE bus, the file for each device must be closed. This
is done by the CLOSE command, CLOSE 5 will close the
device associated with logical file 5 by the OPEN
command. On receipt of a CLOSE statement the operating
system will send a listen command to the specified
device followed by a secondary address command which is
the OR of hex EO and the secondary address, signalling
to the device that it should stop its current function
and return to an initialised state.

It should be noted however that the operating system
in old ROM PETs will not allow the LOAD and SAVE
commands to be used with an IEEE device unless the
program is transferred in an ASCII format. To SAVE a
program onto an IEEE device with these machines one must
list the program to that device. To get this ASCII
program back again and perform the equivalent of a LOAD
requires a technique identical to that used to merge two
programs together, except that the default device number
in location 175 should be set to the device number of
the IEEE device rather than | which is the cassette
device number. The LOAD and SAVE commands are available
on all new ROM machines. ,

The commonest use of the IEEE bus is not to service
instrumentation but simply to connect a printer to the
PET. Unfortunately for this purpose the IEEE is not
ideal since the majority of cheap printers use either an
RS232 or a 20ma loop serial interface. The only way to
overcome this 1is to construct an interface circuit which
converts the parallel IEEE output to a serial output.

155

The circuit to do this is simple and can be constructed
with very little expense. The circuit shown in Figure
5.6 performs three functions. Firstly it converts the
PET ASCIl code into stndard ASCII and generates the
‘required control signals for the IEEE. Secondly a UART
is used to convert the paralle! data into serial data
rate timing being provided by the 555 timer, this can be
adjusted to the correct baud rate by the 50K
potentiometer. Thirdly the serial output is converted to
the correct levels in this case to those required for an
RS232 interface, to give a 20ma loop interface then the
following circuit is connected to pin 25 of the UART in
place of the 75150 IC.

+5V

10052

7404
4704,

UART 25 ———-I>o—- 2N3638
] zom

l
I .
0.001/4f TRANSMIT

The interface circuit requires a separate power
supply capable of providing the following voltages: +12
y +5 , =-12 and ground or O volts, the current
consumption of any of these voltages is low and a mains
adaptor for a calculator could be used to provide the
larger voltages, with the lower voltages derived from
them. This circuit is only designed as an unidirectional
interface, it is very much harder to construct a
bi-directional interface owing to the strict timing
requirements of the IEEE bus. Both upper and lower case
characters are printed and the interface can be used to
both list programs and print data, the command sequence
to list a program is : OPEN 4,4 : CMD 4 : LIST and to
print data : OPEN 4,4,4 : PRINT # 4, A or AS.

An application finding increasing use amongst
scientists and engineers is to use the PET as a data
logger by connecting one or more instruments to the IEEE
bus and using the PET to sample, store and process data
from these instruments. The problem encountered by most
people when using the PET for this kind of application
is the Ilimitation on sampling speed imposed by Basic. In
most applications this is crucial since the majority of
physical events are fairly rapid lasting no more than a
few seconds and the fewer the measurements over that
period the more likely we are to lose vital information.
For these reasons it is preferable to use machine code
subroutines to transfer data from the measuring

156

D1

D2

D3

D4

L

Pe

Y

\¥4

Y

D5

D7 »

D6 ~

VARVARY;

D8 >

ATN >

NDAC -«

OO0 YIY]Y

DAV >

NRFD

61

a2

+5v0——ge

‘I\—
26 39‘——————-—0/‘_1 b Parity select
27 38 ‘ e N ¢ Word length 1
28 K Y/ T o > Word length 2
29 36»—-——-—————0/:\\ Status bit
30 35_.—__—_-—./\ Parity inhibit
32
6010
3 [} pnath
RS 232
10K
25 W\~ 3 75150 12p——0 Out
2 lll——o Return
23 10 5 13
2 b—o0-12v
22 l —_— l
3 'Il. -12v w “12v
21
40 ,
Fig5.6 IEEE to RS232
Interface
Set baud rate
4 3 7 [AN ‘v‘vVM—-—-—-O+5v
50K 1K
555 2 2
6 “ 20,000 nt
8 11

instruments to the PET since these will allow data
transfer rates in excess of 5000 bytes per second. At
these transfer rates the problem is not sampling rates
but data storage, since even with a 32K PET one can only
store a few seconds of data at 5000 bytes per second,
this can only be overcome by making a compromise between
sampling rate and sampling period. Another way of
reducing the quantity of data stored is to preprocess it
as the data is entered and store only the required
information or to sample short blocks of data and store
each block on tape or disk.

The following programs are a set of machine code
subroutines to handle data transfer between an IEEE
instrument and the PET and they can be used as the basis
for a wide variety of different data logging application
- programs.In these examples the programs are located from
6144 upwards with the top of the Basic memory area
having been set at 6144 giving 5K for Basic programs and
the top 2K for the machine code subroutines and data
storage. The subroutines are configured to read data
from just one device and store the data in memory from
address 6401 upwards. The same routines can be used to
obtain data from more than one device by changing the
device numbers and alternating access between devices.
The program controls a given number of data transfers
between an IEEE device and the PET, each transfer
consisting of one or more bytes - in this example eight
bytes - the number of bytes can be changed by POKEing
the required number into location 6200. Each data
transfer is preceded by a GET - Group Execute Trigger -
command on the IEEE bus and the IEEE device must be
correctly addressed as a "talker" or a "listener" at all
times by sending the correct MTA (My Talk Address) or
MLA (My Listen Address) prior to the appropriate
transfer.

Prior to loading the program the top of memory
pointers must be lowered to prevent Basic overwriting
the IEEE program and data, this is done at the beginning
of the Basic program using the commands POKE 134,255 and
POKE 135,23. The number of data transfers can be
controlled by the contents of location 6400 which should
be POKEd with the required value. The data obtained by
this program is stored in locations 6401 upwards and can
be retrieved by PEEKing from the Basic control program.
The subroutines are limited to transferring only 256
bytes of data since the index registers are used for
counting. The IEEE bus handshaking program can be called
with the Basic command SYS(6144).

IEEE bus handshaking routine -~ main program

1800 A2 00 LDX # 00 prepare index register
1802 A9 FB LDA # FB set ATN low

1804 2D 40 E8 AND E840

1807 8D 40 E8 STA E840

180A A9 28 LDA # 28 MLA (28 for this device)

158

180C 85
180E 20
1811 A9
1813 85
1815 20
1818 AQ
1814 85
181C 20
181F A9
1821 2D
1824 8D
1827 A9
1829 2D
182C 8D
182F A9
1831 0D
1834 8D
1837 AO
1839 20
183C A5
183E 9D
1841 E8
1842 88
1843 DO
1845 A9
1847 2D
1844 8D
184D AQ
18U4F 0D
1852 8D
1855 A9
1857 0D
185A 8D
185D A9
185F 85
1861 20
1864 A9
1866 oD
1869 8D
186C CE
186F DO
1871 60
subroutine
1880 AD
1883 29
1885 FO
1887 A5
1889 49
188B 8D
188E A9
1890 2D
1893 8D.
1896 AD
1899 29

01
80
08
01
80
48
01
80
FD
40
4o
F7
21
21
o
4o
4o
08
BO
02
01

18

18

18

E8
E8

E8
E8

E8
E8

18
19

E8
E8

E8
E8

E8
E8
18
E8

E8
19

STA
JSR
LDA
STA
JSR
LDA
STA
JSR
LDA
AND
STA
LDA
AND
STA
LDA
ORA
STA
LDY
JSR
LDA
STA
INX
DEY
BNE
LDA
AND
STA
LDA
ORA
STA
LDA
ORA
STA
LDA
STA
JSR
LDA
ORA
STA
DEC
BNE
RTS

01
1880
08
01
1880
48
01
1880
FD
E840
E840
F7
E821
E821
04
E840
E840
08
18B0O
02
1901,X

1839
FB
E840
E840
02
E840
E840
08
E821
E821
5F
01

1880
04
E840
E840
1900
1802

handshake into bus
GET

handshake
MTA

handshake
set NRFD low

and NDAC low also
set ATN high

ready to count 8 bytes
handshake data from bus
result to A

store in 1901+4X

jump if Y not zero
set ATN low

set NRFD high
set NDAC high

UNT

handshake to bus
set ATN high

decrease counter
jump if not zero
return to BASIC program

handle handshake into bus

E8

E8

E8
E8
E8

LDA
AND
BEQ
LDA
EOR
STA
LDA
AND
STA
LDA
AND

E8L4O
40
1880
01

FF
E822
FT
E823
E823
E840
01

NRFD?

jump back if not ready
ready: get data byte
complement it

send to bus

set DAV low

NDAC?

159

189B FO F9 BEQ 1896 jump back if not accepted
189D A9 08 LDA # 08 accepted; set DAV high
189F OD 23 E8 ORA EB824

1842 8D23 E8 STA E823

18A5 A9 FF LDA # FF 255 - into bus
18A7 8D 22 E8 STA E822
18AA 60 RTS return to main

subroutine to handle handshake from bus
18B0O A9 02 LDA # 02 set NRFD high
18B2 OD 40 ES8 ORA E8U40

1885 8D 40 E8 STA E840

18B8 AD 40 E8 LDA E840 DAV?

18BB 29 80 AND # 80

18BD DO F9 BNE 18B8 jump back if not valid
. 18BF AD 20 ES8 LDA E820 get data byte from bus

18C2 49 FF EOR # FF complement

18Cl 85 02 STA 02 store in $0002

18C6 A9 FD LDA # FD set NRFD low

18C8 2D 40 E8 AND E840

18CB 8D 40 E8 STA E8U40

18CE A9 08 LDA # 08 set NDAC high
18D0 OD 21 E8 ORA E821

18D3 8D 21 E8 STA E821

18Db6 AD 40 E8 LDA E840 DAV high ?

18D9 29 80 AND # 80
18DB FO F9 BEQ 18D6 jump back if not
18DD A9 F7 LDA # F7 set NDAC low

18DF 2D 21 E8 AND E821
18E2 8D 21 E8 STA E821

18E5 A9 FF LDA # FF 255 into bus
18E7 8D 22 E8 STA E822
18EA 60 RTS return to main

The Video Display

One of the virtues of the PET video display is the
flexibility imparted to it by being a memory mapped
design with the majority of the control being performed
by software. This allows the user to manipulate the
display in ways which would be impossible with a
conventional terminal, as an example: most users wijll
have used the POKE command in locations between 32768
and 32767 to move characters around the display.

To understand how the display can be used to produce
certain effects, we must look at how the display is
generated. There are two processes involved in
generating the display, the first performed almost
completely by hardware is the character generation and
screen refresh which also involves the timing of the
horizontal and vertical scan outputs to the video

160

monitor. The second process is done completely by
software and involves taking a character from the
keyboard buffer or from Basic output buffer and placing
that character in a specific location in the display
memory area. Though the character and raster generation
is mostly performed by hardware, the user can besides
writing characters into the screen memory directly
control two (only one in dynamic PETs) of its functions
via a couple of lines connected to the 1/0 ports. The
first is familiar to all users and is the conversion of
the graphics mode into the lower case mode by ‘toggling
the CA2 line on the 6522 thus POKE 59468,l14 will set- the
display in lower case mode and POKE 59468,12 will set it
in graphics mode. The second function, only available in
static RAM machines is provided by the CA2 line on 6520
#1 it blanks the screen during character entry and
retrace. This prevents the broken characters which
appear on the screen during PEEK and POKE operations,
due to interferrence between the character generator
addressing and the processor addressing. The screen
blanking function can be used in machine code programs
to give a nice clean display free of interference, in
Basic programs it can be used to suppress the display
until a whole screen full of information is present. The
commands in Basic to produce screen blanking are POKE
59409,52 and to restore the display POKE 59409,60. There
is a third very important connection between the
character generation, display hardware and the
processor, it is the 60Hz retrace input and is connected
to both the CBl interrupt input on 6520 #1 and 1/0 line
5 on port B of the 6522. The function of this line is to
generate a system interrupt which calls the routines for
scanning the keyboard, updating the display and the
clock TI. Called the retrace input because it is
produced each time the raster scan reaches the bottom of
the screen prior to the scan flyback, it is during
flyback period that the screen is blanked and the
display updated. The retrace interrupt can be disabled
allowing the programmer to disable the keyboard also
code can be inserted into the interrupt routines, these
procedures have been dealt with in other sections of
this book. The retrace input can also be used to perform
the same function as the blank command in a machine code
program, namely to suppress screen interference while
writing to screen memory. This can be done by waiting
for the retrace input to the 6522 with the interrupts
disabled. A simple subroutine to do this would be as
follows:

AD E8 40 RETRACE LDA E840 :pu port B in accumulator
49 20 EOR #$20 :mask off line 5

29 20 AND #$20 tis line 5 set

FO FT BEQ RETRACE :if not return to RETRACE
60 RTS treturn to calling program

161

Data 1is displayed on the screen by the operating
system either as a result of an entry on the keyboard or
the execution of a print statement in a Basic program.
Data can also come from other sources like input
prompts, error messages or from a machine code program
or POKE command writing directly to the display memory.
When a key is pressed the operating system translates
the matrix co-ordinates into an ASCII character which s
stored in a "first in first out" queue located in the 10
byte keyboard buffer located at 623 to 632. The
operating system -then periodically empties this buffer
byte by byte into the display memory at a location
pointed to by the current position of the cursor. The
ASCII code is also converted at this time to the
slightly different version used by the character
generator obtained by dropping bit 6. The position of
the cursor is stored as two values. The first is the
cursor column position which is stored in location 198.
The second is the pointer to the start of the line of
the cursor location this is stored as a two byte number
in location 196 and 197, the value stored being the
number of characters from the beginning of the screen.
The blinking cursor is controlled as part of the retrace
interrupt subroutine and is activated when the PET is
either in the command mode or the input mode, its
activation being controlled by the contents of location
170. When the cursor is active the contents of 170 is 0
and when inactive 1, by executing a POKE 170,0 prior to
a GET command we can use this location to give us a
blinking cursor for the GET input a feature normally
absent.

The display itself is only 40 characters wide, a
Ilimitation which is dictated by the size of the screen
and the display circuitry bandwidth. Since many
applications require a line length longer than 40
characters, the PET operating system allows lines up to
80 characters to be displayed by folding the display
back onto the next line. To allow lines of up to 80
characters and yet avoid leaving empty lines where the
previous line has less than 40 characters the operating
system uses a table of pointers to the beginning of each
line. Each line has a pointer which indicates whether it
is the beginning of a new line or the continuation of
the previous line. These pointers are stored in a table
in memory locations 224 -~ 248 there being one entry for
each of the 25 lines on the screen. The contents of
these pointers is the least signficant byte of the start
address on the screen with the status of bit 7
indicating whether it is a new or continuation line.
Thus whenever the cursor is moved up or down the
operating system will examine the status of the line on
which the cursor currently lies and initialise the PET
to the proper line number so that when a carriage return
is pressed the cursor will jump down the appropriate

162

number of lines.

The fact that the PET has only a 40 character by 25
line display can be rather limiting when trying to
display a graph with a reasonable resolution between
plotted points. A technique can be used which doubles
the density of the display to give an 80 by 50 dot
picture. This is done wusing the quarter character
graphics in place of the normal full character graphics.
One of a range of full sized graphics characters are
used in each character space to simulate a 2 x 2 matrix,
the full sized character used depends on the contents of
that matrix. A program to plot a display using quarter
characters must be able to plot by its x and vy
co-ordinates and also selectively erase characters and
replace them with new characters when the plot within a
single character matrix is changed. Such a program
written in Basic would take a considerable time to
construct a display and it is much quicker and easier to
write it in machine code, which is then called from a
Basic program as and when needed. The following program
which is stored in the second cassette buffer performs
such a function - the first listing is an assembled
version of the machine code program, the second is the
same program with a Basic loader and a subroutine to
draw lines on the screen.

The program which will work on both old and new ROM
machines can be called with the command SYS(826) from
Basic with the X co-ordinate stored using POKE 48,X and
the Y co-ordinate using POKE 49,Y. The Basic machine
code loader used in this program lies between lines 200
and 400 and is a very useful means of entering machine
code into the PET using the standard hexadecimal values.
The data required by the screen drawing subroutine are
the X and Y co-ordinates of the starting and ending
points of the line with the 0,0 co-ordinates being in
the bottom right corner, and the 49,79 co-ordinate in
the top left.

:PROGRAM TO PLOT POINTS ON
:PET IN DOUBLE DENSITY FORMAT
:X-COORD IN LOCATION 48 (30)
:Y-COORD IN LOCATION 49 (31 &32)
:0 IN LOCATION 51 (33) TO ADD

:1 IN LOCATION 51 (33) DELETE
:ERROR FLAG IN LOCATION 998 (3E6)
:1 OR 2 PLOT OUT OF RANGE

:4 NON-PLOTTABLE CHARACTER ALREADY
:AT THESE COORDINATES ON SCREEN

REFRESH

= E840
XCOORD = 30
YCOORD = 31
AORD = 33
BINOFF = 34
0000 ¥ - 033A

163

0334
033C
033F

- 0341

0343
0345
0347

0344
034cC
O3UE
0350

0353
0356
0358

0359
035B
0035C
035E

0363
0362

0364
0366

0368
036A
036C
036E
0373
0372
0374 -
0376
0378
0379

- 037B

164

037D
037F
0381

0383
0385
0387
0389
038B
038D

00
E6
34

31
32
03
E6

30
50
03
E6

E6
01

30
34

31
34

31
31
31
31
31
32
31
32

31
31
32
CO
32

34
01
34
00
05
34

03

03

03

START LDA $0
STA ERROR
STA BINOFF
:TEST IF YCOORD U49
LDA YCOORD
CMP $50
BCC YOK
INC ERROR
:TEST IF XCOORD 79
YOK LDA XCOORD
CMP $80
BCC XOK
INC ERROR _
:RETURN IG OUT-OF-RANGE ERROR
XOK BIT ERROR
BEQ SORIG
RTS
:INVERT SCREEN FROM TOP TO BOTTOM
: (Y-COORDINATE)
SORIG LDA $i49
SEC
SBC YCOORD
STA YCOORD
:SAVE BOTTOM BIT OF X COORD IN
:BINOFF
LSR XCOORD
ROL BINOFF
:SAVE BOTTOM BIT OF Y COORD IN
:BINOFF : ‘
LSR YCOORD
ROL BINOFF
¢:MULTIPLY YCOORD BY 40 AND
:ADD SCREEN BASE ADDRESS
ASL YCOORD
ASL YCOORD
ASL YCOORD
LDA YCOORD :SAVE IN A-REG
ASL YCOORD
ROL YCOORD+1
ASL YCOORD
ROL YCOORD+1
CLC
ADC YCOORD
STA YCOORD
LDA YCOORD+1
ADC $ CO :START OF SCREEN
STA YCOORD+1
:EXPAND BINOFF
LDX BINOFF
LDA $1
STA BINOFF
EXP CPX $0
BEQ ENDEXP
ASL BINOFF

038F CA DEX

0393 90 F7 BCC EXP
:GET CHAR INTO A-REG
0392 Al 30 ENDEXP LDY XCOORD
0394 B1 31 LDA (YCOORD),Y
:CHECK CHAR IS VALID GRAPHIC
0396 A2 00 LDX $0
0398 DD CE 03 MOREC CMP TABLE.X
039B FO OB BEQ FOUND
039D E8 INX
039E EO 10 CPX $16
03A0 90 F6 BCC MOREC
03A0 90 F6 BCC MOREC
:CHAR IS NOT IN TABLE
03A2 A9 .04 LDA $4
03A4 8D E6 03 STA ERROR
03A7 60 RTS

:CHAR IS IN TABLE
:SO ERASE OR ADD

0348 A5 33 FOUND LDA AORD
03AA DO o7 BNE ERASPT
:ADD POINT TO SCREEN
03AC 8A ADDPT TXA
03AD 05 34 ORA BINOFF
03AF 18 ' CLC
03BO AA TAX
03B1 90 0A BCC WAIT
:ERASE POINT FROM SCREEN
03B3 A5 34 ERASPT LDA BINOFF
03B5 49 FF EOR $ FF
03B7 85 34 STA BINOFF
03B9 8a TXA
03BA 25 34 AND BINOFF
03BC AA TAX
:WAIT FOR SCREEN REFRESH
O03BD AD 4o E8 WAIT LDA REFRESH
03CO 49 20 EOR $ 20
03cz2 29 20 AND $ 20
03C4 FO F7 BEQ WAIT
:WRITE NEW CHAPHIC CHAR TO SCREEN
03C6 BD CE 03 LDA TABLE.X
03C9 Ak 30 LDY XCOORD
03CB 91 31 STA (YCOORD).Y
:RETURN SUCCESSFULLY
03CD 60 RTS
:TABLE OF GRAPHICS CHARACTERS
03CE 20 TABLE . BYTE 20. 7E. 7B. 61
03CF TE
03DO 7B
03D1 61
03D2 7C .BYTE 7C. E2. FF. EC.
03D3 E2
03D4 FF
03D5 EC

165

10

20

30

4o

50

60

70

80

90

91

100
110
120
130
140
150
160
170
180
200
210
220
230
240
250
260
270
280
290
300
310
320
400
100
100

1010

03D6 6C .BYTE 6C. 7F. 62. FC
03D7 TF

03D8 62

03D9 FC

03DA E1 .BYTE E1. FB. FE. AO
03DB FB

03DC FE

03DD AO

03DE *-%,8

03E6 ERROR *=-%41

03E7

DATAS8
DATA
DATA
DATA
DATA
DATA

DATA
DATA

DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
READ
READ
C=LE

26

A9,00,8D,E6,03,85,34

A5,31,C9,32,90,03,EE,E6,03
A5,30,C9,50,90,03,EE,E6,03

2C,E6,03,F0,01,60

A9,31,38,E5,31,85,31

46,30,26, 34

46,31,26,34
06,31,06,31,06,31,45,31,06,31,26,32,06,31,26,32,18,65
31,85,31,45,32,69,80,85,32
A6,34,A9,01,85,34,E0,00,F0,05,06,34,CA,90,F7
A4,30,B1,31,A2,00,DD,CE,03,F0,0B,E8,E0,10,90,F6
A9,04,8D,E6,03,60
A5,33,D0,07,84,05,34,18,AA,90,04A
A5,34,49,FF,85,34,84a,25,34,AA
AD,40,E8,49,20,29,20,F0,F7
BD,CE,03,A4,30,91,31,60
*20,7E,7B,61,7C,E2,FF,EC,6C,7F,62,FC,E1,FB,FE;AO
L

A$

N(AS)

IF A$="%" THEN 400

IF C

<1 OR C>2 THEN330

A=ASC(A$)-48

B=AS

C(RIGHT$(A$,1))-48

N=B+7¥(B>9)~-(C=2)*¥(16*(A+7*(A>9)))
IF N<O OR N>255 THEN 320

POKE
L=L+
GOTO
PRIN
PRIN
0 PRI

L,N
:

210

T"BYTE"LH: "A$H ???"
T" ";

NT" " H

5 INPUTX1,Y1,X2,Y2

1015 PRI

102

0 GOT

166

GOSUB2000

NT" 1"
01000

2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2255
2260
2270
2280
2290
2310
2320
2360
2370
2380

REM SUBROUTINE TO DRAW LINE
REM BETWEEN TWO POINTS ON SCREEN
REM CHECK COORDINATES IN BOUNDS

IF(X1>=0ANDX1< =79)AND(X2>=0ANDX2<{=79) THEN 2060

ER$="X OUT OF RANGE"
RETURN

IF(Y1>=0ANDY1<=49)AND(Y2>=0ANDY2{=49)THEN 2090

ER$="Y OUT OF RANGE"
RETURN

ER$:""

XD=X2-X1

YD=Y2-Y1

REM NEAREST DIAGONAL
AO=1:4171=1
IFYD<OTHENAO=-1
IFXDKOTHENA1=-1

REM NEAREST HORIZ/VERT
XE=ABS(XD):YE=ABS(YD) :D1=XE-YE
IFD1>=0THEN2220
S0=-1:81=0:LG=YE:SH=XE
IFYD>=0THENSO=1

GOT02240
S0=0:51=-1:LG=XE:SH=YE
IFXDY>=0THENS1=1

REM SET UP
TT=LG:TS=SH:UD=LG-SH:CT=SH-LG/2
D=0

REM WHILE MORE POINTS DO

POKE48,X1:POKE49,Y1:POKE50,0:POKES51,D:SYS(826)

IFCT>=0THEN2320
CT=CT+TS:X1=X1+51:Y1=Y1+S0
GOT02360
CT=CT-UD:X1=X1+A1:Y1=Y1+A0
TT=TT-1

IF TT{OTHEN RETURN
GOT02270

167

5 I i
_BAIS 2 2 TaLs244 7] I_gg_p_.
L3 5.8
\ 74LS 10 |
. 4 (s T LBl sss
A 4
BAl4 N OUT s | 3] 302
: 2 NE 2G>
s i 803
1 T [—-.
X B04
g 8 T e
§ 74LS244 :g] _ (5.8> BD6 | 4
D6
L4 +§_T | SCEL G sor |
5] B07
| 87 5>
] 2 oS
(0T R 70 T
e N
|
74154 ? :32
oV 2 ::f m-SEL 2 o
74L504 3P o7
K 4 b2
0 0 12
+5v 5 2 Pr 13
8 3 2 Pa ol
7 —o 7 'S
Ve e DR ;2 D”zs«zm 22 g g p> —app—t 1
> DAl “Z,3,4> 2Ll 9 S 17
-~ oa2 15 %2 533 2045 S 18
- DA3 |52 o NN ey 19
- Da4 |22 ~2.5.8 N 3 L2
CIRCU'T 1 -+ DAS 7 6 2,3,4 L 4
> 0a6 [L3>, L 2
> OAT L3>
9 2 18 1
A
6502 :g? I 7 3 A? 2
+5v AB2 il 4 |6 A2 3
2 5] 74Ls244 [4
483 A
L3 P4 S
AB4 Ad
ABS et ! id i
I3 I K 5 2 4
86 BA
a87 |8 . S, BAT] o
B8 |- !9 ! BAR 9
e 1 Al -2e844,5,7
23 LROY A;‘g B 563,45,
3810 AB11 20 2 8 A3 $3.5,7>
NWT e 37 7 3 yyp I
24 ABI2 3,5,7>
2| poy N) 8 AG >t
+5v NI D] 7 74L5244 5 16 p2rdaSsT
[- 25 % A7 520 9.5,7>
=d w1 AB15 —{(4,8,7>
— G379 ¢ i 7 A8
3.3¢ 3 12 10
1 m . o - Bae] |
Ll i a0 K8 SYNC I 5 i B0 4 |,
5~ IRa RESET ROW S - a3
vss ©2 r LA
¥ A3
ralh;
5y 1 = e i
- = |7
BAB
oV BAS edel
3,5,7
AI0
IR
: 2 470 S
\ 2 3] 12| RES BV BA 13 o>
(23> ¢
>°’ | 7417 22 BAiq ot
74504 7417 o0 BATS o4
9 ™8 B2 5 SYNC
1 v AN ¥l ¢
7417 8 RW 21
+ s 680 [—-
BRIW
- > RN 5
o g RAM R/W
13 12 74L504 68 BR/W
{>c Bmfil
TaLS04 B RIW

Ci> EBL ouT 5 ™6 2
EBT
5
. 7417 RAT
a2 5.1K
vee pra—
RaER |52 meA3>)
-» CAl ‘;g T 55V
-~ o]l - >—-——-DE 33 Dg ™ -
| - . - 3 BAV_IN | 2
. - s DAV OUT 3 ﬂFARB
| - i 3 NRTD IN 0 NBAE ;
>0 2902 > o |
= ’ : 3 MC3446 [14 8
- 3 3 NDAC IN) 4 * :
= - Sk = NDAC OUT 1 i 1
{1 07 ~ - 06 <> : n :
i i5 8
S o == 3> ouT 13
2
- PAg)
- Pal
- PA2 |2 T
- PA3 |2 Le
- PA4 3 b6-1 1 :
6520 pas o= 7] =
- PAT 2 or : 215 :
00 €| MC3446 [14 3
; - 5 ! bIo-4} ,
= IE s - CHASS1S
ros 1% DI-4 5 8 7 ’
ror DO-4 i3
- PB3 13)
- PB4]
- PBS "2 T
- PBE
|
e BAS 24 > o7 |l TR N 2
-8 2 3] & s : =
] SXEXX 22 gsz o - s g
- = DO~ MC3446 T4 bTos ©
‘ BAZ 36 o ‘ -
| & el 0-7 i T ’
w0 DI-8 5 ez
T C _> — DO-8 |
e £ 2 DBl 3 . T
= - 2le a2 L8 DAV_OUT :
1 KESET = TRGB pon e
; 5V 3Ra_IN
11
L <
Il 10 B
> bl
_ 7417 :
£
?\2 5. 1K g
1 H
J
K
CIRCUIT 2 :
12
N
o 1 CSl - i
'3 3>

740508

+5v

| 20
—12
, L —— 30 cal 7]
D@ > = CAl
2l or -~ a2 SRAPHIC —o
=02 == 2 PAB
> D3 > - PAD 3 PAl ¢
D4 e > PAj 3 PA2 b
; DS @+ = PA2 5 PAZ £
3 D6 =t w PAJ A PA4 F
D7 = we PA4 Pas |
-> PAS Pas|
- PAS o Par]
6522 par |2 \
24 - SRa_IN|
cs! J—
23 | 7om 0 NDAC IN
T52 == PBO = RRES Ut CIRCUIT 3 FORZ DRIVE ‘20
s PRI |
38 P8l Mg RN 0UT VERT DRIVE |
ST RSO = B2t CASS WRITE
RS1 = PB3 7
BA2 36 4 DTAG
i s RS2 e PB4 bep 5
\ RS == PBS Iy TFRD_IN 9V UNREG "
22 v P86 DAY IN 2 L "‘
R/N == PB7 2 3
251 o7 6 .0l I
i — I
P RESET = ca |2 cez] 2
vss T c82 *TcASS REap]
L *2 CASS READ | o
7 | (g /\1 2N3904 E J7.2v | 2N44D ATI
.
' ! +5v —B-2
~J 2 CaSs READ |, o5 Ccass
K 1ok L 19V UNREG ¥2 CASS WOTOR | %
J CASS WRIE | o
"2 Tass swives o
il \)
. L +5y -8 5
2N3804 : CASS WRITE .
N " zass wotor]' [oocass
Y i© oK = f < cass aean s |
[20 1 cass switcH] o J
33 - T ig : ~
DO - CAL o |
0 A 74.45 2
P - can 2 E5I ou ES B2 2
s, e s 203 3
0.5 PAD b2 A 3B :
29 3 KEYB 4 5 :
De - PA 2 <EvE 3 8 4 us
28 L5 Y c 5 s
37 B KEYD ¥ 7 d
06 - PA3 o 6 Pg
21 TP 8
8 P 9
9 10
o2
- Pas |2 =+
2 king |
NN E Fo1_IN KINT] o
4> PAG 2 KIN2
- S ¢
% KIN3
3V KING g
6520 XINS | -
KING | |,
J \ S04
- 844 24 ok Piok $iox Piok $iok Fiok § 1ok $ioK
: cel . bt
C{xm 231735 ae PBO ;? DIAG
: XBXX 22000 e em 20
=~ - PH2 2
C BAD 36450« PB3 :f
T - PB4
I
B 351 ks - PBS [
o 5
R/H 2 PBS [17
& e R/W > PB7 {
—~—< 882 ii o2 —= 81 (2
T RES RESET =+ CB2 | 5=
vss * TRO8

+5v +5v +5v +BY +5v +5v BV

21] 24 2:’24 2||24 lzr 24 2' | 24 sz 24 21] 24

v €53 Ve
(- 8 [53 VeC 8 o0 Vet 8 [[5cs% vet 8 [vt 8 [gcee Vet 8 [T3 e Ipw
i A Al At At Al A Al
TS aA2 £ 42 $1a2 £ a2 S 12 =l VS LB 51 a2
BAs 5 2332 5 2332 5 2332 5 2332 5 2332 5 2332 5 2332
i 21 a3 S a3 21 a3 54 a3 1 a3 1 a3 21 a3
| 4 2] s £ aa L na 2 a4 2 a8 £ as
] 3 FO00- 15 £o00- 145 Dovo- £14s cooo- 1145 8ooo- {45 ko00- 2145 9000-
FEFF 2 as £FFE 2146 DFFF 2L as crrr 2146 BFFF 20 a6 arF 21 a6 oFFF
’ 7 7
FER I X FER 4 FEN I FER N 73] *
A8 48 A8 A8 48 A8
> % 22 22 22 22
221 2a 221 4o = 221 a0 223 a0 221 a0
= a0 = a0 o 410 = a0 2 ai0 20
At At Al All Al ALl
00 -2 0o 2= oo o= 0o 12 0o glo 0o o oo |
oI [o o1 (- o1 p° or [oy f=8 o1
02 o2 02 D2 o2 D2 02
03 :j 03 :: 03 :i D3 :i b3 f=2 03 :i 03
ol o i 04 g b4 Mg b4 P4 o
D5 2 05 f3 05 o 05 (2 05 |2 05 f=2 05
06 2 06 (2 06 {2 05 f2 05 [06 (= 08
— 7 7
— SELF 2o P P QY piol [Py [pI Fr) P [
> vss vss vss vss vss vss vss
1 I 1 I % 1 I
o EE ' - - - - - -
>t
(TS
R
S
(T

CIRCUIT 4

7
o s
| FAS 5
RAT 5 1S 7ais3 Fa ML 4116 7] 411s ans 7] 4116 7] ans] 4116 alis
8> 5] 1 i Al :
BAZ e I Fas 12]"2 i i i 12 T 1 i
: 31102 Y Fae 11|43 T 7 T I 7 7
v 5 7], &8 Fas 0] A © o) 0 5 5 G
51h IR 3 3 3 3 3 3 3
. 8413 1 5.,
RA| = [1n 3, 3 3 3 3 N 3 3 b 3]
6 SAT =] ¢! 2y qd W& P4 P ce e 5 Pg P 3 3 s
I 2c2 68 VoD
S 2 vee 15 7 i T i i
q 26 :22 s 5 G G 5 S I s
) RES Pyl 3 L 3 2 3 r y
R A
= S T 5 RAS B E 5 B 59 s E
= & 2 ¢4s K P K 2 X 3 L 2] I 3 X} 3 I 3 14
p 3t 4 = L = < Ca
'l g DI 00 j — — by e
0.1 |6
[l
a2 & :go 74153
A2 1 3 e
o2 212 Iy
E i . ic3 68
], rap ST 5 5 5 5 5
2] 4 FAT__T14% ae 71 aris 71 <iis 71 arie ARID 71 4116 7] 416 7 411s
ol o] 5, FaZ 6], 3 5 3 5
L FA3 12 12 12 | 2 12
20 2v a3
. 8A3 i oA Fad_ 1] T T T T T
%AQ 3] 2% Fas 0] 5% 0 I 0 I I3 5 0
- 75 26 FAE i3] re E 3 3 E T3 3 3
8 TR R —3d v bt 39 S b- 3 3 o8 3 3q b. 3
T v voo LB g (] g g (] 8
= 4 e @ 0 3 5 D 3 3
“‘ VB8 | | | (|] I
0- 6 6 TS e 5 s 13 s TS
| 4 RAS vss 4 4 ‘d 44 4 4 4 |
- d 2 4
T RA4 £] 10, 74153 Co> 58 (D fiad - wgs B - I - |2q B - -
| SN = o1 00— = —] s 2] 4 — 2] 141 -sv
—_8A4 ry [y +5v
g_\@‘” .j i3 68 +2)
A {
21g
RAS 0
— e
o458 24 2c2 68
) BAIIl | 203
54 26
RD4 8 ROZ
. To] res2as |12 804 T7o] raiseas |12 eos
o+ RS E T@ RO E—(D
. 16] 7 14805 Lz 4 BOI
i v RDS 4 KB | > RD2 4 E_®
—d 6
CE-Rae 51 o 74183 Ls] 16 806 — L8] s . 802 —~,
5 RO7 6] RO3 |
Icl - p—
A6 % N K 1= 8807 1= T8, 803
—BAI2 3] ¢ Y JOMPERS 0 5] id| > i T !
L WX R 2] !C3 68 BAI3 L | 8 9 . -
< oo 21 Ci>-B8aa oM i)
0 H 13
91 2¢0 o 741510
2 8 BANK SEL
——:‘2 21 2v {7 i T)} >
24 52
3 BAIS 8 R/NW
~£ 2c3 > 7425 >
59 26 .
S
| CIRCUIT 5

CIRCUIT 6

RASD
47

TAST
47

tA38
47

VERT DRIVE C::::

VERT DRIVE

YIDEO ON

HORZ DRIVE C::::

22PF = 5y
13 12 | 2
3 BE2A 4
+5V 74504 74504 74164 :; 4 _8a28 2[77F ¢
| 5 _BsaC
" 44 — = . o L7 i T4IST 74574
X s) 4 3
470 470 J CK Q€ ——y 2A Y! cK
Iasoq 51 sy 2 ol o D82t = 28 ;
74508 ool A7 82H o34 ver— = 13
aH == > 4] 38 9 wmuxa o ?
7 4A Y3 s : >] 12
48
BANK SEL 2 B R/ 12 _T
3 > 7 : Y4 7408
4 Bg2 |)3
£NG >=
5 74191 +5y
E :JN/UP NE cLKs T4LS00 i 10 BB b0
) a8 f— REFRESH 12 [P o
5 5 T4L504 G>
X 2 o CLK 74574
ﬁ LD MAX/MIN -% 3 4 BEF T
> CK L RIC o 74 S04
Q
13 12 BAE CL
RAI T3
{5 > 74L504 j
2 B 3
4
o a 3 14t a aA 12 RA2 5 L os l o $
7aLs107 TaLses g RA3 \ 8 VIDEO LATCH
124 ‘—dFB a8 5 4 QJ 74LS10
K
9 2] o a L8 RA4 5, 2[TF o1 LOAD SR 5
-]
sle L2 31 oo w b RAS — 74LST4
C?Lf = ‘
3
—, BAI3 £, ™ o8 3
ape LOAD SR —5—~, 16 74LS10
el BAI4 F
L 0 T : ROW SELECT
74504 i3
9 &‘}
8
|0 74L800
74L508
HORZ DISP ON /=5~
(T,&> 13
RAB S J
o 5 I . }.& 81, o o e pP— Ly e 8, a 2
Jo8 el 74LS 107 TaLS 107 7aLs 107 7aLS 107 TaLs08
. 74LS107 _4>CK _____l?#,c‘(NEXT L"‘I‘zq”:“ b o
R
P 2
\ 3 i ~ls 4 S12 4 2 L -
K 3 Q K -] K Q
de gle ! J cL cL cL cL
i 741508 o 3 13 o
Yo
INTT HORZ_DISP OFF
(7.8> L= 2y (7>

i s s
7aLS107 +5v
SR
(E Lok % ok v
1K '
ol gls 5
/ |
CTLm >R ‘u‘) 8 TVREAD® K
HORZ DISP_ON 740810
BAIl i 34
6 TV SEL i3 1055 TaLsiST
5 R/W 12 7 T
852 ?}[2 v2 Pl LY RAM RN T
741508 <O] 28 °
| 3 741810 BAZ 3 4A Y3
Joa [48
2 va |2 SAB
TaLS 107 BA 3 3
2 T 1.8 4 sal
—C} CK S Y1
6
CIRCUIT 7 s
e E
T, BA2 0] 55 raLsist
o 5 9 SA2
I B——L.T Y
T 12 v3
3 2 BAd 34 ve |- 243
0% Q5] 48
g E 12 SA4
08] iA va
14 15 r— BAS
D6 Q6 7 8
7 ¥ Qr ° L S v 4 SAS
7] 13 S R
7 e [+¥4 3 G
032 3 }= B 2
H ? . -
'3] o3 Qr) 9
RN T 24 a4 O rarer
12 o 24 1a
S raLs3T3 - —~_BAb 3 7TaLS157
741500 2 . 14 ;;. 4 Ll
T BAT N D
g b cikz an P2 — : 28 vo p2 AT
=P CLK | o > ~—— 28 ;
I =5 T 3 vo p— 288
7 ¢ 2 @l % s 549
51 ac i v3
8 G
ER e w 2 I SAZ-9 BUS
i1 =
O sairr
+5Y
410
| P
el PR NEXT e
74574
VIDEQ LATCH Loox
5V =18 NEXT
cL
4 13
T3 | 2
5 3 0 g af>~_8 s
(3 --YIDEO ON 5 1/>(;6 2 3
TeL504 (8 o] RAS 2] raLs20 2] raLs20 74504 74L500
HORZ DISP OFF T4Ls0s
Bo2H

CB HORZ DISP_ON

7

NEXT

nyy

Awo

wso7_i2 [P e 5
74Ls74
LOAD SR i
(o> cKk o
1
+5V
o @ 8 741508 2
073 (3> YIDEO ON , T4LS20
3 >
TS 3 RELOAD 74500
5
B
—2 74520
i
T\ 3 REFRESH
A a2 2/ RAT ‘7\'24
BmLsesQB o 741508 I 5> s [TR
7 6316 TLKE 710y TaLsies
. H 3 e o
RO ac a2 CKINK Q
19] SerIN
(1 RAQ LSDZ 5 9 [l SDZ 2 7 BD@
T
Roz % > (TS0 3] %2 bo 3 FN 3] reiseas [O8] —(T>
D2 Bl Ol 3]8 S0\ 4 BE B!
[S03 2]%° AN 04 5 T >
(504 1 e 2 e a 502 [HE 802 —~,
L SDS 23] .8 05 = 4] H 7] [1a]
506 2] e e 18 51, 503 (i 803
T SRRHIC \’ NS o ;7[5], 1 : 2| >
cs2 cs3 ol -
30 TV READ LO=READ
€1 ysg &>
3
=~ _VIDEO LATCH I 2 LSDE sD4 7 804
e 7 g; 7S TS0 7aLs244 [TE —(1>
z
Y 3., Py (502 |_sos T 805 T,
Bl 18108 a7 8 LSD3 16§
02 10 a3 L3504 D6 T4 BDG
D3 na bl S [S05 3
D4 i P TSD6 so7 2 o7
D% K] T507 N >
06 as
D6 3
D4
57 5] os
T 7415373
(oY Raw AT Lo=RRITE
l 10 lvo
18 "W 14 D8 18 R/W 4 $D4
o sAg-9 BUs OV T3 00 3 5D w3 Do I3 D5
e vss ol V§S DI
— B 2 502 0 2 506
(% D2 (3 D2
T 503 T D7
1 03 1 03 20T J
SAP__ = S g -2 PP
SAL 647 2ita 5147 2114
5A2 7 7
A2 A2
A3 4 4
43 A3
A4 3 3
Al LK 21 a4
2 AB A5
L-—A, A6 A6
= AT AT
2 A8 A8
WE A8 A9

VIDED { ;

Instruction Set — Hex and Timing

6502

MMM ™ ™ ™ ™M ™ (2] ™M™ ™ ™
b
. =) T <P > A e~ <~ <t < >~ < ~]r~ <t ITe)
93]
i)
Y = eS| [=) [[a NS [} O [a
<1 B3IRAE @ a A m| Awn A AE 2 2
E e | NN NN ™ NjN N o~ o~
i
m ol QNI NN N ™ N o~ ~
-
M o[oo 000 o oo O o o
olow O@E0 < | < & o} ™
ﬂWuu |l NN o~ NN AN o N NjON NN ™~ ey N
<
[a¥
o glmouw; ™ Mmoo |n ™M M|l mon ™ | wn ~ NN
&
N nn W < n ¥ o 0 0 wlo O W O)
s O|lww O o~ omo|O S S| =3 B HR e} N &3 B DD
mm e ™ salsalEse i Kao) Mnom MmN m ™ | ™ i~ M oo™
w 2| <o < < < < | <+ W0 , MmO SO ol < S —
@)
0
[P e R I 8} N0UOUIME o[UVOoAlmOM [a)
1 0|6a 8 & ORO|O I m Qg O ol 2 289
T H H vy -
W o o~ N NN
8
[ah =Y <&
<13 o < S| &
a | 3= H HH [- H H HH H N HH HH HH| H HHH H e
75}
H
m o r~ AN NN N o N o AN N N <o O WO NN N NN NN NN
M N
—
o o) 0 ®|waw £ @ @ @© g D 0w O | © @
O e} HAQ|lwvm U ® KB o 2] <O wN 4& |~ MA%% %%
5H d§|]a §8&| &aa g AlE 6 5
O
2loAanonoaBEHBAM0Rn0AlHDAX M| OXMMO|[X Mo >/ Ao o Al HGOOOA|H € X > x| > X 0
SlazuoulmHEza|l>>Add|dlSan|MUROZ|ZZZT nAlAANOE| Bm g 0|0 b MMM B H D a|cn X X
m K OOMMMAAMMMAMADL|VOVDLVLU AANARMH|IHHBD HhAAXIAZ0| Ak B]|BHB B BHKH

PROCESSOR

ABS. Y (IND. X) (IND) Y 7.PAGE,X | RELATIVE |INDIRECT | Z.PAGE,Y | STATUS CODES
op|n | # |oP # lop|n|# |op | n|# |oP|n |# |OP|n #iop| n|# |NvV BDIZC
791 4] 3 |e6I 2 | 711 512 |75 |4 |2 o0 o
394] 3|21 2 |31 51]2 |35 |4 |2 . .
I6 |6 2 . X}
%90 | 2 2
BO|2 | 2
FO | 2 2
®
3012 2
Do|2 | 2
02 | 2
502 | 2
702 | 2
D9| 4| 3}cI 2 | pIf 5{2 |[D5]4 |2
[] e
[} L J
[] LN]
D6 | 6 2 . .
[[]
[] []
59| 4| 3|41 2 | 51| 5/ 2 |55]4 |2 . .
F6 |6 | 2 o o
[] *
6cl 513 . .
89| 4| 3| A1 2 | 81] 5/2 |B5|4 | 2 . .
BE| 4| 3 B6| 4|2 .
B4} 4 2 .
5616 | 2 .o
19| 4} 3| o1 2 |11 5|2 (15|42 . .
[] ®
e o 0000
36 2 . .o
76 2 . .
e s soes 0o
F9| 4| 3|EI 2 |FI|5 | 2|F5| 4| 2 oe .o
99 5| 3|81 2916 | 21954 2
9% | 4 | 2
94| 4| 2
[4 []
[] []
'Y [4
o []
* [

HEXADECIMAL CONVERSION TABLE

HEX 0 1 2 3 4 5 6 7 8 9 A B c D E F
0 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 a4 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
c 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
F 240 241 242 243 244 .245 246 247 248 249 250 251 252 253 254 255

5 4 3 1 0

HEX DEC HEX DEC HEX DEC HEX DEC | HEX DEC | HEX DEC
0 0 0 0 0 0 0 0 0
1 1,048,576 65,536 1 4,096 1 256 1 16 1 1
2 2,097,152 2 131,072 8,192 2 512 2 32 2 2
3,145,728 3 196,608 3 12,288 3 768 3 48 3 3

4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 6,291,456 6 393,216 6 24,576 1,536 96 6 6
7 7,340,032 7 458,752 28,672 1,792 112 7 7
8 8,388,608 8 524,288 8 32,768 2,048 8 128 8 8
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
10,485,760 655, 360 40,960 A 2,560 A 160 | A 10
11,534,336 720,896 45,056 2,816 B 176 B 11
12,582,912 786,432 49,152 3,072 c 192 12
13,631,488 851,968 53,248 D 3,328 208 13
14,680,064 917,504 E 57,344 E 3,584 224 14

F 15,728,640 F 983,040 F 61,440 E 3,840 F 240 F 15

Table of PET Codes

DECIMAL HEX ASCIT SCREEN BASIC 6502 DECIMAL DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL
0 00 [] end-line BRK 0
1 01 A ORA(I,X) 1 50 32 2 2 2 50
2 02 B 2 51 33 3 3 3 51
3 03 C 3 52 34 4 4 4 52
4 04 D 4 53 35 5 5 5 AND Z,X 53
5 05 E ORA Z 5 54 36 6 6 6 ROL Z,X 54
6 06 F ASL Z 6 55 37 7 7 7 55
7. 07 G 7 56 38 8 8 8 SEC 56
8 08 H PHP 8 57 39 9 9 9 AND Y 57
9 09 1 ORA # 9 58 3A : : : CLI 58
10 0A J ASL A 10 59 3B H H ; 59
11 0B K 11 60 3C 60
12 oc . L 12 61 3D = = = AND X 61
13 1)1} car ret M ORA 13 62 3E ROL X 62
14 OE N ASL 14 63 3F ? ? ? 63
15 OF 0 15 64 40] RTI 64
16 10 2 BPL 16 €5 41 A '$1 ,a /-) A EOR(I,X) 65
17 11 cur down Q ORA(I),Y 17 66 42 B 1R B 66
18 12 reverse R 18 67 43 C = ,C C 67
19 13 cur home s 19 68 44 D == .d D 68
20 14 delete T 20 69 45 E M= e E EOR 2 69
21 15 U ORA Z,X 21 70 46 F .1 F LSR Z 70
22 16 v ASL Z,X 22 71 47 G T ¢ G 71
23 17 W 23 72 48 H 'T| -h H PHA 72
24 18 X CLC 24 73 49 1 K11 I EOR # 73
25 .19 Y ORA Y 25 74 4A J A EE J LSR A 74
26 1A z 26 75 4B K U7 .x K 75
27 1B [27 76 4c L] ,1 L JIMP 76
28 1C \ 28 77 4D M NJ +m M EOR 77
29 1D cur right] ORA X 29 78 4E N 7 o N LSR 78
30 1E { ASL X 30 . 79 4F 0 = .0) 79
31 1F -— 31 80 50 P m B P BVC 80
32 20 space space space JSR - 32 81 51 Q @ 9 Q EOR(I),Y 81
33 21 H ! ! AND(I,X) 33 82 52 R 1 ,r R 82
34 22 " " " 34 83 53] ﬁ ,s] 83
35 23 # # # 35 84 54 T]t T 84
36 24 $ $ 3$ BIT Z 36 85 55 U A u. 4] EOR Z,X 85
37 25 % % % AND Z 37 86 56 v 5q v v LSR Z,X 86
38 26 & & & ROL Z 38 87 57 w 0] ¥ W 87
39 27 ' ' ' 39 88 58 X (%] o x X CLI 88
40 28 (((PLP 40 89 59 Y T ey Y EOR Y 89
41 29))) AND # 41 90 5A Z ,Z Z 90
42 2A * * * ROL A 42 91 5B i 91
43 2B + + + 43 92 5C 1 92
44 2C , R , BIT 44 93 5D T EOR X 93
45 2D - - AND 45 94 5E s LSR X 94
46 2E . . . ROL 46 95 5F) 95
47 2F / / / 47 96 60 RTS 96
48 30 9 [} '] BMI 48 97 61 ADC(I,X) 97
49 31 1 1 1 AND(I),Y 49 98 62 98
99 63 99

DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL

100 64 100 150 96 r-v DEF STX Z,Y 150
101 65 ADC Z 101 151 97 : r-w POKE 151
102 66 RCR Z 102 152 98 r-X PRINT # TYA 152
103 67 103 153 99 r-Y PRINT STA Y 153
104 68 PLA 104 154 9A r-Z CONT TXS 154
105 69 2 ADC # 105 155 9B r-[LIST 155
106 6A RCR A 106 156 9C r-\ CLR 156
107 6B 107 157 9D cur left r-] CMD STA X 157
108 6C JMP(I) 108 158 9E r-4 SYS 158
109 6D ADC 109 159 9F r- OPEN 159
110 6E ROR 110 160 AO [] CLOSE LDY #¢ 160
111 6F 111 161 Al g r-! GET LDA(I,X) 161
112 70 BVS 112 162 A2 r-" NEW LDX # 162
113 71 ADC(I),Y 113 163 A3 r-# TAB(163
114 72 114 164 A4 r-$ TO LDY Z 164
115 73 115 165 A5 r-% FN LDA Z 165
116 74 116 166 A6 r-& SPC(LDX 2 166
117 75 ADC Z,X 117 167 A7 r-' THEN 167
118 76 ROR Z,X 118 168 A8 r-(NOT TAY 168
119 77 119 169 A9 r-) STEP LDA # 169
120 78 SEI 120 170 AA r-* + TAX 170
121 79 ADC Y 121 171 AB r~+ - 171
122 7A 122 172 AC r-, * LDY 172
123 78 123 173 AD r—— / LDA 173
124 7C 124 174 AE r-. LDX 174
125 7D ADC X 125 175 AF r-/ AND 175
126 7E ROR X 126 176 BO r-¢ OR BCS 176
127 % 127 177 Bl r-1 LDA(I),Y 177
128 80 r-0 END 128 178 B2 r-2 = 178
129 81 r-A FOR STA(I,X) 129 179 B3 r-3 179
130 82 r-B NEXT 130 180 B4 r-4 SGN LDY Z,X 180
131 83 r-C DATA 131 181 B5 r-5 INT LDA Z,X 181
132 84 r-D INPUT # STY Z 132 182 B6 r-6 ABS LDX Z,Y 182
133 85 r-E INPUT STA 2 133 183 B7 r-7 USR 183
134 86 r-F DIM STX 2 134 184 B8 r-8 FRE CLV 184
135 87 r-G READ 135 185 B9 r-9 POS LDA Y 185
136 88 r-H LET DEY 136 186 BA r-: SQR TSX 186
137 89 r-1 GOTO 137 187 BB ¥-; RND 187
138 8A r-J RUN TXA 138 188 BC r- LOG LDY X 188
139 8B r-K iF 139 189 BD re= EXP LDA X 189
140 8C r-L RESTORE STY 140 190 BE r- cos LDX Y 190
141 8D car ret r-M GOSUB STA 141 191 BF r-? SIN 191
142 8E r-N RETURN STX 142 192 co TAN CPY # 192
143 8F r-0 REM 143 193 ct ATN CMP(1),X 193
144 90 r-P STOP BCC 144 194 c2 PEEK 194
145 91 cur up r-Q ON STA(1),Y 145 195 C3 LEN 195
146 92 rvs off r-R WAIT 146 196 c4 STR$ CPY Z 196
147 93 clear r-S LOAD 147 197 (o} VAL CMP Z 197
148 94 insert r-T SAVE STY Z,X 148 198 Cé ASC DEC 7 198
149 95 ‘ r-U VERIFY STA Z,X 149 : 199 c7 CHRS 199

DECIMAL HEX ASCIX SCREEN BASIC 6502 DECIMAI, DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL

200 cs LEFT$ INY 200 250 FA] 250
201 co RIGHT$ CMP #= 201 251 FB 251
202 CA MID$ DEX 202 252 FC 252
203 CB 203 253 ‘FD SBC X 253
204 cc cyp 204 254 FE INC X 254
205 cb cMp 205 255 FF 255
206 CE - DEC 206
207 CF Iz} 207
208 DO 2 BNE 208
209 D1 CMP(1),Y 209
210 D2 - 210
211 D3 e 211
212 D4 ® 212
213 D5 5 CMP Z,X 213
214 D6 2 DEC Z,X 214
215 D7 < 215
216 D8 CLD 216
217 DS CMP Y 217
218 DA 218
219 DB 219
220 DC 220
221 DD CMP X 221
222 DE DEC X 222
223 DF 223
224 EO CPX # 224
225 El SBC(I),X 225
226 E2 226
227 E3 227
228 E4 CPX Z 228
229 E5 SBC Z 229
230 E6 INC Z 230
231 E7 231
232 ES INX 232
233 E9 , SBC #* 233
234 EA NOP 234
235 EB 235
236 EC CPX 236
237 ED SBC 237
238 EE INC 238
239 EF 239
240 FO BEQ 240
241 F1 SBC(I),Y 241
242 F2 242
243 F3 243
244 F4 244
245 F5 SBC Z,X 245
246 F6 INC Z,X 246
247 F7 247
248 F8 SED 248
249 F9 SBC Y 249

A/D CONVERTORS 80, 98
. ABSOLUTE -ADDRESSING 27

ABSOLUTE INDEXED ADDRESSING 27, 28

ACCUMULATOR 19
ADDITION 21

ADDRESS BUS 2
ADDRESSED COMMANDS 150
ADDRESSING MODES 26, 39
ARITHMETIC UNIT 19
ARRAY LIMITATION 76
ARRAYS 72, 73, 75

ASCII 15, 37,95

ASCII FILE 135, 136, 137
ASSEMBLER 35

AUTO PROGRAM GENERATOR 128

BASIC INTERPRETER SUBROUTINES 44-64

BASIC TOKENS 68
BINARY FILES 135

BLANKING 161

BRANCH 23

BREAK COMMAND 23, 32
CARRY FLAG 23

CASSETTE 1, 10, 14, 85, 133
CASSETTE BUFFERS 100, 130
CASSETTE MOTOR 14, 134
CHARACTER GENERATOR 15
CHARGOT 33

CHIP SELECT 7

CLOCK &, 104, 108
COMMUNICATION 83,85, 87, 109
CONDITIONAL TEST 24
CONTROL BUS 4
CPU |

CURSOR CONTROL
DATA BUS 2
DATA DIRECTION REGISTER 90
DATA MODIFY INSTRUCTIONS 32
DATA STATEMENT GENERATOR
DATA STATEMENTS 72, 129
DATA STORAGE 72

DECIMAL MODE 23

DECREMENT 32

DEVICE NUMBERS 133
DIAGNOSTICS 83

DIVISION 22

DOUBLE DENSITY PLOT 163
FLAGS 22, 23, 95, 117
FLOATING POINT VARIABLES 74
FLOPPY DISK 134, 142

FLOW DIAGRAMS 37

GARBAGE COLLECTION 78
HAND ASSEMBLY 35, 39

11, 85

HANDSHAKE LINES 90, 92, 96, 101, 116

1/0 6, 10, 89

129

INDEX

1/0 PORT EXPANSION 109
IEEE 488 10, 11, 133, 142
IEEE CONNECTOR 142
IEEE HANDSHAKING 143, 147, 158
IEEE TIMING 147

IEEE TO RS232 156
IMMEDIATE ADDRESSING 26
IMPLIED ADDRESSING 26
INCREMENT 32

INDEX REGISTERS 27
INDEXED ADDRESSING 27

INDIRECT INDEXED ADDRESSING 28

INSTRUCTION SET 19
INTEGER VARIABLES 73
INTERRUPT 5, 30, 31, 100, 111
INTERRUPT DISABLE 23
INTERRUPT POLLING 31, 92, 99
INTERRUPT VECTOR 5, 31

IRQ 5

JFFY CLOCK 9%, 97
JOYSTICK 98

JUMP 23, 25

KEYBOARD 10, 11, 85, 123
KEYBOARD BUFFER 128
KEYBOARD DISABLE 125, 126
KIM 111

LINE NUMBER 71

LINE NUMBERING 71

LINK ADDRESS 69, 71, 72
LOGICAL FILE NUMBER 134
LOGICAL OPERATIONS 19
MACHINE CODE 33, 35, 96, 104
MACHINE CODE MONITOR 140
MANAGEMENT BUS 147
MEMORY 1, 6

MEMORY 2114 7

MEMORY 6550 7

MEMORY BLOCK SELECT 8
MEMORY EXPANSION 8§
MEMORY MAP 6, 10, 122
MEMORY MAPPED 6

MEMORY TEST 8, 9, 65
MICROPROCESSOR 6502 2, 3
MULTIPLE PRECISION 20
MULTIPLICATION 22
MUSIC GENERATOR
NEGATIVE FLAG 23
NEW BASIC INSTRUCTIONS 80
NMI 5, 30, 34, 101

OP-CODE 6, 25

OPERAND 25

OPERATING SYSTEM 43
OPERATING SYSTEM SUBROUTINES
OVERFLOW FLAG 23

103, 104, 105

uh-6Y

OVERLAYS 70, 71

PAGE ZERO MEMORY MAP 39, 65
PIA 6520 10, 12, 119

PIXEL 15

POWER SUPPLY 2

PROCESSOR STATUS REGISTER 22
PROGRAM COUNTER 24, 31
PROGRAM MERGE 133, 140
PROGRAM STORAGE FORMAT 69
PULL ACCUMULATOR 29

PUSH ACCUMULATOR 29

R/W 4, 89, 134

RAM ROM 5, 6, 7

READ 2, 83, 87, 134

READY 6

RECORDING FORMAT 136
REGISTERS 6520 119

REGISTERS 6522 89, 114
RELATIVE ADDRESSING 25, 27
REPEAT KEY 131

RESET 4, 5, 30

RESET VECTOR 5

RETRACE INTERRUPT 161
RETURN KEY DISABLE 131
REVERSE FIELD 127

ROTATE BYTE 32

SCREEN EDITOR 130

SERIAL 1/0 107, 108, 109, 156
SHIFT BYTE 32

SHIFT KEY 126

SHIFT REGISTER 87, 89, 104, 105, 109, 115

STACK POINTER 29, 30
STACK REGISTER 29
STOP DISABLE 126
STOP KEY 94, 126
STRING VARIABLES 74

SUBROUTINES 33, 43, 97, 100, 111, 141

SUBTRACTION (SBC) 21
SWITCH SENSING 93

SYNC 6, 85

SYS 33, 34

SYSTEM ARCHITECTURE 17
SYSTEM VARIABLES 4l-64

TALK AND LISTEN ADDRESS 144, 149

TAPE BUFFER 136

TAPE ERROR CHECKING 137, 138
TIMERS &, 5, 115, 116

TOKENS 66, 68

TOP OF MEMORY POINTERS 34, 65
TRACE 80

TRANSFER BUS 145

TV MONITOR 85

TWO'S COMPLEMENT 21
UNCOPYABLE TAPES 139, 140
UNIVERSAL COMMANDS 149
UNAUTHORISED DATA ENTRY 125

USER PORT 14, 83, 87, 92
USR 33, 34

VARIABLE POINTER 72, 73
VARIABLE STORAGE 72, 73
VIA 6522 13, 83, 87, 89, 91
VIDEO ADDRESS GENERATOR
VIDEO CIRCUIT 14, 86
VIDEO RAM 15

WAIT 9%

WRITE 2, &, 87, 135

ZERO FLAG 23 -

ZERO PAGE ADDRESSING 27

15

