
Programming the PET/CBM

Covers most software aspects of
the COMMODORE PET and CBH r*.ri*~

of microcomputers and peripheral

TOPICS INCLUDE
Co nip 1 ete reference sec1 1 ons on
BASIC and 6502 machine language
(. introductory _and advanced level'
/ Tape , d i sl<sT pr inters , p letters,
Memory, storage f syntax, routine;
/"Efficient business systems
/Reference sections on each ROM

by RfiETO WEST

a LEVEL LIMITED publication

Programming the PET/CBM

Raeto West

Contents

1 Introduction and Overview p.1

2 BASIC and how it works p.4

3 Program and System Design p.17

4 Effective programming in BASIC p.23

5 Alphabetic Reference to BASIC Keywords p.38

6 Disk Drives p.158

7 Alphabetic Reference to Disk BASIC Commands p.214

8 Other Peripherals and Hardware p.235

9 Graphics and Sound p.266

10 The Transition to Machine-Code p.294

11 Programming the 6502 Microprocessor p.310

12 Alphabetic Reference to 6502 Opcodes p.323

13 ROM Routines and their uses p.351

14 Effective 6502 Programming p.361

15 Index to CBM BASIC ROMs and RAM Storage p.391

16 Mathematical Programming p.442

17 Programming for Business and Education p.473

Appendices p.482

Glossary p.495

Addendum p.496

Index p.497

Programming the PET/CBM Contents

TABLE OF CONTENTS

CHAPTER 1

1.1 Introduction and plan of the book 7

1.3 Sources of information 7

1.5 PET/CBM hardware and family tree 3

INTRODUCTION AND OVERVIEW

1 . 2 Conventions 7

1 . 4 Acknowledgements 2

CHAPTER 2: BASIC AND HOW IT WORKS

2.1 Keyboard, screen, and screen editing 4

2.3 Variables: types, names, storage 7

2.5 Manipulating BASIC and its variables 73

2.7 Optimising BASIC 75

2.2 Entry and storage of BASIC 5

2.4 BASIC syntax 7 7

2.6 LOADing and RUNning BASIC 75

2.8 Differences between ROMs 76

CHAPTER 3: PROGRAM AND SYSTEM DESIGN

3.1 General introduction 7 7

3.3 Designing systems 27

3.2 Designing programs 18

3.4 Timing, 'sizing', checking systems 22

CHAPTER 4: EFFECTIVE PROGRAMMING IN BASIC

4.1 Specific BASIC problems and solutions

4.1.1 Subroutines and documentation 23

4.1.3 Codes 24

4.1.5 Date processing 24

4.1.7 Hard and soft coding 25

4.1.9 The keyboard buffer 28

4.1.11 Rounding 29

4.1.13 Searching 30

4.1.15 String handling 32

4.1.17 Arrays 33

Debugging BASIC programs 36

4.1.2 Checkdigits and checkletters 23

4.1.4 DATA: steps, relocation 24

4.1.6 Error messages 25

4.1.8 INPUT 25

4.1.10 Numeral packing, unpacking 28

4.1.12 RAM data storage 30

4.1.14 Sorting 31

4.1.16 Validation 32

4.2

CHAPTER 5: ALPHABETIC REFERENCE TO BASIC KEYWORDS

ABS 38
ATN 44
CLR 48
CRUNCH 52

DEL 57
EXP 63

CO 70

IF 75

INT 81

LIST 86

MERGE 93

NEXT 98

OPEN 703

POP 705

PRINT USING
RESTORE 727

RUN 725

SIN 737

ST 739

TAB(745

UNLIST 757

VERIFY 756

7 75

AND 39
AUTO 45
CMD 49
DATA 54

DIM 58
FOR.. TO.. STEP 64

GOSUB 77

INPUT 76

LEFT$ 82
LOAD 89

MID$ 95
NOT 99

OR 705

POS 709

READ 118

RETURN 722

SAVE 726

SORT 732
STOP 747

TAN 746

USR 753
WAIT 757

APPEND 47

CHR$ 46
CONT 50

DBL 55

DUMP 60

FRE 67
GOTO, CO TO 73

INPUT# 78

LEN 83

LOG 91

MOD 96

OLD 700

PEEK 706

PRINT 770

REM 7 79

RIGHT$ 723

SET 725

SPC(737
STR$ 742

Tl, Tl$ 747

VAL 754

ASC 43
CLOSE 47
COS 57

DEF FN 56
END 62

CET, CET# 68

HTAB, VTAB 74

INSTRING$ 80

LET 84

LOMEM, HIMEM 92

NEW 97
ON 702

POKE 707

PRINT* 773

RENUMBER 720

RND 724

SGN 730

SQR 736

SYS 743

TRACE 749

VARPTR 755

Programming the PET/CBM ii Contents

CHAPTER 6: DISK DRIVES

6.1 Hardware Disk drives 756 Diskettes 760
6.2 Software What is a file? 162 Sequential files, relative files 762

Other file types 764 Opening and closing files 766
6.3 Commodore disk drives and file handling 2040, 3040, 4040, 8050 766

CBM file types 765 Formatting new diskettes 765
Secondary address 15 766 DOS support 769
PRINT*, INPUT*, and GET* 769 Status variables ST,DS,DS$ 770
Demonstration programs 777

6.4 CBM diskette formats Data storage, directory, BAM 777
6.5 Direct access programming to disk Direct access commands 755

Block Read (B-R) 756 Block Write (B-W) 757
Block Execute (B-E) 767 Block Allocate (B-A) 766
Block Free (B-F) 769 Buffer pointer (B-P) 769
Memory Read (M-R) 769 Memory Write (M-W) 790
Memory Execute (M-E) 797 UA - UJ 792
Notes on direct access 792

6.6 Machine-code programming with CBM disk drives
Opening, closing, reading files 794 Loading and saving blocks of RAM 795
Sending command-strings to disk 796 Using DS$ and DS 797

6.7 Compu /think disk drives General description 795
Commands and bugs 200 ROM routines and map 202
Demonstration BASIC programs 203 Directory track and buffer use 206

6.8 Problems, reliability, and maintenance Minimising the chance of error 270
Summary of CBM bugs 27 7 Timing; physical problems 272

CHAPTER 7: ALPHABETIC REFERENCE TO DISK BASIC COMMANDS
7.1 Notes on BASIC disk commands 274 7.2 Notes on BASIC 4 syntax 274
APPEND 275 BACKUP 276 CATALOG, DIRECTORY 277
COLLECT 279 CONCAT 220 COPY 222 DCLOSE 223
DLOAD 224 DOPEN 225 DS$, DS 227 DSAVE 229
HEADER 230 INITIALISE 231 RECORD 232 RENAME 233
SCRATCH 234

CHAPTER 8: OTHER PERIPHERALS AND HARDWARE

8.1 Cassettes 235 8.2 Data storage on tape
Introduction; BASIC file and data storage; security; end-of-tape marker 236
BASIC demonstration programs to write and read tape files 238
Tape headers and blocks 239 Machine-code routines ; RAM 24 7

8.3 Miscellaneous: fast-forward winding, tape directories, BASIC 1 bugs, security 243
8.4 Printers 8.5 CBM printers 4022 features 246

Lower-case printing 250 Other printers 257
8.6 The modem
8.7 The keyboard Description and features 253

Stop key, INPUT protection 254 Interrupt routine 255
PIA programming; RAM locations 256 Keyboard buffer; repeat keys 257
Redefinition of keyboard 259 Single-key entry of BASIC &c. 267

8.8 Other firmware and hardware
Reset switches for PET/CBM 262 EPROMs; process control 263

CHAPTER 9: GRAPHICS AND SOUND
9.1 PET/CBM screens Screens and character-generators 265

Table of CBM ASCII characters 266 Upper and lower case modes 267
Table of screen memory characters 268 PRINT, POKE, and PEEK 269

9.2 CRT controller chip 270
9.3 PET/CBM graphics BASIC 272 Table of graphics characters 273

Example programs 274 Special features of BASIC 4 275
Machine-code graphics 276 Utilities (e.g. column plotter) 278

9.4 Dumping graphics to a printer 257 9.5 Animation 282
9.6 Pen plotters 284 9.7 Sounds and the PET/CBM

Introduction 256 CB2 square-wave sound 289
Use of interrupts to play tunes 297 User-port music 293

Programming the PET/CBM Hi Contents

CHAPTER 10: THE TRANSITION TO MACHINE-CODE

10.1 Introduction and some 8-bit concepts

Bits, bytes, nybbles, hexadecimal, 2's complements, kilobytes 294

10.2 Machine-language monitors - TIM, MLM 296 List of commands 297

10.3 Extended machine-code monitors Examples; the method used 298

SUPERMON 300 EXTRAMON 307

Modifications to monitors 302

10.4 Monitors in BASIC 304 10.5 Introduction to 6502 coding 307

CHAPTER 11: PROGRAMMING THE 6502 MICROPROCESSOR

11.1 Hardware features of the 6502

11.1.1 Addressing modes 310 11.1.2 NVBDIZC flags 312

11.1.3 Program-counter, zero-page, stack 313 11.1.4 NMI, RESET, and IRQ 313

11.1.5 6502 instructions and opcodes 314

11.2 Software methods with the 6502

11.2.1 Incrementing 2 bytes 315 11.2.2 Decrementing 2 bytes 315

11.2.3 Adding 2-byte pairs 375 11.2.4 Subtracting 2-byte pairs 375

11.2.5 Multiplying single bytes 316 11.2.6 Division of 2 bytes by 1 376

11.2.7 Comparing 2-byte pairs 377 11.2.8 Negation (2's complement) 3 77

11.2.9 Other 2-byte operations 377 11.2.10 Loops 377

11.2.11 Saving and restoring the zero-page 375 11.2.12 Memory-moving pages 376

11.2.13 Using shift and rotate commands 375 11.2.14 Jump, data, address tables 379,

11.2.15 Random numbers 379 11.2.16 Addressing modes 320

11.2.17 Testing data for range 327 11.2.18 Using subroutines 327

CHAPTER 12: ALPHABETIC REFERENCE TO 6502 OPCODES

Abbreviations used; guide to mnemonics 322

ADC 323 AND 324 ASL 324 BCC 325 BCS 325 BEQ 326 BIT 326 BMI 327

BNE 327 BPL 328 BRK 328 BVC 329 BVS 329 CLC 330 CLD 330 CLI 330

CLV 330 CMP 33 7 CPX 332 CPY 332 DEC 333 DEX 333 DEY 334 EOR 334

INC 335 INX 335 INY 336 JMP 336 JSR 337 LDA 338 LDX 338 LDY 339

LSR 339 NOP 340 ORA 340 PHA 347 PHP 347 PLA 342 PLP 342 ROL 343

ROR 343 RTI 344 RTS 344 SBC 345 SEC 346 SED 346 SEI 346 STA 347

STX 347 STY 348 TAX 348 TAY 348 TSX 349 TXA 349 TXS 350 TYA 350

CHAPTER 13: ROM ROUTINES AND THEIR USES

13.1 The RESET sequence 357 13.2 The interrupt sequence 357

Memory displaying program 357 Pause loop 352

13.3 Other ROM routines
GET, PRINT, OPEN 352 Receive line from keyboard 354

Fetch linenumber 354 Search for linenumber 355

RUN 355 memory move 355

string comparison 356

13.4 Examples of modifications to ROM routines

13.4.1 PRINT USING (formats numbers) 356 13.4.2 Modified LIST 357

13.4.3 TRACE 359

CHAPTER 14: EFFECTIVE 6502 PROGRAMMING

14.1 Assemblers 367 14.2 Interconversion between ROMs 364

14.3 Machine-code and BASIC
14.3.1 The CHRGET routine 365 14.3.2 Wedges in BASIC 366

Examples; computed GOTO and GOSUB 367 14.3.3 BASIC utilities 369

Examples: search-and-replace character; compute hashtotal 369

14.4 Machine-code loaders in BASIC
14.4.1 Hex loading to fixed location 370 14.4.2 Relocating loaders 377

14.5 Pure machine-code techniques 372 14.6 Debugging machine-code 373

14.7 The IEEE bus
Description; CBM implementation 374 Program examples 379

14.8 PIAs and VIA
14.8.1 The PIA 383 Map of CBM implementation 386

U.S. 2 The VIA 386 Control registers 388

Map of CBM implementation 389 Program examples 389

Programming the PET/CBM iv Contents

CHAPTER 15: INDEX TO CBM BASIC ROMS AND RAM STORAGE
RAM memory map ($0-$0400) 392

Page 1 395
Page 3 396

Memory map 391
Page 393
Page 2 395
Contents of ROMs (summary) 397

BASIC address and data tables; subroutines for BASIC input and operation 398
BASIC systems and running routines: warm start, perform keyword, NEW, &c. 399
BASIC keywords 400 Numeral processing 405
String processing 408 Calculations 472

Machine-language monitor (MLM) 418 Monitor subroutines 420
BASIC 4 disk commands 421
Screen, keyboard, interrupt (EOOOff) 424 Keyboard decoding 427

Tape and IEEE routines 429 Power-on routine 439
Kernel subroutines 440

CHAPTER 16: MATHEMATICAL PROGRAMMING
16.1 Computation

. Accuracy with floating-point numbers 442
Inverse interpolation 446

16.2 Statistics

Random numbers 448
Probability distributions 450

16.3 Simulation
Introduction 451

16.4 Accounting and actuarial programming
Tax gross example 454

16.5 Trigonometry
Definitions; crashproofing; equations 457

16.6 Arrays and matrices
Definitions, rules 458

16.7 Number Theory 462
16.8 Curve fitting 462

9 Machine-code
Deciphering floating-point; hex/dec. 465
ROM routines (both accumulators) 467 „ „. „w„

Examples of addition, subtraction, multiplication and division 468
Examples using the series evaluation routines 477

16

Solving equations: Newton 445
Integration 447

Permutations and combinations 449

Five examples 452

Compound interest example 455

General expressions 457

Inversion ; simultaneous equations 459

ROM routines (one accumulator) 466
Values stored in ROM (table) 468

CHAPTER 17: PROGRAMMING FOR BUSINESS AND EDUCATION
17.1 Business programming

17.1.1 Types of systems 473
17.1.3 Packages 475
17.1.5 Testing sytems 477
17.1.7 Documentation 478
17.1.9 Contracts 478

17.2 Programming in education
17.2.1 Costs 479
17.2.3 General attitudes 480

17.1.2 One-off ('bespoke') systems 47.?
17.1.4 Input /Output 476
17.1.6 Testing systems 477
17.1.8 Security 478
17.1.10 Copying and 'piracy' 479

17.2.2 Programs 480

APPENDICES

Alphabetic table of opcodes with function, bit structure, addressing, and timing 452
Hexadecimal / decimal interconversion chart 484
Table of opcodes in hex sequence 455
Examples of addressing modes with the 6502 486
Reference charts on (i) 6502 timing, (ii) processor status register 487
Further aspects of the 6502 488
SUPERMON listings (for BASICs 2 and 4) 490
ASCII code 493
Languages 494
Glossary 495

Programming the PET/CBM . 7- 7: Introduction

CHAPTER 1: INTRODUCTION AND OVERVIEW

1.1 Introduction and plan of the book

The purposes of this book are to teach competent programming and provide a compre-

hensive reference text on the PET/CBM range of microcomputers. These aims are not

entirely compatible: virtually everyone interested in these machines begins with BASIC

and progresses to machine-code, but, on the other hand, for completeness it is often

necessary to mix both types of program. Comparative beginners will therefore find

themselves skipping quite large sections of temporarily difficult text. I have included

demonstration routines in BASIC (Chapter 5), 6502 machine-code (Chapter 12), and

disk, tape, and printer programming (Chapters 7 and 8). To reduce the chance of

mis-keying, these routines have been kept as short as possible; in this way it is poss

ible to learn by doing, by experimenting at the keyboard to get the feel of the comm-

ands, without the tedium associated with entering long illustrative programs.

Commodore's most recent machines, the VIC home computer and the MMF Micro-

mainframe' are not dealt with here, partly for reasons of space. VIC has many things

in common with CBM microcomputers, MMF rather fewer. My rule has been to try to

cover most of the common configurations of hardware which exist at present and are

likely to exist in the fairly near future. For this reason little space has been given to

modems, hard disks ('Winchesters') and networks, while tape and diskettes are ex-

plained in depth. I've documented each of the three versions of CBM BASIC issued to

date, although with a bias to the later versions. This may seem rather wasteful - until

questions of compatibility between ROMs arise.

1 .

2

Conventions

Most CBM machines switch on in upper-case/ graphics mode, and except in few cases,

mainly 8032 disk commands, BASIC is printed in upper-case characters here, which

also distinguishes BASIC keywords from the normal text. BASIC can of course appear

in lower-case on the VDU, if the mode is changed, a fact which may cause confusion

to programmers unused to this dual display. Machine-code and BASIC, entered from

the keyboard in the usual way, use mostly unshifted keys.

CBM BASIC has special screen-editing commands, which appear within quotes as

reversed characters. (See Chapter 2). For increased readability I have printed these

in square brackets - [HOME], [CLEAR], and so on. Chapter 13 has a LIST routine to

perform this task automatically for BASIC.
The only other non-standard notation is the use - for machine-code only! - ot

round brackets as a shorthand for a 2-byte indirect address. For example, I have

written (2A) to denote the two-byte number held in locations 2A and 2B, taking the

first byte as low and the second as high, in accordance with 6502 logic Similarly,

(FFFE) is a convenient way to refer to the interrupt address, held in FFFE and FFbb.

Spelling of computer terms is more-or-less American. Occasionally BASIC terms

are written in lower-case, when used in a general sense, not specifically BASIC. For

example, 'printing to screen' can use PRINT or some machine-code equivalent, and

'peeking' could mean PEEK or a machine-code command like LDA.

1 .

3

Sources of information

Manuals CBM's product manuals are widely recognized to be unhelpful; this is one of

the reasons for the existence of this book. MOS Technology (now a part of the Comm-

odore Semiconductor Group) produces reasonable manuals on 65xx series hardware and

65xx programming.
, „

Magazines, journals In the U.K. the largest-selling small computer journals are Pract-

ical Computing and Personal Computer World. These are not particularly CBM-orient-

ated Printout was, but is no longer, exclusively about the CBM. Compute! deals with

6502 machines (Apple, Atari, PET/CBM) and is the best magazine for the non-beginner.

Micro has machine-code articles on the 6502 and 6809. Byte magazine and kilobaud-

Microcomputing are two other well-known general microcomputer publications; other

market niches are covered by (for example) Creative Computing and Dr Dobbs Journ-

al All but the first three of these magazines are American. There are also periodicals

aimed at the education market, the home computer and games market, the technical

hardware market, and what might be called the uninformed businessmen s market.

Programming the PET /CBM -2- 7: Introduction

There are four weekly 'throwaways' in the U.K. at the time of writing (Computing,
Computer Weekly, Datalink and Computer Talk) of which Datalink is most interested
in microcomputing.
User groups and newsletters Commodore in Canada produces 'The Transactor', which
is useful and informative. The U.S Commodore Newsletter (called 'Interface') is less
good. The U.K. equivalent was called the PET Users Club Newsletter, later abbrev-
iated to CPUCN, and renamed 'Commodore Club News' in mid-1981. Like all periodicals,
it is episodic and fragmentary (I have lost count of the number of reviews of word
processor packages). However, it is responsive to its readers' requests.

User groups are the best source of up-to-date information. IPUG ('Independent
PET Users Group') has many branches in the U.K. and many experienced software and
hardware people. Other groups include SUPA ('Southern Users of PETs Association')
and the Association of London Computer Clubs, a loose organization of groups which
meet in polytechnics, universities and community centres, and is not specifically CBM.
Books*and other publications Osborne/ McGraw-Hill's 'PET /CBM Personal Computer
Guide' is issued with PETs sold in the U.S. It is currently in its third edition, edited
by Jim Strasma. This omits machine-code, which is covered in a number of books, of
which a few are explicitly PET: 'Hitch-Hikers Guide to the PET' for example. Some
books appear to be available only in the U.S., for example Gregory Yob's 'PET User
Manual'. Nick Hampshire has written three (of a projected ten) books for Commodore
U.K., including 'Library of PET Subroutines' and 'PET Graphics'. 'The PET Revealed
deals mainly with hardware and the BASIC 1 PET; other hardware books are listed at
the end of Chapter 8.

Several compendium-type books exist, for example by IPUG, by CPUCN, and by
Printout. The 'Channel Data Book' is an American compilation of PET /CBM products
and packages. The 'Computerist's Guide' is an indexed survey of the contents of most
of the microcomputer magazines, arranged by topic. Commodore produce a 'Software
Encyclopedia', essentially an uncritical list of every type of software package.

1 . H Acknowledgements

Peter Best, Jim Molloy and Pete Sydenham of A. Gallenkamp Ltd (who supply labor-
atory equipment) provided considerable assistance with this book. I am also grateful
to the software people who provided ideas and programs, and who are acknowledged
in the text, and also to Jim Butterfield for permission to print 'Supermon'. Finally, I

am grateful to my wife's tolerance during the rather long duration of writing.
I have gone to some lengths to test and check the information in this book, and

in fact believe it to be more reliable than most on this subject. Nevertheless there are
certain to be errors, and I apologize for any inconvenience or puzzlement which may
be caused. The usual disclaimer applies: I cannot accept responsiblity for failures in
software or hardware which may be based on suggestions found in this book

.

There are many company names, trade marks, and business names mentioned in
the book; CBM ('Commodore Business Machines'), MMF ('Micro-Mainframe'), PET ('Per-
sonal Electronic Transactor') and VIC ('Video Interface Chip') are all trade marks of
Commodore Business Machines. PET /CBM is a general way of referring to Commodore's
microcomputers with both keyboard and screen, and equipped with Microsoft BASIC.

Charles ('Chuck') Peddle, the designer of the PET /CBM and also, apparently,
the 6502 chip, deserves a special mention at this point, although his path has
diverged considerably from Commodore's.

*There are many general books on computers. Chris Evans wrote popular books on the
supposed impact of microprocessors. The technical side of chips was dealt with (e.g.)
in 'Scientific American'. Critics of applications include Joseph Weizenbaum, a Profess-
or at M.I.T. Gerry Weinberg is well-known (e.g. 'The Psychology of Computer Programm-
ing'), taking a conventional, optimistic viewpoint. Philip Kraft on the other hand has
examined de- ski 1 ling by management , and women ' s status within the industry. (Sartorial
iconographers might note that Weinberg is always depicted bearded and pullovered, but
Kraft neatly-suited). Some journalists have drawn attention to the role of cheap lab-
our in the Far East in chip manufacture. Academic computing's domination by software
theoreticians has been attacked by only one hardware-based writer that I know of, Ivor
Catt, who called programmers 'updated clerks'. (See e.g. 'Computer Worship).

Programming the PET/CBM -3-

1.5 PET/CBM hardware and family tree

APPROXIMATE CHRONOLOGY OF COMMODORE MICROCOMPUTERS

1: Introduction

1975

1977

1978

1979

65xx chips: by Rockwell, MOS Technology

KIM: single-board 6502-based microcomputer

2001-8: 8K RAM, built-in cassette, 8" 40-column white

screen, small keyboard. BASIC 1. (ROM -19,

issued to replace -11, cures screen edit bug).

2001-16, 2001-32: 16K or 32K RAM, 8" 40-column green
screen, large keyboard, no cassette. BASIC 2

(•Upgrade ROM') including monitor. Later re-

named 3008, 3016, 3032 with 'BASIC 3'

1980

4008, 4016, 4032: 8" 40-column green screen, large key-

board, similar to previous except for BASIC 4,

8032 32K RAM, 12" 80-column green screen, extra

keys, beeper. BASIC 4 (includes CBM disk

commands). (ROM -23, issued to replace ROM
1981 -19, cures bug in DS$).

4008, 4016, 4032: Made with 12" 40-column green screen

only, with extra keys, beeper.
VIC 22 columns, color with external TV, sounds.
WMF 64K extra RAM in 16 switchable blocks from

$9000-9FFF, 6502/6809, RS232 and high-speed
1982| RS232, many languages, existing and under

development at Waterloo Universtity).

BASIC 5 with BCD arithmetic? 40-column VIC,
discontinued 40-column CBM? Color CBM?

2000 series printers

.

2040 disk drives (DOS 1,

sequential files only).

3040 disk drives (DOS 1.2,

Shugart)

.

4040 disk drives (DOS 2.1,

including relative files).

8050 disk drives (DOS 2.5,

Micropolis).

4022 printer (^MX-70).

8250 disk drives (DOS 2.7,

Tandon)

.

The table summarises most of the hardware developments of Commodore to date. I have
omitted some of the printers. See Chapter 2 for more information on the differences

between BASIC ROMs, which are also mentioned in passing throughout much of the

book. Chapter 6 deals with disk drives, and Chapter 7 with the commands introduced

in BASIC 4.0. Printers and other hardware are explained in Chapter 8. A significant

difference between 12" and 8" models is the CRT controller chip: see Chapter 9 on

this, which also covers the built-in 'beeper'.

Internal layouts The diagram is a rough guide to the layout of the main chips and
ports on the printed circuit boards of the early PET, the 8" screen 3000 and 4000

series CBMs, and the 12" screen 4000 and 8000 series CBMs,
2000 8" 3000 £ 4000 12" 4000 6 8000

IEEE User Tape
Port #2 !

6502 & I/O
chips

I Tape

#1
RAH chips

J9

J4

IEEE User Tape
Port #1

6502 & I/O chips

F E D C B A 9

ROM chips

Tape

#2
RAH chips

J9

J4

IEEE User Tape
Port #i

6502 &
T76~chips
RAM chips
ROH chips

I '

Bell

(Tape

#2
J4

Programming the PET/CBM -4- 2: BASIC

CHAPTER 2: BASIC AND HOW IT WORKS

2.1 Keyboard, screen and screen-editing The keyboard and screen are described in
detail in Chapters 8 and 9 respectively. These devices offer the most direct commun-
ication with the machine. The keyboard is decoded by a 6520 chip and ROM software;
the screen memory is organised in a straightforward memory-mapped way, in which
sequential RAM locations correspond to screen positions moving left to right and down.
Screens in the CBM have 25 rows. 40-column and 80 column screens therefore require
1000 and 2000 RAM locations respectively. The screen starts at location $8000 in each
case, exactly half-way in the memory-map. The entire 4K from $8000- $8FFF is alloc-
ated to the screen, and the address-lines connected so that the upper part of this
block duplicates the lower. (So $8000-$83FF and $8400-$87FF are not distinguished from
each other in 40-column machines, for example, and a poke or peek to $8000 has the
same effect as a poke or peek to $8400). A few bytes are left over in RAM which do
not appear on the screen: 24 in 40 column machines, 48 in 80-column, because 1024-
1000 = 24 and 2048 - 2000 = 48. Tables of hexadecimal and decimal values of screen
locations are printed in Chapter 9. It is worth memorizing the figure 32768 (=$8000),
which is the location of the top-left of screen. Try POKE 32768,33 for instance.

Screen editing is the process by which characters on the screen are altered and
moved from the keyboard. PET/CBM has a number of special keys for this purpose,
which are fairly self-explanatory. The main complication is the use of the quote (")
to hold screen-editing characters in storage in BASIC. When this is done, the charac-
ter appears as a meaningless graphics symbol, and is printed in the usual consecutive
sequence without having its usual effect, such as clearing the screen. The exception
to this exception occurs with a few keys, like 'Delete', which have to work both in
quotes and out; the resulting editing system has a few anomalies, which make it less
easy than might be the case to perform editing tasks. However, it is still noticeably
easier than some rival systems. Commodore's manuals and some books go into great
detail on this

; it is much more easily explained by demonstration and trial than by the
written word. Try the examples which follow if you are uncertain about screen editing;
without covering every possible aspect, they incorporate most features.

(i) Editing a line without quotes. Switch on the machine, so Commodore's BASIC
message appears. Press [HOME].* The message may be edited, by (say) moving the
cursor right several positions, then inserting spaces. The end of the line moves right;
eventually, when it is 80 characters long (88 with VIC!) it will not expand more.

(ii) Using quotes. Type PRINT " and a series of miscellaneous keys including
editing characters. The effect of [RVS], [RVSOFF], [HOME], [CURSOR DOWN], and
the rest can be explored in this way. On pressing Return, the line is processed and
printed. With practice it is easy to produce quite complicated layouts; PRINT "[HOME]*
[DOWN]* [DOWN]*" prints three asterisks diagonally from the top left of the screen.

(iii) Editing a line with quotes. Type 1 PRINT "BASIC" so the cursor now is
positioned after the second quote, and quotes mode is off. Backspace the cursor one
position, and type several [INSERT] characters; the second quotation mark will move
right. Now type the [DELETE] key several times. Delete characters, appearing as
reversed Ts, fill the space. Press Return, the type RUN Return, to see the effect of
these characters. LIST will redisplay the line.

(iv) Shift-Return and the ESCape key. Return moves the cursor to the next
line and causes the edited line to be processed - i.e. incorporated into BASIC or ex-
ecuted in direct mode. Shift-Return moves the cursor without causing processing. The
ESCape key (12-inch screen machines only) has an analogous effect from within quotes,
turning off the quotes mode and the reverse mode, so the effect is identical to that
obtained from Shift-Return combined with cursor moves back to the original line.

(v) BASIC editing. LIST displays a line, or range of lines, from BASIC. Any
line may be edited in any way; for example, if the linenumber is changed and Return
pressed, a duplicate line is produced within the program. An isolated number erases
the corresponding BASIC line, if there is one.

In most of this book I have conventionally represented the special characters by a
name in capitals within square brackets. (Chapter 13 has a routine which lists pro-
grams in this way). This is far more readable than a single graphics character which
is its equivalent.

Programming the PET/CBM -5- 2: BASIC

LIST appearance of CBM special characters:

Mode 4 t 4= =? RVS RVSO HOME CLR TAB DEL INS

Lower-case Bl u II 11 a a Bi 13 a il ii

Upper-case U a II U ta B 31 u i n
2.2 Entry and storage of BASIC BASIC can run in either of two modes: direct (or

immediate or 'calculator' mode) or program ('stored') mode. If a line begins with a

number, it is treated as a program line, and stored in memory with other program lines

until it is run. If a line does not start with a number it is executed immediately Return

is pressed. The principles on which immediate mode runs are identical to those which

apply to stored programs; in this and the following sections we shall therefore mainly

consider BASIC programs.
A program may be examined with the LIST command. However, this provides no

clue to the way BASIC is organised in RAM, since it involves an elaborate process of

decoding. (See Chapter 13). We can look at BASIC in situ using either BASIC or the

machine-code monitor in these ways:
,

(i) X=0: FOR J=1025 TO 1200: POKE 32768+X, PEEK(J): X=X+1 :
NEXT IS a Simple direct

mode. line which displays several hundred bytes of BASIC at the top of the screen.

(Lower-case mode - POKE 59468,14 - gives the clearest representation). The bytes are

not easily deciphered, although text (in quotes) is clear enough. In the two examples,

the first has more text (including REMs) than the second.

3fl R0M4 RELOCATING 'PRINT USING' ROUTINE "J T I .„„-„ TTT, «-v«-ivtr« » <*idd*iitfUmmm 59468,12-. • " m underline <shift-*> tidies TiTLEaasaai wamm
Shine code i" noTTT^ded into sys 826 and sys 881. H »»lo«l the program to

1022, 123 !*"IIUuMDUM 3 . 4S5Jh-Sl" R I CK LEONN "tfUUUPROMINICO LTD. S'jflaJOl" VANCOUVER
7 .mmmmmmmmtasiMi^ i5,8,15BHBbF*-tI <13>a JJ»flL5*V J-.L6*V HlflBfl-7*V

ibl8*t" a io_a_9*y' __,vl0*v' mm a.i*v .

*

(ii) After entering the monitor (SYS 4 is easiest) we can display bytes in hexa-

decimal form from $0400 onwards. With the program 10 PRINT"HELL0" in memory, we

get this:
__ , 3400 @@ (8E 84) I8R SO) 99 22 48 *— fl4-0E = w**^ Ws link powf«-_ (<?S k*-rt).

^.̂ ^ijSA' SBS1C Ur^vvto^Urr (l(rf k^a.).
. 5 8488 45 4C 4C 4F 22 (5® fO0 0OJ^ .

.: 0418 AA RA AA Afl AA AA AA AA 00 = £ nA-cf- line ; $00 -- E*i <Jr pn3<im.

The ASCII characters for "HELLO" are visible in there, but so is much else.

The table on the following page gives a complete breakdown of the storage of

lines of BASIC, excluding the linenumbers and connecting details. All the components

are stored in ways which exclude ambiguous interpretation. Literals are held within

quotes, or after REM or DATA, and are not treated like the remaining BASIC. Numb-
ers, as in GOTO 1000 or X=89.8, are also held as ASCII strings, so that the 1000 of

GOTO 1000 occupies 4 bytes. Punctuation (commas, colons, semicolons, but not full

stops which are used as decimal points) is held as single bytes; so are the special

BASIC characters of %, $, (, and). Variable names use alphanumeric characters; the

initial is always alphabetic, to avoid confusion with numerals. Finally, the keywords

themselves are held in compact form, as single bytes; see the table. These are called

'tokens'. Slightly confusingly, single-byte keywords like <,=,* and / are also tokenised

into alternative single bytes. Tokens always exceed 127; the high bit of the byte is on,

and this enables machine-code to immediately recognise a token. This feature is common

to Microsoft BASICS.
A BASIC program is a 'linked list' or 'chain' of individual program lines. Unless

specially modified, BASIC starts at $0400 with a zero byte and is held in consecutive

locations up in memory. Each line starts with a 2-byte link address, which is an ab-

solute address pointer to the link address starting the next line. This is followed by

the linenumber, also in 2 bytes. In each case the low byte is first. Each line is term-

inated by a zero byte, and in addition 2 more zero bytes mark the end of the pro-

gram, so a link address of zero denotes the end. As we shall see, BASIC is support-

ed by a set of pointers which monitor important features as a program runs. If these

are modified, various non-standard effects can be realized.

The link addresses, linenumbers, tokens and so on can be identified with pract-

ice quite easily; the one-line program above has had its marked to show how they are

arranged. Again, this is standard Microsoft, as is the use of the zero byte to mark

the end of a line. (It is not universal; Apple Integer BASIC uses 1 to mark ends of

lines, and has an offset pointer, with maximum 255, to the next line).

Programming the PET/CBM -6-

PET7CBM INTERNAL STORAGE OF BASIC

2: BASIC

32 20 sp 64 40 @ 128 80 END 160 A0 CLOSE 192 CO TAN
33 21 / 65 41 A 129 81 FOR 161 A1GET 193 CI ATN
34 22 ii 66 42 B 130 82 NEXT 162 A2NEW 194 C2 PEEK
35 23 # 67 43 C 131 83 DATA 163 A3TAB(195 C3 LEN
36 24 $ 68 44 D 132 84 INPUT# 164 A4 TO 196 C4 STR$
37 25 % 69 45 E 133 85 INPUT 165 A5FN 197 C5 VAL
38 26 & 70 46 F 134 86 DIM 166 A6SPC(198 C6 ASC
39 27 i 71 47 C 135 87 READ 167 A7 THEN 199 C7 CHR$
40 28 (72 48 H 136 88 LET 168 A8 NOT 200 C8 LEFT$
41 29) 73 49 1 137 89 GOTO 169 A9STEP 201 C9 RIGHT$
42 2A * 74 4A J 138 8A RUN 170 AA + 202 CA MID$
43 2B + 75 4B K 139 8B IF 171 AB- 203 CB GO*
44 2C 1 76 4C L 140 8C RESTORE 172 AC* 204 CC CONCAT*
45 2D - 77 4DM 141 8DGOSUB 173 AD/ 205 CD DOPEN
46 2E , 78 4E N 142 8E RETURN 174 AE 206 CE DCLOSE
47 2F 1 79 4F 143 8F REM 175 AFAND 207 CF RECORD
48 30 80 50 P 144 90 STOP 176 BOOR 208 DO HEADER
49 31 1 81 51 Q 145 91 ON 177 Bl > 209 Dl COLLECT
50 32 2 82 52 R 146 92 WAIT 178 B2 = 210 D2 BACKUP
51 33 3 83 53 S 147 93 LOAD 179 B3 < 211 D3 COPY
52 34 4 84 54 T 148 94 SAVE 180 B4 SGN 212 D4 APPEND
53 35 5 85 55 U 149 95 VERIFY 181 B5 INT 213 D5 DSAVE
54 36 6 86 56 V 150 96 DEF 182 B6 ABS 214 D6 DLOAD
55 37 7 87 57 W 151 97 POKE 183 B7 USR 215 D7 CATALOG
56 38 8 88 58 X 152 98 PRINT# 184 B8 FRE 216 D8 RENAME
57 39 9 89 59 Y 153 99 PRINT 185 B9 POS 217 D9 SCRATCH
58 3A : 90 5A Z 154 9A CONT 186 BASQR 218 DA DIRECTORY
59 3B i 91 5B / 155 9B LIST 187 BBRND 219 DB
60 3C < 92 5C \ 156 9C CLR 188 BCLOC 220 DC — See
61 3D = 93 5D7 157 9D CMD 189 BDEXP 221 DD Notes

—

62 3E > 94 5E f 158 9E SYS 190 BE COS 222 DE
63 3F ? 95 5F <- 159 9F OPEN 191 BFSIN 223 DF
Notes: (i) Valid BASIC bytes from 0-127, in bold type, are space, "#$%(), and
. in order, followed by 0-9, : ; and A - Z. The zero byte is valid as an and-of-line
and end-of-program marker. On LIST, bytes from 96-127 appear as duplicates of the
characters 32-63, but, like the italicised characters above, cause 7SYNTAX ERROR.

*(ii) Valid bytes from 128- 255 are BASIC tokens; and GO is omitted from
BASIC 1, while CONCAT and the following keywords are omitted from BASIC<4.
Bytes beyond the end of the table list as apparent duplicates of keywords in BASIC<4,
and as error messages and garbage in BASIC 4. Note that Shift-K (BASIC 1), Shift-L
(BASIC 2), and Shift- [(BASIC 4 - may not be on the keyboard!), all cause LIST to
stop with ?SYNTAX ERROR. Spurious keywords can LIST but will not run.

(iii) The quotation mark, CHR$(34), can of course legitimately precede any
character.

When a BASIC program is entered at the keyboard, the contents of the line in
which Return is pressed are transferred to a buffer. This is 80 characters long, and
can hold one line; BASIC l's buffer was in the zero-page ($0A- $5A), but later BASIC
versions moved it to $0200- $0250. After the line has been moved, it is scanned for
keywords ; any that are found are converted into tokens. The tokenised line is then
merged into the program in memory, its position determined by its linenumber. The
tokenisation process can be watched (see Chapter 13) with the aid of a machine-code
routine which displays the input buffer at the top of the screen. In direct mode, the
line is executed in the input buffer; this enables a line like PRINT "[CLEAR]HELLO" to
run from the start to the end, even though it is erased from the screen as it runs.
40-column BASIC has provision in it to distinguish 40-charaeter lines from 80-character
lines; a screen-line table of 25 bytes holds a value for each line to indicate whether
two lines have been conceptually connected by the screen editor. Note also that short
forms of keywords are acceptable. These are listed in Chapter 5. They provide a way

Programming the PET ICBM -7- 2: BASIC

to enter lines which otherwise might be overlength. Provided that the line doesn't

exceed 80 characters, this is acceptable, although when LISTed the same line will be

hard to edit, since it will overflow the end of the 80-character line. The order of the

keywords in the table determines whether an abbreviation is possible; if there is any

ambiguity, the interpreter picks the first in the table. So E shift-N enters END and

F shift-0 enters FOR; but R shift-E is READ, RESTORE needing RE shift-A INPUT

#

can be entered as I shift-N, but INPUT cannot be abbreviated by this method. PRINI

is only available in a short form because '?' is specially written in to the interpreter.

2.3 Variables, variable storage, and pointers A 'variable' is an algebraic idea: a

symbol stands for a quantity (or string of characters). Microsoft BASICs have three

variable types: numeric, integer, and string. The interpreter distinguishes between

them by testing for a character after the alphanumeric characters which make up the

name. '$' and '%' represent string and integer variables respectively. If there is no

special character, the variable is numeric or 'real'. The presence of '(' denotes that

the variable is subscripted. CBM BASIC allows multi-dimensioned arrays; the individ-

ual arguments are separated by commas. Three array types exist, distinguished by the

same type declarators as simple variables.

Interconversion between variable types is automatic as far as numerals are con-

cerned; string-to-numeric conversion and vice versa requires special functions. For

example, L%=L/256 automatically rounds L/256, and checks that the result is in the

signed, 2-byte range (-32768 to 32767) to which CBM integers are confined. And

L$=STR$(L) and L=VAL(L$)or L%=VAL(L$) convert numerals to strings and vice-versa

,

subject to certain rules (see Chapter 5). Two other interconversion functions are

CHR$ and ASC , which operate on single bytes and enable expressions which would other-

wise be treated as special cases to be processed. Q$=CHR$(34) assigns the quote to

variable Q$; and 10 GET x$: IF x$="" GOTO 10 / 20 IF ASC(X$) = 13 GOTO 100 / ETC.

tests for Return, which is only possible with the aid of these byte-level commands.

Variables' names are subject to these rules:

1. The first character must be alphabetic.

2. The next character may be alphanumeric.

3. Any further alphanumerics are valid, but not considered part of the name.

4. The next character may be % or $, denoting integer or string respectively.

5. The next character may be (, denoting a subscripted variable.

6. A name cannot include reserved words, as the translater will treat them as

keywords and tokenise them. Note that reserved variables (TI, ST, DS, DS$)

can be incorporated in names, as they are not keywords.

All these rules simply have the purpose of removing ambiguity and making storage

convenient and fast. If (say) 1A were a valid variable name, 100 1A=1 would require

special syntactical treatment to distinguish it from 1001 A=l. And if other symbols than

alphanumerics were permitted, so that B= were a valid name for instance, again this

could cause problems. We shall see very shortly why names of length 2 are used.

The next page has a table of names; some are valid, others are not. Italicised

text indicates the presence of a keyword, making the name unacceptable. All those

names without italics are perfectly usable; but care has to be taken to avoid using

what is in fact one variable under the impression that it is two or more; for example,

NUMBER and NUMERAL are legitimate variables, but both could be replaced by NU, and a

program which 'thinks' they are different will give surprising results.

Even with valid names, some ambiguity is possible, particularly if a program is

'crunched' so that all spaces are removed (except in quotes). The next section has

examples.
Variables, in either direct mode or program mode, are stored after the program

currently in memory; the space is known to be there, and as a program runs variables

are created and modified in this area. Strings, because of their dynamic nature, do not

fit tidily into this scheme, and are stored in two parts, a name with a pointer, and

the string pointed to; with most variables' manipulations involving strings, RAM has to

be checked to ensure there is room to store the next string. Chapter 5, in DIM and

FRE and elsewhere, discusses storage. Before looking at the system of pointers, lets

examine the RAM storage of each type of variable. These can be peeked in exactly the

same ways that BASIC programs can be. There is a complication that the actual values

stored may vary; a BASIC program peeking values which follow itself may produce

different results at different times. Provided we avoid minor confusions of this sort we

can investigate the way in which BASIC variables are stored.

Programming the PET/CBM -8-

EXAMPLES OF LONG NAMES FOR VARIABLES

2: BASIC

ADD DOLLAR LIMIT PENCE TOP
AGE END LINES PERCENT TOTAL
AMOUNT ESCAPE LOAD PIA TOWN
ANSWER ESTIMATE LOCATION PLACE TRACK
ARRAY EVALUATION LOW POSITION TYPE
AVAILABLE EXTENT LOWER POUND UNDER
AVERAGE FILE MACHINE PRICE UNIT
BAD FINAL MARGIN PRIMARY UPPER
BEST FINISH MARK PRINT VALVE
BETTER FIRST MARKUP PRODUCT VARIABLE
BIT FLASH MASS PROFIT VARIATION
BLOCK FORM MEAN QUANTITY VARIETY
BRANCH FORMULA MEASURE RATE VERTICAL
BYTE FORWARD METER RECORD VIA
CALCULATION FOUND METRE REFERENCE WAGE
CALENDAR FRACTION MINUTE REORDER WEIGHT
CANCEL FUNCTION MONEY REVERSE WORD
CATA COOD MONTH RIGHT WORST
CENTER GUESS NEVER ROOT YEAR
CENTRE HEX NEW ROUNDING
CODE HORIZONTAL NOTE SALARY
COMMAND HOUR NOW SALES
COMMENT IEEE NUMBER SEARCH
COA/TENTS IN NUMERAL SECOND
CO/VTROL INCOME NUMERATOR SECONDARY
CORRECT INDEX OFF SECTOR
COST INPUT OK SKIP
DATA INTEGER OLD SOLUTION
DATE INTEREST ON STANDARD
DAY INVENTORY ORDER START
DECIMAL INVESTMENT OUT STATEMENT
DEFAULT INVOICE OUTPUT STOCKS
DENOMINATOR ITEM OVER STRING
DERIVATIVE KILO PACK SUBSTITUTE
DEVIATION LABOR PAGE SUBTOTAL
DIAMETER LABOUR PARAMETER SUM
D/FFERENCE LAST PARTS SURPLUS
DIVIDE LEFT PAUSE TABULATE
DISCOUNT LENGTH TIME

T/TLE

Simple variables Every non-array variable occupies 7 bytes of RAM following its pro-
gram, or, in direct mode with no stored program, in BASIC'S RAM space starting at
$0401. In addition, strings occupy the top of RAM. BASIC 4 strings are stored with a
2-byte pointer back to their names. Of the 7 bytes, the first two hold the name. The
high bit of each may be set or unset, giving 4 permutations of effectively the same
name; in this way, the variables A, A%, A$, and FN A are distinguished by the inter-
preter. At run time, an expression like A=4 causes the entire table of variables to be
searched, if A is not present, and A to be set up at the end of the current table. For
this reason, BASIC may be noticeably faster if variables are defined in order of im-
portance. Note that all four types of variable are stored together; there is no separ-
ation of strings from real numbers, for example. Note also that arrays are stored after
the simple variables; their range is defined by an extra pointer. This is necessary
because arrays would slow variables' search times by spoiling the consistency with
which 7 can be added to each simple variable's pointer to find the next. At any rate,
this is standard Microsoft. Consequently, new variables, defined after arrays, cause
the entire array structure to be moved 7 bytes up RAM, which may generate strange
delays, and is a further reason to define variables at a program's start. The storage
system is rather wasteful: 3 bytes are unused with integer-type variables, 2 with
strings, and 1 with function definitions.

Programming the PET/CBM -9- 2: BASIC

Subscripted variables These are segregated from simple variables, and constructed

differently: each array has an offset pointer to the next array, since obviously all

arrays are not the same length. Microsoft's system saves space compared with simple

variables: integer arrays, in particular, are very efficient in space usage. It also

avoids the possibility of confusion between simple variables and arrays, which other-

wise could arise.

Variable type:

Floating-point

Integer

String

Storage of CBM variables

Name: Details of storage:

ASCII
ASCII
or

EXPONENT
MANTISSA

Ml M2

Sign bit

ASC+128
ASC+128
or 128

HI BYTE LO BYTE

Sign bit

ASCII
ASC+128
or 128

LENGTH
POINTER

LO BYTE I HI BYTE

M3 M4

Function defn ASC+128
ASCII
or

POINTER TO DEF'N
LO BYTE 1

HI BYT¥
POINTER TO VARIABLE

LO BYTE |HI BYTE
INITIAL
OF VAR.

The table shows all four types of simple variable. The name carries an implicit type

declaration; thus a name consisting of the values 71 and 199 (decimal) is GG$, and a

name consisting of 65 and is A. Taking these in turn, note that a floating-point

number's value is
SIGN * 2

EXP-129
* (1 +

Ml M2
)

128 128*256

which can be expressed in various ways. (See e.g. Chapter 16, and Chapter 5 on

VARPTR). This is a standard floating-point format. Integers are held in signed, 2-byte

form, with range -32768 to 32767. The value may be found from this formula:

(HI AND 127)*256 + LO + (HI>127)*32768.

For example, HI=0 and LO-100 stores an integer variable of value 100; HI=255 and LO-

156 stores -100. (The two expressions add to with overflow).

The string name is held with a pointer to the start of the string, which contin-

ues up memory for length LEN. (See LEN in Chapter 5). BASIC 4 differs from earlier

BASICS in that each string has a pointer, which points to the string's name lower in

RAM. This is to facilitate memory freeing; see Chapter 5 on FRE for this.

BASIC 4 STRINGS:
STRING POINTER

^LO
I
HI

Main pointer Pointer back to LEN of itself in low RAM

A function definition has two pointers; one to the definition in the body of the

BASIC program, and one to the floating-point dependent variable. They point just

after the '=' sign and to the exponent byte respectively. The final byte is garbage,

generated when the definition is set up, and is not used.

Strings and function definitions, unlike numeric variables, can be defined so

that their pointers indicate some point within BASIC. If a new program is loaded and

run, retaining these values (i.e. by LOAD from within a program), the pointers will

no longer indicate correct values, so a string of this sort will be garbage, and a

function is likely to give a 7SYNTAX ERROR message. Strings can be moved into high

RAM using X$=X$+"" and the equivalent for other strings, but functions must be re-

defined as a rule.

Subscripted variables (arrays)

ARRAY NAME
OFFSET

LOW | HIGH
NO. OF
DIMS

LAST DIM+1
HIGH LOW

FIRST DIM+1
HIGH LOW DATA 3

The diagram shows the layout of all three array types. The high-bit conventions for

type are identical to those for simple variables (there is no equivalent to the function

definition). The 'offset' figure is the total length of the low-RAM part of the array;

we shall see how this is calculated. The 'number of dimensions' figure is 1 for a one-

dimensional array, e.g. A(x); 2 for a two-dimensional array like C(x,y) and so on.

Programming the PET/CBM -10- 2: BASIC

A set of pairs of bytes holds the value of DIM+1; since dimensions are counted from
the zeroth element. Finally, we have the data. This is held in 5-byte batches (reals),
3-byte batches (strings) and 2-byte batches (integers). It is exactly similar to that
for simple variables, except that spare bytes are not wasted. For example, the string
array data consists of sets of 3 bytes, consisting of the length of each string in the
array and its pointer. Strings are, of course, held in high RAM or in the body of a
BASIC program. The variables, or pointers, are held in strict sequence, which is

ascending order of argument, with the lattermost variables changing least frequently.
For example, DIM A(l,2) stores its variables in the order

A(0,0) A(1,0) A(0,1) A(l,l) A(0,2) A(l,2) , and DIM X(l,l,2) in the
order

(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1) (0,0,2) (1,0,2)
(0,1,2) and (1,1,2). The position of any one item of an array can be calculated;
X(a,b,c) is at a + b*(l+dim 1) + c*(l+dimi)*(l+dim2) for instance.

All of the above can be checked using simple BASIC; a program of this sort both
sets up a variable and prints RAM contents:

10 BB%=100
20 FOR J=1084 TO 1090: PRINT J;CHR$(PEEK(J)) ;

'

";PEEK(J): NEXT

Line 10 can define any variable; the values of J in line 20 will need juggling unless J
is defined in terms of the end-of-program pointer.

The length occupied by an array is easy to calculate (the figure is identical to
that of its own offset pointer). The number of bytes is:

5 + 2*NUMBER OF DIMENSIONS + (DIMj+D^DIJ^+D* . . . *(DIMn+1)*2, 3, or 5,

the figure depending on the array type (integer=2, string=3, real=5). In addition, the
strings of a string array must be included, and, in BASIC 4, 2 bytes for each string.
Examples: X$(1000), defined so that each X$(n) string has length 10, occupies

5 + 2 + 1001*3 + 1001*10 = 13020 bytes, plus 2002 bytes = 15032 in BASIC 4.

A%(50,50), which holds about 2500 integers, occupies
5 + 2*2 + 51*51*2 bytes = 5211 bytes.

BASIC pointers There are seven principal pointers in Microsoft BASIC. PET/CBM has:

START OF BASIC (usu. 1025) (2) (40 dec) ($7A) (122)
END OF BASIC/ START OF VARIABLES ($2A) (42 dec) ($7C) (124)
END OF VARIABLES/ START OF ARRAYS ($2C) (44 dec) ($7E) (126)
END OF ARRAYS ($2E) (46 dec) ($80) (128)
START OF STRINGS ($30) (48 dec) ($82) (130)
END OF STRINGS ($32) (50 dec) ($84) (132)
TOP OF MEMORY ($34) (52 dec) ($86) (134)

The bold figures apply to BASICS 2 and 4; the order of these pointers is low byte
followed by high byte, following the 6502 itself. Knowledge of these locations enables
the top of memory (normally fixed when the machine is turned on) to be lowered, thus
creating extra RAM space protected from BASIC. See HIMEM & LOMEM in Chapter 5.

Arrays can be erased by changing the pointers: see the 'Scatter Sort' in Chapter 5.

BASIC can be made to start at other locations than 1025, and so on. This program, for
BASIOl, reports the current values of these pointers within a program. As it stands,
two simple variables (X and FN DE(X)) exist, but others may be added earlier in the
program and the results watched. The right-hand column of the table is BASIC 1.

5000 DEF FN DEEK(X) = PEEK(X) + 256 * PEEK(X+1)
5010 PRINT " START OF PROGRAM"; FN DEEK(40)
5020 PRINT "END OF PROGRAM/START OF VARIABLES"; FN DEEK(42)
5030 PRINT " (LENGTH OF PROGRAM ="; (FN DEEK(42) - FN DEEK(40)) ; "BYTES)"

5040 PRINT
5050 PRINT " END OF VARIABLES/START OF ARRAYS" ; FN DEEK(44)
5060 PRINT "(NUMBER OF VARIABLES ="; (FN DEEK(44) - FN DEEK(42)) / 7 ;

")"

5070 PRINT
5080 PRINT " END OF ARRAYS/START OF FREE RAM"; FN
5090 IF FN DEEK(44) = FN DEEK(46) THEN PRINT "

5100 PRINT
5110 PRINT " START OF STRINGS"; FN DEEK(48)
5120 PRINT " END OF STRINGS"; FN DEEK(50)
5130 PRINT " TOP OF MEMORY"; FN DEEK(52)
5140 PRINT
5150 PRINT "DATA STATEMENT POINTER"; FN DEEK(62)

DEEK(46)
(NO ARRAYS EXIST)"

Programming the PET ICBM -11- 2: BASIC

Because these pointers mark the boundary between one set of data and another it

follows that the upper limit over a range is exclusive not inclusive
.
£32K machine

has a top-of-memory indication of $8000 on switchon, but this means that $8000 is an

upper limit which is not reached, so characters don't appear m the op lef
:

of screen.

These pointers can all be seen by entering SYS 4 and displaying bytes from 0028 on,

with .M 002E
[
°°

n
3°-

the variables , area to coincide with the screen, we can watch var-

iables being set up in real time. The program prints the current operation on the top

line of the screen, and awaits a keypress before each piece of processing:

100 POKE 42,40: POKE 43,128 :REM START OF VARIABLES = $8040 (2ND LINE)

110 POKE 52 207: POKE 53,135 :REM TOP OF MEMORY = $83E8 (BTM RIGHT OF SCREEN)

120 CLR :REM MAKES POINTERS ALL SELF-CONSISTENT

130 PRINT "[CLEAR]": POKE 59468,14: REM LOWER-CASE MORE READABLE

200 DIM VA(20) : GOSUB 1000 :REM SUBROUTINE AWAITS KEY (E.G. SPACE BAR)

210 A=1234 • GOSUB 1000 :REM WATCH ARRAY MOVE, 'A 1 APPEAR

220 DIM ST$(20): PRINT [HOME] "ST$(20)": GOSUB 1000 :REM PRINT TO SCREEN TOP

230 . . . ETC ...

1000 GET X$: IF X$="" GOTO 1000

1010 RETURN

80-column CBMs require a slightly modified program if the full screen is to be used;

and BASIC 1 requires different POKEs in lines 100 and 110 - see table

The dimensioning of arrays, and filling with null variables, can be watched; so

can assignments of all types of variables. Strings fill down from
,

the tap <^w^.
and start again near the top when space temporarily runs out. If several different

sSngs assigned to the same string variable, PRE can be watched as it moves the

most up-to-date value into as high RAM as can be managed.

\

2.4 BASIC syntax

BASIC is sometimes described as 'English-like'; in fact the resemblance is tesnuous. Its

syntax has to be learnt, like that of any other computer language. BASIC is a rather

ad hoc language, and a comprehensive account of its syntax is ™<^^{f*^™8*

the interpreter allows great latitude in a program. For example, is RETURN or GOTO

10 valid, if there is no subroutine or no line 10 respectively? How can the correct

syntax of READ ... DATA ... RESTORE be defined? Is NEW:!*? valid? The usual

approach is to define the individual components of BASIC using some form of the Back-

us-Naur notation, but I shall spare my readers this experience. The account following

outlines the major features of BASIC in a purely descriptive way.

Numerals and literals These are actual numbers and strings, not variables. Examples

of the first are 0, 2.3 E-7, 1234.75, and -744; examples of the second are hello
,

"ABC123" and "%'£/" where the quote symbols are delimiters (not part ot the literal).

The rules' which determine the validity of these forms are complex; generally, numbers

are valid if they contain 0-9, +, -, E and . in certain combinations Thus, imaginary

numbers (e.g. 2i+ 3j) are not accepted, and 3 E 2E 1 (i.e. 3 * 1020) and 1.2 3 are not

accepted. The only point likely to cause difficulty is the use of E to mean 10 raised

to the power ...'. Strings can include any CBM ASCII character; tricky characters

can be manipulated with the CHR$ function. However, some characters - 13 (Return)

and (null) for example - produce unusual side-effects.

Variables At any moment, a variable must equal a numeral or string; the default val-

ues are and the null character respectively. (See Chapter 5 on CHR$ for a discuss-

ion on CHR$(0) and "", each of which can be considered a null string). A variable,

as the name is supposed to imply, can be changed to other valid values.

Operators (or 'connectives') Binary operators connect two items of the same type, giv-

ing a single new item; unary operators operate on a single item, generating a new one

of the same type. The CBM numeric operators are completely standard, and are ident-

ical in type and hierarchy to those of FORTRAN. The string operators and logical

operators are less standard :-

Binary Numeric + - * / Unary Numeric +
-

String + String ..none..

Logical AND OR < = > Logical NOT

•Dyadic', 'monadic', and 'Boolean' are synonyms for 'binary', 'unary', and 'logical'.

Programming the PET/CBM -12- 2: BASIC
Parentheses Parentheses (round brackets) signal the translator to process the follow-
ing data as a unit, completed only when the corresponding right parentheses have been
found. Intermediate calculations are stored on the 6502's stack.

Functions Some of the BASIC keywords are valid only when followed by an express-
ion in parentheses; they may be used on the right of assignment statements or as part
of an expression under evaluation. Numeric functions include SQR, LOG, EXP, and
SIN; string functions include LEFTS, MID$, and RIGHTS. PEEK, although not a func-
tion in the usual deterministic mathematical sense, has the syntax of a numeric function
and is considered to be one.

Expressions An Arithmetic expression is a collection of numeric functions, numerals,
real and integer variables, connected with operators and parentheses, and always used
in an assignment statement or with PRINT, PRINT #, or CMD. For example:

SQR(VAL(Q$(2,3)) + M%) + SGN(Z)*(X>4)
A String expression is a collection of string functions, literals and

string variables, connected (optionally) with parentheses and /or the only string oper-
ator, which is '+'. For example:

STR$(25) + MID$("HELLO" + Y$,3,4) + CHR$(N)
A Logical expression evaluates to 'true' or 'false'; it may contain relat-

ional operators (<,=,>) and/or logical operators. For example:
(A=4) OR NOT (21=X)

There is not a sharp distinction between this type of expression and an arithmetic
expression. The same routine evaluates them both, which makes possible constructions
like PRINT l>2 and ON 2 + (P=Q) GOTO 100,200. See Chapter 5 on AND, NOT, and OR.
Statements A statement is a syntactically correct portion of BASIC separated by an
end-of-line marker or a colon from other statements. All statements begin with a BASIC
keyword, or, where LET has been omitted, with a variable. There are some peculiar
cases; for example, if A=B then is a statement because its syntax is accepted. (Note:
keywords are sometimes called 'statements'). Types of statement include:

Assignment statement LET variable = expression. LET is optional. Here, the '='

symbol is used differently from the relational operator '=', and it is distinguished in
some computer languages (e.g. ALGOL) by being written ':=' and read 'becomes ...'.

Conditional statement IF condition THEN See Chapter 5 on IF.
Control (or 'sequential') statement Alters the program's flow of control GOTO

GOSUB, RETURN, STOP are examples of keywords.
Input statement fetches data from a device or from a DATA statement. INPUT

INPUT#, GET, GET#, and READ are the relevant keywords.
Loop (or 'block' or 'compound') statement enables many statements to be exec-

uted in a block; this is really a structured programming concept, only applicable to
CBM BASIC in a loose sense to FOR ... NEXT loops and subroutines.

Output ('print') statement sends data to tape, disk, screen, or other output
device, see FKINT and PRINT* in Chapter 5 for an account of formatting, tabulation
evaluation of functions, and so on.

Remark (or 'comment') statement In BASIC, REM followed by any information
which is ignored by the computer but useful from the point of view of documentation
ot the program. Lines which are never executed perhaps come into this categoryGOTO 100/ 1 VERSION #1/ 100 REM BODY OF PROGRAM never executes line 1 *

.

Type conversion statement converts between string variables and literals/ real

m£ i™*nd numerals/ integers and numerals, using such functions as ASC, CHR$,
INT, STR$, VAL.

Program lines are made up from statements. Each line is preceded by a zero byte a
link address, and a line number, and terminated by a zero byte. The line itself may
contain tokenised keywords (all with their high bit set), double quotes, literals within
the quotes, screen editing characters with the high bit set, $,%, or (type declarators
variables, parentheses, numeric strings in ASCII, punctuation (;:,), ASCII strings incomment statements and DATA statements, and other items, for example '#' as part ofGET# and non-standard BASIC used with a modified GETCHAR routine, typically !, or

The slash symbols (/) are a space-saving device, enabling several lines of BASIC or
machine-code program to be printed as though only one line were occupied. When this
sort of program is keyed in, obviously Return takes the place of '/'.

Programming the PET ICBM -13- 2: BASIC

2.5 Manipulating BASIC and its variables

Pointers, link addresses and linenumbers An ordinary BASIC program is stored as

this diagram indicates. The starting address is $0400 (= 1024), each line has a 2-byte

link pointer and 2-byte linenumber, and is terminated by a zero byte. Normally, no

zero bytes appear within a BASIC line, and the linenumbers are all different, in as

cending order, and less than $FF00 (=65280). Each link pointer points to the next link

pointer in memory, and the chain proceeds regularly upwards, until a zero link sig

nals the end of the program. Any of these features can be modified, either in BASIC

or machine-code, enabling non-standard results to be achieved. Conversely, such

functions as renumbering, searching BASIC and compressing BASIC can be written

when the storage mechanism is understood. Modified BASIC is likely to be more-or-less

unstable; it may be difficult to edit, for example.

START
—
^i
— END OF LINE

LINK LINE# BASIC LINE LINK LINE#

END OF LINE END OF LINE-i PROGRAM END
,j|«. ,

1

r-*l r-+r

BASIC LINE LINK LINE# BASIC

LI

LDA 28
LDX 29
LDY #01
STA 5C

STX 5D
LDA (5C),Y

BEQ L2
TAX
DEY
LDA (5C),Y

JMP LI

A AND X HOLD
START-OF-BASIC
Y IS OFFSET
(5C) IS A TEMP.

POINTER
IF LINK'S 2ND
BYTE=0, EXIT

GET NEW X . .

.

; . . . AND NEW A

;AND CONTINUE

The link addresses and linenumbers are quite easy to locate in either BASIC or mach

ine code; they can also be examined by entering the monitor and reading the memory

dump from $0400 onward. This BASIC routine illustrates the principles:

10 A=1025
20 L=PEEK(A) + 256*PEEK(A+1): IF L=0 THEN END

30 PRINT "LINK POINTER IS " L ;

40 PRINT " LINENUMBER IS " PEEK(A+2) + 256*PEEK(A+3)

50 A=L: GOTO 20

When RUN, A=current link, L=next link; the program prints both items for every line.

The machine-code equivalent, illustrated by this

outline routine, uses an intermediate double-byte

address to store link addresses. In ROM, the

routines at C522/ C52C/ B5A3 for BASICS 1/2/4

search BASIC for a given linenumber, typically

when executing GOTO. The short program here

carries out a small part of that operation, skipping

through the link pointers to the end of the pro-

gram.
Chapter 5 has several examples of this. See

for example the 'tiny renumber' routine, which

changes all linenumbers which lie within a requested

range, by poking the new values for the linenumbers L2 RTS

directly into RAM. As another example, look at

this BASIC search routine, which prints the linenumbers of all lines which contain

the contents of the first line (e.g. line 0) of the program.

62000 A=1025: B=256: J=1029: X=PEEK(J): REM X IS FIRST CHARACTER OF LINE

62010 P=PEEK(J): IF P=X THEN GOSUB 62500

62020 IF POO THEN J=J+1 : GOTO 62010

62030 IF PEEK(J+2)=0 THEN END , : REM END OF PROGRAM FOUND

62040 J=J+4: A=PEEK(A) + B*PEEK(A+1) :' GOTO 62010 : REM UPDATE LINK AND J

62500 K=l :REM TEST REST OF LINE FOR MATCH

62510 Y=PEEK(1029+K) : IF Y=0 THEN PRINT PEEK(A+2) + B*PEEK(A+3): RETURN

62520 IF Y=PEEK(J+K) THEN K=K+1: GOTO 62510

62530 RETURN

This routine is written without loops, in a form suited to direct conversion into mach-

ine code, which is enormously faster than BASIC in this case. The point of the rout-

ine is to scan only the BASIC line, while keeping track of the link pointers; line

62510 prints out a linenumber when all the characters in line match some part of

BASIC. It is necessary to remember the way in which BASIC is stored in routines like

this one; for example, PEEK (1025) will cause all occurrences of PEEK (1025) to be

recorded, but EEK(1025) is not tokenised and will probably find nothing.

The actual contents of BASIC may be changed in a systematic way. The short

BASIC routine on the next page inserts carriage return characters into REM state-

Programming the PET/CBM -74- 2: BASIC

ments, when REM is the first keyword in a line.

50000 A=1025: B=256
50010 IF A=0 THEN END
50020 IF PEEK(A+4)<>143 THEN A = PEEK(A) + B*PEEK(A+1): GOTO 50010
50030 POKE A+5,13: POKE A+6,13: A=PEEK(A)+B*PEEK(A+1) : POKE A-2,13: GOTO 50010

It operates by searching for the tokenised form of REM (=143 in decimal), and putting

three Returns into the REM line.

Note that arrays in memory can be scanned in a similar way. The only differ-

ence is that an offset, not an absolute pointer, is used:

10 DIM N(7),MM(50),X1$(200), JJ%(6) ,Q$(19)
20 S=PEEK(44)+256*PEEK(45): E=PEEK(46)+256*PEEK(47) : REM START, END FOR BASIC>1

30 PRINT "NAME OF ARRAY: " ;CHR$(PEEK(S)) ; CHR$(PEEK(S+1))
40 0=PEEK(S+2)+256*PEEK(S+3): S=S+0: : REM 0=0FFSET
50 IF S<E GOTO 30 : REM S POINTS TO NEXT ARRAY

SORT in Chapter 5 uses a machine-code version of this.

The following pair of BASIC subroutines changes the link addresses of lines in

their own programs. The first alters a pointer so that a line is skipped; that line is

also renumbered 0. It is likely to become visible on editing. When RUN, the hidden line

is processed normally, although LIST and GOTO cannot find it.

50000 A= 1025s B=256
50010 INPUT "CONCEAL LINE AFTER" J X

50020 FOR R=lT0iE8tIFPEEK<A+2>+B*PEEK<A+3XXTHEN A=PEEK< A)-t-B*PEEK(A+l) s NEXT
50025 IF PEEK(A+2) -t B*PEEK(A+3) >X THEN PRINT "NON EXISTENT LINE"; END
50030 XS=A; REM START LOCN OF LINE X

50040 YS=PEEK(A) + B*PEEK(A+1>: REM START OF FOLLOWING LINE
50050 Xl=PEEK(YS)s X2=P£EK< YS+1) ; REM LINK ADDRESS BYTES OF NEXT LINE
50060 POKE XS»X1 s POKE XS+1,X2 t REM LINK ADDRESS STRADDLES LINE AFTER X

50070 POKE YS+2»0: POKE YS+3»0 s REM AND PREVIOUS LINE IS NUMBERED

This second routine demonstrates how CRUNCH can compress BASIC lines together,
making them longer than the normal maximum of 80 characters. It must be positioned
at the start of BASIC; when it runs, a range of linenumbers is asked for, and these
lines are combined into one longer line by deleting link addresses and pointers, put-
ting in colon separators, and adjusting the initial link address to span the entire line.

If the line's length exceeds 251, it will be difficult to edit; it will run, however, in

most cases, though not if REM is too far from the end of the line.

INPUT "COMBINE LINES FROM, TO" ;L,U: C=1025: B=256: E=PEEK(42)+B*PEEK(43)-4
1 LT=PEEK(C+2)+B*PEEK(C+3): PRINT LT;

2 IF LT<L THEN C=PEEK(C)+B*PEEK(C+1) : GOTO 1

3 IF LT>L THEN PRINT "LINE NOT FOUND": END
4 LINK=C: C=C+4
5 Q=PEEK(C): IF Q<>0 THEN C=C+1 : GOTO 5

6 IF PEEK(C+l)+PEEK(C+2)=0 THEN END
7 LT=PEEK(C+3)+B*PEEK(C+4): PRINT LT;

8 IF LT>U THEN C=C+1: POKE LINK,C-INT(C/B)*B: POKE LINK+l.C/B: GOTO 4

9 POKE C,ASC(":"): FOR J=C+1 TO E: Q=PEEK(J+4)
10 POKE J,Q: NEXT: E=E-4: GOTO 5

11+ —REST OF PROGRAM—

If the pointers to the start of BASIC are altered, BASIC can be stored in other places
than the usual $0400; for example, it could start at $1000, leaving a large amount of

RAM free for other purposes. Similarly (see HIMEM & LOMEM in Chapter 5) the point-
ers to the top of memory can be changed.

POKE 40,1: POKE 41,16: POKE 4096,0:NEW
Sets BASIOl to start at $1000. The zero byte at the very start is necessary; without
it, ?SYNTAX ERROR will be generated. To return to normal, enter

POKE 40,1: POKE 41,4: POKE 1024,0: NEW
(NEW, or CLR, is the easiest way to ensure the pointers are consistent). A program
of this sort may be saved, with its machine-code, by moving the start pointers back

to the normal value; the first line of the 'normal' program must be something like

Programming the PET/CBM _75_ 2: BASIC

POKE 41, 16: RUN

which will run the main program correctly.
Anrirr o • nv. * *

The variables themselves may be manipulated: see e.g. VARPTK in cnapter d.

The entire collection of RAM variables can be saved as a RAM image; for example, a

large integer array may be saved and later reloaded, providing rapid access to a lot

of numeric data. Strings are less easy to handle, because they are not held in the fix

ed way in which numerals are. This technique is not very easy, since any change in

the program length or in the number of variables will cause the data not to match its

pointers. Reloading is also made more difficult than it might be by CBM BASIC s tend-

ency to restart programs which use LOAD.
When a program is edited, CBM BASIC always resets the pointers relevant to the

variables. In fact the variables are still present, if the new program is shorter than

the old; so if the pointers are poked with their previous values, all the variables will

be recovered; the only exceptions may be strings held within the program and func-

tion definitions.

2.6 LOADing and RUNning BASIC

LOAD or DLOAD followed by RUN is the normal method of running CBM BASIC; the

only automatic RUN facility is provided by Shift-Stop, which LOADs and RUNs the

first program on tape or CBM disk depending on the version of BASIC in ROM. Both

LOAD and RUN are covered in detail in Chapter 5, and DLOAD is explained in Chap-

ter 7. The overlay feature of each load command, when in program mode, is also out-

lined. RUN executes some initialisation before entering a loop which processes state-

ments consecutively. Before every statement, the Stop key is tested, and the end-of-

program byte is checked for (without this, each program would need END) at the end

of each line. By dropping some of these subroutines, the execution time of BASIC can

be improved; this requires a RAM routine, probably called by a SYS command, to per-

form the functions of RUN.
Numeric routines are mostly carried out using two 'floating-point accumulators

of 6 bytes each, and some other RAM storage areas in the zero-page. Strings are

constructed in the top of memory. The 6502 stack is used by GOSUB and FOR, each

of which puts several bytes of data in store on the stack; see Chapter 5. Also, eval-

uations which include parentheses for priority put intermediate results on the stack.

An unexpected ?OUT OF MEMORY ERROR can result if the stack is asked to hold too

much data.
1 PRINT (l+(2+(3+(4+(5+(6+(7+(8+(9+(10+(ll+(12))))))))))))

causes such an error. The limits of the stack are determined by a combination of the

number of GOSUBs, FOR loops, and parentheses at any one time.

As each statement is executed, the CONT pointer is updated. In this way, when-

ever Stop is pressed, CONT can resume the program, since a record is kept of the

statement last executed.

2.7 Optimising BASIC

The principal optimisation problem likely to be met with in BASIC is making a program

run as fast as possible. (The other problem - shortage of space - I am assuming to be

a matter of correct initial design). Input/ output, to disks and especially to tape, is

slower than processing in RAM; slow printers can also impose a drag on a system. The

BASIC program itself can be accelerated using the methods in CRUNCH (see Chapter

5), and the subroutine management techniques in GOSUB (Chapter 5). These rely on

knowledge of the way BASIC works to avoid small cumulative losses of time. GOTO can

be optimised ensuring that the destination line is as near the start of the program as

possible, or has a linenumber whose high byte exceeds that of the GOTO line. Some

CBM manuals have a section on this subject (almost word-for-word identical to a simi-

lar section in Apple manuals). Apart from the routine compression methods of CRUNCH,
the most significant timesavers are (i) the use of variables, not constants, and (ii) the

deliberate setting up of variables in the best order (i.e. most popular first) at the

start of a program. As a simple example,

10 FOR A=0 TO 5000: B = B + 1: NEXT takes about 15% longer than:-

10 B=0:L=1:F0RA=0T05000:B=B+L: NEXT

The point about using variables is that the numerical value is already stored in float-

ing-point form, so the time spent in the conversion process is saved. Generally, loops

are likely to make the most difference to running-time , and one-off routines such as

exit routines and error messages the least. This program enables single BASIC state

Programming the PET/CBM -16-

ments to be timed, so the reader can experiment in this area:

PROGRAM TO MEASURE PROCESSING TIME WITH BASIC-

2: BASIC

Tl=9: T2=0
:REM STORE THE TIME

:REM ... SO NOW T2 IS THE TIME TAKEN BV LOOP 38 - 56.

sREM STORE THE TIME ...

10 N = 100
28 Tl - TI
30 FOR I = 1 TO N
40 :

50 NEXT
70 T2 = TI - Tl
80 Tl = TI
90 FOR I = 1 TO N
100 «X=123.456
110 NEXT
120 T2 = TI - Tl - T2 :REM T2 = TIME TO EXECUTE LINE 100 AFTER THE COLON.

130 PRINT 1000 * T2 / <60*N> "MILLISECONDS"
1 080 REM ***************#**#*******#******************^
1001 REM * EXECUTE AND TIME COMMAND <S> IN LINE 180 *

1082 REM * *

1003 REM * NOTE THE LEADING COLON., TO ALLOW CORRECTION FOR LOOP PROCESSING *_

1884 REM * *

1885 REM * CHECKS- ZERO MILLISECONDS SHOULD APPEAR WITH 188s ALONE *

1086 REM * *

1007 REM * INCREASE THE VALUE OF N IN LINE 100 IF THE INSTRUCTION IS FAST *

1008 REM * NBs SEVERAL LINES OF CODE CAN ALSO BE TESTED WITHOUT DIFFICULTY *

1009 REM * NBs DEFINING VARIABLES AT START AVOIDS SEARCH TIME ERRORS *

1010 REM #*##**#.#***#********#****^

BASIC<4 has a well-known drawback in the long time spent freeing strings in memory.
This means that large arrays (e.g. X$(500)), however convenient for storage of easily
recovered data strings, are prone to cause prolonged delays; FRE takes about 1 second
with 100 strings, 10 seconds with 350 and 100 seconds with 1100 - see Chapter 5 for a
formula. Chapter 4 has details on minimising these delays.

2.8 Differences between ROMs

The major differences between ROMs are listed below. Generally, later ROMs can run
all earlier programs, but earlier ROMs may not have some features assumed in later

programs. Programs using machine-code calling ROM routines or specific RAM locations
are unlikely to transfer between machines. BASIC 4's two versions, 40- and 80-column,
are dissimilar in some ways, the 40-column version retaining some features of BASIC 2.

Differences BASIC 1 BASIC 2 BASIC 4

RAM map Input buffer in zero-page Input buffer $0200- $0250; more 0-page pointers
1 Tape buffer #2 partly used

ROM map C000-FFFF C000-FFFF | B000-FFFF
Apart from kernel addresses, almost all ROM entry points differ (Ch. 15).

Monitor RAM only (see manual) Machine-language monitor present in ROM
Interrupt 60 Hz 60 Hz | 50 Hz (12-inch models)
Other General improvements (e.g. LIST).

Differences which may affect BASIC programs:

Keywords GO GO,DS,DS$, & disk commands
Syntax Spaces in keywords valid*
Arrays See DIM (Ch. 5) for bugs
IEEE Improved
Screen Fast screen; more editing chrs.
Strings FRE slow FRE fast (see Ch. 5)

Tape Data file bugs (Ch. 8) Data file handling improved

*In BASIC 1, 'IF 10=LE THEN PRINT "10"' and 'IF F OR G GOTO 100' generate ?SYNTAX ERROR
as 'LET' and 'FOR' respectively are assumed. BASIC>1 does not scan tokens in the same
way (hence the need for GO). However, in all BASICS there is scope for ambiguity:
'IFY=GORXTHENPRINT"ERROR'" , ' IFS=TANDUGOT050 ' , and 'Y=TORU' illustrate this.

Programming the PET/CBM -17- 3: Program and system design

CHAPTER 3: PROGRAM AND SYSTEM DESIGN

3. 1 General introduction

This chapter explains some of the techniques and thought-processes required to write

programs and systems. Chapter 4 provides examples, mostly in BASIC. Chapter 17

has examples and suggestions involving actual systems; the intermediate chapters deal

with the hardware and software knowledge required to actually do the job.

Designing a system is a tricky process which is unlikely to be successful with-

out a considerable amount of experience, unless a system is fairly small and informal,

and either unimportant or easy to reconstruct in the event of disruption. The differ-

ence between small systems and those consisting of many programs operating on a large

database, with full validation and crashproofing, and with checking and recovery pro-

cedures, is enormous. Obviously it is necessary to assess whether a proposed system

is feasible at all, and the optimum amount of work to put into it. Since this book is

largely about the PET/CBM, we can leave aside the difficult problems of deciding

between rival machines. We can also ignore the special problems of programming ex-

ternal hardware, for example in process control, which is a minority interest. By and

large our concern is with a computer, tape and/or disk storage, and probably a print-

er. What can such a combination of hardware do? Experienced programmers, naturally,

already know. For those less experienced, we can subdivide the replies into three cat-

egories: results which can be achieved easily, those which are difficult, and those

which are impossible. In the first category we have standard packages, if they exist.

Sometimes several packages may be able to share data. The absence of programming

effort does not, of course, guarantee success. Programs requiring calculations, when

the formulas are known, are usually fairly easy; anything from architecture to zoo

nutrition might be required. Any type of alphanumeric data can be stored and retriev-

ed, though not necessarily rapidly; dictionaries, tables, price-lists, technical words,

names, can be filed and recovered, provided the storage capacity of tape or disk is

allowed for. Small business programs, with reasonable crash-proofing, are possible if

the processing demands aren't large: invoices and mailing-lists for example. Payroll

programs are possible in 4K, in some developing countries. Tidy formatting and out-

put is not a big problem. Nor are slowish graphics.

The second category includes anything really fast. Graphics; fast searches in

memory; rapid updating, input, formatting, and output usually require machine-code,

which is more difficult than BASIC. Any disk reading or writing which uses a key

other than the record number, and is fast, will need to be thought out carefully.

Completely crashproof and validated input is not easy. Data may be coded, abbreviated

and packed in many ways to save storage space, and so store more data than may
seem to be possible at first sight. Where many programs operate on the same data, the

order in which they are run may need internal checking. Data checking programs may
be needed which provide an assurance that the data on a disk is self-consistent. Some

programs may require annual updates, or need to be easy to modify. All these things are

comparatively time-consuming and difficult to write. As the workload increases, the

viability decreases: sorting the names in a telephone book, performing simulations of

atmospheric physics, calculating the payroll of thousands of people, may be impossible.

The machine cannot program itself, understand English, correct errors in a specific-

ation of a system, or work while switched off in a corner.

Typical complaints (about computer systems generally) are illustrated by these

quotations from a medical man: 'They lead to more clerical work, not less... produce

sheaves and sheaves of that printout stuff... VDUs are very slow; you can't just read

a patient's record, you have to type it in... you could lose all the data! The whole

lot!'. And an export manager: 'The biggest disaster is the so-called informal specif-

ication. We assumed we were speaking the same language... the program takes days.

We'd seen programmes on television where the results come up instantly...'. Retailers

are often asked for their 'standard stock control package and PAYE payroll package';

often these do not exist. I have stressed the possibilities of failure, because it is im-

portant to realise that this can occur. In practice, the direr prophecies of mass busi-

ness failures due to microcomputers have not come true: systems which are clearly

useless remain unused, and the risks inherent in risky systems are not taken. I don't

want to imply, by my mention of this topic, that CBM hardware is unreliable; comparative

figures are unavailable, and all computers are liable to hardware problems and software

Programming the PET/CBM -18- 3: Program and system design

bugs, and these may be an unpleasant shock to those accustomed to the facade of
smooth-running efficiency presented by data processing departments.

3.2 Designing programs

The general idea of BASIC is simple: the program does what it's told, starting at the
beginning and continuing to the end, occasionally encountering a GOSUB and execut-
ing a subroutine, or encountering a GOTO and jumping to a program line. The con-
ceptual difficulty with programming is the need to understand what the separate comm-
ands do. Only when they are more-or-less grasped is it possible to tell the computer
what to do. As a simple example, consider a set of short reports being printed by an
ordinary computer printer; at the end of each one, a 'top of form' command has to be
issued, whereupon the paper is shifted in preparation for the start of the next report.

Suppose some reports take several pages, and the printer has no automatic facility to

leave a few lines at preset intervals. Then it is necessary to keep a running total of
the number of lines printed, and to check this number after printing each line; if the
total equals a preset value, 'form feed' is issued, and the total reset to zero, to be
used for the next page. Typical complications include lines which belong in batches,
and are not to be separated, page numbers, running totals, and titles dependent on
the last line of the previous page. In this way, an apparently straightforward task of
programming can become complex.

There are many theories on the 'best' programming methods. For example, 'top-
down' programming designs the main flow first, then the subsidiary routines, while
'bottom-up' programming starts with the subroutines. But 'structured programming' is

undoubtedly the major buzzword. There are several versions of this, ranging from the
avoidance of 'GOTO', through the use of nested routines, to the attempt to match the
structure of the data, as it is filed, with the program. CBM BASIC lacks the syntax to
apply such techniques directly, but they can be simulated. The object is to produce
programs which are easily read, so that in turn they can be changed or reused with
little difficulty. In practice (in my opinion) programmers' methods are always ad hoe
and chaotic, and maintainability of programs is possible (if at all) only because pro-
grams are tidily arranged in routines with heavy commentary. Similarly, flowcharts,
once regarded as highly scientific, are widely regarded as obsolete, replaced for the
most part by pseudo-programming languages. But it is not obvious why one form of
notation should be superior to another; the sad fact is that any complex program will

remain complex in whatever way it is written down. For these reasons, I suggest that
the reader treats 'definitive' announcements on these subjects with scepticism.

There are two types of non-linear program flow: a loop (when the program jumps
back repeatedly to an earlier point in the program; forward jumps are essentially still

linear), and a branch (when differing parts of a program are selected according to the
results of some test. Several flowchart representations are:-

Do
until

Other

Flowcharts of loops Flowchart of branch / casentry

There is a British Standard on flowcharting. For our purposes it is sufficient to de-
note branches by a diamond (or similar) shaped box, usually containing the condition
as a question, and processing by a rectangular box in which are written details of the
processing. Arrowed lines indicate the direction of flow of control. Detail may be at
the level of single instructions, or at almost any level of vagueness, depending on
whether the object is to present a detailed or overall picture of the program. In CBM
BASIC , a loop is usually of the form FOR A=B TO C STEP D . . . NEXT A with an implied
count from B to C in steps of D. Changing the variables within the loop is apt to
prove confusing. The orthodox structured forms of DO WHILE and DO UNTIL do not
count, but wait until a condition is no longer true and a condition becomes true re-
spectively. These forms can be simulated easily in BASIC; for example, a construction

like:-

Programming the PET/CBM -19- 3: Program and system design

DO WHILE LINECOUNT<50
PERFORM ROUTINE TO PRINT LINE AND INCREMENT LINECOUNT

ENDDO

can be written in this way (or many others) :-

FOR A=l TO 1000
LINECOUNT=LI+l
IF LI=50 THEN A=1000: GOTO x

GOSUB y TO PRINT LINE

x NEXT

And the casentry construction can be written as a series of IF statements or, in situa-

tions where a variable takes values 1,2,3,... , as ON ... GOTO or GOSUB. With a

little practice, all this becomes straightforward. When flowcharting, to avoid tangling

of lines it is usual to adopt a direction convention. Typically, the general direction is

down the page, with loops branching back anticlockwise and forward jumps clockwise

to avoid clashes. The diagram below gives typical extra symbols which may be included

in this sort of chart.

Keyboard

These symbols are based on notation for large computers; the disk isn't very like a

floppy disk, and the tape is a spool rather than a cassette. But the general idea is

clear enough. Other types of chart include those with subprograms connected by ref-

erence labels, rather than lines. A page number and label marks each jump and branch.

This technique is suitable for machine-code flowcharts, which are unlikely to have tidy

loop structures. The 'Nassi and Schneiderman' notation is topologically identical to a

flowchart, but is rearranged to increase the space for explanatory detail. It has 'pro-

cess boxes' of four types: condition (normally binary); loop with test after processing;

loop with test before processing; and a plain processing box.

Enter Surname

~^~—.^^ Does it exist in the ^—""~

~-~^^array? ^
'Not found 1 Print name, add-

ress, comment

Until no more

There are innumerable techniques, each with local

variants and modifications , and the purpose of this

section is to give some idea of the appearance of

the resulting documentation. Any sizeable program
will be far more complex than the simple examples

presented here, and may occupy several pages of

'text'.

The internal detail of a program may be doc-

umented and clarified in various ways. Firstly,

subroutines may be handled in a systematic way:

they can be documented (see Chapter 4) and arranged within the program to maximise

efficiency (see GOSUB in Chapter 5). In principle, standard subroutines are a possib-

ility*. Variables' names can be selected in some systematic, meaningful way, within the

*MUSE (Micro Users in Secondary Education) has standards intended to enable easy inter-

conversion of programs between machines. (See e.g. Ed'l Comp'g.July '80). N Hampshire

has a book of 'Standard Subroutines' for PET/CBM, using linenumbers 10000-30000. A

McGraw-Hill book has 'BASIC scientific subroutines for all computers'.

Programming the PET /CBM -20- 3: Program and system design

limitations inposed by the fact that only the two leading characters distinguish between
names. (See Chapter 2). Line-number maps, including subroutines, can be useful in

navigating long BASIC programs; and conversely, intricate programs with many GOTOs
may be deciphered in extremis by simply writing down all the linenumbers in execution
sequence, perhaps revealing islands of code which are never used. The logical process
which a program carries out is also depictable in many ways. A condition table is one
method (see diagram) which in principle can be drawn up without any programming
knowledge, to be turned into a program as a routine task. The patterns of Ys and Ns,
which should cover all possible combinations of the conditions, correspond to one or
more actions, marked with 'x'.

Conditions: Stock > reorder level? Y Y Y N N
Stock minus stock out > reorder level? Y N N N N

Stock out > stock? N N Y N Y

Actions: Issue stock X X - X -

Issue reorder request - X X - -

Part issue stock/ increase commitments - - X - X

'Data-structured design' is another methodology, associated, particularly in the
U.K., with Michael Jackson. Its object is to simplify matters by matching file structure
to program structure. If BASIC compilers come to be widely used, techniques of this

sort will become more applicable to BASIC than they are at present. Before describing
(in outline) the tenets of this school of thought, we must clarify the idea of a comput-
er 'file'. CBM disk and tape files are described in detail in Chapters 6 and 8 respect-
ively, but a few words of introduction are necessary. In the usual office sense of the
word, 'opening a file on Mr Smith' means either looking at Mr Smith's records or start-

ing a new folder of details on him. This is not a computer 'file'. In the computing
sense, a 'file' is a collection of many records, which for convenience have a name ass-
igned to them, and which are more-or-less similar in content. A 'name-and-address
file' contains details not only of Mr Smith, but of many other people. 'Opening a file'

means preparing the computer to read or write individual records from or to the file.

A simple example might consist of a file with (a) a header record, i.e. a single record,
holding perhaps the date on which the file was last used; (b) a consecutive set of re-
cords, of which some are to be printed, and others are not. These would be distinct
in some way; for example, items might be marked as deleted, or as having fallen below
the reorder level, (c) A trailer record might mark the end of the file, typically hold-
ing totals. The diagram shows the structure of this file, with a standard box notation:

A structured program to process this file is

illustrated in the second chart, which gives
a general picture of the processing without
much detail. The modules and subroutines,
if they are sufficiently commented and REM'd
within the program, ought to make detailed
processing fairly easy to follow. Note the
correspondence between the program and the
data structure.

FILE

HEADER
'LIVE'

RECORD
'DEAD'

RECORD
TRAILER

PROGRAM CONTROL

OPEN
FILES

READ
HEADER

READ
TRAILER

CLOSE
FILES

'LIVE' 'DEAD'

CONTROL LEVEL

MODULES

READ A
RECORD

PRINT A
RECORD

SUBROUTINES

Programming the PET /CBM -21- 3: Program and system design

Algorithms An algorithm is a set of rules which (if the algorithm works!) generate a

solution to a problem. Taking care with algorithms will improve the logical accuracy of

programs and probably their speed and efficiency. Typical algorithms deal with sort-

ing merging, and similar large-scale processing, down to the details of rounding ,
page

throws, and date processing. As concrete examples, let's briefly consider five types:

(i) Linear programming . This is a technique for maximising a linear combination

of variables subject to certain restrictions. It is not easy, or necessary, to under-

stand the steps involved, which slowly but surely grind out the solution.

(ii) Warnsdorf's Rule provides a means to generate complete knight's tours round

a chessboard. The rule is: move the knight to the square with the fewest exit squares.

This often (not always) gives a solution. There is no real justification for the rule; it

gives an attack on the problem , without an indication of whether its solutions are only

a subset of the total of solutions, or of the procedure to follow when the rule finds

several squares which are equally legitimate.

(iii) Decision-tree pruning is a technique used in the analysis of games (e.g.

chess) by computer, where the 'tree' of moves and replies has a colossal number of

'branches'. When any 'branch' is assessed as 'worse' than some other branch, no fur-

ther time is spent on that 'branch'. (The 'alpha-beta algorithm' is an example).

(iv) Sorting . Dates stored in the form DDMMYY or MMDDYY may be sorted three

times, by year, month and day. YYMMDD requires only one sort.

(v) 3-Dimensionai 'tic-tac-toe' or (U.K.) noughts and crosses has a variation in

which the first player to make a line loses. An algorithm for the first player is: start

at the centre, then make all moves exactly opposite to the opponent's. This ensures

that the first player cannot lose. (It doesn't prove that a draw is impossible).

Formal logic is sometimes helpful in simplifying complex conditions which have to

be met: see Chapter 5 on AND, OR, and NOT.

3.3 Designing systems

'Systems Analysis' has no necessary connections with computers. The approach is to

examine exactly what you'd want a computer to do, taking particular note of the 'odd

10%', or whatever figure applies, of oddments, exceptions, and special cases. Useful

clarification may result irrespective of computers, the mental effort producing results

which are unexpected, economical, and neat (in the words of Prof. Parkinson). Trans-

lation of the result to a computer may nevertheless be unsuccessful. Typical mistakes

include allocating insufficient space for data, so some figures are too large to fit into

a file; failure to test the timing of a system, in which case the performance may fall

off dramatically as data is added; adding new features during development, of a type

likely to increase the number of bugs in the system. (For example, an 'escape' key

might be introduced to take the operator back to the start of the system, if the wrong

part of a program has been inadvertently called. The incomplete data already set up

may cause unforeseen errors). File layout is important if any sort of elaborate tech-

nique is to be used (i.e. anything other than sequential access or, with disks, access

of relative records by record number). Once a database is set up, apparently simple

operations like sorting on some unusual field, not allowed for in the design, or delet-

ing or inserting records, may simply take too long to be workable. The aim must be to

achieve a flexible design, since it is all but impossible to think out all the implications

of a system beforehand, and in any case may not be cost-effective with cheap comput-

ers.

A complete system typically has a menu of options; entering a numeral or letter

at the keyboard calls either a new program from disk, or enters a subprogram within

the program which holds the menu and some program responses. In this way, functions

of the system can be partitioned up in discrete, tidy units. A separate routine may

handle each of the three operations of adding records, deleting records, and amending

records, for example; another batch of programs might handle inventory reports, in-

voicing reports, outstanding orders, and so on. Microcomputer systems are usually

interactive. This means that files are modified at the time data is keyed in. The alter-

native type of design is that of batch systems. These are common in mainframe (i.e.

big computer) environments, the idea being to store data on file, and later run a pro-

gram to check this data and add it to the current file, updating it by the batch of

new data. In the same way, output can be 'spooled', saved on a file for later printing

in mass. This is an efficient way to use a big machine, since successions of jobs can

be run, and the computer doesn't waste time awaiting input from terminals. There may

be insufficient tape or disk storage space with small machines to make batch process-

ing possible. Note however that from the security point of view, running separate

Programming the PET/CBM -22- 3: Program and system design

batches may be preferable to direct updates, because, if a check shows that the files

contain 'corrupted' (i.e. wrongly written, scrambled) data, the previous copy of the files

and the new data can be re-run.
The relation between data storage - in RAM, tape or disk - and the frequency

with which it is accessed is one of the main features of system design: see Chapter 17

for examples of this and the related problems of the use of printers for 'hard copy'.

Specific computer techniques (i) Data compression and codes . It is possible, and may
be necessary, to save storage space by encoding data. The following chapter has rout-

ines to compress integers to half their length, and to combine many on-off flags into a

single number.
(ii) Checkletters and checkdigits . These guard against wrong input by providing

a test for self-consistency , typically for use with a reference number of a client or

item. Chapter 4 has examples.
(iii) Sorting . The capacity to sort data and store it in sorted order is important

in large-scale data processing for two reasons. First, reports, printouts, and lists may
be required in order - typically alphabetic. Secondly, the knowledge that data is sort-

ed enables much faster processing to be possible than would otherwise be the case.

Merging new data with old typically requires the matching of two sorted files; in this

way , at any moment only two records need to be compared to determine whether the
new record is to be inserted into the file, used to update its existing equivalent, or
ignored temporarily while the main file is read again. And searching data by the
'binary chop' method - equivalent to opening a telephone book in the middle, checking
the name sought against the middle name, and continually halving the size of the chunk
of text which must hold the target name - needs sorted data. Chapter 4 outlines some
important aspects of sorting.

3.4 Timing, 'sizing', and checking systems

When considering the practicability of a large system , it is often worthwhile to write
programs to generate 'dummy' data, to simulate a full file. This data can be generated
with the help of RND, with which both numbers and alphabetic strings of data can be
constructed. (With CHR$ in the case of strings). By testing for inequality, strict

ascending or descending sequences are easy to simulate. In the light of tests on this

data, improvements in the logic or file-structuring may be suggested.
Estimating the storage capacity to run a system is relatively straightforward: in

the simplest case, all records are the same length, so the product of the maximum
number of records and the record-length gives the solution. This figure can usually
be reduced by data-compression techniques, at the cost of extra programming time.

Sequential files, in which records can differ widely in length, obviously occupy space
in proportion to the average record length. Disk systems usually reserve some storage
for their own operating system, to hold directories and so on, and this must be taken
into account if space is short. In addition, the pair of disk drives in most systems are
operationally distinct, so that the data may have to be held in a subdivided form on
two (or more) disks. When this happens, it is of course important to ensure that each
disk independently has sufficient room for its own quota of information.

Testing systems is not particularly easy. (See Chapter 17 on this subject). The
writer, however, does at least have informed knowledge which should ease; the pin-
pointing of likely errors. On the other hand such knowledge may simply result in un-
conscious or conscious avoidance of areas known to be suspect. For this reason, the
user is often asked to supply test data and try it in the system , and to check that its

results are correct. This process will often expose assumptions whichthe programmer
has wrongly made, but it is unreasonable to expect such testing to be thorough. There
may be parts of programs which are not tested; and systematic errors may not be re-
vealed, because the combinations of data which show up the error happen not to be
entered. Systematic errors, in which, for example, every 44th record is lost, or rec-
ords of length 254 are corrupted, or items on an invoice after the tenth are duplicated,
are nearly always caused by programming errors. Unfortunately the triggering combin-
ations of circumstances may be sufficiently complicated to produce errors apparently at
random. Apart from testing every part of each program at least once, and ensuring
that test data gives consistently correct output, commercial programming practice is to

try to minimise program errors by insisting on standard methods, heavy documentation,
and 'walkthroughs'. The latter are a kind of group criticism of a programmer's design,
as a result of which the programmer is supposed to improve his or her program. The
effectiveness of such methods remains in some doubt.

Programming the PET ICBM -23- 4: Effective BASIC

CHAPTER 4: EFFECTIVE PROGRAMMING IN BASIC

4.1 Specific BASIC problems and solutions

This section deals with the following topics:

4 1 1 Subroutines and documentation 4.1.2 Checkdigits and checkletters

4] 1.3 Codes 4.1.4 DATA: processing steps; relocation

4.1.5 Date processing 4.1.6 Error messages

4.1.7 Hard and soft coding 4.1.8 INPUT

4.1.9 The keyboard buffer 4.1.10 Numeral packing and unpacking

4.l!l1 Rounding 4.1.12 RAM data storage

4.1.13 Searching 4.1.14 Sorting

4. 1 . 1 5 String handling 4.1.16 Validation

4.1.17 Arrays

4.1.1 Subroutines and documentation Subroutines are used to handle an enormous

variety of processing tasks: setting scrolling windows on the screen, printing error

messages, inputting and formatting data, reading passwords, reading a record from a

disk file, and so on. If they are to be usable as standard subroutines, a certain

amount of documentation is helpful. The example converts a hexadecimal number into a

decimal, and prints the answer. All the variables used by the subroutine are listed,

with an example or two to illustrate the method of use. If the subroutine itself called

other subroutines, these too would be listed. Note that the documentation occupies far

more space than its routine.

550 REM*** ONE LINE HEXADECIMAL TO DECIMAL CONVERTER ***

555 REM
560 REM CONVERTS STRING OF 4 HEX DIGITS INTO DECIMAL NUMBER AND PRINTS RESULT

565 REM USES J, L, L%, L$

570 REM ALL THESE ARE ALTERED BY THE ROUTINE

575 REM

580 REM EXAMPLE OF USE:

585 REM L$="ABCD" : GOSUB 600 : PRINTS 43981

590 REM

595 REM

600 L=0:FORJ=lT04:L%=ASCa$):L%=L%-48+(L%>64)*7:L$=MID$(L$,2):L=16*L+L%:NEXT:PRINTL:RETURN

A similar decimal-to-hex conversion routine follows; this uses the same four variables,

but the relevant variable on entry is L, not L$.

500 L=L/4096:FORJ=1T04:L%=L:L$=CHR$(48+L%-(L%>9)*7):PRINTL$;:L=16*(L-L%):NEXT:RETURN

4.1.2 Checkdigits and checkletters are (usually) suffixes, computed by an algorithm,

which are appended to important alphanumeric data. Typically, the data involved is a

reference number or some key number in a system. The composite data is made intern-

ally consistent, so that keying-in errors can be detected. As an example, consider

International Standard Book Numbers (ISBNs). These consist of 9 digits followed by a

checkdigit of 0-9 or X. The 9 digits are codes for the publisher and the title; the

checkdigit is computed by multiplying each numeral in turn by 10,9,8, . .,4,3, 2 and

adding the result. The remainder after division by 11, when subtracted from 11, is the

checkletter (except that 10 becomes X, and 11 becomes 0). It is true that any ten

random numerals have 1/11 chance of forming a valid ISBN, so the system is not fool-

proof. But the point is that the most common input errors are protected from entry to

the system, if the computer is programmed to test the checkletter. There are two

common typing errors: the first is the entry of a completely wrong single value (e.g.

7 instead of 1), and the second is the transposition of two adjacent keys. Because ot

the system of weighting, and the use of the prime number divisor, either of these mis-

takes is entirely preventable. Another algorithm assigns 23 characters, A-W, as check-

letters, depending on the result of division by the prime number 23. As a refinement,

'O' becomes 'X' and T becomes 'Y\
.

Because this form of validation is easy to implement with computers (it is too

arduous for human operators) a checkdigit system may be well worth implementing;

without it, whole sets of data may be miskeyed because of some misunderstanding about

the layout of an item number or customer number.

Programming the PET/CBM -24- 4: Effective BASIC

If ISBN$ is a string of nine numerals (without spaces), this routine computes the ISBN:

10 CT=0: FOR L=l TO 9: CT = CT + (11-L)*VAL(MID$(ISBN$,L, 1)) : NEXT
20 CD$=STR$(11 - CT + INT(CT/11)*11) : REM 11 MINUS REMAINDER OF CT DIVIDED BY 11
30 IF VAL(CD$)=11 THEN CD$=" 0" : REM ALLOWS FOR CBM'S STRANGE STR$
40 IF VAL(CD$)=10 THEN CD$=" X"
50 PRINT ISBN$ + CD$: REM FULL ISBN

4. 1.3 Codes. BASIC logical functions use 16 bits in all. If we forget the negative first
bit, we can hold up to 15 on-off flags in a single real or integer variable. We can test
any single bit with:

IF FL AND 2tN THEN . . . :REM WHERE N = TO 14

And we can reverse any bit, leaving the rest untouched, with:

FL = FL - 2tN *(2*((FL AND 2TN)=0) + 1)

This technique is useful in storing, in a compact form, data which might otherwise be
written to a file as 'Y' or 'N', or some other pair of alternatives.

4.1.4 DATA: processing steps; and relocating DATA subroutines. The following coin
analysis program, which converts a number of wages/ salaries into their breakdown by
notes and coin, shows one method for dealing with irregular steps: the values, of
which there are seven here, are stored in an array:

10 DATA 7,10,5,1, .5, .1, .05, .01 :REM 7 U.K. DENOMINATIONS
20 READ NUMBER OF DEN0MS: DIM CN(NU), QU(NU):REM COIN/NOTE DENOMS AND QUANTITIES
30 FOR J=l TO NU: READ CN(J): NEXT :REM READ DENOMINATIONS INTO ARRAY
40 INPUT "NUMBER OF EMPLOYEES"; EMPLOYEES: DIM SALARIES OF (EMPLOYEES)
50 FOR J=l TO EM: INPUT SALARY OF (J): NEXT

100 FOR J=l TO EMPLOYEES
110 FOR K=l TO NUMBER OF DENOMS
120 X%=SAL(J)/CN(K): SAL(J)=SAL(J)-X%*CN(K) : QU(K)=QU(K)+X%
130 NEXT: NEXT
200 FOR J=l TO NU: PRINT CN(J) "=" QU(J) : NEXT

Strictly, to avoid any possibility of rounding error, line 50 could include
:SA(J) = SA(J) + CN(NU)/2: next, adding in this example Jp to each salary. Line

10 can be replaced by any currency combination, provided the denominations are in
order, and the first DATA value is the total number of denominations. Note that DATA
statements can be made relocatable; this avoids problems which can arise when new
DATA statements are inserted before existing ones. READ operates purely sequentially,
so the introduction of new data may spoil previously correct routines. One method is:

10000 REM STANDARD SUBROUTINE WITH 'DATA'
10010 RESTORE
10020 FOR L=l TO 1E10: READ X$: IF X$<> "SEARCH M/C" THEN NEXT: REM READ 'TIL NAME
10030 REM *** READ DATA HERE ***
10040 RETURN
10050 DATA SEARCH M/C, 100, 0, 45, 34,66: REM ETC.

4.1.5 Date processing. We have three date routines here: the first calculates the day
of the week given the date, the second calculates days-between-dates , and the third
1 REM ***********#***# ZEl.LER'S CONGRUENCE ********#*******************
2 REM * FINDS DAY OF WEEK FOR ANY DATE *
3 REM ****************************#**#**#********##****#***#**#**#****#*
4 REM * 'CENTURY' IN ITALIAN SENSE t 19 FOR 20TH CENTURY *
5 REM * IF WE ASSUME 19, LINE 50 BECOMES: *
6 REM * 50 J = INT(2.6*M - ,19) + D + Y +INT(Y/4) - 34 *
7 REM * *
8 REM * DATES MAY BE TESTED FOR IMPOSSIBILITY BY AN ADDITIONAL ROUTINE *
9 REM *****************#**********#*#*#**#**##*»****4HHHHHHHHHHHHHHMHHHf#
10 DATA SUN,MON»TUE,WED,THU»FRI,SAT
20 FOR J = TO 6s READ D*(J)s NEXT t REM TABLE OF DAYS OF WEEK
30 INPUT "DAY, MONTH, YEAR, CENTURY" i D,M,Y,C
40 M = M-2s IF M<1 THEN M=M+12: Y=Y-1: REM LEAP YEAR ALLOWANCE
50 J = INT (2.6*M - .19) + D + Y + INT(Y/4) + INT(C/4) - 2*C
60 J = J - INT(J/7>*7
70 PRINT D*(J)

«,- DcT/rRM -25- 4: Effective BASIC
Programming the PET/CaM "
is a short validation routine, which checks that a combination of day, month and year

is valid, allowing for leap years (but not for 1600, 2000 etc. not being leap years).

ROUTINE TO CALCULATE NUMBER OF DAYS BETWEEN DATES

10 DATA 0,31,59,90,120,153.181,212,243,273,304,334. REM DAYS ELAPSED

20 FOR J=1
2
T0 12. READ D<J)* NEXT. REM DAYS ELAPSED BY MONTH; NOT LEAP YEAR

99 REM *** NOTE U.S. USAGE IS M,D,Y BUT U.K. USAGE IS D»M»Y ***

100 INPUT "DATEl"? D»M,Y: UOSUB 2000
105 DX * DE
110 INPUT "DATE2"f D,M,Ys GOSUB 2000
115 DY = DE
116 PRINT DY-DX
1*^0 GOTO 100
1990 RFM **

1991 REM * DAYS ELAPSED BETWEEN DATES SUBROUTINE. THIS FUNCTION COMPUTES *

1992 pfS * SayVsINCF AN ARBITRARY EARLY DATE IN THE CENTURY, USING

!993 REM * DAY OF MONTH + DAYS ELAPSED DURING YEAR + DAYS IN CENTURY *

1994 REM * WITH CORRECTION FOR PAST, AND POSSIBLE PRESENT, LEAP YEARS. *

1995 REM ****** ************** **

2000 DE - D + D(M) + 365*Y + INT ((Y-D/4) - i (INT(Y/4)*4=Y) AND (M>2))

2010 RETURN

6200 0K=-1 AND Y>81 AND Y<85 AND M>0 AND M<13 AND D>0 :REM Y.M.D INTEGERS ONLY

6210 OK=OK AND D<32+(M=4 OR M=6 OR M=9 OR M=11)+<M=2)*(3+INT(Y/4)*4=Y)

)

Line 6200 tests for a year of '82 to '84; obviously other values may be substituted.

4 1 6 Error messages are used to signal to the operator that an error has been made.

This short routine
9
prints the message in reverse at the bottom of the screen then

deletes it after a short delay. EM$ holds the message, (e.g. 'IN SALES CODE or

'INVALID DATE'), which is preceded by *** ERROR on the screen:

12000 rem ** error message (max. length 19) with delay loop and remove «»
nQV+ . nr?n+

12005 print"[homel[down1ldownl[downl«;:forl=1to10:prlnf[rightl[downJIdownl»;:next:pr1nt

•Urevsl*** ERROR "em$M Irvsol";

12010 for 1=1 to 2500: next
12020 forl=1tolen(emJ)+11:prlnt"[left] [leftl»;:next

12025 return

4 1 7 Hard and soft coding. 'Hard coding' means that important parts of a program use

constants; 'soft coding' means variables are used. Soft coding is usually easier to mod-

tfy but slightly more trouble to write. See the second example under M D$ in Chapter

5 as a specimen. Section 4.1.4's coin analysis program, in which a simple change ma
DATA statement can convert a program to run with any set of currency denominations,

illustrates the same lesson.

4 1 8 INPUT of data. Chapter 5 (under INPUT) and Chapter 2 outline the problems of

ae'ordinarv INPUT statement, and include cures, notably for the crash when Return

alone is pressed. (The easiest solution is POKE 3,1 or POKE 14,1 or POKE 16,1 for

BASICS 1,2, and 4 respectively).
_

In order to input commas within strings, elaborate techniques using GET are

necessary o?which
P
the following is an example. When GOSUB 70 is called within a pro

gram,treasonably crashproof input results (with a flashing cursor) ^urning the

string as ZZ$. Line 76 allows for the 'delete' key. As we shall see on the inext page,

thisSubroutine is a very small-scale version of a completely watertight INPUT.

fo orJr« qPECIAL INPUT ROUTINE FOLLOWS, WHICH RETURNS STRING ZZ* **

72 GET ZA*s IF ZA*="" THEN 72
pftiirn

74 IF ASC<ZA*> = 13 THEN PRINT" "»t POKE 548,1: RETURN

76 IF ASC<ZA*> = 20 THEN GOTO 84

78 ZZ* = ZZ*+ZA*
80 PRINT ZA*;

£ IF
T
LEmZZ*) > 1 THEN ZZ*=LEFT*< ZZ*, LEN(ZZ*) -1

) . GOTO 80

86 IF LEN<ZZ*> = 1 THEN ZZ*="" * GOTO 80

88 GOTO 72

Programming the PET ICBM -26- 4: Effective BASIC

The BASIC routine on the next page (not for the faint-hearted!) is a successful input

routine which is fully parameterised and has the following characteristics:

VARIABLES 'F' prefix refers to screen format :

FT=TOTAL NUMBER OF ITEMS TO BE INPUT FROM THE SCREEN
FC=NUMBER OF CURRENT ITEM; ALWAYS <= FT & FL=LOWEST ITEM INPUT
FH%(), FV%(), FL%(), and FS$() hold horizontal position and vertical
position of start of item/ maximum length/ type of field. The 'type'

may be a string ("S"), integer ("I"), or 2-decimal point number ("N")

'J' prefix refers to input from screen :

JH, JV, JL, and J$ = current horizontal, vertical, length, and type.

Jl$ is a single character, Jl its ASCII value, and JS$ the current
input being built up. J$() holds the array of FT inputs from the
screen. Finally, JD is a decimal-point counter.

SUBROUTINES 100 HTAB & VTAB USING JH & JV COORDINATES; SEE CHAPTER 5

120 GET NON-INITIAL CHARACTER WITH FULL VALIDATION
140 NUMERAL PROCESSING ROUTINE (ENSURES DEC. PT. CORRECT)
160 GET INITIAL. PERMITS USE OF '

<
' AND >' FOR BACK/FORWARD STEP

190 REPRINT 2 D.PT. NUMBER, ADDING '.
' AND ZEROES IF ABSENT

200 PRINT 'CURSOR', A SINGLE GRAPHICS CHARACTER
220 DELETE SINGLE CHARACTER, REPLACE WITH SPACE
250 ** INPUT ROUTINE **

300 PROCESS STEPS: '<
' BACK, >• FORWARD, WHERE POSSIBLE

The length of each variable is defined, so screens of the sort illustrated in section
9.3 can be used - there is no need to follow each input by a blank line. Short dem-
onstration routines (below) show how the routine is used. Unfortunately, flexibility in

input is not very easy to achieve. The routine ignores characters which are not num-
erals, alphabetics or punctuation. The double-quote (") is ignored, and must be re-
placed by the single quote ('), because of problems which may arise in strings which
contain a quote. All upper-case keys are ignored, except for alphabetics; shift-space
is converted to space, and shift-return to return. In this way, fields which are to be
compared or searched, which may appear different to the computer because space (AS-
CII 32) is held differently from shift-space (ASCII 160), are held correctly, and shift-

return, which typists naturally regard as identical to return, is treated as a normal
return. The 'cursor' is a static graphics character, which does not flash. It can be
controlled by the keys '<' and '>', which step through the fields on the screen either
back or forwards. The cursor control keys are not used, since they are unfamiliar to
typists. The previous values entered in each field are displayed, to be overwritten by
new values if desired (but not otherwise), which speeds input. Finally, input of integ-
ers allows only 0-9; input of strings allows all alphanumerics and punctuation marks;
and input of real numbers assumes two decimal places, and will not allow input which
infringes this. For example, if the length of a number is specified as 6, 999.99 is the
largest number which may be input; the attempt to enter 9999 will be disallowed. The
decimal point, followed by 00, is automatically inserted if omitted.

The first part of the example program defines six inputs; these are (i) a single
letter, which must be A or B; (ii) three integers of maximum length 2, which makeup
a date; (iii) a string of length 25, perhaps a name or comment; (iv) a string of max-
imum length 3, which, if 'YES', causes the screen of data to be accepted, and process-
ing to continue. (Otherwise, '<' is used to go back to amend some entry). In practice,
thirty or so separate entries can be made easily from a single screen.

10000 DATA S,I,I,I,S,S :REM TYPES. NOTE THAT N=2 DECIMAL PLACE NUMBER.
10010 FOR J=0 TO 5: READ FS$(J): NEXT :REM FILL ARRAY OF TYPES
10020 DATA 1,2, 2, 2, 25, 3: REM LENGTHS OF EACH INPUT
10030 FOR J=0 TO 5: READ FL%(J): NEXT :REM FILL ARRAY OF LENGTHS
10040 DATA 20,10,13,16,4,3 :REM HORIZONTAL START POSITIONS - TYPICAL VALUES
10050 FOR J=0 TO 5: READ FH%(J) : NEXT :REM FILL ARRAY OF HORIZONTAL POSITIONS
10060 DATA 2,5,5,5,10,24 :REM VERTICAL START POSITIONS - TYPICAL VALUES
10070 FOR J=0 TO 5: READ FV%(J) : NEXT :REM FILL ARRAY OF VERTICAL POSITIONS

This routine must be run before any input takes place. A further subroutine prints

the screen details from which the input will be made: again, see section 9.3 for a

screen layout, which incorporates variables. Assuming the strings are stored in the

array J$(), as in the example following, the screen printing subroutines looks like

this:

Programming the PET/CBM -27- 4: Effective BASIC

100 REM HTAB, VTAB USING JH AND JV COORDINATES; THEN RETURN

120 GET J1$: IF J1$="" THEN 120

122 J1 = ASC(J1$)
124 IF J1>127 THEN IF JK193 OR J1>218 THEN J1=J1-128: J1$=CHR$(J1

)

126 IF J1 = 13 OR J1=20 THEN RETURN
128 IF J$="S" THEN IF JK32 OR J1=34 THEN J 1 $="":RETURN

130 IF J$="I" THEN IF JK48 OR J1>57 THEN J 1 $="":RETURN

132 IF J$="N" THEN GOSUB 140

134 RETURN
140 IF JK46 OR J1>57 OR J1=47 OR (JD>0ANDJD=LEN(JS$)-2) THEN J1$ =

142 IF JD>LEN(JS$) THEN JD=0
144 IF J1=46 AND JD<=LEN(JS$) AND JD>0 THEN J1$=" H

146 IF J 1=46 AND JD=0 THEN JD=1+LEN(JS$)
148 IF J1=46 AND JD>JL-2 THEN J1$=""
150 IF J1<>46 AND JD=0 AND LEN(JS$)>JL-4 THEN J1$=""

152 RETURN
160 GET J1$: IF J1$="" THEN 160

163 J1=ASC(J1$):IF J1>127 THEN IF JK193 OR J1>218 THEN J1=J1-128: J1$=CHR$(J1

)

166 IF J1=13 OR J1=20 OR J1=60 OR J1=62 THEN RETURN
169 IFJ$="S"THEN IF JK32 OR (J1>127ANDJ1<160) OR J1>223 ORJ1=34THEN J1$ =

172 IF J$="I" THEN IF JK48 OR J1>57 THEN J1$=""
175 IF J$="N" THEN IF (J1 <> 46 AND JK48)OR J1>57 THEN J1$ = ""

178 IF J$="N" AND J1=46 THEN JD= 1

181 IF J1$="" THEN 160
184 RETURN
190 IF JD=0 THEN JS$=JS$+". ": PRINT". "; :JD=LEN(JS$)
192 IF JD>LEN(JS$)-2 THEN JS$=JS$+"0" :PRINT"0"; :GOTO 192

194 IF LEN(JS$)<JL THEN FOR L = LEN(JS$)TOJL-1 : JS$=" "+JS$:NEXT

196 RETURN
200 PRINT" [LEFT] [REVS] 4 [RVSO] ";: RETURN
220 GOSUB 100: PRINT" [LEFT] ";: RETURN
247 REM
248 REM ** INPUT ROUTINE FOR STRINGS, INTEGERS, S 2 D.P. NUMERALS

249 REM
250 JS$="": JD=0: JH=FH%(FC): JV=FV%(FC): JL=FL%(FC): J$=FS$(FC)
253 GOSUB 100: GOSUB 200: GOSUB 160

256 IF J1=13 AND JS$="" THEN GOSUB220:GOTO250
259 IF J1=60 OR J1=62 THEN GOSUB300:GOTO250
262 IF JS$="" THEN FOR L = 1 TO JL:PRINT" ";:NEXT

265 IF JS$="" THEN FOR L = 1 TO JL : PRINT" [LEFT] ";: NEXT

268 IF J1=13 AND J$="N" THEN GOSUB 190: GOTO 277

271 IF J1=13 AND J$="I" THEN GOSUB 194: GOTO 277
274 IF J1=13 AND LEN(JS$)<JL THEN FOR L = LEN(JS$)TOJL-1 : JS$=JS$+" ":NEXT

277 IF J1=13 THEN GOSUB 220: RETURN
280 IF J1 = 20 THEN IF LEN(JS$) < 2 THEN PRINT "[LEFT] [LEFT]": GOTO 250

283 IF J1 = 20 THEN JS$ = LEFT$(JS$, LEN(JS$) -1):PRINT "[LEFT] [LEFT]";: GOTO 295

286 IF LEN(JS$)>=JL THEN J1$=""
289 JS$ = JS$ + J1$
292 PRINTJ1$;
295 GOSUB 120: GOTO 268
300 GOSUB 220

305 IF (FC=FL AND J 1=60) OR (FC=FT AND J 1=6 2)THEN RETURN

310 IF J 1=60 THEN PRINTJ$ (FC): FC=FC-

1

315 IF J1 =62 THEN PRINTJ$(FC): FC=FC+1
320 RETURN

Parameterised crashproof 'INPUT' routine

2000 PRINT " [CLEARJ [RVS] TITLE [RVSOFF]

2010 PRINT : PRINT " ENTER TYPE (A or B) :
"j J$(0)

2020 PRINT : PRINT : PRINT " DATE: "; J$(l); J$(2); J$(3)

2030 PRINT : PRINT : PRINT "[RVS] ENTER FULL NAME:- [RVSOFF]": PRINT " "J$(4)

2040 PRINT "[DOWN] [DOWN] ...[DOWN] Check: Entry OK? "

This method is useful where repeat entry of data is wanted. If the data is one-off, or

the previous values aren't carried over from entry to entry, the screen will be similar,

but the expressions in J$() will be omitted, as J$(5) is here (because its only function

is to wait for 'YES').
, . ,.,,-. A

Finally, in addition to these preliminary routines, the actual input itselt is made

by a loop; this is necessary to permit free movement between fields during input. The

example should make the process, and the inbuilt possibility of extra validation in add-

ition to that by type, reasonably clear:-

Programming the PET/CBM -28- 4: Effective BASIC

1000 GOSUB 2000 :REM PRINT SCREEN
1010 FC=0: FT=5 :REM SET LOW/HIGH LIMITS
1020 GOSUB 250: 0K=-1 :REM GET INPUT FROM SCREEN
1030 IF FC=0 THEN IF JS$<>"A" AND JS$<>"B" THEN OK=0:REM VALIDATE FIRST ITEM
1040 IF FC=1 THEN DD$=JS$:REM DDMMYY ASSUMED HERE
1050 IF FC=2 THEN DM$=JS$:REM VALIDATION ROUTINE CAN
1060 IF FC=3 THEN DY$=JS$: :REM BE USED (SEE 4.1.5)
1070 IF FC=4 THEN GOSUB 500 :REM SOME SORT OF VALIDATION, SETTING OK=0 OR -1

1080 IF NOT OK THEN GOTO 1020
1090 IF FC=FT AND JS$="YES" GOTO 1500
1100 IF FC=FT THEN GOTO 1020
1110 J$(FC)=JS$
1120 FC=FC+1: GOTO 1020
1500 REM CONTINUE PROCESSING WITH FULLY-CHECKED DATA

REM REINPUT IF NOT OK
REM EXIT AT BOTTOM OF SCREEN
REM CARRY ON IF NOT "YES"
REM STORE VALUE IN J$()
REM CARRY ON WITH NEXT ITEM

Single-character input fills RAM remarkable rapidly, so BASICs earlier than 4 will give
trouble with memory-freeing if there are many strings in use. (See FRE, and Chapter
2). Suppose we input ABCD. Two sets of strings build up in memory, so RAM looks
like this: ABCDDABCCABBAA, where each individual GET takes one byte, and each
composite string takes up one more byte than it did previously. A little algebra gives
£n(n+3) bytes for a string of length n. So a 25-byte entry uses 350 bytes. At this
rate, automatic FRE in memory occurs often. If this is a problem, as it may be when
using BASIC <4, palliatives vary from restructuring the program so that data is held in

RAM by poking and peeking, to holding several strings as one, separating out the
individual strings with MID$ when they're needed. (If the number of strings is reduc-
ed to one-third of its previous value, garbage collection is about nine times faster). An
alternative is to temporarily dissociate the bulk of string variables: In BASIC 2, this
means the contents of ($34) are replaced temporarily by those of ($30), moving the
'top of memory' to the 'bottom of strings'. Only those variables used in the routine are
affected by FRE, which is usually much faster. To recover the remaining strings, the
original top of memory pointers must be replaced. The addresses in decimal are 52 and
53 ('top of memory') and 48 and 49 ('bottom of strings'). BASIC l's pointers are diff-
erent (see Ch. 15). NOTE: see Ch. 17 for Commodore's 'Standard data entry environment'.

4.1.9 The keyboard buffer is dealt with in Chapter 8, section 8.8. Chapter 5 also
has some examples: see AUTO and DEL, amongst others. This example is a routine to
convert machine-code into DATA statements, for later use as part of a machine-code
loader. After the input of the start and end addresses - obviously necessary - and
the starting linenumber, data statements are printed on the screen and incorporated
in BASIC in direct mode. The key to the program is to note that line 60030's END does
not actually end the program; a [HOME] and two Returns are forced into the keyboard
buffer, and since the screen holds something like this:

63000dA169, 0,133, 148, 169, 32, 133, 2, 165,0,
201,80,176,86,165,1,201,50,176,80,169
1= 63000+1: s= 847: E=903: goto 60000

on END, the cursor is homed and two returns entered; the effect is identical to that
achieved by entering these three keys at the keyboard. Values are for BASIOl.

1 print'MclearlDATA STATEMENT GENERATOR
10 inpuf'start location";s
20 inpuf'end locatlon";e
30 input"! inenumber";

I

60000 print»[clsar]"mid$(str$(l),2)"dA";:g=peek(54)+256*peek(55)
60010 forj=s to e

60020 ifpos(0)+peek(196)>77thenprint"[leftl "
: pr i nt" { home I [down! i down I l="l "+1 :s="j":e="e

":goto"g
60030 ifpos(0)+peekC196)>77thenpoke623,19:poke624,13:poke625,13:poke158,3:end
60040 printmid$(str$(peek(j)),2)",»;
60050 next
60060 prinflleftl ":poke623,19:poke624,13:poke158,2:end

4.1.10 Numeral packing and unpacking is a space-saving measure, sometimes useful
when disk space is limited. It is also rather time-consuming to implement, and slows
down the program's running to some extent. Two complementary subroutines (next
page) convert a numeral string (e.g. "12345"), held as NS$, into a packed form NP$,
and vice-versa. In effect the number is stored to base 100. Lines 80 and 410 contain
32; the object of this is to avoid some codes, e.g. CHR$(0) and CHR$(13), which may

Programming the PET/CBM -29- 4: Effective BASIC

not store successfully.

1, UNPACK PACKED STRING NP* INTO INTEGER NS*s

80 NS* = ""J FHR L = 1 TO LEN (NP*): NI* = STR*< ASC< MID*(NP*, L, 1)) -32)

82 IF LEN(NI*)<3 THEN NI*-" 0" + RIGHT*<NI*. LEN(NI*) -1) :
GOTO 82

84 NS* = NS* + RIGHT*(NI*»2)s NEXT Li RETURN

2. PACK INTEGER STRING NS* INTO PACKED STRING NP*:

400 NP*="": IF INTcLEN(NS*)/2>*2 <> LEN<NS*) THEN NS*=CHR*(32) + NS*

405 FOR L = 1 TO LEN(NS*) STEP 2

410 NPS = NP* + CHR*(VAL<MI.D*<NS*»L»2))+32)
415 NEXT L
420 RETURN

DEMONSTRATION ROUTINE:

1000 INPUT NS*: GOSUB 400: PR INT "PACKED VERSION IS "NP*

1010 GOSUB 80: PR I NT"UNPACK ED VERSION IS "NS*

1020 GOTO 1000

PACKS NUMBERS OF FORMAT 99999.99 WITHOUT THE DECIMAL POINT:

480 NS*= LEFT*(ND*»5) + RIGHT*(ND*» 2)

484 GOSUB 400
488 RETURN

4.1.11 Rounding is the process of converting and representing a number in a less

accurate, but more convenient, form: $10 plus 15% is $11.50; $10.45 plus 15% is

$12.0175; to two decimal places these are 11.50 and 12.02 respectively. (I have not

considered the question of relative accuracy here, i.e. accuracy to a certain number

of significant digits). A good rounding routine may format the number to a known
length with leading spaces, insert (for example) '.00' after a plain integer, and put in

a leading zero in the case of numbers less than 1. Poor routines may put the decimal

point in the wrong place, produce spurious values, or print characters like 'E\ on

occasion. Alignment may be difficult, and zeroes not treated as a special case.

DEF FN P(X) = INT(LOG(ABS(X)+.001)/LOG(10))

is intended to calculate the number of places before the decimal point; but there may

be very occasional errors in the calculations of the logarithms. This expression:

DEF FN R(X) = INT(100*X + .5)/100

rounds X to the nearest 2 decimal places: adding .5 has the effect of converting a

number with decimal component greater than .5 into the next highest number on INT.

This, on PRINT X, gives the usual 1.3 (not 1.30) for 1.3, and 1 (not 1.00) for 1.

The following more comprehensive routine is intended to round and format numb-

ers as suggested above. Apart from intermediate variables, the routine uses L to store

the number to be rounded, RQ ('rounding quantity') as a measure of accuracy, and

L2 to determine the type of rounding. RQ=100, for example, rounds to 2 decimal places,

and RQ=1000 to 3. When RQ=100, L2=.005 rounds to the nearest; L2=0 rounds down;

and L2=.995 rounds up.

92 L=INT(L*RQ+L2)/RQ: JS$=STR$(L): JS$=MID$(JS$,2)

93 JL=LEN(JS$): IF JL>2 THEN IF MID$(JS$, JL-2,1)=". " GOTO 96

94 IF JL>1 THEN IF MID$(JS$, JL-1, 1)=". " THEN JS$=JS$+"0": GOTO 96

95 JS$=JS$+".00"
96 IF LEFT$(JS$,1)="." THEN JS$="0"+JS$

97 IF LEN(JS$)<11 THEN FOR J=LEN(JS$) TO 10: JS$=" "+JS$: NEXT

98 RETURN

Line 92 computes a rounded string, without a leading space.

Line 93 branches on numbers like 123.45, 9999.99, 1.23, and .67.

Line 94 adds a zero to numbers like .5, 123.4, and 99999.9.

Line 95 converts integers to 2 dec. pt. form, e.g. 1234 into 1234.00.

Line 96 adds a leading zero to numbers like .5, .12.

Line 97 adds leading spaces up to a predetermined length (11 characters here).

The routine is intended for positive numbers > .01.

Programming the PET/CBM -30- 4: Effective BASIC

BASIC rounding routines always have a residual uncertainty about them, because the
effects of rounding by the calculation routines aren't certain. Chapter 5's PRINT
USING avoids this difficulty, since it edits the number before output; it is also faster.

Whenever a rounding routine is to be used, unless it has been previously tested, it is

good practice to write a test routine to generate numbers to be rounded; either at

random or in a sequence. It is usually impossible to test each individual value.

4.1.12 RAM data storage has two forms: data may be poked and peeked in some fixed
part of RAM, typically near the top, or it may be processed by arrays in the normal
way, but differ from normal file-handling in being loaded and saved directly from RAM.
The first method is useful in association with machine-code: a set of names, key numb-
ers or indexes can be searched in RAM virtually instantaneously , cutting down on disk
or tape use. The second approach also cuts down on input/ output, and, provided
that the whole of a batch of data fits RAM, can lead to very efficient processing; for
example, a 10K program can coexist with (say) 10000 integers stored in 20K of arrays,
and both the program and data could be loaded from tape, providing economical pro-
cessing of quite a large amount of data. The technique is fairly tricky. As we saw in
Chapter 2, the program starts in RAM at $0400 and is followed by a block containing
all the variables, string pointers, and function definitions so far encountered in the
running of the program; after this comes a block of arrays and string array pointers.
If we have integer arrays only, and if every variable is set up already, the position
of the integer arrays is known, so that they can be saved and reloaded freely. Pro-
grams using this method will have a layout of this sort:

Set (or LOAD) pointers to the correct positions for variables and arrays
LOAD stored arrays of data

Menu

Menu option to save stored data to disk/ tape

The first time round, with no variables in memory and no data yet on disk, a starting
up procedure is necessary. This involves (a) entering all the variables in direct mode
in optimum sequence, e.g. J=0:KK=0:IN$="". (b) Dimensioning all arrays, (c) GOTO
the line after 'LOAD stored arrays of data'. The menu will be displayed, and all the
variables are in place. The program must be STOPped to peek the pointers needed to
save and to reload. If the program is edited, this process will have to be repeated,
since the position of the data varies with the program length.

Section 4.1.17 has an example of this method in use.

1.1.13 Searching is necessary whenever a file structure provides no way of calcul-
ating the position of a record. Chapter 6 has a long section on disk files, which looks
at this problem. With CBM disks, 'relative files* (accessed by record number) or dir-
ect access files (which must be specially written) enable a record to be found very
rapidly; sequential files of any length are much slower. But often the record number
of a relative file may not be known, or may be less convenient than (say) entering a
name or phone number and waiting for the corresponding record to be read. Chapter
6 explains how such files may be subdivided, so the searching process is accelerated.

We may distinguish between searches in RAM and those which read data from
disk. In the first type, machine-code searches are so fast that the data need not be
ordered or arranged in any way. It is fast enough, normally, to scan from the start
to the finish, without elaboration. Section 6.7 has a fairly long example, including both
BASIC and a machine-code subroutine. However, when searching from disk, this may
be too slow. As we saw in Chapter 3, under these circumstances a search which con-
verges on the sought value is usual. The 'binary chop' is the best-known, and is easy
to program. (The 'Fibonacci search' is faster, but less easily programmed). It requires
that its data be in sorted order. This diagram shows how the convergence takes place:

ITEM NUMBER IN SEQUENCE: 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
NUMBER OF SEARCHES TAKEN: 4 3 4 5 2 5 3 4 5 1 4 3 4 5 2 4 5 3 4 5

using the algorithm on the next page, and applying it to 20 items of data. We can cal-
culate the average number of searches used by the binary chop, by amount of data:

NUMBER OF ITEMS OF DATA: 50 100 200 500 1000 2000 4000 9000
AVERAGE NUMBER OF SEARCHES: 5 6 7 8 9 10 11 12

Programming the PET /CBM -31- * Effective BASIC

x Input and validate item to be searched for (say, K$ = key item).

Nl and N2 set to current low and high record numbers

y R = INT((Nl+N2)/2) =R™ CALCULATE NEW MID-POINT

Read the appropriate field of record no. R; say R$

IF R$=K$ GOTO z :REM FOUND IT!

IF N1>=N2 THEN PRINT "RECORD NOT ON FILE": GOTO x:REM NON-EXISTENT

IF R$>K$ THEN N2=R-1: GOTO y :R™ REVISE UPPER LIMIT DOWN

N1=R+1: GOTO y
:REM REVISE L0WER LIMIT OT

z Continue processing the record

This schematic program of the binary chop search is, I hope, self-explanatory. Nland

N2 converge, sandwiching the correct value of R between them. Note that records

needn't be disk-based; they could as easily be a sorted array in RAM, in which case

the test line would read IF R$(R)=K$ GOTO z. Try out this technique before implem-

enting a large system, generating test-data with a program, and timing the result. It

may be too slow, depending on the disk system and size of file.

4 . T . 1 4 Sorting is an important operation in commercial data processing. (COBOL has

a SORT verb)? Chapter 5 has a collection of routines, mostly in BASIC, with notes.

The first example, the 'tournament' sort, is unlike all the others in computing individ-

ual results singly, so that results can be printed continually, before all the values

are ordered. Most sorts wait until the entire batch of data has been ordered, and

this can be irritating to wait for and slightly worrying, as the machine may appear to

do nothing for long periods. The 'bubble' sort has achieved fame through being very

slow. It operates by checking neighbouring values in the array, interchanging those

which are out of sequence, and repeating this process until the sort is guaranteed, or

until any pass takes place without a transposition, depending on the algorithm. That

in Chapter 5 (section* 5.3) has a test in line 620 which uses a 'finished* flag. The sort

is assumed to be in ascending order, and after every pass another value is positioned

at its correct value at the 'top' of the heap, unless, with a partly-sorted set of data,

many items are simultaneously sorted. To illustrate the idea, seven figures in the left-

hand column are shown sorted (in five passes) in the right-hand column.

Starting at the bottom of the set of data, each
4 1 7 7 7 item is compared with its immediate neighbour
7 4 §. 6 6 and interchanged if it is out of sequence. The
1 6 4 1 5 process is repeated to a distance up the data31544 which depends on the previous number of53133 passes ; the underlined digit represents the top25312

limit in each pass. With n items of data, a62221 maximum of n + (n-1) + (n-2) + ... passes is

required, making about in 2 in all. On this basis it is often said that the bubble sort

takes time proportional to the square of the number of items to be sorted. However,

the correct time is very sensitive to partial ordering of the data. The graph at the

end of SORT shows that new items, added to an already sorted array, then bubble

sorted together, is very fast; in fact, under these circumstances, the bubble sort is

one of the fastest possible, since it does little more than check that each item is corr-

ectly related to its neighbour, which is necessary in any sorting system. The machine-

code sort operates on string arrays, changing the pointers where appropriate, and

using the identical comparison to that of BASIC, for consistency. It does not sort the

zeroth element, which can therefore be used as a title or reminder. If new items are

to be sorted in, keep a number of null or blank elements at the start of the array.

As the diagram illustrates, high values (e.g. 6) can rise quickly from the bottom, but

low values (e.g. 1) are slow in descending. Note finally that the machine-code can be

made to sort from the second, third characters of the string, rather than the

first, by changing $FF in $032E (BASIC 1), or $7FB6 (BASIOl) to (second), 1

(third),... A demonstration BASIC routine is provided with the machine-code. Of the

other sorts, the Shell-Metzner and Quicksort are well-known; the former performs many

small bubble sorts on longitudinal subsets of the data; the latter compares data with a

'pivot value', putting the result into one or other 'stack' depending on the result. It

may run out of space; if so, dimension the array in line 40 with a larger value. The

'scatter' sort is an attempt to mimic human sorting: a subsidiary array is used, into

which data is first roughly sorted, on some a priori basis, for example with the As at

the beginning, Zs at the end, and others in between. Then this array is sorted thor-

oughly Its use of RAM is too great to permit the method to be very useful on micros.

Programming the PET/CBM -32- 4: Effective BASIC

4.1.15 String handling. CBM BASIC has three closely related string functions, LEFTS,
MID$, and RIGHTS, each of which extracts a substring from a string. Chapter 5 has
examples of the use of each function, and an additional function INSTRINGS, which
helps illustrate machine-code string handling. Strings can be represented by variables

or literals (e.g. X$ or "XYZ"), and also by the type-eonversion functions CHR$ and
STR$. Substrings can be concatenated (=chained) together with the binary operator
'+', and in fact any conceivable rearrangement of strings is possible with + and the

LEFT$, MID$, and RIGHTS commands. In many cases, MID$ alone can be used. Note,
however, that a string's length cannot exceed 255 bytes, because of the storage method
used by BASIC. Typical string processing includes the following:

(i) The use of extended, composite strings. The components need not be the
same length, but for ease of programming this is usual.

x$="lflfliSundayWfflondayl^TuesdayWednesdaytfThursdayWtfFriday]rfSaturday"
print mid$(x$, (d-l)*9+l,9)

Each substring is 9 bytes long (16 represents one space character), because the long-

est component is "Wednesday". The second expression prints a substring of length 9

corresponding to the d'th day's name, where d=l to 7.

(ii) Padding a string with leading or trailing spaces, so that alignment is auto-
matic on printing out. The obvious way is to add individual spaces:

FOB J=LEN(S$) TO 19: S$="\f"+S$: NEXT :REM PADS STRINGS OF LENGTH <20 TO 20
A quicker and more elegant way (which also uses less RAM, and is therefore better
with BASIC<4) is to add the entire substring in a single chunk:

S$ = LEFT$(")^)OW)W¥WiWt<'',20-LEN<S$)) + S$: REM PADS STRING TO LENGTH 20
(iii) Scanning a string for certain alphanumerics . In such activities as checking

a response for accuracy in foreign-language (or English!) teaching, and playing hang-
man, a FOR ... NEXT loop can examine the string. Let's consider hangman, the word-
matching game, where W$ is the target word, L$ a guessed letter, which, if it exists
within W$, appears in the display D$. Typically, W$ will be selected by some such
routine as this: RESTORE: FOR J=l TO RND(1)*201: READ W$: NEXT: REM ASSUMES 200 WORDS
Then D$ is generated with: d$=left$(" ",LEN(W$)). This gives a

string of hyphens of the same length as the target word. We now put: D$="P"+D$+"P",
which is a slight subtlety, enabling us to use only single-line processing, without
having to take account of special cases when the first or last letter has been selected.
Now, for each letter L$,

FOR J=l TO LEN(W$)
IF L$=MID$(W$,J,1) THEN GOSUB x: PRINT "[HOME]D$: REM ASSUMES DISPLAY AT TOP
NEXT

W$ is scanned from beginning to end; if a match is found, the string D$ is revised and
printed over its previous value. If a letter occurs several times in W$ the process re-
peats, but is fast enough for the process not to be visible. The subroutine which up-
dates D$ has to insert L$ within D$ at the correct position defined by variable J:

x D$=LEFT$(D$,J) + L$ + RIGHT$(D$,LEN(D$)-J-1) : RETURN
(iv) Note on BASIC 4: A rare bug may occur when concatenating more than two

strings, and when fewer than $300 bytes of RAM are free; the string is corrupted.

4.1.16 Validation is the process of checking that data is of the correct type, without
necessarily guaranteeing the actual value. A date 19/19/82 is invalid, but if it is accept-
ed may cause processing errors, and so will be rejected by most systems. The date
3/5/82 is valid, but may not be correct. Similarly, '20' may be an acceptable entry for
a sum of money, but 'twenty' may not.

The simpler forms of validation repeat the request for data in the event of an
incorrect entry:

100 INPUT "DISK DRIVE NUMBER"; D$:REM D$ WILL ACCEPT ANYTHING
110 D=VAL(D$): IF DOINT(D) OR D<0 OR D>1 GOTO 100 :REM INTEGER OR 1 ONLY.

More sophisticated checking may include error messages (see 4.1.6) and soft-coding to
enable acceptable entries to be modified. This batch of subroutines has tests for four
variables, and was used with a crashproofed INPUT routine:

500 if js$="Y" or js$="N" then return
503 ok=0:em$=n Y or N only" :gosub 800: return
510 ni$="ABC0EFGJKMPTVWX": for 1=1 to len(nl$):if js$=mid$(ni$, 1,1) then return
513 next: ok=0:em$="in sales code":gosub800:return
520 ni$="04123": for 1=1 to len(ni$): if js$=mid$(ni$,

I
,1) then j5=l: return

523 next: ok=0: em$="in VAT coden :gosub800: return
530 if (asc(js$)>192 and asc(js$)<219) or asc(js$)=32 then return
533 ok=0: em$="in Foreign code":gosub800: return

-33- 4: Effective BASIC
Programming the PET/CBM

U 1 17 Arrays (subscripted variables) provide a powerful extension to the usual sys-

tem'of simple variables, and are well worth mastering for any serious application. The

principle is to provide a whole series of strings or numbers with a single name, using a

subscript to distinguish the separate elements. Chapter 5 (see DIM) has information on

the use of arrays; Chapter 2 explains their storage methods and the pointers which

keep track of the data. Arrays of numbers, subject to their own rules of addition .sub-

traction and multiplication, are called 'matrices': see Chapter 16 on this We can think

of arrays as belonging to one of two classes: 'one dimensional' and 'multi-dimensional .

The latter are conceptually more difficult, so it makes sense to start with the tirst type:

One-dimensional arrays are variables with a single subscript, which may take any value

from to the dimension of the array in DIM. (If no DIM statement was used, a deiault

value of 10 is assigned). Unless an item is specifically assigned a value, it will be

stored as (numeral) or the null character (string array). The array can be visualised

as a set of consecutively-numbered pigeon-holes, which are filled With a data-item, num-

eric, integer, or string, by the usual methods of assignment.

10 INPUT N: DIM A$(N): FOR J=0 TO N: INPUT A$(J): NEXT

inputs the size of the array, then a series of elements to fill it, and can be regarded

as the array version of INPUT. Similarly the stored results can be output by

20 FOR J=0 TO N: PRINT A$(J) : NEXT .

A typical application of these arrays is the look-up table. For example, an array might

hold opcodes for machine-code: A$(0)="BRK", A$(l)="ORA", and so on. Then there is

a simple relationship between a peeked value of a location (say, P) and the string A$(f).

A numeric array could hold the values of the locations of the start of each line on the

screen- DIM L(24) could hold each value from 32768 up. Then the location of the ninth

character along line fifteen is L(15)+9. A fifty-two element array might hold all the

cards in a pack. As mentioned in Chapter 5, the zeroth element can be reserved tor

special purposes, typically for averages or totals. Other uses include the storage ot

values for sorting. The sorts in Chapter 5 all operate on string arrays, which could

consist of a key (name, catalogue number, reference) followed by a relative-file record

number. An array variable is slower to process than a simple variable, because ot the

processing overhead associated with its subscript. Nevertheless, access is faster than

some calculations and function evaluations, so look-up tables are sometimes used to speed

up programs which contain repetitive calculations on a limited range of arguments, tor

instance, it may be worthwhile to set up a table holding present values of money over a

number of years, or of square roots from 1 to 100.

Arrays are useful in games and problems of the board-game or rectangular grid

type, and we can use this topic as a bridge to multi-dimensional arrays. Ingenious

applications of single-dimension arrays where more dimensions appear appropriate include

the '8 queens' problem, where the object is to arrange 8 chess queens on a chessboard

so that none attacks any other. An array of only 8 numbers can represent the board;

each value must be different, and from 1 - 8 to denote the position of that column s

queen. Diagonals are tested by a difference method which the diagram illustrates, the

first example passing all tests and the second having two attacking queen pairs:

64158273 47381562
Another ingenious algorithm is that for assessing card strengths in five-card poker: the

hand is sorted, and the four consecutive differences evaluated. Of these, there are only

three of importance: 0,1, and any other value, corresponding respectively to pairs (or

threes or fours), straights, and others. The 34 (=81) possible values can be assessed

by an array. Chess games are usually stored as an 8 by 8 array, pieces being rep-

resented by a positive or negative number (representing colour) of value related to

the importance of the piece.

Multi-dimensional arrays have more than one subscript; the maximum is 255. It is al-

ways possible, though inconvenient, to simulate such arrays by partitioning single-dim-

ension arrays, so there are BASICs which permit only one subscript. A simple two-dim

ensional example shows how the contents of the array dimensioned by DIM A $(1,7)

might be stored:
A$()

"POSITIVE'

'NEGATIVE'

"HOT"

"COLD"

•ON"

•OFF"

"LARGE"

'SMALL'

'HIGH'

"LOW
"WARM'

"COOL'

"CALM"

"ROUGH'

"WELL"

"ILL"

So that INPUT A$(0,3) had taken in LARGE from the keyboard, or been assigned in a

program, and PRINT A$(l,7) prints the word "ILL". Note that an array with n dimen-

sions usually requires n nested loops to input or output all its data.

Programming the PET/CBM -34- 4: Effective BASIC

These arrays are valuable for storing data for business reports, as the example shows.
The schematic BASIC routine demonstrates the logic which was used to generate the
reports (which are incomplete here, for reasons of space restriction). It should be self-

explanatory. The only subtle point is the use of an additional code of each type; this is

an overflow or 'wastebasket', into which unrecognised items are put. In each case the
contents of this extra, non-existent code should be zero. For example, if a sales code
had somehow been recorded as "%", J would take the value 15 on leaving line 100.

FOR ALL RECORDS: READ SALES CODE S$, ORIGIN CODE 0$, AGE CODE A (1-8), VALUE V
100 FOR J=l TO 14: IF S$OMID$("ABCDEFGJKMPTVX", J,l) THEN NEXT
110 SA(J,A) = SA(J,A) + V
120 FOR J=l TO 10: IF 0$<>MID$("BCFGHOPQSU", J,l) THEN NEXT
130 0(J) = 0(J) + V: O(0)=O(0) + V

NEXT
FOR J=l TO 15: FOR K=l TO 9: SA(J,0)=SA(J,0) + SA(J.K): NEXT: NEXT

At the end of this process, array SA() holds values by sales code and age code, and
OO holds the same values by origin code. Totals are held in the zero elements.

TOTALS BY SALES CODE AND AGE CODE

SALES CODE: A 10343.00 SALES CODE: 6 15275.71 SALES CODE: C 38916.11 SALES CODE: D 798.42
Ago Code: 1 8152.35 Age Code: 1 10720.77 Age Code: 1 28721.49 Age Code: I 507.24
Age Code: 2 1256.08 Ago Code: 2 3128.44 Ago Code: 2 5296.83 Age Codo

:

2 152.08
Age Code: 3 337.19 Age Code: 3 541.57 Age Code: 3 3025.52 Age Code: 3 139.10
Ago Code: 4 158.49 Age Code: 4 365.40 Ago Code: 4 662.46 Ar;e Codo

:

4 0.00
Age Code: 5 338.40 Ago Code: 5 490.01 Age Code: 5 1111.06 Age- Code: 5 0.00
Age Code: 6 50.49 Age Code: 6 29.52 Age Codo: 6 93.75 Ago Code: 6 0.00
Age Code: 7 0.00 Age Code: 7 0.00 Age Code: 7 0.00 Age Code: 7 0.00
Age Code: 8 0.00 Ago Code: 8 . 0.00 Age Coda: 8 0.00 Age Codo: 8 0.00
Ago Code: 9 0.00 Age Code: 9 0.00 Age Codo: 9 0.00 Age Codo: 9 0.00

SALES CODE: E 0.00 SALES CODE: F 20135.5! SALES CODE: G 1513.80 SALES CODE: J 13237.68
Age Code

:

1 o.oc Ago Code: 1 15037.31 Age Code: 1 1592.80 Ago Code: 1 12303.31
Age Code: 2 0.00 Age Code: 2 3302.80 Age Code: 2 21.00 Age Code: 2 3232.12

SUMMARIES BY SALES CODE.ORiGIN CODE & AGE CODE

SALES CODE: A 10343.00
SALES CODE: 3 15275.71
SALES CODE: C 38916.11
SALES CODE: D 798.42
SALES CODE: E 0.00 i

SALES CODE: F 20185.51 i

SALES CODE: G 1613.80 i

SALES CODE: J 18237.68 i

SALES CODE: K 173.60 i

SALES CODE: M 16313.35 1

SALES CODE: P 546.59 (

SALES CODE: T 0.00
SALES CODE: V 0.00
SALES CODE: X 78.17
SALES CODE: 0.01
TOTAL F!Y SALES CODE: 122481.95

ORIGIN CODE: 3 157.01
ORIGIN CODE: c 223.76"
ORIGIN CODE: F 2527.49
ORIGM CODE: Vt 0.00
ORIGIN CODE: H 0.00
ORIGIN CODE: 59815.17
0RIGIM CODE: P 36286.15
ORIGIN CODE: Q 238.00
OR1GIM CODE: s 13.666.17
ORIGIN CODE: u 9518.18
ORIGIN CODE: 0.01

AGE CODE: 1 89536.95
AGE CODE: 2 19006.55
AGE CODE: 3 8255.28
AGE CODE: 4 1892.06
AGE CODE: 5 3473.58
AGE CODE: £ 317.53
AGE CODE: 7 0.00
AGE CODE: 8 COO
AGE CODE: 9 0.00
AGE CODE: 0.C0

TOTAL 3Y ORIGIN CODE: 122481.95 TOTAL BY AGE CODE: 122481.95

Two-dimensional arrays may be used to store quite large quantities of data (about 32K
less the space occupied by BASIC) very efficiently. Integer arrays, which store numb-
ers from -32768 to 32767 in only 2 bytes, are particularly efficient. They can be saved
and reloaded en bloc to disk, providing rapid access to a lot of data with little disk
drive use. To understand the approach, read the next few paragraphs carefully.

The example we'll consider is a garment inventory system. Its volumes of data
are: 50 cloth types, identified by a four-digit number.

Each cloth is available in 1 to 12 colours; the average is about 4.
Each cloth/ colour combination has 1 to 8 styles of garment; that is, a cloth in

blue may be made into only one type of jacket; the same cloth in brown may be made
into two other designs.

Each garment is produced in six sizes.
At each level of complexity, details about the cloth or the clothes are stored; for

example the cloth width is recorded for every cloth type, and, at a more detailed level,
the quantity in stock of every size of each garment is required.

We can store the data in arrays like this:

Programming the PET /CBM

C%(50,4)

-35-

M%(200,3) S%(800,2)

4: Effective BASIC

SZ%(4800)

3

1 1101 2 1 60 2-

2 1149 5 12 36 7
S

3 2065 3 10 60 10,

4

50

C%(0,0)=

C%(n,0) =

C%(n,l) =

C%(n,2) =

C%(n,3) =

C%(n,4) =

Total number of

cloths entered

Cloth number

No. of colours

Delivery date

Cloth width
Cumulative no.

of colours

200

M%(n,0)=
M%(n,l)=
M%(n,2)=
M%(n,3)=

4800

Colour codes

Length stored S%(n,0)= Telephone

No. of styles orders

Cumulative no. S%(n,l)= Style code

of styles S%(n,2)= Cumulative

SZ%(n)=
inventory*
some other

no. of sizes data

iwther these arrays occupy 16160 bytes (including the array overheads. See Chap
Together these arrays py ^.^ ^ array

.

s dependent on the earher

necessary) make this scheme fairly easy to topl««t. However, BASIC pw«ns which

store data like this are amongst the most difficult to decipher of any BASIC, theproD

lems in^reasSg „ th the number of arrays. Whether this is undesirable depend
,

on

oTe's point of view. Some short extracts from programs show the type of program to

eXPeCt
L, /M«/.r*/n 1 4W y - 1) 4) + K),0) = P : REM TELEPHONE ORDERS
S%((M%((C%(N-1,4) + M X

> •*>-%!„ ; K _ i i) + U) + S : REM UPDATE STOCK P0SN
SZ%(S%(J + K - 1,1) + U) = SZ%(S%IJ + * J- ,*> T "'

PRINT M%(C%(N-1,4) + M ,1) : REM PRINTS AVAILABLE STOCK

Multi-dimensional arrays with more than two dimensions

are not used much, probably because of the difficulty of

visualizing the data's storage pattern within its arrays.

The diagram (right) illustrates a three-dimensional array,

set up by the statement DIM X(15,20,3). Since zero ele-

ments are allowed, the array's 'pigeonholes' occupy 16 by

21 by 4 locations. Assuming a conventional order or rows,

then columns, then depth, leads to the diagram, in which

for instance X(0,0,0) is the top-left element in the 2-dim-

ensional array on top of the heap, and X(l,2,3) occupies

row 1 and column 2 of the array at the bottom of the heap.

Four-dimensional arrays can be pictured as several stacks

of three-dimension arrays arranged side-by-side. After

this, depiction becomes progressively more complicated.

The maximum number of dimensions is 255 (see Chapter 2).
5mT>„oei-Ki<.

In practice, shortage of RAM will make this figure, or anythmg like it impossible.

Section 2.3 of Chapter 2 explains the calculations necessary to determine the total

number of bjrtes taken up in RAM by any array.

Programming the PET/CBM -36- 4: Effective BASIC

4.2 Debugging BASIC programs

This section lists common faults in BASIC programming. While such a list cannot hope to
be exhaustive, it should help in pinpointing errors.

Peculiarities of BASIC. These include a few bugs.
ASC of a null character doesn't evaluate as 0, but crashes.
CLOSE doesn't properly close an IEEE file without PRINT # to the file.

DATA statements may give trouble if new DATA statements are inserted before them.
FOR ... NEXT occasionally behaves oddly: see Chapter 5 on this.

FRE may be slow in BASICs 1 and 2. See for example Chapter 2.

INPUT crashes on Return; also input from a file prints no warning message if extra
data (e.g. separated by commas) has been read in.

LEFTS, RIGHTS may crash if the numeric part of the argument is 0.

PRINT attempts to print anything it is given; a stray '.' appears as 0, for instance.
.S saves machine code, omitting the final byte; so add 1 to the end address.
STR$ introduces a leading space into positive numbers.
TAB and SPC have some quirks carried over from CBM BASIC'S ancestors.

Numerals are held and formatted to a certain degree of accuracy; see Chapter 13.
Strings have a maximum length of 255; attempts to exceed this give ?string too long.
Some mathematical functions will not accept certain values without error.
CBM disks: see the end of Chapter 6 for a summary of possible bugs.
Differences between BASIC ROMs are outlined in Chapter 2 and explained elsewhere in

detail. BASIC 4 disk commands, and SYS calls to ROM, are nearly always
incompatible between BASICs.

Syntax errors are usually fairly self-explanatory. These cases may be difficult:
(i) Included keywords. Misprints are particularly easy with logical constructions,

because these are largely alphabetic. IF A=B OF C=D reads IF A=BO=D for example

.

(ii) ?OUT OF MEMORY has diverse causes :-

i. Too many levels of brackets, especially within loops and subroutines.
ii. Absence of POP causing RETURNS to build up on the stack. See Chapter

5. Example: IF ASC(IN$)=27 THEN POP:GOTO MENU correctly aborts input,
iii. Insufficient RAM, especially with large arrays,
iv. Can occur when start and end of program pointers are altered.

Incorrect processing, without Syntax error indication is often caused by one of these:-
(i) Variable name repeated by mistake. See Chapter 2's variable name list,
(ii) Variable value changed in error. Typically FOR L=l TO 10: GOSUB 100: NEXT
(iii) Wrong meaning of a statement. Very common with logical expressions,
(iv) Subroutines may be poorly structured, so program flow drops through,
(v) Omission of 'FN' will cause a function to be read as an array. Example: PRINT FN

DEEK(X) mistyped as PRINT DEEK(X) is interpreted PRINT DE(X).

Errors caused by assuming a software setup appear when a program is re-run but not
preceded by a setting-up program; examples include failure to specify the screen char-
acter set, failure to change memory pointers, failure to send control commands to the
printer, and sometimes the use of LOAD within a program. Operators accustomed to a
rigorous input validation may not adapt to the occasional use of INPUT.

Systematic, recurrent errors are usually caused by faults in the logic of programs:
(i) The zeroth or last entries in buffers may be omitted or misplaced,
(ii) Graphics or data-storage POKEs may change strings, variables, BASIC, or

machine-code

.

(iii) Keyboard entries at the wrong time or of the wrong sort may corrupt data, for
example where an ESCape key allows exit from any routine back to the menu,

(iv) The logic of (say) a merge may be faulty in special cases. Identifying these
may be difficult, requiring a painstaking dry run through the code.

Hardware problems can be detected by test programs. But during the course of run-
ning programs, trivial hardware problems may be overlooked:

(i) Shift-lock on causes the screen appearance of inputs to be odd, and may cause
apparently valid key entries to be rejected,

(ii) A printer may lack paper or ribbon, or not be online, and so fail to function.
It may be wrongly set.

(iii) Disk drives may be off or disconnected.

,u c^TiraKA -37- 5: BASIC keywords
Programming the PET/CBM J/

CHAPTERS: ALPHABETIC REFERENCE TO BASIC KEYWORDS

This chapter lists all CBM BASIC keyword,.with ^^^'J^S^^^^^3^0^^ Sog~ who wish to

nA^ir »nri other dialects of BASIC. The format of the explanations is roughly consist

e^t for each Sword wh1Ch appears in bold type at the top of the page Norma type

todicates£ywo
y
rds- which are not present in CBM BASIC, but which can be written

for it or adapted from other sources, or obtained in software ^or^plug-m
EPROMs. BASIC 4's specifically disk oriented keywords are listed in Chapter 7.

Note on BASIC operators.

When a string expression or arithmetic expression is evaluated, the result depends on

(a) the priority assigned to each operator, and

ffi^sjsrrviJ!rssrs-«Hi»-j. =—«-•, *?. *-?';, -.-six
that the entire expression within parentheses is evaluated as a unit. In the aDsence

ofParentheses, priority is assigned to operators in this order, starting high:

T Power
+ - Unary plus and minus
* / Multiply and divide

+ - Binary plus and minus

< = > Comparisons - less than, equal to, greater than

NOT Logical NOT - unary operator

AND Logical AND - binary operator

OR Logical OR - binary operator

The arithmetic operators are relatively familiar and straightforward. Note the high

priority oT unary plus and minus; the point of this is illustrated by expressions like:

2T-4+3 and 6 + - 3 and -1234 * - 2345 ,

whirh otherwise are meaningless. CBM BASIC evaluates a 'true' statement as -1, and

?SL' starement as 0. These are not standard between computers; Apple for example

nas rue =1 and other differences in interpretation. CBM compansons are
,

stra ght-

ES? s

wSg
nu
so^'a

b
s

u
l SLTJ?-ffi-Rt E*rjr*5P. ^.asr.

therefore 32768 to 32767. PRINT NOT 32768, for «ample, gives an error Because

NOT flips the 16 bits of the argument, X plus NOT X always add to -1, so NOT 10 is

~U
'

It is important to realise that the lower priority operators have the largest

sphere of influence aS it might be called. Ordinary arithmetic illustrates this m many

wavs 2x
"

1 ^immediately seen to be twice x, plus 1. With the less common logical

Zl comparison operators, this is rather easier to forget. See for example note 13]

to AND.

Programming the PET/CBM -38- 5: BASIC keywords

ABS
BASIC arithmetic function

PURPOSE: Computes the absolute value of the arithmetic expression in parentheses
following ABS. In other words, ABS makes a negative number or expression
positive. This function has some applications in programming with numbers;
it is not a major feature of BASIC.

Syntax: ABS (arithmetic expression). A string expression, or incorrect arithmetic
expression, will generate one of a number of errors, including syntax, type
mismatch, and division by zero errors. An expression which, when evaluated,
is too large, causes an overflow error. Like all functions, ABS can appear
on the right of an assignment statement, within a PRINT statement, and as
part of a logical expression, for example after IF.

Modes: Both direct and program modes are valid.

Examples: IF ABS(QTY) > 10000 THEN PRINT "*": REM PRINT WARNING ASTERISK
X = -12.5 + .5: PRINT ABS(X) : REM PRINTS 12
1000 IF ABS(X - XI) < 1E-6 THEN PRINT "FINISHED": END
2000 Z% = ABS(10*SIN(X)): REM Z%=INTEGRAL PART OF ABSOLUTE VALUE

10220 IF ABS(AX%-BX%)<4 AND ABS(AY%-BY%)<4 GOTO 10200: REM FETCH BETTER START P0SNS

The first example prints an asterisk if variable QT exceeds 10000, or if QT
is negative with magnitude larger than 10000, such as -25342.3.

The third example shows how to test for approximate equality; this may be
very useful when allowing for rounding errors and when performing iterative
calculations which converge to some correct value. In this example, the value
is accepted if the maximum error is 1E-6 (.000001). Typically, the more exact
the precision, the longer such a program will take to run.

Fourthly, Z% in line 2000 takes integer values 0-10 only, in a pattern resembling
a rectified sine curve. The very last line is taken from a game in which each
player has a 'worm' to control on the screen; this line ensures that the
starting positions of player A and player B, which are generated by the RND
function, are not too close together.

Abbreviated entry: aB

Token: $B6 (182)

Operation: The expression in parentheses is evaluated and checked, and if valid

put into floating point accumulator #1. ABS operates only on the sign byte
of this accumulator. In fact ABS does less work than any other function.
The sign byte (location $63, or $B5 in BASIC1) is shifted right, so that the
negative (high) bit is not set. It does this whether or not the byte was neg-
ative. As far as further calculations are concerned, the number is positive.

There is no loss of accuracy in this conversion inside the accumulator, but
as with all numerical expressions, there may be a loss so far as the initial

evaluation process is concerned. That is, ABS(-123456789012) and
ABS (123456789012) are identical, but don't retain all the figures of the
original arguments.

ROM entry points:

BASIC 1: $DB2A (56106)
BASIC 2: $DB64 (56164)

BASIC 4: $CD8E (52622)

.u cot irau -39- 5: BASIC keywords
Programming the PET /CBM >»

AND
BASIC binary logical operator

PURPOSE: CICa.es the logical^IXJt^^^"'f *T£S3S.

of a multiple condition can be found.

Syntax: Arithmetic or logical expression AND arithmetic or^ ^P™" 1^
Both expressions must be integers within the range "32768 to 32767 or

floating point numbers which round down to within this range. Logical

S-sgsio
P
ns invariably fall within this range, sinceW**^^ £

or only. Out of range values, string expressions, and syntax errors in

etther of the two expressions will cause an appropriate error message to be

printed to the screen.

Modes: Direct and program modes are both valid.

FxamDles • PRINT 380 AND 75

100 IF D%>0 AND D%<100 THEN PRINT "WITHIN RANGE 1-99"

6260 OK = -1 AND Y>79 AND Y<90 AND M>0 AND M<13

146 IF Jl=46 AND JD=0 THEN JD=1+LEN(JS$)

Th „ «_«,+ examDle is a straightforward 16-bit AND between two numerals.

Se vZeTS^rM equivalents are 380 (=%00000001 01111100) an

75 (=%00000000 01001011), so 380 AND 75 is evaluated by CBM BASIC as

%00000000 0100100 or 72.

The second example shows AND used in a composite test; both parts of the

test must be true to print the message.

The third example is a simplified part of a date validation subroutine. The

Sect is tTSk that thedecade is the 80s and the month within the usual

range. OK is set to 'true', ANDed with four separate tests, each of which

must be true if OK is to remain true.

Finally, another example of a composite test: this line from a vers^ long

input routine, accepts decimal numbers which it build into a string JS$

Jl is the ASCII value of the last key pressed; JD is the position of the

dectoal point or zero if no decimal point has yet been input. The example

festTfor the truth of two conditions: if the decimal point de full stop, with

ASCII value%6) has been typed at the keyboard, and also this key is an

acceptable one, then the decimal point's position in JS$ is fixed.

Notes- F 11 The truth table for AND is:-Notes, li J ine
^ ^ and ^ q ^^ 1= ,true , or ,blt set on',

T F 1

F F

AND x r ""H i o 0='false' or 'bit set off.

Note that when stored as 2-byte signed integers, false =0 =$0000, whereas

true =-1 =$FFFF. (To convert $FFFF into its positive equivalent
,

flip the

sand add 1. This method gives $0000+1, so $FFFF is -1). This is why

AND with a false expression is always false while AND with a true ex-

pression leaves the value unaltered. It is also the reason that NOT-1 is

and vice versa.

m Hierarchy. BASIC order copies FORTRAN and ALGOL. NOT then AND

then finally OR have the lowest priority of all the operators. AND is

therefore processed last in many cases.

[31 Common bugs: logical expressions are quite tricky; errors are compar-

atively eTsy to overlook. Because of this four examples of typical wrong

statements follow:

[i] DE = D + DM + 365*Y + INT(Y/4) - (INT(Y/4)*4=Y) AND M>2

This is taken from a routine to find the weekday. The day- ^h and year

are combined mathematically into a parameter t*^.»£
b
^*™ "J \he

In the example, the final expressions are intended to subtract 1 should tne

Programming the PET/CBM -40- 5: BASIC keywords
year be a leap year and the month be March to December. But because of
the low priority given to AND, if M is 1 or 2, the entire expression eval-
uates as 0. Everything after '=' and before AND is calculated, but this re-
sult is then ANDed with 0. This shows the power of a low priority command
which could be compared - perhaps a little fancifully - to a recessive gene.
The correct version has the joint expression enclosed in another set of
parentheses

.

[ii] IF INT(Y/4)*4=Y AMD M>2 THEN DE=1

Logical operators have relatively few syntactical requirements and so, if mis-
typed, are difficult for the translator to distinguish from variables. The line
when run will not, as might be expected, cause a 7SYNTAX ERROR message.
Instead it is interpreted like this:

IF INT(Y/4)*4=YA>2 THEN DE=1

and its run-time behaviour will depend on whether YA exists.

[ill] IF PEEK(C+1) AND PEEK(C+2)=0 THEN END: REM END OF PROGRAM REACHED

Failure to fully specify all the conditions is a source of bugs; the example
is supposed to find two zero bytes at the end of a BASIC program stored in
RAM. What is needed is this:

IF PEEK(C+1)=0 AND PEEK(C+2)=0 THEN END
or:

IF PEEK(C+1) + PEEK(C+2)=0 THEN END

The incorrect version will stop whenever PEEK(C+2) is zero and PEEK(C+1)
is non-zero.

[iv] IF J<1 AND J>8 THEN

Never happens!

Abbreviated entry: aN

Token: $AF (175)

Operation
:
Binary operators are evaluated with the first argument in floating point

accumulator #1, and the second in accumulator #2. AND uses exactly the same
routine as OR, except that on entry a test location is loaded with zero. (OR
loads it with #$FF). This is the only difference between these routines . Each
accumulator in turn is converted into a 2-byte integer, and the low and high
bytes are processed separately. Using 'TEST' to refer to the byte in the
test location, the routine computes this function-

TEST EOR ((TEST EOR A) AND (TEST EOR B)).
When TEST is #$00, EOR TEST has no effect, so

A AND B = (A AND B)
A OR B = NOT(NOT A AND NOT B)

All ROMs process this instruction in the same way.
ROM entry points:

BASIC 1: $CED9 (52953)
BASIC 2: $CECB (52939)
BASIC 4: $C089 (49289)

Programming the PET /CBM -HI- 5: BASIC keywords

APPEND
System command unavailable directly in CBM BASIC

PURPOSE- Links two programs end-to-end into a single program. This can be

very helpful in adding standard subroutines or BASIC utilities such as

cross-referencers onto a BASIC program.

NOTE- APPEND in the sense used here applies to BASIC programs only, not

files of data, and may be run on any CBM machine, irrespective of whether

or not it is equipped with disks.

Versions: Appending one program onto another requires that the linenumbers do

not overlap; if they do, a program with lines 10 20 30 and 50, say, which

has another program with 40 50 and 60 appended to it will appear as one

program linenumbered 10 20 30 50 40 50 60. If the routines aren't too long,

they can be listed on the screen and incorporated into the main program by

loading it, homing the cursor, and entering the lines remaining on the

screen. Longer routines would require a boring, but reliable, process ot

repeatedly loading the routine to be appended, loading the program, adding

new lines, and saving the result so far. This process gives a MERGE, not

an append; a merge is often potentially more use than an append, but is

harder to implement.

Amongst the versions that have been written are several for tape: Jim Russo

and Henry Chow's Merger' (Pet User Notes, Nov-Dec '78) and Roy Bus-

diecker 'Universal Tape Append' (Compute! Mar '81) are two. They use

the same method, namely loading the second tape to start at the end address

of the first program. From the users's point of view this is fairly nice and

easy; all you do is press 'play' twice. The routine to be appended must be

at the start of another tape, or at a known position. Between these two

versions' publishing dates, a lot has happened, and much of Busdiecker s

article is concerned with variations between ROMs. Disk versions are less

sophisticated usually, because the header is more difficult to get at. For

example CPUCN 2#5 has a 30-line program which reads a program, writes

it as data, reads the nexts program, and writes it to the same file. See

Chapter 6 for details.

The version below uses a different principle, and will append programs

from different sources and recorded on different machines. The program

to be appended - i.e. added onto the end - is loaded first. Then a SYS

command moves the entire program up memory into the high end of RAM,

as indicated by the pointer; so protected machine-code is untouched. Then

the main program is loaded, and a second SYS command shifts the first

program back to connect with the second. The program also rechains the

BASIC lines, so that the link addresses are correct. I have included an

'OUT OF MEMORY indication if the programs together are too large. The

USR locations 1 and 2 store temporary pointers, so if you're using USR,

these will need resetting.

Examples

[1] Load the append program, then run it, so that cassette buffer #1

holds the machine-code. Now enter SYS 634. This moves the append

program itself into high memory.

Type NEW and enter 100 PRINT "HELLO".

This short program is held in the ordinary BASIC part of RAM
starting at $0401.

SYS 673 will move APPEND down again from its position higher in

RAM It will be positioned correctly and chained, so that on LISTing

you'll see line 100 at the start of the program, which runs normally,

apart from briefly printing "HELLO".

Don't RUN a program between the two SYS commands, as strings may

corrupt the part of memory storing the program to be appended.

Programming the PET /CBM -42- 5: BASIC keywords

[2] Load any program; type SYS 634. (Both SYS commands can be
used repeatedly without reloading). Now load any other program
(or the same one again!) and enter SYS 673. The new composite
program should be correctly linked and should run as one pro-
gram. If you type SYS 634 again, the new program will move
up memory and a further program can be inserted at the start

.

Notes: [1] ROMs . The BASIC loader is set up for the upgrade ROM (BASIC 2).

BASIC 4 shares pointers with BASIC 2, and is therefore an identical

routine, except for two absolute addresses. The data statements finish

with two jumps ($4C = 76 decimal); one rechains the appended programs,
the other prints the out-of-memory message when an append is impossible.
BASIC 4 requires JMP $B4B6 and JMP $B3CD in place of the upgrade ROM
routines. So 80 DATA 76,182,180,76,205,179 is correct for BASIC 4.

BASIC 1 ('Old ROM') needs pointers from 40-53 decimal to be changed to
122-135.

[2] Cassette Buffers. With BASIC 4 in mind, I've written the routine to
load into cassette buffer #1, which is untouched by BASIC 4's disk hand-
ling. If loading is to be done from cassette #1, this buffer will of course
be overwritten, so the machine-code must be loaded elsewhere, the obvious
place being buffer #2. The code relocates, so substitute 826-864 for
634-672, and 865-934 for 673-742.

BASIC 2 APPEND ROUTINE :-

POKE 59468,12: PRINT " [CLEAR] $$$$$$" :REM UNDERLINE (SHIFT-$) TIDIES TITLE
1 PRINT "[REVS] APPEND": PRINT " [DOWN] MACHINE CODE IS NOW LOADED INTO SYS 634 AND SYS

673.
2 PRINT "[DOWN] LOAD THE PROGRAM TO BE APPENDED; ENTER [REVS] SYS 634 [RVSO] ";
3 PRINT "TO STORE IT HIGH UP IN MEMORY.
4 PRINT "[DOWN] LOAD THE MAIN PROGRAM AND ENTER [REVS] SYS 673 [RVSO], TO ";

5 PRINT "MOVE THE FIRST PROGRAM DOWN AGAIN, ONTO THE END OF THE PRESENT ONE.
6 PRINT "[DOWN]LINES ARE AUTOMATICALLY LINKED.
10 DATA 165,53,133,2,165,52,133,1,160,0,165,1,208,2,198,2,198,1,177,42
20 DATA 145,1,165,42,208,2,198,43,198,42,208,234,165,43,201,4,208,228,96
30 FOR L = 634 TO 672: READ M: POKE L,M: NEXT: REM SYS 634 MOVES PROGRAM UP
50 DATA 160,0,56,165,1,229,42,165,2,229,43,144,54,165,42
60 DATA 208,2,198,43,198,42,177,42,208,244,56,165,42,233,1,176,2
70 DATA 198,43,133,42,177,1,145,42,230,42,208,2,230,43,230,1,208,2,230,2
80 DATA 165,53,197,2,208,234,165,52,197,1,208,228,76,66,196,76,85,195
100 FOR L = 673 TO 742: READ M: POKE L,M: NEXT: REM SYS 673 APPENDS PROGRAM

READY.

^ Top of RAH pointer $8000

JO PROGRAM2 000
[

|ypu
| ^

|0 PROGRAM2 000

1

I PRQGRAM2 QQQ| |ypu [{

Temporary pointer!

[0 PROGRAMl 0)00
|

PRQGRAM2 000|

i
VDU

out of mem. test

|0 PROGRAMl PR0GRAH2 000 VDU

Programming the PET ICBti -13- S: BASIC keywords

ASC
BASIC arithmetic function of string argument

PURPOSE: Computes the Commodore ASCII value of the initial character of a

string expression. ASC is essential when testing individual characters, for

example screen formatting characters from the keyboard, and generally

whenever the numerical equivalent of an ASCII character is more easily

handled than the character itself.

Syntax: ASC(string expression). The string expression can be any valid express-

ion of literals, string functions and the '+' concatenator , with the single

exception of the null character "". Any string whose length is elicits an

7ILLEGAL QUANTITY ERROR message; in practice the null character as

defined by "" is the only easy way to generate such a string. The CBM
ASCII value as returned by ASC can take any value from 0-255; a table in

the appendices shows the relationships between characters and their ASCII

values. Note that ASC(X$)=0 when X$=CHR$(0); this is not the same as ""

in Commodore's BASIC.

Modes: Direct and program modes are both valid.

Examples: 160 GET Jl$: IF Jl$="" GOTO 160

163 J1=ASC(J1$): IF Jl=13 THEN : REM PROCESS CARRIAGE RETURN

166 IF Jl=20 THEN: REM PROCESS DELETE KEY

This incomplete program extract shows how keyboard entries can be process-

ed; line 160 GETs a key, avoiding the ?illegal quantity trap by testing for

the null character. When a key has been entered, it is converted to its ASCII

value for processing. Complete validation of keyboard entries in BASIC can

be carried out in this manner, with the exception of the STOP key only.

1340 FOR L=l TO 6: POKE 799+L, ASC(MID$(TEST$,L)) : NEXT

This example shows the method to move a string into RAM: the string TE$
of length 6 is POKEd into locations 800 to 805, for use in a machine-code

comparison routine, from BASIC, in six separate pokes.

22000 IF PEEK(QQ)=ASC("*") THEN ERR$=" * SET"

PRINT ASC(MID$(S$,L)) - 192 : REM CONVERTS UPPER CASE A-Z TO 1-26

Finally, the third example shows how readability can be improved by using

the ASCII function itself, rather than its value - 42 in the case of "*".

The fourth example prints the Lth letter of string S$ as a number from 1 to

26, so if S$="HELLO" and L=2, the value 5 appears. This type of routine is

useful when computing check digits, enciphering data, and so on.

Notes: [1] The converse function to ASC is CHR$. PRINT ASC(CHR$(N)) prints

N. STR$ is not the converse: STR$(42) is not an asterisk, but " 42".

Abbreviated entry: aS

Token: $C6 (198)

Operation: After the function's string expression has been evaluated, it is set up

in RAM with its 3 parameters (length and 2 byte pointer) on the stack. ASC
recovers these parameters. It tests the length, and if this is zero exits

with ?illegal quantity. This is surely a bug; there is no problem in making

the value 0. However, now the accumulator is loaded from memory, using the

string's pointers, so whatever the length of the string, its initial is fetched.

This value is the ASCII value: there is no conversion carried out on the byte.

A standard ROM routine turns it into the floating point equivalent in accum-

ulator #1.

All ROMs process this function in this way.

ROM entry points:

BASIC 1: $D663 (S4883)

BASIC 2: $D665 (54885)

BASIC 4: $C8C1 (51393)

Programming the PET/CBM -44- 5: BASIC keywords

ATN
BASIC arithmetic function

PURPOSE: Calculates in radians the principal value of the arctangent of the argu-
ment; this can be any arithmetic expression irrespective of sign. The diagram
illustrates the relationship between two sides of a right-angled triangle, and
the angle calculated by ATN.

NOTE: This function has no connection with ATN on the IEEE bus, which is

the 'attention' line.

Syntax: ATN (arithmetic expression). The expression must be syntactically correct

and within the range acceptable to the floating point logic (+1.7E38 approx).

Modes : Direct and program modes are both valid

.

Examples: 1100 ALPHA = -ATN (YV/ZV9: BETA = -ATN(XV/ZV):

2130 LET R=ATN((E2-E1)/(N2-N1)):REM COMPUTE BEARING AND DISTANCE

Both examples, as might be expected, are related to trigonometry; one is

from a perspective plotting program, the other from a two dimensional pro-

gram for surveyors in which coordinates easting and northing are input.

In each case the assigned variable, ALPHA, BETA, and R, takes the value

of an angle in radians, which therefore is in the range -pi/ 2 to +pi/2.

Notes: [1] The diagram shows the connection between X and ATN(X),for those who
are unused to geometry; a right angled triangle is a convenient standard to

demonstrate geometrical ratios, but has no particular significance beyond its

ease of use.

[2] See the appendix on trig, functions for general solutions.

[3] To convert radians to degrees, multiply by 180 /pi. This changes the

range of values of ATN from -pi/2 - pi/2 to -90° - 90°.

[4] In some cases, ATN(X) is a useful transformation to apply, since it

condenses almost the entire number range into a finite set from about -1.57

to +1.57.

Abbreviated entry: aT

Token: $C1 (193)

Operation: The actual evaluation uses a 12-constant series summation. The argument
(after validation) is converted into the range 0-1: if negative, the sign is

stored for later recovery, but the calculation is carried out on the absolute

value. And if the argument is greater than 1, the reciprocal is used in the

series, and the result subtracted from pi/ 2 (90°).

All ROMs process this instruction in the same way. That is to say, the logic

is identical, even though the entry points, absolute addresses, and (with

BASIC 1) zero page locations vary.

ROM entry points:

BASIC 1: $E048 (57416)

BASIC 2: $E08C (57484)

BASIC 4: $D32C (54060)

Programming the PET /CBM -45- 5: BASIC keywords

AUTO
BASIC system command not available directly in CBM BASIC

PURPOSE: Utility to generate linenumbers when entering BASIC program lines.

Versions: Typically these generate linenumbers starting at 100 and incrementing

in steps of 10. The usual implementation is a BASIC routine to print numb-

ers and to input an entire line when return is pressed, using the keyboard

buffer to accept two carriage return characters. One of these causes the

line to be incorporated into the program; the next runs the program again.

This is also a favourite machine-code command on EPROMs from 'Toolkit' through

to 'Power'.

The following routine has these features:

[1] Optional flashing cursor; omit the POKE in 60010 if this is not needed.

[2] Check for premature return, so that a linenumber is not wasted,

[3] Lines up to length 80 are accepted

[4] Press STOP to stop.

60000 INPUT "AUTO: ENTER START, INCREMENT"; S,I

60010 PRINT "[CLR] [DOWN] [DOWN] [DOWN]"; S;: POKE 167,0

60020 GET A$: IF A$="" GOTO 60020

60030 PRINT A$; : IF ASC(A$)<>13 THEN 60020

60040 P = PEEK(32889 + LEN(STR$(S))) : IF P=32 OR P=160 GOTO 60010

60050 PRINT "S=" S+I ":I=" I ":GOTO 60010[H0ME]"

60060 POKE 158,2: POKE 623,13: POKE 624,13

60070 END

Note that line 60040 checks the location just after the linenumber; if it finds

either a space or a shift-space, clearly nothing has been entered in the line

so far. The routine therefore prints the same linenumber again. The value

32889 is 32768 + 121, which is appropriate to 40-column screens. With the

8032 this must be replaced by 32768+241 = 33009.

BASIC 1 PETs have the keyboard buffer (and much more) differently arrang-

ed. Line 60010 requires POKE 548,0 and line 60060 becomes

60060 POKE 525,2: POKE 527,13: POKE 528,13

Programming the PET /CBM -46- 5: BASIC keywords

CHR$
BASIC string function of numeric argument

PURPOSE: Converts any numeric expression in the range 0-255 into a string with

length 1 consisting of the CBM ASCII equivalent character. This is the only

convenient method to print and manipulate special characters like carriage

return and ", which are CHR$(13) and CHR$(34) respectively.

Syntax: CHR$(numeric expression). The expression in parentheses must evaluate

to 0-255. If the number is non-integral, it will be rounded down, and this

rounded value must be in the correct range. So CHR$(-.01), CHR$(500) and

CHR$(X$) cause error messages.

Modes: Direct and program modes are both valid.

Examples: A$ = CHH$(34) + CHR$(18) + "NAME" + CHR$(146) + CHR$(34)

NS$ = CHR$(160) + NS$
PRINT CHR$(7)
3300 PRINT#4,CHR$(27)"E08"CHR$(27)"L06"

The four examples above illustrate the use of this function to construct in-

dividual characters which are otherwise difficult to deal with. The first puts

a string within quotation marks, and adds the [RVS] and [RVSOFF] charact-

ers. The second adds a leading shifted-space to a string; this is more read-

able than the alternative NS$ = " " + NS$. CHR$(7) is the 'bell', and this

command will make appropriately equipped CBM s tinkle and printers beep.

The final example shows a command typical of non-IEEE, non-Commodore
printers; CHR$(27) is 'Escape' and the string sets horizontal and vertical

spacing on a Qume daisywheel printer.

PRINT CHR$(34);: FOR J = 1025 TO 1100: PRINT CHR$(PEEK(J)) ; : NEXT

C$="": FOR J=1T06: C$=C$+ CHR$(PEEK(KT + J)): NEXT

Conversions of the contents of RAM into strings can be performed in BASIC by
combining CHR$ with PEEK. The first example, in direct mode, prints a line

or two of BASIC as it is stored in RAM. (This is not the best method). The
second recovers a string which has been poked into RAM; C$ is built up one

character at a time until a 6-character long string is formed.

Notes: [1] CHR$ is the converse function to ASC. A particular application of these

functions is conversion from one character set to another, for instance screen

dumping to a printer, where the PEEKed value needs a fairly elaborate routine

to ensure that it PRINTS the way it looks on the VDU. See DUMP.
[2] CHR$(0) represents a null character, but has length 1. This may result

in some anomalies; X$=X$+CHR$(0) adds a trailing null character to X$, the

length of which is also incremented by 1, but the nulls do not print; so X$'s

length appears to be longer than X$. Embedded null characters can be insert-

ed into strings: Y$="123" + CHR$(0) + "45" prints 12345 but returns VAL
of 123 and LEN of 6. If sorted, Y$ precedes 123*5, 12344, and so on. Note
that ""<CHR$(0) is 'true', rather oddly.

Abbreviated entry: cH (includes the $)

Token: $C7 (199)

Operation: First, the contents of the parentheses are found and checked for range
0-255. Provided this is correct, a string of length 1 is set up at the current

string pointer position, and the single byte value stored in this location. If

the string is assigned - X$=CHR$(123) say - this string is permanent; if the

string is used as an intermediate only, as in PRINT CHR$(123), the pointers

are not reset and the next string will overlay the character.

All ROMs process this function in this way.

ROM entry points:

BASIC 1: $D5C4 (54724)

BASIC 2: $D5C6 (54726)

BASIC 4: $C822 (51234)

Programming the PET /CBM -47- 5: BASIC keywords

CLOSE
BASIC input/output command

PURPOSE: Completes the processing of a file and deletes the file and its details

from the three file tables. Files opened to the keyboard or the screen are

deleted from the tables with no other action. Cassette files opened for

reading are dealt with in the same way. But cassette files which write data

also write a zero byte to denote end-of-file; and if the secondary address

was 2, a tape 'header' is also written holding the end-of-tape value of #5.

IEEE files with secondary address zero - usually, non-CBM hardware - again

are simply removed from the tables; other IEEE files are sent commands to

close files, and this function is carried out by the receiving hardware. In

the case of CBM disks, an end-of-file: indicator is put into the last sector

of the file, so that the chaining sequence of tracks and sectors for that

file is complete and up-to-date and terminates correctly.

Syntax: The syntax is identical to that of CLOSE; however, any parameters

following the logical file number are subsequently overwritten by CLOSE,

so for practical purposes CLOSE arith. expr. is the correct syntax, where

the expression must evaluate, after rounding down, to 1-255. If the file

does not exist, no error message results.

Modes: Direct and program modes are both valid.

Examples: OPEN 4,4: PRINT#4, "HELLO! ": CLOSE 4: REM MESSAGE TO PRINTER

OPEN 1,1,1, "FILE": PRINT#1, "HELLO! ": CLOSE 1: REM MESSAGE TO TAPE

100 CLOSE 1,2, 3, "4": REM SAME EFFECT AS CLOSE 1

1000 PRINT#8,CHR$(13);: CLOSE 8: REM BASIC<4 DISK FILE CLOSE

1100 PRINT#4: CLOSE 4: REM CLOSE PRINTER, WHEN CMD HAS BEEN USED

CLOSE is a straightforward command, made more complicated than need be

the case by the behaviour of CMD and PRINT#. The former leaves output

devices still listening, and needs a final PRINT* to unlisten the bus; the

latter, on CBM disk drives using BASIC <4, prints extra linefeed characters

(ASCII character 10) after the carriage returns which mark the end of

adjacent records. BASIC 4 also has the DCLOSE command.

Notes: [1] RAM Tables . CLOSE deletes three entries from these tables (see OPEN

for illustrations) unless the entry happens to be the last of the files, by

overwriting its three parameters by those of the last entry, then reducing

the number of files open by 1. This of course is designed so that the ten

files maximum may be efficiently used. Sometimes, notably after editing a

program, the number-of-open-files parameter is set to 0, leaving the tables

in RAM. If a file has not been closed, due to Stop or perhaps a syntax

error, it may still be possible to close it by poking in the number of open

files (or 10) and closing the file in direct mode. The location is 174 (610

in BASIC 1). Alternatively, 0PEN15,8,15: CLOSE 15 is suggested in a manual.

[2] Disk Files . Files opened for read need not be closed except to make

space for more files. CBM disk files opened for write must always be CLOSEd
correctly. Otherwise, the track/sector pointer in the final sector will point

to a usable area on the disk; sooner or later two files will become interlocked

and the data on one corrupted. See COLLECT for more on this subject.

Abbreviated entry: clO

Token: $A0 (160)

Operation: Parameters are fetched by the identical routine used by OPEN. The

logical file is looked for, and, if found, its parameters are taken from the

tables are overwrite any other values. The device number determines which

branch is now taken: cassettes, screen, and keyboard are processed as

described above; IEEE devices also call a 'Clear Channel' ROM routine.

ROM entry points: CLOSE is a 'kernel' command. Its address is $FFC3. It calls:

BASIC 1- $F2C8 (62152) LDA file no. then: $F2CD (62157) CLOSES.

BASIC 2: $F2A9 (62121) " $F2AE (62126) "

BASIC 4: $F2DD (62173)
" **2E2 (62178) "

Programming the PET /CBM -48- 5: BASIC keywords

CLR
BASIC command

PURPOSE: Appears to erase all BASIC variables currently in memory, leaving the

BASIC program, if there is one, unchanged. Any machine code routines in

RAM are left unaltered.

Syntax: CLR. CLR has no parameters. It may be followed by spaces, but must
be followed by a colon or and end-of-line zero byte. (Some versions of BASIC
use a parameter with CLEAR to allocate specially reserved RAM: this cannot

be done directly with Commodore's CLR).

Modes: Direct and program modes are both valid.

Examples: clr
50000 CLR: ?"VARIABLES ALL ERASED": REM ALL RESULTS SO FAR ARE LOST.

10 POKE 52,0: POKE 53,48: CLR: REM TOP OF MEMORY IS NOW $3000
10 POKE 134,128: POKE 135,48: CLR: REM OLD ROM: TOP OF RAM=$3800

This command operates by moving pointers about ; it does not erase variables

in the sense of, say, putting null characters in all the locations which pre-
viously held data. The first two examples are straightforward; in direct

mode, if X perhaps was 1.414 and S$ was "J. Smith", then after CLR both
variables will return or null, as appropriate to the variable type. And in

program mode the same effect obtains. Program running is not changed; so

the program carries on as before, except that its variables, which presum-
ably aren't wanted, are cleared. Also references to subroutines and loops

are lost. For a complete description of this command, read the detailed ex-
planations which follow. However, it is not necessary to fully understand its

operation. The final two examples, which are alternative program lines, one
for BASIC 1, show how CLR can be exploited for useful purposes, given an
understanding of its modus operandi. A pair of zero-page pointers hold the

location of top of RAM ; this is not set by hardware , but by the machine itself

on switchon. If new, low values are poked in the machine acts as though its

RAM storage had been reduced; strings which normally fill RAM to its limit

now limit themselves to the new value. In this way, free RAM is made avail-

able to the programmer for machine code routines and general storage. CLR
ensures consistency between all the pointers.

Notes: [1] Simple variables (integers, strings, floating-point variables and function

definitions) and arrays (integer, string, and floating-point) are deleted. In

addition the DATA pointer is RESTOREd and the stack pointer reset, losing

all FOR .. NEXT and GOSUB .. RETURN references. $FFE7 in ROM is called

to abort input /output activity: files are aborted and the screen and keyboard
are restored to primacy.

[2] There is no easy way to erase strings only, for example, or just integ-

ers. It is possible to erase arrays; their pointers are held differently, as is

necessary to avoid ambiguity. After CLR, variable and array pointers are not

distinguishable, so recovering the lost values is difficult.

[3] As with NEW, CLR generates anomalous error messages if a machine-code
program has been loaded or the BASIC pointers are abnormally set for some
other reason. Poking values for the start and end of BASIC, then CLRing,
is one possible cure.

Abbreviated entry: cL Token: $9C (156)

Operation: The 'limit of RAM' pointer, as we've seen, is stored in the 'bottom of

strings' pointer; this means that new strings will be stored in the top of mem-
ory, overwriting the old ones. The 'end of BASIC pointer is stored in the

'end of variables' and 'end of arrays' pointers. This loses both variables

and string pointers. When the stack is reset, the top two values are retain-

ed, so RTS continues the program running at the same place. In addition to

the changes listed in note [1] a few flags are reset.

ROM entry points: BASIC1:$C770 (51056) BASIC2:$C577 (50551) BASIC4:$B5EE (46574)

Programming the PET/CBM -US- 5: BASIC keywords

CMD
BASIC output command

PURPOSE: CMD combines two entirely distinct functions, (i) It prepares an output

device, typically a printer, to receive subsequent PRINTed data until the

device is unlistened. (ii) It then prints whatever string follows CMD to the

printer or other device. In essence it allows a program with many PRINT

statements, which would normally appear on the screen, to be diverted to

some other output device.

Syntax: CMD arithmetic expression:

CMD arithmetic expression, printable expression including , and /or ;

The arithmetic expression must evaluate to 1-255. A logical file number of

zero is disallowed. The comma separator, for example in CMD 5, "HELLO",

appears with INPUT* too, but not with PRINT. This is because PRINT 25

is syntactically correct, but CMD 5 25 is ambiguous.

Modes: Direct and program modes are both valid.

Examples: Assume OPEN 5,4 has opened a file to a printer. (OPEN 4,4 may well be

used in practice: I've put 5 purely to make clear which parameter is which

.

CMD 5 switches further output to printer. Then prints crlf.

CMD 5,;
" Without crlf.

CMD 5, "HELLO" " & prints "HELLO"

PRNT=5: CMD PRNT is syntactically valid.

Notes: [1] If we compare PRINT #5, "HELLO" with CMD5, "HELLO" it is clear that

these instructions are rather similar; however, the puzzling feature of the

commands is that PRINT#5,; which unlistens the device does exactly the

opposite of CMD 5,; which causes it to listen. This confusing aspect of CMD
is the result of its combining two disparate instructions.

[2] Problems: CMD often gives rise to minor bugs.

[i] OPEN 4,4: CMD 4: INPUT "NAME";N$:REM "NAME" IS PRINTED

[ii] GET turns off CMD; only one line appears on the printer:

10 OPEN 4,4: CMD 4,;

20 PRINT "LINE" :REM PRINT LINE REPEATEDLY...

30 GET X$: IF X$="" GOTO 20 :REM IF NO KEY IS PRESSED?

40 PRINT#4,;: CLOSE 4: END

[iii] Commodore printers (not others) somehow tend to make CMD fail

to operate. GOSUB for example has this effect.

[3] To summarise, CMD seems to be, in the US phrase, a kludge to enable

a program full of print statements to be easily diverted from the screen to

some other device. It is easier than replacing all PRINT s with PRINT*.

When developing a new program, PRINT* is likely to be a better choice: it

lends itself better to CLOSE and will not lose its effect erratically. Also

Commodore (cf. their printers) seem to support PRINT* in preference.

Abbreviated entry: cM

Token: $9D (157)

Operation: The parameter following the CMD token is checked. It must evaluate

to 1-255. The device number corresponding to this file number is looked up

in a table of up to 10 values, and the output device set. ?FILE NOT OPEN

or 'DEVICE NOT PRESENT errors may greet the user while this is being

attempted. The syntax is checked after CMD's parameter. Either an end-of-

statement (colon or new line) or comma followed by printable expression is

accepted. Finallt, the PRINT routine in ROM is entered.

ROM entry points:

BASIC 1: $C985 (51989)

BASIC 2: $C991 (51601)

BASIC 4: $BA8E (47758)

Programming the PET /CBM -50- 5: BASIC keywords

CONT
BASIC command

PURPOSE: Resumes BASIC program running after encountering STOP or END in

the program, or after the STOP key had been pressed, or after a null input
crash on INPUT. In this way not only can breakpoints be put into BASIC,
but a program can be stopped and restarted at any point. (Well . . . nearly
any point. The STOP key will abort files, so that its message and READY
will appear on the VDU; in some cases therefore CONT does not completely
resume operation).

Syntax: CONT. No other parameters; may be followed by spaces, but must be
followed by a statement terminator - a colon or end of line.

Modes: Direct mode only. (In program mode CONT goes into an infinite loop which
continually jumps to itself).

Notes: [1] As a BASIC program runs, a record is kept of current and previous
linenumbers, and a pointer is kept which indicates where the next state-
ment is. All this is part of the overhead which helps to make translators
slower than compilers. It also makes useful commands like CONT possible.
The HELP command, implemented on some toolkits to point to the error in

a line which has caused a syntax error, uses the linenumber and pointer;
the routine cannot be in BASIC, which would change the pointer, but must
LIST a single line in machine-code and then calculate where in the LISTed
line the error was located.

[2] While the program is stopped, any of its variables may be examined by
PRINTing; their values can also be changed in direct mode. With CBM BASIC
new lines can't be added if CONT is to work. A ?CAN'T CONTINUE ERROR
is also caused after CLR or NEW or if exit from the program was by way of
a syntax error. In such cases, GOTO a convenient linenumber may serve
the same purpose.

[3] The principal locations are: ($3A) holds 'previous linenumber',
($38) holds the pointer into BASIC.

The high byte of ($38) is made zero if exit was by syntax error; by POKE-
ing these locations, CONT can be made to work, and jump to anywhere in

BASIC, although there's little practical value in doing this.

Abbreviated entry: cO

Token: $9A (154)

Operation: First the syntax is checked. Then the pointer into BASIC used by
CONT (not the same as CHRGET) is tested for high byte zero, which is a
standard test for a syntax error exit. Obviously a valid pointer into BASIC
must be $0400 or greater, so the zero byte never leads to ambiguity. If a
zero byte is found, therefore, the routine branches to print the can't cont-
inue message. Otherwise, and let us hope usually, the routine puts the
stored previous linenumber into the 'present linenumber' slot, sets GETCHR
to the pointer to the next statement, and runs.

ROM entry points:

BASIC 1: $C745 (51013) Invalidated: $C747
BASIC 2: $C76B (51051) " $C76D
BASIC 4: $B7EE (47086) " $B7F0

Programming the PET ICBNl -51- 5: BASIC keywords

COS
BASIC arithmetic function

PURPOSE: Evaluates the cosine of the argument, which is assumed to be in

radians. The cosine is a ratio which is constant for an angle; the diagram

illustrates this.

Syntax: COS (arithmetic expression). The expression must be syntactically correct

and within the range acceptable to the floating-point logic (±1.7 E38 approx).

Modes: Direct and program modes are both valid.

Examples: PRINT C0S(1) prints cosine of 1 radian = .54 approx.

PRINT COS (45 * [PI]/180) prints cosine of 45° = .707 approx.

1000 Y=EXP(-K*T) * (A*SIN(W*T) + B*C0S(W*T)>

2000 X=ALPHA+SIN (ALPHA): Y=1-N*C0S (ALPHA)

The first examples show COS used in direct mode (sometimes called 'calcul-

ator mode'!) performing direct calculations. The conversion between degrees

and radians has to be performed by the user. The second examples are

typical formulas using trigonometrical functions; the first is the equation

of a damped sine curve. The second calculates two coordinates, X and Y,

on a cycloid.

Notes: [1] The diagrams show the cosine's ratio in terms of a right angled triangle,

and the concept of a radian. 'A' and 'H' conventionally represent sides ad-

jacent to X and hypotenuse (diagonal), respectively.

v r /

COS(X) = A/H Angle = 1 radian

[2] Accuracy is not greatly affected by the size of the angle: this function

operates by dividing the argument by 2*pi and taking the remainder, so

there is no series approximation error related to the size of the argument,

only the error caused by the limited precision to which the argument can

be held.

[3] See the appendices for the inverse function ARCCOS.

Abbreviated entry: None

Token: $BE (190)

Operation: The argument is evaluated , and the result put into floating-point accum-

ulator #1. Pi/2 is added and the routine then drops into SIN, so COS(X)is
avaluated as SIN(X + pi/2).

ROM entry points:

BASIC 1: $DF9E (57246)

BASIC 2: $DFD8 (57304)

BASIC 4: $D282 (53890)

Programming the PET /CBM -52- 5: BASIC keywords

CRUNCH
BASIC system command unavailable directly in CBM BASIC

PURPOSE: Improves the speed of BASIC execution by deleting as much of the
program as is considered redundant.

Versions: Quite a number have been issued; some, in BASIC, are only suitable

for preparation of a 'fast' version of the program; some machine code
versions may be used at run-time. The routine is also called 'compactor'.

Uncrunch programs, which present each instruction spaced out on its own
individual line, are possible too.

The rationale is that REM statements, spaces, short lines and so on, while

helpful to an investigator into a program, slow the translator by wasting
time jumping past spaces, switching to new lines and so on, and indirectly

by slowing up GOTOs and GOSUBs, lengthening the program and thus
causing more garbage collection, and so on. Unfortunately, it must be
said that such mechanical ways of speeding up program execution do not

have a great effect, even with specially constructed programs; their appeal
is really of the 'every little bit helps' type.

Various points of attack are:-

[1] Elimination of all REM statements and lines. If they are referenced by
GOTO or GOSUB or THEN the REM statement only may be retained, or,

better, deleted but with its reference changed to the next line.

[2] Elimination of all spaces which are not within quotes. (Some BASICs,
e.g. Apple's, do this anyway). A program modified in this way sometimes
gives problems; X=T AND U will think it contains the function TAN.

[3] Elimination of lines by conflating as many together as possible. Lines
spanning more than 255 bytes are unreliable, however, since pointers for

DATA for example are single-byte only. Also the program won't LIST. So
the maximum linelength is usually limited to 250 BASIC characters. Also,

of course, a line may be referenced, say by GOTO, and therefore not be
conflatable with the previous line(s).

[4] Renumbering the program with lines starting at and increment of 1

makes line references as short as possible: processing 'GOTO 53' is faster

than 'GOTO 12000'

[5] Systematic changes of variable names to 1 character names only, where
possible, speeds up variable processing.

[6] Spare semi-colons can be removed from PRINT statements.

[7] Since the program has no spaces, the CHRGET routine may be modified
to exclude the check for spaces.

[8] A trace or shadow routine might be able to count the frequencies with
which variables are used during an actual program run; an initialisation

routine could be added to the program to assign the variables in their
optimum order.

For further discussion on these points, see Chapter 2.

[9] Where a 'wedge' is in use, which intercepts the GETCHR routine,

considerable timesaving is often possible by deleting it with a short 6502

routine, if it is not required at run-time.

See Chapter 14 for details.

[10] Finally, the interrupt sequence can be shortened. Since the keyboard
buffer will not work if this is done, its use is limited to programs which
perform prolonged processing without intervention by an operator.

See Chapter 13 for details on this point.

Programming the PET ICBM S3- 5: BASIC keywords

The BASIC routines on this page illustrate the sort of methods by which BASIC

programs may be compressed. They are far slower than the machine-code

equivalents but nevertheless have some interest. The first, longer subroutine,

to be appended on or near the end of a BASIC program, deletes all spaces not

within quotes from the program, and deletes all REM statements from lines

unless the entire line is a REM statement. In this case, only REM is left in

place of the original REM line; it is not completely erased, since it may be the

destination of a GOTO or GOSUB . Note that abbreviated forms of keywords

appear on the screen; this prevents over-long lines from overrunning the

standard 80 character linelength. (Because of the way the listing has been

printed, the abbreviation of 'END' has appeared 'En'. This means unshifted

E followed by shifted N . The same sort of thing is true for the other abbreviat-

ions, which are, of course, identical to those printed in the BASIC keywords

reference section).

63000 POKE59458,62:A=1025:B=256:GOSUB 63100:GOTO 63003:REM *** AS STARTER

63002 B=256:A=B*PEEK(826)+PEEK(827):A=PEEK(A)+B*PEEK(A+1):GOSUB 63100

63003 L=PEEK(A+2)+B*PEEK(A+3): IF L>62999 THEN PRINT"FINISHED" :END

63004 PRINT" [CLEAR] [DOWN] [DOWN] [DOWN] "L" [LEFT] " ; :Q=0 : REM PRINT LINENUMBER, SET QUOTES

63006 FOR K=A+4 TO A+93: P=PEEK(K): REM NOW LOOP THROUGH LINE

63008 IF P=0 THEN 63050: REM END OF LINE

63010 IF P=143 AND KOA+4 THEN PRINT" [LEFT] " ; :GOTO63050 :REM DEL 'REM' UNLESS AT S

63012 IF P=143 THEN PRINT"REM"; :GOTO63050 :REM LEAVE 'REM' IF AT START

63014 IF P=34 AND Q THEN Q=0 :PRINTCHR$(34) ; :NEXT:REM END OF QUOTES

63016 IF P=34 AND NOT Q THEN Q=- 1 : PRINTCHR$ (3 4) ; : NEXT : REM START OF QUOTES

63018 IFNOTQANDP>127ANDP<203 THEN PRINTT$(P-127) ; :NEXT:REM PRINT EXPANDED TOKEN

63020 IF P=32 AND NOT Q THEN NEXT:REM IGNORE SPACE

63022 PRINTCHR$(P); : NEXT: REM PRINT VARIABLES, INTEGER, $, % ETC

63050 PRINT:PRINT"GOTO63002":REM PREPARE FOR NEXT LINE

63052 POKE 826, A/B: POKE 827,A-INT(A/B) *B:POKE 158, 2:POKE623, 13:POKE624, 13

63054 PRINT" [UP] [UP] [UP] [UP] [UP] [UP] [UP] "
: END

631 00 DATA*** , "En" , "Fo" , "Ne" , "Da" , "In" , "INPUT" , "Di" , "Re" ,LET, "Go" , "Ru" , "IF" , "REs"

63 1 01 DATA"GOs" , "REt" , REM, "St" ,ON, "Wa" , "Lo" , "Sa" , "Ve" , "De" , "Po" , "Pr" , ?
, "Co" , "Li"

63102 DATA"Cl","Cm","Sy","Op","CLo","Ge",NEW,"Ta",TO,FN,"Sp","Th","No","STe",+

63103 DATA-, *,/,', "An", OR, >,=,<, "Sg" , INT, "Ab" , "Us", "Fr" , "Po" , "Sq" , "Rn" , LOG, "Ex"

631 04 DATACOS, "Si" ,TAN, "At" , "Pe" ,LEN, "STr" , "Va" , "As" , "Ch" , "LEf "
, "Ri" , "Mi"

63108 FOR K=1 TO 1E5: READ X$:IF X$<>"***" THEN NEXT: REM READ DATA UP TO *

63110 DIM T$(75):REM ARRAY FOR TOKENS

63112 FOR K=1 TO 75: READ T$ (K): NEXT : RETURN : REM FILLS ARRAY WITH EXPANDED TOKENS

This second subroutine belongs at the start of BASIC and has the function of

combining several lines into one. The composite line consists of the original

lines separated by colons. The maximum linelength resulting must not exceed

251 characters, since the ROM rechaining routine (amongst others) cannot

then operate properly.

INPUT "COMBINE LINES";L,U: C=1025: B=256: E=PEEK(42)+B*PEEK(43)-4

1 LT=PEEK(C+2)+B*PEEK(C+3): PRINT LT; : REM PRINTS LINENUMBERS

2 IF LT<L THEN C=PEEK(C)+B*PEEK(C+1) : GOTO 1: REM FIND LOWER LINE

3 IF LT>L THEN PRINT "LINE NOT FOUND": END

4 C=C+4: REM START EXAMINING BYTES IN THE PROGRAM LINE

5 Q=PEEK(C): IF Q<>0 THEN C=C+1: GOTO 5: REM FIND END OF LINE ZERO

6 LT=PEEK(C+3)+B*PEEK(C+4): PRINT LT; : REM PRINT LINENUMBER

7 IF LT>U THEN SYS 46262: END: REM RECHAIN. (NOTE** BASIC 4 VERSION)

8 POKE C,ASC(":"): FOR J=C+1 TO E: POKE J,PEEK(J+4): NEXT: E=E-4:G0T05

** BASIC 2: Line 7 contains SYS 50242, but is otherwise identical.

** BASIC 1: Line has E=PEEK(124)+B*PEEK(125)-4. Line 7 uses SYS 50227.

And line 8 must be spread over 2 lines, 8 & 9, because POKE of PEEK fails.

Chapter 2 explains the working of these routines and others like them.

Programming the PET/CBM -54- 5: BASIC keywords

DATA
BASIC data marker

PURPOSE: Enables data of any type, alphabetic, numeric, or ASCII to be stored
within a program, without being read from disk or tape or being keyed in.

The data is retrieved by the READ statement which assigns each item of
data to a variable in the same order that the data is stored. Originally,
BASIC accepted data from punched cards, not from keyboards, so READ
statements appeared throughout programs in the way INPUT and GET do
now.

Syntax: DATA is followed by ASCII characters interpreted like this:-
" delimits a literal, which is READ as a single string
, outside of quotes separates one DATA item from the next
: outside quotes, or a new line, ends the DATA statement.

Other characters are treated as data. Note that the position within a pro-
gram of DATA statements is irrelevant , but the order is important.

Mode: Program mode only is valid. (The data pointer starts at BASIC, and cannot
reference data in the input buffer).

Examples: 100 DATA "Al, Aluminum, 24. 6", "Cu, Copper, 136. 2", "Fe, Iron, 35.1"
12000 DATA MACHINECODE, 120, 169,46, 133, 96: PRINT "STARTING.."
50000 DATA 27,14,27,9,22,9,22,9: REM HORIZONTAL
50010 DATA 3,4,5,8,8,9,9,10 : REM VERTICAL
50020 DATA 1,20,2,6,6,6,6,6 : REM LENGTHS OF INPUTS

The first example shows three strings held as data; READ X$ takes in the
entire string within quotes, so READ X$: PRINT X$ repeated three times
prints each string. The second example shows data with a special marker;
a block of DATA beginning in this way can be made relocatable, using a
loop to read all the data until, in this example, X$ say = "MACHINECODE".
Finally, three lines show how data can be structured. Three sets of eight
parameters hold details relevant to a screen input format.

Notes: [1] DATA is used for repetitive work: sometimes there is no need for DATA
e.g. PU$="EachPackUnitTubeReelSet Pair" holds information as a string. The
command is processed by the same routines that INPUT and GET use, which
explains the punctuation by " and , and : . Also the variables must be of
the same type as the data. Read X$ is always safe, but READ Y may not
be. See READ for full explanations of these points. Note also that RESTORE
sets the pointer to DATA back to start, so data is always rereadable.

[2] DATA statements can be forced into a program using the keyboard buff-
er to simulate keyboard entry of a line.

[3] Bugs: (i) DATA uses INPUT'S routines, so some peculiarities of INPUT
affect READ. Unshifted leading spaces and some graphics are lost.
(ii) Syntax error reported in a valid DATA line in fact means that there is
an error in the READ statement. You'll have to search to find which one.
(iii) Unnoticed commas can introduce baffing bugs. The statement
DATA 31,28,31,30, has 5 data items, including a null string.
(iv) Take care when introducing more DATA into a program which has some
already. READ will impartially treat information in the wrong sequence as
though it were correct. This can create problems, especially with 6502 code.
(v) A variable cannot be input: DATA 1,2,3,X treats X as a string.

Abbreviated entry: dA Token: $83 (131)

Operation: When a data statement is found, it is ignored, just like a remark
statement except that the next statement, not the next line, is jumped to.
The routine hunts for a : or zero byte, the Y register holding the offset;
this is added to CHRGET's address so the effect is to skip the data.

ROM entry points:

BASIC 1: $C7F0 (51184) BASIC 2: $C800 (51200) BASIC 4: $B883 (47235)

Programming the PET /CBM S5- 5: BASIC keywords

DBL
Command unavailable directly in CBM BASIC

PURPOSE: increases the accuracy of calculations by increasing the storage space

of floating-point numbers.

Versions: Some BASICs (IBM, Tandy) have commands of this type, in which space

allocated for the storage of floating-point numbers is, for example, doubled.

Longer numerals are slower to process, but more accurate. Commodore (and

Apple, which has nearly identical number processing routines) are designed

around their standard five byte storage system, and it is impossible to extend

the processing capability of the current routines. (There are rumours that

BASIC 5 will include BCD arithmetic, enabling great accuracy to be obtained).

It is certainly possible to reach the point at which numerals are no longer

processed accurately. Thus 999 999 999.1 is printed as 999999999, and any

values much larger are converted so they appear in scientific notation. There

is of course an element of spurious 'accuracy' in many figures of this magnit-

ude. Not many measurements are correct to one part in a thousand million.

There are few routines available, as a result of this, to process long numerals.

Osborne /Donahue has 25 pages on the subject.* The best approach is to use

fixed-point numbers ; in this way all the difficulties associated with floating-

point accumulators are abolished. A usable format might be 15 figures before

and after the decimal point, plus extra space to allow the output to be group-

ed in sets of three digits separated by commas or spaces. Fifteen figures

after the decimal may seem excessive; but some calculations, for instance

overnight interest on bank deposits, need considerable precision. The BASIC

translater could be programmed to intercept and process (say) A$=A1$*A2$.

But this would be ambiguous in the case A$=A1$+A2$. So the best routine is

likely to use syntax like this: !A$+B$ or this: SYS 700: A$+B$, and, to

avoid having to peek the answer byte by byte, to assign the result to

another string.

*This book has BASIC programs which add, subtract, and multiply (not divide)

integers only. The relevant chapter is 'Making the most of CBM features' which

appeared in the earlier edition as 'Overcoming the limitations of PET BASIC.

The multiply routine has bugs: the first item must have an even number of char-

acters, and embedded zeros may crash the program. To remedy this, add:

1160 GOSUB 3000
2150 RETURN

Programming the PET/CBM -56- 5: BASIC keywords

DEF FN
BASIC command

PURPOSE: Assigns a numerical function, which can be called by FN. The function

definition has a name (of the usual BASIC type) and a dependent variable.

Syntax: DEF FN real variable (real variable) = arithmetic expression. The variable

in brackets is the dependent variable. If the arithmetic expression does not

include it, it's called a 'dummy variable'. The definition has to fit into one

line of BASIC. After the function has been defined, it can perform calculations

on its argument: PRINT FN name (arith. expr.) for instance prints the value

taken by the function. There may be run time errors if the function cannot

be evaluated, typically 7DIVISION BY ZERO ERROR.

Mode: Program mode only; direct mode produces an 7ILLEGAL DIRECT ERROR.

Examples: 10 DEF FN DEEK(X)=PEEK(X) + 256*PEEK(X+1):REM SETS UP FN DE(X)

100 DEF FN MIN(X)= -(A>B)*B - (B>=A)*A :REM RETURNS SMALLER

1500 DEF FN Y(X)=A*X*X + B*X + C :REM CALCULATE AX2 +BX+C

527 DEF FN L(QQ)=QQ*(B=10) :REM ALWAYS 0; OR -QQ WHEN B=10

Line 10 defines DEEK(X) as a double-byte peek. The result is much easier to

read than a subroutine; PRINT FN DEEK(l) prints the current USR address

which is stored in bytes 1 and 2. If X is negative, or exceeds 65535, the

program will of course crash, with an error. The second example uses X as

a dummy variable. In the same way that FRE(O) and FRE(99) return the same

value, FN MIN(l) and FN MIN(9) take the identical value, which is A if A is

smaller, B if B is smaller. Line 1500 is a mathematical function: the example

is a quadratic expression; it could be a financial calculation, a scientific

formula, a commercial cost expression. Note that line 1500 includes three

variables, A, B, and C, which are included in the evaluation of the quadratic.

The function can of course contain constants:

10 DEF FN Z(X)=5*(1+TAN(X)), and it can include a function def-

inition: 15000 DEF FN P(P) = 1 + 2*(1-P) + 3*<1-P)~2 + ... +FN PP(P)

15005 DEF FN PP(P)= 6*(1-PW + 7*(1-P)^8: REM 2 LINES FOR DEF

Notes: [1] DEF works by storing a pointer to the expression among the simple

variables. FN causes the dependent variable to be assigned the value in

brackets, and then the BASIC code in the program itself is used to evaluate

FN. A function can be redefined freely, like any other variable: DEF FN
Y(X)=X: DEF FNY(X)=22: is OK. The definition is stored like this:

NAME
ASCI 1+128

NAME
ASCII

PTR. TO EXPR.
LOW I HIGH

PTR. TO VAR.
LOW I HIGH

Not used

The high bits in the name, which are on and off respectively, ensure there

will not be confusion with other variable types, so DEF FNX(X)=X%+X$ is valid.

[2] Bugs , i. FN called before the equivalent DEF FN gives ?UNDEF»D FUNC-
TION ERROR, because it is unable to find, and can't set up, the function,

ii. An error in the function definition causes 7SYNTAX ERROR in the line

using FN, even if the line is valid. (READ does the same thing),

iu. If a new program is loaded from within an old one, unless it has an

identical definition in the identical place in RAM, any function definitions

which existed will no longer work correctly, and should be redefined.

[3] Note that the dependent variable does not change when a function definitioi

is used. So, in the very first example above, X=100: PRINT FN DEEK(1000) leave

X unchanged, although FN DEEK uses X. The value of X is in fact temporarily

stored in the area reserved for the function definition itself.

Abbreviated entry: dE (fn has no short form) Tokens: DEF $96 (150), FN $A5(165)

Operation: DEF checks FN token, mode, variable types, brackets, and '=', but not

the expression, then sets the name and pointers. FN has no action address;

it is searched for during expression evaluation and has its own ROM routine.

ROM entry points:

DEF: BASIC 1 : $D295 (53909) BASIC 2:$D28D (53901) BASIC 4:$C4DC (50396)

FN: BASIC 1 : $D2D6 (53974) BASIC 2:$D2CE (53966) BASIC 4:$C51D (50461)

Programming the PET ICBM -57- 5: BASIC keywords

DEL
BASIC command not available in CBM BASIC.

PURPOSE: DEL deletes BASIC program lines; typical syntax is DEL a - b where

a and b are linenumbers. This command removes test routines and driver

routines to clean up a program when testing is over, or removes particular

features of a program to leave a core of reusable standard routines.

NB: DELETE is sometimes a disk command to remove a file; 'SCRATCH' is

Commodore's version.

Versions : In view of the simplicity of programming and usefulness of this command

it is remarkable how few versions exist. In Microsoft BASIC DEL can only

be supported in direct mode, because the program shrinks, and the storage

of variables has to be revised. Validation of DEL a - b is similar to LIST,

and the operation of the routine would be to search for the two lines, then

memory move the upper part of the program to the end of the lower part,

and rechain the result.

The version below is in BASIC, in the form of a subroutine which sits at

the end of the program. RUN 61000 inputs the linenumber limits, and the

routine proceeds to print on the screen all the linenumbers which the pro-

gram has between (and including) the limits. It relies on the well-known

keyboard buffer trick of putting in carriage returns from the program.

61000 A=1025: B=256: INPUT "DELETE FR0M,T0";L,U

61010 IF PEEK(A+2)+B*PEEK(A+3) < L THEN A=PEEK(A)+B*PEEK(A+1) : GOTO 61010

61020 POKE 828,U-INT(U/B)*B: POKE 829, U/B: GOTO 61040

61030 B=256: A=PEEK(826)+B*PEEK(827) : U=PEEK(828)+B*PEEK(829)

61040 IF PEEK(A+2)+B*PEEK(A+3) > U OR PEEK(A)+B*PEEK(A+1)=0 THEN END

61050 PRINT "[CLR] [DOWN] [DOWN] [DOWN]" PEEK(A+2)+B*PEEK(A+3)

:

PRINT "GOTO 61030": PRINT " [UP] [UP] [UP] [UP] [UP] [UP] [UP]

61060 POKE 826,A-INT(A/B)*B: POKE 827, A/B: POKE 158, 2: POKE 623,13:P0KE 624,13

61070 END

Comments:

A=first byte of link address; so its initial value is 1025, and the pointer to

the next line, and the current linenumber, are stored in locations A/A+l,

and A+2/A+3.
B=256 is a convenient constant.

61000 inputs L,U = lower and upper linenumbers
61010 scans the line numbers until one is found which is not less than L

61020 stores the upper linenumber in cassette buffer #2

61030 Loop to print linenumbers: A recovers link, U recovers upper line

61040 ends if upper linenumber exceeded, or program's end reached.

61050 clears screen, prints linenumber, prints GOTO 61030, moves up
61060 saves link address and puts two returns into the buffer.

61070 END causes the loop to delete one line.

Programming the PET /CBM -58- 5: BASIC keywords

DIM
BASIC command

PURPOSE: Allocates space in memory for an array of specified name, type, and
dimensions. The name has two significant characters, the type may be real,

integer or string, and multiple dimensions are accepted. Array elements are
numbered from zero. On setting up, every element of any array is made
if numeric or null if string.

NOTE: Strings do not need to be individually dimensioned for length; the
system takes care of this. So X$(20) is a string array holding 21 strings;
not a single string of length 20.

Syntax: DIM name(arith. exp. 1, arith.exp. 2 arith.exp.nl) [, name 2(arith.exp.

, ...)] where the square brackets indicate optional repetitions. Each
arithmetic expression is evaluated and rounded down if non-integral. The
permitted range of values is 0-32767. High values will generate ?OUT OF
MEMORY ERROR. See note [3] for information about BASIC l's peculiarities.
The syntax is not checked thoroughly. DIM T for example does not give
any error indication.

Modes: Direct and program modes are both accepted.

Examples: 12000 dim p%(18),l%(8),ai(18),sg$<2)
540 DIMS(B*N + 20): REM B= 2 TO 4.

50 DIM A(10,10,10),T(24),POSN(X,Y,Z): DIM LOCATE (2*Y) ,Q(X, 10)

FOR J=0TO10: X$(J)=STR$(J) : NEXT: FOR J=10 TO STEP -1: ?X$(J) : NEXT

DIM is a straightforward command: the problems associated with it mainly
derive from the difficulties associated with processing large amounts of data.
Arrays can be 'dynamically' dimensioned with Microsoft BASIC. This means
lines like 540 are valid, where an arithmetic expression has been used to
compute the array subscript size, as well as lines like 12000, in which
absolute values are used. Line 540 assigns an array S() a dimension which
is B times as large as another array of dimension N, and adds another 20
spare elements. In this way, arrays can be assigned by soft-coding to be
a suitable size for the work in hand. Line 50 dimensions three multi-dimension
arrays. Note that DIM must be repeated at the start of each new DIM
statement . Finally , the direct mode example shows an implicit dimensioning of
the array X$(). Although DIM X$(10) is not included in the line of coding,
the first time it is met during running the translator searches for X$(0),and
when it doesn't find it, sets up the array. The default value of DIM is always
10; larger arrays therefore must be dimensioned to avoid ?BAD SUBSCRIPT
ERRORS.

Notes: [1] Some general notes on arrays . These notes are long and comprehensive;
don't be put off DIM and arrays because of this detail and apparent complex-
ity. The basic idea of giving a whole batch of data just one name is simple,
and the method of numbering the separate items isn't too hard either,
i. Since computers start counting at zero, it is not surprising that Microsoft
have allowed zeroth elements in their arrays. Some people *consider that
these elements should not be used, because of possible compatibility problems
between other versions of BASIC. In any program developed for subsequent
mini or mainframe use, or with portability in mind, this is likely to be true.
On the other hand, this may be unimportant; certainly there are plenty of

other potential conversion problems. The zero element, because of its

uniqueness, may hold averages, totals, comments, or any other summary item

about the array. This example line shows how a total might be built up:

DIM A(20): FOR X=1T020: INPUT N: A(X)=N: A(0)=A(0)+N: NEXT

ii. ?REDIM'D ARRAY ERROR will occur if DIM is inadvertently included within

a loop . Move it to an earlier part of the program

.

see for instance Donald Alcock's 'Illustrating BASIC.

Programming the PET/CBM S9- 5: BASIC keywords

iii DIM X(5,0) is syntactically correct but adds nothing extra to the array X(5)

except the additional effort of incorporating ',0' to the subscripts DIM C(7,2)

sets up a three-column array, with a choice of C(M,1) or C(M,2) for M = 1 to 7.

(And the zero elements may also be used). Two-dimensional arrays, like this one,

are usually visualised as rows followed by columns: A(R,C).

iv CLR seems to delete all variables and all arrays, an effect produced by the

shifting of several pointers. (See diagram). Because of the way variables are

partitioned into simple and subscripted types, it is easy to erase all the arrays

from memory, whilst leaving all the simple variables untouched. We can achieve

this in BASIOl with: POKE 46, PEEK(44): POKE 47, PEEK(45) and in BASIC 1

with- P=PEEK(126): POKE 128, P: P=PEEK(127) : POKE 129, P. Large arrays consume

a lot of RAM; this manoeuvre may therefore usefully eliminate a redundant array

from memory. The 'Scatter Sort' (q.v.) provides an example.

[2] Array dimensioning by default doesn't only occur when an assignment

statement refers to a non-existent array value. It happens also when such an

array is present in an expression. This program: X=Y=Z: END when run,

sets up variable X and assigns it the value -1, because Y and Z are both zero.

Although X is present after the program, neither Y or Z is. But this:

X=Y=Z(3): END not only sets up X, but array Z (), which is given the

default dimension of 10. This may lead to unexpectedly small reserves of RAM.

[3] BASIC 1. This ROM has a serious bug, causing an array to remain empty

from its 255th element on. Items out of this range are written wrongly (the

260th as the fourth) and read back wrongly. This error applies to multi-

dimension arrays, and causes bugs which can be hard to detect. For example,

remembering to allow for the zeroth element, X(4,50) has 5*51 = 255 elements,

and Y(9,24) has 10*25 = 250 elements. Both of these will process successfully.

But Z(16,16) has 17*17 = 289 elements and will not be reliable.

[4] String Arrays . Any previously undefined variable will cause all the arrays

held in RAM to memory-move up, to create the necessary space. This is time-

consuming and especially so with BASIC 4 string arrays. This is because BASIC

4 strings each have their own pointer, and these all need updating. To see tnis

effect try DIM X$(1000):A=1:B=2:C=3:D=4:PRINT A. If this once-only delay

is important - often it won't be - set up most or all variables before large

arrays are dimensioned. For the connection between string array dimension and

memory-freeing time, see Chapter 2 and the section on FRE. Finally, note that

DIM can be absurdly high with strings, because all the pointers can point to

the same string: FOR J=0 TO 1000: x$(J)="ELEPHANTINE": NEXT uses 3K bytes.

POINTERS: End of BASIC ,End of vars/End of arrays

BASIC<4: I PROGRAM Tvars/String pointers! String array! I Strings

BASIC 4: | PROGRAM | Vars/String pointers} String array]

+ ' *—
[5] Storage Space . Space taken up in RAM can be found with the aid of FRE

.

F=FRE(0): DIM Z%(500): PRINT F-FRE(O) shows the method. It can be found

by the formula, for any n-dimensional array:

Bytes=5 + 2*n + (diml + l)*(dim2 + 1)* ... *(dimn + 1)*2,3 or 5 for integer,

string, or real number arrays respectively. Example: PQ(100,4,2) occupies

5 + 6 + 101*5*3*5 bytes = 7586 bytes.

Abbreviated entry: dl (this is why DIRECTORY needs diR!)

Token : $86

Operation : The first character of the array name is stored in X
.

Most of the work

is done by the next routine, which searches for the variable, and by another

routine which it calls, and which is extremely long, 'find or create array'.

After this, if the statement hasn't ended, DIM loops back to check for a comma

and repeat the operation with the next array to be dimensioned.

ROM entry points: BAS IC1-$CF71 (53105) BASIC2:$CF63 (53091) BASIC4:$C121 (49441)

Find/create array :BASIC1 :$D0B9 (53433) BASIC2:$D0AC (53420) bASIC4:$C2FC (49916)

Programming the PET/CBM -60- 5: BASIC keywords

DUMP
Utilities unavailable directly in CBM BASIC

PURPOSES: (1) A screen dump prints a duplicate of the screen onto paper.

A printer may, of course.be unable to reproduce the full range of Commodore
characters. Routines of this sort are valuable for record-keeping purposes.
If the screen is built up with POKEs or machine-code a special routine is

necessary. With output which is simply PRINTed to the screen it is usually

quicker to direct the output to the printer.

(2) A dump of variables prints out current variable names and values.

This is of some use when debugging BASIC.

Versions: (1) Screen Dumps. Many versions, both BASIC and machine-code,

exist. Before looking at these, let's consider the problems that can arise.

Firstly, some characters may be unprintable. Secondly, a printer may not

use CBM'S version of ASCII. Thirdly, the upper and lower case alternate

character sets have to be allowed for. Fourthly, some screens have 80

columns, others 40. None of these is a real problem. (If however some
non-standard screen display is used, for example a high-resolution graphics
hardware unit , completely new routines will be needed to dump their screen

output).

Early versions, in BASIC,* were concerned with non-CBM printers, which
did not exist. They convert the screen memory characters into outputtable

equivalents. (See appendix for screen memory and ASCII). Graphics were
ignored or printed as (say) *. This program, including allowance for

either graphics mode, shows the type of thing necessary:

40000 REM *** 40 COLUMN SCREEN DUMP ***

40010 OPEN 4,4: CMD 4: IF PEEK(59468)=14 GOTO 40200
40100 FOR J=0 TO 24: FOR K=0 TO 39: X=PEEK(32768 + J*40 + K)

40110 IF X<32 THEN PRINT CHR$(X+©4) ;: GOTO 40160
40120 IF X>31 AND X<65 THEN PRINT CHR$(X) ;: GOTO 40160
40130 IF X>128 AND X<160 THEN PRINT CHR$(X-64) ;: GOTO 40160
40140 IF X>159 AND X<193 THEN PRINT CHR$(X-128) ; : GOTO 40160
40150 PRINT "*";

40160 NEXT: PRINT: NEXT: PRINT#4 : CLOSE4: RETURN
40200 FOR J=0 TO 24: FOR K=0 TO 39: X=PEEK(32768 + J*40 + K)

40210 IF X<32 THEN PRINT CHR$(X+96)
40220 IF X>31 AND X<91 THEN PRINT CHR$(X)
40230 IF X>128 AND X<160 THEN PRINT CHR$(X-32)
40240 IF X>159 AND X<219 THEN PRINT CHR$(X-128)
40250 PRINT "*";: GOTO 40160

GOTO 40160
GOTO 40160
GOTO 40160
GOTO 40160

This routine separates lower-case mode (40200 ff.) from upper-case, and
is therefore a general purpose routine. Changing the range of K from
0-39 into 0-79 makes this usable for an 80-column machine. Note, though,
that BASIC 1 in lower case has its upper and lower cases reversed, so

programs written in BASIC 1 tend to yield odd displays, and odd dumps,
when run on other ROM machines. Note that the BASIC subroutine above
can be compressed, with loss of clarity. Lines 40110 to 40140 can be
replaced by:

40110 IF X<65 OR (X>128 AND X<193) THEN PRINT CHR$(X-(X AND 128)

-2*(X AND 32)+64) ; : GOTO 40160

and lines 40210 to 40240 by:

40120 IF X<91 OR (X>128 AND X<219) THEN PRINT CHR$(X-(X AND 128)

-96*((X AND 96)=0));: GOTO 40160.

*CPUCN nos. 6 & 7 for example have a routine (lower-case mode only) by J Allason
and M. Bennet

.

!

Programming the PET ICBM '61- 5: BASIC keywords

Screen dumps in machine code are newer. K Finn, ('Micro', Aug '80) has

a CBM printer version for BASICs 1 and 2. C Brannon ('Compute!
'
Nov /Dec

'80) and E Brannon ('Compute! Mar '81) have versions for BASIC 2 and 1

respectively. The first uses SYS to print the screen; a variable number of

lines may be selected. The second changes the interrupt, so a simple key-

stroke will print the screen. This is valuable if for some reason (e.g. a

program in machine-code) a SYS command can't be issued, or if, in direct

mode, the SYS command spoils the screen's appearance.

My routine below (see elsewhere for rationale) is a short relocatable dump

for any printer; graphics characters *are treated as '#'. Upper and lower

case settings are allowed. It saves temporary values in RND's workspace.

It is often helpful to have such a routine available, perhaps in a cassette

buffer. To use it, open the printer: OPEN 4,4: CMD 4: SYS 826: PRINT#4:

CL0SE4 is an example, when the routine starts at $033A (-826). Three

locations are marked; these are all user-modifiable.

This routine calls one ROM address, which prints carriage return and line

feed It is written for BASIC 2. There is no serious difficulty in writing it

to run on either machine ... however, as it stands, BASIC 4 requires the

following substitute lines:

6020 A9 01 85 89 20 DF BA A2

. : 6060 8C DO AD 4C DF BA.

RELOCATABLE BASIC 2 SCREEN DUMP .

PC IRQ SR AC XR YR SP

0401 E62E 32 04 5E 00 F8

B*

$29
$19

Max. Cols. + 1

Max. Lines to be output

$23 = Default character (#)

6000 A9 00 85 89 85 8A 85 8B

6008 A9 80 85 8C A9 40 85 88

6010 E6 89 A5 89 C9 29 DO OF

6018 E6 8A A5 8A C9 19 F0 43

6020 A9 01 85 89 20 E2 C9 A2

6028 00 Al 8B 29 7F 24 88 DO

6030 06 24 7E F0 13 DO 21 24

6038 7E DO 09 48 A9 02 2C 4C

6040 E8 DO OD 68 A9 23 DO 10

6048 48 A9 02 2C 4C E8 DO 05

6050 68 09 40 DO 03 68 09 60

6058 20 D2 FF E6 8B DO Bl E6

6060 8C DO AD 4C E2 C9

(2) Variable Dumps. The best known implementation is the Toolkit's

version; it and related routines dump ordinary (string, integer, and
floating-point) variables, but not arrays, which are thought to be too

difficult. There is no difficulty writing such routines in BASIC; and in

any case values can simply be printed. Generally dumps are designed to

print to the screen; diverting output to a printer may produce oddities.

There is a published example of this type of dump in Compute! (3#1, Jan
'81) by F Levinson. This works by putting 12 bytes into the output buffer:

" A =" A ;0 (the zero is intended to represent a null character).

The variable names are changed in cyclical sequence, through A.A0-A9,
AA-AZ,B,B0-B9,BA-BZ,...A%,A0%-A9%,AA%-AZ% and at each loop the

variable is sought, using the ROM routine for the purpose. When a variable

is found, the buffer is printed; the print routine determines the value of

the variable, and the name in quotes is printed verbatim.

An alternative type prints the variables in the order in which they

are stored in RAM, in other words in their order of first use by the program.

''Including the shifted space character.

Programming the PET /CBM -62- 5: BASIC keywords

END
BASIC command

PURPOSE: Causes a program to exit to immediate mode. The Ready message is
printed. This command may be used to set breakpoints in BASIC programs.
CONT causes a program to continue at the next instruction after END.

Syntax: END has no parameters. It may be followed by spaces, and must be
followed by an end of statement byte - either a colon or a zero byte at
the end of the line.

Modes: Direct and program modes are both valid.

Examples: 20000 PRINT#4,CHR$(12): CLOSE 4: SYS 45056: SYS 739: END
855 IF PEEK (32766)<>TR THEN PRINT "*** TRACK READ ERROR": END
5000 GOSUB 51000: END: GOSUB 58000 .-END: GOSUB 15000: END
59999 END

Several related facets of the END command are shown here. The first
program line is part of an exit routine, which tidies up the program before
ending; a control character resets the printer which is then closed, and
the disk unit is reconnected and a RAM routine called. (None of this is
standard to Commodore). The second example shows an error-trapping
line of BASIC which stops the program if a condition is not met: in the
actual example, a test location which holds an incorrect track number
causes execution to end. The third example is not from a finished program,
but illustrates a way to use breakpoints. Each subroutine performs some
initialisation function: lowering the top of memory, allocating variables in
memory in an efficient order, poking machine code. In the final version
no ENDs will be present here, but during testing each routine can be
separately checked, using CONT to continue with the next. The last
example uses END to ensure that subroutines - located at 60000 and after-
are not inadvertently entered.

Notes: [1] Some BASICS require an END at the physical end of a program, even
if it ends invariably somewhere else. (The last line might be GOTO 1, say).
This is carried over from the days when programs were held as stacks of
cards, and it was important to separate the programs in a box of cards.

[2] END leaves the program in memory: other exits, such as calling ROM
routines to clear RAM, can be employed, if for example it is feared that
lines from the program might be accidentally deleted in direct mode.

Abbreviated entry: eN

Token: $80 (128)

Operation: This routine is shared with STOP; the only difference is that the
carry bit is set on entry to the routine by STOP or by the stop key, but
is cleared for END. This flag (the carry bit) determines whether the
message "BREAK IN" plus linenumber is printed. With END, of course, it

isn't. After the usual syntax check, the routine tests the mode: if it is
direct mode it skips past several instructions which save two parameters
for CONT, the linennumber and the current CHRGET address pointer.
The routine now throws away two bytes from the stack, since it wishes to
enter direct mode, and does not need the return address. In the case of
END it prints "READY." after loading pointers to the BREAK IN .. text
stored in memory, which of course are unused. Early BASICs set the I/O
device to 0, or keyboard, but BASIC 4 does not, so presumably CONT may
be entered from non-CBM devices.

All the ROMs process this instruction in similar ways; the test used in
BASIC 1 for direct mode is different, though, because the input buffer is

in its zero page.

ROM entry points:BASIC 1: $C71E (50974) 2: $C741 (51009) 4: $B7C8 (47048)

.. oct ir ami -63- 5: BASIC keywords
Programming the PET/CBM oj

EXP
BASIC arithmetic function

PURPOSE: Calculates e (2.718281828...) raised to any power within the range

-88 to +88 approximately. The result is always positive, approaching zero for

large negative powers, and increasing indefinitely for large positive powers.

EXP(O) is 1.

Syntax: EXP (arithmetic expression). If the expression evaluates to a value larger

than about 88, ?OVERFLOW ERROR will result and the program will end. It tne

expression is a large negative number on evaluation, there is no equivalent

underflow error message; the value is simply set to zero.

Modes: Direct and program modes are both valid.

, PRINT EXP(IO): REM PRINTS 22026.44 ...
Examples:

Y=EXp(1) . BEM ASSIGNS Y VALUE OF E = 2.7182818 ...

PRINT EXP(L0G(N)): REM PRINTS N (POSSIBLY WITH ROUNDING ERROR)

100 FOR N=0 TO 20: P(N)=(M N)*EXP(-M)/FACT(N) : NEXT: REM POISSON

200 NT = NE * EXP(-B*EXP(-K*T)): REM GOMPERTZ

Like SQR, this function is a special case of the power function, and therefore

is strictly speaking unnecessary. EXP(Q) can be replaced by 2 7182818aQ.

But like SQR it is more easily recognisable in its familiar form EXP; laminar,

that is, to the mathematically-minded.

The two first examples are straightforward evaluations. The third reveals

or underlines the fact that EXP is the converse function to LOG
,
whicn is

calculated to base e. Whenever a logarithmic transformation has been used

perhaps to reduce the magnitude of the numbers being dealt with, EXP can

reconstruct the solution, provided that it is within the limits accepted by

the PET's floating-point logic.

The final examples are both formulas; EXP invariably is used in scientific or

statistical calculations. The first such example is a statistical one; the

Poisson probability distribution deals with randomly occurring, rare events

Given the mean number M of such events (misprints per page, say) line 100

computes the probabilities of 0,1,2, ...,20 such events happening. It uses a

Son definition FACT(N) which is N! or N*(N-l)*(N-2)* *1. Chapter

16 has more on this topic. Finally, we have a growth curve of the so-called

'logistic' or 'ogive' shape. This sort of thing turns up in population models.

Notes- [1] The number e has a large number of special properties. The rate of

erowth of EXP(X), for example , equals EXP(X),so for small DX,

(EXP(X+DX)-EXP(X))/DX is about equal to EXP(X). Malthus' population

theory gives a result involving e, which accounts for the popular meaning of

'exponential growth'. The infinite series l +x +x* /2+x* 16*. . .
converges to

EXP(x). It (e) is irrational ; only the first few terms appear to recur. *

Abbreviated entry: eX

Token: $BD (189)

Operation: Rather unexpectedly, this function does not call the power routine in

ROM, but uses its own series evaluation method. This involves the following

steps- (i) The argument is multiplied by l/loge 2. (ii) The result is tested for

ranee (iii) The result is normalised into the range 0-1, saving the exponent

on the stack, (iv) The accumulators are interchanged, (v) The series routine

is called; this computes 2A(x/loge 2). (vi) The power of 2 is added back; the

result is now eA(argument). All ROMs process this instruction similarly.

ROM entry points:

BASIC 1: $DEA0 (56992)

BASIC 2: $DEDA (57050)

BASIC 4: $D184 (53636)

*' Irrational' means, mathematically, 'not expressible as a ratio'.

Programming the PET/CBM -64- 5: BASIC keywords

FOR.. TO.. [STEP}
BASIC loop command

PURPOSE: Permits repetitive processing of all BASIC between a FOR variable ...
TO... [STEP] statement and the corresponding NEXT. When NEXT is

encountered, the loop variable is checked and, if it matches NEXT, added
to the value originally assigned to STEP. If the result falls within the
limits specified by FOR and TO, the loop continues with the statement
following the FOR statement. Otherwise, BASIC continues linearly with
the statement following NEXT.
The loop variable may be used as a counter, pointer, or subscript, and
may be changed within the loop. Step size defaults to 1.

Syntax: The full syntax is: FOR real variable = arithmetic expression TO arith-
metic expression [STEP arithmetic expression] . Constructions such as
FOR / UNTIL and DO / WHILE are not obtainable directly in BASIC, but
can be simulated by programming. Many FOR loops can coexist while the
program runs, and they are called 'nested' loops, unless NEXT doesn't
match FOR, in which case either a loop variable or variables will be lost,
or ?NEXT WITHOUT FOR ERROR appears.

NEXT, the end of the loop, has syntax: NEXT [real variable [,real var-
iable]!, real variable] ...]. Square brackets denote optional variables.

Modes: Direct and program modes are both valid.

Examples: FOR J=l TO 1000: PRINT "*";: NEXT: REM J USED TO COUNT TO 1000
FOR J=l TO 1000: PRINT J; : NEXT : REM ACTUAL VALUE OF J USED
FOR J=l TO 1000: NEXT: REM DELAY LOOP; ABOUT 1 SEC

These three simple loops illustrate loop processing with about the minimum
possible code. In each case J is the loop variable, and in neither case is
it modified within the loop. Therefore, unless the Stop key is pressed,
each loop continues 1000 times. Whenever NEXT is met, J is incremented by
1, since 1 is the default value of STEP. On leaving the loop, J equals 1001.
Loops are often used in benchmarks, which provide some indication of the
speed of execution of a computer language. The third example takes about
a second; the same BASIC operating with the 6502 at a different clock speed
will take a proportionally longer or shorter time.

100 K=0: FOR J=32768 TO 32768+255: POKE J,K: K=K+1: NEXT
200 FOR J=33768 TO 32768 STEP -1: POKE J+l, PEEK (J) : NEXT

Screen peeks and pokes are the subject of the next couple of loops; the
first puts to 255 directly into screen memory, starting at the top of the
screen, so all 256 ROM characters appear. They appear differently in upper
and lower case modes, of course. The inclusion of K within the loop shows
one method by which variables can be made to change in step with each
other. This principle is quite useful. Line 100 can in fact be simplified,
eliminating K, by writing loo FOR j=o TO 256: POKE 32768+J,J: next .

Line 200 is a memory-move routine, which shifts 1000 bytes of the screen
forward by one location. To do this successfully, it is essential to begin at
the top end and work back, since otherwise each byte will be obliterated by
the previous byte. This is the reason for the negative STEP parameter.
Try the routine omitting the negative step if you don't yet see this.

1000 FOR J=l TO LEN ("ABCX£$"): IF IN$OMID$("ABCX£$", J, 1) THEN NEXT:
IN$="!"

1010 REM J NOW EQUALS 1-6, THE POSITION OF 1$ WITHIN THE STRING OF
CHARACTERS WE'RE TESTING, OR J EQUALS 7 AND IN$ = "!"

2000 FOR Yl = Yl TO 9E9: IF Y1-Y>1 THEN PRINT#5,S0UTH$: NEXT
Two program extracts show how IF statements within loops can be dealt
with. The first tests input IN$ against the contents of a string. If INS
is not found in the string, it's reset to a warning value. Otherwise, J now
equals IN$'s position within the test string; this may be useful in extracting
other substrings. Line 2000 is part of a graph plotting program: steps are

Programming the PET /CBM -65- 5: BASIC keywords

drawn southward, from Y to Yl, incrementing Yl until the condition fails.

Finally, we have an example of nested loops, in which J controls the step size

between a 2-dimensional plot on the screen. I have assumed (see SET) that a

function to draw single 'points' exists:

FOR J=60 TO 2 STEP -1: FOR X=0 TO 79 STEP J: FOR Y=0 TO 49 STEP J:

POKE 0,X: POKE 1,Y: SYS 826: NEXT Y,X,J

Notes: [1] Loops in practice are quite easy to use; don't let the rather long list

of notes efface this fact from your mind.

[2] Syntax . (i) A loop variable must be a simple real variable: FOR X% = 1 TO 9

and FOR X(5)=0 TO 10 both cause 7SYNTAX ERROR, (ii) A loop is always

executed at least once, even though strictly, in standard BASIC, a loop like

FOR V=10 TO 1 : . . . :NEXT should be ignored. Apart from taking time to test, and

thus slowing down benchmarks, the corresponding NEXT has to be found, and,

in unstructured BASIC, this is impossible. So the example sets V to 1, then

executes the contents of the loop once, (iii) Inclusive limits apply, so that:

FOR J=0 TO 9: causes J to take values 0,1, 2,..., 9 and execute the loop ten

times, (iv) for j=l to 1E4: in lower-case mode is treated as 1 to 14.

[3] Accuracy . If the loop variable and the step size are each stored exactly,

there will be a rounding error only with extreme values, so a loop will execute

precisely under these conditions. Generally, integers and binary decimals are

stored exactly, including the default step value of 1. For this reason, both

for Q=l TO loooooo : and for J= . 5 TO 1000000 step . 0625 execute perfectly , but

FOR M=l TO 1000: STEP 1/3 doesn't, as can be seen by including PRINT M
in the loop. FOR M=l TO 1000.1 will ensure the count is correct.

[4] Speed . When fine-tuning a program to run with as little delay as is

possible, the contents of loops are an obvious candidate for examination.

Firstly, the variables: the loop variable itself is held by the stack as a

pointer, so if it is used merely as a counter there is no point in putting it

early on into the RAM variables. , The rule should be to order variables in

RAM according to their presence inside the loop. When loops are nested,

the innermost variables obviously should have priority over those within

fewer loops. The more variables a program has, the more difference this

will make. Time-saving can be more spectacular with the second approach,

rewriting the loop(s) to use fewer instructions, or fewer redundant oper-

ations such as assignments, calculations, or conditions. It is easy to compose

examples showing many faults, and a large speed increase when these are

removed, but again, in practice, factors of the order of five or six times

the original speed are not very likely to occur. Let's consider an example

incorporating both these factors:

7600 REM DATA IS STORED IN RAM IN BATCHES OF 116 BYTES, STARTING AT $6C00.

7610 REM SO RECORD NO. R% STARTS AT 27648 + 116*(R%-1).

7650 0$(1)="":0$(2)="":0$(3)="": . . . :REM 0$() HOLDS OUTPUTS

7660 FOR J=0 TO 27: 0$(1)=0$(1)+CHR$ (PEEK (27648)+ 116*(R%-1) + J)): NEXT

7670 FOR J=28 TO 47:0$(2)=0$(2)+CHR$(PEEK(27648)+ 116*(R%-1) + J)): NEXT

7680 ...

This program extract is perfectly good and workable, but, owing to BASIC'S
restrictions, the decision to rewrite it to run faster may be worthwhile. If

so, we see that each loop holds a considerable amount of calculation, which
can be moved out of the loop, and performed once only. We can use a

temporary string in place of the arrays, which will process faster; and we
can ensure that the variables are arranged in the optimum order. We get:-

7650 RS=27648 + 116*(R%-1): S$="" :REM RECORD START POSITION AND STRING

7660 S$="": FOR J=0 TO 27: S$=S$+CHR$(PEEK(RS+J)) : NEXT: 0$(1)=S$

7670 S$="": FOR J=28 TO 47:S$=S$+CHR$(PEEK(RS+J)) : NEXT: 0$(2)=S$

7680 ... :REM BEST ORDER FOR THIS CODE IS S$="" :RS=0: J=0 WITH 0$() 1ST ARRAY

S$ is the most important variable in the rejigged code, because it occurs

twice as often as any other variable. R%, which was very influential in the

original, now is unimportant as far as this part of the program goes.

Programming the PET/CBM -66- 5: BASIC keywords

[5] Nested and structured loops . A nested loop has an appearance which
may be represented diagrammatically like this:
And in a program like this:

FOR X = XI TO X2: .

FOR Y = Yl TO Y2

:

FOR Z = Zl TO Z2:

NEXT Z

NEXT Y
NEXT X

First variable

I
—Second variable

E

Third variable

NEXT
-NEXT
NEXT

Each depth of nesting puts 18 bytes of information on the stack, and each
NEXT moves the stack pointer back 18 bytes. FOR and GOSUB share the
stack; there are limits on the ways they can be used together. Every new
FOR variable is checked against the current stack contents, and, should an
active FOR loop exist already with that variable, the stack pointer is reset
to that previous loop, erasing subsequent loops in effect. Several 'nests'
can be built within a larger loop, and this is perfectly legitimate and should
give no bugs:
FOR X=X1 TO X2: FOR Y=Y1 TO Y2: FOR Z=Z1 TO Z2: NEXT Z.Y: FOR A=A1T0A2:
FOR B=B1 TO B2: NEXT B,A,X
Omission of the loop variables from NEXT (i.e. NEXT:NEXT and so forth)
guarantees correct nesting. Structured programming has several things to
say about loops; one is that there should be one exit point only, and not
jumping from the middle of a loop to another part of the program. Another
is the requirement for an explicit exit condition at the start of the loop, to
make it more readable. The following skeletal loop shows how both of these
ends can be achieved. It is a
DO... UNTIL loop, starting

10° 0K=-1: F0R J=*EGIN TO 9E9

with its loop variable set to
110 IF N0T 0K THEN J=9E9: G0TO 200

BEGIN and with an arbitrary "• PR°CESSING ...

upper limit 150 if . . . then ok=0: rem test
... PROCESSING . .

.

200 NEXT J

[6] Bugs, (i) Omission of a negative step: FOR J=100 TO 0: A(J)=J: NEXT
(ii) Omission of NEXT. There is no 'next omitted' error. FOR H=l TO HRIZ:
FOR V=l TO VERT: GOSUB 1000: NEXT. Both these errors cause loops to end
much more quickly than in the correct version. This may also happen with
(iii) Inadvertent change in the loop variable; this is particularly liable to
happen with subroutines in the loop - see GOSUB for examples,
(iv) The loop variable(s) may be omitted by mistake: F0RI=0 TO A: FOR J=0
TO B: X(A,B)=A*B: next j, i needs X(I,J)=I*J in place of the expressions in
A and B if the object is to fill the array with the product of row*column.
(v) An incomplete GOSUB (i.e. with RETURN not yet made) will give ?NEXT
WITHOUT FOR, for example: 10 FOR J=l TO 10: GOSUB 20: END / 20 NEXT
(vi) The upper limit of the loop is stored in the stack; therefore the attempt
to vary the exit from the loop by controlling it will fail (unless the stack
itself is altered). Example: 100 A=10: FOR XX= 1 TO A: REM i.e. 1-10

110 INPUT A: PRINT A : REM CHANGE A...
120 NEXT: REM BUT LIMITS REMAIN 1-10.

(vii) Use of nonexistent loop variable will give ?NEXT WITHOUT FOR; so
will NEXT without a loop variable if previous loops do not exist any longer
or never existed, o FOR i=i TO 10: next n uses a non-existent variable;

NEXT has no corresponding FOR; and FOR i=l TO 10: for j=1 to 10:
NEXT I: NEXT eliminates J by its reference to I, so nothing is left for NEXT.

[7] Logical variables . DO WHILE loops can be simulated like this:
FOR J = -1 TO 0: ... : J = TEST EXPRESSION: NEXT

Where the omitted processing is performed until J becomes false.

Abbreviated entry: fO stE. There is no short form of 'TO*. NEXT has nE.

Tokens: FOR $81 (129) TO $A4 (164) STEP $A9 (169) NEXT $82 (130)

Operation: See NEXT for operation of the stack and ROM entry points.

Programming the PET /CBM -67- 5: BASIC keywords

FRE
BASIC arithmetic function

PURPOSE: Computes the number of bytes available to BASIC between the end of

the array storage and the start of strings. FRE first performs the

so-called 'garbage collect' routine, which rearranges all the strings held in

upper RAM into one consecutive block. This is useful when dealing with

strings and string arrays, because (unlike numerals) they occupy variable

space in RAM. This function measures the free memory.

Syntax: FRE (expression) . FRE is a function in the sense that it returns a value.

However, its expression is a dummy. Typically, PRINT FRE(O) or F=FRE(1)

may be used. But FRE(X), FRE(X$), or FRE(A%(5)) are syntactically

correct versions of the function.

Modes: Direct and program modes are both valid.

Examples: PRINT FRE(O)
1000 PRINT FRE(O) "BYTES AVAILABLE AT PRESENT"

200 X=FRE(0): DIM Q$(75) : PRINT (X-FRE(O)) "BYTES USED BY POINTERS"

The first two examples, in direct and program mode respectively, simply

print the free memory. The third is a more elaborate piece of code which

demonstrates the use of FRE to measure the differences before and after

some memory-using statement(s). This example prints the amount of RAM
taken up with the pointers for a string array of dimension 75.

Notes: [1] This diagram illustrates the situation. If a new string is defined

which, even after garbage collection, is too long to fit into RAM, an ?OUT
OF MEMORY ERROR message is printed.

f BASIC RAM

BASIC variables arrays
NW\VA\Y\V4
FRE memorvN strings

This example program shows how rapidly RAM can be used; this is part of

an input routine which gets single characters in order to exercise greater

control over the permitted input than is allowed by INPUT

:

5 GET X$: IF X$="" GOTO 5

10 I$=I$+X$: GOTO 5

Each X$ takes one byte, and each 1$ occupies one more byte than it did

previously. A string of length n takes Jn(n+3) bytes, using a little alg-

ebra. So for example a 20-character input occupies 230 bytes.

[2] With no program in memory, FRE returns the number of bytes after

the end of the program; so after Commodore's BASIC message, and (say)
31743 bytes free, PRINT FRE(O) prints 31740 or 31741 depending on the
ROM. Lowering the top of memory by POKEs will reduce the number of
bytes returned by FRE.

[3] Timing. This is a well-known problem associated chiefly with BASIC 2.

A program using DIM X$(512) will intermittently stop to garbage collect,

whenever string space is short, not only on executing FRE, and the process
is slow. (BASIC 1 has the same problem; but people were cautious of large
arrays, which didn't work correctly). The time taken to free memory is a
function of the number of strings in upper RAM; it is a surprisingly precise
relationship, and is about .00008 * (N+ll) 2 seconds with BASIC<4. See
Chapter 4 on ways of minimising this delay. One of the features of BASIC
4 is that the strings are held differently and freed more quickly. Chapters
2 and 4 give details. The following program, which can be entered in

direct mode, is about the worst case with BASIC 2, and runs in 83 minutes:

DIM A$(7900) :FORJ=OT07900:A$(J)=CHR$(1):NEXT:T=TI:J=FRE(0) :?(TI-T)/60 "SECS"

Operation: The function firstly frees memory by calling the garbage collect sub-
routine. It then subtracts the pointer to the end of the arrays from the

pointer to the bottom of the strings, and converts the result into floating

point in accumulator #1.

ROM entry points: BASIC1:$D264 (53860) BASIC2:$D259 (53849) BASIC4:$C4A8 (50344)

Programming the PET/CBM -68- 5: BASIC keywords

GET& GET**
BASIC input command

PURPOSE: GET and GET# read a single byte from the keyboard and from any
device, respectively. In the case of the keyboard, if there is no character
in the keyboard buffer a null string or numeric value zero is returned. On
entering GET or GET#, the status byte ST is set to zero; the end of a
correctly CLOSEd tape file sets ST to 64, and the end of a correctly CLOSEd
CBM disk file sets ST to 64 and in addition sets the byte read by GET# to
Carriage Return.

Syntax: GET [#arith. exp.] var. name [,var. name] [,var. name] ...
GET may optionally be followed by # with a logical file number which must
evaluate to 1-255. At least one variable name must follow. The processing of
GET resembles INPUT (q.v.) in its use of the input buffer, but no extra
parsing is carried out on GET's single byte, so this command may be used to
input any data, unlike INPUT which presumes certain formatting conventions.

Mode: Program mode only. Direct mode generates ?ILLEGAL DIRECT ERROR.
Examples: 5 get x$: if x$="" goto 5

10 PRINT "[UP]"X$" [LEFT] [LEFT] [LEFT]" ASC(X$): GOTO 5

200 GET A$,B$,C$: PRINT A$BC: GOTO 200

If you're uncertain about the function of GET, these examples, when RUN, will

soon give you the idea. The first prints X$ and its ASCII value at a fairly fixed
position on the screen, where X$ is the single byte returned by GET. You will

be able to observe how GET can accept a carriage return, for instance, which
has the ASCII value 13. This is an infinite loop which Stop can terminate. Line
100 is a similar loop. The syntax is more appropriate to GET#; however, if you
are quick, more than one variable will be set from the keyboard. The method of

line 5 is necessary if a keypress is awaited. It is the starting-point for
crashproof input routines; see Chapter 4 on this topic.

55 GET A is valid. However, apart from 0-9 which set A =0-9 as expect-
ed, ?SYNTAX ERROR is printed, or ?EXTRA IGNORED with , and :. Also,
space, + ,-, and E return 0. It's usually best to GET a string variable.

2000 GET#8,X$: IF ASC(X$)=13 GOTO 3000: REM STRING IN$ IS COMPLETED
2010 IN$=IN$+X$: GOTO 2000 : REM BUILD STRING IN$

This example shows how a string is built up from successive bytes.

Notes: [1] The Keyboard Buffer . GET (provided that an input device number is not
found by $FFE4) takes one character from the keyboard buffer. (Characters
are put there during IRQ servicing). This buffer occupies 10 bytes from $026F
(623 ff. dec), and $9E (158 dec.) indicates how many characters are present; 2

if 0, the null character is assigned to a string variable. BASIC 4 has a variable
length buffer: $E3 holds its greatest length. LINENO GET X$: IF X$>""G0T0LINEN0
empties the buffer. So does POKE 158,0 although this is reversible: POKE 158
with some non-zero number revives characters in the buffer. In fact, poking
158 with 200 in direct mode prints the entire contents of cassette buffer #1.
Apple has a different and inferior GET which waits for a keypress. The short
routine which follows can be used to test any BASIC for keyboard buffering:

10 FOR J = TO 3000: NEXT: FOR J = 1 TO 20: GET X$: PRINT J;X$: NEXT

When RUN, this delays for a few seconds, then GETs and prints out characters.
If several keys are pressed in turn during this delay, they will, with CBM
machines, be printed later, showing that a buffer exists. The buffer can hold ten
keys, and it it easy to demonstrate that BASIC <4 erases the buffer and starts
over if more keys than this number are pressed. This has a practical effect
on crashproof input routines. Note that BASIC 4 retains earlier keys, and
its buffer need not be 10. POKE 227,0 for example locks out the keyboard
altogether

.

Unlike INPUT and PRINT*, GET# has no separate token, so I've treated it with GET.
2 BASIC 4's keyboard buffer is set to 10 characters on power-up, but it can be changed
by a poke. BASIC l's buffer begins at $020E, and contains $020D bytes at any instant.

Programming the PET /CBM -69- 5: BASIC keywords

[2] Tape . The tape reading routine is part of $FFE4. It can be recognised

in ROM after the point where the input device number is compared with #3.

After this point, the carry bit is clear for both tape devices, which are

numbered 1 and 2 by Commodore. The character is taken from the cassette

buffer (i.e. 192 bytes from $027A and $033A). When the buffer has been

read, everything pauses while the next block from tape is read into the

buffer, and its pointer reset to start. The end-of-file marker is a zero byte,

which will cause ST to be set to 64 as the last character is read. If this is

not detected, the next GET# (or any other input /output command) resets ST

to zero, so the cassette will keep reading further data.

[3] Disk . Whenever ST is set non-zero, a carriage return character is sent,

excepTwith BASIC 1, which sets ST but returns the previous byte. It is

not only EOI (end of file, in effect) which sets ST; time out on read has the

same effect, so slow devices may send only carriage returns. The time-out

feature can be disabled in BASIC 4 (by POKEing $03FC with a negative

amount, e.g. POKE 1020 ,128). Typically, therefore, this type of routine is

used with GET#:

2000 IN$=*"*

2005 GET#8,X$: IF ST=64 OR ASC(X$)=13 GOTO 3000: REM EXIT WITH IN$

2010 IN$=IN$+X$
2015 GOTO 2005

[4] Since GET# takes in colons and commas and so forth, it can be used to

check a file's contents in a way impossible with INPUT*. Moreover there is

no limitation to 80 characters length, although a built-up string like the one

in the earlier example cannot exceed 255 characters in length. BASIC<4
include carriage returns when using GET# from the screen; each GET# which

was a multiple of 40, e.g. the 40th, 80th, etc., became CHR$(13). But GET*
from the screen is rarely used. Note also that the difference between GET
and INPUT as regards cursor flashing is determined by the number of bytes

in the keyboard buffer, but this may be overridden by POKEing the cursor

flash location with the value zero. This location is $A7 (167) in BASIOl,
and $0224 (548) in BASIC 1.

Abbreviated entry: gE & gE#

Token: $A1 (161)

Operation: GET and GET# use the input buffer, but place a zero byte into $0201

so that a single character only is taken. The 'get' part of the routine uses

the kernel routine at $FFE4, which returns with a character in A and with

ST possibly set. There is also an assignment part to the routine, which
shares ROM with READ and INPUT. If the '#' symbol is found, the number
or expression after it is worked out and this logical file number is stored

for future use in $03 (BASIC 1), $0E (BASIC 2), or $10 (BASIC 4). When
the byte has been fetched, normal device input/output is restored.

ROM entry points:

GET: BASIC 1:$CA9F (51871) KEYBOARD BASIC 1:$E2B7 (58039)

BASIC 2:$CA7D (51837) FETCH

:

BASIC 2:$E2B8 (58040)

BASIC 4:$BB7A (47994) BASIC 4:$E003 (57347) - NEEDS SEI

.

Programming the PET/CBM -70- 5.- BASIC keywords

GO
BASIC dummy command

PURPOSE: Sole function is to look for a matching TO, and, if found, to perform
GOTO. The raison d'etre is to provide CO TO as well as GOTO in BASIC.

Syntax: GO must be followed by one or more spaces, TO, and a linenumber.

Notes: [1] BASIC 1. This token is not present in BASIC 1; this early version had
the facility to eliminate spaces on tokenisation , so that GO TO converted
itself to GOTO. This method of forming tokens leads to more ambiguities
than the later method. Possibly for this reason, it was changed, so that a
line like:

10 IF 256=LE THEN PRINT "HIGH"

no longer appeared to contain LET. However, GO TO was also eliminated,
and a patch put in, consisting of the token GO and a special routine to
check that it was followed only by TO.

It follows that programs developed on later machines, using GO TO, will

not LIST properly with BASIC 1; GO produces 7SYNTAX ERROR.

[2] BASIC 4. GO is no longer a patch, but processed along with other
tokens. Some versions appear to be defective. An early manual for this ROM
states that an extra byte or token must appear between GO and TO to
compensate for a bug: GOXTO for example, or GO TO TO.

[3] GO can be intercepted by a wedge and used perhaps as a command in
a computed GOSUB or GOTO routine. See Chapter 14, section 14.3.2 .

[4] GO causes problems with some renumber utilities, which haven't allowed
for the existence of this token.

Abbreviated entry: None

Token: $CB (203). Not present in BASIC 1.

Operation :In BASIC 2 the routine to execute a BASIC statement is at $C700.
The patch to process this command is at $C721.

In BASIC 4, the entry point for GO is $B7AC (47020).

Programming the PET ICBM -77- 5: BASIC keywords

GOSUB
BASIC command

PURPOSE: Performs a jump to any line in a program. The target line is identified

by its linenumber. When RETURN is next encountered, control is transferred

to the statement following GOSUB. In association with IF or ON, conditional

calls to subroutines may be made.

Syntax: GOSUB linenumber. The linenumber must be ASCII numerals (e.g. 1234),

and, like GOTO, the first character outside the range 0-9 marks its end.

Computed GOSUBs of the type GOSUB x need to be specially written. If

the line doesn't exist within the program, a run-time error will occur.

Modes: Direct and program modes are both valid. A subroutine in a BASIC
program in memory can be tested in direct mode.

Examples: J.
FOR V=0 TO 24: FOR H=0 TO 39: GOSUB 1000: NEXT: REM HORIZ & VERT POSNS

1000 POKE 245, V: POKE 226.H: SYS 58843: RETURN: REM FOR By»SIC 1

^i 2024 IF RIGHT$(JS$,l)OCD$ THEM EM$="IN CHECKLETTER": GOSUB 12000

ill 12000 PRINT "[HOME] [23 DOWN] [10 RIGHT] [RVS]*** ERROR " EM$ " [RVSO]";

12010 FOR J=OT02000: NEXT: : REM DELAY LOOP

12020 FOR J=l TO LEN(EM$)+11: PRINT "[LEFT] [LEFT]";: NEXT

12030 GOSUB 100: FOR J=l TO JL: PRINT " "; : NEXT: RETURN

iv 500 GOSUB 510
510 REM ** SUBROUTINE TO BEEP BELL ONCE ** (Detail omitted)

i. This first example shows how a subroutine may be called in direct mode.

Line 1000 is a subroutine which positions the cursor, using 2 parameters,

H and V. The direct mode line performs an exhaustive test on it.

ii. The same piece of code may be required in many different places within

a
-
program. This use of subroutines - one of the most important - is

exemplified by line 2024: on discovery of an error in a check digit, the

parameter EM$ is set to a suitable value, and the subroutine called. In

other parts of the program the identical subroutine is called, but EM$ takes

other literal values: "IN SALES CODE", "- NOT ON FILE", and so forth.

iii. This four line routine prints an error message in reverse on the bottom

of the screen, and erases it after about 2 seconds. Then, in line 12030, it

calls another subroutine, which in fact moves the cursor to the position on

the screen which the operator is using for input. The erroneous string, of

length JL, is erased ready for reinput.

iv. This is a simple example of the use of subroutines with multiple entry

points. GOSUB 510 beeps the speaker; GOSUB 500 beeps it twice.

Even when code is used by only one part of a program there are many
situations in which subroutines improve the total program. Here are some

examples

:

v. Programs written in a structured or semi-structured fashion can have
controlling routines written like this:

7000 IF JS$="S" THEN GOSUB 2000: GOTO 6000: REM SKIP TO NEW ITEM

7010 IF JS$="B" THEN GOSUB 3000: GOTO 6000: REM BOOK STOCK IN

7020 IF JS$="E" THEN GOTO 4000: REM EXIT AND CLOSE DOWN

vi. Any routine which is too long for one line, or requires multiple IFs or

ofner confusing constructions, may be easier to deal with as a subroutine.

vii. Batches of similar routines may be clearer when written as subroutines,

so
-
that a block of the program collects together in one place a set of

closely related procedures.

600 PRINT "(";: GOSUB 400: PRINT ")": RETURN: REM INDIRECT JUMP

610 GOSUB 500: PRINT ",Y": RETURN: REM ZEROPAGE.Y

620 PRINT "(";: GOSUB 500: PRINT ",X) M
: RETURN: REM (ZER0PAGE,X)

Programming the PET /CBM -72- 5: BASIC keywords

Notes: [1] Linenumbers following GOSUB are dealt with by the scanning routine
which GOTO also uses. The effect is similar to the VAL function. This
incomplete validation allows ON ... GOSUB to function, since a comma has
to be treated as a marker for the end of linenumber. It permits some odd
anomalies, which also occur with GOTO. For example, all the following
commands are interpreted GOSUB 0:-

GOSUB GOSUB REM NEW GOSUB Oxxx GOSUB [PI]
and

GOSUB 1000NEXT GOSUB 50*2

are interpreted GOSUB 1000 and GOSUB 50 respectively.

[2] Timing: Since subroutines can be called from any part of the program,
it is desirable from the speed point of view to put the most commonly used
of them at the start of the program. This minimises search time for the
linenumber. (RETURN stores a pointer to the original GOSUB, so there is

no search time spent in RETURNing). Program structure of this type is

therefore common: GOTO 5000
100+ Standard subroutines
1000+ Menu options 1,2,3,
5000+ Initialisation

Menu for all options
Closedown and end

50000+ Initialisation, closedown,
and utility subroutines.

[3] Note that GOSUB 500: RETURN has the same effect as GOTO 500.

[4] See text for computed GOSUB routines.

[5] It is sometimes useful to escape from a subroutine without returning
to the previous GOSUB. See POP in this reference section for details.

[6l A program with subroutines is inevitably fragmented into discrete
chunks, so subroutines may need to be isolated from the remaining program
to prevent dropping-through and execution of subroutines at the wrong
time. For example, with subroutines starting at 60000 the line 59999 END
guards against this eventuality. Subroutines can call themselves, but an
exit mechanism of some sort is necessary. 100 GOSUB 100 for example will

generate an ?OUT OF MEMORY ERROR as the stack fills up with return
addresses. When handled correctly, this technique is called 'recursion'. It

is used widely in translaters and compilers. Incidentally, the claim that 23
levels of subroutine can be handled by CBM BASIC should be treated with
caution. All intermediate results, and loops, are pushed on the stack, so
a subroutine with loops and many parentheses may unexpectedly run out of
memory with far fewer than 23 subroutine levels.

Abbreviated entry: goS Token: $8D (141)

Operation: The stack is tested. If there is not room for 6 bytes an ?OUT OF
MEMORY ERROR message appears. (Although it only uses 5). Assuming
this test is passed, 5 bytes are pushed onto the stack: the current CHRGET
address, the current linenumber, and a GOSUB token ($8D). After this its

operation is identical to GOTO. It scans linenumbers in the same way as
GOTO, either from the start of the program or from its current position,
depending on the linenumber. Finally it carries out a BASIC warm start.

Stack use demonstration program :-

10 P=512: GOSUB 20
20 PRINT PEEK(P),: P=P-1 : IF P=500 THEN END
30 GOTO 20

ROM entry points:

BASIC 1: $C780 (51072)

Token

198 238

141) > T^
Location Liftt/mnAier

BASIC 2: $C790 (51088) BASIC 4: $B813 (47123)

Programming the PET ICBM ~73- 5: BASIC keywords

GOTO & GO TO
BASIC command

PURPOSE: Performs a jump to any line in a program. The target line is identified

by its linenumber; not, for example, by a label. In association with IF or

ON , conditional jumps may be made, selecting which part of the program

to go to.

Syntax- GO TO or GOTO followed by a linenumber. The linenumber must be in

ASCII (e g. GOTO 1234). Computed GOTOs of the type GOTO x need to

be specially written. Note that the linenumber is processed in a similar way

to the VAL function; the first character not 0-9 is deemed to be the final

character in the linenumber. Nonexistent lines cause ?UNDEF'D LINE ERROR.

Modes- Direct and program modes are both valid. Direct mode will cause a jump

to the program in memory, and, provided the target line number exists,

will execute the program from the point of entry. Since CLR isn't performed

the variables set up by the program are unaltered: this command therefore

resembles CONT and is usable after STOP, END, and the STOP key.

Examples: D$="022983": GOTO 12000

100 GET X$: IF X$="" GOTO 100

GO TO 100

The first example shows a direct mode GOTO statement. Before executing

GOTO, a variable is set; in the example, with an invalid date, to test the

operation of the program. Any line may be jumped to, including itself. The

second example is a conditional loop which, until a key is pressed, loops

indefinitely. Without the condition, line 100 will constitute an infinite loop,

from which only the stop key will rescue the program. The third example

illustrates that GO TO is an acceptable variant of GOTO.

Notes- [1] On the subject of the differences between GOTO and GO TO, see the

reference page dealing with the GO token. Generally, GOTO is better.

[2] Some apparent anomalies result from the translator's method of dealing

with the linenumber following GOTO. GOTO 1010, with I erroneously keyed

in place of the numeral 1, does not produce a syntax error message, but

is treated as GOTO 10 would be. The mistyped GOTOT10 is interpreted

GOTO And the solitary statement GOTO is taken to mean GOTO 0. By

poking a null character into a linenumber, GOTO 200 may be made to LIST

as GOTO 20 but act like GOTO 2.

[3] Timing: the time spent searching for the target linenumber is not on the

whole large. (Some BASICs, notably Sharp, are far slower). However, to cut

this time to a minimum, it's necessary to know how GOTO is processed. This

is done as follows:
.

(i) The high bytes of the line numbers (and only the high bytes) are

compared; (ii) if the target linenumber is larger by this test, lines after

the current line are scanned; (iii) if the target linenumber is not larger -

bv the test - lines from the program's start are scanned. To take a concrete

example: 25600 GOTO 0, 25600 GOTO 10000, and 25600 GOTO 25825 all have

to scan BASIC from the beginning. 25600 GOTO 25856 and 25600 GOTO43000,

on the other hand, scan forward from their current position.

[4] See the text for computed GOTO routines.

Abbreviated entry: gO (=GOTO) Token: $89 (137)

Operation: The linenumber is fetched one character at a time and converted into

a 2-byte integer. The process stops when a non-numeric character is found

.

The location of the next line is calculated. Now, in x GOTO y, the*high

byte of y is compared with the high byte of x: if larger, lines are sought

from the next line. Otherwise, they are sought from the start of BASIC. It

the line wasn't found, ?UNDEF'D LINE is branched to; otherwise, CHRGET

is pointed to the zero byte just before the target line. RTS executes it.

ROM entry points :BASIC1:$C79D (51101) BASIC2:$C7AD (51117) BASIC4:$B830 (47152)

Programming the PET/CBM -74- 5: BASIC keywords

HTAB & VTAB
BASIC commands unavailable directly in CBM BASIC

PURPOSE: Moves the cursor to any position on the screen, as specified by
horizontal and /or vertical parameters. This is sometimes called PRINT @.

Versions: This type of function is easy to write in CBM BASIC. All that is needed
is a print statement including [HOME] and a suitable number of cursor down
and cursor right characters . Machine code routines can also be written ; they
are faster than the BASIC equivalent, which may be important in some
circumstances. For example, a formatted screen which inputs intensively
validated information may well be improved by such a routine. It is quite
easy to find the ROM routines responsible for handling this, since the
reset routine, used at switchon, must format the screen at some stage. The
drawback of machine dependence, though, has to be taken into account,
because each ROM has its routines in a different place, set in silicon. BASIC
4 has two versions!

BASIC 1: POKE 226, H: POKE 245, V: SYS 58843: RETUHN
BASIC 2: POKE 198, H: POKE 216, V: SYS 57949: RETURN
BASIC 4

(40 COL): POKE 198, H: POKE 216, V: SYS 57471: RETURN
BASIC 4

(80 COL): POKE 226, H: POKE 224, V: SYS 57439: RETURN

Note that the 8032 is more difficult to deal with because it has several
types of screen editing. This version resets the top left corner of the
scrolling window.

Demonstration: A demonstration program in BASIC follows. Line 1000 holds the
machine-code subroutine, and corresponds to BASIC 2, but any of the
routines listed previously can be substituted for it.

5 REM
6 REM **** RUN 10 USES SYS COMMAND TO POSITION CURSOR AT H,V ****
7 REM
8 REM **** RUN 20 PRINTS CURSOR CONTROL CHARACTERS ****
9 REM NOTE THE DIFFERENCE IN SPEED
10 FOR V=0 TO 24: FOR H=0 TO 39: GOSUB 1000: PRINT "[shift St]";:

NEXT H,V: END
20 FOR V=0 TO 24: FOR H=0 TO 39: GOSUB 1001: PRINT "[shift &]";:

NEXT H,V: END
1000 POKE 198, H: POKE 216, V: SYS 57949: RETURN
1001 PRINT "[HOME]";: FOR J=0 TO H: PRINT "[RIGHT]";: NEXT:

FOR J=0 TO V: PRINT "[DOWN]";: NEXT: RETURN

Programming the PET /CBM -75- 5: BASIC keywords

IF

BASIC conditional command

PURPOSE: Allows (i) Conditional branch to any program line,

(ii) Conditional execution of statements following IF.

Syntax: IF arithmetic or logical expression THEN linenumber or statement(s)

GOTO linenumber

THEN may be followed by a null statement: IF X=l THEN: is valid.

On execution, if the expression evaluates to it is treated as 'false' and no

further part of the line is executed; if it evaluates to any non-zero value

it is regarded as 'true' . This fact enables the conditional expression to be

arithmetic, not just logical with alternatives and -1. See also note [1].

Modes: Direct and program modes are both valid.

Examples: FOR N=l TO 1000 STEP .01: GOSUB 100: IF VAL(N$)=N THEN NEXT

This direct mode example is being used to test a rounding routine; if the

condition fails, the loop ends and PRINT N displays N's final value.

500 IF P=60 THEN P=0: GOSUB 30000: GOTO 600: REM PAGE THROW

700 IF X=l THEN IF A=4 AND B=9 THEN PRINT"*"; : REM SPECIAL VALUES

800 IF 7+6 GOTO 900

1000 IF 8 AND 7 THEN THIS IS NEVER REACHED!

1200 IF YN$="Y" THEN: $D,1 : REM BASIC WEDGE IN USE

This batch of examples illustrates most points relevant to IF. Firstly, its use

in conditional execution of BASIC: if 60 lines have been printed, the counter

is reset to 0, a subroutine to call form feed and print a new heading is run,

and the processing resumed . None of this is done if the condition was not

true. Line 700 contains a composite IF; this is entirely valid since THEN may

be followed by any statement. Note that 'IF X=l AND A=4 AND B=9 THEN' is

exactly identical in its effect (but slightly slower). Line 800 causes an

unconditional branch to 900. This is because 7+6 evaluates to 13, which is

non zero. Line 1000 is the opposite; anything after THEN cannot be reached

by BASIC running normally. Finally, line 1200 demonstrates a point which is

sometimes important with wedges in BASIC which add extra commands. Here,

'$' signals a special instruction (disk directory with Compu /think disks) which

if intercepted by the wedge will carry out the command , even when the IF

condition is false. The colon, starting a new statement, prevents this.

Notes: [1] IF .. GOTOn is of course redundant; it can always be replaced by Ii ..

THEN n. However, it is slightly faster. Note that IF . . GO TOn is not valid,

while IF .. THEN GO TOn is! IF .. GOSUB n is not allowed, and must have

THEN. On the subject of syntax , note finally that GOTO doesn't validate the

linenumber fully, so that IF A=B GOTO 10XX will branch to line 10.

[2] IF X THEN... is the same as IF X<>0 THEN ... and vice versa.

[3] Rather strangely, a condition may include strings, which on 'evaluation'

may not use the floating point accumulator, so that the previous calculation

determines the 'truth' of the condition. Q$="":IF x$ THEN: is false, while

Q$=CHR$(I) :IF X$ THEN: is true.

[4] Some BASICs, notably IBM's 8100 series, allow only IF .. GOTO, resulting

in exceptionally spaghettied programs. Apple integer BASIC skips to the next

statement, not line, after a false condition.

Abbreviated entry: None Token: $8B (139)

Operation: This short routine evaluates the expression after IF, then checks for

GOTO or THEN. If one of these is found, the exponent of accumulator #1 is

examined. If zero, i.e. 'false', the next line is jumped to, using a routine in

conmon with REM. If non- zero, i.e. 'true', the next character is checked; if

it's a numeral, GOTO is called; if not, the next statement is executed.

ROM entry points :BASIC1:$C820 (51232) BASIC2:$C830 (51248) BASIC4:$B8B3 (47283)

Programming the PET/CBM -76- 5: BASIC keywords

INPUT
BASIC input command

PURPOSE: Provides users with an easily-programmed method to key in data from
the keyboard to the CBM. INPUT accepts data from the keyboard and
echoes it as output to the screen, unless the input/output devices have
been changed, for example by CMD. INPUT# is an alternative form which
is designed for input from tape or disk file storage. Input is terminated by
the 'Return' key or by the ASCII character for 'Return'.

Syntax: The INPUT statement itself has this syntax :-

INPUT [string literal within quotes;] var.name [,var. name] [,var. name] ..

.

When RUN, this statement prints a question mark followed by a flashing cursor
to prompt the user. The optional string is printed before the question mark
onto the screen. Thus, INPUT X$ and INPUT "CODE";X$ are each valid. The
first prints ? with the cursor, the second CODE? and the cursor. Subject to
the rules which follow, the variable X$ will be assigned, on Return, the data
typed after the cursor. Note that the optional string must be within quotes
and is not a string expression. If X$="NAME", nevertheless INPUT X$;N$
generates ?SYNTAX ERROR, presumably to avoid confusion with INPUT X$.

The keyed-in data is processed according to these rules:-
(i) Alphanumerics are dealt with straightforwardly, but many characters are
not, notably "

, : Return and the screen editing characters. The quotes mark
" sets a flag causing subsequent input to appear as a literal, so that Home and
Delete for example appear as they would within a literal, without homing the
cursor or deleting the previous entry. Other special characters, such as ,

and : may be incorporated into string input in this way. Carriage return,
however, always terminates INPUT and turns off quotes mode. An opening
quote, with or without a later closing quote, is therefore a valid entry in
response to INPUT'S prompt; but quotes in the middle of a string entry gener-
ate ?FILE DATA ERROR (or ?BAD DATA ERROR in BASIC 1). INPUT shares
routines with GET and DATA and, like them, relies on the comma as a separ-
ator and the colon to mark the end of a statement. These are treated as
separators with INPUT. ?EXTRA IGNORED will result if the separators seem
to indicate that there are more strings of input than corresponding variables
to assign them. The double prompt ?? is printed when INPUT has had fewer
strings of input than it has variables. Leading spaces are ignored.

(ii) When the input doesn't match the type of variable to which it is assigned,
?REDO FROM START appears and the input is repeated. There are minor
exceptions to this. An integer variable may be assigned a non-integer value
without an error message, and a real variable may be assigned data in scientific
format

.

(iii) INPUT takes in all the characters following the prompt to the end of the
line. Consequently it is difficult to use INPUT with a screen neatly boxed
with graphics. (It can be done by editing the resulting graphics input out of
the string). And the total length of the string is limited by the screen width
to 39 or 79 characters, when a prompting string isn't used.

(iv) Finally, CBM's notorious input crash, which alone is sufficient to make an
unmodified INPUT unsuitable for many applications. If 'Return' only is pressed
in response to INPUT'S ? BASIC prints 'READY.' and stops. It can be
revived by CONT without loss of data. Actually, this is true only if no file

appears to be open to INPUT, and like SPC(and TAB(, this feature can be
changed by POKEs. See note [2]. Note: VIC has no input crash!

Mode: Program mode only. Direct mode generates ?ILLEGAL DIRECT ERROR.
Examples: 100 INPUT "NAME";N$

110 INPUT "ADDRESS LINE 1 (NO COMMAS !)"; Al$
120 INPUT "ADDRESS LINE 2 (NO COMMAS!)" ;A2$

These are typical elementary input statements, easy to program but subject to
serious drawbacks. 'Home' will home the cursor; 'Return' will crash the pro-
gram; Shift-Stop will attempt to load a new program; the screen can be filled

Programming the PET/CBM -77- 5: BASIC keywords

with unwanted characters; commas or colons cause some of the string to be

lost. See the notes for cures for these problems.

1000 INPUT AA$,BB,C% :REM INPUTS MUST MATCH

2000 FOR J=0 TO 10: INPUT X$(J): NEXT :REM INPUT 10 STRINGS ...

2010 FOR J=0 TO 10: PRINT X$(J) : NEXT :REM ... AND CHECK THEM

Line 1000 expects three inputs. This is a valid response:

HELLO!, -123. 45, 7.1

After Return, AA$="HELLO! ", BB=-123.45, and C%=7. Integer assignments

follow the normal rules as to range and rounding. -1.2 would be assigned -2.

This response will produce ?EXTRA IGNORED :-

HELLO, 12, -123.45,

7

And this will produce ?REDO FROM START, because of the type mismatch :-

ABCDEF,19*12,4
One or two entries only will be accepted, if they're valid, and the double

prompt of ?? will be printed on the next line, awaiting complete input.

Lines 2000-2010 show how array variables may be used for input too.

Further examples showing use of (i) String literal, (ii) Keyboard buffer.

The following examples show some of the ways in which INPUT can be modified.

The first four use screen editing characters to produce interesting variations

on INPUT, including positioning on the screen, underlining, and reversed

text. The fifth is a typical 'crashproofing' routine; sometimes * is used in

place of upper-case (i.e. shifted) space. The sixth shows how characters may

be inserted into the keyboard buffer, which is equivalent to keyboard entry

after the prompt and cursor are printed. They offer the possibility of erasing

the prompt and - as here - automatically entering " at the start of the input

in order to force acceptance of strings with commas, etc. Where constructions

like "LDA $8000, X" are common, this is quite useful. The extra " turns off

quotes mode, so the screen editing facilities will operate.

10 INPUT "[CLR] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [RIGHT] [RIGHT]

[RIGHT] [RIGHT] [RIGHT] [RIGHT] [RIGHT]";X$: PRINT X$

20 INPUT "HELLO[DOWN] [DOWN] [DOWN] [DOWN] [RVS]";X$: PRINT X$

30 INPUT "[DOWN] [DOWN] TEXT [UP] [LEFT] [LEFT] [LEFT] [LEFT]";X$: PRINT X$

40 INPUT " [LEFT] [LEFT] [LEFT] [LEFT] [LEFT] [LEFT] [LEFT] [LEFT]

[LEFT][LEFT][LEFT]";X$: PRINT X$

50 INPUT "CRASHPROOF NAME[USPC] [USPC] [USPC] [LEFT] [LEFT] [LEFT]"; X$:

PRINT X$

60 POKE 158,3: POKE 623,34: POKE 624,34: POKE 625,20: REM 3 ITEMS IN

KEYBOARD QUEUE, WHICH ARE 2 QUOTES AND A DELETE. (BASIC1: 525 & 527ff)

70 INPUT X$: PRINT X$: REM X$ MAY INCLUDE , AND/OR :.

Notes : [1] See Chapter 4 for methods of foolproofing input using GET . Because

INPUT can occur with screen scroll, if for instance many wrong entries cause

the bottom of the screen to be reached, it's worth checking the result of an

overflow: use, say: 10 INPUT " VERY LONG MESSAGE ";X$/15 PRINT X$/

20 GOTO 10. BASIC 4 is different from BASIC<4.

[2] When CMD is in force, INPUT "MESSAGE" ;M$ will print the string to the

device, so that MESSAGE may appear on a printer. ?FILE DATA ERROR means

that INPUT is attempting to get data from a listener, such as a printer. When

a file is open like this, the 'Return' crash won't happen: OPEN 1, 0: INPUT #1,X$
for example inputs from a file to the keyboard. POKEing the device number

location with a pseudo-file number has similar effects: try POKE 3,1 with

BASIC 1, POKE 14,1 with BASIC 2, or POKE 16,1 with BASIC 4.

[3] Direct mode is prohibited because the buffer which holds the direct-mode

commands is the same as that in which input characters are stored. You can

however try direct mode: use SYS 51956 X$, SYS 51925 X$, or SYS48080 X$
with BASIC 1/2/4. This will attempt to assign X$ to your input. It misses the

test for direct mode. SYS of the ROM addresses below works exactly like

INPUT, except that it will not print a string; try e.g. SYS48062X$,Y%,Z.

Abbreviated entry: None Token: $85 (133)

Operation: See INPUT

#

ROM entry points: BASIC1:$CAE0 (51936) BASIC2:$CAC1 (51905) BASIC4:$BBBE (48062)

Programming the PET/CBM -78- 5: BASIC keywords

INPUT*
BASIC input command

PURPOSE: Provides users with an easy method to read back data from a storage
device, normally tape or disk. The input which is read by the CBM is
processed in the same way as INPUT processes it; this means that data sent
to the storage device by PRINT* will be recovered intact. The format is
consistent with that of PRINT # for strings and numerals, which are written
as individual ASCII characters with carriage returns as separators. However
some characters aren't recognized by INPUT* and are ignored; these include
the screen editing characters, unless the quote character, CHR$(34), was
written at the start of the string. Note also that 80 characters is the max-
imum length of a record recoverable with INPUT #.

Syntax: INPUT#arith.expr. ,var. name [, var. name] [, var. name] ...
As with PRINT #, a space between the two parts of the keyword's name causes
the interpreter to see two tokens instead of one (except in BASIC 1!). The
arithmetic expression is the logical file number of the input file, and must
evaluate to 1-255 with rounding down. The comma and at least one subsequent
variable are also compulsory. No optional string exists, as it does with INPUT
since a prompt is out of place when reading from tape, say.

The data which is read in is processed according to these rules :-

(i) Alphanumerics are dealt with straightforwardly, and Return, when it is
read, i.e. as CHR$(13) or $0D, terminates a record, in exactly the same way
that the Return key sends data from the keyboard. In an analogous manner
commas or colons, if they were not preceded by a quote mark, are treated as
separators, and the subdivisions of data which they separate are all assigned
their own variables. There is no equivalent to ?EXTRA IGNORED, but none-
theless data will be lost if an INPUT* statement takes in data to the buffer
which is subdivided into more parts than there are variables; this can only
happen if commas and/or colons are used carelessly, e.g. with print#i,chr$(44)
or PRINT#8,CHR$(58).

(ii) Most other errors cause the program to crash with ?FILE DATA ERROR or
?BAD DATA ERROR in BASIC 1. For example, this occurs with INPUT#1,X$
when X$=CHR$(32), because leading spaces are ignored. Similarly, when the
data doesn't match its assigned variable, this error occurs.

(iii) The maximum string which may be input is constrained by the input buffer
to 79 bytes (89 in VIC). BASIC 4 signals this condition with 7STRING TOO
LONG ERROR and crashes the program; earlier BASICs hang.

Mode: Program mode only. Direct mode generates ?ILLEGAL DIRECT ERROR.
Examples: 10 OPEN 10,2,1, "TEN NAMES": REM OPEN TAPE FILE FOR WRITING TO CASS. #2

20 FOR J=l TO 10: INPUT X$: PRINT#10,X$: NEXT: REM WRITE TAPE FILE
30 CLOSE 10: REM CLOSE FILE, I.E. WRITE FINAL BUFFER OF DATA.
100 OPEN 5,2,0, "TEN NAMES": FOR J=l TO 10: INPUT#5,X$: PRINT X$: NEXT
110 CLOSE 5: REM INPUT* HAS EFFECT LIKE PRINT*, SO CLOSE IS NO PROBLEM

The above example shows a simple write-then-readback program, omitting tape
rewind details and ST checks on INPUT*. The logical file numbers are arbit-
rary and different from each other to make things clearer. INPUT* is far less
trouble than INPUT to use, because its data is already formatted in a known
way.

10 OPEN 1,0: REM OPEN FILE #1 TO THE KEYBOARD
20 OPEN 3,3: REM OPEN FILE #3 TO THE SCREEN
30 INPUT#1,X$:REM INPUT FROM KEYBOARD IS SIMILAR, NOT IDENTICAL, TO INPUT
40 PRINT#3,X$:REM PRINT TO SCREEN FILE
50 GOTO 30

This next example shows how files can be opened to the keyboard and the
screen. Because an input file (logical file #1) is open, the input crash on
pressing 'Return' alone doesn't happen. A screen file is useful sometimes if
CMD is being used; PRINT #3 sends output to the screen only. Input from the
screen is similar to normal input, but the string may wrap round to the next

Programming the PET/CBM -79- 5: BASIC keywords

line, depending on the entry in the screen line table, with 40-column screens.

The string length may be 39 or 79. If this interests you, replace line 30 with

30 INPUT#3,X$ and add 45 PRINT "LENGTH="; LEN(X$)

.

5 SCRATCH "SEQ FILE",D1: DOPEN#2,"SEQ FILE",D1,W: REM OPEN FOR WRITE

10 FOR J=l TO 10: X$="RECORD NUMBER" + STR$(J) : REM MAKE UP DATA

15 PRINT#2,X$: PRINT DS$ ST: REM WRITE DISK + SHOW BOTH STATUSES

20 NEXT: DCLOSE : REM 10 RECORDS WRITTEN

1000 DOPEN#l,"SEQ FILE",D1 : REM OPEN SAME FILE ON DRIVE 1 FOR READ

1005 FOR J=l TO 10: INPUT#1,X$:REM READ BACK WITH INPUT* COMMAND

1010 PRINT DS$ ST; X$: REM PRINT RESULT + STATUSES

1015 NEXT: DCLOSE

This pair of programs is the BASIC 4 disk equivalent of the earlier tape pro-

gram. Again, ten records are written with PRINT* and read back with INPUT*.

Notes: [1] How INPUT and INPUT* work . The buffer used by INPUT in CBM comp-

uters starts at $0200, immediately above the stack, and extends 81 bytes to

$0250. This short routine enables you to see the buffer:

FOR J=511 TO 592: PRINT CHR$(PEEK(J)) ; : NEXT*
and typically there will be many fragments of lines, new and short lines over-

laying earlier long ones. Each input chunk is terminated by a zero byte, which

the little routine above won't show. When INPUT or INPUT* is running, each

successive byte is put into this buffer. Eventually, carriage return is input,

whereupon a zero terminating byte is put in and the buffer parsed by INPUT
for commas and colons separating the buffer: each chunk is assigned a variable

and numerical variables are processed in accumulator #1 before being stored

further up in RAM. The 81st byte therefore may contain a zero. BASICS
prior to 4 could write into RAM above $0250. This region holds the three

tables of logical files, devices and secondary addresses, so overwriting them

(unless by coincidence the data were identical) removed the record of live files

and so crashed the program. Location $1FF holds a comma: this is to ease the

task of the parser by making each chunk start in the same way, as BASIC is

started with a zero 'end-of-line' byte. Taking an example from INPUT, we may
have something like this:*

$01FF $0200 -01 -02 -03 -04 -05 -06 -07 -08 -09 -0A -0B -0C -0D -0E -OF -10

)
H E L L » 1 2 3 4 5 »

7 1 null

From which AA$, BB and C% are assigned.

[2] Disk files may sometimes have data stored with a leading linefeed char-

acter; this is typical of pre-BASIC 4 files written without the precautionary

PRINT#N,X$;CHR$(13); but with PRINT#N,X$: which sends Carriage return

with the line feed. This is not a great problem; if records sometimes print

a line below their expected place, put in a test-with-correction like this:

1005 IF ASC(X$)=10 THEN X$=MID$(X$, 2)

Line-feed is ASCII 10; when found, X$ is stripped of its initial.

Abbreviated entry: iN Token: $84 (132)

Operation : This is similar to INPUT , except that the input device as specified by
logical file number is first set, then unset, on either side of INPUT. The actual

INPUT is complex: a flag, $0B 2 holds to signify INPUT (#$98 means READ,
#$40 GET); another flag, $03 2 holds the quotes mode on-off byte; two more

flags, $07 and $08 2 are used in type matching, holding respectively #$FF or #0

for string /numeral, and #$80 or #0 for integer /real. With BIT and branch,

the routines are elaborately negotiated.

ROM entry points:

BASIC 1: $CAC6 (51910)

BASIC 2: $CAA7 (51879)

BASIC 4: $BBA4 (48036) __^_ -

BASIC l's buffer extends from $0A-$59. $5A is used for working storage,

the initial comma. So J=9 TO 89 is the correct PEEK loop with BASIC 1.

2 In BASIC 1, these are, in order, $62,$5A,$5E, and $5F.

$09 holds

5: BASIC keywordsProgramming the PET/CBM -80-

INSTRING$
BASIC string function unavailable directly in CBM BASIC

PURPOSE: This version of INSTRINC$ inserts one string within another, without,
however, overrunning the end of the reipient string. It is modified from a
routine by W Maclean, quoted by Jim Butterfield in CPUCN v2#8, who says
that this type of routine is useful for 'manipulating data records in disk
files and setting up formatted printer or screen outputs'. The routine is

relocatable; location holds length, ($01) pointer, to the string, so USR
(if any) will have to be repoked. The demonstration program sets up a
few adjacent strings in memory; this is a check to ensure that overlap from
INSTRING$ doesn't corrupt the next string.

2; see appendices for other ROMs.
Check for comma. Error message if absent.
Input expression. Error message if absent.
Check it's a string. Error massage if not.
Loop inputs LEN of string into location $00,

and stores pointer to the start of string
into indirect location ($01j.

Check for comma. Error message if absent.
Input expression. Error message if absent.
Check it's a string. Error message if not.
Loop inputs LEN of second string into loca-

tion $88, and stores pointer to start of
second string in indirect location ($89).
[This is in the RND work area]

.

Check for comma. Error message if absent.
Input expression. Error message if absent.
Check it's numeric. Error message if not.
Convert Fl Pt Acc#l into integer.
Check that the numeric value does not exceed
the end of the stting into which it is to
be inserted. Exit if it is.

Increment the second string pointer by the
low byte of the numeric value, so the
pointer points inside the string.

Load a byte from the first string ...

... & put it into the second.
Increment the position counter Y.
Now check that the new value of Y doesn't

point outside the second string; if it
does, some other string will be corrupted.

Machine code: This version is BASK
1 826 20 F8 CD $033A JSR $CDF8
2 829 20 9F CC $033D JSR $CC9F
3 832 20 90 CC $0340 JSR $CC90
4 835 A0 02 $0343 LDY #$02
5 837 Bl 44 $0345 LDA ($44),Y
6 839 99 00 00 $0347 STA $0000,

Y

7 842 88 $034A DEY
8 843 10 F8 $034B BPL $0345
9 845 20 F8 CD $034D JSR $CDF8
10 848 20 9F CC $0350 JSR $CC9F
11 851 20 90 CC $0353 JSR $CC90
12 854 A0 02 $0356 LDY #$02
13 856 Bl 44 $0358 LDA ($44),

Y

14 858 99 88 00 $035A STA $0088,

Y

15 861 88 $035D DEY
16 862 10 F8 $035E BPL $0358
17 864 20 F8 CD $0360 JSR $CDF8
18 867 20 9F CC $0363 JSR $CC9F
19 870 20 8E CC $0366 JSR $CC8E
20 873 20 D2 D6 $0369 JSR $D6D2
21 876 18 $036C CLC
22 877 A5 11 $036D LDA $11
23 879 C5 88 $036F CMP $88
24 881 B0 IB $0371 BCS $038E
25 883 65 89 $0373 ADC $89
26 885 85 89 $0375 STA $89
27 887 90 02 $0377 BCC $037B
28 889 E6 8A $0379 INC $8A
29 891 A0 00 $037B LDY #$00
30 893 Bl 01 $037D LDA ($01),

Y

31 895 91 89 $037F STA ($89),

Y

32 897 C8 $0381 INY
33 898 98 $0382 TYA
34 899 18 $0383 CLC
35 900 65 11 $0384 ADC $11
36 902 C5 88 $0386 CMP $88
37 904 B0 04 $0388 BCS $038E
38 906 C4 00 $038A CPY $00
39 908 DO EF $038C BNE $037D
40 910 60 $038E RTS

B$="BBBBBB": Y$="ABCDE": C$="CC": D$="DDDDDDDDDD"
B$+"": Y$=Y$+"": C$=C$+"": D$=D$+"": REM IN HIMEM

.„ „Y$ „ „c$ „ „D$. REM DISPLAY VALUES

Check whether we've now moved every byte
of the first string - if so, exit.

9UJOU K'l'S

BASIC demonstration:

INPUT "NUMBER (N)"; N
1 A$="AAAAAA": X$="123
2 A$=A$+"": X$=X$+"": :

3 SYS 826,X$,Y$,N: PRINT A$" "X$"
4 GO TO

(NB: line 2 by calculating the strings, leaves them unchanged, but in high RAM.
If this isn't done - try deleting line 2 to see the effect - the actual strings
in line 1 are changed, so the loop in line 4 won't work as might be expected)

The program run as it stands gives:
NUMBER (N)?
AAAAAA 123 BBBBBB 123DE CC DDDDDDDDDD
NUMBER (N)? 1

AAAAAA 123 BBBBBB A123E CC DDDDDDDDDD etc

Programming the PET/CBM -81- 5: BASIC keywords

INT
BASIC arithmetic function

PURPOSE: Converts the argument into the nearest integer which is less than

(or equal to) the argument.

Syntax: INT (arithmetic expression). The argument must be a valid arithmetic

expression; the limit is not the range for integers, but is the range for

floating point numbers, approximately +1.7 E 38. For this reason the

statement L=INT(1234567.8) is valid. However, L%=INT(1234567.8) generates

an error, since the result is too large for an integer variable.

Modes: Direct and program modes are both valid.

Examples: 100 PRINT INT(X+.5) : REM ROUNDS TO NEAREST WHOLE NUMBER (+ve and -ve)

PRINT INT (1234567.8) : REM 1234567

PRINT INT (-123.4) : REM -124

1000 PR= INT(.01+ P*(1+MU/100)): REM PRICE (PENNIES) AND MARKUP

50 IF DO INT(D) GOTO 40 : REM GO BACK FOR RE- INPUT

Most rounding routines in BASIC use INT. The first and fourth examples

illustrate simple rounding; for commercial use such routines must be more
elaborate, so that 1 appears as 1.00 and so on. The principle on which

the first example relies is that the entire range from X.000 to X.999 is

converted to X by INT. Obviously to round to the nearest number, and
not just drop the decimal portion , .5 must be added, shifting the range up
to X.500 to X+1.499, so the lower half are rounded down by INT, but the

upper half of the range are rounded up. Line 1000 is a similar example,

where P is a price and MU a markup percentage. The value PR is rounded
down. However, there is a small item (.01) also included. This is often

useful with INT , because this function occasionally will round down a value

when this appears unnecessary. In the illustration, P may be 1000 and MU
25; if the outcome of the calculation is held in floating point as 1249.9999,

PR takes the 'wrong' value of 1249, and this may be noticeable.

The second and third examples are straightforward examples; the fifth is

a simple test for integer input.

Notes: [1] Integer expressions in brackets may need to be kept there. Zeller's

congruence for finding the weekday uses iNT(Y/4) + lNT(C/4) + OTHERS

which is easily 'simplified' into the incorrect INT(Y/4 + C/4) + OTHERS.

[2] 'INT' is the same function as 'ENTIER' in ALGOL. 'FIX' is an alter-

native which rounds negative numbers up_. This is equivalent to

SGN(X)*INT(ABS(X)), which separates out the sign.

Abbreviated entry : None

Token: $B5 (181)

Operation: The argumented is evaluated and validated and put into floating-point

accumulator #1. The function's objective is to leave the accumulator with

the rounded down equivalent of the same number, again in floating-point

form. It accomplishes this by converting the entire number into its 4-byte

integer equivalent, then converting this back into floating-point format.

There is also a test on entry of the exponent; if this exceeds or equals

160 no conversion is carried out. The number (>= 251) is too large to have
any decimals.

ROM entry points:

BASIC 1: $DB9E (56222)

BASIC 2: $DBD8 (56280)

BASIC 4: $CE02 (52738)

Programming the PET/CBM -82- 5: BASIC keywords

LEFTS
BASIC string function

PURPOSE: Extracts a substring from a string, consisting of the leftmost char-
acters from the string. This function, in association with MID$ and RIGHTS
and the string concatenation operator +, is used in text and string
processing in BASIC.

Syntax: LEFT$(string expression, arithmetic expression). The string expression
must be valid, i.e. made up from string functions and/or literals and/or
string variables only. Its length cannot exceed 255. The maximum value
of the arithmetic expression is 255. Its minimum depends on the ROM:
BASIC<4 will not accept a value of zero, corresponding to a null character,
but BASIC 4 will.

Modes: Direct and program modes are both valid.

Examples: PRINT LEFT$("HELL0"+"THERE!",3) : REM RESULT IS HEL
PRINT LEFT$("HELL0"+"THERE!",50): REM RESULT IS HELLO THERE!

10 PRINT LEFT$(X$+" ",10);: REM A FORM OF TAB(
3010 PRINT LEFT$(STR$(L)+" ",10);: REM ANOTHER TAB(...

3010 PRINT L; LEFT$(SP$, 10-LEN(STR$(L))) ; : REM ... AND ANOTHER!

LEFT$ is closely related to RIGHTS. Further examples of string manipul-
ations are given there. These five lines of code demonstrate some rather
basic points. The first two direct mode statements show how the function
works; its parameter is simply applied to the string, which may be any
expression, and measures off a length from it. Rather than print an error
message if the original string is not long enough (see the second example)
the length parameter is not allowed to exceed the length of the string.

The final three program lines demonstrate methods of formatting strings
for output to a printer; this can be a problem when TAB(doesn't work.
Line 10 shows how X$, a string assumed shorter than 10, can be printed
and also leave the output pointer waiting at a constant position in spite of

differences in individual X$s. The first line 3010 uses exactly the same
construction, but applied to a number. The alternative line 3010 achieves
the same effect, with SP$ defined to be a string of spaces, but it is a less

elegant construction.

Notes: [1] This diagram should make the operation of this function clear:

x$='

String position:

PRINT LEFT$(X$,6) prints ORIGIN. These are the six leftmost characters.
PRINT LEFT$(X$,3)+"GAMI" prints ORIGAMI.

[2] LEFT$(X$,N) can be replaced by MID$(X$, 1,N). With BASIC 4 ROMs
this has no effect, but earlier BASICs reject LEFT$(X$,N) when N is zero.
The MID$ version is preferable therefore when older ROMs are used and
when a null character may be legitimately returned.

Abbreviated entry: leF (includes $) Token: $C8 (200)

Operation: The pointer to the string, and its parameter, say N in LEFT$(X$,N),
are recovered from the stack, where they are put by normal string function
processing. The length of the string is found - the pointer points at it -

and compared with N; the smaller of the two is taken. #0 is pushed onto
the stack, followed by the smaller parameter (in the process, X, Y, and A
are swapped around in a byte-saving but confusing way). Finally, the
routine which LEFT$, RIGHTS and MID$ all share is dropped into, and the
new string is set up for printing or assignment.

ROM entry points:

BASIC 1: $D5D8 (54744)
BASIC 2: $D5DA (54746)

BASIC 4: $C836 (51254)

R I G I N A L sp S T R I N G
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Programming the PET/CBM -83- 5: BASIC keywords

LEN
BASIC arithmetic function

PURPOSE: Determines the length of a string or string expression.

Syntax: LEN(string expression). This is an arithmetic function of a string argument

.

The string expression must be valid; it can consist only of literals, string

variables, and string functions concatenated by +. Its maximum permissible

length is 255 characters. If spaces are included when using BASIOl, for

instance LE N("D"), an array LE() will be assumed, and a ?TYPE MISMATCH
ERROR generated whenever the code is encountered.

Modes: Direct and program modes are both valid.

Examples: PRINT LENC'HELLO") : REM RESULT IS 5

X$=" SAILOR": PRINT LEN ("HELL0"+X$)+3 : REM RESULT IS 15

330 FOR J=l TO 10

340 PRINT SPC(19 - LEN(MSG$(J))/2) ; MSG$(J)

350 NEXT

IF LEN(IN$)OL THEN PRINT "*** MUST BE" L "DIGITS"

250 X$=" *&#" : REM LIST OF SPECIAL CODES TO BE CHECKED . .

.

260 FOR J=l TO LEN(X$) : REM NOTE THAT THE LIST IN LINE 250 CAN BE

270 IF G$=MID$(X$,J,1) THEN RETURN: REM CHANGED; THIS ROUTINE WILL

280 NEXT: PRINT "NOT RECOGNISED": REM STILL WORK CORRECTLY.

The first two examples in our illustrative batch are straightforward direct

mode arithmetic calculations. The first simply measures the number of char-

acters in the string; the answer is obviously five. The second is more complex

and shows how LEN, being an arithmetic function, can be used as part of an

arithmetic expression. Again the answer is obvious- the combined string

"HELLO SAILOR" is 12 characters long; 12+3 is 15.

The short routine in lines 330- 350 is a formatting routine, which prints the

ten strings held as MS$(1) to MS$(9) one after the other, centred on the

screen (change the parameter to 39 for an 80-column screen). It does this

by printing sufficient spaces to print half the string before the midpoint of

the screenline. The other half of the line is therefore printed symmetrically

.

The next line of code is a simplified fragment of an input validating routine,

which tests the length of an input string against its correct value.

Finally, lines 250 & 260 show between them how LEN can assist in soft-coding

and make a program more easily modifiable. Had the loop variable in line 260

been 4, program maintenance would have been a little harder.

Notes: [1] LEN cannot return a value outside the range 0-255 (see diagram). The
length isn't actually measured; only the parameter is taken, and anomalies

can result from this, e.g. when CHR$(0)s are concatenated onto a string,

or the parameters are altered by direct poking.

Abbreviated entry: None Token: $C3 (195)

Operation: The ROM has only one subroutine followed by a jump. The subroutine

(which is shared by ASC and VAL) sets pointers to the string and also loads

its length into both A and Y . This part has been slightly rewritten in BASIC
4. The mode flag is changed from string to numeric; this is necessary to

avoid ?TYPE MISMATCH ERRORs. Now a fixed-to-floating point conversion

routine is jumped to; this one is in POS, which puts zero into A, and in

effect converts the length in Y only into floating-point.

ROM entry points:

name|name|length| pointer
I

o~y

BASIC 1: $D654 (54868)

BASIC 2: $D656 (54870)

BASIC 4: $C8B2 (51378)

Programming the PET /CBM -84- 5: BASIC keywords

LET
BASIC command

PURPOSE: Assigns a value or a string to a variable. The variable's name causes

an integer, real number, or string to be allowed by the assignment.

If the types don't match - if a variable with a string name is assigned a number
or a numeric variable assigned a string - then ?TYPE MISMATCH ERROR is

printed. Interconversions between integers and reals are allowed, subject to

the condition that integers be within the range -32768 to +32767.

Syntax : LET is never needed with CBM BASIC . If the first item in any statement is

not a token, LET is assumed by default; the parsing process looks for a name,

the '=' sign, and a matching arithmetic or string expression. With square
brackets representing the optional command, the syntax is:-

[LET] Real variable name = arithmetic or integer expression, or

[LET] Integer variable name = arithmetic or integer expression, or

[LET] String variable name = string expression.
Variables can be either simple variables (e.g. X,C%,A1$) or subscripted
variables like A(7), JK%(100),M$(Z) . If the variable doesn't yet exist, it is

set up in one of the two RAM areas used for the purpose. Subscripted
variables are put into the second of these areas, with dimension (s) set to the

default value of 10, if a prior DIM statement hasn't been used. An integer

variable is assigned the rounded-down value of the arithmetic expression on
the right of '=', but if the value is too extreme ?ILLEGAL QUANTITY ERROR
results

.

Modes: Direct and program modes are both valid.

Examples: LET B=45056: LET RQ=.005: REM SAME AS B=45056 :RQ=.005

LET Q%=Q/256: LET Al%=12.3: LET B%=10000: REM SAME AS Q%=Q/256 ETC.

LET S$="BCFGHPQSU": LET DO$="WRITE":REM OR S$="BCFGHPQSU":DO$="WRITE"

100 FOR J=l TO 50: READ X$: LET Y$(J)=X$: NEXT

142 IF JD>LEN(JD$) THEN LET JD=0

The three direct-mode examples show real, integer, and string assignments.

Note that the expressions assigned to integer variables need not themselves be

integral, but will be rounded down. Al% takes the value 12, and Q% is set equal

to the higher byte of Q, assuming Q is in the range 0-65535. The fourth line

is a composite LET statement which assigns fifty subscripted variables with

strings read from data statements. As with all the other examples, LET may be
omitted. Finally, we have a conditional assignment (taken from a decimal point

processing routine). Note [5] enlarges upon this topic.

Notes: [1] Some BASICS require LET in their assignment statements.

[2] The assignment routine can be called in machine-code, and used to set up
special user-defined variables. See VARPTR for an explicit example.

[3] Variables can be assigned and re-assigned with complete freedom. This
can cause problems: a variable may be changed or reused without its previous

use being remembered. This is particularly a hazard with subroutines, and is

the reason that tables of variables ought to be kept with large programs. There
are computer languages which possess both 'local' and 'global' variables: FOR-
TRAN and PASCAL do; COBOL doesn't. As an illustration of the type of trap

which may occur, consider this subroutine, which prints the value of L as a

hexadecimal number, so that L=52000:GOSUB 600 prints $CB20:

600 L=L/4096:FORJ=1T04:L%=L:PRINTCHR$(48+L%-(L%>9)*7) ; :L=16*(L-L%) :NEXT:

RETURN

The subroutine uses, in addition to L, variables J and L%. The values of each
of these are changed by the subroutine. Suppose a table of hexadecimal values
is wanted corresponding to 52000- 52020. This loop: FOR K=52000 TO 52020 :L=K:

GOSUB 600: NEXT will work correctly. This one: FOR L=52000 TO 52020: GOSUB600:

NEXT will not, since L is changed by the subroutine.

Programming the PET /CBM -85- 5: BASIC keywords

[4] String Assignments . String variables hold their strings in two distinct ways

and this peculiarity of Microsoft BASIC needs to be borne in mind in several

circumstances, the most common being the situation when a program is loaded

from within another program, but uses the first program's variables. (The LOAD
command of course is specially designed to permit this in CBM's BASIC).

10 REM *** DEMONSTRATION PROGRAM TO SHOW VARIABLE SHARING ***

20 A$="HELL0": B$="STRING EXPRESSION"*""

30 LOAD "2ND PROGRAM"

10 REM 2ND PROGRAM
20 PRINT "A$=" A$
30 PRINT "B$=" B$:REM ABCDEFGHIJKLMNOPQRSTUVWXYZ

These demonstration programs (written for tape - the disk version is similar)

show the problem. SAVE program 1 on tape, then SAVE "2ND PROGRAM".
Rewind and LOAD the run program 1. This puts two string variables after the

program, A$ and B$. But (see diagram) the pointers to A$ point within the area

which program 1 occupied; in fact they point to the position in memory where

"HELLO" originally started. The second program therefore prints A$ as a string

of the correct length but starting somewhere in the REM statement in line 30.

The exact position depends on the number of spaces inserted into the programs.

Variable B$, on the other hand, appears correctly as "STRING EXPRESSION".

This is so because all evaluated strings need to be processed, and have to be

stored in the next available space in RAM. (Again, see the diagram). Chapter

2 has a longer explanation of this and similar phenomena.

* ^ / ^
|
PROGRAM 1 |A$| B$| | B$ STRING

|

* ~\ / >
1 2ND PROGRAM

1 U$ B$| | B$ STRING
|

[5] When LET is not used, it becomes easy to forget the distinction between
'=* as an assignment, and '=' as a comparison operator. The statement:

IF X=0 THEN X=12345 or IF X=0 THEN LET X=12345

uses '=' in both senses; the first use does not, obviously, set X=0. When LET
is compulsory, the distinction is retained. The language 'C uses '==' as its

assignment operator. One practical effect of this occurs where dummy variables

are set up at the start of a program. This statement: A=B=C=D=E looks as if

it will initialise these five variables in the correct order; in fact, the statement

is parsed A=(B=C=D=E), and the bracketed expression evaluated. Only A is set

up, so the hoped-for speed improvement may not materialise. Rather confusingly

this isn't true of arrays. A=B=C=D(5) sets up A and D with the default dimen-

sion of 10 if it doesn't exist already.

Abbreviated entry: IE (or nothing)

Token: $88 (136)

Operation: Variables are assigned like this: first, the variable is sought in RAM and
set up if it does not yet exist. (This can be a longish operation if arrays have

to be moved to accommodate simple variables). Its location is saved. Now, the

token for '=' ($B2) is checked; if something else is present, ?SYNTAX ERROR
is printed . Two variable-type flags are saved on the stack ; these were set by
the original search routine. Location 7 holds #0 if the variable was numeric,

#FF if it was a string, and 8 holds #80 for an integer, #0 for a real variable.

Now the expression is evaluated; a general-purpose routine exists for this

purpose. The result is checked for type match with the variable name, giving

?TYPE MISMATCH ERROR when appropriate. Finally, the routine branches to

three places, to process integers, reals, and strings respectively. A special

check for TI$ is included in the string processing. All the ROMs are similar,

but BASIC 4 has extra string processing to handle its complement of pointers.

ROM entry points:

BASIC 1: $C89D (51357)

BASIC 2: $C8AD (51373)

BASIC 4: $B930 (47408)

Programming the PET ICBM -86- 5: BASIC keywords

LIST
BASIC system command

PURPOSE: Displays part or all of a BASIC program in memory in a readable form.

Syntax: LIST LIST linenumber LIST linenumber-linenumber
LIST - linenumber and LIST linenumber - are all accepted. LIST is

interpreted in the same way as LIST. The actual linenumbers need not exist
in the program to be specified as parameters.

Modes: Direct and program modes are both valid. In program mode, however,
this command will stop the program when the lines have been listed.

Examples: LIST :REM LISTS ENTIRE PROGRAM
LIST 1000 :REM LISTS LINE 1000 (IF IT EXISTS) ONLY
LIST 60000- :REM LISTS EVERYTHING ON AND AFTER 60000
LIST 70-200 :REM LISTS ALL LINES FROM 70 TO 200 INCLUSIVE

555 PRINT "SB INSTRUCTIONS "

560 PRINT "SSRVSB PUTS TRACE ON/OFF/ON
4390 PRINTL9R"DISK TYPE2 = "DT$: PRINT "C2HECK HISTORY"
57055 print "+@@@@@@@e@@@@@@@iee@@@@@@@@@e@ei@e@@e@e@ .

•
,•

10000 LIST 400: REM LINE 400 HOLDS DATA RELEVANT TO THE PROGRAM

The first four examples illustrate, with comments, various permutations of
this command. Often the output will appear on the screen. When this is

the case, screen scrolling may be slowed with the RVS key, or, with the
8032's revised keyboard, <— . BASIC 4 also has a pause feature, activated
by either : or *

, and cancelled by any of a number of keys.

LIST can be made to print to other peripherals. If it is directed to a
printer, typically by OPEN 4,4: CMD 4: LIST a hardcopy will be generated
on paper. It can also print to a cassette or disk file; in this case the file

contains the program as listed, with PRINT for instance stored in 5 bytes
instead of the usual tokenised single byte. The three examples of hardcopy
program listings show the output produced by a Commodore printer, which
is very similar to the way the screen displays it, although some of the dot
patterns are not identical. Non-Commodore printers don't usually have the
special characters of CBM's set, and in some cases, for instance daisywheel
printers, can't have. The two lines 4390 and 57055 are typical examples of
this sort of thing. Most of the listing is intelligible, but strings within
quotes may produce anomalies. Line 4390 includes some RVSOFF characters
which obviously are there to help with the screen appearance. Line 57055
holds a string of graphics characters which in fact are the top line of a
box used in inputting data. Although tiresome, this is not usually much of
a problem. Commodore tend to view all this as a reason for buying only
CBM printers.

The last example shows LIST in program mode. It acts rather like STOP,
except that CONT won't work, but it also lists the lines requested. There
is an application of this in the relocatable loaders for LIST (q.v.).

Notes: [1] REM, quotes, and POKEs. Shifted characters after REM, unless enclosed
in quotes, are interpreted as tokens, and printed out in their expanded
forms. See the notes under REM on this subject. REM is also capable of
holding carriage returns, form feeds, screen clears and so forth, and these
are sometimes used to improve the hardcopy appearance or provide a rudi-
mentary UNLIST. LIST does not provide a one-to-one conversion of program
information into listing. By POKEing, lines can be generated which LIST
apparently perfectly but produce 7SYNTAX ERROR on running. An appendix
on internal storage of BASIC gives details. Strings can be made to list oddly
by inserting unusual characters: For instance, DEL keys can make parts of
a listing invisible, on the screen at least: 10 ?"GO AWAY" can be edited by
moving the cursor back over the second quote, inserting eight spaces with
the insert key, putting in eight deletes (which appear as reverse T) and
erasing the final quote. This lists as 10 PRINT.

Programming the PET/CBM -87- 5: BASIC keywords

[2] LIST is upward compatible, but not downward compatible, between CBM
BASICS. BASIC 4 disk commands (CONCAT, DOPEN, etc) don't exist as

keywords, and therefore can't be listed, on earlier ROMs. And BASIC 1

cannot list GO TO (with a space) since it lacks the GO token.

[3] BASIC 1 list has a bug, corrected in later ROMs, which causes a line

of apparent length > 255 to list in an infinite loop. If a link address is

faulty for some reason - perhaps a bad load - there is no way to stop the

loop apart from switching off or using some hardware reset. Lines like:

49087 SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN

manifest an analogous bug; perhaps the end of program bytes have been

changed, so LIST continues past the end. The line of SINs is an attempt

to interpret a collection of $BFs in memory. ($BF=191, and 191 + 191*256-

49087). The line of plusses is a similar effect, but this time is caused by^

$AA in memory, probably left from switchon. ($AA=170, and 170 + 170*256-

43690).

[4] Curiosity seekers might like to note the following:

i. LIST is the shortest self-replicating program (unless, as once

suggested in a letter to 'Byte', the 'null program' is permitted),

ii. The longest listable valid line is a five digit linenumber followed

by 251 RESTORES or CATALOGS, depending on the ROM version.

[5] LIST happens to be a relatively compact command in ROM, and is quite

easy to move into RAM and modify. The TRACE routine printed elsewhere

and relocating loaders for user-defined LIST show this. Other modifications

include list routines which scroll down the screen (e.g. in 'Disk-o-Pro'),

lower-case listings for CBM printers which print a cursor down after each

new line, and routines to convert single characters into more readable

forms. Cursor control characters, pi, and tokens corresponding to those

of upgraded ROMs are likely to be useful, so that [HOME], [RVS], [PI]

and DOPEN replace nonsense characters, blanks, 7SYNTAX ERROR. Yet

another possibility is the substitution of graphics characters by their

keyboard equivalent; programs using graphics are difficult to enter from

hardcopy by the keyboard, because they are printed in a run-together

form which is painful to read. The only other programs on these

lines that I'm aware of are by Gregory Yob; see e.g. Printout, April '81,

for a routine, with comments. The article is a reprint from 'Creative Comp-

uting'.

Abbreviated entry: II

Token: $9B (155)

Operation: This routine uses many zero page locations; this is one reason why
a program can't CONT if LIST is used from within it. Another is that the

return address to BASIC is pulled from the stack . The first thing to happen

is the validation: ASCII numbers, -, or end-of-statement / end-of-line are

permitted. If the syntax was correct, the BASIC addresses are pulled by

PLA/ PLA and the linenumber limits set, defaults being $0000 and $FFFF at

the ends of the range. Now there is the start of a loop to print a new

line: it tests the STOP key, prints carriage return-line feed, checks the

current line against the upper limit, and (if it's still in the loop!) prints

the linenumber. Now a second loop starts: this one processes individual

characters . If it has a quote character ($22), it reverses its quotes

flag. If it finds a zero, it uses the link address to loop to the next line

or to exit, when the link is 0. It prints the character, unless it is a

token, and the quotes flag is off, and it isn't pi; in this case, yet another

loop is entered and the Nth token is turned into the Nth reserved word by

looping until N-l high bytes of the reserved words table have passed.

ROM entry points:

BASIC 1: $C5A8 (50600)

BASIC 2: $C5B5 (50613)

BASIC 4: $B630 (46640)

Programming the PET/CBM -88- 5: BASIC keywords

63499
63500
63501

63502
63503

63504
63505
63506
63507
63508
63509
63510
63520
63530
63540
63600
63601
63602
63603
63604
63605
63606
63608
63610
63620
63630
63640
63650
63700
63702
63704
63706
63708
63710
63712
63714
63716
63750

REM *** LISTING ROUTINE INCLUDING CURSOR CONTROL CHARACTERS ***

A=1025: B=256: GOSUB 63600: INPUT "LIST FROM,TO";F,T: INPUT "TITLE";T$

INPUT "LINES PER PAGE";LP: INPUT "MAX . CHRS . PER PRINTED LINE";CM: 0PEN4.4:

CMD4,;
PP=PP+1: IF PP>LP THEN PP=1: PRINT CHR$(12) : REM FORM FEED

L=PEEK(A+2)+B*PEEK(A+3): X=PEEK(A)+B*PEEK(A+1) : Q=0: IF X=0 OR L>T THEN

PRINT#4, ; : CL0SE4: END
IF L<F THEN A=X: GOTO 63503: REM LOOP FINDS LOWER LINE NUMBER, L

PAGE" N: REM TITLE & PAGE

REM CHARACTER C0UNT=6 SO FAR

REM LOOP TO PROCESS CHARACTERS
REM CHARACTER C0UNT=6 AGAIN

REM END OF LINE ENCOUNTERED
REM REVERSE QUOTE FLAG
REM INSIDE QUOTES
CC=CC+CC%(P-127): NEXT
REM PRINT ORDINARY CHARACTER

IF PP=1 THEN N=N+1: PRINT T$ "

PRINT RIGHT$(" **+STR$(L) , 5)" ";: CC=6:

FOR K=A+4 TO A+93: P=PEEK(K)
IF COCM-7 THEN PRINT: PRINT " ";:

IF P=0 THEN PRINT: A=X: GOTO 63502:

IF P=34 THEN Q=N0T Q:

IF Q THEN GOSUB 63700: NEXT:

IF NOT Q AND P>127 THEN PRINT T$(P-127) ;

:

PRINT CHR$(P);: CC=CC+1: NEXT:
DATA ***, END, FOR, NEXT, DATA, INPUT*, INPUT, DIM, READ, LET, GOTO, RUN, IF, RESTORE

DATA GOSUB, RETURN, REM, STOP, ON, WAIT, LOAD, SAVE, VERIFY, DEF, POKE, PRINT*, PRINT

DATA CONT, LIST, CLR.CMD, SYS, OPEN, CLOSE, GET, NEW, TAB (, TO, FN, SPC(, THEN, NOT

DATA STEP, + ,-,*,/,/-, AND, OR, >, = ,<,SGN, INT, ABS,USR,FRE,POS,SQR,RND, LOG
DATA EXP ,COS , S IN , TAN , ATN , PEEK , LEN , STR$, VAL , ASC , CHR$, LEFT$, RIGHT$, MID$

DATA GO , CONCAT , DOPEN , DCLOSE , RECORD , HEADER , COLLECT , BACKUP , COPY , APPEND

DATA DSAVE , DLOAD , CATALOG , RENAME , SCRATCH , DIRECTORY
FOR K=l TO 9E9: READ X$: IF X$<>"***" THEN NEXT: REM MAKES RELOCATABLE

DIM T$(128): FOR K=l TO 91: READ T$(K) : NEXT
DATA 3,3,4,4,6,5,3,4,3,4,3,2,7,5,6,3,4,2,4,4,4,6,3,4,6,5,4,4,3,3,3,4
DATA 5,3,3,4,2,2,4,4,3,4,1,1,1,1,1,3,2,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3
DATA 4, 3, 4, 3, 3, 4, 5,6, 4, 2, 6, 5, 6, 6, 6, 7, 6, 4, 6, 5, 5, 7, 6, 7, 9.REM KEYWORD LENGTHS

DIM CC%(128): FOR K=l TO 91: READ CC%(K) : NEXT: RETURN
IF P=17 THEN PRINT "[DOWN]";: CC=CC+6: RETURN
IF P=18 THEN PRINT "[RVS]";: CC=CC+5: RETURN
IF P=19 THEN PRINT "[HOME]";: CC=CC+6: RETURN
IF P=29 THEN PRINT "[RIGHT] "; :CC=CC+7: RETURN
IF P=145THEN PRINT "[UP]";: CC=CC+4: RETURN
IF P=146THEN PRINT "[RVOFF]" ; :CC=CC+7 : RETURN
IF P=147THEN PRINT "[CLEAR] "; :CC=CC+7 : RETURN
IF P=157THEN PRINT "[LEFT]";: CC=CC+6 : RETURN
IF P=255THEN PRINT "[PI];: CC=CC+4 : RETURN
RETURN

This list routine is written as an appendable subroutine. It searches only for

those characters within quotes, although this feature can be rewritten if this is

felt important. Any BASIC program can be listed with any ROM using this. The
comments make it, I hope, fairly self-explanatory.

RUN 63500 will ask for the linenumbers between which to list, a title, the number
of lines per page, and the maximum line length on printing. I have assumed the

printer will move to the correct postion on receiving form-feed. Some printers

don't automatically line feed when the end of line is printed; this is the rationale

behind the process of keeping count (with CC) of the characters on the line so

far. Machine-code routines run much faster than BASIC. Details of these are

presented elsewhere in this text; see section 13.4.2 in Chapter 13.

Variables: A=current link address; X=link address of next line, and if zero

denotes the end of the program. L is the current linenumber, K a loop variable,

and P the ASCII value of the character being processed, or simply the value, in

the case of a token. Q is the quotes flag; with each new line it is reset to 0.

CC is the count of characters printed on the current line; CMAX the largest

permitted number. When a line overflows to a new line, it is inset by 6 spaces

in line 63508.

Programming the PET /CBM -89- 5: BASIC keywords

LOAD
BASIC system command

PURPOSE: Enables a stored memory dump to be reloaded into RAM from external

tape or disk storage. Usually this will be a program in BASIC; it might
alternatively be machine code, a dump of the VDU screen, BASIC with its

stored variables, or any other set of contiguous RAM address contents.
Any of these less common forms of LOAD may require special techniques to

prevent the CBM attempting to process the data as if it were BASIC.

Syntax: Tape has this syntax: LOAD [string exp. [,arith.exp. [,arith. exp.]]]

.

All the parameters are optional, because there is no ambiguity with tape in

deciding on the next program. The first is the program name, the second
the device number, and the third the secondary address. The secondary
address has no effect whatever on LOAD; it is only possible to include it

because SAVE shares the same validation routine. In all ROMs these para-
meters default to the null string (of length 0) and device #1, so the first

program on cassette #1 will load.

Disk has slightly different syntax: the string expression holding the name
of the routine and its drive number is compulsory.
Note that the string expressions are processed differently: in tape loading,

only the characters specified need match those on tape, so LOAD "HE" loads
HELLO or HEX - whichever is first - but rejects HIGHRES and "".

CBM disks have a more sophisticated matching system in which every char-
acter of the name must be given, unless an asterisk is present, in which
Case any subsequent characters are permitted, as with the tape system; or
one or more question marks appear in the string; these require a character
to be present, but don't care what it is. Thus, LOAD "HE*", 8 has the same
effect as the tape command above; it searches both disk drives for a prog-
ram with a name that fits its description. LOAD "0:HE???*",8 will load
HELLO but not HEX.

Note that BASIC 4, and BASIC 2 with certain 'toolkit '-type ROMs, has the
DLOAD command (q.v.) for disk loads. Also, CBM's monitor has a load
command: .L "NAME", 01 and .L "0: NAME ",08 for tape loading from cassette
#1 and from disk drive respectively. After loading, control returns to the
monitor: these routines are not treated as BASIC but as machine code.

Modes: Direct and program modes are both valid. Their effects, however, are
different. Early CBM manuals include a flowchart which explains how they
differ

.

Direct Mode : messages are printed to the screen; when the LOAD is com-
plete the program is ready to RUN, LIST, and so on; it displaces any
previous program. Anyone using a CBM is familiar with this. The sequence
of screen messages appears like this, where square brackets indicate the
optional program name allowed by tape load syntax:

Tape: LOAD I "PROGRAM" [,1 or 2]] Disk: LOAD "0 or 1: PROGRAM",

8

PRESS PLAY ON TAPE #1 or 2 SEARCHING FOR PROGRAM
OK LOADING PROGRAM
SEARCHING [FOR PROGRAM] READY.
FOUND OTHER PROGRAM . . .

FOUND [PROGRAM]
LOADING [PROGRAM]
READY.

In each case I've assumed that the named program file does actually exist;

if not, ?FILE NOT FOUND ERROR will appear, or, with tape, the recorder
may continue right to the end of the tape (when no end-of-tape header has
been written to tape)

.

Program Mode : LOAD within a program-line prints no screen messages, leaving
the screen appearance intact, but loads and runs the new program, retaining
the values of the earlier program's variables, subject to some qualifications.
Chaining many short programs is a relic of the old 8K PETs.

Programming the PET/CBM -90- 5: BASIC keywords

Examples: LOAD ;REM LOADS FIRST PROGRAM FOUND ON TAPE #1

LOAD "CALCS" :REM SEARCHES CASSETTE #1 FOR CALCS, CALCS COPY, ...

LOAD "PROG", 2 :REM SEARCHES CASSETTE #2 FOR PROG, PROGA, PROGRAM,...

LOAD "*",8 :REM LOADS FIRST PROGRAM ON DEFAULT DRIVE
LOAD "1:*",8 :REM LOADS FIRST PROGRAM FROM DRIVE 1

LOAD "0:ASSEM*",8:REM LOADS ASSEM, ASSEMBLER,... FROM DRIVE

LOAD X$,8 :REM X$ INTERPRETED AS STRING WITH PARAMETER & NAME

LOAD "HEL?*",8 :REM LOADS HELLO, HELP, OR WHICHEVER IS FIRST

lOOOO PRINT "PLEASE WAIT...": LOAD "NEXT": REM PROGRAM LOADS "NEXT"

1235 LOAD "0: ANALYSE", 8 :REM "ANALYSE'" IS NOW LOADED AND RUN.

The above examples are, I hope, self-explanatory. With any input /output

operation, there is a chance of error; ?FILE NOT FOUND and 7DEVICE NOT
PRESENT are two 'fatal' errors which will stop BASIC. Other possible load

errors include (with disk) 7FILE TYPE MISMATCH and (with tape) ?LOAD
ERROR. Checking DS$ (disk error message) and ST respectively will show
up errors. In the case of tape, ST is tested for only one bit after a LOAD,
so a checksum error may show up in ST, but not be reported by LOAD.

Notes: [1] Loading from BASIC . This is perfectly successful provided that:

(i) The newly loaded program is not longer than the older one, and
(ii) The new program doesn't use function definitions or non-computed
strings from the old program. All of its other variables may be taken over
with unchanged values; these need to be redefined. This pair of short

programs demonstrates the use of chaining programs with LOAD; this is a

tape version: 10 REM THIS (LONGER) PROGRAM SETS VALUES, LOADS PRINT PROG.

20 A=l: B%=2:C$="3": D$="4"+"": DEF FN E(X)=5: F(0)=6
30 LOAD "NEXT PROGRAM" : REM 'END' IS AUTOMATIC

Save this first, then save, as "NEXT PROGRAM", this:

10 PRINT A,B%,C$,D$,FN E(0),F(0)
Rewind, LOAD and RUN. The earlier program sets up variables with their

values, then loads the second. This is automatically run, without resetting

the variables, in effect performing GOTO the earliest linenumber. You will

see that all the variables still exist, except C$ and FN E. See Chapter 2

for the reasons: they are in fact fairly straightforward.

[2] OLD at the start of a newly-loaded program will enable it to run correctly,

irrespective of the length of the loading program, but variables' values are lost.

[3] A cassette cannot detect if 'Record' is pressed with 'Play'. If it is, the

tape will not LOAD, but be erased as long as the machine continues.

[4] Automatic RUN routines on load can be written for both tape and disk;
see Chapter 14[. LOAD can be relocated into RAM, so that non-standard
loaders can be written. One very useful ROM routine is the load routine
which is used by both LOAD and the monitor's .L and omits all the resetting
of BASIC. In this way, machine-code or a screen dump or whatever can be
loaded from within BASIC, leaving BASIC running. Compu /think disks have
this available as an option, with syntax $L;Drive,"Name". With CBM equip-
ment the following are the relevant locations:

$D4 holds device number; $D1 holds length of string parameter; if this is

non-zero, ($DA) points to its start. (BASIC 1: $F1, SEE, and($F9)). Also
the load/verify flag must be set to 0, for load: this is $9D (BASIC 1: $020B).
Finally, call the second LOAD routine listed below. Example: In BASIC 4,

POKE 157,0: POKE 209,0: POKE 212,1: SYS 62294 Loads next program on tape #1.

Abbreviated entry: 10 Token: $93 (147)

Operation: The principal load routine has two parts, one for devices 1 and 2 (tapes),

the other for IEEE devices. The IEEE routine takes in 2 characters whidh it

presumes to be the start address; subsequent bytes are stored there and at •

subsequent locations. A separate end address is not stored. LOAD itself sets
the load flag, checks the parameters, and saves the present pointers before it

calls the load routine; afterwards it checks ST then cold or warm starts.

ROM entry points: LOAD is a 'kernel' command; its jump address is $FFD5.
BASICl: $F346 /$F369 BASIC2: $F3C2 /$F322 BASIC4: $F401 /$F356

Programming the PET/CBM -91- 5: BASIC keywords

LOG
BASIC arithmetic function

PURPOSE: Computes the logarithm to base e of any positive arithmetic expression.

It may be positive, zero, or negative. This function is the converse of EXP.

Syntax: LOG (arithmetic expression). Negative or zero arguments will cause an

7ILLEGAL QUANTITY ERROR. There is no upper limit on the argument except

that imposed by the floating-point evaluation of the expression.

Modes: Direct and program modes are both valid.

Examples: PRINT LOG (10)

PRINT LOG (2. 7182818)
PRINT LOG (X)*. 434294482
PRINT L0G(X)*1. 44269504
PRINT L0G(EXP(N))
PRINT EXP(LOG(A)+LOG(B))

REM ABOUT 2.3026
REM ABOUT 1

REM LOG OF X TO BASE 10

REM LOG OF X TO BASE 2

REM PRINTS N (POSSIBLY WITH ROUND ERROR)

REM PRINTS PRODUCT A*B

DEF FN P(A)=TEN-INT(LOG(INT(ABS(A))+(INT(ABS(A))=0))*LT)

The two first examples show straightforward calculations using this function.

A logarithm is a transformation that converts multiplicative relations (and

division) into additive relations (and subtraction). The logarithm of ratios is

constant; the logarithm of 1 is zero, since multiplying or dividing by 1 has

no effect on a number. Slide-rules have their sides marked out logarithmic-

ally. These facts are illustrated in various ways in the examples. The last-

but-one shows the transformation from a multiplication into an addition, and
the use of EXP to find the antilogarithm . Generally, this function is used in

statistical and scientific work, either analytically, because its algebraic

properties are known, or simply to perform calculations in which very large

numbers are combined to give a reasonably-sized result; this sort of thing

can happen in statistics.

The final example shows a less desirable application of LOG; the function

definition is part of a rounding routine, to be used in a business program.
The rationale is that (for example) the logarithm to base 10 of numbers from

100-999.99 starts with 2; the logarithm of 1000-9999.99 starts with 3; and so

on, suggesting that a decimal point can be positioned after taking the logar-

ithm of a computed value. Unfortunately, this routine itself is subject to a

rounding error; it is possible that 999.9999 may emerge as 100.00, a rather

large error.

Abbreviated entry: None

Token: $BC (188)

Operation: Negative and zero arguments are tested for, and if found, the routine

exits with 7ILLEGAL QUANTITY ERROR. The series evaluation routine in

ROM is used; this calculates log x to the base 2. It is a remarkably short
series, of 4 terms only. The argument goes through a series of conversions:*
it is put into the range .5-. 99999, the remaining exponent being saved on the

stack. Then 1/SQR(2) is added; the result is divided into SQR(2); the result

is subtracted from 1. These transformations turn x into:

(1.414x - l)/(1.414x + 1), and log 2x of this quantity is found. Then the

result is subtracted from .5, renormalised and multiplied by log 2 to base e.

The routine appears to be based on the standard expression for logarithms,

the series Jlog(x) = (x-l)/(x+l) + l/3*(x-l) 3 /(x+l) 3 + ...

ROM entry points:

BASIC 1: $D8BF (55487)

BASIC 2: $D8F6 (55542)

BASIC 4: $CB20 (52000)

*I believe the following details are correct. However, there may be errors.

Programming the PET/CBM -92- 5: BASIC keywords

LOMEM & HIMEM
BASIC system command unavailable directly in CBM BASIC

PURPOSE: Reserves a part only of the normal BASIC RAM for BASIC and its

variables, freeing RAM for other purposes; these include storing machine
code and storing graphics pages to be moved into screen RAM.

Versions: Some micro BASICs have this instruction (Apple, ITT; Tandy has
CLEAR n). In general no larger machines have this sort of command. So
far as I'm aware, no one has written explicit routines to perform this sort

of memory allocation with BASIC; usually, ad hoc pokes do the job. There
are several possibilities which we can distinguish with the aid of diagrams

:

This is the normal memory map of BASIC:

$0400

BASIC Vars Arrays Strings

Top of RAH (eg $8000 with 32K)

if

(i) We can lower the pointers to top of memory, creating a spare block of

RAM at the high end, where strings would otherwise be formed.

$0400

BASIC Vars Arrays Strings

Top

SPARE*

This is easily done, in either direct or program modes. The resulting block
will be completely secure from BASIC, unless the locations are poked or
corrupted

.

POKE 52,0: POKE 53,48: CLR: REM SETS TOP OF MEM=$3000 FOR BASIOl
P0KE48 , : P0KE49, 48 : P0KE50 , : P0KE51 , 48 : P0KE52 , : P0KE53 , 48

Both these versions have similar effects. Note that $30=48 in decimal, so

$3000 has high byte 48 and low byte when using decimal pokes.

(ii) We can raise the end-of-program pointers, generating space after the
BASIC program in memory. This happens automatically when one program
loads another from disk or tape. Some BASIC loaders of long machine code
routines like Extramon use this method.

$0400 Top

BASIC SPARE* Vars Arrays Strings

POKE 43, PEEK(43)+4: CLR: REM RAISES VARIABLES BY 4*256 = 1024 BYTES

This simple routine adds 4 to the high byte of the pointer to the end of
program. The program will still stop running when it encounters three null
bytes; the unusual positioning of its variables is not relevant to its running.

(iii) We can generate space before BASIC by adjusting the start of BASIC
pointers. Some proprietary software has a 'Memfix' routine which does this.

$0400 Top

SPARE* BASIC Vars Arrays Strings

This technique is trickier than the others; it cannot for example be per-
formed from within BASIC. A program modified in this way will SAVE in

a non-standard way and LOAD again from its modified starting address.

POKE 40, LO: POKE 41, HI: POKE 256*HI+LO-1,0: NEW

In direct mode only prepares memory for the keying in of BASIC, where
LO and HI (default values 1 and 4) can be user-selected).

(iv) There are other possibilities. Chapter 2 has demonstration programs
in which variables (or variables plus their program) are confined to the
screen RAM. POKE 41,128: POKE 53,131: NEW: REM DISPLAYS 768 BYTES BASIOl

(v) Corresponding locations for BASIC 1, the oldest ROMs, are listed in

the appendix of ROM and RAM addresses.

Programming the PET /CBM -93- 5: BASIC keywords

MERGE
System command unavailable directly in CBM BASIC

PURPOSE: merges two BASIC programs together into a single program.

Unlike APPEND the ranges of linenumbers within the two programs need not

be mutually exclusive. In this way, standard subroutines may be inserted

into programs without the need for keying-in.

Versions: The usual method involves storing the subroutine(s) on disk or tape as

sequential files - not as tokenised programs - then reading them back by a

routine similar to that used when adding lines from the keyboard. In this

fashion individual lines, one at a time, are merged into the initial program in

memory. Keyboard buffer poking keeps the routine working until an invalid

piece of BASIC is found. Normally, this is 'READY.', written conveniently by
LIST at the end of the sequential file. As I say, this is the usual method. It

is possible, as with APPEND, to merge entirely in memory, but here we will

look at two well-known methods, for tape and for CBM disk respectively.*

[1] Tape Merge .

Use this routine to save the subroutine on tape as a sequential file:

OPEN 1,1,1, "NAME OF SUBROUTINE": CMD 1: LIST [LOW - HIGH]

Where the square brackets denote optional linenumbers, when only a subset

of a program is wanted for future merges. The program lists onto tape.

PRINT#1: CLOSE 1

Close the file with these instructions when the cursor returns. This com-
pletes the first part of the operation; the named subroutine is stored.

Merging can be carried out now whenever you have a suitable program in

memory; the result is a fully merged program, as if the lines had been
separately typed at the keyboard. 2 Follow these instructions fairly closely

(i.e. get the pokes and cursor movements right!):-

Starting with a program in memory and the tape in cassette #1,

BASIC 1

BASIC 2

BASIC 4

POKE 3,1
POKE 14,1
POKE 16,1

OPEN 1,1,0, "NAME OF SUBROUTINE"
ditto
ditto

This will read the tape until the correct header has been found; now it

will wait for the tape to be read.

[CLEAR] and type [DOWN] [DOWN] [DOWN] then:

BASIC 1

BASIC 2

BASIC 4

POKE 611,1: POKE 525,1: POKE 527,13: PRINT" [HOME] "[RETURN]

POKE 175,1: POKE 158,1: POKE 623,13: PRINT" [HOME] "[RETURN]

ditto

The tape file is now read and merged correctly, subject to the provisos in

footnote 2. Eventually, ?SYNTAX ERROR or ?OUT OF DATA ERROR appears
depending on whether the program or the merged subroutine had the highest
linenumber. This means the merge is finished.

*The tape routine is the work of Brad Templeton and Jim Butterfield. Various versions
exist of which this is the best. Several disk versions exist; this one is based on

Mike Todd's (see IPUG newsletter, May '80). Brad Templeton's 'Power' EPROM uses an

analogous technique to construct files like Apple EXEC files, enabling stored commands

to control the machine as though from the keyboard. The merging process can be routin-

ised: see e.g. 'PET's Librarian' by D J David, kb-Microcomputing, April '80.

2 Because the input buffer is 80 characters long, lines with abbreviated input (e.g. ?

for PRINT) may not merge correctly if they LIST with overlength lines; if this happens

the relevant lines must be separated into shorter lines.

Programming the PET/CBM

[2] Disk Merge.

-94- 5: BASIC keywords

LDA #$08
STA DEVICE NO
JSR IEEE TALK
LDA $63
STA SEC ADD
JSR OUTPUT IT

LDX #$00
JSR INPUT IEEE
CMP #$0A
BEQ -7

CMP #$0D
BEQ +10
STA $0200,

X

INX
CPX #$51
BEQ ERROR
BNE -21

STA KEYBD BUFF
JSR PROC
LDA #$13
JSR $FFD2
LDA #$01
STA NO CHRS
JMP TOKENISE
JMP ERROR

SET DEVICE to 8 (I.E. DISK)
SET IEEE UP FOR TALK
3 ORjto WITH #$60
SECONDARY ADDRESS 3

OUTPUT TO IEEE
COUNTS BUFFER CHARACTERS
GET CHARACTER FROM IEEE
LINEFEED?
IF SO, IGNORE IT

CARRIAGE RETURN?
IF SO, WHOLE LINE INPUT

STORE PROGRAM LINE CHR.
INCREMENT COUNTER
80 CHARACTERS?
IF SO, LINE IS TOO LONG

INPUT NEXT CHARACTER
STORE CARRIAGE RETURN
PROCESS LINE IN BUFFER
[HOME]

OUTPUT IT TO SCREEN
1 CHAR IN KEYBOARD BUFFER

TOKENISE AND INCORPORATE LINE
LINE TOO LONG

This rather schematic machine code illustrates the procedure by which disk

merging can be made to take place. Characters are read into the buffer,
just as though keyboard entry was being used, and the line is processed
and tokenised in the same way. After each line, [HOME] is forced so the
routine is called again. The concept is similar to the tape merge. The test

for lines of length 80+ protects the tables of file numbers, device numbers
and secondary addresses if these are in use; if, as is likely, they aren't,

a larger number than 81 may be used.

The routine is relocatable, but not transferable between BASICs. The
versions below start at $027A (cassette #1 buffer) for compatibility with
BASIC 4.

Instructions .

Where F is Logical file number, S is Secondary address, D is drive number,

Save a subroutine with:

OPEN F,8,S,*'D:NAME OF SUBROUTINE, SEQ, WRITE" :CMD F: LIST [LOW - HIGH]

Where the linenumbers are optional. When the file is written, close it with

PRINT#F: CLOSE F

Merge this subroutine with a program in memory by:

OPEN F, 8, 3, "D: NAME OF SUBROUTINE, SEQ, READ" then
enter [CLEAR]SYS 634 [RETURN]

BASIC 2 BASIC 4

027A A9 08 85 D4 20 B6 FO A9 .027A A9 08 85 D4 20 D2 FO A9
0282 63 85 D3 20 28 Fl A2 00 0282 63 85 D3 20 43 Fl A2 00
028A 20 8C Fl C9 OA FO F9 C9 028A 20 CO Fl C9 OA FO F9 C9
0292 OD FO OA 9D 00 02 E8 EO 0292 OD FO OA 9D 00 02 E8 EO
029A 51 FO 14 DO EB 8D 6F 02 029A 51 FO 14 DO EB 8D 6F 02
02A2 20 D5 C9 A9 13 20 D2 FF 02A2 20 D2 BA A9 13 20 D2 FF
02AA A9 01 85 9E 4C 95 C3 4C 02AA A9 01 85 9E 4C 09 B4 4C
02B2 23 Dl 02B2 73 C3

Programming the PET/CBM -95- 5: BASIC keywords

MID$
BASIC string function

PURPOSE: Extracts a substring from a string expression. The substring

consists of consecutive characters from the original string expression, and
may contain zero characters, all the characters, or (usually) some inter-

mediate number of characters from the string. BASIC 1 will not permit a

substring of length zero to be taken.

Syntax: MID $(string expression, arithmetic expression [, optional arithmetic

expression]). Neither parameter may take a value greater than 255. If

the second parameter is omitted, the substring continues by default to the

end of the string expression, like RIGHTS. The first parameter determines

the starting point of the substring. See the diagram.

Modes : Direct and program modes are both valid.

Examples: 200 N$=MID$(STR$(N) ,2) : REM REMOVES LEADING SPACE FROM +VE NUMERAL

620 ni$="EachPackUnitTubeReelSet PairRollMtr "

623 for j=l to len(ni$) step 4: if js$=mid$(ni$, j,4) then return

626 next: ok=0: em$="in Price Unit": gosub 800: return

1530 M0$=MID$("JANFEBMARAPRMAYJUNJULAUGSEP0CTN0VDEC",3*M-2,3)

A$="ABRACADABRA": FOR J=l TO 6: ?SPC(J)MID$(A$, J, 12-J) : NEXT

These examples illustrate typical uses to which this substring function may
be put. Firstly, line 200 uses the default option in which the second

parameter is omitted. This means that the string function, STR$(N), is

converted into N$, starting at the second character of STR$(N) and cont-

inuing to the end. So if N=23, STR$(N)=" 23" and N$="23".

The program extract (lines 620-626, listed in lower case) is one of a set

of input validation subroutines. It checks that the string js$ which has

been typed into the machine is one of the four-letter substrings held by
ni$. If it is not, an error message routine is called.

Line 1530 converts month number M (1-12) into a 3-letter equivalent.

Lastly, a loop prints symmetrical portions of the string A$.

Notes: [1] This diagram should make the operation of this function clear:

'S A M P L E sp S T R I N G"

1 2 3 4 5 6 7 8 9 10 11 12 13
|

Position in string:

PRINT MID$(X$,3,6) prints MPLE S which starts at 3 and has length 6.

PRINT MID$(X$,5) prints LE STRING which starts at 5 and ends at 13.

[2] The three functions MID$, LEFTS and RIGHTS resemble SIN, COS and

TAN in that they are closely related. LEFTS contains the main processing

for all three functions. In BASIC, both LEFTS and RIGHTS can be put in

terms of MIDS, although the result is not very readable:

LEFT$(X$,N) is the same as MID$(X$,1,N)
RIGHT$(X$,N) is the same as MID$ <X$, LEN (X$) -N+l) .

Abbreviated entry: ml (includes $) Token: $CA (202)

Operation: Sets the default for the second parameter to 255. Then, if there is

not a right-hand bracket, checks and inputs the comma and the second
parameter (overwriting 255). The string parameters corresponding to the
first two parameters (string and starting position) are pulled from the
stack. If the string has length zero, 7ILLEGAL QUANTITY ERROR appears.
From this data, the true start position and length of the substring are
calculated; and LEFTS is entered to set the new string up. BASIC 2 is

logically identical to BASIC 4, but the old ROM differs in several respects,
mostly connected with validation.

ROM entry points :BASIC1:$D60F (54799) BASIC2:$D611 (54801) BASIC4:$C86D (51309)

Programming the PET/CBM -96- 5: BASIC keywords

MOD
BASIC arithmetic function unavailable directly in CBM BASIC

PURPOSE: Calculates the remainder when an integer is divided by another.
Whenever a fixed numerical cycle occurs, a function equivalent to this is

likely to be needed; examples include 12-hour clocks, date processing where
weekday is represented by 0-6, conversions between number bases, and
check digits and check letters. The word 'mod' is an abbreviation of
'modulo'; this is a mathematical term, used in sentences like '4 = 19 modulo 5'.

Examples: DEF FN MOD(N) = N - INT(N/D)*D : REM D=DIVISOR; result is modulo d

D=12: H=FN MOD (16): REM CONVERTS 16 HOURS TO 4 O'CLOCK
D=4 : L=FN MOD(Y) : REM RETURNS FOR LEAP YEAR Y.
D=7 : WD=FN MOD(2173)

:

REM RETURNS 3; EG DAY IS WEDNESDAY
D=256: PRINT FN MOD (50000): REM LOW BYTE OF 50000 IS 80.

100 ISBN$="095076500"
110 T=0: FOR J=l TO 9

120 T = T + VAL(MID$(ISBN$,J,1))*(11-J): REM CALCULATE CHECKTOTAL
130 NEXT J

140 D=ll: T = FN MOD (T)

:

REM FIND REMAINDER AFTER DIVN BY 11
150 T=ll-T: REM SUBTRACT RESULT FROM 11
160 PRINT T: REM NOW RESULT IS 1 - 10.

The function definition is, I hope, fairly clear: it subtracts the nearest
multiple of the divisor from the original number N which leaves a positive
answer. It returns if the number is an exact multiple of the divisor.
Positive numbers are assumed throughout. Four examples follow, all of
which use this function. The fourth must be a familiar one to any program-
mer using an eight bit microprocessor.

I've included a demonstration program which uses mod to calculate the
checkletter of an International Standard Book Number. Checkletters and
checkdigits are an interesting aspect of computerology which hardly existed
before computers; see Chapter 17 for more on the subject. Briefly, an
ISBN has 9 numerals followed by a checkdigit of 0-9 or X. The value of
the digit is computed as follows: weights of 10, 9, 8,..., 2 are assigned to
the numerals in the ISBN. Each numeral is multiplied by its weight, and
the results added. Finally, this number is forced into the range 0-11 by
taking the remainder when divided by 11. (Then it is subtracted from
11, an extra, unnecessary step). Try the program with other ISBNs. You
will find that the final digit agrees with the printed value of T, or is X
when T is 10.

Note: [1] Generally, integers are held exactly by the machine. All the routines
on this page produce exact values . If there is a possibility of rounding
errors, when using for instance expressions like 3 * .33333333, the
evaluation can be foolproofed by adding in a small value:

DEF FN MOD(N) = INT (.1 + N - INT(.l + N/D)*D) ,

where both .Is are necessary to ensure accuracy at every stage.

Programming the PET/CBM 97- 5: BASIC keywords

NEW
BASIC system command

PURPOSE: Appears to erase any BASIC program currently in memory, together

with all its variables, so that a completely new program may be entered

from the keyboard. The effect is similar to turning on the machine anew;

LIST shows nothing. NEW however leaves machine code intact in RAM.

NB: This instruction is not a formatting command for CBM floppy disks.

See 'HEADER' in the disk commands reference section.

Syntax: NEW has no parameters; it may be followed by (optional) spaces, but must

be followed by a colon or an end of line zero byte.

Modes: Direct and program modes are both valid.

Examples: NEW
50000 PRINT "GOODBYE" NEW: THIS WILL NEVER BE REACHED

In either direct or program mode the effect of this command is similar; the

program will no longer list, and the programmer is returned to direct mode;

'READY.' is printed.

Notes- [1] Everything in the cassette buffers, program variables, screen RAM,

stored machine code, and most of BASIC, is untouched. Because the memory

still holds most of what it did before NEW, an inadvertently erased program

can be recovered completely, except for the values of variables: see OLD.

[2] Syntax or out of memory or other errors and anomalous results occur

if the start of BASIC pointers don't point to $0401, or if $0400 does not

contain the normal byte. Example: a machine code routine loaded from

disk or tape sets the start and end pointers as for BASIC; the same point

ers are shared. NEW does not hardcode the value $0401 into RAM, but

relies on the accuracy of the pointers to BASIC. The solution, apart from

switching off or LOADing a BASIC program, is to set the pointers:

POKE 40,1: POKE 41,4: POKE 1024,0: NEW

Operation: First of all the syntax of NEW is validated; this simply uses a branch

which ensures that NEW is a statement on its own. Now the following

changes are carried out: Zero bytes are put at the link address at the

start of BASIC, in $0401 and $0402. The end of BASIC pointer is replaced

by start of BASIC+2. CHRGET's address is made equal to start of BASIC-1.

These changes are all that are needed to make the translator regard the

program as non-existent. Finally, things are tidied up with CLR:

the variables' pointers are made consistent with a new program; I/O activity

is aborted; the DATA pointer and several flags are set to their default

values. READY is printed, and the machine is prepared for a fresh pro-

gram to be keyed in and run.

BASIC

iUt

tfVarsirrays Strings

*i

Abbreviated entry: None

Token: $A2 (162)

ROM entry points:

BASIC 1: $C551 (50513)

BASIC 2: $C55B (50523)

BASIC 4: $B5D2 (46546)

Programming the PET/CBM -98- 5: BASIC keywords

NEXT
BASIC command

PURPOSE: Changes program flow of control to the statement immediately after the
matching FOR loop. If no loop variable is specified, the most recently en-
countered FOR loop is taken. In this way, loops may be automatically pro-
cessed with relatively less programming effort.

Syntax: NEXT [real variable [,real variable][,real variable] ...]. Square brackets
denote optional variables, which must be separated by commas.
?NEXT WITHOUT FOR ERROR is generated whenever the loop variable does
not match that currently in the stack, or if there is no active FOR loop on
the stack. See the notes for an explanation of this term.

Modes: Direct and program modes are both valid.

Examples: NEXT, like RETURN, operates on the 6502's stack, and can appear
anywhere in a program. This type of
structure, therefore, is possible :- 10 FOR J=l TO 3: GOTO 100

20 NEXT E
30 NEXT J: END
100 FOR K=l TO 2: GOTO 20

But, even with its processing omitted,
it is difficult to read. Straightforward
nested loops are therefore normal . Inclusion of the loop variable has a small
slowing effect on a loop, but on the other hand makes a loop more readable
since the corresponding FOR can be more easily found. Whenever the loop
variable exists on the stack, but not at the most recent level, one or more
loops will be lost; this is the source of some fairly obvious bugs. For
example, this short program executes
correctly, but the J loop is aborted

10 F0R 1_1 T0 10

repeatedly. Processing of this type
20 F0R J~100 T0 120

has one practical use, which is when *j
"
TT

I<
T

6
T

THEN NEXT *

a loop is left prematurely, without '

completion of the entire range of values. As far as BASIC is concerned, the
loop is still usable and active. Another NEXT will cause the loop to be re-
entered. Given a stacked FOR structure, with free-format NEXTs allowed,
this is inevitable. Active FOR loops can cause trouble; this program line

100 FOR J=l TO 10000: GET X$: IF X$="" THEN NEXT: REM 50 SECS DELAY

delays until a key is pressed, or for about 50 seconds, before continuing
with the next line. If this line is within a loop, a keypress causes early exit
so that J replaces the other loop's variable as the most recent loop. (Try it-

it's hard to describe). 101 for j=0 TO 0: next cures this bug.

Notes: [1] How the stack works . For those interested, the following short BASIC
program shows what FOR does:-

10 FOR PQ=512 TO 480 STEP -1
The output includes 18 bytes, like this: 20 print peek(PQ),
Ltruyuvrrix*- r-^r- T_^.Poi/\Tec -to (6 byte. 30 NEXT

. -i Lp__JL/ at e*k of lidi. (#.

.

1?1 ^ OJ—UalWfc. of flral uaviatle. ir\ po-aW-poiKt ftn-fkat (~*%t l&z).
(0 112 137/ r255V-s;qn of sttp Cnegatt*. Ul«.\.

fd U 128>-gTTEP siziL V/loattra-po^far^-t (~-i_ kwO.
Uli/ dZL_igX (jjjp-Foft -Tokeyi ^ VgAis -to UAa*bW_ 4 i«>f \n Rftw.

Operation: FOR checks the syntax, and assigns its variable, setting it up if need be.
The stack is searched, and variable mismatches rejected. If it's a new variable
the stack is tested for at least 18 bytes' space. All the parameters are pushed
on the stack while checking the syntax of TO and the arithmetic expressions.
STEP is assigned 1, then overwritten if a STEP exists. Finally, it drops through
to RUN and continues with the next statement. NEXT, if followed by variables,
searches for the first, later reading its list. The FOR byte is checked, then
STEP is added to the loop variable in acc.#l. The result is compared with the
upper limit, and if less (or, with negative step, greater) CHRGET reset.
FOR : BASIC 1:$C649 NEXT : BASIC 1:$CC36 STEP : BASIC 1:$C69C

BASIC 2:$C658 BASIC 2:$CC20 BASIC 2:$C6AB
BASIC 4:$B6DE BASIC 4:$BD19 BASIC 4:$B731

-99- 5: BASIC keywordsProgramming the PET/CBM

NOT
BASIC unary logical operator

PURPOSE: evaluates the complement of any arithmetic expression (within the valid

range) . In the case of truth values, this has the effect of converting true

to false and vice versa. This second case is by far the most commonly used.

Syntax- NOT must be followed by an arithmetic or logical expression . An arithmetic

expression must evaluate to within the range -32768 to 32767. Non integral

values will be rounded down.

Modes : Direct and program modes are both valid

.

Examples: 5 IF PEEK(X)=34 THEN Q= NOT Q: REM SWITCH QUOTES FLAG ON CHH$(34)

PRINT NOT 23456
70 IF NOT OK THEN EM$="- pack type": GOSUB 20000: RETURN

1000 IF D=l OR AND NOT T$="TAPE" THEN OPEN 15,8,15:PRINT#15, "10"

The first example shows how NOT can be used to switch the values of a

flag; in this example, Q true means that the quotes flag is set; when the

next quote mark is peeked, it is unset. This has application when writing

special LIST routines in BASIC. The second, direct mode example, illustrates

the numerical effect of NOT. The value is converted into a 2-byte integer

and the bits all reversed: in this example, 23456=$5BA0, so NOT 23456 is

computed to be $A45F, which in signed integer terms = -23457. This adding

of 1 is general, and is because the bytes are complemented, but not 2's

complemented . The third example is a program line which tests the flag OK

;

if this has been set false, the error message routine prints a warning to

the operator. Finally, an example shows NOT in a logical expression.

Notes: [1] A fuller explanation of 2's complement numbers appears under AND.

[2] NOT has a higher position in the hierarchy of logical operators than

OR and AND. NOT therefore takes precedence if there would otherwise be

ambiguity. NOT A AND B is effectively identical to (NOT A) AND B.

[3] The usual rules of logic apply to NOT, OR, and AND, and may help

when attempting to decipher elaborate expressions. Three of these are:

A=NOT (NOT A)
NOT (A AND B) = NOT A OR NOT B
NOT (A OR B) = NOT A AND NOT B.

The second and third of these are sometimes called d'Alembert's rules.

These relationships can be demonstrated in many other ways, e.g. Venn

diagramsj
:s

NOT A OR NOT B

Token: $A8 (168)

NOT (A AND B)

Abbreviated entry: nO

Operation: The expression following NOT is evaluated, and if valid, converted to

a fixed point number in floating-point accumulator #1. The diagram applies

to BASIOl:

$5E $5F $60 $61 $62 $63

r r I i a i
Y-|

Fixed-point here

The contents of $62 are reversed and transferred to the Y register; the

contents of $61 are reversed in the accumulator. A standard routine which

converts A low and Y high into floating-point form is called finally.

ROM entry points:

BASIC 1: $CDE8 (52712) BASIC 2: $CDCF (52687) BASIC 4: $BECC (48844)

5: BASIC keywordsProgramming the PET/CBM -100-

OLD
BASIC command unavailable directly in CBM BASIC

PURPOSE: Restores a BASIC program which has been inadvertently erased by
NEW. It does this by resetting zero-page pointers to the start of BASIC
and the end. This has a further effect: a program LOADed from another
program can have its pointers set correctly, so that (for example) a small
menu program can safely LOAD a much larger program.

Versions: Several have been published: Practical Computing (Feb. 81) has a 6502
routine, which, however, does not set end-of-program pointers. Printout
(Jan. '81) had several using Toolkit calls with BASIC; Compute! had an UN-NEW.

My version below is relocatable and may be called from within a program.
In direct mode the program will LIST and RUN as usual.

Operation: To decide what OLD is to do, we can start by examining NEW; this
[1] Puts zero bytes at the link address at the start of BASIC, $0401 & $0402.
[2] Changes end-of-BASIC pointer to $0403.
[3] Sets GETCHR address to $0400.
[4] Enters CLR routine at this point

Current string pointer is set to point to the very top of RAM.
[5] I/O activity is aborted and files closed.
[6] End of variables and end of arrays pointers are set to end of BASIC.
[7] DATA pointer is restored/ some flags are reset/ the stack is reset.

There is an inherent problem in distinguishing simple variables from arrays;
this version therefore does not attempt this. The reversible steps are 1,2
and 6. Therefore OLD needs to:-
[1] Replace the link address in bytes $0401 and $0402,
[2] Recover the end of program pointer,
[6] Set the variable and array pointers to the end of BASIC.

[1] is carried out on the assumption that the next zero byte found marks
the end of line; [2] assumes that three consecutive zero bytes mark the
end of the program. I have also assumed that BASIC starts at $0401, and
included this value explicitly; this clears up some problems when machine
code has been loaded, so the starting address is assumed, by its pointers,
to be somewhere else in RAM.

This is a flowchart of the part of the routine which searches for the end
of program:

c STPlRT 3
TESTES

SET CQUNT£R-3

TEST3gi
iNCREnair fi£K*£SS

No

)E.C&.€r\Wr CX*M£R

a
es:

A

(KII5.H. 3

Programming the PET/CBM

OLD . . . BASIC 4.0

-101- 5: BASIC keywords

634 $027A A9 01 LDA #$01

636 $027C AO 04 LDY #$04

638 $027E 85 IF STA POINTRL ; LOAD UTILITY POINTER

640 $0280
$0282

84 20

AO 03

STY POINTRH ;

LDY #$03

WITH $0401

642
644 $0284 C8 FINDO INY

645 $0285 Bl IF LDA (POINTRL),

Y

647 $0287 DO FB BNE FINDO

649 $0289 C8 INY

650 $028A 98 TYA ; RESTORE LINK ADDRESS

651 $028B 18 CLC ; IN ($0401)

652 $028C 65 IF ADC POINTRL ; BY FINDING THE NEXT

654 $028E AO 00 LDY #$00 ZERO BYTE

656 $0290 91 28 STA (BASICL),Y

658 $0292 A5 20 LDA POINTRH

660 $0294 69 00 ADC #$00

662 $0296 C8 INY

663 $0297
$0299

91 28

88

STA (BASICL).Y
DEY665 Y NOW HOLDS #$00

666 $029A A2 03 TESTO LDX #$03

668 $029C E6 IF TEST30 INC POINTRL
;FIND 3 CONSECUTIVE ZEROS

670 $029E DO 02 BNE NOINC MARKING PROGRAM END
672 $02A0 E6 20 INC POINTRH

674 $02A2 Bl IF NOINC LDA (POINTRL),

Y

(SEE FLOWCHART)

676 $02A4 DO F4 BNE TESTO

678 $02A6 CA DEX

679 $02A7 DO F3 BNE TEST30

681 $02A9 A5 IF LDA POINTRL

683 $02AB 69 02 ADC #$02 ; ADD #2 TO POINTER TO

685 $02AD 85 2A STA PROGENL ; 3 ZEROS AND STORE RESULT

687 $02AF A5 20 LDA POINTRH ; IN END-OF-PROGRAM

689 $02B1 69 00 ADC #$00

691 $02B3 85 2B STA PROGENH

693 $02B5 4C FO B5 JMP CLEAR ; CLR AND READY.

Notes: [1] BASIC 2 is identical except that the last line must be replaced by:

693 $02B5 4C 79 C5 JMP $C579 ; BASIC 2 CLR AND READY.

[2] SYS 634 calls the routine as written; it is relocatable, however.

[3] The start address of $0401 need not be hard coded in: if your BASIC

is written to start elsewhere, use LDA $28/ LDY $29.

[4] The original ROM (BASIC 1) equivalent is this:

OLD - ORIGINAL ROM

826 *033A A5 7A A4 7B 85 71 84 72
834 0342 AO 03 ca Bl 71 DO FB C8
842 *034A 98 18 65 71 AO 00 91 7A

850 0352 A5 72 69 00 ca 91 7A aa
858 *035A A2 03 E6 71 DO 02 E6 72

866 0362 Bl 71 DO F4 CA DO F3 A5
874 *036A 71 69 02 85 7C A5 72 69

882 0372 00 85 7D 4C 6A C5

Programming the PET/CBM -102- 5: BASIC keywords

ON
BASIC conditional command

PURPOSE: Branches to one of a list of linenumbers, depending on the value of
the variable following ON. ON ... GOTO and ON ... GOSUB are valid.

This provides a readable method for programming multiple IF statements
of the CASE type, particularly if the variable takes values 1,2,3, ...

Syntax: ON arithmetic expression GOSUB linenumber.linenumber, ...

or ON arithmetic expression GOTO linenumber.linenumber,...
Note that ON ... GO TO is disallowed.
If the expression, on evaluation, is outside the range 0-255, the message
?ILLEGAL QUANTITY ERROR is generated.
If necessary the value is rounded down. When the value =1, the first line

in the list is the branch; when 2, the second, and so on.

Modes: Direct and program modes are both valid.

Examples: 1000 ON SGN(X)+2 GOTO 2000,3000,4000: REM FORTRAN CONVERSION
60 ON 1 + 10*RND(1) GOTO 100,200,300,400,500,600,700,800,900,1000

6240 ON X GOSUB 400,410,420,430,440,450,460,470,480,490,500 ...

6250 ON X-20 GOSUB590, 600,610,620,630,640,650,660,670,680 ...

200 ON Q GOSUB 100,, 200, 300

The first example shows a three way branch, depending on the sign of the
argument. When X is negative, SGN(X)=-1 so SGN(X)+2=1. So if X is a
negative quantity, the first of the three linenumbers obtains. In the same
way, if it has zero or positive sign, the second or third linenumber is

chosen respectively. The language FORTRAN ('FORmula TRAN station') has
this test; sample line 1000 shows the method of conversion to BASIC.

The second example is taken from a game. The random number generating
function RND returns numbers in the range 0.000001 to .999999 (roughly!)
so the argument evaluates, after rounding, to 1,2,3, ..., 10. Each of the
routines has an approximately equal chance of running.

If all the options cannot be fitted on one line, they may overlap onto the
next line, as the third example shows. See note [1] for explanation.

ON does not share the peculiarity that GOTO and GOSUB share, of allowing
non-numeric characters in linenumbers. However, it does treat null line

numbers, as in line 200, as if they were line 0.

Notes: [1] If the variable is 0, or 5, say, when only 4 linenumbers exist, there
is no error message; the program merely begins on the next line. This is

the reason why lines 6240-6250 in the examples work correctly if X is

between 1 and 30 or whatever. The reason for this behaviour is explained
below in the section on machine code operation.

Abbreviated entry: None

Token: $91 (145)

Operation: Firstly, the argument following ON is evaluated and validated. If, as
it should be, the result is a single-byte numeral, this value is stored (in

$62 with BASIOl). Next, ?SYNTAX ERROR is printed if the following

token is neither GOTO nor GOSUB . (This is the reason for ON . . GO TO's
unacceptability). The token is stored on the stack: on exit it is pulled
back into the accumulator, so the routine knows which of the two commands
to execute. Before this, however, the list of linenumbers is processed.
This is done in a loop. The first thing is to decrement the stored value of

the parameter; if the result is zero exit occurs to either GOTO or GOSUB.
If the result was not zero, CHRGET gets the next fixed-point linenumber
and stores it in ($11) with BASIOl. Provided a comma follows, the loop

continues. So a variable value of zero is treated in effect as 256.

ROM entry points :BASIC1:$C843 (51267) BASIC2:$C853 (51283) BASIC4:$B8D6 (47318)

Programming the PET ICBM 103- 5: BASIC keywords

OPEN
BASIC input /output command

PURPOSE: Enters a file's 'logical file number 1 in a table, together with the device

number and secondary address. When BASIC refers to a logical file, for

example with PRINT#, the device and its secondary address are taken from

the tables and used in processing. Also, where necessary, the device is

prepared for input or output. Tape files have a header either read or

written; disk files' parameters are sent on the IEEE bus to the disk unit.

Syntax: OPEN arith. expr. [.arith.expr. [,arith. expr. [.string expr.]]] . The
first parameter is compulsory and must evaluate to 1-255 after rounding down.

The second parameter is the device number, which must be 0-15, and is a

hardware feature; see the table for CBM equipment's device numbers. The
third parameter is the secondary address, which again is a hardware feature,

and may not be present on non-CBM equipment. The string parameter is a

file name, plus, in the case of CBM disks, other parameters giving drive

number and so on. ?SYNTAX ERROR, 7DEVICE NOT PRESENT ERROR, and

7FILE OPEN ERROR return to direct mode, aborting files which are already open.

Modes: Direct and program modes are both valid.

Examples: Note that, while a logical file number is compulsory, the remaining para-

meters are optional. The device number, secondary address, and string are

assigned 1 (i.e. cassette #1), 0, and null string respectively, in all versions

of BASIC. All the parameters are evaluatable expressions.

Tape: OPEN 10:REM =OPEN 10,1,0,"" WHICH OPENS FILE #10 TO READ #1'S HEADER

OPEN 1,1,0, "TAX": OPEN 2,2,1, "TAX UPDATE": REM SYSTEM WITH 2 CASSETTES

Disk: OPEN 15,8,15: REM OPENS ERROR CHANNEL TO CBM DISK AS LOGICAL FILE #15.

OPEN 1,8,4,"#": REM OPENS A CHANNEL TO A DISK BUFFER FOR B-R, B-W, ETC

OPEN 2, 8, 4, "0: ORDINARY FILE.SEQ.READ": REM OPEN CBM FILE FOR READING

FILE$="1:FILE A": OPEN 3,8, 10,FI$+"SEQ,W": REM OPEN FILE FOR WRITING

Other: 10 INPUT "OUTPUT TO DEVICE #"; D: OPEN D,D

20 PRINT#D, . . . :REM PRINT OUT TO SCREEN OR PRINTER ETC, DEPENDING ON

D - E.G. 3=SCREEN. CONTROL CHARACTERS MUST WORK WITH BOTH DEVICES

30 CLOSE D

Tape files always start by reading or writing a header. So two files to the

same cassette are impossible. Our examples show a header being read into its

buffer (where incidentally it may be examined by PEEK) and OPEN statements

for a 2-tape system , where data input from #1 may be processed and output to

#2. The disk examples (BASIC 4 has DOPEN, which is slightly easier) open

files numbered 15,1,2, and 3, all to device 8, the normal disk device number.

It is sometimes worthwhile to open files to the keyboard and /or screen.

Notes: [1] CBM Equipment and its Secondary Addressing.

Device: Device #: Secondary Address:
1 2 3-14 15

Keyboard
Cassette #1

Cassette #2

1

2

Read
file

Write file+

end-of-file
marker on
CLOSE

Write file +

eof + end of

tape marker
on CLOSE

Screen 3

Printer 4 Varies with type of printer*

Modem 5

Unassigned 6,7
Disk Drives3 8 Directory

Read | Write

Erjjor

Channel

Unassigned 9-15

Models 4022/3 used 6, and model 4022 10, secondary addresses, for example.

Programming the PET/CBM -104- 5: BASIC keywords

As the table shows, many primary and most secondary addresses are unused
so that secondary addresses may be picked at random in most cases. With
disks, secondary addresses 3-14 may be used freely. The parameter can't
simply be ignored, since the default value of prevents a string being sent
on the IEEE and anyway is compulsory before the string. This is why the
examples of OPEN involving disks have rather miscellaneous third paramet-
ers. The keyboard, screen, and non-CBM printers can be opened as files
simply with OPEN 1,0: OPEN 3,3: OPEN 4,4 or with whichever logical file

numbers you like. Cassette files are, on the other hand, entirely dependent
for their correct operation on the secondary address. The default value of
zero is (sensibly) equivalent to reading a file; 1 causes a normal write; and
2 causes an identical write, plus, at the end, a 'header' holding a value
which is interpreted as 'end of tape'.

CBM printers are designed with many secondary address features, many of
which, unfortunately, don't work correctly or are absurdly complicated to
use. Output to these printers is consequently often formatted in ways not
compatible with output to the screen or to other printers. The 4022 has the
following secondary addresses: 0=print 'as received'; l=print in format; 2=

store format; 3=lines/page; 4=error messages on; 5=define own character;
6=set linefeed space; 7=upper case; 8='lower case'; 9=error messages off;

and 10=reset. Some models of printer have 4 and 6 transposed.

[2] RAM Tables . Three tables of ten entries each hold logical file numbers,
device numbers, and secondary addresses as they are used by the IEEE bus
or cassettes. They start, and may be peeked, at 593, 603, and 613 decimal
respectively. (578,588,598 in BASIC 1). The number of entries in the table
is stored in another location (174 or $AE; 610 or $0262 in BASIC 1). The
overall effect is as shown in the diagram:

Any new OPEN has its logical file number
checked against those already present, and
?FILE EXISTS ERROR reveals duplication.
BASIC 1 is inedequately protected against
OPENing more than 10 files. Later BASICS
print ?TOO MANY FILES ERROR. POKEs
into these tables can cause problems, as
spurious 'files' may apparently exist.

OPEN 4,4: OPEN 5,4,1: OPEN 15,8,15:
OPEN 8,8,8,"0:DATA,S,R" gives the tabled
values

.

[3] BASIC 4 has DOPEN ; it also has a modification of earlier BASICs: PRINT*
followed by a logical file number with bit 7 low (i.e. 1-127) does not send a
linefeed character with a carriage return. Earlier versions did. This was a
result of the fact that PRINT referred to the screen at first; later, the tape
processing system was arranged to omit linefeeds, but the IEEE bus still trans-
mitted them to disk. On this subject, see PRINT#.

[4] Other locations . OPEN sets these locations: $D2=logical file; $D4=device;
$D3=secondary address; $Dl=length of string and, if this is non-zero,
($DA) points to the start of the string.

Abbreviated entry: oP Token: $9F (159)

Operation: Chapter 13 has a schematic disassembly of this command. The version
is BASIOl; BASIC 1 is written less concisely, but is otherwise logically
similar. Firstly, parameters are fetched from BASIC by a single ROM sub-
routine. This part can be skipped in machine-code programming, by setting
the variables directly. ST is set to zero and the file table entries made, if

there's room. The IEEE bus, as usual, is processed differently from the screen,
keyboard, and cassettes. The string is sent to the IEEE device only if the
secondary address is non-zero, and the string is not the null string.

ROM entry points: OPEN is a 'kernel' command. Its address is $FFC0.

593 4 LOGICAL FILE
594 5 NUMBERS
595 15

596 8

603 4 DEVICE NUMBE1

604 4

605 8

606 8

613 255 SECONDARY AD]

614 97
615 111
616 104

Programming the PET /CBM -105- 5: BASIC keywords

OR
BASIC binary logical operator

PURPOSE: Calculates the logical inclusive OR of two expressions which evaluate

into the range -32768 to 32767. The result is a 2-byte integer. With logical

expressions, the result is true if either of the original conditions were

true, or if both conditions together were true.

Syntax: Arithmetic or logical expression OR arithmetic or logical expression.

Both expressions must be integers within the signed integer range, or

floating point numbers within this range when rounded down. All logical

expressions are valid, since they take values of -1 or only.

Modes: Direct and program modes are both valid.

Examples: 100 IF A%<1 OR A%>10 THEN ? "OUT OF RANGE"

PRINT -1 OR 12345

PRINT 380 OR 75

6270 0K=0K AND D < 32+(M=40RM=60RM=90RM=ll)+(M=2)*<3+(INT(Y/4)*4=Y)

150 IF NL=60 OR TF THEN NL=2: TF=0: G0SUB 5000: REM NEW PAGE & TITLE

The first and fourth examples show typical applications, where OR checks

the range of a single variable: the first example is, I hope, self-explanatory.

The fourth is part of a date validation routine, which checks that the day

of the month is acceptable. (NB: a leap-year test is included). It takes

advantage of the fact that 'true' evaluates as -1 to calculate the acceptable

upper limit of the day number. The second and third examples, on the

other hand, do not compute logical functions, but operate directly on the

numeral values: -1 ORed with any valid number leaves that number unalt-

ered, because -1 is stored as $FFFF, and this pattern of bits, all Is, has

no effect when ORed with any other bit pattern. PRINT 380 OR 75 gives a

bit pattern of %00000001 01111111 = 383; cp. AND. The final example shows

OR used with different variables: a new page and two-line title is to be

printed if either 60 lines exist on the page so far, or some other condition

has set TF to true, for example change of client name.

Notes: [1] The use of -1 for 'false' is not universal: Apple for example uses +1.

Routines which run on a particular machine may need changes of sign if

they are to be used with another.

[2] 'OR' is lowest in the operator hierarchy, and is performed after NOT
and AND. Because of this, PRINT 1 AND 2 OR 3 prints result 3, which

is also obtained from PRINT (1 AND 2) OR 3. PRINT 1 AND (2 OR 3) is 1.

[3] The truth table for OR is:-

OR T F
T T
T F

OR 1

1 1 1

1

Where l='true' or 'bit set on'

0='false'or 'bit set off.

The following relationships are fairly easy to demonstrate:

A OR B is equivalent to NOT(NOT A AND NOT B)

A EOR B is equivalent to A OR B AND NOT (A AND B)
And these Venn diagrams show the difference hptwpon inpliipive and

exclusive OR:

A OR B A EOR B

Token :$B0 (176)Abbreviated entry : None

Operation: Identical to AND (q.v.) except for the use of a location holding #$FF

which the ROM routine uses to reverse bytes.

ROM entry points:

BASIC 1: $CED6 (52950)

BASIC 2: $CEC8 (52936)

BASIC 4: $C086 (49286)

Programming the PET/CBM -106- 5: BASIC keywords

PEEK
BASIC arithmetic function

PURPOSE: Computes the decimal value of the contents of any memory location.
PEEK, in conjunction with SYS and POKE and, to a lesser extent, USR,
allows free access to RAM and ROM. Uses include: examination of ROM,
of BASIC, and of variables and pointers; examining hardware locations;
examining machine-code; and performing memory moves.

Syntax: PEEK (arithmetic expression). The range is 0-65535.

Modes: Direct and program modes are both valid.

Examples: PRINT "[CLH]" CHR$(34) ;: FOR J=1024 TO 1100: ?CHR$(PEEK(J)) ; : NEXT
100 FOR J=1024 TO 1100: POKE 31744+J, PEEK(J) : NEXT
7675 FOR LS=49T054: 0$(7)=0$(7)+CHR$(PEEK(LT+LS)) :NEXT: REM SIZE
2000 IF PEEK(152)=1 THEN PRINT "SHIFT KEY IS PRESSED"

The two first examples, apart from the minor difference of mode, carry
out similar functions. Each displays about 1000 bytes of a BASIC program
directly on the screen, so that literals, tokens, linenumbers and so on are
all made visible. The main difference is that the first example prints the
characters, and so may fall foul of Commodore's special characters. The
quote mark at the start prevents this, at least until a second byte holding
34 is found. The second example doesn't have this problem, and is a
routine to memory-move the program into the screen area . Try them both

.

The third example is a line from a program, in which information stored as
a file in RAM is now PEEKed out again. 0$(7) is the 7th string to be
output, has length 6, and is the size description of the item.

The final example shows how knowledge of the system may be used in a
program

.
When the keyboard scanning routine finds the shift key depressed

it sets a flag which affects the character printed. The actual figure applies
to BASIC 2 and BASIC 4. (BASIC 1 uses 516).

Notes: [1] BASIC 1 . This ROM contains a test ensuring that addresses from C000
to EOFF have a PEEK of 0. This protection has been dropped in all later
ROMs. BASIC 1 also has a bug, caused by the fact that a pointer it uses
is shared by the function processing routine. Line 100 in the examples, and
routines generally with several different PEEKs in a statement, don't work
in BASIC 1. For both of these reasons PEEK may well be replaced bv USR
with this ROM.

DATA 165,8,72,165,9,72,32,208,214,160,0,177,8,168,104,133,9,104,
133,8,76,135,210: REM BUG-FREE PEEK FOR BASIC 1 WITH USR.

The 23 bytes above give a peek routine for BASIC 1 JSR D6D0
which is bug-free, so that PRINT USR(50000) prints ldx #oo
208, and POKE C, USR(D) transfers the contents of LDA (08, X)
D to C. The 12 byte version to the right removes TAY
the C000-E0FF protection, but doesn't correct the bug TXA
concerned with function processing. jjjp D278

[2] A double-byte peek or DEEK is often convenient and can be written as
a function definition: DEF FN deek(X) = peek(X) + 256*peek(x+1)

Abbreviated entry: pE Token: $C2 (194)

Operation: BASIOl saves the contents of ($11) on the stack. (The omission of
this step from BASIC l causes its bug). The routine to validate and con-
vert a floating point number from 0-65535 is called; this also stores the 2
byte address in ($11), or ($08) with BASIC l. It is a straightforward
matter to load the accumulator from the address pointed to, restore the
original contents of ($11), and jump to the ROM routine which loads the
accumulator with #0 and converts Y to floating-point. BASIC 2 has 8 NOPs
left from BASIC l's protection routine, which are dropped with BASIC 4.

ROM entry points :BASIC1:$D6E6 (55014) BASIC2:$D6E8 (55016) BASIC4:$C943 (51523)

Programming the PET/CBM -107- 5: BASIC keywords

POKE
BASIC command

PURPOSE: Each POKE replaces one RAM location with the byte value specified by
the second parameter. With PEEK and SYS and to a lesser extent USR,
POKE enables RAM to be freely accessed from BASIC. It is useful when
entering machine code from BASIC, modifying pointers, programs, variables

and files in RAM, and putting characters directly onto the screen.

Syntax :POKE arithmetic expression, arithmetic expression. The two parameters

refer to the location and the byte. Their values must be within the ranges

0-65535 and 0-255. A POKE into ROM or into an area not occupied by RAM
or ROM does not print an error message, and has no effect.

Examples: i. FOR J=0 TO 255: POKE 8*256* 16+J, J: NEXT

ii. 10 DATA 162,0,138,157,0,128,232,208,249,96
20 FOR J=826 TO 835: READ X: POKE J,X: NEXT

iii. 10 REM **************************

20 INPUT Y: FOR X=0 TO 9: POKE 1032+X, X+Y: NEXT

iv. FOR J=2000 TO 9E9: POKE J, 170: IF PEEK(J)=170 THEN NEXT

The four examples don't cover specific aspects of CBM BASIC operation,

of which there are innumerable possible variations. See for example the

notes in this section on HTAB/VTAB for zero page pokes, on DEL for pokes
which control the keyboard buffer, and VARPTR for hunting variables in

order to modify them by POKE.

Example i is a simple loop which pokes to the screen. Since this starts at

$8000, the values 0-255 are taken and poked into the screen starting at its

top left corner. (The calculation computes $8000 in decimal each time round
which is slow but easy). Example ii illustrates how machine code routines

may be poked into memory. The loop reads data one item at a time and
pokes it into consecutive locations. SYS 826, executed after this short

program has been run, produces in machine code the same effect that the

BASIC routine achieved. The speed increase is considerable.

Example iii is a self-modifying BASIC program in which 10 consecutive bytes

are POKEd into a REM statement. It provides an easy way to discover

which tokens correspond to which values in BASIC.
The last example is a RAM test in BASIC. It performs a similar checking
function that BASIOl executes when switched on. Locations 2000 and over

are poked with 170 (bit pattern %10101010) and read back; this is repeated

until the PEEKed value is no longer 170, marking either the end of RAM or

a defect in a location. This process is far slower than machine-code.

Notes: [1] This command is not part of standard BASIC, and is missing on most
larger machines to avoid the risk of changing other people's work. It is

sometimes given other names, for example STUFF, on microcomputers.

[2] A double-byte POKE or DOKE cannot be implemented as a function
definition, but requires a subroutine. DOKE Zl (0-65535), Z2 (0-65535) is

POKE Zl, Z2-INT(Z2/256)*256: POKE Zl+1, Z2/256: REM LOW THEN HIGH

[3] This command is one of the few with a very simple machine-code
equivalent, which examples i and ii illustrate. POKE 8*256*16,0 and
LDA #$00/ STA $8000 each put a zero byte in the top left of the screen.

Abbreviated entry : pO Token: $97 (151)

Operation : The parameters are evaluated by a subroutine shared with WAIT which

evaluates and checks the first parameter, and converts this into a fixed

point number which is stored in ($11) with BASIOl. The comma and next*

parameter are checked, and if the parameter is within the range 0-255 it is

put into the X register and stored in the address in ($11) without a

readback check. All the ROMs process this command similarly.

ROM entry points :BASIC1:$D6F9 (55033) BASIC2:$D707 (55047) BASIC4:$C95A (51546)

Programming the PET/CBM -108- 5: BASIC keywords

POP
BASIC command unavailable directly in CBM BASIC
PURPOSE: POP discards the last RETURN address from the BASIC stack. This in

effect makes the previous GOSUB no longer effective, so that, if a RETURN
is encountered, the address returned to will be the GOSUB before last's.
This is useful in escaping from subroutines. For example, suppose a user
is to be allowed to exit from a subroutine directly back to a menu, perhaps
if the wrong routine is entered by mistake. It can often happen that a
direct GOTO leaves the subroutine still active. Or imagine a game, written
so that a long sequence of games can be played, and containing a routine
to test for end of game: the test may check whether one player has collided
with the board edge. Ifthe test routine jumps straight to the routine which
prints the score, after 24 or so games the program will stop with an ?OUT
OF MEMORY ERROR.

Note that from the point of view of structured programming, this command
ought to be unnecessary: such program demands the use of subroutines
with one entry point, one exit, and no irregular exits with GOTO or POP.

Versions: The only previously published version I've seen is by Tom Mead, in
the Liverpool Software Gazette (Oct. '80). My routine which follows is based
on the RETURN command in BASIC and mimics this in all respects, except
for the actual change in program control. So the address is erased but the
program continues with its next statement, without a change in the flow of
control. If there's no address on the stack to be popped, 7RETURN WITHOUT
GOSUB is printed.

POP DEMONSTRATION (ALL ROMS)

A*=—
1 GET X*s IF X*="" GOTO 1
2 IF ASC(X*)=13 THEN PRINT* PRINT A*s RETURN
3 IF X*="X" THEN SYS 634s SYS 634s GOT020
4 PRINT X*St A*=A*+X*$ GOTO 1
10 FOR I = 1 TO 4s PRINT Us GOSUB Os NEXTs RETURN
20 PRINTS PRINT "MENU"s GOSUB 10s PRINT "END"s END
50 FORI = 634 TO 657s READ Xs POKE I,XsNEXTs GOTO 20
52 DATA 169, 255. 133. 152. 32, 172. 194. 154,201. 141. 240.5. 162*22
54 DATA 76.89,195.232.232,232.232,232.154.96
990 REM
1000 REM **
1010 REM * 'RUN 50' DEMONSTRATES POP AS AN ESCAPE KEY. TAKING USER BACK *
1020 REM * TO MENU WHEN HE'S SELECTED A WRONG OPTION? X USED AS ESCAPE. *
1030 REM * NOTE THAT POP WITHOUT GOSUB GIVES ?RETURN WITHOUT GOSUB ERROR.*
1040 REM **
1990 REM
1995 REM
2000 REM **
2010 REM * BASIC 3 VERSION IS VERY SIMILARs *
2020 REM * 52 DATA 169.255.133.71.32.170.194.154,201,141.240,5,162,22 *
2030 REM * 54 DATA 76.87.195.232.232.232.232,232,154,96 *
2040 REM * AS IS BASIC 4 VERSIONS «
2050 REM * 52 DATA 169,255,133,71,32,34.179,154,201.141.240.5,162,22 *
2060 REM * 54 DATA 76,207,179,232,232,232,232,232,154,96 *
2070 REM **

Programming the PET /CBM -109- 5: BASIC keywords

POS
BASIC arithmetic function

PURPOSE: Computes the position of the cursor on its current screen line.

The range is 0-255. This is not the position on the screen line, but a

measure of the distance the cursor has moved along its present line: some

PRINT statements can return a value up to 255; more usually, when

keying- in program lines for example, the maximum is 80.

Syntax: POS (expression). Like FRE, POS uses a dummy variable, the sole point

of which is to make POS behave like a function. POS(0), POS(X), POS(,,M
)

are all valid options which yield identical results.

Modes: Direct and program modes are both valid.

Examples: 61540 IF P0S(6)+PEEK(196)>74 THEN PRINT CHR$ (34) ; "[HOME] [DOWN] [DOWN]

L=" L "+1:S=" J ":E=" E ":G0T0" G

PRINT TAB(10)P0S(0): PRINT SPC(10)POS(0)

100 PRINT LEFT$(" ",12-P0S(0)) ;X$

POS is arguably the least useful of all the BASIC keywords. Nevertheless

it performs some useful services: the first example is taken from a routine

which automatically writes the contents of RAM as DATA statements. If a

system has no facility for dumping memory, as a RAM image, or if RAM
has a relocatable routine, handling it as DATA may be convenient. The

program line checks whether the data so far printed to the screen is in

danger of reaching the end of the line. (In BASIOl, location 196 holds

40, with a 40-column screen only, if printing is on the line one down from

the top of the screen).

The second example is a direct mode line. The third figure printed

depends on LEN(X$). If LEN(X$)=200, PRINT POS(O) returns 200.

The third example illustrates the close connection between POS and TAB(.

If POS(O) is confined to the range 0-12, line 100 is equivalent to TAB (12).

Suppose that the cursor is at position 4: then 8 spaces will be printed

before X$, so the effect is the same as TAB(12).

Notes: [1] POS uses the same parameter as TAB(. Consequently POS cannot be

used with printer commands unless the identical line is printed on the

screen. Its usefulness is in practice limited to the screen.

Abbreviated entry: None

Token: $B9 (185)

Operation: Loads the Y register from the zero-page location storing the position

of the cursor on its 'line'. This location is $C6 (198 decimal), or in the

case of BASIC 1, location 5. The accumulator is loaded with #0 and a

ROM routine entered which converts A and Y , as high and low bytes , into

floating point form in accumulator #1.

All ROMs use identical logic to process this function. (The absolute

addresses differ).

ROM entry points:

BASIC 1: $D285 (53893)

BASIC 2: $D27A (53882)

BASIC 4: $C4C9 (50377)

Programming the PET/CBM -110- 5: BASIC keywords

PRINT
BASIC output command

PURPOSE: Evaluates and prints string expressions and numeric expressions to an
output device, usually the screen. The appearance of the output is to some
extent controllable by the punctuation of the statement, and also depends
on the special graphics and screen editing characters of CBM BASIC.

Syntax: PRINT followed by arithmetic and/or string expression(s), separated from
each other by one or more of: SPC(arith. exp.), TAB(arith. exp.), space,
comma, semicolon, or no separator where this causes no ambiguity.

Each string and arithmetic expression must be valid and also evaluate within
acceptable limits when the PRINT statement is run. The parameter for TAB
and SPC must evaluate to within the range 0-255, after rounding down.

The statement terminates when a colon or end-of-line zero byte is found as
part of the punctuation (i.e. not within quotes). See also the flowchart.

Modes: Direct and program modes are both valid.

Examples: FOR J=0 TO 255: PRINT CHR$(J);: NEXT: REM PRINT EVERY CHARACTER
FOR J=0 TO 100: PRINT J,: NEXT: REM SHOWS USE OF '

,

'

PRINT X+Y; 124; P*Q*(1+R%/100)

:

REM ARITHMETIC EXPRESSIONS
PRINT "HELLO"; ABC$; LEFT$("ABCD", 1) :REM STRING EXPRESSIONS
100 PRINT TI;TI$;ST;DS;DS$: REM SPECIAL VARIABLES

These five print statements illustrate most of the major features of PRINT
except TAB(and SPC(, which are explained elsewhere. The first is a loop
which uses PRINT to output all 256 individual characters. The effect of the
loop varies with the ROM; 80-column CBMs have a tremendous range of screen
editing characters, so characters shift about and disappear, eventually, as
the scrolling window becomes set, confining themselves to a small rectangle on
the screen. Other CBMs are more sedate, merely clearing the screen and
homing the cursor. The semicolon ensures that alphanumerics print next to
each other; in the next example, the comma tabulates numbers into every
10th column. The third and fourth examples show typical arithmetic and string
expressions respectively. Each expression is evaluated and printed from left

to right, taking account of punctuation. Note that the arithmetic expressions
are printed in the standard Microsoft format explained elsewhere. Semicolons
have been omitted from the string output example; in fact, ABC$ prints the
three strings one after the other exactly as A$;B$;C$ would. This is because
the '$' symbol is recognised as a terminator. Similarly, a semicolon is not
necessary after an integer's '%' or an array's ')'. Numeric variables require
more careful punctuation, since their names allow a mixture of alphabetic
characters and numerals. PRINT X+Y 124 is interpreted as PRINT X+Yl, as
an example. This sometimes causes wrong output, but errors in PRINT
statements are easy to correct. Finally, note that PRINT has routines within
it to check for special values, including pi, the status indicator ST, TI and
TI$, and (BASIC 4 only) the disk status variables DS and DS$.

PRINT (7) (7) :REM PRINTS 7 7
PRINT 1 . 2 . .

3

: REM PRINTS 1.2 .3 [•
.

' appears ' *

]

PRINT READY. :REM PRINTS [i.e. value of RE then 0J
PRINT ;,LK4*R6R;4 : REM PRINTS 4 [i.e. '

,

•
,LK*R6, then 4]

PRINT 1/3(5*+—2). 51 :REM PRINTS .333333333 10 .51

Graphics . PET graphics characters are usually printed to the screen from a
string in quotes. (Tney can also be poked directly into screen RAM). [RVS]
is necessary to complete the character set, and doubles the number of available
graphics. This extract from a program listing (in upper case mode) shows
the type of thing:

1059 PRINT" r-SUS ~l_-.—» K3 1"

1055 PRINT" IS.NIT COST: "J*<5>"' 1"

1060 PRINT" IS I0ME: "J*<6>"0IH FIXED? "J*<?> "DP
1065 PRINT" IS -XPORT: "J*<8>"3IH FIXED? "J*<9>"3r

Programming the PET/CBM -111- 5: BASIC keywords

Notes- [1] The screen appearance is controlled by three factors: (i) The character

generator ROM, (ii) Programmable hardware features, and (iii) The screen

hardware. Taking these in order :-

(i) The oldest PETs use a character generator with upper and lower case

transposed, a transitional feature from the days when upper-case was normal,

so it seemed natural to produce lower-case with a shift key. All subsequent

ROMs use the normal typewriter convention. The ROMs are incompatible,

(ii) POKE 59468,12 and POKE 59468,14* switch between upper case and

graphics (no lower case obtainable) and lower case with upper case (losing

all the QWERTY graphics, such as the card suit symbols). Try

POKE 59468,12: POKE 59468,14: GOTO

to see the effect of this on a screenful of characters.

POKE 59458,62 is one of several equivalent fast-screen pokes, which

cause a large and useful speed increase when printing to the screen.

CAUTION: BASIC t CBMs have improved screen printing speed; this POKE

will not work, and can cause damage to the machine.

With early PETs and CBMs, this is perfectly safe and necessary if you wish

to avoid slow screen printouts. The rule is: if the picture on the screen

collapses, don't risk it again.

Wide-screen CBMs have a CRT (cathode ray tube) controller chip. This

is programmable; see Chapter 9 for details.

(iii) The oldest PETs used a blue-white phosphor. All recent machines use

green. Since about mid- 1981, 12" screens only have been fitted, on 40 column

and 80 column models. There is some incompatibility, as might be expected,

between 40 column and 80 column PRINT statements. A program designed for

40 columns typically looks similar on an 80 column machine, but uses only the

leftmost 40 columns - unless PRINT statements have been terminated with semi-

colons, in which case the top half of the 80 column screen will be filled with

double lines. Also of course BASIC 4 cursor control characters will not work

on other ROMs, so scrolling windows, line erase characters and so forth

cannot be downward compatible.

[2] The reverse key is necessary to obtain some characters:-

PRINT "[RVS] [DOWN] [DOWN]

PRINT "[RVS] ,[RVSO]

:REH REVERSE SPACE IS A SQUARE

:REM PRINTS

r

This means that it is not always easy to convert a picture on the screen into a

set of PRINT statements. Homing the cursor, then typing linenumbers followed

by ?" and RETURN doesn't accept reversed characters; a tedious procedure

of inserting [RVS] and [RVSO] will need to be used.

Abbreviated entry: ?

Token: $99 (153)

Operation: The flowchart, which applies to all the ROMs, outlines the way PRINT

works. It is not a particularly long routine - a page or two of listing paper -

but calls half a dozen or so other ROM subroutines.

ROM entry points:

PRINT : [SYS of this

address-6 has the same

effect as PRINT]

BASIC 1: $C99F (51615)

BASIC 2: $C9AB (51627)

BASIC 4: $BAA8 (47784)

SUBROUTINE TO PRINT ONE STRING :

Accumulator holds low byte,

Y-register high byte, of start

of string; terminated by null.

BASIC 1: $CA27 (51751)

BASIC 2: $CA1C (51740)

BASIC 4: $BB1D (47901) has some changes

OUTPUT ROUTINE FOR SINGLE CHARACTER :

Controls which character, if any,

will be printed: has 5 entry

points.

BASIC 1: $CA44 (51780)

BASIC 2: $CA39 (51769)

BASIC 4: $BB3A (47930)

*59500, which is easier to remember, may be used instead.

UK pointed this out.

Nick Green of Commodore

Programming the PET/CBM -112- 5: BASIC keywords

c PRINT J
==T~
RECET

current
char.

A /w

OTHER
L

I

TAB(SPC(

<

validate.

=1=

(CRLF&\
Return. J

String
Expression?/

Validate parameter (0-255)
Put into the X-register.
Check for parenthesis ')'.

N

Print
string
using
$FFD2

Convert
numeral

into ASCII
string in

buffer.

Subtract
cursor

position

Print

string*
space.

_L

Subtract 10

repeatedly
from cursor
position till

negative.
I

Change sign
(i.e. 2's comp-
lement)

Cet
next
char.

End of print \
statement? /

I

Cancel buffer.
Print CRLF and
return to BASIC

End of print
statementt>

FLOWCHART OF CBM BASIC'S PRINT STATEMENT PROCESSING

Notes: [1] After a colon or end of line, CRLF is always printed by BASICS 1 and 2.
BASIC 4 however uses the other exit point, checking for device number;
so that if location $10 (16) is < 128, C.Rtn. is output alone, without
Line Feed. This was introduced to simplify writing to disks and tape.
Previously, PRINT#8,X$;CHR$(13) ; was necessary. With BASIC 4, PRINT#8,
X$ is fine (and is also compatible with the earlier form).

[2] TAB(, SPC(, and comma have slightly different effects when printing,
depending on the contents of 3 (BASIC 1), 14 (BASIC 2), and 16 (BASIC
4). If this location holds zero, the skip effect is achieved by CBM
cursor right characters, and CRLF is printed at the end of the line;
a non-zero value prints spaces instead, and no automatic CRLF, so non-
CBM equipment may be used. In quotes mode, skip shows as reverse].

Programming the PET /CBM -113- 5: BASIC keywords

PRINT*
BASIC output command

PURPOSE- Evaluates and prints string expressions and numeric expressions to an

output device, usually printer, disk, or tape. The appearance of the output

is identical to that produced by PRINT, except for possible differences in

interpretation of special CBM editing characters.

Syntax: PRINT# arithmetic expression [, expressions to be printed in format

identical to PRINT]. The comma is a separator to make unambiguous such

statements as PRINT#3.3 and PRINT#33. There must be no space between

'PRINT' and '#', because this will interpret into two bytes ('PRINT and #

separately, not the single 'PRINT*' token.) - Except in BASIC 1!

Finally, the expression immediately following '#' must conform to two criteria:

after evaluation and rounding-down if non-integral its range must be 1-255;

secondly, a file with this number ('logical file number') must be open.

Modes: Direct and program modes are both valid.

Examples: 100 OPEN 4,4 : REM CHANNEL 4 TO PRINTER OPEN; NON-CBM PRINTER...

1000 PRINT#4,CHR$(12) "PRICE LIST no."N$" page"P%

100 OPEN 1,4,1: OPEN 2,4,2: REM 2 CHANNELS TO SAME CBM PRINTER...

110 PRINT #2, "$$$$$9.99" : REM CBM PRINTER FORMAT USES SEC.ADDR.=2

1000 PRINT#1, DOLLARS : REM OUTPUTS IN DESIRED FORMAT (EG. $24.00)

2000 PRINT#4,;: CL0SE4 : REM CLOSES WITHOUT C.RTN. (WITH PRINT.CMD)

10 OPEN 5, 8, 5, "1: FIRST FILE.SEQ.W" :REM CBM DISK EXAMPLE

20 FOR J=l TO 20: PRINT#5, "RECORD NUMBER"J: NEXT :REM BASIC 4

5000 PRINT#4,XYZ$; CHR$(13);: REM BASICS 1 AND 2 NEED THIS

These examples are confined to printers and disks only, but in practice of

course files can be opened to tape, screen, or any IEEE device, CBM or

otherwise. The first sets of examples contrast the way a non-IEEE printer

(e g Qume) is controlled with CBM's IEEE device. Assuming a hardware

interface exists to convert IEEE to (say) RS232, the file can be opened as

usual, and control characters sent to the printer to alter its spacing or line

separation or other feature, or, here, send a form feed command. CBM
printers rely on the IEEE's secondary address feature to control the printer

in addition to control characters, and the example shows how PRINTS can

distinguish between several files open at one time. Line 2000 shows how a

file is closed if CMD and PRINT were used: see note [1] on this. The

final examples show another complication involving disk files (not tape, and

not BASIC 4). The earlier ROMs wrote linefeed characters to disk, after the

carriage returns which are used as record separators. Consequently, data

when read back from disk started with an unwanted linefeed character, and

this CHR$(10) could be suppressed only by printing CHR$(13), i.e. return,

at the end of a record. Footnote 1 of the PRINT statement flowchart amplifies

this is somewhat greater detail.

Notes: [1] PRINT*, PRINT, and CMD are intimately related:

PRINT* = SEND 'LISTEN 1
/ PRINT/ SEND 'UNLISTEN'

CMD = SEND 'LISTEN'/ PRINT
PRINT = PRINT

This is why PRINT#n,;: and CMDn, ; : are opposites. Each prints nothing,

then PRINT* unlistens the device, while CMD leaves it listening. It is also

the reason for line 2000 in the examples; before closing the file, if CMD was

used, PRINT*,; : has the function only of unlistening the disk or printer.

Note that PRINT* is better than CMD and PRINT with CBM printers, which

are apt to turn the 'listen' off. In practice all this is easier than it may appear

to be; it is not essential, in getting data stored and printed, to appreciate

all the fine points of these commands.

[2] Some printers (not CBM) won't print out their internally stored buffer

until a carrage return (CHR$(13)) has been received. Earlier data is thrown

away while it waits for this to happen. OPEN 4,4: FOR J=14 TO 255: PRINT#4,

Programming the PET ICBM -7 74- 5: BASIC keywords

chr$(J);: NEXT may simply do nothing. An apparently unresponsive printer
may owe its impassivity to oversight of this simple fact.

Another potential problem if carriage returns are omitted is that INPUT #,

which is the mirror-image of PRINT # as far as individual records are con-
cerned, can safely accept strings of only 80 characters or less. PRlNT#n,x$;
prints fields strung together, so INPUT* will take in a composite string,
possibly with a ?STRING TOO LONG ERROR.

Abbreviated entry: pR (includes #) *

Token: $98 (152)

Operation: The ROM entry for this command has only two machine code instruct-
ions. The first calls CMD, which carries out the validation for parameter
and comma, sets the output device, and performs PRINT. When it returns
from PRINT the second routine unlistens the file and restores the normal
devices of keyboard and screen. All of this helps explain the interconnect-

edness between PRINT*, PRINT, and CMD.

ROM entry points:

PRINT# : BASIC 1: $C97F (51583)
BASIC 2: $C98B (51595)
BASIC 4: $BA88 (47752)

CRLF BASIC 1: $C9CE (51662)
ROUTINE: BASIC 2: $C9DE (51678)

BASIC 4: $BADB (47835)

RESTORE BASIC 1: $CAD6 (51926)
DEFAULT BASIC 2: $CAB7 (51895)
DEVICES: BASIC 4: $BBB4 (48052)

If the abbreviation ?# Is used, on listing the line will show PRINT but give
?SYNTAX ERROR on running, because the interpreter 'sees' PRINT #, which means
nothing. BUT if the cursor is positioned on such a line and Return pressed, the
correct meaning of PRINT* is taken in with the line. P shift-R is simpler.

Programming the PET /CBM -115- 5: BASIC keywords

PRINT USING
Output command unavailable directly in CBM BASIC

PURPOSE: Prints data, often numeric, in a format specified by the program.

Currency signs, trailing zeros, + or - signs, commas, 'CR' if a quantity is

negative: these are all typical features of formatting commands. Strings

usually pose less of a problem than numerals.

Versions: COBOL, a major business language, set a standard which most other

formatting commands derive from. Its 'picture' clause enables the programmer

to position the decimal point and insert spaces and commas within numerals, in

addition to the features already mentioned. Thus, PIC $ZZZ,ZZ9.99CR causes

-1234.5 to be printed as $ 1,234.50CR. The IBM 8000 series of desk-top

machines and the TRS-80 use a similar notation, except that 9, which in

COBOL prints a compulsory numeral, is replaced by #. Commodore's printers

enable one (only) format to be pre-defined, and the formatting field is nearly

pure COBOL.*

Users of CBM printers apart, there is a constant demand for routines to format

the output both onto the screen and to hardcopy and disk file. Both 'Diskpro'

and 'Commando' include a formatting command. It does not validate its input

completely; it is possible for oversized strings to be printed wrongly. BASIC

versions have been published, some of them ludicrously long. For such a

useful command, this can be rather discouraging. In the hope of improving

the situation I present on the next few pages details of a relocatable machine

code formatter which is relatively bug-free.

Notes: The print routine can be called by SYS 47778 in BASIC 4 (and SYS 51621

in BASIC 2, SYS 51609 in BASIC l).\This allows for string and numeral ex-

pressions, TI, TAB(and SPC(and soon. For example, we may set PR=47778

so SYS (PR) 8*9"Hello" prints '72 Hello'. In fact this entire routine, the main

parts of which are very compact , can be moved into RAM and modified there

.

This is not however the way the following routine operates; it uses a SYS

call followed by the numeric expression to be printed. This one value alone

is formatted and output. 2 The central piece of code is this (BASIC 4):

JSR $BD98 ; Input and evaluate any expression from BASIC

JSR $CF93, ; Convert contents of accumulator*! into ASCII string

JSR $xxxx ; Code which processes the string, held in $0100 ff

.

JSR $BB1D ; Print string using A (low), Y (high) pointers

RTS ; Return to BASIC

The idea is simply to print the number in the way it would in any case be

printed, but in addition to insert a piece of code to edit the output buffer

from which the string is printed. The actual processing is controlled by
several pokes, to control the type (decimal /integer), the desired string

output length, the number of decimal places (where applicable), and filler

characters. A leading character is selectable for positive numerals only. All

this should be made clear by the examples.

*CBM printers are noted for bugs in their ROMs, so the actual output may not

always be as expected.

2 The parentheses are used purely to separate SYS (PR) from the subsequent data.

It is perhaps worth pointing out that misunderstanding of the syntax can cause

bugs. Thus: SYS (PR) 45 prints a formatted version of 45; but SYS PR45 inputs and

evaluates PR45, which the translater considers to be the same as PR., so zero will

be printed. And SYS PR(45) evaluates the 45th element of array PRO, if this array

exists; if not, ?BAD SUBSCRIPT ERROR will be printed.

Programming the PET/CBM 116- 5: BASIC keywords

RELOCATABLE BASIC LOADER FOR 'PRINT USING* TYPE ROUTINE (NUMERAL FORMATTER) .

1, 8, 2, 32, 162, 0, 221, 0, 1, 240, 6, 232, 224, 12, 208, 246, 24, 96, 169, 69, 32,-162
176,90, 173,-166, 240,94, 173,2, 1,208, 11, 172,-165, 169,48, 153,2, 1, 136
208,250,169,46,32,-162,168,144,2,160,48,169,0,32,-162,152,157,0,1,169
46,32,-162,172,-164,232,136,208,252,236,-165,176,33,172,-165,169,0
153,1,1,189,0,1,201,32,208,3,169,32,234,153,0,1,202,16,6,173,-163,136
16,244,136,16,231,169,0,133,97,160,1,132,98,96,169,0,32,-162,144,240
138, 168, 173, 2, 1, 240, 9, 169, 46, 32,-162, 144, 2, 138, 168, 152, 170, 202, 16, 181
0, 32, 159, 204, 32, 233, 220, 32,-148, 32, 28, 202, 96

DATA
1 DATA
2 DATA
3 DATA
4 DATA
5 DATA
6 DATA
7 DATA
8 REM
9 REM
10 PRINT" [CLEAR] [REVS] R0M2 RELOCATING 'PRINT USING' ROUTINE "

20 T - PEEK (52) + 256*PEEK (53) : REM T IS CURRENT TOP OF BASIC MEMORY
30 L - T - 166 : REM PROGRAM IS 166 BYTES IN LENGTH
40 FOR J = L TO T-l : REM LOOP PLACES ROUTINE IN TOP OF AVAILABLE MEMORY
50 READ X%: IF X%<0 THEN Y = X% + T: X% = Y/256 : Z = Y - XZ*256 : POKE J,Z: J=J+1
60 POKE J , XX
70 NEXT
100 X% = L/256
110 POKE 48, Z :

120 POKE 49, X%:
123 REM
124 REM
125 REM ### NOW PRINT OUT INSTRUCTIONS FOR USE, WITH ADDRESSES, ONTO SCREEN ###
130 PRINT "[DOWN] SYS (" ; L+153 ; ") FOLLOWED BY ANY NUMERIC
131 PRINT "EXPRESSION PRINTS THE FORMATTED VALUE,
132 PRINT"KEEPING THE CURSOR ON THE SAME LINE.
133 PRINT"DECIMALS ARE TRUNCATED; ROUND TO NEAREST";

: Z = L - X%*256 :

POKE 50, Z : POKE
POKE 51, XX: POKE

REM WILL BE HI & LO BYTES OF NEW TOP OF MEMORY
52, Z : REM SET LO BYTES OF MEMORY AND STRINGS
53, XZ: REM SET HI BYTES OF MEMORY AND STRINGS

134 PRINT"WITH +.[0] [0]

,

140 PRINT" [DOWN] POKE"
150 PRINT"POKE"
160 PRINT"POKE"
170 PRINT"POKE"
180 PRINT"POKE"

[0]5 IF REQUIRED
L ; "[LEFT],1 FOR DECIMAL, FOR INTEGER

L+l ; "TOTAL LENGTH OF OUTPUT - 1

L+2 ; "NUMBER OF DECIMAL PLACES
L+3 ; "FILLER CHARACTERS
L+98; "LEADING CHARACTER WHEN +VE

190 PRINT" [DOWN] SAVE FROM"L"TO"T-l
200 PRINT" ($";:GOSUB500: PRINT" TO $"; :L=T-l;GOSUB 500:PRINT")"
210 PRINT" [DOWN] SET UP WITH LENGTH 9, 2 DECIMAL PLACES, AND LEADING SPACES.
250 END
497 REM
498 REM
499 REM ### ONE LINE DECIMAL TO HEX CONVERTER ###
500 L=L/4096:FORJ=1T04:LX=L:L$=CHR$(48+LX-(LX>9)*7):PRINTL$;:L=16*(L-L%):NEXT:RETURN

READY.

******* BASIC 4 *******

7 DATA 0,32,152,189,32,147,207,32,-148,32,29,187,96
10 PRINT "[CLEAR] [RVS] R0M4 RELOCATING 'PRINT USING' ROUTINE

******* BASIC 1 *******

7 DATA 0,32,184,204,32,175,220,32,-148,32,39,202,96
10 PRINT "[CLEAR] [RVS] ROMl RELOCATING 'PRINT USING' ROUTINE "

20 T = PEEK(134) + 256*PEEK(135) : REM T IS CURRENT TOP OF BASIC MEMORY
110 POKE 130, Z : POKE 132, Z: POKE 134,

Z

120 POKE 131, X%: POKE 133, X%: POKE 135, X%

Programming the PET/CBM 117- 5: BASIC keywords

R0M4 RELOCATING 'PRINT USING' ROUTINE

SYS (32755) FOLLOWED BY ANY NUMERIC
EXPRESSION PRINTS THE FORMATTED VALUE,

KEEPING THE CURSOR ON THE SAME LINE.

DECIMALS ARE TRUNCATED; ROUND TO NEAREST
WITH +. [0][0]...[0]5 IF REQUIRED

POKE 32602,1 FOR DECIMAL, FOR INTEGER

POKE 32603 TOTAL LENGTH OF OUTPUT - 1

POKE 32604 NUMBER OF DECIMAL PLACES
POKE 32605 FILLER CHARACTERS
POKE 32700 LEADING CHARACTER WHEN +VE

SAVE FROM 32602 TO 32767
($7F5A TO $7FFF)

SET UP WITH LENGTH 9, 2 DECIMAL PLACES,

AND LEADING SPACES.

This example shows the effect of running the routine with a 32K machine
containing no machine-code in the top of memory. The screen output should

appear exactly as shown. The routine occupies 166 bytes just below the

screen RAM. Instructions, with the relevant memory locations, are shown,
and may be noted by the programmer for future use. Note that this routine

is protected in memory by the loader; if the program is stored and reloaded,

it will need to be memory-protected, and also of course must not overwrite

other routines. It is set up to print a string of length 9, in decimal format,

(so integers appear with '.00' at the end) and with leading spaces. So:-

SYS (32755) 1/3 prints .33

POKE 32604,4 sets the number of decimal places to 4; now
SYS (32755) SQR(12) prints 3.4641

POKE 32700, ASC("$") makes the leading character for positive numbers the $:

SYS(32755) 123+10 prints $133.0000

Demonstration program: To make the POKEs more comprehensible, I have used
meaningful variable names. The actual POKE values will differ for non-32K
machines. Note the last line of formatted printout, which is exactly what will

appear on a screen or any printer. If an 'E' is present in the output, this

routine does not attempt to process it, but prints it verbatim.

PRNT=32755 : SWITCH=32602 : LNGTH=32603 : DECPTS=32604 : CHAR=32605 :LDGCHAR=32700
5 FOR J = -10 TO 100 STEP 10: PRINT
10 POKE SWITCH, 0: POKE LNGTH.4: POKE CHAR, 42: POKE LDGCHAR.42: SYS(PR)J
20 POKE SWITCH, 1: POKE LNGTH.7: POKE CHAR, 32: POKE LDGCHAR,32:

POKE DECPTS.4: SYS (PR) 1/(1+J)
30 POKE DECPTS.2: POKE LDCHAR, ASC("$") : SYS(PR)100*(l+J/100)+.005
40 POKE SWITCH, 0: POKE LDGCHAR.32: POKE LNGTH.7: SYS(PR) J*J*J
50 PRINT " ";: POKE SWITCH, 1: POKE LDGCHAR,48: POKE CHAR, 48:

SYS(PR)SQR(ABS(J))
60 NEXT

**-10 - .1111 $90 . 00 -1000 00003.16
****0 1 .0000 $100.00 00000.00
***id .0909 $110.00 1000 00003.16
***20 .0476 $120.00 8000 00004.47
***30 .0322 $130.00 27000 00005.47
***40 .0243 $140.00 64000 00006.32
***50 .0196 $150.00 125000 00007.07
***60 .0163 $160 . 00 216000 00007.74
***70 .0140 $170.00 343000 00008.36
***80 .0123 $180.00 512000 00008.94
***90 .0109 $190.00 729000 00009.48

**100 9 .9009901E-03 $200.00 1000000 00010.00

READY.

Programming the PET/CBM -118- 5: BASIC keywords

READ
BASIC program data input command

PURPOSE: Reads data stored in DATA statements. Each READ fetches one item
of data and assigns it a variable name. Originally this command was the
primary means by which a program obtained its data, which the machine
accepted from punched cards.

Syntax: READ must be followed by a variable, or a list of variables separated by
commas. These may be integer, string, or numeric, and can be arrays. If
the type of variable does not match the corresponding DATA, this can be
detected only at run time, and will cause a type mismatch error.

Modes: Direct and program modes are both valid. Direct mode requires the
presence of a program containing data statements in memory, otherwise an
?OUT OF DATA ERROR message appears. (This is what happens when
'READY.' is under the cursor and return is pressed).

Examples: DATA 154: READ X: DIM X$(X) : FOR J=l TO N: READ X$(J) : NEXT
Where the total amount of data is not fixed , a routine like this may be
valuable: the first item of data, which will require periodic updating, holds
the number of current data items; an array is dimensioned with this number
and therefore capable of holding all the items; finally, the data is read
directly into the array in a loop.

50 READ MC%: IF MC%<0 THEN ADDRESS=MC%+T: HI%=AD/256: LO%=AD-256*HI%

This example also shows how special values can be used as indicators that
special processing is required. In relocating loaders, most machine code
bytes are straightforward POKEs; only absolute addresses vary with the
situation of the code. A minus sign, holding the difference between (say,
as here) the top of memory after relocation and the position within the
code, is a signal to compute the low and high bytes needed.

FOR L=l TO 10: READ X$: PRINT X$: NEXT

This direct-mode line reads the next 10 data items from the stored program
and prints them in a column on the screen.

Notes: [1] This routine shares the ROM routines of INPUT and GET, and has a
lot in common with them. The statement READ AA%,B,N$(6),C(20) is valid,
and provided that the DATA is stored to correspond, will execute success-
fully. If it is not, a type mismatch error will be printed; this is caused by
something like READ X when the data pointer indicates, say, NW3. READ
with an integer variable rounds down floating-point numbers. Generally,
READ X$ will give no trouble, and will read any data; but it can be good
to check the number of numeric data items by reading into a numeric
variable. No evaluation is carried out by this routine, any more than GET
or INPUT; DATA 15*1.25 can be read only as a string.

[2] Mismatches cause ?SYNTAX ERROR, but in the DATA statement line.
A similar bug occurs when a function definition is incorrect; in this case
too the associated line is wrongly flagged as containing the error.

Abbreviated entry: rE Token: $87 (135)

Operation: The elaborate routines shared by GET, GET#, INPUT, INPUT # and
READ are distinguished within the routine by flags: a special location
($0B; $62 in BASIC 1) holds #$98 for READ, #$40 for GET, #$00for INPUT.
Thus READ is signalled by the N bit, GET by the V bit, and INPUT by
the Z bit. Also two variable locations check for mismatches: $07 has #$FF
for a string, #$00 if numeric; $08 has #$80 for an integer, #$00 for floating
point. ($5E, $5F in BASIC 1). READ uses a routine which scans BASIC state-
ments - not lines - searching for DATA tokens. All the ROMs process
this routine in roughly the same way.

ROM entry points :bASIC1:$CB24 (52004) BASIC2:$CB07 '(51975) BASIC4:<$BC02 (48130)

Programming the PET/CBM -119- 5: BASIC keywords

REM
BASIC remark command

PURPOSE: Permits comments to be included in BASIC programs. These comments
can in general be LISTed with the program, but are ignored by the program
during execution.

Syntax: REM may be followed by any characters, including :, which in this case

does not function as a statement separator. Everything after REM and before

the next line is ignored.

Modes: Direct and program modes are both valid.

Examples: 7000 REM *** main control loop ***

7003 GOSUB 51000: REM LOWER MEMORY TO ALLOW ROOM FOR 2 BUFFERS
7006 GOSUB 59000: REM PRINT INSTRUCTIONS AND AWAIT SPACE BAR

7009 GOSUB 50000: REM SET UP NUMERALS, ARRAYS, STRINGS, VARIABLES
7012 GOSUB 57000: REM PRINT SCREEN FOR PARAMETER INPUT

30000 REM

** MOVE TO TOP OF NEW PAGE AND PRINT TITLE **

NP$="" :F0RLS=59T062 :NP$=NP$+CHR$(PEEK(LT+LS)

)

: NEXT :REMSUB90 :0$(1)=NP$

The first example shows the most common use of remark statements, making
the functions of a program clearer than they would otherwise be. A block
of REM statements may be written before a program or subroutine, giving
very detailed explanations of the working. See elsewhere in this book for

examples. Line 30000 illustrates one of the many tricks available with REM,
which rely on the fact that syntax after the REM is unimportant. Here, 2

carriage return characters have been POKEd into the comment statement

,

which therefore prints its message onto a new line. REM is sometimes usable
in direct mode; the last example is a line taken from a program, with its

linenumber erased so it will run in direct mode; the REM near the end of

the line prevents execution of an unwanted part of the code.

Notes: [1] LIST may produce strange effects with REM. Unshifted alphanumerics
after REM appear as ordinary text, but shifted characters (unless within
quotes) are interpreted as tokens and converted into reserved words .often

expanding the LISTed line a great deal. Other characters - clear screen,
form feed,cursor down, and so on - can, as we've seen, be incorporated
into comments: for programs to do this, see Chapter 2. 7SYNTAX ERROR
is caused on LIST, and the listing will stop, if shift-K (BASIC l),shift-L
(BASIC 2), or CHR$(219) in BASIC 4, are included in a REM statement.
The 8032 keyboard does not possess chr$(219), which is shift- [.

[2] If your intention is to remove remarks from the finished program, it

may be worth reserving linenumbers (say) ending 6-9 for REMs, and never
branching to these lines with GOTO or GOSUB.

Abbreviated entry: None

Token: $8F (143)

Operation: This routine scans for an end-of-line zero byte; when this is found,
the Y register holds the number of bytes offset from the current CHRGET
position . Y is transferred to the accumulator and added to CHRGET , so
program control is transferred from REM to the next BASIC line.

This routine is embedded in the middle of IF, so that, should a condition
be false, the equivalent of REM is carried out - i.e. the remainder of the
line is ignored. DATA is a similar routine, except that, in addition to the
end-of-line byte, it accepts a colon; so it skips to the next statement, not
the next line.

ROM entry points:

BASIC 1: $C833 (51251) BASIC 2: $C843 (51267) BASIC 4: $B8C6 (47302)

Programming the PET/CBM -120- 5: BASIC keywords

RENUMBER
BASIC system command unavailable directly in CBM BASIC

PURPOSE: Changes linenumbers of a BASIC program non-manually, either to give
an improved appearance or to permit additional lines to be inserted. Other
reasons may exist, too: a range of linenumbers (say, all over 60000) may be
required to permit successful appends; a program containing very low line
numbers runs (slightly) faster than otherwise; and so on.

Versions: Many versions of RENUMBER exist. At the time of writing none has all

the features required by a professional utility. This is odd, since for
example Apple has had a good renumber routine for years. The earliest
versions include J Butterfield's BASIC program and Bill Seiler's machine
code routine.* Later, Toolkit included a routine similar in effect to Seiler's
which renumbers only in constant increments. (So lines typically emerge as
100,110,120,...). Eventually, so-called '4-parameter' renumbers were
written, to use a format like this:

RENUMBER 999,1500,1000,10
which would convert lines 999-1500 into 1000,1010,1020,... Ideally a renumber
should also resequence, so that for example a subroutine could be shifted
to a new position in a program. None seem to be available that do this.

Operation: This command is more difficult to program than may appear at first

sight. The problems lie in modifying the references within lines. As this
short program shows, there is no problem in changing the linenumbers
themselves:

59999 REM*** TINY RELOCATABLE RENUMBER **
60000 A=1025:B=256:PRINT"LO/HI LINES, NEW START & INCREMENT :": INPUT L,H,S,I
60005 FOR R=0 TO 5E4.-IF PEEK(A+2)+B*PEEK(A+3)<LTHENA=PEEK(A)+B*PEEK(A+l) : NEXT
60010 FOR R-0TO5E4: X=S+R*I: IF A=0 OR PEEK(A+2)+B*PEEK(A+3)>H THEN END
60015 P0KEA+3,INT(X/B): P0KEA+2,X-(INT(X/B))*B: A=PEEK(A)+B*PEEK(A+1) : NEXT

BASIC holds linenumbers as ASCII strings, so these have to be sought and
changed. At least two passes are necessary, the first to store current
linenumbers, the second to change references. Since GOTO 5000 may be
renumbered GOTO 10000, lines must be expanded to accommodate extra
bytes. (Some inferior routines require lines all to be written with five
figures, GOTO 01000 style). The syntax generally has to be assumed to
be correct. IF X=0 THEN 10=X is syntactically wrong, but might be renumb-
ered as though 10 were a linenumber. Some instructions may contain line

references which only the programmer can deal with; for example, SYS or
USR commands/ functions, or DATA statements, or computed GOTOs and
GOSUBs written to include true computed destination lines.

These esoteric problems aside, all renumbers need to deal with:
i. IF . . . THEN linenumber.
ii. GOTO linenumber and GO TO linenumber. (In BASIOl these differ).
iii. GOSUB linenumber.
iv. ON ... GOTO and ON . . . GOSUB have a list of lines to be changed.
v. LIST with optional linenumbers and RUN with optional number are the

only other commands which include linenumbers among their parameters.
RUN linenumber is more important than LIST,

vi. If the destination line doesn't exist, this must be flagged as an error,
vii. The renumbered lines must be checked for overlap with original lines.
viii.The renumbered lines may be outside the valid range,
ix. Possibly the new program or one of its lines may become too long.

Fortunately this is very unlikely.

*Slightly misprinted in Micro (first line should hold T=0), and in PET User Notes
(Nov-Dec. '78), respectively. Others, e.g. IPUG, have their own versions. Power,
Disk-0-Pro, etc. have four-parameter renumberers.

Programming the PET/CBM -121- 5: BASIC keywords

RESTORE
BASIC data command

PURPOSE: Resets the data pointer within a program so that data stored in the

program is READ from the earliest DATA statement. Data will then be

READ sequentially until a further RESTORE.

Syntax: Restore has no other parameters.

Modes: Direct and program modes are both valid.

Examples: 15000 REM RELOCATABLE DATA ROUTINE FOR HASHTOTAL
15010 DATA HASHTOTAL, 169, 0,141 ,202, 3, 162, 1,160, 20

15050 RESTORE: FOR L=0TO9E9: READ X$: IF X$<> "HASHTOTAL" THEN NEXT

15060 FOR L=971 TO 1016: READ LS: POKE L,LS: NEXT

2000 READ X$: IF X$="END" THEN RESTORE

Program lines 15000-15060 demonstrate a method to ensure that DATA and
READ routines always correspond correctly. All that's needed is a name
for the routine, included at the start of the data, which acts as a label

and can be searched for. With only a few routines, this method is not

necessary. But with a great many it may be valuable.

Line 2000 is an analogous, but different, situation where there is DATA
which is required to be recirculated: perhaps in a games program with

stored 'random' names or objects. If the last item of data is END, and
each READ tests for it as line 2000 does, there will never be an ?OUT OF
DATA ERROR.

Notes: [1] NEW, RUN, and CLR call RESTORE as an automatic part of their

functioning. RESTORE in direct mode followed by RUN therefore does

nothing which RUN on its own would not do. However, RESTORE indirect

mode followed by GOTO linenumber allows separate control of DATA and
program variables, and can be useful sometimes.

[2] It is possible to set the pointer, not to the start of BASIC, but to

point at other items of DATA. See G. Yob's Creative Computing article on
this theme, also in Printout of Oct. 1980.

Abbreviated entry: reS

Token :$8C (140)

Operation: Decrements and stores the contents of ($28) - start of BASIC -

into ($3E) - DATA pointer. In BASIC 1, from ($7A) into ($90).

Connoisseurs of small programming points might like to compare this with a

routine to reset GETCHR. This routine, just after CLR, adds $FFFF to the

start of BASIC, saving 1 byte over RESTORE, which subtracts 1.

ROM entry points:

BASIC 1: $C70D (50957)

BASIC 2: $C730 (50992)

BASIC 4: $B7B7 (47031)

Programming the PET/CBM -122- 5: BASIC keywords

RETURN
BASIC command

PURPOSE: Changes program flow of control to the statement immediately after the
most recent GOSUB statement. These two commands therefore permit sub-
routines to be automatically processed without the need to keep a note in

the program of the return addresses.

Syntax: RETURN stands alone with no parameters. It may only be followed by
spaces (these are optional) and must be followed by either a colon or an
end of line. If no GOSUB corresponds to a RETURN - for example, when
RETURN is RUN - the error message ?RETURN WITHOUT GOSUB appears.

Modes: Direct and program modes are both valid.

Examples: 10 INPUT L: GOSUB 10000: GOTO 10: REM TESTS SUBROUTINE AT 10000

10000 L=(INT((L-.005)/RQ)+l)*RQ: REM RQ=ROUNDING QTY; .01,. 05,. SO &c
10010 PRINT L; : RETURN

This example shows a test routine which allows the user to input any"number
and responds with the result of the subroutine's processing. Here, we have
the first stage of a BASIC round-and-format routine which rounds up by an
amount varying with parameter RQ. The next stage adds decimal points to
integers, and generally tidies up, but the point here is that the subroutine
is tucked away in a completely different part of memory, but the RETURN
automatically transfers control back, to line 10 in this case.

50 GO TO 1000
100 REM *** MORE PROGRAM ***

270 GOTO 1000
300 REM *** MORE PROGRAM ***

1000 REM SUBROUTINE WITHOUT A 'GOSUB'

1010 REM *** PROCESS DATA WITHIN THE ROUTINE ***

1100 REM GOTO 100? GOTO 270? GO ELSEWHERE??

This second example is an attempt to explain the difficulty of having no
GOSUB/ RETURN commands. What is handled effortlessly with these comm-
ands becomes a problem without them.

Notes: [1] GOSUB and FOR share the same method of using the stack: data is

pushed on the stack in either case, and the stack pointer is left pointing

to a token, which may be either FOR or GOSUB. This double use doesn't
cause conflict unless certain combinations of BASIC are tried. This for
instance causes ?NEXT WITHOUT FOR ERROR:

10 GOSUB 1000: NEXT J
1000 FOR J=0 TO 10: RETURN

Occasionally, a FOR variable may be erased like this; but it is an easy
programming error to avoid.

[2] RETURN can sometimes be used in direct mode; for example:
10 GOSUB 100: PRINT "RETURN" / 100 END. This is not often useful.

[3] This command has no connection with the carriage return key.

Abbreviated entry: reT Token: $8E (142)

Operation : After validating the command, the routine to check FOR and GOSUB
tokens is called: a flag is set before entry to show that RETURN is the
command, not NEXT. FORs are removed and $8E tokens looked for; if none
is found, 7RETURN WITHOUT GOSUB is printed. When found, the BASIC
linenumber and CHRGET pointer are recovered, as they were left by GOSUB.
The routine now merges with DATA. So it searches for the next statement
after the pointer; thus, ON X GOSUB 10,20,30:PRINT X ... RETURN causes
the remaining list of variables to be ignored; the colon, or if no colon the

end of line zero byte, marks the point at which execution recommences.

ROM entry points: BASIC1:$C7CA (51146) BASIC2:$C7DA (51162) BASIC4:$B85D (47197)

Programming the PET/CBM -123- 5: BASIC keywords

RIGHTS
BASIC string function

PURPOSE: Extracts a substring, consisting of the rightmost characters, from a

string. This function, with MID$, RIGHTS and the string concatenation

operator +, is used in text and string processing in BASIC.

Syntax: RIGHT $(string expression, arithmetic expression). The string expression

must be valid, i.e. made up from string functions and /or literals and /or

string variables. Its length cannot exceed 255. The maximum value of the

arithmetic expression is 255; the minimum value depends on the ROM.
BASICs prior to 4 will not accept a value of zero. BASIC 4 has been
modified to accept zero, returning the null string with RIGHT $(X$,0).

Modes : Direct and program modes are both valid

.

Examples: PRINT RIGHTS ("REAGAN", 2) :REM RESULT IS AN
10 PRINT RIGHT$(" "+STR$(N) , 10) : REM ANOTHER TAB(

99 REM ** W$ HOLDS TARGET WORD; G$=GUESS LETTER; S$=STRING SO FAR

100 FOR J=l TO LEN(W$): S$=S$+"-": NEXT: REM IF W$=HELL0, S$=

200 FOR J=l TO LEN(W$): IF G$=MID$(W$, J, 1) THEN GOSUB 1000

210 NEXT

1000 S$=LEFT$(S$,J-1) + G$ + RIGHT$(S$,LEN(S$)-J) : RETURN

51220 CC$="[D0WN] [RIGHT] [DOWN] [RIGHT] [DOWN] [RIGHT]"

The first example shows a straightforward application of this function. The
second is another version of a TAB(style routine to help align printed

output

.

The object of the third example, taken from a word game ('Hangman'), is

to illustrate complicated string handling. It is fairly obvious that any new
string can be built up from existing strings by subdividing as far as is

necessary using MID$ (or the related LEFTS and RIGHTS functions) and
putting the bits together with +. Line 1000 is a subroutine which does
this, breaking S$ into two parts and connecting them with the correctly

guessed letter in between. If G$="L", the loop in line 200 calls subroutine
1000 twice, when J=3 and J=4. The result is to convert " " into "—LL-'

or "H " into "H-LL-" or whatever. A similar scanning process can be
applied to many problems in word guessing, multiple-choice questions,

foreign language quizzes, and so on. See Chapter 4, section 4.1.15.

Lastly, since string functions may be used in PRINT statements, PET's
screen formatting characters can be processed in this way too; line 51220

defines CCS so that PRINT RIGHT$(CC$,2*N) moves the cursor diagonally

down the screen when N>0 and N<4. (It's only a very simple example!).

Notes: [1] This diagram should make the operation of this function clear:

s T R I N G
6 5 4 3 2 1Position from right:

PRINT RIGHT$(X$,4) prints the four rightmost characters: RING.

[2] RIGHT$(X$,N) can be replaced by MID$(X$, LEN(X$)-N+1). A special

case is the expression RIGHT$(X$, LEN(XS)-l) which removes the leading

character from a string; MID$(X$,2) performs the same function. BASIC<4
rejects a zero length parameter; this conversion therefore can be useful in

avoiding clumsy code. Line 1000, which fails withBASIC<4, shows this.

Abbreviated entry :rl (includes $) Token: SC9 (201)

Operation: The string parameters are recovered from the stack. Then a 2's

complement routine computes the length of the (original) string minus the

parameter. This value (one byte) is held in A. Now LEFTS is entered and
processing proceeds as for LEFTS, except that A does not contain #0.

ROM entry points :BASIC1:$D604 (54788) BASIC2:$D606 (54790) BASIC4:$C862 (51298)

Programming the PET/CBM -124- 5: BASIC keywords

RND
BASIC arithmetic function

PURPOSE: Generates a pseudo- random floating-point number in the range 0-1

excluding the limits. RND can mimic statistical data in simulations, help

generate test data, and introduce unpredictability generally.

Syntax: RND (arithmetic expression). The arithmetic expression may take any
value within the valid range of floating-point numbers (+1.7 E 38 approx.).
Only the sign influences the result, not the magnitude.

Examples: 100 FOR J=0 TO 3000*RND(1) : NEXT : REM DELAY OF TO THREE SECONDS
100 N=70: FOR J=0 TO N*RND(1) : READ X$: NEXT: REM READS 1 DATA ITEM

100 FOR J=l TO 9: P= PEEK (32809 + RND(1)*920) : IF PEEK(P)=32 THEN
POKE P.176+J : REM IF A SCREEN LOCATION IS EMPTY, PUT RVS 1-9 IN

110 NEXT

100 IF RND(1)<.1 THEN PRINT "A VERY GOOD MORNING TO YOU"

PRINT "[CLEAR]": 1=33228: GOTO 10
1 J=-41: RETURN/2 J=-40:RETURN/3J=-39: RETURN/4J=-l :RETURN

5 J=l: RETURN/6 J=39 : RETURN/7 J=40 : RETURN/8 J=41: RETURN
10 ON RND(1)*8+1 GOSUB 1,2,3,4,5,6,7,8
20 M=I: I=I+J
30 IF K32768 THEN 1=1+1000
40 IF I>33767 THEN 1=1-1000
50 POKE 1,81: POKE M,32: GOTO 10: REM 'BALL' AND BLANK POKED IN

The first and second examples use a loop in which the final value varies

with the random number selected: this causes a random delay in the first

example (usable perhaps in a reaction-time game) and the selection of a

random string in the second, assuming a list of 70 data items exists in the
program. (Usable in a foreign-words quiz or guessing game). The next
example is a short program, designed to place 9 values onto a 40-column
screen, at random, but ignoring the top and bottom lines. Still another
line 100 follows, and this one has a one in ten chance of printing its greet-
ing. Finally, we have a comparatively long program, which relies on RND
to pick one of eight subroutines. (The slash marks are there to save space).
It is a simple version of a 'random walk'.

Notes: [i] RND generates determinate numbers, not 'random' numbers, if indeed
these can exist. The sign of the argument (+,0,or-) affects the numbers
computed. A special location holds the last random number: at switch on
this has a constant put into it, and every subsequent call of RND resets it.

Any constant value is called a 'seed'. RND(+ve) computes the next value in

an infinite sequence. It is like taking the remainders after dividing 10 by 7;

the pseudo-random sequence 3,2,6,8,5,7,1, ... is formed and continues
indefinitely. After about 45000 repetitions I have the impression that the CBM
series lose their 'randomness' and become more predictable. If the seed is

fixed, the subsequent random numbers can be repeated; and RND(-ve) puts
a function of the accumulator into the seed area. So X=RND(-1): PRINT
RND(l): always prints the same value, and is the start of a repeatable
sequence. RND(O) loads the floating-point accumulator from the VIA timers,
two of which change at the same frequency as the chip (1 MHz). RND(O)
therefore is not repeatable, and makes a good seed value. However, it may
not be suitable for repetitive programming: try it in the random walk. Also
BASIC 1 doesn't work correctly with RND(O). RND(-TI) therefore is a good
function to use when a non-repeatable sequence is aimed at.

[2] A random number in the range A-B, excluding the exact end limits, is

generated by: A + RND(i)*(B-A) . A special case is l + rnd(1)*2 which
generates random numbers from -1 to +1. For integers from A% - B%,
A% + lNT(RND(l)*(B-A+l))covers the range, including both limits.

ROM entry points :BASIC1:$DF45 (57157) BASIC2:$DF7F (57215) BASIC4:$D229 (53801)

Programming the PET/CBM -125- 5: BASIC keywords

RUN
BASIC system command

PURPOSE: Executes a BASIC program in memory either from the beginning or

from any linenumber. Previous values of variables are all lost on RUNning.

Syntax: RUN [linenumber]. The linenumber is optional. See also note [1].

If a line of the specified linenumber doesn't exist, ?UNDEF'D STATEMENT
ERROR is printed and nothing more happens.

Modes : Direct and program modes are both valid.

Examples: RUN :REM CLEAR variables AND RUN
RUN 1000 :REM CLEAR VARIABLES AND RUN FROM LINE 1000

These direct mode commands, as typed at the keyboard, execute BASIC.

5000 INPUT "RETURN TO START" ;YN$: REM APPEARS AS 'RETURN TO START?'
5010 IF LEFT$(YN$,1)="Y" THEN RUN
10000 LOAD "NEXT TAPE PROGRAM": REM RUN IS IMPLICIT IN THIS

RUN may be called within a program; all variables and arrays are cleared,

so this is useful if restarting BASIC from scratch. Line 10000, which uses
LOAD from within a program, implicitly RUNs the new program too.

Notes: [1] When RUN is not followed by a colon or end-of-line,it is presumed to

be followed by a line number which is evaluated by a part of the GOTO
routine. The linenumber is therefore not completely validated (it need not be
an arithmetic expression). Consequently, RUN X and RUN "PRG" are both
equivalent to RUN 0. And RUN 25QQ is equivalent to RUN 25.

[2] RUN does not load and run, like (say) Apple. The shift-stop key has
this function. In BASICs 1 and 2, this key inserts the string "LOAD[RET-
URN]RUN[RETURN]" into the keyboard buffer, which causes the usual tape
loading sequence to be activated, starting with the request to 'PRESS PLAY
ON TAPE*'. BASIC 4 uses the string "dL"*[RETURN]run[RETURN]" which
loads and runs the first disk program.

[3] Not all RUNs share Microsoft's conflation of CLR with RUN. Some Sharp
BASICs, when RUN, retain their old variables, so that CLR:RUN would be
their equivalent of Microsoft's RUN command. Conversely, to run Microsoft
BASIC without resetting all the variables requires GOTO linenumber.

[4] If location 1024 (and end of line bytes generally) hold some non zero
byte, RUN will stop with a 7SYNTAX ERROR.

[5] If the end-of-program pointers are wrong, typically through loading one
program from within another , RUN , either implicitly on loading or explicitly,

may corrupt the program as soon as variables are given values . See OLD

.

Abbreviated entry: rU Token: $8A (138)

Operation: RUN alone sets GETCHR's pointer to the start of BASIC-1, then drops
into CLR, which erases data, resets the DATA pointer, aborts open files, and
resets the stack ; it saves the top return address on the stack , which points
to the RUN routine itself. RUN linenumber also CLRs, but without resetting
GETCHR; then finds the line, and enters the RUN routine as before.

Programs are executed by a loop which performs single statements. The loop
has this structure: (i) Test stop key, (ii) Store CONT pointer, (iii) Test
for zero byte: if found, either end the program, or update the stored current
linenumber and CHRGET, (iv) Get the current character, (v) Execute one
statement, (vi) Start over at the beginning of the loop.

The routine can be rewritten by a programmer, excluding, for example, the
testing for the stop key which is otherwise performed before each statement.
Some timesaving is possible in this way. A few fast RUN programs are on sale.

ROM entry points:

RUN KEYWORD :BASIC1:$C775 (51061) BASIC2:$C785 (51077) BASIC4:$B808 (47112)

EXECUTION: BASIC1:$C6B5 (50869) BASIC2:$C6C4 (50884) BASIC4:$B74A (46922)

Programming the PET/CBM -126- 5: BASIC keywords

SAVE
BASIC system command

PURPOSE: Writes a consecutive block of RAM to an output device, usually disk
or tape. Normally this is a BASIC program, which is saved with a name for
easy retrieval, although a name is optional with tape. The converse process
to SAVE is LOAD.

Syntax: Identical to LOAD, including the difference between tape and disk SAVE,
where a name is compulsory with disks. Unlike LOAD, the secondary address
has a purpose: a tape program, saved with secondary address 2, writes an
end-of-tape block so the cassette won't read past it. If the device number
is or 3 (keyboard or screen) 7DEVICE NOT PRESENT, rather oddly , appears

.

If a file of the same name exists on disk, ?FILE EXISTS ERROR will result.

Modes: Direct and program modes are both valid. When using tape, SAVE ["NAME"]
is followed in both modes by PRESS PLAY AND RECORD ON TAPE#1 or 2.

WRITING [NAME] also appears in direct mode only. (Unless the cassette was
already running).

Examples: SAVE
SAVE "PR0G006",2,2

SAVE "",8

SAVE "0:PR0G=5",8
SAVE "§0:PR0G",8

REM SAVES THE BASIC IN MEMORY ON TAPE 1 (NO NAME)
REM SAVE BASIC AS 'PROG006' ON CASSETTE #2 WITH EOT

REM NO NAME . . . GIVES 7SYNTAX ERROR
REM SAVE 'PR0G=5' ON DRIVE
REM SAVE-WITH-REPLACE 'PROG' ONTO DRIVE 1*

SAVE CHR$(8)+"TEST RATE"+CHB$(146) , 1 :REM NAME APPEARS IN REVERSE
12000 SAVE "1:TEST"+TI$,8: REM NAME SAVED WITH UNIQUE TIME ATTACHED

These CBM tape and disk examples are (I hope) reasonably easy to follow.
The tape examples show a full default (equivalent to SAVE "",1,0) and an
example which writes end-of-tape after saving the program . The disk examples
show the slightly more complex syntax needed, including the optional disk
drive number and the mandatory device number 8. The string is also mandat-
ory. The third disk example shows the 'save-with-replace' variation of disk
save, which avoids the ?file exists error. This form of SAVE is however
suspected to contain a bug ; use it at your own risk . The final examples are
intended to emphasize the fact that the string parameter is computed: the
first example has its name saved in reverse text, the second is a program-
mode SAVE which may be used to store successive versions of BASIC during
development of a program; the time parameter shows when SAVE occurred.

Notes: [1] .s "NAME", 01, 027A, 0300 and .s "l

:

name", 08, 027A, 0300 are cassette #1 and
CBM disk drive 1 versions of machine-code saves from the monitor. These
use almost exactly the same routine as SAVE and in fact the same result can
be achieved within BASIC. Compu/think uses $S,l, "NAME", "027A", "0300".
With CBM BASIC , this routine is necessary

:

SYS (62526) "0: HELLO", 8: REM GETS THE PARAMETERS FOR NAME & DEVICE
POKE 251,L0-INT(L0/256)*256: POKE 252,L0/256: REM LOW ADDRESS IN (FB)
POKE 201, HI-INT (HI/256) *256: POKE 202, HI/256: REM HIGH ADDRESS IN (C9)
SYS 63140 : REM ENTER 'SAVE' SLIGHTLY LATER THAN USUAL.

This version is BASIC 2: for BASIC 4, substitute 62589 and 63203 for the
SYS addresses. Remember to make the end address a byte longer than it

should be: CBM's save excludes the final byte. BASIC 1 needs 62515 and
63153 as SYS addresses, and (F7) and (E5) for its low and high addresses.

Chapter 13 discusses other modifications of SAVE and LOAD

.

[2] There is no readback check with tape. If 'Play' is pressed, but not
'Record', SAVE appears to operate correctly, but in fact nothing is written.

[3] BASIC 4 and BASIC 2 with 'Disk-o-Pro' have DSAVE too (q.v.)

There seems to be no definitive statement available on the bugs in SAVE with
replace, which saves to disk and erases the previous file of the same name, using
the extra parameter '©'

. Some commercial software does use it; some people swear
by it, others swear at it! SCRATCH then SAVE is safest.

Programming the PET ICBM -127- 5: BASIC keywords

Abbreviated entry: sA

Token: $94 (148)

Operation: The outline that follows explains how SAVE works. BASIC 1 is similar

to this schema, but its detailed arrangement, and its working storage areas,

differ

.

GET PARAMETERS FROM BASIC. ST is set to zero. Locations $D1, $D3, $D4,

and ($DA) hold string length, secondary address, device number, and, if

the string is not null, a pointer to the start of the string in BASIC. Where

these parameters aren't specified, string length defaults to 0, secondary

address to 0, and device number to 1.

MOVE BASIC START AND END POINTERS TO (FB) AND (C9). BASIC'S
pointers in ($28) and ($2A) usually hold $0401 and some higher value; the

contents of RAM will be SAVEd between these two locations. The monitor's

save with .S carries out the identical functions to these two routines, then

enters SAVE at the next point:

DEVICE NUMBER CHECK. A device number of zero or three generates a

?DEVICE NOT PRESENT ERROR. SAVE "HELLO",, 2 for instance does this.

(These devices - in case you've forgotten - are the keyboard and screen).

SEPARATION INTO CASSETTE AND IEEE PROCESSING. Devices numbered

1 and 2 are cassettes, and are processed by a separate routine from IEEE

devices 4-15.

IEEE PROCESSING .

SECONDARY ADDRESS/ NAME CHECK. Secondary address is set to #$61,

equivalent to 1, to enable writing to the disk directory. A string parameter

of zero length is rejected with 7SYNTAX ERROR. (This provides incomplete

validation, because a string "1:" or ":" may still be sent).

WRITE NAME AND START ADDRESS TO IEEE BUS. Firstly, the string is

sent character by character down the bus, after handshaking has been

established. LISTEN plus the secondary address (overwritten so that it is

always 1) are sent. (FB) is moved to (C7); this address is used to load,

compare and increment from now on. (C7) points to the current RAM location

being sent, (C9) holds the final location which is not sent. The low and high

bytes of the start address, C7 and C8, are sent on the IEEE. (Then, when
LOAD reverses this process, it knows which RAM address to store the bytes

from).

LOOP, SENDING SINGLE CHARACTERS ALONG IEEE BUS. The sequence of

activities here is: (i) Compare address (C7) with (C9); if they are now
equal, exit without sending the final character, (ii) Load the accumulator

with the byte and send it; (iii) test the Stop key; (iv) increment the address

in (C7); (v) continue with loop - provided that (C7) did not increase from

$FFFF to $0000.

EXIT. Finally, LISTEN, the secondary address, and UNLISTEN are sent.

CASSETTE TAPE PROCESSING .

PREPARE TO WRITE TO TAPE. This sets (D6) to $027A or $033A depending

on the device number, prints PRESS PLAY AND RECORD ON TAPE# 1 or 2,

and, if in direct mode, WRITING plus the optional program name, when a key
on the cassette is detected down.

TAPE WRITE . The accumulator is loaded with #1 and the ROM routine to write

a block (a 'header') called. #1 denotes a program. Then the tape write routine

is called, and finally, if the secondary address was 2, another Tieader* is

written, this time with the type character #5, indicating an end-of-tape block.

See Chapter 8 for more detail on the actual writing to tape.

ROM entry points: SAVE is a "kernel' command; its jump address is $FFD8.

BASIC1::$F69E (63134) BASIC2:$F69E (63134) BASIC4:$F6DD (63197)

Programming the PET /CBM 128- 5: BASIC keywords

SET
BASIC graphics command unavailable directly in CBM BASIC

PURPOSE: Plots a 'p ' *' (in fac * a small square) on the screen at a position
determined by two parameters, which represent horizontal and vertical
distances or X and Y coordinates from some starting point.

Versions: Both BASIC and machine code versions of this routine exist for the
CBM. BASIC usually is too slow. Some versions include straight-line plotting
algorithms- so that lines can be drawn without further calculation. The
resolution is 80 by 50 for 40 column machines, 160 by 50 for 80 columns;
this is useful, but not 'high resolution'. (Many other machines have rather
similar displays: the TRS-80 has 128 by 48, Sharp MZ80K 80 by 50, Sinclair
ZX81 64 by 48). Higher resolution in one direction can be achieved, for
bar charts and similar diagrams, very simply by plotting solid blocks and
adding a final part of a block, which has a resolution of one part in eight.
And approximations to sloping lines can be made with line segments, so a
curve will appear as a series of steps. (There is for example a ROM chip
called. 'PieChip' which does this from BASIC). For more detail on this, see
Chapter 9. The SET here is designed to plot double- density squares only
with a fast machine-code algorithm. When called from BASIC it is still slow.
This is because of the computing time which BASIC takes. However, it is

perfectly usable.*

Algorithm: 'Micro' had an early version of this. Other publications, such as the first

issue of 'Printout', followed. The basis of the method is as follows:
Suppose we use the convention that horizontal (X) coordinates start at the
bottom left of the screen with 0, and vertical (Y) cordinates also start at
the bottom left, with 0, so 0-79 or 159 is the range of X values, and 0-49
is the range of Y values. Taking a concrete illustration, suppose we wish
to plot a white square at (1,1). The complicating factor is that there will

be squares already plotted in the vicinity of (1,1), and since the character
generating ROM only allows one entire character to be changed, the plot
has to take account of the character already present. In our example, this

is the character in the bottom left of the
screen. We can do this with a look-up
table which arranges the screen graphics
characters (16 of them are relevant to our
purpose) in order determined by whichever
quadrants are turned on: we assign an
arbitrary bit position to each quadrant. The

diagram shows how the quadrants are numbered, and the corresponding
order, from lowest to highest, which the graphics characters take.

.0 . 3. 3, & » 56 7 8 qigll 12. 12, lif is

iHnaKHHQBSBSaBHHn
All we have to do is find the screen ASCII value, find its position in the
table, and ORA with 1,2,4 or 8; the result, looked up in the table, gives
the new character to be poked to the screen. Overleaf is a 40-column, and
an 80-column, routine to do just this. Its operation is explained elsewhere.
To use it, POKE 0,X coordinate: POKE 1, Y coordinate: SYS 634 will plot
a square. POKE 729,0 for a black square; any non-zero value gives a white
square. The zero-page locations used are these:

$00=X coordinate; overwritten by X coordinate of screen, 0-39 or 0-79.
$01=Y coordinate; replaced by screen pointer's low byte.
$02=screen pointer's high byte.
$94=remainder after halving both X and Y coordinates. The conflated

remainders are overwritten by 1,2,4 or 8.

Note that $94 is used by the NMI line; if you're using non-maskable int-
errupts you'll need another zero-page (or other) location. BASIC 1 can
substitute $59 near the end of the input buffer.

±,t-

i 4
2 8

*SET is not optimised for speed: a lookup table of screen-line start positions, for
example, could improve the running time. But with BASIC, the difference isn't great.

Programming the PET/CBM -129- 5: BASIC keywords

This monitor listing is appropriate for a 40 column machine running either

BASIC 2 or BASIC 4. See below for (i) 80 column modifications, (ii) BASIC
1 modifications, and (iii) relocation.

Incidentally, it is worth mentioning that the cheapest method of increasing

the dot density - if you know someone with an EPROM blower - is to use a

character generating ROM containing the entire 256 2 by 4 characters. In

association with a hardware device to switch between ROMs, this gives with

an 80-column CBM a resolution of 160 by 100, about 1/3 of Apple's dot

density. Since the 80-column characters are somewhat elongated upwards,
this ought to improve the appearance too. The graphics character set does

include a 4 by 4 character, CHR$(222) in one of the graphics modes. But
it is easy to see that its entire character set equivalent can't be displayed,

because 2^16=65536. 8 on /off alternatives is the maximum obtainable. See

Chapter 9 for further explanation.

PC IRQ SR AC XR YR SP

B780 E455 2C 34 3A 9D FA
(i) 80-COLUMN MODIFICATIONS:

027A A9 00 85 94 A9 (2^,85 02

0282 A5 00 C9 (gO^BO 38 A5 01

028A C9 32 BO 32 A9 32 E5 01

0292 46 00 26 94 6A 26 94 85

029A 01 0A 0A 65 01 0A 0A 26,

02A2 02 0A 26 02 fEA EA EAY85
02AA 01 A6 94 BD (DD 02) 85 94

02B2 A4 00 Bl 01 A2 OF DD (E1 02.]

02BA 02 F0 04 CA 10 F8 60 AD

02C2 (DC 0~2) F0 06 8A 05 94 AA

02CA DO 08 8A 49 FF 05 94 49

02D2 FF AA BD CEI 02) A4 00 91

02DA 01 60(01)f01 02 04 OSlffi
02E2/7E 7B 61 7C E2 FF EC 6C

02EA\7F 62 FC EIFBFEAO

Replace the two indicated bytes by

,#$10 and_#$A0.

"Slid replace the three NOPs by

-0A 26 02.

(ii) BASIC 1 MODIFICATIONS :

Replace all #$94s with #$59s.

(iii) RELOCATION:

The three double-byte pointers marked

on the listing point to the tables at

the end of the routine. The fourth

pointer loads the character which

determines the black/white switch. Each

i>Am SwMck .

—P—!—* must be changed on moving this code.

This short demonstration program will plot a Lissajou figure. Note that non-
graphics characters are ignored - i.e. no plot takes place there.

1000 INPUT "TWO NUMBERS, E.G. 4,7";A,B: FOR J=0 TO 9E9 STEP . 2

1010 X= (1+SIN(A*J)) * 40: Y= (1+C0S(B*J))*25: REM OR 80 FOR X

1020 POKE 0,X: POKE 1,Y: SYS 634: REM OR OTHER SYS VALUE
1030 NEXT

tfuwtfvvwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww tfy wwww yyyyymtif»K ww Maf 3f"ataf KitKltMKKHKlltWiM
aeataeatacat atacatatatat at at ataft atatat aeatatat at atat at at atat at at atat at " atatat m«my atacat aucajt at atat atajt acacaucxacTTtttt TTTTTT T VV T 'V

V

WW 'V

V

"I
1 TTTT Wtt t~~ WW Wt WT tW tt I I II "I"'!"

T TPtF TPTP tPTPt TTT TTTT TTT TtT tt Tt T
¥ ¥¥¥ ***** *** *** *** ** *** *** *** *** *¥ ¥*¥ ¥¥ ¥¥ *¥** *
*** *¥* ***** ** ** *** ** ** *** ** *¥ ***** ¥** *¥*
¥¥ ¥¥ *¥ ¥¥¥ ¥¥¥ ¥¥¥ ¥*¥ ¥* ¥¥ **
*** *¥¥ ¥¥¥¥ ¥¥ *¥ ** ** ** ** ¥¥ ¥¥ ¥¥¥¥ ¥¥* ¥¥¥
¥¥¥ ¥¥ ¥¥ ¥¥ ¥¥*¥¥¥¥¥ *¥¥ ¥¥ ¥¥ ¥¥ ¥¥ *¥ ¥**¥¥¥¥
¥ ¥¥¥ **** ***¥ ¥¥¥¥ ¥¥¥¥ ¥¥¥** ¥¥¥¥ ¥¥¥ ¥¥* *¥¥¥¥*¥ ** ¥¥ ** **¥ ¥¥ ¥ ¥
¥ *** **** ¥* ** ¥* ** **** ** ** ¥ *¥ ¥¥¥¥ ¥¥* ******** *¥ ¥¥ ¥¥ ¥* ¥¥ ¥¥ ** *¥ *¥ ¥¥ ¥¥¥¥¥¥¥
¥¥¥ ¥ ¥ ¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥
*¥¥ ¥** ¥¥¥ ¥¥¥ ¥¥¥ ¥¥¥ ¥¥¥ ¥*¥
¥¥ *¥ ¥* ¥¥¥ ¥*¥ ¥*¥ ¥¥¥ ¥¥
*** *** * *¥ ¥¥ ¥¥ ** ¥* ¥* ** *¥ ¥¥ ¥¥¥¥
¥¥* ¥* ¥¥ ¥¥ ¥¥¥¥¥¥ ** ¥¥ ¥* *¥ ¥¥ ¥¥ *¥ ¥¥¥¥***¥ ¥**¥ ¥*** *¥** ** ** ¥¥*
* ¥¥ ¥¥¥ ¥¥¥ ¥¥¥¥ ¥*¥¥ ¥¥¥¥ ¥¥¥¥¥¥¥¥¥ ¥¥ ¥* ¥¥ *
* *¥ ¥¥¥ ¥¥¥ ¥¥¥¥ *¥*¥ **** *¥¥ ¥¥¥ ¥¥¥ ¥¥¥¥¥¥¥ **** **** ¥¥*¥ **¥¥ *** ¥¥¥¥¥¥
¥¥¥ *¥¥¥¥***¥¥¥¥ *¥ ¥¥ ** ** ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥¥
¥*¥ ¥¥¥ ¥¥¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥* ¥¥ ¥¥ ¥¥ ¥¥ ¥ ¥ ¥ ¥¥¥
¥¥ ¥* ¥¥ ¥¥¥ ¥¥¥ ¥¥¥ ¥¥¥ ¥¥ ¥¥ ¥¥
¥¥ *¥ ** *¥¥ *** **¥ ¥¥¥ ¥¥ ¥¥ ¥¥
¥¥¥ *¥¥ ¥¥¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥** * ¥ ¥¥¥
¥*¥ ** *¥ ¥¥ ¥¥*¥¥¥ ¥¥ *¥ ¥¥ ¥¥ ¥* ¥* ** *¥ ¥¥ ¥¥ ¥¥¥¥*¥¥¥¥ ¥¥¥¥ ¥¥¥¥ ¥¥¥¥ ¥¥¥¥ ¥** ¥**¥¥¥
¥ ¥¥ ¥¥¥ *** **** ***¥ **¥¥ ¥¥¥ ¥¥¥ ¥¥¥ ¥¥¥¥¥¥¥ ¥¥ ¥¥ ** * ¥¥ ¥ ¥
¥ ¥¥ ¥¥¥ ¥¥¥ ¥¥¥¥ ¥¥¥¥ ¥¥¥¥ ¥** *¥¥ ¥¥ ¥¥¥¥*¥¥ *¥¥* **¥¥ ¥*** ¥¥¥¥ ¥¥* **¥¥¥¥
¥** ** ¥¥ ¥¥ ¥¥*¥¥¥ ** ¥* ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥* *¥ *¥¥
¥** if*5 ¥ ** ¥¥ ¥¥ ¥¥ ** ¥¥ ¥¥ ¥¥ ¥¥ **** ¥** ***
¥* ** ¥¥ *¥¥ **¥ **¥ ¥¥¥ ¥¥ ¥¥ ¥¥
¥¥ ¥¥¥ ¥¥* ¥¥¥ ¥¥¥ ¥¥¥ *** ¥** ¥¥¥ ¥¥
*** ¥¥¥¥¥¥ ¥* ** ** ** ¥¥ ¥¥ *¥ ¥¥ ¥* * ¥ ¥ ¥¥¥¥¥¥¥¥** ** ¥¥ ** ** ¥* *¥ ¥¥ ¥¥ *¥ *¥ **¥¥¥¥¥
¥ ¥¥¥ ¥¥*¥ ¥¥ ¥¥ ¥¥ ¥¥ *¥¥¥ ¥¥ ¥¥ * ¥¥ ¥¥¥* ¥¥* ¥
5 5 *¥ ¥¥ ¥¥ ¥¥ ¥* ¥¥*¥¥*
¥ ¥¥¥ ¥¥¥¥ ¥¥¥¥ ¥¥¥¥ ¥¥¥¥ ¥**¥* ¥¥** ¥¥¥ ¥¥¥ ¥
¥¥¥ ¥¥ ¥¥ ¥¥ ¥¥¥¥¥¥¥¥ *¥¥ ¥¥ ¥**¥¥¥¥¥¥¥¥¥¥ ¥¥¥
¥¥¥ ¥¥¥ *¥¥¥ ¥¥ ¥¥ ¥¥ ¥¥ ¥« ¥¥ ¥¥ ¥¥ ¥¥¥¥ ¥¥¥ ¥¥¥
¥¥ ¥¥ ¥¥ ¥¥¥ ¥¥¥ ¥¥¥ ¥¥¥ ¥¥ ¥¥ ¥¥
¥¥¥ ¥** ¥¥¥¥¥ ¥¥ ¥¥ ¥¥¥ *¥ ¥¥ ¥¥¥ *¥ ¥¥ ¥¥¥¥ ¥¥¥ ¥¥¥
¥ *¥¥ ¥*¥¥¥ *¥¥ ¥¥¥ ¥¥¥ ¥¥¥ ¥¥* ¥¥¥ ¥¥¥ ¥¥¥ ¥* *¥* ¥¥ ¥¥ ¥¥¥¥ ¥
* *¥ ¥¥ ¥¥¥ ¥¥¥ *¥** ¥¥* ¥*¥ *¥ ¥¥ ¥
¥¥¥¥¥¥ ¥¥ ¥¥¥ ¥*¥* ¥¥* ¥¥¥¥ ¥¥¥¥ ¥¥¥¥ ¥¥¥¥ ¥¥¥ ¥¥¥¥ ¥*¥ *¥¥ ¥¥¥¥¥* ¥¥*¥¥*

' ¥ * ¥¥¥
*** *¥
*¥ **

¥*¥ *¥¥
' ¥¥ ¥¥ ¥¥¥
t* ¥ ¥ ¥ ¥
¥*¥ *¥ *
¥¥ ¥ ¥

Programming the PET/CBM -130- 5: BASIC keywords

SGN
BASIC arithmetic function

PURPOSE: Computes the sign of an arithmetic expression. SGN returns the value
-1 if the expression is negative, if zero, and +1 if positive.*

Syntax: SGN (arithmetic expression). The arithmetic expression must be valid and
must evaluate to an acceptable value.

Modes: Direct and program modes are both valid.

Examples: 10 IF SGN(X) > THEN PRINT X; "IS POSITIVE"
20 IF ABS(SGN(X))OOTHEN PRINT X; "IS NON ZERO"

FOR J=-100 TO 100: PRINT J, SGN(J), SGN(J)*J, SGN(J)*ABS(J) : NEXT

DEF FN A(ZZ) = INT(ZZ*100 + SGN(ZZ)*.5)
ON SGN (X) + 2 GOSUB 100,120,140

SGN is one of the less exciting BASIC functions. It is closely related to
ABS ,<,=, and >, in the sense that these functions and operators can, when
permuted, produce identical results. SGN(X-Y) for instance returns zero if

X=Y, +1 if X>Y, and -1 if X<Y. The two first examples show how SGN may
be used. Although the logic is correct, the function is entirely redundant.
Usually therefore this function needs to make use of the fact that explicit
values of or ±1 are returned if it is not to be superfluous. The third
example is a direct mode loop showing some possibilities in this direction.
The separation of sign from magnitude is illustrated.

Of the remaining examples, one is a function definition which I've quoted
from someone else's program. It is intended as a rounding routine, in which
a sum of money, either positive or negative, is converted into the same
amount in cents /pence, but rounded to the nearest cent /penny. Again it

shows how the value of +1 may be used; unfortunately, in the case of neg-
ative numbers, it rounds down too far. A sign that the programmer was
trying to be over-clever? The other example, which is quoted under ON,
converts -1,0, and 1 into 1,2, and 3, the range required by ON ... GOSUB
in our example. This is equivalent to the FORTRAN construction

IF (X) 100,120,140

and is sometimes useful when converting engineering-style programs for such
purposes as pipe diameter calculations to run on microcomputers.

Abbreviated entry: sG

Token: $B4 (180)

Operation: Firstly, a short subroutine is called which loads the accumulator with
0, 1, or $FF depending on the sign of the contents of accumulator #1. This
is determined firstly by the exponent : a zero exponent conventionally denotes
a zero result in the accumulator. If this is non-zero, the high bit of the
sign byte is tested; if set, the number is negative. The accumulator is

loaded according to these tests. Just after SGN is a routine which converts
integers to floating-point values, and this is simply dropped into, after the
low byte has -1/0/1 put in it, and the high byte 0. The exponent is set

at #$88 since the maximum is 255. (Other entries from the main fixed -to

-

floating point routines load #$90 into the exponent).

ROM entry points:

BASIC 1: $DB0B (56075)
BASIC 2: $DB45 (56133)
BASIC 4: $CD6F (52591)

*Aside from the identical pronunciation, this function has little in common with
SIN.

Programming the PET/CBM -131- 5: BASIC keywords

SIN
BASIC arithmetic function

PURPOSE: Evaluates the sine of the argument, which is assumed to be in radians.
The sine is a ratio which is constant for any angle; the diagram illustrates

this ratio.

Syntax: SIN (arithmetic expression). The expression must be syntactically correct
and within the range accepted by the floating point logic (±1.7 E38approx).

Modes: Direct and program modes are both valid.

Examples: PRINT SIN(l) prints sine of 1 radian = .842 approx.

PRINT SIN (360 * [Pi]/i80) prints sine of 360° = 0.

10 0=180/ [PI]: FOR J=0 TO 90: PRINT SIN(J*Q): NEXT
120 X=A+SIN(A)/2: Y=A+ SIN(A)*3/2: REM TROCHOID

The first examples show SIN used in direct mode calculations. The third
example is a loop which prints out the value of sine, as calculated by .the

CBM, for angles from zero to ninety degrees. Example four calculates two
coordinates which depend on a single parameter A . Innumerable formulas of

this type exist.

Notes: [1] The diagrams show the sine in terms of the sides of a right-angled
triangle, and the concept of a radian. 'O' and 'H' by convention represent
the opposite side to the angle and the hypotenuse respectively.

SIN(X) = O/H Angle = Tradian

[2] Accuracy is not greatly affected by the size of the angle: this function
operates by dividing the argument by 2*pi and taking the remainder, so
there is no series approximation error related to the size of the argument,
only the error caused by the limited precision to which the argument is held

.

[3] See the appendices for the inverse function ARCSIN.

Abbreviated entry: si

Token: $BF (191)

Operation: The argument is evaluated and stored in both floating point accumulat-
ors. Accumulator #1 is divided by 2*pi (6.283..), and this result moved to

accumulator #2. The integer value of accumulator #1 is generated, and the
difference between accumulator #2 and accumulator #1 stored in accumulator
#1. This completes the processing of the argument. Its sign byte is pushed
onto the stack, and on exit recovered; if negative, the sign of the result
is made negative. The calculation has five constants and an additive con-
stant; powers up to and including the fifth are therefore used.

ROM entry points:

BASIC 1: $DFA5 (57253)
BASIC 2: $DFDF (57311)

BASIC 4: $D289 (53897)

Programming the PET/CBM -132- 5: BASIC keywords

SORT
System command unavailable directly in CBM BASIC

PURPOSE: Arranges data in alphabetic, alphanumeric, or ASCII order. ASCII
order is the most common, since it corresponds directly with the way data is

stored, but any other sort criteria may be used. Generally, computer-sorted
data will not always correspond exactly with data sorted by manual means,
because some of the underlying conventions may differ: for example, 'Mc' or
'Mac' unless specifically checked will not precede all other 'M's.

Versions: Sorting (of cheques &c) is in widespread use on large computers, often
with merge routines, by which daily transactions update master files. This is

a ponderous technique which is rather rare on micros. IBM's 8100 machines are
fully equipped with the necessary commands of this type, but this is unusual.
Some multi-key sorts have been written for CBM hardware including a Compu/-
think disk version. There is a sort-merge in Nick Hampshire's 'Library of PET
Subroutines'. The easiest sorts to write are for 1-dimensional arrays, and
BASIC versions embodying all the common algorithms exist. (Knuth's many-
volume work is a source of algorithms). Some machine-code hardware sorts
are available. M Lake's bubble sort (Practical Computing, Apr. '80) is in
machine-code; CCN,Oct.'81, has a Shell-Metzner sort - for integers only.

In any but the most trivial applications, sorting tends to come to grief on the
twin prongs of space and time. If the whole of a batch of data cannot be fitted
into RAM, subsets must be sorted individually, and the resulting files merged.
The necessary disk (or tape) manipulations are likely to be slow. In practice,
this may be tolerable, since long processing times may nevertheless compare
favourably with the time needed to type data in. Section 4.11.4 has more on the
subject, including descriptions of the merits of the sorts presented here, of
which there are seven, including one in machine-code. A graph (on the final
page of this section) shows the approximate range of timings to be expected.

Notes: [1] ORDER . Numerals are especially liable to be sorted into what appear to
be strange sequences. String comparisons in most micro BASICs compare
successive characters until either a string comes to an end, or one character
differs from the other and the 'smaller' is found. So "49" is less than "5", and
"5" is less than "51" in CBM BASIC. The strings to 25, sorted like this,
emerge: 0,1,10,11,12,13,14,15,16,17,18,19,2,20,21,22,23,24,25,3,4,5,6,7,8,9.
If the sort deals with numbers only, they can be output in numeric order, but
many sorts deal with string data because of its universal applicability

.

[2] SORT FIELDS . It follows from note [1] that programming can often be
simplified by careful choice of the way in which items to be sorted are arranged.
For instance, a date held in the format DDMMYY may need three separate
comparisons, of year, month, and day, But YYMMDD automatically sorts into
the correct order, because years are more significant than months, and months
than days. Similarly, the fact that the comma has a lower ASCII value than any
letter ensures that names, held with commas, sort correctly - "Williams , P . R.

"

when sorted on Commodore's criteria comes before "Williamson, A. B.".

1 . The Tournament Sort .

10 INPUT "SORT HOW MANY ITEMS" ;N: B=N-1 : DIM N$(B),I(2*B)
20 FOR J=0 TO B: INPUT N$(J): NEXT: REM SETS UP DEMONSTRATION DATA
200 X=0: FOR J=0 TO B: I(J)=J: NEXT:REM INDEX ARRAY SET UP WITH 0,1,2,3,...
210 FOR J=0 TO 2*N-3 STEP 2: B=B+1: REM ORDERS INDEX ARRAY IN PAIRS
220 I(B)=I(J): IF N$(I (J+1))<N$(I(J)) THEN I(B)=I(J+1): NEXT
250 X=X-1:C=I(B): IF C<0 THEN END: REM SORT FINISHED
260 PRINT N$(C) " *'; : REM PRINT ONE SORTED ITEM OF DATA
270 I(C)=X: REM SORT LOOP IS HERE
280 J=2*INT(C/2): C=INT(C/2)+N: IF OB GOTO 250
300 IF I(J)<0 THEN I(C)=I(J+1): GOTO 280
310 IF I(J+1)<0 THEN I(C)=I(J) : GOTO 280
320 I(C)=I(J): IF N$(I(J+1))<N$(I(J)) THEN I(C)=I(J+1)
330 GOTO 280

Programming the PET/CBM -133- 5: BASIC keywords

2 6 3. The Exchange Sort and the Bubble Sort.

REM ttHHHititiMHHH
1 REM ### EXCHANGE SORT ###
2 REM #####################
3 REM
4 REM ## SORTS N STRINGS OF 21 CHARACTERS LENGTH; AND PRINTS TIME TAKEN. tt
5 REM ## RUN ... EXCHANGE SORT ##
6 REM it RUN 500 ... BUBBLE SORT it
7 REM tt GO TO 50 ... RE-SORT SAME DATA BY EXCHANGE SORT tt

8 REM tt GO TO 550 ... RE-SORT SAME DATA BY BUBBLE SORT tt
9 REM
10 INPUT "NO. OF STRINGS" ;N

20 DIM A$(N)
21 REM
22 REM ttt
23 REM tt FILL THE ARRAYS WITH FAIRLY LONG STRINGS; INCLUDING RANDOM LETTER tt
24 rem ttt
25 J = RND(-l) : REM NOTE: THIS SEEDS A CONSTANT RANDOM NUMBER
30 FOR J = 1 TO N: A$(J) = CHR$(65+RND(1)*26) +"**********

|

|

l

l

I I I I I I"

40 NEXT: REM THE SEEDED VALUE ENSURES IDENTICAL STRINGS IN THE BUBBLE SORT
50 T = TI : REM STORE CLOCK TIME
95 REM
96 REM tttttttttttttttttttttttttttt
97 REM ttt PERFORM EXCHANGE SORT ttt
98 REM tttttttttttttttttttttttttttt
99 REM
100 FOR J - 1 TO N-l
110 FOR K - J+l TO N
120 IF A$(J) > A$(K) THEN TEMP$ - A$(J): A$(J) = A$(K): A$(K) = TEMP$
130 NEXT K
140 NEXT J
145 REM
146 REM
190 PRINT (TI-T)/60 "SECS"
200 REM FOR J=l TO N: ? A$(J);: NEXT: REM OPTIONAL PRINTOUT OF SORTED STRINGS
300 END
305 REM tttttttttttttttttttttttttt
310 REM tt END OF EXCHANGE SORT tt
315 rem tttttttttttttttttttttttttt
320 REM
500 rem ttttttttttttttttttttt
501 REM ttt BUBBLE SORT ttt
502 REM #####################
503 REM
510 INPUT "NO. OF STRINGS ";N
520 DIM A$(N)
525 J = RND(-l)
530 FOR J = 1 TO N: A$(J) = CHR$(65+ RND(1)*26) + "**********

! I

l

l l

I

I I I I"

540 NEXT
550 T = TI
595 REM
596 REM #«###«##«#«««#««#«#
597 REM ### PERFORM BUBBLE SORT ###
598 REM ############################
599 REM
600 FOR J - N-l TO 1 STEP -1: FIN—

1

610 FOR K = 1 TO J
620 IF A$(K) > A$(K+1) THEN FIN=0: TE$ = A$(K): A$(K) = A$(K+1): A$(K+1) = TE$
630 NEXT K: IF NOT FIN THEN NEXT J
645 REM
646 REM
690 PRINT (TI-T)/60 "SECS"
700 REM FOR J=l TO N: ? A$(J);: NEXT: REM OPTIONAL PRINTOUT OF SORTED STRINGS

READY.

Programming the PET/CBM -134- 5: BASIC keywords
4 £ 5. The Shell-Metzner Sort and Quicksort.

4 REM »###
5 REM ## SORTS STRINGS USING SHELL-METZNER SORT AND PRINTS TIME TAKEN ##
6 REM ## RUN ... PERFORMS SHELL-METZNER SORT ##
7 REM ## GO TO 50 ... RE-SORTS ARRAY A$() ##
8 REM ###
9 REM
10 INPUT "NO. OF STRINGS";N
11 DIM A$(N)
12 J = RND(-l)
13 FOR J=l TO N: A$(J) = CHR$(65+RND(1)*26) + "**********

| [| | | | | | |

|"

14 NEXT : REM WE USE SAME STRINGS AS OTHER PROGRAMS TO TEST SORTING
50 T = TI :REM STORE CLOCK TIME
59000 REM
59001 REM ###
59002 REM ### START OF SHELL-METZNER SORT ###
59003 REM #«##
59004 REM
59005 M = N
59010 M = INT(M/2): IF M - THEN 59200: REM SORT COMPLETED
59020 J=1:K=N-M
59030 I - J
59040 L = I + M
59050 IF A$(I)>A$(L> THEN TE$=A$(I): A$(I)=A$(L): A$(L)=TE$: I-I-M: IF I>0 THEN 59040
59060 J - J + 1: IF J > K GOTO 59010
59070 GOTO 59030
59200 PRINT (TI-T) / 60 "SECS"
59210 REM FOR J = 1 TO N: ? A$(J);: NEXT:REM OPTIONAL PRINTOUT OF SORTED STRING
59220 END

4 REM tt****t**§t*tt§tttf*tHtt**»t*t»§§i§t*§itt*tfit*tiiHtt*t§»*t*it
5 REM ## SORTS STRINGS USING 'QUICKSORT' AND PRINTS TIME TAKEN ##
6 REM ## RUN . . . PERFORMS QUICKSORT ##
7 REM « GO TO 50 ... RE-SORTS ARRAY A$() ##
8 REM #««##««######«##«##«#«###########«#«#«##################
9 REM
10 INPUT "NO. OF STRINGS";N
11 DIM A$(N)
12 J = RND(-l)
13 FOR J=l TO N: A$(J) = CHR$(654RND(1)*26) + "**********

|

| | | n I I I I"
14 NEXT : REM WE USE SAME STRINGS AS OTHER PROGRAMS TO TEST SORTING
30 REM
31 REM ############################
32 REM «# PERFORM 'QUICKSORT' ###
33 REM ############################
34 REM
40 DIM ST ((LOG (N) /LOG (2) +4) ,1): REM THIS ARRAY HOLDS LEFT AND RIGHT STACK
50 T = TI :REM STORE CLOCK TIME
100 S - 1: ST(1,0) = 1: ST(1,1) = N
110 L = ST(S,0): R = ST(S,1): S = S - 1

120 J = L: K = R: X$ = A$((L + R)/2): REM PIVOT VALUE TAKEN TO BE MIDWAY
124 REM
125 REM NOTE THAT LINES 130 AND 140 ARE VARIATIONS OF EACH OTHER; ACTUAL SPEED
126 REM OF RUNNING DEPENDS ON LENGTH OF PROGRAM AND NUMBER OF VARIABLES IN IT,
127 REM SO SELECT THE APPROPRIATE FORMAT FOR BOTH LINES EXPERIMENTALLY.
128 REM MANY SIMILAR ALTERATIONS MAY BE TRIED WITH THE PROGRAM.
129 REM
130 IF A$(J) < X$ THEN J = J + 1: GOTO 130
140 FOR V = 1 TO 1E6: IF A$(K) > X$ THEN K = K - 1: NEXT
150 IF J = K THEN J- J + 1: K - K - 1 :GOTO 130
160 IF J < K THEN TEMP$ = A$(J): A$(J)=A$(K):A$(K)=TEMP$: J=J+1:K=K-1 :GOTO 130
170 IF J < R THEN S = S + 1: ST(S,0) - J: ST(S,1) = R
180 R = K
190 IF L < R THEN 120
200 IF S > THEN 110
240 REM
241 REM ##########################
242 REM ### END OF 'QUICKSORT' ###
243 REM #####################*####
244 REM
250 PRINT (TI-T) / 60 "SECS"
260 REM FOR J = 1 TO N: ? A$(J);: NEXT:REM OPTIONAL PRINTOUT OF SORTED STRINGS
300 END

Programming the PET/CBM -135- 5: BASIC keywords

6. 'Scatter Sort' .

REM ######################
1 REM ### 'SCATTER SORT' ###

2 REM ######################

I S ##*#**#*#*********'*********

5 REM # VERY RAPID SORT USING A SUBSIDIARY ARRAY FOR A PRELIMINARY ROUGH SORT.

#

6 REM #ASSUMES FAIRLY EVEN DISTRIBUTION OF STRINGS' INITIALS FROM A THROUGH Z.#

7 REM # 'RUN' RUNS SCATTER SORT; 'GOTO 50' RE-SORTS; 'GOTO 230' BUBBLE SORTS.

#

9 REM
10 INPUT "NO. OF STRINGS" ;N

12 INPUT "APPROX. AVERAGE LENGTH" ;LE

14 LE - LE + 3: REM HOLDS LEENGTH OF STRING AND ITS POINTER

16 J - RND(-l): REM SET SEED

30 FOR J
$
-
N

l TO N: A$(J) - CHR$(65 + RND(l) * 26) + "**********
! I I I I I I I I l

"

40 NEXT
50 T - TI : REM STORE CLOCK TIME

91 REM ##*#***###########f****f
##

l
92 REM # EXAMPLE ASSUMES (ASSUMPTION CAN BE CHANGED) THAT EVERY STRING BEGINS #

93 REM # WITH AN ALPHABETIC CHARACTER: HENCE VALUES IN LINE 100 FOR LOWER AND #

94 REM # UPPER LIMITS. THE SIZE OF A SUBSIDIARY ARRAY IS DETERMINED IN 110-140 #

95 REM # AND IS LARGE ENOUGH TO ENSURE A REASONABLE ROUGH SORT:- *

96 REM ###«##««*«**«*"######

97 REM
100 L - 64: U = 91: Z-Oi K=0 :FI=0:TE$="": PL = 0: PH =

101 REM PREVIOUS LINE SETS UP ALL VARIABLES BELOW THE ARRAY, SO IT'LL STAY PUT

110 B = FRE (0)/(LE * N):REM B=NUMBER OF DUPLICATE ARRAYS WHICH COULD FIT MEM.

120 IF B < 2 THEN PRINT "INSUFFICIENT MEMORY": END

130 IF B > 4 THEN B = 4 _ „
135 PL - PEEK(46) : PH = PEEK(47) : REM STORE CURRENT END OF ARRAY POINTER

140 DIM BSf B*N + 30) : REM SUBSIDIARY ARRAY; MOST OF IT WILL REMAIN NULL.

142 RM ##>##########»#######################*##############«####'###'#'#"*''
143 REM ## CALCULATE APPROXIMATE POSITION IN B$() TO WHICH EACH ELEMENT FROM #

144 REM ## A$() SHOULD PROPORTIONALLY BELONG; FILL IN SOME OF B$() WITH THESE #

145 REM ## VALUES. SO THAT B$() IS SPARSELY FILLED WITH ROUGHLY SORTED STRINGS*

146 REM #########>#######################################«##«««"«*""*"

150 Z - B * N / (U - L): REM Z IS A SCALE FACTOR COMPUTING THE LIKELY PLACE..

160 FOR J = 1 TO N: K - (ASC(A$(J)) - L) * Z: REM ..OF THE STRING IN B$().

170 IF B$(K) - "" THEN B$(K) - A$(J): NEXT: GOTO 190

180 K - K + 1: GOTO 170

183 rem tmmmmmmmmmmmmmmmmmmmmmmm
184 REM ## PUT B$() BACK INTO A$(), IGNORING NULL STRINGS; SO THAT A$() NOW ##

185 REM ## CONTAINS ITS OWN ELEMENTS AGAIN, BUT ROUGHLY SORTED:- ft

1 86 rem mmmmmmmmmmmmmmmmmmmmMmmM
187 REM
190 J - 1: FOR K - 1 TO B*N + 29: IF B$(K) - "" THEN NEXT: GOTO 210

200 A$(J) - B$(K): J - J + 1: NEXT

211 REM ##«#«**#*
212 REM # RESET OLD POINTERS TO END OF ARRAY - ERASING SUBSIDIARY ARRAY:- #

2 13 REM ##«#«****
220 POKE 46, PL: POKE 47, PH: REM THE SUBSIDIARY ARRAY B$() NO LONGER EXISTS.

2 22 REM
223 rem #mmmmmmmmmmmmmmmmmmmmmm
224 REM ## FINALLY, USE THE BUBBLE SORT TO COMPLETE THE SORTING PROCESS: ##

225 rem §§§§§§§*§§§§§§»§§§*§»*§§»*§§**§*****»»»»**************"*'"
226 REM
230 FOR J « N-l TO 1 STEP -1: FIN = -1

232 FOR K — 1 TO J

234 IF A$(K) > A$(K+1) THEN FIN=0: TE$=A$(K): A$(K) = A$(K+1): A$(K+1) = TE$

236 NEXT: IF NOT FIN THEN NEXT
272 REM
273 REM ###########################
274 REM iW END OF SCATTER SORT #»
275 REM #############f#############

276 REM
9ftO PRTNT fTI—T^ / 60 "SECS ,f

290 REM FOR J = 1 TO N: ? A$(J);:NEXT :REM OPTIONAL PRINT OF SORTED STRINGS

Programming the PET/CBM

7. Machine-code Bubble Sort.

-136- 5: BASIC keywords

634
642
650
658
666
674
662
690
698
706
714
722
730
738
746
754
762
770
778
786
794
802
810
818
826
834
842
850
858
866
874

*027A
$0282
$028A
*0292
*029A
*02A2
$02AA
*02B2
*G2BA
*02C2
*02CA
*02D2
*02DA
*02E2
*02EA
*02F2
*02FA
*0302
*030A
*0312
*031A
*0322
*032A
*0332
*033A
*0342
*034A
0352
*035A
$0362
*036A

20 C2
11 20
85 11
12 A5
10 Dl
Dl 12
12 65
65 13
90 DB
CS Bl
15 C6
85 12
A5 14
DO 04
A2 00
85 19
FO 72
19 A5
16 DO
19 99
05 Bl
02 DO
02 A6
DO 08
BO 22
BO 1A
19 88
00 91
A9 00
DO 98
A5 18

00 85
C2 00
20 C2
7F 85
12 DO
FO 16
12 85
85 13
AO 05
12 85
14 18
A5 13
DO 02
A5 15
86 16
A5 13
18 A5
1A 69
02 E6
BO 00
19 99
F6 AA
BO AO
A5 BA
Bl BB
AO 02
10 F8
19 88
85 18
A5 15
FO 8A

10 A9
FO 07
00 A5
13 AO
07 ca
18 AO
ib ca
A5 IB
Bl 12
14 DO
A5 12
69 00
C6 15
FO 12
86 17
85 1A
19 69
00 85
17 AO
88 10
B7 00
38 E5
FF E8
C5 BO
Dl Bl
B9 BA
AO 05
CO 02
A5 14
C5 17
60

80 85
09 80
7E 85
00 A5
A5 11
02 Bl
Bl 12
85 12
85 15
02 C6
69 07
85 13
C6 14
85 18
A5 12
FO EO
03 85
1A E6
02 Bl
FS AO
aa CO
BO 90
ca CA
90 OA
FO EE
00 91
B9 AD
DO F6
C5 16
DO 92

7F02
7F0A
7F12
7F1A
7F22
7F2A
7F32
7F3A
7F42
7F4A
7F52
7F5A
7F62
7F6A
7F72
7F7A
7F82
7F8A
7F92
7F9A
7FA2
7FAA
7FB2
7FBA
7FC2
7FCA
7FD2
7FDA
7FE2
7FE.A

7FF2

20 70 00
5F 20 70
85 5F 20
60 A5 2D
5E Dl 60
Dl 60 FO
60 65 60
65 61 85
90 DB AO
C8 Bl 60
63 C6 62
85 60 A5
A5 62 DO
DO 04 A5
A2 00 86
85 67 A5
FO 72 18
67 A5 68
64 DO 02
67 99 6A
05 Bl 67
02 DO F6
02 A6 6A
DO 08 A5
BO 22 Bl
10 1A AO
67 88 10
00 91 67
A9 00 85
DO 98 A5
A5 66 FO

85 5E
00 FO
70 00
85 61
DO 07
16 18
85 69
61 A5
05 Bl
85 62
18 A5
61 69
02 C6
63 FO
64 86
61 85
A5 67
69 00
E6 65
00 88
99 6A
AA 38
AO FF
6D C5
6E Dl
02 B9
F8 AO
88 CO
66 A5
63 C5
8A 60

A9 80 85
07 09 80
A5 2C 85
AO 00 A5
C8 A5 5F
AO 02 Bl
C8 Bl 60
69 85 60
60 85 63
DO 02 C6
60 69 07
00 85 61
63 C6 62
12 85 66
65 A5 60
68 FO EO
69 03 85
85 68 E6
AO 02 Bl
10 F8 AO
00 88 CO
E5 6A 90
E8 ca CA
6A 90 OA
6B FO EE
6D 00 91
05 B9 67
02 DO F6
62 C5 64
65 DO 92

BASIC 1 ('OLD ROM') BASIC 2 ('UF»GRADE ROM') AND BASIC H

Both these routines are freely relocatable; the old ROM version has been put into
cassette buffer #1; the BASIC 2 or 4 version is positioned in the top of 32K memory,
where POKE 53,127:CLR will protect it from BASIC. The syntax needed to run the
sort is shown by this demonstration program :-

INPUT "NUMBER OF STRINGS";N: DIM A$(N): REM ARRAY A$() IS SET UP
2 FOR J=l TO N: A$(J)=STR$(INT(RND(1)*10000) : NEXT: REM FILL ARRAY
4 SYS 32514:A: REM THIS SORTS ARRAY A$(). BASIC 1 VERSION IS SYS 634.
6 FOR J=0 TO N: PRINT "STRING NUMBER" J " IS " A$(J): NEXT

These routines operate in program mode only. The string array must exist and be
1-dimensional . The sorted order is the same as BASIC; for example, null strings
come first. The strings need not be sorted from their initial character: a sort key
can be defined starting within a string. See elsewhere for details. Finally, note the
syntax is SYS 634:A to sort A$(), and SYS 634:PQ to sort PQ$(), and so on.

10000

1000

100

10

250 500
NUMBER OF STRINGS TO BE SORTED

750 1000

Programming the PET ICBM -137- 5: BASIC keywords

SPCC
BASIC format function

PURPOSE: Prints a number of spaces or cursor-right characters on the screen

or to a printer. The number depends on the parameter in brackets. This

instruction is normally only used within a PRINT statement.

Syntax: PRINT ... SPC (arithmetic function). The arithmetic function must take,

after rounding down, a value in the range 0-255. No spaces may appear

between SPC and (, except in BASIC 1. The interpreter will treat such a

construction as the array SP().

Modes: Direct and program modes are both valid.

Examples: 20 PRINT "[CLR]": FOR J=0TO20: PRINT "[SHIFT-&]" SPC(38) "[SHIFT-&]"

:

NEXT
30 FOR J=0 TO 19: PRINT SPC (J) "*" SPC(38-J*2) "*": NEXT

These examples show how SPC may be used within a loop to print certain

repetitive types of design on the screen. The first provides a border down

each side of the screen; the second a V-shaped pattern.

765 PRINT SPC (10) "The PET can run while the disk is processing"

This program line illustrates the typical use of SPC in the straightforward

printing of literals. Since SPC(when tokenised occupies 1 byte, line 765

is six bytes shorter than PRINT " The ..." . This may or may

not be a worthwhile saving. And the appearance on listing may or may

not be improved by the function.

Notes: [1] SPC(and TAB(share a peculiarity concerned with printers. The

point is that SPC(and TAB(are processed in virtually identical ways by

PRINT, sharing the bulk of the same routine. In addition, the earliest

BASIC, presumably with screen PRINTing in mind, uses PET's cursor right

characters to generate 'spaces' in each of the commands. These characters

are not of course universal; BASIC 2 and 4 were modified so that spaces

(#$20 characters) are sometimes produced by SPC(and TAB(. In this way

other printers could be used with these functions without printing spurious

information. The following short program illustrates the difference, and

the location to poke if either command is giving trouble.* Its effect is clear

when the program is run: in one case (when the device is 0, i.e keyboard)

SPC(does not print 'spaces', but skips right, leaving the previous screen

contents as far as possible unchanged. But the poke, which is interpreted

as a change of device, causes exactly the same instruction to print spaces.

10 INPUT X

20 POKE 14,

X

30 PRINT "[HOME]";: FOR J=0 TO 30: PRINT "X";: NEXT

40 PRINT "[HOME]**" TAB(10) "**" SPC(10) "**"

READY.

XXXXXXXXXXXXXXXXXX**XXXXXXX
** ** **xxxxxxx

Top line when X=0 ; bottom line when X=1.

Abbreviated entry: sP (includes left parenthesis)

Token: $A6 (166)

Operation: See PRINT. If SPC(is found in a print statement, the expression in

parentheses is evaluated and validated as usual. (The right hand bracket

has its own check). The resulting single byte is held in the X register

and counts the characters as they are singly output.

ROM entry points: BASIC1:$CA1B (51739) BASIC2:$CA0D (51725) BASICS: $BB0E (47886)

*The poke is helpful in other ways: e.g. when printing a toolkit DUMP or FIND.

Programming the PET/CBM -138- 5: BASIC keywords

SQR
BASIC arithmetic function

PURPOSE: Calculates square roots.

Syntax: SQR (arithmetic expression). The expression must be valid and evaluate
to a non-negative quantity which is within the range accepted by the floating
point logic. A negative argument yields an ?ILLEGAL QUANTITY ERROR.

Modes: Direct and program modes are both valid.

Examples: PRINT SQR (2) :REM 1.4142. . .

PRINT SQR (9) :REM 3

1000 XI = (-B + SQR(B*B - 4*A*C)) / (2*A)
1010 X2 = (-B - SQR(B*B - 4*A*C)) / (2*A)

1240 D = SQR(X*X + Y*Y + Z*Z)

SQR, like EXP, is not really needed in BASIC; either function can be
obtained using the ordinary power (upward arrow) evaluation. The first
examples can be replaced by 2t.5 and 9*. 5, for instance. It is generally
included because square roots occur more often than most other powers, and
because in any case it looks better to have more functions. SQR is faster
than raising a number to the point five, and is also more readable, and is

perhaps justifiable on the latter ground alone. At any rate, the two first
direct mode examples print the results of typical calculator-style square root
evaluations. Only the positive root is printed: the two-line program embody-
ing the solution to the 'general ' quadratic equation has a repeat line in which
the negative root is processed. The final example is another formula having
a square root within it: this is an extension of Pythagoras' theorem to find
the diagonal within three planes at right angles (i.e. a room or box etc.)

Notes: [1] A square root, as those people who have forgotten may like to be
reminded, when multiplied by itself gives the original number, of which it

is the square root. Thus, 3 is the square root of 9, because 3*3=9; and
(more debatably . . .) 1.4142135... is the square root of 2. Early computers
worked this out by iteration: the relation

x2 + Y
x = _n provided continually better estimates for SQR(Y).

2x
n

[2] Other powers can be set up in machine code by imitating the SQR mode
of operation. In BASIC 4, this routine, called by USR, will return fourth
roots instead of square roots:

JSR $CD42 (Decimal equivalents:
LDA #$08
LDY #$D3 32,66,205,169,8,160,211,76,15,209)

JMP $D10F

A and Y point to an address in ROM holding .25; more generally, the value
won't exist in ROM and will have to be put into RAM.

[3] In lower-case mode, shift-colon prints a square root symbol. (Or a tick?)

Abbreviated entry: sQ

Token: $BA (186)

Operation: SQR is positioned immediately before the power routine which computes
xY. It moves the argument up into floating point accumulator #2, then loads
accumulator #1 with the floating point form of .5. Then it drops into the
power function, so that xY is evaluated as the special case x-5.

ROM entry points:

BASIC 1: $DE24 (56868)
BASIC 2: $DE5E (56926)
BASIC 4: $D108 (53512)

Programming the PET/CBM -139- 5: BASIC keywords

ST
BASIC reserved variable

PURPOSE: provides a record of the status of the system after any read or write

operation to tape, printer, disk, or other peripheral. In this way, an error

condition can be noted without stopping BASIC. The variable ST is reset to

zero at the start of each input/ output process.

Syntax: ST resembles a real variable, and may be assigned, printed, and used in

tests with a conditional statement. ST is not stored in the RAM area which

holds other variables; it is generated when needed from a single byte. For

this reason ST is not a keyword and is not tokenised. BEST therefore is a

legitimate variable name, equivalent to BE. STATUS is equivalent to ST.

Modes: Direct and program modes are both valid.

Examples : The table shows the possible meanings of ST , with notes on interpreting

them. In each case ST takes the value of a power of 2 (1, 2, 4, 8, etc .) when

it is non-zero; each error-type ORs the byte holding ST with #1, #2, or which-

ever is the conventional value. Note that cassette processing, which does not

use the IEEE bus, has a different set of meanings from those returned by all

devices 4 and upward, i.e. printer, disk units, modem.

ST ST Cassette #1 or #2 IEEE (e.g. all CBM peripherals)

(hex) (dec) Read Write Read Write

01 1 Print time out *

02 2 Input time out *

04 4 Short block on input 2

08 8 Long block on input 2

10 16 Mismatch on checking 3 None
20 32 Checksum error3

40 64 End of file on input** End of file (EOI) **

80 -128 End of tape marker *** Device not present***

Means that after PRINT#4, "MESSAGE" ST takes the value of 1, implying that

the device responded in a longer time than 65 milliseconds, or may not have

responded at all. Some CBM printers return 1 even when working perfectly.

This is more important with modems than printers, where it is usually obvious

if the device isn't printing correctly. Error ST =2 means the device is slow,

and has responded too slowly or not at all. Typically, a statement like this:

100 INPUT #5,M$: IF ST=2 GOTO 100 uses ST with a slow peripheral. Note that

in BASIC 4, the time out feature may be disabled: see Chapter 15's RAM map.
2 Tape data files are read into the cassette buffer. One block occupies 192

bytes. If a program file is read instead, one of these errors will occur, since

the anticipated separation into blocks won't be present.
3 Either or both of these errors may occur on reading tape, with INPUT # or

GET#, or LOAD, or VERIFY. They are part of the tape security system.

On LOAD, for example, if the inconsistencies between the two programs which

are recorded on tape are too great, ST is set to 16 and ?LOAD ERROR stops

BASIC. (A checksum error doesn't generate this message, because ST is

ANDed with #$10, which is why tape loads can be faulty but nevertheless seem

to be OK). Note that VERIFY can be run in program mode, i.e. from within

a program, so self-checking of a program load is possible, though time-con-

suming, with tape.

**A file, if it has been CLOSEd correctly after being written, has a marker

to indicate end-of-file. So BASIC like this: 100 input#2,x$: if st=64 goto

1000 provides a typical means of checking for end-of-file. Since files may

be of any length, some such method is necessary, of course, but often it is

easier to write one's own marker, or keep a record of the number on file at

the start of a file.
.

***An end-of-tape marker is simply a block on tape holding a special number.

The tape need not, in fact, end there; its function is purely to stop the tape

recorder from attempting to read blank tape or tape holding unwanted data.

This will cause BASIC to crash with a ?FILE NOT FOUND ERROR. The

corresponding IEEE status means device doesn't respond; if the entire IEEE

Programming the PET /CBM -HO- 5: BASIC keywords

bus is unresponsive, again BASIC will crash, in this ease with ?DEVICE NOT
PRESENT ERROR. But if the bus is partly active, ST is set to -128 without
a program crash, so that a program loaded from disk can use this test to

determine whether a printer is turned on and, in the event that ST returns
set to -128, print a warning message to the screen.
OPEN 5,5: PRINT#5: PRINT ST : REM GIVES ST=-128 IF DEVICE 5 DOESN'T EXIST

Notes: [1] ST is set to zero by GET, INPUT, and PRINT in addition to the input/
output commands CMD, GET#, INPUT*, and PRINT*. The information within
ST therefore must be tested after every input or output, if you are using
ST. This ephemerality does not apply to the disk status variables DS and
DS$. When both are in use, test ST first, with, for example:

IF ST OR DS THEN: REM ERROR OR END OF FILE PROCESSING ROUTINE.

[2] Limitations of ST . This variable illustrates one of the dilemmas which face
anyone attempting to design a good computer system . If the hardware is

reliable, but not infallible, how can errors be signalled to the computer? The
program may simply stop, or alternatively some indicator can be used, but this
may be ignored. Either way has its drawbacks. The status byte, used from
BASIC, combines a bit of each. Some errors, those which are more difficult to
detect, are not implemented. For example, there is no facility to read back tape
immediately after writing to it, so tape write errors are undetectable, except
for programs which may be VERIFYed. Many of ST's messages can be prog-
rammed around, notably the end-of-file status. It is, in fact, entirely feasible
to ignore ST altogether.

[3] BASIOl holds ST in location $96 (130 decimal). BASIC 1 uses $020C
(524). When reading files in machine code it is common practice to check
for end-of-file by reading ST, which is a simple operation. Chapter 14 has
details with examples. This method is not always usable, because some
devices don't set EOI true on the last byte of data, but send carriage return
and line feed instead.

[4] Like TI, ST can be set up as an ordinary numeric variable. If a variable
is assigned a value from BASIC, found with VARPTR.and altered to ST, you
will have an assignable ST which can be given values like 999 at will - to the
considerable surprise of some other programmers.

Abbreviated entry. Token: Neither of these are applicable.

Operation: A special ROM routine performs an inclusive OR with the location which
holds ST whenever an error is found. The accumulator is loaded with #80 or
whatever and the routine called to enter it . For this reason it may be possible
that several errors simultaneously are included in ST. Apart from this side
of things, several routines exist in BASIC to watch for ST and process it

if found; PRINT has a subroutine to evaluate variables in which ST is checked
and this is used by assignments too ('X=ST' say). The routine to create a
new variable tests for all the reserved words, rejecting attempts to set ST.

ROM entry points:

Flag in error: Look for ST, process it:

BASIC 1: $FBE5 BASIC 1: $CE82
BASIC 2: $FB7F BASIC 2: $CE75
BASIC 4: $FBC4 BASIC 4: COOF

Programming the PET ICBM -141- 5: BASIC keywords

STOP
BASIC command

PURPOSE: Causes a program to exit to immediate mode and print a message

indicating the line at which STOP was encountered. Like END, this command

may be used to set breakpoints in BASIC programs. CONT causes a pro-

gram to continue at the next instruction after STOP.

Syntax: STOP has no parameters. It may be followed by spaces, and must be

followed by an end of statement byte - either a colon or a zero byte at

the end of the line.

Modes: Direct and program modes are both valid. Direct mode is of little use.

Examples: STOP is not often used in finished programs, since users of a program

are unlikely to want information about esoteric matters like the internal

workings of BASIC. Its importance lies in this fact: since the line on which

it was found is printed, breakpoints can be scattered throughout programs,

and particularly in difficult parts of a program with bugs.

1901 IF X<> VAL(X$) THEN PRINT"ROUNDING ERROR": STOP

510 J$="£$#& ": F0RJ=1T0 LEN(J$) : IF IN$OMID$(J$, J, 1) THEN NEXT:

PRINT "**VALIDATION WRONG" :ST0P

Both these examples illustrate the use of STOP as a temporary measure,

put in to trap errors which may occur through faults in other parts of a

program or subroutine. In the first case, X$ is supposed to have value

equal to X; in the second, only characters in the string J$ are supposed

to be present as IN$.

Notes: [1] When a program exits to direct mode, any variable can be printed and

changed without effect on the program. CONT will still operate. If entirely

new variables are input, CONT usually still operates.

[2] Editing a program will cause CONT to reply with ?CAN'T CONTINUE
ERROR. Some BASICs (eg Sharp) permit a shortened, edited program to

retain its variables, and machine code routines to do this can be written

for Commodore BASIC. Usually though editing loses the variables, so the

program must be run again to reach the same position as obtained before.

Abbreviated entry: sT

Token: $90 (144)

Operation: This routine is virtually identical to END, except that on entry, the

carry bit is set, so that the final branch near the end of the routine prints

"BREAK IN" followed by the linenumber.

Note that FFE1, the ROM routine to test the stop key, calls this routine; if

the stop key was pressed, this sets the zero bit and STOP is entered as

though the command STOP had been encountered.

Rom entry points:

BASIC 1: $C71C (50972)

BASIC 2: $C73F (51007)

BASIC 4: $B7C6 (47046)

Programming the PET/CBM -H2- 5: BASIC keywords

STR$
BASIC string function

PURPOSE: Converts a number, or numeric expression, into a string. When held
in string form a number cannot be added to or multiplied, but is instead a
string literal, which can be edited, formatted, and modified like other
strings.

Syntax: STR$(arithmetic expression). The arithmetic expression can take any
value accepted by the floating-point accumulators (up to about ±1.7E 38).
However, not all the accuracy of the original is necessarily retained. This
function uses the same buffer as PRINT, and its results are held in exactly
the same way. Thus, STR$(.005) is not ".005" but as " 5E-03".
There must be no space between STR and $ unless you wish array ST$()
to be understood. (BASIC 1, however, allows this space).

Modes : Direct and program modes are both valid

.

Examples: PRINT STR$(123) + ".00" : REM RESULT IS 123.00
1210 N$=MID$(STR$(N),2) : REMOVES LEADING SPACE FROM +VE N
PRINT "$" + STR$ (DOLLARS) + " =T0TAL."

The major uses of this function are probably routines to round and edit
numerals, and routines to compress numerals for storage when disk space
is limited. Both these techniques are too elaborate to discuss here: see
PRINT USING and Chapter 4 respectively for programs.

The first of the three examples above is a small scale editing program.
PRINT 123 simply prints 123, and so does PRINT 123.00. Trailing zeros
can be introduced in BASIC only by use of STR$. The second example
is another editing routine; the leading space which CBM BASICs introduce
in positive numbers (this space holds the minus sign with negatives) can
be unwanted. Suppose you wish to edit numbers less than 1 to appear as
0.05, 0.36, etc. "0"+STR$(N) for small N gives .05 which of course is

the wrong format. Line 1210 removes the space, and will also remove a
minus sign if there is one; I'm assuming all the quantities are positive.
(Incidentally, not all BASICs do this. Apple BASIC hasn't the space).
The final example shows that STR$ is a genuine string function, and can
be concatenated and processed like other strings and literals.

Notes: [1] Summary . For numbers in the everyday range, this function is fine.
The most likely bug is caused by the conversion routine mentioned already.
STR$(1234000000000) is not "1234000000000" but "1.234E12". Many rounding
routines fall into this trap at the low end of the scale. A number supposed
to be zero may accumulate rounding errors and appear as IE- 9.
The leading space feature can be demonstrated like this:

PRINT "*"STR$(24)"*" prints * 24* , while
PRINT "*"STR$(-24)"*" prints *-24*.

Abbreviated entry: stR (includes $)

Token: $C4 (196)

Operation: This function is a good example of a string assignment and would be
helpful if a string USR function or string function definition existed with
BASIC. First of all, the numeric mode flag is checked; if location 7 (in
BASIOl) has its high bit not set, indicating that the expression was
numeric, this is accepted. So STR$("ONE") is rejected. Now the ROM
routine, shared with PRINT, is called which puts the ASCII equivalent of
the number into $00FF - $010F. A subroutine return address is popped
from the stack, pointers are set to $00FF, and the string set-up routine
processes the string expression of which STR$ is a part, perhaps giving a
? FORMULA TOO COMPLEX ERROR, but probably, we hope, not.

ROM entry points:

BASIC 1: $D349 (54089)
BASIC 2: $D33F (54079)

BASIC 4: $C58E (50574)

Programming the PET/CBM -W3- 5: BASIC keywords

SYS
BASIC system command

PURPOSE: Transfers control to the address following SYS. This is executed as

6502 machine code until an RTS instruction or equivalent is encountered

which corresponds to the SYS command; at this point control is resumed

by BASIC. This command is essential in running machine code subroutines

and is often used to run large machine code programs. Some knowledge of

6502 programming is necessary to understand this command.

Syntax: SYS arithmetic expression. The expression must evaluate to a numeral

within the range 0-65535; non-integers are rounded down. This is a

command, not a function: X=SYS 634 is invalid. Brackets are not needed.

Modes: Direct and program modes are both valid.

Examples: SYS 11*4096: REM THE EFFECT IS IDENTICAL TO SYS 45056 (OR SYS 45056.4)

1230 SYS CH: REM CH HAS BEEN ASSIGNED 826

12500 SCR0LL=57377 : SYS SC: REM SCROLL UP WITH 8032

These three lines of code show typical SYS calls: the first enters a routine

at $B000, perhaps a Toolkit. The second and third show algebraic addresses

where the SYS call may be varied: the effect of the first depends on the

code contained at address CH; the second is an actual entry point for the

8032. SYS of a ROM routine is of course always reliable - provided that

the address is right and the ROM set hasn't been changed - whereas RAM
routines must always be loaded or poked into memory. Readers not yet

familiar with machine code might try th« following short demonstration:

POKE the values 162,0,138,157,0,128,232,208,249,96 into 900 to 909. These

numbers correspond to this machine code:

„ „„„ „^„ 900 $0384 LDX #$00; Load X with zero
SYS 900 displays all 256 VDU

9Q2 $03g6 TXA . Transfer x to A
characters on the screen. The M3 $03g7 gTA $8000X . j^t A into vdu
routine can also be called at

gog $038A INX
other entry-points: SYS 902

9()7 $Q38B BNE $Q386
for instance has results depending

g09 «038D RTS
on the entry value of X.

The routine can itself be modified from BASIC; this direct-mode line calls

the routine 256 times, modifying the screen address each time:-

FOR J=0 TO 255: POKE 904, J: SYS 900: NEXT

Examples in ROM: BASICS 1 and 2 extend from $C000 to $FFFF; BASIC 4, with

added disk instructions, is longer and occupies $B000-$FFFF. Each BASIC

has ROM missing from $E800-$EFFF; so early BASICs occupy about 14000

locations, while BASIC 4 takes up 18000. There is about an evens chance

of a location taken at random will directly enter ROM as BASIC runs it;

there is a high chance that SYS of such a location will either go into some

variety of loop, or change some of the locations and variables used by

BASIC. Machine code may become corrupted. Because of these uncertainties

it may be advisable to reset the machine if a SYS has been wrongly run.

This can happen inadvertently : SYSS826 if entered by 'return* will be

interpreted as SYS S8. This is likely to be zero, and if so SYS 0, having

the same effect as USR(O), will be performed; but S8 could take any value.

Two short demonstration programs follow, illustrating strange effects which

may occur with indiscriminate SYSing. The cure generally is to switch off,

or, what is better from the hardware point of view, call the routine to set

up BASIC.

[i] POKE 634,248: POKE 635,96: SYS 634

This short routine sets a flag in the 6502 known as the decimal bit, D. Now

BASIC tries to do its calculations in packed decimal mode. The attempt is

not a success. Exit to the monitor will clear the decimal bit, if you can get

to it.

Increment X

Branch if XOO
Return

Programming the PET/CBM 744- 5: BASIC keywords

[ii] 50 REM *** JOKE WHICH LEAVES MEMORY IN A STRANGE STATE ***

100 POKE 52,255: POKE 53,255: POKE 40,0: POKE 41,0

110 PRINT "[CLEAR]"
120 SYS 57757 : REM BASIC 2; BASIC 4 IS SYS 54321.

(BASIC 1 VERSION: POKE 134,255:P0KE 135,255:P0KE 122,0: POKE 123,0:

PRINT "[CLEAR]": SYS 57690)

Examples. A small selection:

RESET BASIC AS IF SWITCHON:

PRINT "? OUT OF MEMORY ERROR":
PERFORM NEW (I.E. ERASE BASIC):

ENTER MONITOR BY 'CALL' ENTRY:

SCROLL SCREEN:

4 SECOND DELAY LOOP:

SCROLL SCREEN DOWN:

TINKLE THE BELL:

SWITCH TO LOWER/ TO UPPER CASE:

BASIC 1 BASIC 2 BASIC 4

$FD38 (64824) $FCD1 (64721)

$C357 (50007) $C355 (50005)

$C553 (50515) $C55D (50525)

not applicable $FD11 (64785)
$E559 (58713) $E53F (58687)

$E5C8 (58824) $E5A8 (58792)

not applicable
not applicable
not applicable

$FD16
$B3CD
$B5D4
$D472
$E3E8
$E412
$E3C8
$E6A4
$E07A
$E082

(64790)
(46029)

(46548)

(54386)
(58344)
(58386)
(58312)
(59044)
(57466)
(57474)

Notes: [1] Although usual, it is not necessary to end machine code with an RTS.
An RTI can be used, provided an extra byte has been pushed onto the

stack to be treated as a processor status register. It is common for

JMP $ABCD to replace JSR $ABCD/ RTS. Commodore's BASIC is full of

jumps where the return is stored on the stack: the point is that the RTS
of the called routine is used, saving one address on the stack.

[2] It is often easier to use SYS rather than a wedge when writing routines

to be used by BASIC. The wedge will probably need to coexist with other

wedges, and a lot of checking for symbols like ! or @ may be required.

SYS is also easier to handle from the point of view of returning control to

BASIC. The drawback is that a large number of SYS addresses may be an
irritant

.

[3] Some BASICs use 'CALL' for this command, for instance Apple, which

also uses (rather clumsy) signed integers.

[4] The fact that SYS computes its destinations can be used to access

jump tables; SYS 826 + 3*A for example with $033A JMP $ABCD/ JMP $1234...

[5] Some SYS commands (e.g. of VIC) allow A,X,Y, and perhaps SR to be
set from BASIC, and this is often convenient. This type of SYS begins with

something like this: LDA SR-STORE/ PHA/ LDA A-STORE/ LDX X-ST0RE/ LDY Y-STORE

/ PLP before jumping to the SYS address specified from BASIC.

sY Token: $9E (158)Abbreviated entry:

Operation: The expression is input, validated, and converted into a 2-byte
integer which is stored in ($11) in BASIOl in the normal 6502 way, with
the low byte first. An indirect jump is made to this address, and since

it holds the address after SYS, the correct machine code is executed. (An
indirect jump is represented JMP ($0011); the destination address is loaded
from ($11)).

NB: the argument is converted into two bytes, of which the high byte is

held in the accumulator and the low byte in the Y register, in addition to

the special zero-page locations. For example, SYS 1024 shows A=4 and Y=0
on entering the monitor. SYS therefore does not behave in the same way as

BASIC when entering ROM routines; the address in the table above for

NEW is not quite the same as that given under NEW itself, because the

validation process of BASIC doesn't apply to SYS.

ROM entry points:

All ROMs use the Kernel jump table entry of $FFDE, from which is called:

BASIC 1: $F695 (63125)

BASIC 2: $F684 (63108)

BASIC 4: $F6C3 (63171)

Programming the PET ICBM -745- 5: BASIC keywords

TABC
BASIC format function

PURPOSE: Prints spaces or cursor-rights to the screen, if the TAB parameter in

brackets exceeds the current cursor position. This instruction is normally

only used within a PRINT statement. The function is not usable with a

printer.

Syntax: PRINT ... TAB (arithmetic expression). The expression must take, after

rounding down if necessary, a value in the range 0-255. No spaces may
appear between TAB and (, except in BASIC 1. The interpreter will treat

such a construction as TA(x), an element of an array TA().

Modes: Direct and program modes are both valid.

Examples: 3020 IF 0P$(P)="" THEN L=P: PRINT TAB(15) ; : GOSUB 200:

PRINT TAB(25) "???": NB=1: GOTO 3065

20 PRINT "[HOME] "TAB (120) "[RVS][40 or 80 SPACES]"

30 FOR X=40 TO 79: REM OR 80 TO 159 WITH 80 COLUMNS

40 PRINT "[HOME]" TAB(X) "[RVS] " TAB(X+40) "[RVS] " TAB(X+120)

"[RVS] " TAB(X+160) "[RVS] "

50 PRINT "[HOME]" TAB(X-l) " " TAB(X+39) " " TAB(X+119 " "

TAB(X+159) " ": NEXT

The first example is a typical print-to-screen statement, in fact part of a

disassembler in BASIC which prints '???' if an unrecognised opcode has

been found. The effect is similar to that achieved by SPC(, except that

TAB(enables easier left-justification. The second example is a small program

in which the argument of TAB(runs across three lines. It draws a bar

across the screen and walks a cross-piece along it (rather slowly).

Notes: [1] TAB(can be made to print spaces - not just cursor rights - to the

screen, erasing the matter over which it prints. See note 1 of SPC(for

information and for a demonstration program including both functions.

[2] TAB(works by subtracting the current cursor position from the TAB(
parameter, and, if the result is positive, dropping into the SPC(routine to

print that number of characters. Consequently, it will not work properly

with a printer, unless the duplicate information is printed onto the screen.

The same considerations apply to the TAB key as implemented on the 8032.

For these reasons, there is a lot to be said for avoiding TAB(and SPC(,

unless you are certain to be using screen output only for the PRINT state-

ments involved. And when modifying programs for other machines to run
on a PET some conversion routine may be needed; typically,

SP$=" ": REM SPACES

PRINT LEFT$(SP$, 10-LEN(E$)) ; E$

might be used to right-justify, in this example spanning 10 columns.

Abbreviated entry: tA (includes left parenthesis)

Token: $A 3 (163)

Operation: See PRINT. IF TAB(is found in a PRINT statement, the expression

in parentheses is evaluated and validated as usual. (The right hand bracket

has its own check). The processor status flags are pushed onto the stack;

carry bit set distinguishes TAB(from SPC(within the routine.* Now the

current cursor position (as in HTAB/VTAB) is subtracted from the eval-

ated parameter, and, if the result is non-negative, characters, either space

or cursor right, are printed singly by the SPC(routine.

ROM entry points:

BASIC 1: $CA13 (51731) *Processed slightly differently.
BASIC 2: $CA07 (51719)
BASIC 4: $BB08 (47880) TAB KEY: $E2A0 (58016)

Programming the PET /CBM -146- 5: BASIC keywords

TAN
BASIC arithmetic function

PURPOSE: Evaluates the tangent of the argument, which is assumed to be in

radians. The tangent is a ratio which is constant for an angle; the diagram
illustrates this. Note that this function has nothing to do with the tangent
to a circle.

Syntax : TAN (arithmetic expression). The expression must be syntactically correct

and within the range acceptable to the floating-point logic (± 1.7 E 38 approx.)

Modes: Direct and program modes are both valid.

Examples: PRINT TAN([PI]/2) prints tan of 90°; 70VERFL0W ERROR
PRINT TAN (45 / 57.29578) tangent of 45° = 1

100 X= (TAN(A) + TAN(B)) / (1 - TAN(A) * TAN(B))
500 A = ATN(TAN(A)) : REM CONVERTS TO RANGE -90° to +90°

The first two examples show the use of radians and of degrees; a radian

is 57.29578°, so this value may be used to interconvert between the two
measures. 90° (pi/2 radians) and all the cyclically repeating equivalents
like 270° and -90° yield an overflow error; if such values are not tested
for, the program, although otherwise perfectly correct, will crash if such
a value is generated in the course of processing.

The third example is one of the very many functional relationships which
hold between trigonometrical ratios; in this case, the value of A is made
equal to TAN(A+B) by the use of the standard formula.

Fourthly , program line 500 demonstrates the connection between the arctan
function and the tangent. A function can only return a single value. For
this reason ATN(A) returns only the principal value of angle A, not an
infinite sequence of alternative solutions. So line 500 converts angles out of

the normal range into their principal value equivalents.

Notes: [1] The diagrams show (i) the sides of the right-angled triangle from which
the tangent is computed, and (ii) how a radian is related to a circle. 'O'and

'A 1 conventionally represent the sides opposite and adjacent, respectively,

to the angle.

2SV
TAN(x)=0/A

[2] Another measure of angles sometimes used is the grad, where 100 grads
make up a right angle. Pi radians therefore = 200 grads, and the conversion
figure is 63.6620.

[3] This function is evaluated by calculating the sine of the angle, and
dividing by the cosine. Its speed and accuracy therefore are not so good
as these other functions.

Abbreviated entry: None

Token: $C0 (192)

Operation: The argument is evaluated and checked, then goes through these
stages

:

The argument in stored in the temporary storage area starting $54 (BASIOl)
Sine is evaluated /

The result is stored in the temporary storage area starting $4B (BASIOl) /

The argument is retrieved from temporary store/
Cosine is evaluated/
A pointer is set to the area holding sine; and the division routine entered.

ROM entry points:

BASIC 1: $DFEE (57326)
BASIC 2: $E028 (57384)
BASIC 4: $D2D2 (53970)

Programming the PET /CBM -747- 5: BASIC keywords

TI &TI$
BASIC reserved variables

PURPOSE: Gives BASIC access to the internal clock. This is updated at each

interrupt by software. It can be used to keep time, display the time,

calculate elapsed time, and perform processing for timed intervals.

Syntax: TI and TI$ resemble variables, and may be accessed by PRINT or in

assignments, as in PRINT TI$ or TX=TI. In each case the name TI or TI$

is specifically looked for, and, if found, processed by a set of special

routines. TI and TI$ are not stored in the usual RAM area for variables.

Instead, they are generated when required from three bytes which make

up the jiffy clock storage area. For this reason TI and TI$ are not

keywords, and ANTIC for instance is a legitimate BASIC variable. The

enclosed TI is ignored. ST.DS and DS$ are processed similarly.

Modes : Direct and program modes are both valid

.

Examples: ti$="130500"
100 TI$=H$ + M$ + S$

200 T=TI
210 IF TI-T<120 GOTO 210: REM 2 SECOND DELAY LOOP

1000 PRINT LEFT$(TI$,2) ":" PRINT MID$(TI$, 3,2) ":" RIGHT$(TI$, 2)

5260 TI$="000000": FOR J=0 TO 9E9: IF TI=600 THEN J=9E9: GOTO 6000

6000 NEXT

TI$ can be assigned a value; TI cannot. The value must be within the

24 hour range (and "240000" is accepted). The first two examples show

this. The string must be of length 6, and leading zeros must be included

if necessary, to conform to the hhmmss format. The time is set to five

past one in the afternoon in the first example; in the second, each part

of the time should be a two digit number.

The third example shows a two second delay loop. (120 jiffies is 120/60

seconds which gives 2 seconds). Some CBM manuals have an obscurely

worded warning against this construction, which is repeated more

comprehensibly in Osborne /Donahue. The point is that TI is not a

monotonic increasing function. If you're very unlucky it may just happen

to change from the equivalent of, say, "235940" to "000130", so the delay

loop will be rather longer than intended.

The fourth example prints the time in hours, minutes, and seconds in

this format: hh:mm:ss. Many routines have been written to present

attractive graphics versions of the time, almost always as digital clocks.

Finally we have an example of the clock timing a loop. At the start the

clock is reset, to avoid any possibility of the twenty-four hour trap

occurring. We set up a huge loop with an arbitrary terminating value,

and with a test-and-exit routine which is called each time the loop repeats.

It is set for 10 seconds in the demonstration line; of course if the contents

of the loop process slowly this time may well overrun.

Notes: [1] Three bytes hold the jiffy clock: 141-143 in BASIOl. These locations

are all set to zero on switching on the machine.

PRINT 256*256*PEEK(141) + 256*PEEK(142) + PEEK(143) is the same as

TI. TI$ is evaluated from TI by a long routine involving a table of values

in ROM. It is related to TI by the following formula, which converts TI$

to jiffies:

PRINT 60*(3600*VAL(LEFT$(TI$,2)) +60*VAL(MID$(TI$, 3, 2)) +VAL(RIGHT$(TI$,2))

)

BASIC 1 uses locations 200-202 for its jiffy clock.

Programming the PET ICBM -148- 5: BASIC keywords

[2] The clock update routine is called from the interrupt routine. All ROMs
use $FFEA in the 'kernel' jump table as the clock update routine, so if this

is repeatedly called the clock will advance at an abnormal rate. There is a

software 'correction clock' included in the implementation on all ROMs. Two
locations , treated as 16 bits , are successively incremented at the same time

as the clock itself; however, when it has counted to a certain point, it is

reset to zero, and the clock is not, on that occasion, incremented. Every
623rd interrupt does not increment the clock; the interrupts happen about
1/6% more than 60 times per second. The routine has a further feature,

connected with the STOP key. Obviously, to implement a key which is able

to stop a program at any time, it is not sufficient to leave the key's ASCII
value in the keyboard buffer, because until there is a GET or equivalent,

it will be ignored. It would be possible to cause a stop key to generate an
interrupt of its own. But since the PET has interrupts continuously occur-
ring, $FFEA not only updates the clock but also, in a short piece of code
near the end, stores the keyboard PIA contents in zero-page ($9B in

BASIOl). Now $FFEl,the routine to test the stop key, simply has to look

at this location to determine whether STOP has been pressed. This is the

reason that a change of IRQ address can turn off the clock and the stop

key simultaneously.

[3] If the interrupt disable flag is set for any length of time (the 6502

command is SEI) the clock will lose time. Compu /think disks and the screen
scroll with BASIC<4, for example, both do this. The clock cannot therefore
be assumed to be completely accurate; in any case, because l/60th second
is the smallest quantum of time that TI can deal with, decimal points beyond
the second are meaningless.

[4] TIME and TIDE and TIMERS are a few of the many possible equivalent
names of these variables.

[5] With a little jiggery-pokery we can assign any value to TI, and any
string to TI$, by evading the normal mechanisms for checking these
variables. (The same trick can be done with ST, DS, and DS$).

10 TJ$="AHA!"
20 POKE 1084, ASC("I")+128
30 PRINT "TI$="; TI$

Spacing is important with this program, which does not use a VARPTRtype
of function. Old ROMs will require POKE 1085. (Line 20 pokes ASCII of

I to replace J. The extra 128 sets the high bit, to distinguish TI$ from
TI).

Abbreviated entry. Token: Neither of these are applicable.

Operation: There are three fragmented parts to the operation of TI and TI$.

[1] The routine to assign TI$ checks that the string contains only ASCII
numerals and is six of these characters long. If these constraints are
satisfied, the value of the string is calculated, and the result left in

accumulator #1. The most significant three bytes are transferred into the
clock area, where they are incremented with every interrupt.

[2] & [3] A routine is needed to assign the value of TI$ to a new string,

to accomplish T$=TI$ for example; another routine allows numeric assign-
ments, for example T=TI+60. When these details are correct, TI$ is "AHA!".

ROM entry points:

[1] Assign TI$: [2] Assign string to time: 2 [3] Assign numeric var:

BASIC 1: $C8DC (51423) $CE43 (52803) $CE71 (52849)

BASIC 2: $C8EF (51439) $CE2E (52782) $CE60 (52832)

BASIC 4: $B972 (47474) $BFAD (49069) $BFF3 (49139)

The clock update routine, $FFEA, calls these ROM subroutines :

-

BASIC 1: $F736 (63286) BASIC 2: $F729 (63273) BASIC 4: $F768 (63336)

*The interrupt routine which tests Stop, checks the keyboard, and updates the clock

occurs 60 times/second with 8" screen machines, 50 times/second with 12" machines.

The latter have a software cheat which increments the clock twice every 5 interrupts.

2 E.G. JSR CE2E/ JSR CA1F (BASIC 2) prints TI$. See IPUG newsletter, July '81.

Programming the PET/CBM -M9- 5: BASIC keywords

TRACE
BASIC utility unavailable with CBM

PURPOSE: a TRACE is a diagnostic routine which provudes information on the

way a program runs; this information is collected during an actual program

run. The facilities provided by trace routines vary; some print only

linenumbers, some list lines during execution, some monitor particular

variables or commands only.

Versions: Brett Butler's relocating loader is a well-known trace; it appears to be in

the public domain, and is listed in 'Pet Revealed' and elsewhere. It displays

statements in reverse at the screen-top. Several traces display linenumbers

only. Brad Templeton's Power chip has a routine somewhat similar to the foll-

owing, which uses the CBM's own LIST function to print lines. Readers may

DATA 169,0,133,48,133,50,133,52,169,0,133,49,133,51,133,53
1 DATA169,76,133,129, 169,35,133,130,169,64,133,131,96
2 DATA 169,56,133,129,169,233,133,130,169,48,133,131,96,0,0,0,0,0,0
3 DATA0, 255, 0,141, -572, 142, -571, 140, -570, 174, 18, 232, 224, 254, 208, 13, 236

4 DATA18, 232, 240, 251, 173, -569, 73, 255, 141, -569, 173, -569, 240, 119, 224, 253, 208

5 DATA127, 236, 18, 232, 240, 251, 160, 0,140, -568, 140, 158, 0,32, 228, 255, 240, 251, 24

6 DATA1 05, 198, 141, -565, 165, 54, 164, 55, 205, -567, 208, 5, 204, -566, 240, 77, 172

7 DATA-568, 208, 184, 174, -565, 142, -564, 169, 255, 32, 163, 229, 238, -564, 208, 246

8 DATA162, 0,181, 0,1 57, -256, 202, 208, 248, 32, 87, 226, 162, 79, 169, 32, 157, 0,1 28

9 DATA202, 16, 250, 165, 54, 164, 55, 141, -567, 140, -566, 133, 17, 132, 18, 32, 44, 197

10 DATA32, -3 74, 162, 0,189, -256, 149, 0,202, 208, 248, 32,93, 226, 173, -572, 174, -571

11 DATA172, -570, 76, 10, 225, 224, 127, 208, 149, 142, -568, 236, 18, 232, 240, 251, 120

12 DATA174, 158,0, 169, 0,157, 111,2,88,240,164
30 T=PEEK(52) + 256*PEEK(53)
40 L=T-614
50 FOR J = L TO L+239
60 READ X%: IF X%<0 THEN Y=X%+T: X%=Y/256: Z=Y-X%*256: POKE J,Z: J=J+1

70 POKE J,X%
80 NEXT
230 X =
240 FOR J = L+240 TO L+357
250 POKE J , PEEK (X+50658)
270 X=X+1: NEXT
280 FOR J=L+251 TO L+253: POKE J, 234: NEXT
290 POKE L+315, 96
310 X% = L/256: Z = L - X%*256 TRACE FOR BASIC 2

320 POKE 48, Z: POKE 50, Z: POKE 52,

Z

/.iiprRAlW ROMM
330 POKE 49,X%:POKE 51,X%:POKE 53, X% (UPGRADE R0M >

340 X% = (L+5D/256: Z = (L+51)-X%*256
350 POKE L+21, Z: POKE L+25, X%
360 X% = L/256: Z = L - X%*256
370 POKE L+1, Z: POKE L+9, X%

500 REM
59 1 REM *****#*#****##**
582 REM * FINALLY, PRINT ON/OFF ADDRESSES IN DECIMAL AND HEXADECIMAL *

503 REM * AND INSTRUCTIONS FOR USE *

504 REM sis**
505 REM
510 PRINT "OHfla BASIC <4 'TRACE-' BV RAV WEST "

520 PRINT "HENABLE: SVS".?L
530 PRINT " ISP I SABLE: SYS" ;L+29
540 PRINT "&SAVE FROM" ; L ; "TO" ; L+360
550 PRINT " <$"?'. GOSUB 680: PRINT " TO *".?: L=T-250 : OOSUB 600: PRINT"

>"

555 PRINT "HA INSTRUCTIONS "

568 PRINT "H3RVS! PUTS TRACE ON/OFF/ON
565 PRINT "*= SINGLE STEPS UNTIL :-

578 PRINT "jSCI THEN 30-31 SETS SPEED FOR STEPPING.
575 PRINT "J33PACE! FOR FAST TRACE.
580 END
598 REM
599 REM DECIMAL TO HEXADECIMAL CONVERSION ROUTINE FOLLOWS:
fiR0 L=L/4096:FOR.J=lTO4:L;':=L:PRINTCHR*<48+L"/.-<LK>9>*7>; :L=16*<L-LX> sNEXT:RETURN

Programming the PET/CBM -150- 5: BASIC keywords
Like to try the new trace, which I've listed here as relocating loaders for
BASICs 1 and 2. It is controllable from the keyboard and also uses the PET's
own list subroutines, so lines appear on the screen top just as they do when
LISTing. In addition there is a single-step feature. The program is discuss-
in Ch. 13, section 13.4.3 . Note that the instructions are shown on the screen
by the same routine in each version, so I've printed them once only.

RELOCATING LOADER FOR BASIC 1 TRACE

DATA169, 0. 133, 130, ,133, 132, 133, 134, 169, 0, 133, 131, 133, 133, 133, 135
1 DATA 169, 76, 133, 211, 169, 35, 133, 212, 169, 64, 133, 213, 96
2 DATA 169, 56, 133, 211 , 169, 233, 133, 212, 169, 48, 133, 213, 96, 0, 0, 0, 0, 0,
3 DATA 0,255,0,141,-570,142,-569,140,-568,174,18,232,224,254,208,13,236
4 DATA 18,232,240,251,173,-567,73,255,141,-567,173,-567,240,119,224,253,208
5 DATA 127 , 236, 18, 232, 240, 251 , 160, 0, 140, -566, 140, 13, 2, 32, 228, 255, 240, 251 , 24
6 DATA 105, 198, 141,-563, 165, 136, 164, 137, 205, -565, 208, 5, 204, -564, 240, 77,172
7 DATA -566, 208, 184, 174, -563, 142, -562, 169, 255, 32, 195, 229, 238, -562, 208, 246
8 DATA 162, 0, 181, 0, 157, -256, 202, 208, 248, 32, 105, 226, 162, 79, 169, 32, 157, 0, 128
9 DATA 202, 16, 250, 165, 136, 164, 137, 141, -565, 140, -564, 133, 8, 132, 9, 32, 34, 197
10 DATA 32, -372, 162, 0, 189, -256, 149, 0, 202, 208, 248, 32, 219, 229, 173, -570, 174, -569
11 DATA 172,-568,76,198,224,224,127,208,149,142,-566,236,18,232,240,251,120
12 DATA 174, 13, 2, 169, 0,157, 14, 2, 88, 240, 164
20 REM
21 REM **************#*****************#*********##*#»***###**#********#*#
22 REM *THESE DATA STATEMENTS SET UP THE CONTROL PART OF TRACE (NO LIST YET)*
23 REM * *
24 REM *AND LINES 30-70 POKE MEMORY, RELOCATING ADDRESSES MARKED BY NEGATIVE*
25 REM ***************#************************##****«**#**#*****##»**###**#*
26 REM
30 T = PEEK (134) + 256*PEEK(135) * REM T = CURRENT TOP OF MEMORY (OLD ROM)
40 L = T - 612 , REM ENTIRE TRACE IS 612 BYTES LONG.
50 FOR J = L TO L+239 * REM DATA STATEMENTS OCCUPY 239 BYTES,
60 READ XX* IF XX<0 THEN Y=XX+Ts XX=Y/256« Z=Y-XX*256* POKE J,Zs J=J+1
70 POKE J, XX * REM POKE DATA (OR HIGH BYTE, IF -VE, >

80 NEXT
200 REM
201 REM *************************************#**»*#***#**#***#**»*»»##***
202 REM * OLD ROMs MOVE $C5D5-*C648l NEEDS USR ROUTINE TO PEEK (BORING") *
203 REM * THIS ROUTINE WILL LIST 1 LINE WHEN MODIFIED SLIGHTLY.*
204 REM ********************************#**#***#*******##»*#*#****#»*#«**#*
205 REM
208 REM *** USR SET UP IN CASSETTE BUFFER £2 (ROUTINE IS RELOCATING) ***
209 REM
210 DATA32, 109, 219, 165, 180, 133, 178, 160, 0, 177, 178, 168, 169, 0, 32, 120, 210, 96
220 FORI =826T0843* READX t POKEI , X * NEXT* POKEO, 76* P0KE1 , 58* P0KE2,

3

230 X =

240 FOR J L+240 TO L+356
250 POKE J , USR (X+50645)
270 X=X+1* NEXT* « REM X COUNTS POSITION OF PEEK IN ROM
280 FOR J=L+251 TO L+253* POKE J, 234 sNEXT* REM 3 NOP OPCODES ERASE CRLF
290 POKE L+313, 96 , REM FROM 'LIST'. THEN RTS.
300 REM
301 REM *****************************#*»******###**»##***#»#*#*###»#*
302 REM * SET END-OF-MEMORY POINTERS BELOW 'TRACE' TO ENSURE NEWLY *
303 REM * LOADED MACHINE-CODE DOESN'T GET OVERWRITTEN, *
304 REM ***
305 REM
310 XX = L/256* Z » L - XX*256s REM HIGH AND LOW BYTES OF END OF MEMORY
320 POKE 130, Z* POKE 132, Z* POKE 134,

Z

330 POKE 131, XX* POKE 133, XX* POKE 135, XX
340 XX =(L+5i)/256« Z = (L+51)-XX*256* REM HIGH, LOW BYTES OF WEDGE
350 POKE L+21, Z* POKE L+25, XX* REM PUT WEDGE ADDRESS INTO ENABLE.
360 XX * L/256* Z = L - XX*256* REM HIGH AND LOW BYTES OF NEW MEMORY TOP
370 POKE L+l, Z* POKE L+9, XX * REM PUT NEW MEMORY TOP INTO ENABLE.
500 REM

Programming the PET ICBM -151- 5: BASIC keywords

UNLIST
System command unavailable directly on CBM BASIC

PURPOSE: To prevent LISTing and editing of BASIC programs to reduce the risk

of unauthorised copying or modification.

Versions: Some microcomputers (e.g. IBM's) include commands of this sort. Their

success lies in the relative inaccessibility of systems software and operating

system knowledge generally. It seems unlikely that foolproof protection is

possible with any widely-sold microcomputer; it is only possible to go some

way towards it, relying on temporary expedients and perhaps legal measures.

Many BASIC programs on sale make no attempt to conceal their inner workings

but nonetheless methods have been tried;* a collection of suggestions

follows, arranged roughly from simple to complex.

[1] Inclusion of characters which stop the LIST or clear the screen or affect

the printer, in either REM statements or dummy lines, gives some minimal LIST

protection. A program loaded from another, with the stop kev disabled may
be made tiresome to get at, by including screen editing characters in its name
so that it takes some effort to load directly. In this way, a directory (or line

of a program) can be made rather misleading; parts of the name may appear

on different screen lines, say. Unfortunately, even if a program were made
completely anonymous, hardware reset methods (see Chapter 13) may be able

to break into the program : the IRQ and NMI vectors therefore need to be
changed to prevent this.

[2] A promising approach is to modify BASIC as it runs. A self-modifying

program might change its own link addresses or linenumbers or zero page
pointers. Practical Computing had some correspondence on the idea of making
the first line, numbered 0, point to itself. POKE 1025,1: POKE 1026,4 does

this.

Another idea is to change the link address of the first line; LIST therefore

will go astray on the second line , the first still listing normally . Unfortun-

ately, the link addresses are also used by GOTO and GOSUB when searching

for earlier lines, so these commands need prefacing by a correcting POKE,
like this: 75 POKE 1025,0: GET X$: IF X$="" THEN POKE 1025,34: GOTO 72

where 34 (or whatever) is the correct link value. The drawback is of course

that peeking or using the monitor soon enables anyone familiar with the idea

of link addresses to calculate the correct poke or pokes.

A modification of this idea is to include zero bytes within lines so that

invisible bits of BASIC can (say) call machine-code hashtotal routines to

detect any changes in the program . Hidden BASIC though is rather vulner-

able to editing and tends to reappear.

[3] Overlong program lines (length exceeding 255) can be used, and the

resulting program is genuinely unlistable; LIST can't handle it. Some other

commands will also come to grief, e.g. READ; the ideal candidate for such a

line is a full screen of data printed by a huge line. Such a line at the start

of a program will stop LIST, unless zero bytes are reinserted with links.

[4] A method reportedly present in a prototype 'Toolkit' works as follows:

(See Liv. Soft. Gaz. Dec '80): Each line begins with 5 colons, like this:

10: : : : :A =5. Or in fact any five characters or tokens will do. The UNLIST
puts a zero byte after each linenumber; LIST stops at the zero byte, so only

linenumbers list; but RUN interprets the zero as end-of-line, and continues

4 bytes on, so the program runs successfully. This BASIC subroutine will

put in the zeros; it assumes that 5 characters are present, unlike UNLIST as

quoted which puts these in for you:
50000 :::::A=1025: FOR J=l TO 1E8: IF PEEK(A+4)>4 THEN POKE A+4,0:

A=PEEK(A)+256*PEEK(A+1) : NEXT
50010 : : : : END

This is however very simple to re-list ; this direct-mode line will POKE
colons back again: A=1025:F0RJ=1T01E8:P0KEA+4,58:A=PEEK(A)+256*PEEK(A+1)

:

IF Aoo then next ,so the method is not a great success. The best you can

""Hardware protection includes the 'dongle', plugged into the back of the PET, and

periodically checked by the software. Such protection' is often easy to remove.

Programming the PET/CBM -152- 5: BASIC keywords

is to set a few traps in the hope they won't be noticed, such as including

spurious BASIC in the four ignored bytes which are revived by relist. For

instance, 100: : : :AA=50, when 'UNLISTED', is translated as A=50; on relist,

unless the A is edited out, the program will run incorrectly.

200:ANEWBCA=50 is another version of A=50, since it is preceded by four

bytes, one of them a token. On relist and RUN, this line will of course erase

the program (or at least its pointers).

[5] Compu /think disks have a security device which works like this: to use

these disk units, an initial SYS call changes the CHRGET routine so that

BASIC is intercepted by the 'Diskmon' ROM. Additional commands are then

identified by a leading '$' - $D,1 for instance is the directory command. The
extra commands include load- $L,l,"PROG" typically. Throughout this process

CHRGET remains modified. Now, if an asterisk is found in location 1034, just

after the start of BASIC, (=$040A), only three commands are allowed, RUN,
and two special commands which clear the memory and run machine-code .

*

LIST or SYS or any other direct command returns only READY. Moreover,

linenumbers cannot be erased or edited: typing 100 Return won't delete line

100 when the machine is set as described. Setting the BRK vector to print

READY makes this system, so far as memory storage is concerned, pretty

foolproof. All that's needed is a REM statement in the first line, so an extra

asterisk won't matter, then POKE 1034,42: $S,l,"PROG" and the unlistable

program is saved on drive 1. (42 is ASCII for '*') . When this program is

loaded, the intercepting routine tests direct-mode commands and rejects all

except the three mentioned. This process is adaptable to other systems, but

only with hardware add-ons, or with some software method for ensuring that

a modified CHRGET is obligatory, since otherwise a program can simply be

loaded and listed, asterisk and all, as usual. The weak point of such methods

is located in the disk storage, rather than RAM storage. If the disk storage

system is understood, it is possible to load a relevant part of a program,

modify it, and replace it on the disk. See Chapter 6 for concepts and methods

applicable to Compu /think.

[6] The most thoroughgoing systems for concealing BASIC rely on machine

code routines. Disk-based BASICs, which are loaded into RAM, can of course

be modified in situ; LIST can simply be deleted, or the operating system

changed. In CBM BASIC this would require a change of ROM. Instead, let's

consider ways of scrambling BASIC so that it will run, but not LIST. Each

line may be written like this: LINENUMBER SYS X: BASIC LINE: SYS Y , where

everything after SYS X is stored in coded form, including SYS Y. In this

way each line can be decoded before execution, and encoded on leaving, with

some exceptions like GOTO statements. An encoding algorithm has to be fairly

subtle: adding 1 to each character would be easily undone. Typically, EOR
of several variables gives a repeatable offset. More elegantly, this scrambling

and unscrambling process can be carried out by rewriting RUN . The major

loop controlling RUN processes single statements individually, and schemat-

ically looks like this:-

JSR CLR A similar routine may be put into

LOOP TEST STOP RAM where a SYS call will run
LOAD CURRENT CHR. BASIC. One is then free to insert

BNE next ST'MENT decoding/ coding routines before

test FOR END; IF NOT, and after the statement-processing

UPDATE CHRGET & call. This isn't very easy: colons

linenumber ETC. and zeros in the original must be

NEXT ST'MENT JSR GET CHR FETCHES token preserved as special cases, and
JSR ACTION TOKEN (OR 'LET') a record must be kept of the num-
jmp LOOP PROCESSES : OR ber of bytes altered by decoding.

A test for direct-mode, with a system reset if found, can be put into the IRQ.

There are, of course, many other possible attacks on this problem. Perhaps

the last word should go to Tommy Turnbull : 'We've had all kinds of protection

here. The longest took an hour . .
.'

*$G, which should run machine-code, contained a bug which often caused return to

the monitor. Adjusting the program's length until PEEK(42)=96 prevents this.

Programming the PET/CBM -153- 5: BASIC keywords

USR
BASIC arithmetic function

PURPOSE: Arithmetic function calling user-written machine code. Some knowledge

of machine code is necessary to understand this function.

Syntax: USR (arithmetic expression). The expression, when evaluated and, if need

be, rounded down, must fall within the range 0-65535. In addition, locations

0-2 must contain valid machine code: usually, because of the small space in

zero-page, a JMP to the user's own routines. This is a function, and may

be used validly in such statements as PRINT USR(345), X=USR(2), Y=USR(X).

Modes: Direct and program modes are both valid.

Examples: [i] See PEEK for details of a USR function which acts like PEEK in

BASIC 1. It can be used in statements like: POKE X, USR (X-l) which

are not valid in BASIC l's implementation of PEEK, due to a bug.

[ii] The machine code routine listed here and $0000 JMP $027A

called by USR displays the contents of floating
$027A LDX #$05

point accumulator #1 at the top left of the VDU. $027c LDA $5E,X
6 bytes are poked directly to the screen, so $02?E gTA $8000>x
appears as @, 1 as a, 2 as b, and so on, when $ 281 DEX
in lower case mode. Since USR, in common with $0282 BPL $027C
all functions, puts the argument into this

$0284 RTS
accumulator, its contents and method of storage

can be examined. For example :-

USR(0) gives @@@@@@ or 0.

USR(l) gives [Al]@@@@ or 129 128 0.

[iii] $0000 JMP $CD6F ; THIS EXAMPLE IS SGN IN BASIC 4

If you have BASIC 1, the USR replacement for PEEK is very useful. The

second example (BASIOl only) displays the contents of accumulator #1 in

separate bits, which is of interest to those readers who want to learn how

floating point numbers are processed. The final example is a special case

of a function, and shows how USR can access routines in ROM; in the given

case, USR(X) returns the same value as SGN(X). Experienced machine code

programmers may be able to write their own mathematical routines along the

same lines as those of Microsoft; if so, they will be callable from BASIC by

USR. It is a safe bet that this is not done often.

Notes: [1] Bytes 0-2 are initialised on switchon to print 7ILLEGAL QUANTITY
ERROR, so USR without a modified instruction in 0-2 gives this message.

[2] SYS carries out the same instructions as USR(O), but is a command,

not a function, and so cannot be assigned or printed.

[3] Locations 0-2 need not contain a JMP. An RTS (=$60, 96 decimal) for

example gives USR(N) the value N. (Or to be exact, INT(N)). An indirect

jump is valid. BRK (=0) in location will cause the monitor to display the

contents of its registers when executing a function.

Abbreviated entry: uS

Token: $B7 (183)

Operation: The value of the argument is computed and validated and put into

floating-point accumulator #1. This is normal behaviour on encountering a

function. The difference is that the address now jumped to is $0000. This

is an easy function to add to BASIC, since once the function-handling

routines are written, hardly any more work is needed to incorporate USR.

ROM entry points:

All ROMs jump to $0000.

:REH RESULT
:REM -127

:REH 120
:REH 1 (i.e.

:REM IE 23

:REM TO 24

:REH 150
:REM 1.2
:REM

Programming the PET/CBM -154- 5: BASIC keywords

VAL
BASIC arithmetic function

PURPOSE: Computes the 'value 1 of a string or string expression: the entire string,

or as much as is syntactically acceptable, is converted into a number.

This function is an important converse of STR$, enabling calculations to be

performed on a quantity which, perhaps for formatting reasons, is held as

say " 123.45" or as "1.23E04".

Syntax: VAL(string expression). This is an arithmetic function of a string argument.

The string expression must be valid; it can consist only of literals, string

variables, and string functions concatenated by +. Its maximum permissible

length is 255 characters. If spaces are included, when using BASIOl - for

instance V AL(Q$) - an array VA() will be assumed, and a ?TYPE MISMATCH
ERROR generated whenever this code is encountered.

Modes: Direct and program modes are both valid.

Examples: PRINT VAL ("123. 456") :REM RESULT IS 123.456

PRINT VAL("- 127")

PRINT VAL ("1.2 E2")
PRINT VAL("E") :REM 1 (i.e. 1 E0)

PRINT VAL ("1000000000000")

PRINT VAL(LEFT$(TI$,2)) :REM TO 24 (i.e. the hour)

PRINT VAL ("150+200")

PRINT VAL("1.2.3")
PRINT VAL("")
PRINT VAL("123" + CHR$(0) + "456"):REM 123

405 J=VAL(IN$): IF J<82 OR J>90 THEN MS$="WR0NG YEAR" : G0SUB300 : GOT0400

Any string, including the null string, which evaluates as zero, is accepted by
this routine, but validation is only implicit, and no error message is printed

if a string has non-numeric characters in it. This can be very convenient,

but equally may be a source of bugs. For this reason most of the examples

are direct mode print statements. But, like ASC and LEN, VAL may be used
freely in arithmetic expressions; the validation line from an input routine is

an illustration. VAL will accept spaces, +,-,E (unshifted only), the decimal

point . ,and of course 0-9. The validation process is intricate and flowcharts

for it have not been published; it is not particularly important to know the

precise method of validation, though. The most significant fact is that the

first unacceptable character terminates the VAL. There are three lines in

the demonstrations which are actually terminated like this, ending when +

and . and CHR$(0) are encountered, respectively. Remember that E refers

to a power of 10, so 1.2E2 is the same as 1.2 * 10 2 or 120.

Abbreviated entry: vA

Token: $C5 (197)

Operation: Most of the processing is carried out by a general routine to scan a

string and convert it into a floating-point number in accumulator #1. The
remainder is housekeeping: the mode is changed to numeric, and a length

of zero causes exit, with VAL assigned zero. If, as is usual, the string has
non-zero length, the current CHRGET address is saved, and a pointer to

the string put in its place. This is because the conversion routine scans

the string using CHRGET. A pointer to the end of the string is set up too.

Both accumulators and 10 bytes of additional storage are used by the main

routine; this uses CHRGET to ignore spaces and fetch 0-9 (This is signalled

by a clear carry bit after CHRGET). E and decimal point are looked for; so

are + and -, in both their ASCII form and as tokenised keywords. The
routine calls extra routines to perform such tasks as multiply the accumul-

ator by 10, and add the contents of A to the floating point accumulator.

ROM entry points :BASIC1:$D685 (54917) BASIC2:$D687 (54919) BASIC4:$C8E3 (51427)

Programming the PET/CBM

VARPTR

155- 5: Basic keywords

BASIC arithmetic function unavailable directly in CBM BASIC

PURPOSE: Finds the actual location of any variable in memory, after it has been

set up in the normal way on running.

Versions: Although BASIC'S routine to seek variables is well known, there have

been few attempts to write actual routines embodying it. VARPTR is Tandy's

name, and their BASIC is the only popular one with this command. My
routine points to the name of the variable, so that the location indicated

for AA$(6) is the start of AA$(), and is the same value as that returned by

AA$(10). To make the routine usable from within BASIC, the value must be

assignable, rather than accessible only by printing, say. It therefore uses

not only the variable search routine but part of LET.

The syntax is: SYS start address: sought variable: numeric variable.

The routine is relocatable; typically, SYS 634:AB$:X illustrates the syntax.

X holds the value of AB $'s starting point in memory , at the time the routine

was run. Array variables of course may move up memory when new simple

variables are defined, but this cannot happen with simple variables.

Example: 10 L%=15
20 SYS 634:L%:X: REM X NOW EQUALS RAM LOCATION OF L%

30 FOR J = X TO X+6: PRINT PEEK(J);: NEXT

40 END

When run, this program prints out:

204
(L

Machine code:

BASIC 1:

128 15
15 holds the name and the value of this integer variable)

JSR $00C2
JSR $CF7B
LDY $AE
LDA $AF
JSR $D278
JSR $00C2
JSR $CF7B
STA $98
STY $99
LDA $5F
PHA
LDA $5E

PBA
JMP $C8B2

BASIC 2,4: JSR $0070
JSR SEARCH
LDY $5C
LDA $5D
JSR FXFLT
JSR $0070
JSR SEARCH
STA $46
STY $47
LDA $08
PHA
LDA $07
PHA
JMP ASSIGN

BASIC 2:- BASIC 4:-

$CF6D

$D26D

$CF6D

$C12B

$C4BC

$C12B

$C8C2 $B945

Notes:[l] This routine won't find TI,TI$,ST, or (in BASIC 4) DS or DS$, since

these do not exist in RAM as ordinary variables do.

[2] A shorter routine can be written which prints the values without the

additional assigning; this can be valuable when inspecting variables in

direct mode. Replace JSR FXFLT, which converts a 2-byte number into

floating point form, by a print routine. In this way only 13 bytes is

enough for the routine - everything after the fifth instruction can be

ignored. The replacement is:

BASIC 1: JMP $DC9F / BASIC 2: JMP $DCD9 / BASIC 4: JMP $CF83

Programming the PET/CBM -156- 5: BASIC keywords

VERIFY
BASIC system command

PURPOSE: Compares a stored memory dump on disk or tape with the equivalent

contents of RAM. If they are not identical, 7VERIFY ERROR results.

Usually VERIFY checks BASIC programs which have been SAVEd; but

other memory dumps, e.g. machine code routines, may be VERIFY'd.

NOTE: VERIFY reads the program or dump specified, and compares it with

the contents of RAM, without loading it into RAM. Consequently, VERIFY
only applies to programs and other memory dumps: it cannot be used with

any form of data file which is output from a buffer.

Syntax: The syntax is identical to that for LOAD, including all the differences

between tape and disk syntax.

Modes: Direct and program modes are both valid. VERIFY from within a program

may be used to check a save to tape or disk; a message requesting the tape

be rewound is necessary with cassettes. Unlike LOAD, the operation of

BASIC is not reset; after 'OK' the program continues normally.

Examples: 10 SAVE "THIS PROGRAM": REM TAPE UNIT #1 ASSUMED

20 PRINT "REWIND FOR VERIFICATION - ANY KEY TO CONTINUE"

30 GET X$: IF X$="" GOTO 30

40 VERIFY
50 REM . . . REST OF PROGRAM . . .

SAVE "0:5TH VERSION", 8 :REM TYPICAL DISK SAVE
VERIFY "0:5TH*",8 : REM TYPICAL DISK VERIFY

PRINT#15,"V0": REM THIS IS ANOTHER DISK FORMAT. V IS 'VALIDATE',

OR 'COLLECT' (q.v.); THIS IS NOT THE SAME AS VERIFY .

Notes: [1] If you examine the ROM routines you'll find that VERIFY is largely

identical to SAVE. However, if a flag ($9D BASIOl, $020B BASIC 1) is set

non-zero, the program is read but the bytes which are input are compared

with RAM contents; if they differ, ST is set to #$10 (16) and ?VERIFY
ERROR printed. Otherwise, OK appears. When using ROM routines it is

good practice to set the flag, otherwise a 'SAVE' may only be VERIFYing.

[2] Some BASICSs, e.g. Apple, have a verify statement which applies both

to data files and programs, but Commodore's doesn't.

[3] VERIFY, like LOAD, defaults to cassette #1, or disk unit 0.

Abbreviated entry: vE

Token: $95 (149)

Operation: See note [1]

ROM entry points: VERIFY is a 'kernel' command; its jump address is $FFDB.

BASIC 1: $F4BB (62651)

BASIC 2: $F4B7 (62647)

BASIC 4: $F4F6 (62710)

Programming the PET /CBM -157- 5: BASIC keywords

WAIT
BASIC command

PURPOSE: Causes BASIC to wait until the memory location specified by its first

parameter has one or more bits configured in a way specified by its other

parameter(s). Any combination of bits within the location can be tested;

when anx °f *hese bits takes the sought value, the wait is over.

Syntax: WAIT arithmetic expression 0-65535, arithmetic expression 0-255 with

optional third parameter .arithmetic expression 0-255. The optional third

parameter defaults to zero, as might be guessed. If the expressions do not

yield integral results on computation, they are rounded down.

Modes: Direct and program modes are both valid.

Examples: WAIT is intended for such uses as handshaking, where some signal is

awaited. If a program WAITs for a ROM location to change, or a RAM
location which is not accessible to hardware or not updated by the l/50th

l/60th second interrupt, then it will either wait indefinitely, or not at all.

WAIT should be used only with locations whose contents vary, therefore;

the examples show this:

WAIT 59410,1,1 : REM WAITS FOR RVS OR RVSOFF

WAIT 59410,4,4 : REM WAITS FOR SPACE OR SHIFT-SPACE

1000 POKE 158,0: WAIT 158,1 : REM CLEAR BUFFER/ AWAIT KEY

WAIT 152,1 : REM WAITS FOR A SHIFT KEY

2210 WAIT 142,1: REM RANDOM DELAY OF 0-8 SECONDS

Because of the hardware-related aspect of this command, an instruction which

is successful with one hardware configuration may work differently with

another. The examples all work for BASIC 2, but the 8032 keyboard causes

the first two instructions to respond to different keys, and BASIC 1, with

a different zero page allocation, can't run the last three. Numbering bits

as usual 7 to 0, this is what these commands do: i. Waits until bit of

location 59410 is 0. ii. Waits until bit 2 of location 59410 is zero. iii. Waits

until bit of location 158 is 1. iv. Waits until bit of location 152 is 1.

v. Waits until bit of location 142 is 1. The first two commands' location

is controlled by the keyboard PIA; the next location holds the number of

characters in the keyboard buffer; this is updated during interrupts. The

fourth again uses the PIA, and the fifth the jiffy counter for the clock.

Notes: [1] WAIT is a little-used command and not a very useful one, except maybe

for people with their own hardware add-ons. It is also rather difficult to

explain. Consider WAIT address, a, b. WAIT peeks the contents of address,

performs exclusive-or with b, then AND with a. If the result is non-zero,

BASIC continues; otherwise, the loop goes on. What is the reason for this?

To see the answer, let's consider an example: suppose we wish to wait for

bit 4 of address to be off, or bit 2 on. In either case we are happy for the

program to continue, but otherwise we still wish to wait. The first thing is

to use parameter b to switch bit 4, which it does by EOR with %0001 0000.

So with b=16, bit 4 is switched: now, when the desired condition occurs,

bit 4 will be turned on. If parameter a is %0001 0100, the result of the first

bit manipulation is ANDed, leaving a result which can be non-zero only if

bit 4 was off, or bit 2 on. So WAIT address, 20, 16 is the solution.

So, WAIT address, 8, 8 waits until bit 3 is off; WAIT address, 48 waits for

bit 4 or bit 5 to be set to 1; WAIT address, 1 waits for bit to turn on.

[2] WAIT 6502, n is Microsoft's joke in BASIC 2 only. n=0 to 255.

Abbreviated entry: wA Token: $92 (146)

Operation: The parameters are computed and validated; the optional parameter is

checked for; then the address is stored in ($11) in BASIOl and the para-

meters in $46 and $47 respectively. The stop key is not tested for ($FFE1)

so the routine cannot be interrupted by pressing STOP.

ROM entry points: BASIC1:$D702 (55042) BASIC2:$D710 (55056) BASIC4:$C963 (51555)

Programming the PET /CBM -158- 6: Disk drives

CHAPTER 6: DISK DRIVES

6.1 Hardware

Disk drives The disk drives we shall consider in this chapter use so-called 'floppy
disks' as their 'media'. (like 'data', in computing circles 'media' is optionally singular
or plural). Alternative bulk memory- storage devices, notably sealed 'hard disks' or
'Winchester disks', named after an IBM project, are coming into greater use, and CBM
have announced and shown a model; nevertheless floppies are by far the most popular
storage system apart from tape. Originally introduced as an alternative method of data
entry to punched cards, by IBM in the mid- 70s, the techniques were taken over and
used by microcomputers a few years later. In the process, IBM's carefully thought out
standards were modified and to some extent dropped. For those not familiar with the
concepts of floppy disks, there is an outline in the next section of this chapter. But
the basic idea is similar to that of multi-track tape, arranged radially on a disk, like a
gramophone record, so that any track can be selected without the long time delay in-
evitable when searching tape. The disks are often called 'diskettes', and the units to
read to and write from them are called 'diskette drives', though in practice it is usual
to talk of the units as 'disks' - 'Have you got disks?' These drives are made by spec-
ialist manufactures, for example Shugart and Micropolis, and require fairly careful
handling. They are usually packaged by the computer manufacturers, and end up in
boxes and machines of widely differing sizes and shapes - Apple disk drives and
Commodore's may contain the same units. All these drives, when looked at without
their external cases, are quite similar.

Typically, a drive unit has a read/write head mounted on rails, and a stepper
motor which positions it opposite tracks on the diskette. The head is usually a ferrite
and ceramic mixture bonded in glass; the step size is of the order of l/40th of an inch.
To clean the recorded track there are 'tunnel' or 'straddle' erase heads to delete any
recording within a short distance from the track. The actual width of the recorded
zone is something like 1/80 th of an inch. When a diskette is inserted into a drive, the
clutch mechanism which grips the central hole has to position the diskette consistently
to within this sort of tolerance; if the disk is also to be used with other drives, these
too must be equally precise, or alignment errors will cause failure to read correctly.
The drive's spindle motor rotates the disk, which, because of centrifugal force, loses
some of its floppiness and may be read, sandwiched between a pressure pad and the
read/write head. The rate of revolution is usually 300 r.p.m. within one or two per-
cent. Presumably it is possible to mount 40 or so heads next to each other, reducing
head seek time at the expense of disk wear (and cost), but invariably a head seek
mechanism is used. The outside track (track zero) may be fitted with a light sensor
and a stop, to give a fixed starting reference point - the stepper motor moving the
head out until track is signalled, then stepping in, perhaps to the directory track.
Other sensors may detect index holes in the diskette and the presence or absence of
the write-protect tab. The head has an 'actuator' which moves the head in contact
with the disk when reading /writing, and away otherwise. The door of the drive also
moves the head away from the disk, to avoid 'glitching' (i.e. magnetic damage) to the
data near the head on power-on or off. This mechanism also clamps or unclamps the
disk. Double-sided disk drives have two heads, mounted on opposite sides of the disk;
they have to be offset so that each can have a pressure pad. Most microcomputer
equipment has drives mounted horizontally, or vertically with front loading, but top
loading is used with some desk-style equipment. Drives are often paired so backup
copying (from one drive to the other) is easy; a whole disk can be duplicated onto
another, for security purposes. This is not necessary, although it's very convenient.
Single-drive copying can be done by loading a part of a disk into memory, copying
this by switching disks, re-entering the original disk and reading more of it, and so
on.

Disk drives are controlled by control circuits, usually controller boards which
include a special disk-controller chip, with functions to turn the motor on or off, read
a specified sector of a specified track, seek a track, and many more. These chips haveRAM and ROM and perform a lot of error checking, returning bit patterns indicating
what (if anything) is amiss. The translation of magnetic patterns into bytes is a hard-
ware function, relying on assorted crossover detectors, amplifiers, and pulse shapers.

-759- 6: Disk drives
Programming the PET /CBM

Some chips are programmable to return not only bytes on the data bus, but also sync

marks and address markers and other housekeeping paraphernalia. Commodore have

preferred to use their own chips to control the drives. Information sheets, supplied

by disk drive manufacturers, provide interesting information on timing and on expect

ed reliability of their products. This is important when writing controlling programs,

but otherwise can be assumed to be taken account of in the disk operating system.

For example, the time for the motor to reach a stable running speed is usually about

1 second and the average time to move to another track about J second, depending

on the number of tracks on a disk; in either case the operating system software ought

to take these delays into consideration. Other 'soft' errors - wrong track found, or

byte misread, but re-readable - should be incorporated in DOS. This is done by

checking the status indication from the controller, and re-reading data, perhaps by

moving the head to track zero and retrying. This may be done ten to fifty times be

fore the error is considered 'hard'. The data sheets provided by controller chip

makers include flowcharts of recommended practice, in the hope of preventing the more

subtle mistakes. Commodore fell foul of one typical mistake when designing the write-

protect software, where the write-gate is kept on when it should be off.

The diagram shows some of the components of a Commodore drive as it appears

unscrewed, with the lid propped up. Note the position of DOS ROM chips (most of

them), and that drive 'zero' is on the right, drive 'one' on the left, with the heat

sink and printed circuit board above. Drive 1 tends to run hotter than drive 0.

Both the on /off switch and IEEE connecting

cable are at the back of the machine. Units

vary in small details; the 2040 controller

board has different ROM slots and is not

compatible with the 3040. The 3040 and 4040

models are very similar, with upgradable

ROMs available for the 3040. It is worth

noting, with your unit, which way the on/

off rocker switch operates, so that you can

check whether it's actually on. Many units

work like this:

3
*=iVentilation slots

Voltage controllers/

Heat sink

RAM chips and control!

chips
''r'nr^DOS ROM

IEEE'

c lips

OFF: 3 ON: c d
But the 4040 has the opposite arrangement:

ON: OFF:

CC nut

Power supply

Drive 1

J

Because of the nature of the IEEE bus,

several PETs can be connected to the same

disk unit (and printer too), but the users

will have to be careful not to use the disks

together; if they aren't sure enough to be

able to guarantee this, commercial products

of the 'Mu-Pet' and 'Regent' type are available. (I suggest that anyone considering the

purchase of such a system should first ask the opinion of a current user). CBM disks

are not the only storage units around. Compu /think have sold many units; Novapac, I

believe, sold fewer; 'Byte' magazine of June '81 and following editions has articles on

controlling disks; R. Freeman (Kbaud-Microcomputing, Jan. '80) explained how he added

an S-100 disk system to an early PET. Other systems continue to arrive on the scene.

The final point I want to make in this section - it is repeated here and there in

the next chapter on BASIC disk commands - is that the CBM disk units are largely

autonomous and independent of the PET /CBM which controls them. DOS is held in the

disk ROM, not in BASIC. So changing the disk unit, or swapping the ROMs in it, will

cause it to act differently - for example, to be able to process relative files, where

before it couldn't. The PET /CBM can drive any disk unit; BASIC 2 for example can

run an 8050 or 4040 disk unit, although the BASIC 4 commands have to be transposed

into their more ancestral form. See Chapter 6 for examples.

READ-

LABEL-.

seuredns

Programming the PET/CBM -160- 6: Disk Drives

Diskettes ('floppy disks') The diagram, which is approximately to scale, shows the

typical features of a diskette. Bold lines indicate the outline of the envelope and the

notches and windows in it; thinner lines mark the position of the magnetic surface

itself. The diskette is square (like the sleeve

of a record). It has a write-protect notch; if

cut out, the disk can be written to; if it is

not cut out, or if an adhesive tab is stuck
over it, a disk is write-protected , provided
the disk drive is designed to sense the notch
and process the resulting message. Most drives

have this feature; the idea is to prevent in-

advertent erasure of important programs or

data. Two stress-relieving notches are cut
near the read-write window, the elongated
slot along which the read-write head moves.
The entire disk is spun within the protective
envelope; part of it is visible as an annular
region, which is gripped by the clamp and
rotated by the spindle motor. The small hole
nearby enables index markers and sector
markers to be sensed; the diskette may be
perforated by one or more small holes, which
are inside the region used for reading/writing,
and through which light can be detected. The
physical orientation of the disk, at least as regards CBM drives, is as shown, when
the disk is inserted into the drive. The label side is uppermost, and the read- write
slot forward. The label is deliberately positioned away from the sensitive recording
surface; this reduces the chance of fingerprinting, and also enables the diskette to be
put into its outer dustcover with the label visible and the read-write slot hidden. CBM
equipment, and much other, uses disks which are 5 1/4" square (the disk surface is

5 1/8" in diameter). These represent a fair compromise between the size of the complete
unit and quantity of storable data.

The recording surface is usually a polyethylene derivative, coated on both sides

with magnetic recording emulsion. Single-sided disks are tested (I'm told) on one side

only, or, if the test fails, flipped over and tested on the other. This process also

tests double-sided disks, which are otherwise similar or identical to those labelled

'single-sided'. When a production run has made its quota of double-sided disks, some
of the remainder may still be usable as double-sided disks, in spite of their labelling.

The magazines regularly have 'new' articles explaining how to double your disk capac-
ity by cutting new index holes and write-protect notches, so that the other side of

each disk is usable. The standard argument against is that small dirt particles, trapp-
ed by the self-cleaning wiper lining the diskette , become dislodged and spread across
the disk surface when the direction of rotation of the disk is reversed in this way. Of
course, double-sided drives don't have this problem, as the direction of rotation is

constant. The lining of a diskette depends on its quality, but is often a slippery
plastic (e.g. PTFE) woven in a loose texture, like a small-scale string vest. Small con-
taminating particles, smoke, dust, and so on, become trapped there and don't interfere
with the read-write head, or scratch the medium. A track's useful life is typically
quoted as 3xl0 6 passes per track. This sounds a colossal figure, but in fact, at 300
revolutions per minute, represents about 7 days' continual running. Disks containing
important data should of course be copied and the master disks replaced at intervals.
It's difficult to make useful remarks on diskette quality: it is impossible for anyone
outside the manufacturing business to know whether the labels represent genuine diff-

erences, or whether the same item is repacked/ relabelled and /or mixed with other
batches. The magnetic properties of retention and sensitivity alone are very complex.
In practice people rely on advertising and on price as criteria. Some brands (Dysan,
Scotch) advertise their reliability; Verbatim more recently has done the same thing,
perhaps in response to criticism; others (3M, BASF, CDC) seem to rely on their gen-
eral reputation. In any case, a programmer producing systems for anything approach-
ing a serious use must have a rigorous program to test diskettes by writing and read-
ing to the entire disk surface.

How is all this actually implemented on the PET/CBM's systems? Much, but not
all, is standard practice. The outer track, usually called track zero, and the inner
track are arranged as the diagram shows, with the directory held on a central track

767- 6: Disk drivesProgramming the PET/CBM

(or two tracks with the 8050, because of its larger capacity). The directory track(s)

contain (see 6.4) the directory, with associated pointers and flags, and the block

allocation map, or BAM, which lists the available sectors for future use, so that new

data can be stored in unallocated sectors, and scratched data can be redefined as free

for use. The general principle is fairly standard. Apple disks for example have a

'volume table of contents' or VTOC and a 'track bit map' which have similar functions

to the directory and BAM. The actual diskette may be either hard-sectored or soft-

sectored, despite CBM's claim that only soft-sectored disks should be used. The light

sensing system appears to be absent, so the index marker and sector holes are not

relevant. (A hard-sectored disk can be identified by careful manual rotation of the disk

in its envelope; if there is one hole only, the disk is soft- sectored; if there are many,

for example eight, the disk is hard sectored. Hard sectors rely on light sensing to

position and read individual sectors; soft sectoring uses software). We shall see in 6.5

how to program CBM drives to read or write to any track, and to any sector within

that track. But first let's consider the rationale behind sectoring tracks.

The point is that small variations in the spindle motor speed cause data being

written at a constant rate to vary in its physical length. Sectors are separated by

gaps, and these gaps allow for speed differences between machines; a slower machine

writes longer sectors, and vice versa. (There is a curious passage in Osborne-

Donahue on this subject). Sectors usually hold 256 or 512 bytes of data; there maybe

from about 8 to about 30 sectors per track, depending on the recording method. For

example, double and quad density recording stores respectively twice and four times

the normal amount of data, by doubling the number of sectors or doubling each sect-

or's contents or both. (The number of tracks varies too, of course). A diskette's

total storage capacity is tracks x sectors per track x bytes per sector ... usually.

Commodore uses an unorthodox and rather horrendous system in which the number of

sectors increases as a track is further from the centre. This allows about 20% more

data to be stored than would otherwise be available with their single-sided, single-

density systems (double-density with the 8050). It means that the rate at which data

is written is faster at the edge of the disk than the centre. Usually the rate -is fixed,

so all sectors occupy the same angular distance. Commodore's technique takes advant-

age of the fact that greater resolution is possible at the edge of a disk. (For the same

reason, records reproduce sound better at the start than the end, and have large

labels in the middle).
The diagram that follows illustrates the way in which data is stored on these

disks. It is recovered by a decoding process, and synchronisation fields and clock

pulses are detected by their bit patterns, which are not data bit patterns. Much of

the reading and checking is on time, and not on counting. The 'cyclic redundancy

check' is a form of hashtotal which follows the data. It is read from the disk only

ONE SECTOR OF A TRACK

Gap Sync.

Field
I.D.(e.g
4 bytes)

CRC Gap Sync.

Field
Address
Marker

256 bytes of data

CBM includes pointers
CRC Gap

after the 256 bytes or so of data are in their RAM buffer. Incomplete use of the error

detecting software here, and in many other cases, may permit spurious data to enter

the system.
Soft errors may be caused by physical contaminants, and by electrical noise,

static electricity, defects in the disk surface, speed variations and so on; these are

curable by repeat re-reading of the disk. Hard errors can be minimised by care of the

system, and also by careful backup procedures. The error-checking mechanisms, if

they are used, are pretty formidable, and correctly-adjusted hardware with well-des-

igned software should be extremely reliable. Hard error rates of 1 bit in 10H give an

idea of the reliability attainable; this figure is quoted in a disk drive's specification

sheet. Section 6.8 of this chapter summarises the care and maintenance which it is

prudent to apply to drives and diskettes. However, it is worth remembering that the

reliability of data transfer between a computer and disks is nowhere near that of data

transfer within RAM and ROM, where several hours' running time may reach this

figure (loll bits transferred).

Programming the PET/CBM -162- 6: Disk drives

6.2 Software

What is a file? This concept is quite difficult to grasp; only with practice and exper-
ience does it appear a self-evident and obvious idea . Data when stored in some device
external to the computer (tape, disk, another computer, etc) has to be arranged in
some sort of logical way, to be accessible again; any collection of accessible data may
be called a file. The operating system usually enables files to be named, so that they
are easily identifiable, and adds housekeeping features to the data which, by standard-
ising the input and output routines, allow the use of relatively easy commands, like
INPUT* and PRINT*. Housekeeping with CBM disks includes such features as the
special treatment of [Return] as a record separator, the special treatment of the comma
and colon as 'field' separators, and the automatic generation of header or directory
records in which the file's name, type, starting address or buffer position are stored
for later recovery. When the file is read back, this information is used to process it

correctly. For example, programs and data are held rather similarly, as bytes in
blocks on tape or disk, but a program has a different value in one of its header bytes
which causes the operating system to carry out the load routine into RAM, rather than
prepare a data buffer for reading, which is what happens with a file. At first sight,
this seems extremely involved, but with practice and thought it soon becomes fairly
easy to guess what parameters will be needed to make a file system operable. Large
computers use a variety of file organisations, many of them unavailable on small mach-
ines. (In fact, people who have worked for years with mainframes or large minicomp-
uters are often unable to understand the difficulties of working with the more restrict-
ed operating systems of microcomputers). The summary that follows describes these
file organisation methods. All of them can be implemented with CBM machines in prin-
ciple, but learners will be well advised to use only those systems that are supplied
by Commodore, or which are available as extras with the use of other manufacturers'
firmware. The names of the methods aren't standard, so I've referred to CBM file

types in block lettering in the hope of reducing confusion.

Sequential files . These files are one of the simplest types in concept. The only file
construction which is simpler is (I suppose) simply a file containing consecutive bytes
of data with no special characters, a long list of data with a method to indicate where
it ends. Most microcomputers, apart from the very cheapest with no file-handling at
all, implement this system. It is very suitable for tape storage, because tape reading
and writing is almost invariably linear because of the difficulty of winding tape at high
speed to read different records. It is also suitable for records of variable length, be-
cause there is no need, as there is with some other methods, to ensure that all the
records are the same length. CBM, and most other micros, use the system in which
the [Return] character acts as a record separator. A 'record' may be made up of
'fields'; the record is a complete entity, perhaps name, address, and several other
details, in which case there is a 'field' corresponding to name, address, and so on.
In practice each record is usually designed with the same number of fields to each
record, so that every record can be read in the same way. COBOL is particularly
well-adapted to explicit handling of fields and records and file definitions like this one
appear at the start of all COBOL programs:

01 LOGFILE-HEADER.
03 DOCUMENT-NUMBER PIC 9(4).
03 VDU-NUMBER PIC 99.
03 VDU-RETURN PIC 9(4).
03 TRANS-STATUS PIC S9(4).
03 TRANSACTION.

05 TX-NAME PIC X(10).
05 TX-ID PIC X(2).

This means that the record called 'LOGFILE-HEADER' is 27 bytes long, made up of the
fields named as above, and with the format specified, where 9 means a numeral, S a
sign, and A an alphanumeric character. (This notation has been used in CBM printers
with little change). BASIC has carried over from FORTRAN the habit of not defining
files at all rigorously. Rather than use the formatted layout of the type above, BASIC
separates records by [Return] and fields, where the distinction is kept, with commas
or colons. This is because PRINT* always sends a [Return] at the end of its current

-163- 6: Disk drives
Programming the PET/CBM

outDut string. This is sent to the tape or disk, and stored there, so it may as well be

put to use as a separator. Similarly, INPUT # is designed to take in a set of characters

ud to the next [Return], If this set of characters includes one or more commas or

colons, an input statement of the form INPUT#x, X$,Y$,Z$ will assign X$, Y$ and so

on to fields within the record. All this is quite straightforward (when you've grasped

the idea!) and section 6.3 has demonstration programs. There is one complication

peculiar to Commodore: PRINT and PRINT# each follow [Return] with linefeed (this is

ASCII character 10 decimal), originally so that the next line on the screen would be

moved to, whenever Return was pressed. This character is filtered out of cassette tape

files but, with BASIC<4, left to print to disk. To get rid of it a construction like

PRINT#8,X$;CHR$(13); or PRINT#8,XCR;
,,.. . .

had to be used. BASIC 4 has a patch in its print routine which deletes this character

if the file number is less than 128. For chapter and verse, see PRINT and PRINT # in

Cllfl.DtGF 5

The diagrams which follow are an attempt to explain the layout of sequential files.

I have used [R] to mean Return, which is #0D (13 decimal). The first shows a file of

this type in which only records have been written (i.e. there are no subdividing fields

within a record).
± x 111X x 111222 2 222 2 22333 3

Byte- 1234 5 6789 1 2345 6 78 9 12 3 4 5 6 7 8 9 12 3

Fllel moTHTH|[H]|8|ll|l|T|H|[H]JA|L|A|H|[B]lclA|H|T|K|H|[H]|B|V|K|[HllBlA|B|0|H[[H]|

In this case, a program to read the file will have input statements of the following type

within it at some stage :-

100 INPUT CN$: INPUT SN$

200 PRINT "FULL NAME IS "; CN$; " "; SN$

This format is obviously dictated by the structure of the file, where Christian names and

surnames alternate. The second example shows a file where separate fields have been

used, a technique which calls for the use of statements like PRINT#x,I$ "," N$ ","M:-

< fte^o-rd # 1 > < Ce^rA* 2. * «-1?eawi 4«= 3 . >

S K [R] 8 [R] [R]
File:

Here, because of the separators, we have the option of using either of the following

types of input statement to read the data from the file. Note that again the file is

written in a regular way, with equal numbers of fields in a record, so that any record

may be processed in the same way as all the other records. This is not necessary, but

it does simplify programming. Alternative techniques include the use of a number m the

first field which counts the total number of fields in that record.

100 INPUT 1$, SN$, M : PRINT "NAME, SCORE = " 1$ SN$ M

or 100 INPUT 1$: INPUT SN$: INPUT M

CBM equipment is designed so that PRINT and PRINT* send to tape or disk the same

characters as they would have sent to the screen, so that if PRINT and INPUT match

there should be no problem. The last example, where two strings are followed by a

number, illustrates this. As long as 1$, N$ and M are written to the file, they can be

read back by the same variables. There is a passage in Osborne-Donahue (p. 300 app-

rox.) which seems to suggest, erroneously, that there is some difference between

number and strings in this respect.

Relative files . These are sometimes called 'random access' files. Each record is the

same length; any record can be called by number, without, as with a sequential file,

having to wait while the entire file is read from the start . The organisation of the

records is identical to that for sequential files, except that each record is the same

length, or at least not longer than the predefined length of a full record. (Some may

be exceptionally short, but as long as the number of fields is correct, an early [Ret-

urn] character will not disturb the file). However, in addition to this file, there must

also be a subsidiary file which enables the position of any record to be computed. CBM
equipment with DOS 2+ uses a chain of so-called 'side-sectors' for this purpose. DOS
1+ has a very long program to achieve the same effect with 'User files'. The algorithm

which determines the data position may in fact be external: using the sector-writing

capability of many disk-drives makes possible the construction of files in which the

nth. record is simply the nth. sector of the disk. Record number might be track 0,

sector 0; record 1 in sector 1 of track 0; record 2 in sector 2 of track 0; and so on.

Programming the PET /CBM -164- 6: Disk drives

Direct Access Files . This file access system, like the last, is sometimes called random
access, because a file on the disk can be read or written 'at random'. It is a version

of relative access in which records are not called by number, but by some key. This

key is encoded, converting it into a record number, and the resulting record read.

To clarify this, suppose we have the facility to write relative files (e.g. via DOS 2+),

but we wish to be able to retrieve records using telephone numbers (or names, or part

numbers ...) as the key. One method might be as follows: store in RAM a table of

each phone number, in order. Then when an enquiry is to be made, this table could

be searched, using perhaps a binary chop search, to convert the phone number into

a number within the range of record numbers on file. This would be quite fast. The
drawback is that new records could only be inserted into the file by rewriting all the

file above the new record, moving it up one place. An alternative approach, direct

access codes the key using a 'randomising algorithm', positioning the record according

to the resulting value. Records are held in a completely jumbled sequence, but the

point is that the algorithm enables any of them to be quickly located from the key,

without any disk overhead. A file of this type must be larger than the anticipated

number of records; at least 30% more space must be provided so that new records can

be placed without too much difficulty. Suppose we open a direct access file with space

for 1500 records of length 50 each, anticipating about 1000 records in the complete

file. We devise an algorithm which converts any telephone number into an integer in

the range 1-1400. (The extra 100 allows for 'consecutive spill' forward). A good algo-

rithm will spread the resulting numbers evenly. We may be able to improve on this

using known facts about distribution of such numbers; if for example the final digits

are evenly spread, 1400/9 * final digit will ensure that ten equal chunks of data are

produced by the algorithm. Another expression evaluating to 0-150 or so must be
added to give the randomising formula . Other methods include : taking the remainder
after division by a prime number; using RND(key) after RND(-l) to generate repeat-

able random decimals from 0-1; splitting the key into parts and adding.
The outcome of this will be the sort of situation shown in the diagram. Three

telephone numbers have been processed by our algorithm, and yielded the values

shown. The records are therefore written into the file:

765-4321 becomes 752; 741-0123 becomes 53; 300-3000 becomes 297:

FILE: 53 297 752 1500[

Now, when we wish to read the record corresponding to 765-4321, we perform the same
encoding process, and read record 53. What happens if an algorithm generates syn-
onyms (strictly, the original keys are 'synonyms'). We store it further up the file, as

near as possible to its originally computed position. This implies that each record must
store its key as well as the associated data, or have some other means of distinguish-

ing a 'home key' from a 'synonym'.
If all the records are stored in the file as they are processed, and the algorithm

is truly 'random', the proportion of synonyms expected is half the packing density. In
our example, 1000 of 1400 records, about 71%, will be utilised. So about 35% of keys
will be synonyms. If synonyms aren't entered immediately, but are stored in another
file for later entry, the proportion of synonyms drops by about 25%. So, in this case,

about 25% of keys will be synonyms; but the number of records which need to be read
when a synonymous record is read is higher.

This is a fascinating system on which to organise files, and is quite an easy one
to implement. It has the serious drawback of making a sorted sequential read of the
file difficult, because of the randomised order. To do this, another file, holding all the

keys to date, is required. This will need to be sorted or merged at intervals. Then it

can be read sequentially, and the corresponding records calculated and read. Another
drawback is the wasted space, a necessary concomitant of the technique.

To summarise: if this look-up method appeals to you, follow these steps:

(i) Decide whether it will, in fact, do what you want,
(ii) Experiment with 'randomising' techniques, taking account of regularities in the

key field. Find one with a good spread,
(iii) Make an estimate of the optimum file size,

(iv) Enter the most frequently used records first; many will become 'home' records,

faster to retrieve and rewrite,

(v) Don't write synonyms until the second pass, to maximise the number of 'home'

records which the file will contain.

Programming the PET/CBM -165- 6: Disk drives

Indexed sequential files . IS or ISAM files are one of the most popular types of file in

commercial use. Tney are unobtainable on most microcomputers as standards, although

some firmware (e.g. EPROMs) has been produced and advertised with this type of

feature on it . These files are readable sequentially in sorted order - for example by name

or by customer number, but in any event by a range of possible keys. Any individual

record is also readable or writeable at will. This can be accomplished only with sub-

sidiary files, holding keys and pointers to their records. Any new record needs to be

merged and sorted into this index, perhaps on five to ten different keys. A self-main-

taining system of this kind is not easy to write. Some small computers - the IBM 5100

series, and 'Microstar' - do have this facility or something like it.

The example which follows is a small-scale version of the real thing, but shows

the general principle. I've assumed a rather short file is set up, which is accessed by

a single key, expressed as two letters. The index file, which has the same number of

records, stores each key used so far, together with a pointer. Now, when the file is

to be read in sequence, this index file is read first: record AA is to be found in the

main file as record 1, then record AB as record 2, and so on. If a record is to be

read at random, say DG, the index is searched, perhaps by a binary chop, since it's

in sequence, and when DG is found, its pointer is read and the corresponding mam
file record read. This of course is slower than any non-indexed method which reads

its main record directly. Relative records for example are faster to read, but can only

be regarded as 'indexed' if for example a client number equals his record number.

Record #1 Record #2 Record #3 Record #4

MAIN FILE: 1 AA detail I
AB detail I

DG detail I QR detail

I

INDEX FILE: I AA1 1 AB2|DG3| QR4j

Suppose two new records, ZZ detail and FF detail are to be entered into the indexed

sequential system. First, we append the new records onto the main file as it exists at

present. This expands the main file like this:

Record #1 Record #2 Record #3 Record #4 Record #5 Record #6

MAIN FILE: I AA detail I AB detail DG detail QR detail ZZ detail FF detail

The index file needs two records added to it, viz. ZZ5 and FF6. These, however,

cannot simply be appended to the index file, since then the sequence of records is no

longer maintained. Instead, they are sorted, and merged into the index file. (The sort-

merge is a universal technique for incorporating new data into an already sorted file:

after sorting, each record is compared with the file records until a position is found

into which it fits the correct order). The resulting index file is:

INDEX FILE: AA1 AB2 DG3 FF6 QR4 ZZ5

This, of course, is only an outline of one method of many by which this system can

be put into operation.

Inverted files . This file organisation method is used in data-base processing, where a

file of data is read and the entire file is potentially a source of information; the data

base is interrogated using keys, which typically may be combined using AND, OR, NOT
and other Boolean operators. The object is not to read an entire file, checking on each

single record, but instead to cut down the number of possible records as rapidly as

possible. This means the construction of a number of key files. Every new record is

entered in the main file, and its record number has to be appended, or preferably

merged, into each key file for which its details are relevant. This process is likely to

be quite slow, but increased efficiency subsequently may make it worthwhile. The
example, I hope, speaks for itself.

MAIN FILE: Record # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

PRICE RANGE 1:

PRICE RANGE 2:

PRICE RANGE 3:

AREA 1

AREA 2 :

AREA 3

ROOMS TYPE 1

1 2 3 8 15 16 20 22 33 54 56 ... V
4 6 7 12 13 17 18 24 26 27 29.. . ?

5 9 10 11 14 15 19 21 25 28 30...

>

5 6 10 11 13 15 18 24 25 26 .^ S

3 4 7 8 9 12 20 21 22 23 33 . . . 5

1 2 9 14 16 17 19 27 28 30... ^

4 5 7 8 12 14 16 17 18 20. . <

Programming the PET /CBM -166- 6: Disk drives

Direct track-and-sector access methods . Many very efficient systems for the use of

disk data are hybrid systems in which data is loaded into a buffer and processed

there. An entire track of data may be loaded into memory and searched while in RAM,
for example, A sector may correspond to several records, which can be poked into the

sector and written back to disk. Searches for Boolean matches can be carried out with

machine-code routines on data in RAM. It is possible to save the entire set of BASIC
variables on disk and reload them later; when used with integer arrays this can be a

very powerful method for storing a great deal of arithmetic information in RAM, where

recall is fast.

'Opening' and 'closing' files The following statements are taken from a variety of

computers. They all open one file. Through the idiosyncrasies of syntax a few prin-

ciples underlying this process may, I hope, shine through:

-

OPEN FILE FL2, 'D40',3, 'MASTIND' , IN, KEY

OPEN 1,1,1, "TAPE SEQ. RECORDS"
PRINT D$"OPEN MAIL LIST,L200,D0"
SELECT LOGFILE ASSIGN TO EDS ACCESS IS SEQUENTIAL

D0PEN#6 , "REL DATAF ILE" , Dl

,

All these include:

(i) Some future reference for the file - a name or number.
(ii) Request to use the file for writing, or reading, or both.

(hi) Reference to the device or drive to be used, unless this is implicitly given.

(iv) Description of the type of file, at least if the file is a new one.

(v) Some internal system to assign a buffer for storage of data, which has been read

from the device but is currently stored awaiting processing; or which is to be used

to store data before it is written to disk; or both,

(vi) An implicit requirement that the file be closed at some future time, whereupon the

final buffer of a write file can be processed, and the directory or header details

of the file updated.

6. 3 Commodore disk drives and file handling

The 2040, 3040, 1040 and 8050 drives At the time of writing, these drives are the

most widely available CBM drives. The 8060, using 8 inch floppy disks and IBM format,

and a Winchester unit with a single drive, have been announced, but are not widely

available. A single, shoe-box sized drive for the VIC, called the 4020, also exists.

(Note: CBM's disk units are assigned numbers ending with 0, except the 8061 and 8062

where single and double sided disks are distinguished. The -0 suffix contrasts with

the CBM machines, where -08, -16, or -32 records the RAM installed at the time the

computer is sold. Most printers end with -2. Clear? It all started with 2001...)
The four drives are similar in appearance.* The 2040-4040 sequence represents

continued improvement within the limitations imposed by single-sided, single-density
5 1/4 inch disks. Several physical changes have been introduced: the 2040, of which
there are a number still around, was notoriously prone to heating and other problems.
It is not particularly easy to upgrade, as its internal main printed circuit board has to

be changed. The 3040 avoided some of the problems of its ancestor, while retaining

others: for example the diskette clamp seems to lack the normal precision centring

mechanism, so that it is widely recommended to close the disk drive door only when the

disk is revolving. Initialisation of the disk (see INITIALISE in Chapter 7) is still ob-

ligatory in this model. Finally, the 3040 used DOS 1.2, which, while an improvement

on DOS 1 in its error-trapping, still only provided sequential files! All these objections

were removed by DOS 2.1 and the 4040 drives. The remaining difficulties are summar-

ised in section 6.8 at the end of this chapter. The 8050 has more than twice as many
tracks, and about 40% more sectors, on the same size disk. The diskettes therefore are

entirely non-interchangeable . The disk doors and disk retaining mechanism are differ-

ent, presumably better, and the central warning LED signals green and red - not just

red! No doubt there are production-line changes of a highly technical type which are

not widely known. This then is the evolutionary history of CBM's disk drives to date

.

The steel casings are made by Canada's largest barbeque-equipment factory. If there

is any symbolic significance in this I've been unable to find it.

Programming the PET /CBM -167- 6: Disk drives

The drives were issued contemporaneously with the 2000, 3000, 4000, and 8000 models

of the PET/CBM respectively, and are therefore often seen together, because they were

bought that way. As mentioned before, the capabilities of the disk drive lie within the

disk unit itself, so it is more important to select the correct disk unit - or to be prec-

ise the correct ROMs - than the appropriate version of BASIC . The single most import-

ant feature of a system is the storable amount of data; if a user wants a program to

access 2 million bytes, obviously the programmer will be in trouble with a small capacity

disk unit unless space-saving data-packing techniques are used.

How can the different drives be distinguished? The obvious way is to read the

Commodore labels on them, if they aren't obscured by dealers' logos, but this is not

always reliable, because of the possibility of updating the ROM sets in the 3040 and

8050 series. For example, a 3040 unit may have been upgraded from DOS 1.2 to DOS
2.1 . The infallible way is to peek the disk ROMs themselves; a location which has

the required power of discriminating between disk ROMs is $FFFF in the IRQ vector.

Thus
OPEN 15,8,15: PRINT#15, "M-R" CHR$(255)CHR$(255) : GET#15,X$: CLOSE 15:

PRINT ASC(X$)

Prints the decimal value of this location, which = 213 with 4040 drives, and 242 with

8050 drives. At the time of writing, there are at least two DOSs for the 8050; these

can be identified by CHR$(195)CHR$(251), which returns 32 with DOS 2.5 and 170 with

the newer DOS 2.7 .

And this table summarises the main characteristics of CBM drives:

DISK
UNIT

CAPACITY
Tracks Total bytes Free bytes

DOS
fitted

Upgrade-
able?

Relative
files?

Initialise

needed ?

Diskettes
compatible?

[2040 35 2x176 640 2x171 520 1 Yes (with

pcb change]
No° Yes* Yes]

2

4*

3040 35 2x176 540 2x171 520 1.2 Yes (to

4040)

No° Yes* Yes
read only

I"
4040 35 2x174 748 2x169 728 2.1 No Yes No Yes, but

read only 3

8050 77 2x533 248 2x518 400 2.5 + No Yes No No

°A very long demonstration program may be used to construct files like these ;
or user

written direct-access techniques may be used. Neither comes with DOS.
*When initialising a disk, if the disk doors aren't closed while the disk is spinning, to

help centralise the disk, the directory may not read, and you will have to try again.

The message 20, READ ERROR, 17,0 is typical.
2 This drive is the oldest and least reliable.
3When (say) a 4040 writes to a disk formatted by DOS 1.2, an error message like this

will occur:
73, CBM DOS, 19, 07

and the disk will become unreadable. The same thing happens if DOS 1 writes to DOS 2.

Recovery techniques are known (e.g. Harry Broomhall has programs called 'Lazarus')

but they are hazardous and success cannot be guaranteed. Therefore, take care not to

write with DOS 2+ onto DOS 1+ disks, or vice versa. Sometimes this happens out of the

blue A CBM games disk has a concealed game, which only appears if a score on one

other game exceeds a certain value. To cause this to happen, the directory is modified

on the disk, possibly damaging it.

Programming the PET ICBM -168- 6: Disk drives

CBM file types: Sequential, program, relative, and user A directory or catalog of any

CBM diskette (see Chapter 7, CATALOG) lists files on disk with a three-letter code to

indicate the file type. The possible codes are SEQ, PRG, REL, and USR. Occasionally

DEL (deleted) makes an appearance, and sometimes *EL or other anomalous code. These

latter are connected with the problems of scratching unclosed files , which are discussed

elsewhere, and with bugs in the COPY command as applied to relative files. Apart from

malfunctions of this sort, the four file types (or three in DOS 1, which has no REL

files) are recorded in the directory at the time the file is written, as a flag: if the flag

is #$00, a scratched file is (or was) present; if it is #$81, #$82, #$83, or #$84, the

directory translates the value into SEQ, PRG, USR or REL respectively. A file opened

as a sequential file lists on the directory with SEQ ; a BASIC program saved to disk

lists with PRG, not surprisingly. Machine-code also lists with PRG, so there is no way

to tell from the directory whether a PRG is BASIC or machine-code. Saving with names

like 'OLD.033A' is the usually recommended practice for the meticulous programmer.

As we'll see, program files can be opened for reading and writing as though they were

sequential. This is useful in the compilation of certain types of utilities for programs,

such as cross-referencers for variables.

User files (USR) are, so far as I'm aware, identical to sequential files. Their

sole purpose seems to be to give the impression that the subsidiary files which are

opened by the relative file demonstration program in DOS 1, are notably different from

the main data file, and from other sequential files on the disk.

Section 6.4 of this chapter explains how each file type is stored on the disk. It

is not necessary for comparative beginners at programming to understand minutiae of

this sort, and the remainder of this section explains file-handling from BASIC.

Files and BASIC: (i) Formatting new diskettes A box of diskettes which haven't yet

been used ought to be dealt with in a standard way, so the status of any diskette is

fairly self-evident. CBM disks may be formatted with a two-character i.d. It is a good

idea, in principle, to ensure that each disk has a different i.d., so there will be no

chance of DOS garbaging the data on a disk by confusing it with another of identical

i.d. This will only be possible with backup disks. Typically, the labels supplied by
the disks' manufacturers will be stuck to the disks and filled in (with a felt-tip pen!).

The process of writing a name onto a blank disk, and recording i.d. markers on all

its tracks and sectors, is usually called 'formatting'. Without it, a diskette cannot be
written to or read from. The pattern is characteristic of a particular disk unit; most

disk drives can't read disks written by other brands of machine, because the number
and position of the tracks and sectors is not the same. When carried out on a diskette

which holds data, the rewriting process can be considered to erase all the previous

information, so it is rather important to take care with it. Just to be confusing, this

is often called 'initialising', the name CBM use to refer to the process of reading a

disk's directory and BAM into memory, a non-destructive operation. If you switch from

one computer to another, it may be necessary to remember this fact; 'initialise' may
delete all your data if tried on another machine. Conversely, in CBM BASIC, HEADER
or the non-BASIC 4 command Disk NEW, format disks. These are discussed in Chapter
7 under HEADER, but here are four examples of the commands.

The two first examples have the effect of formatting an entire disk, giving it

the name DISK RW and the i.d. V6. HEADER can only be used by BASIC 4-earlier

BASICS don't recognise the word. But Disk NEW can be run with any BASIC.

HEADER D0,IV6,"DISK RW" :REM DISK ASSUMED TO BE IN DRIVE 9
OPEN 15,8,15: PRINT#15, "NEW0:DISK RW.V6"

The next examples retain the previous i.d. and simply reformat the directory. This

does not format the entire disk.

HEADER D0,"DISK RW" :REM DOESN'T FORMAT THE WHOLE DISKETTE

OPEN 15,8,15: PRINT#15, "N0:DISK RW"

Files and BASIC: (ii) Channel 15, the 'error' channel Channel 15 - secondary address

15 in an OPEN statement - is specially reserved for use by IEEE equipment, of which

CBM disk drives are an important example. Its function is to act as a buffer for DS
and DS$ messages about the disk status. (See Chapter 7 on DS and DS$ for more on

these reserved variables). Most of these messages aren't really 'errors', but the name
is a convenient one to use. It also enables commands to be transferred from BASIC,
such as PRINT#15,"NEW0:DISK RW", as we've just seen. With BASICS before BASIC 4

Programming the PET/CBM -169- 6: Disk drives

programmers had no option but to get in the habit of opening this channel and print-

ing to it or reading messages from it; BASIC 4 has automated this process, so that it

needs to be done only at the start of a session. Chapter 7 lists all the BASIC 4 comm-

ands which perform disk file operations, along with their channel 15 equivalents, all

of which, incidentally, work in BASIC 4 too, so that it is Possible to write disk-file

handling programs which will run on any version of CBM BASIC. When reading Chap-

ter 7, remember that the statement OPEN 15,8,15 is assumed to have been executed,

to open file 15 to the error channel. Other file numbers are often used m the literal

re, for example OPEN 1,8,15 which is followed by PRINT#1 or INPUT#1. It makes no

difference, except that consistency is helpful, and 15 is mnemomcally good.

Files and BASIC: (iii) DOS support and DUM These programs are supplied on the

test disks which Commodore issue for use with their machines. The first is machine

code with a BASIC loader. Its full title is 'Universal DOS Support' but this is too long

for the disk directory, so it appears instead as 'Universal Wedge'. Its purpose is to

extend BASIC'S direct mode to include several disk handling commands. These include

initialisation, sending a directory directly to the screen (leaving BASIC intact), and

loading disk programs. BASIC 4 needs this program far less than BASIC<4, because

many of its commands already handle PRINT #15 automatically. Chapter 7 notes when

DOS Support is useful, for example when reading a directory with BASIC<4. The

symbols @,>,T, and\are intercepted by DOS Support from BASIC. Since some of them

are also valid in BASIC expressions, DOS Support has an elaborate built-in routine to

ensure that direct-mode commands are accepted, but program-mode is rejected. (Old

versions may have this test missing). Although I haven't repeated a comment on DOS

Support in every command in Chapter 7, every command listed there of the form

PRINT#15,"..." may be simplified with DOS support, in direct mode. For example,

@N0:DISK RW.V6

formats a new disk with the name 'DISK RW' and i.d. 'V6'.

DUM is a BASIC program by R Leon of Prominico Ltd., Vancouver, which carries

out disk maintenance for people who haven't puzzled out the operation of CBM disks,

or who like a program to run things. This again was more necessary with BASIC<4

than it now is with BASIC 4, which has easier commands. Nevertheless this utility, or

others like it, remains valuable because of the effortlessness it brings to disk handling.

It operates in direct mode only, and is not a file-handling utility. Instead, it prompts

the user, with a menu, to choose options like 'Copy', 'Backup', and 'New', which carry

out these operations only after asking the operator to check that the relevant disks

are correctly in place. This, of course, reduces the chances of a blunder. The Pro-

gram includes a special feature, a 'history file', which is a sequential file called DISK

DATA' or something similar, and which stores several dates, for example the date of

the last backup, and comments. 'Filemaster' , by L Sasso, is a newer disk utility.

Files and BASIC: (iv) PRINT# and 1NPUT# and GET# These BASIC commands send

output to a file and read it back, either as a batch or characters (INPUT*) or as

individual characters (GET#). We shall see in the specimen programs how these comm-

ands operate with each type of file. Meanwhile, in outline, the important features of

them are as follows (more detail is given in Chapter 5 about each of these BASIC key-

PRINT# outputs strings, variables, expressions and literals to the file in the

same way that the output is sent to the screen. For example, PRINT #8,

"HELLO"; X; Y$; 23+34 sends HELLO, the current value of X, the string

Y$, and the number 57 to the same line of the screen. However, it also

sends a carriage return + line feed at the end of the line, which is why

the cursor is now positioned at the beginning of the next line. This is the

major tricky point about PRINT#. BASIC 4 contains a patch which avoids

sending a linefeed character if the file number is < 128. If the file number

is 128 or more, BASIC 4 behaves like BASIC<4, and the resulting records

on file will begin with linefeed characters. This is not a disaster; it means

only that the records will mysteriously print one line below their expected

place, and will be one character longer than expected. The cure is to use

PRINT#8,"HELL0";X;Y$;23+34;CHR$(13);

or PRINT#8, "HELLO" ;X;Y$; 23+34 ;CR$; : REM WHERE CR$=CHR$(13)

when using BASIC <4. The same trick may also be used with BASIC 4.

Programming the PET/CBM -170- 6: Disk drives

INPUT # behaves in a very similar way to the screen input statement. It is a
simple command to use, provided only that the programmer remembers to
match the format of PRINT# with that of INPUT#. Often, of course, this
happens automatically, because a programmer will naturally tend to use
identical variable names when writing to a file with PRINT #, as when read-
ing back the same data. I have explained this before in section 6.2, with
reference to sequential files; it is also explained in Chapter 5 under INPUT
and INPUT#. For those new to programming, the point to understand is

that PRINT# and INPUT# are mirror-image commands - what one of them
writes, the other will read. Generally, it is not necessary to know about
the special characters which make this possible, beyond being careful with,
or avoiding altogether, the use of commas and colons.

GET# reads individual characters from a file, including all the special characters
like quote marks (ASCII 34), carriage returns (ASCII 13), linefeed char-
acters (ASCII 10), plus all the punctuation symbols and screen editing
characters which CBM machines have at their disposal. This makes it far
more versatile than INPUT #, if you are interested in the complete contents
of a file. If you're not, the 'intelligence' of INPUT#, which assigns var-
iables for you, is a better command.

Files and BASIC: (v) The status variables ST, PS and DS$ This last subsection of
our summarising trot provides a brief revision (or prevision) of the functions of the
status variable ST and the disk status variables, given the names, in BASIC 4, of DS
and DS$. The method of operation of ST is outlined in Chapter 5 under the heading
ST. (Strictly, it's not a reserved word, but that chapter seemed the best place for it).
DS and DS$ are described in Chapter 7; they are not, strictly speaking, reserved
words either. What is the purpose of these variables? The difference is quite subtle.
ST is concerned with input /output processing from the PET /CBM 's point of view, so
if a device isn't there, or doesn't respond correctly, ST becomes changed from its
initial value of zero to 1,2,4,8,16, ... depending on the error condition. Thus, eight
different conditions at most can be signalled by ST. The most used in practice is
probably the end-of-file condition. ST = 64 signals that the computer has not received
a byte from the peripheral , so the end-of-file flag in ST is set , on the theory that the
programmer will check this and do something about it. It is always possible to write
one's own end-of-file markers. In commercial computing, terminal records containing
say ****T are used. When this record is read, the file is closed without attempting to
read further. However, because of the possibility that a file isn't correctly closed, in
which case the marker will be absent, the use of ST is still useful, particularly with
other peoples' files.

DS and DS$ are generated internally by the disk DOS, and are only available to
the computer when specially read. In BASIC 4 this is easy: commands of this type

10 INPUT#5,X$: IF DS>19 GOTO 50000: REM 50000 PRINTS ERROR MESSAGE, AWAITS ACTION
or 100 INPUT#8,X$: PRINT DS$: REM CHECK UTILITY BY PRINTING DISK STATUS EACH TIME
mean that the status of the disk unit after performing its operation can be readily
checked. Note that DS, the error number, which equals the first numeral in DS$, can
equal 0-19 without being counted as an 'error' - see the table under DS$. BASIC<4 is
more trouble; in program mode, a subroutine of this sort must be used:

10000 OPEN 15,8,15: INPUT#15,X: IF X<20 THEN CLOSE 15: RETURN
10010 INPUT#15, Y,ER$,Z: PRINT X "," Y "," ER$ "," Z
10020 PRINT "DISK ERROR***": END

and in direct mode the .subroutine may be called, or this line entered:

oP 15,8,15: iN15,e,e$: ?e,e$
where I've used standard abbreviated forms of the commands to ease the effort of
typing them in at the keyboard.

This checklist of points which are relevant to CBM disk files may seem rather
daunting, and I suppose actually is rather daunting! However, it is a fact that these
disk drives are no more difficult to program than many others. The short demonstrat-
ion programs in the next section should enable anyone with enthusiasm to get the feel
of these various commands and practical requirements. Longer demonstration routines
are available on Commodore's demonstration disks; I have tried to keep these short so

Programming the PET/CBM -171- 6: Disk drives

that they may be keyed in without too much effort.

Demonstration programs: (i) Sequential files

DEMONSTRATION OF SEQUENTIAL FILE - WRITING TO DISK. (BASIC 4)

5 SCRATCH "SEQ FILE",D1

10 D0PEN#1,"SEQ FILE",D1,W

20 FOR J = 1 TO 10

30 X$ = "RECORD NUMBER" + STR$(J)

40 PRINT#1,X$
45 PRINT X$ DS$ ST

50 NEXT J

60 DCLOSE

This specimen program writes 10 records, which consist of 'RECORD NUMBER 1"

through 'RECORD NUMBER 10'. They are held in a file called 'SEQ FILE' which is on

drive 1; I've assumed a test diskette is loaded into that drive. Drive is, of course,

just as good! The program works in this way:

Line 5 erases the previous file (if any) of the same name. The program can thus be

run repeatedly without ?file exists error. Alternatively, line 10's file name in

quotes can be preceded by '@\ which opens the file, replacing atay previous

file as though it were scratched. This construction may be risky to use.

Line 10 opens a disk file, on drive 1, for writing. It is a sequential file called "SEQ

FILE". How is the Disk Operating System able to know the file is not relative.'

As we'll see, a newly created relative file has a length-of-record parameter,

which is absent here. So a sequential file is assumed, and 'W tells the system

that it is open for writing. So the necessary buffers are opened in the disk's

internal RAM, the name is recorded in the directory, and pointers are set which

will enable the new file to be PRINTed to, in sequential order.

Lines 20 - 50: the loop, with its variable J, controls the disk write operation. The

figures in the example cause 10 records only to be written. Line 30 assembles

an individual record, X$. It's exact form is not important to the demonstration,

but I've made each record different from the others, so that on reading the file

it's easy to check whether the records are, in fact, in the right sequence.

Line 40 prints X$ to file number 1, which was the number assigned in line 10 to our

file 'SEQ FILE'. Just as though the record were printed to the screen of the

CBM, a carriage return follows PRINT#1,X$, so the records are correctly sep-

arated. (If line 40 is rewritten PRINT #1,X$; with a semi-colon, carriage return

is not sent, and the records will be concatenated in a long string. The result

will be too long for INPUT# to cope with; but GET* will successfully read the

string character by character).

Line 45 is part of the demonstration, and would not normally appear in a finished pro-

gram, except perhaps a utility routine to check the operations involved in file

handling. It prints the record, the disk status string DS$, and the CBM status

variable ST to the screen, where they appear in ten rows. These rows should

be practically identical, showing DS$ as 00,OK,00,00 and ST as 0, only X$ vary-

ing between its limits of RECORD NUMBER 1 and RECORD NUMBER 10.

NOTE: Channel 15, to read DS$, is opened by the system, and need not be

explicitly used in a program run by BASIC 4.

Line 60 closes file(s). DCLOSE#l in this example has the same effect.

DEMONSTRATION OF SEQUENTIAL FILE - READING FROM DISK. (BASIC 4)

100 DOPEN#l,"SEQ FILE",D1

110 FOR J = 1 TO 11

120 INPUT#1,X$
125 PRINT X$ DS$ ST

130 NEXT J: DCLOSE

Line 100 opens "SEQ FILE", on drive 1, for read, as 'W and 'L' are both absent.

Lines 110-130 perform a loop which inputs records. Each is printed to the screen, with

both status variables. Note the effect on DS$ and ST of reading an '11th record'.

Programming the PET /CBM -172- 6: Disk drives

DEMONSTRATION OF SEQUENTIAL FILE - WRITING TO DISK. (BASIC<4)

5 OPEN 15,8,15: PRINT#15, "SCRATCH1 : SEQ FILE"
10 OPEN 1,8,2, "1:SEQ FILE, SEQ, WRITE"
20 FOR J = 1 TO 10

30 X$ = "RECORD NUMBER" + STR$(J)
40 PRINT#1,X$; CHR$(13);
43 S=ST
44 INPUT#15,E1,ER$,E2,E3
45 PRINT X$ El "," ER$"," E2 "," E3; S

50 NEXT J
60 CLOSE 1: CLOSE 15

This program has the same effect as the earlier (BASIC 4) version to write to disk,
and sends the same information to the screen. BASIC 4 can run this program, or the
other, rather simpler, version, but BASIC<4 cannot run that version because it is not
equipped with the disk command keywords. The line-numbering in each program is

similar; lines 43-44 above are concerned with (i) saving ST, (ii) reading the four
messages which correspond to the parts of DS$. ST could be printed in line 43; the
sole reason for preserving it till later is to format line 45 in the identical way to that
of the other line 45.

Line 5 opens the command channel, and sends a 'scratch' command to delete 'SEQ FILE'
from drive 1. The abbreviation PRINT#15,"S1:SEQ FILE" is equally correct.

Line 10 opens 'SEQ FILE' on drive 1 for write. Note that the secondary address may
be any value from 2-14 which isn't yet allocated. Again, the abbreviated form
OPEN l,8,2,"l:SEQ FILE.S.W" is as good (and corresponds more accurately to
what is sent on the IEEE bus to the disk). BASIC 4 sends the same messages
as BASIC<4; the syntax is easier because some of the operations, like opening
the command /error channel, and finding an unused secondary address, are
built into BASIC 4.

Line 40 illustrates the anti-linefeed manoeuvre necessary with BASIC<4. The character
with ASCII value 13 is, of course, carriage return.

Lines 43-45 have the same effect as print x$ ds$ ST in spite of their more formidable
appearance. The four 'error' parameters are read from the 'error channel'.

Line 60 No DCLOSE exists in BASIC <4, so all the files must be separately closed.

DEMONSTRATION OF SEQUENTIAL FILE - READING FROM DISK. (BASIC<4)

100 OPEN 15,8,15: OPEN 1, 8,2, "1: SEQ FILE, SEQ, READ"
110 FOR J = 1 TO 11

120 INPUT#1,X$
123 S=ST
124 INPUT#15,E1,ER$,E2,E3
125 PRINT X$ El "," ER$ "," E2 "," E3; S
130 NEXT J: CLOSE 1: CLOSE 15

Again, this program is identical in its effect to the BASIC 4 version.

Line 100 opens tae command channel and also opens file number 1 to the sequential
file 'SEQ FILE' on drive 1 for reading. The secondary address, and device number,
are chosen subject to the same restrictions as outlined above in the paragraph on line
10. Device number 8 has been assumed throughout.

The screen appearance of the file as it's read should, as in BASIC 4's version,
consist of 11 lines, the first ten made up of 'RECORD NUMBER1' to 'RECORD NUMBER
10', each followed by disk status values 0,OK, 0,0 and CBM status of 0. The very last
record (10) has ST set to 64, which shows that a record is the last record in the file.

The attempt to read beyond the end of file has effects which vary slightly with the
system in use; BASIC 1, for example, appears to return the last record, whereas
later BASICs return the carriage return character instead.

*u„ dctitbu -173- 6: Disk drives
Programming the PET/CtSM "•>

Demonstration programs: (ii) Relative files

DEMONSTRATION OF RELATIVE FILE - WRITING TO DISK. (BASIC 4 AND DOS 2+)

i REM NOTE "W" FOR SEQUENTIAL WRITE ONLV; GIVES ?SVNTflX ERROR WITH REL

2 REM NOTE OPEN FOR BOTH REfiD AND WRITE IF RELATIVE FILE

"< PFM NOTE USE OF 'RECORD*'- AND ITS SVNTAX llnrn

4 pin Hnrl gR ERROR 50 DURING WRITE AS EACH BLOCK OF 256 BYTES IS USED

5 r|" NOT! LENGTH OF 21; RECORDS ARE 28 LONG + CARRIAGE RETURN

s PFM MOTE 'RANDOM' ORDER OF REAOBACK IN LINE 210

7 rI" NOtI IF LINE 226 IS OMITTED, FILE WILL BE READ SEQUENTIALLY

10 D0PEN#2,"REL FILE",Di,L21
20 FOR J = 1 TO 30
•t.0 x* = "RECORD NUMBER "+STR*< J

>

46 X* = X* + LEFT*<"***************",20-LEN<X*>>

50 REC0RD#2,<J>,1
60 PRINT#2,X*
70 PRINT X* DS* ST
80 NEXT
90 DCLOSE

The program is quite similar to those which write sequential files :
the file is created ,

thirty records (in this case) are written to it, and the records, together with the disk

status variables DS$ and ST, are printed to the screen.

Line 10 opens a file called 'REL FILE' on drive 1. Its record length is specified as 21

The file is opened for write, but 'W as a parameter generates 7SYNTAX ERROR

because of the implicit confusion between a relative file (signalled by L..) and a

sequential file.

Lines 20 - 80 comprise the loop which controls the way records are written to disk:

Lines 30 - 40 generate a string variable X$ of length exactly 20 bytes. (The twenty-

first is a carriage return). Leading asterisks pad X$ to the correct length, like

this: ****RECORD NUMBER 1 . (It is not necessary to fill the record space in this

way; shorter - but not longer - records may be used).

Line 50 uses RECORD # to postion the relative file pointer of file number 2 to the Jth

record's first byte. J is bracketed, as required by BASIC 4 syntax. Thus as

the loop executes, RECORD#2,l,l then RECORD#2,2,l then RECORD#2,3,l ...

set the pointer to records 1,2,3,... and so on.

Line 60: in this way, record number J is printed into the space allocated for it by DOS.

Line 70 prints the record, the disk status variable DS$, and ST to the screen in 30

rows (the first few will be lost as the screen scrolls). This behaves almost

identically to the sequential demonstration. However, at intervals, error 50 is

signalled in DS$. This is not a serious error, but means only that the relative

file is being expanded to incorporate its new data. (See the entry in Chapter 7

under DS$). Since one sector stores 254 bytes, and our records occupy 21 bytes,

message #50 is generated about every 254/21 = 12 or so records.

Line 90 closes the file.

DEMONSTRATION OF RELATIVE FILE - READING FROM DISK. (BASIC 4 AND DOS 2+)

209 D0PEN#2,"REL FILE",D1
210 FOR J = 30 TO 1 STEP -1

220 REC0RD#2

,

<

J

> ,

1

230 INPUT#2,X*
240 PRINT X* DS* ST
250 NEXT

Thfs example should be self-explanatory. However, note the non-sequential order in

which records are retrieved. If line 210 is replaced by 210 INPUT "RECORD NUMBER"; J

and line 250 by 250 GOTO 210 true relative or 'random' access can be demonstrated.

Programming the PET/CBM -774- 6: Disk drives

DEMONSTRATION OF RELATIVE FILE - WRITING TO DISK. (BASIC<4 AND DOS 2+)

The following example duplicates the effects of the BASIC 4 programs which we have
just looked at. The only difference lies in the fact that the version of BASIC in use
doesn't have the special disk-controlling keywords of BASIC 4. Apart from this, things
are much the same: DOS still has to be version 2 (or presumably later versions when
these arrive on the scene), not DOS 1.x which hasn't the required relative file capac-
ities.

10 OPEN 2,8,2,"1:REL FILE.L" + CHR$(21): OPEN 15,8,15
20 FOR J = 1 TO 30
30 X$ = "RECORD NUMBER" + STR$(J)
40 X$ = X$ + LEFT$("***************",20-LEN(X$))
50 PRINT#15,"P" + CHR$(2) + CHR$(J) + CHR$(0) + CHR$(1)
60 PRINT#2,X$: S = ST
65 INPUT#15,E1,ER$,E2,E3
70 PRINT X$ El "," ER$ "," E2 "," E3 , S
80 NEXT
90 CLOSE 2: CLOSE 15

Each line duplicates the corresponding line of BASIC 4's version, with the exception
of the additional line, 65. This is interpolated purely to fetch the messages from the
command channel which correspond to those of DS$.

Line 10 may need some explanation: OPEN, with the format listed here, opens for rel-
ative access with DOS 2+. BASIC 4 sends exactly the same string to the IEEE bus, in
spite of the apparent differences in syntax. The same thing is true of line 50, which
is equivalent to RECORD. The secondary address of the relative file (i.e. 2, here),
the low and high bytes of the record number, and the byte position, are understood
by DOS to be the four bytes after P.

DEMONSTRATION OF RELATIVE FILE - READING FROM DISK. (BASIC<4 AND DOS 2+)

200 OPEN 2,8,2, "1:REL FILE": OPEN 15,8,15
210 FOR J = 30 TO 1 STEP -1

220 PRINT#15,"P" + CHR$(2) + CHR$(J) + CHR$(0) + CHR$(1)
230 INPUT#2,X$: S = ST
235 INPUT#15,E1,ER$,E2,E3
240 PRINT X$ El "," ER$ "," E2 "," E3 , S
250 NEXT
260 CLOSE 2: CLOSE 15

This program reads back the records in the reverse order to that in which they were
written, to demonstrate the 'random access' permitted by this type of file structure.
The record numbers vary between 1 and 30, so there is no possibility of attempting
to read non-existent records. However, as suggested in the last example, modifying
line 210 to 210 input "RECORD number"; J and line 250 by 250 GOTO 210 enables the
user to call up any of the records, in the same manner that a record is retrievable by
a database system. Because of the structure of line 220, the maximum value of the
record number is 255. To increase this to the allowable maximum of 65535, lines like
these need to be introduced, so that the RECORD statement in line 200 has both low
and high bytes programmable:

215 JH = J/256: JL = J AND 255: REM JH=HIGH, JL=L0W, BYTES OF J. £JH IS ROUNDED
220 PRINT#15,"P" + CHR$(2) + CHR$(JL) + CHR$(JH) + CHR$(1): REM IN THIS LINE]

*u„ ocT/mu -7 75- 6: Disk drives
Programming the PET /CBM "^

Demonstration programs: (iii) Program files

Program files are not data storage files in the same way that sequential and relative

files are: they do not hold potentially enormous amounts of data in a convenient form

for reading, processing, and output. Instead they store consecutive bytes directly

from memory, together with the information required to reload the same part of RAM

with the identical data. In the CBM system this is accomplished by storing two bytes

at the start of the file which hold the load address. Subsequent bytes are read and

stored into this address and its following locations, until the file ends. The very last

bvte is not stored into RAM. (VERIFY uses exactly the same procedure, except that

the bytes are compared, not stored, with RAM locations). Both BASIC programs and

machine-code programs and routines are stored like this. Consequently,

DSAVE "BASIC TEST PR0G",D1 : BASIC 4

SAVE "1:BASIC TEST PROG",

8

:BASIC<4

write a program file to disk called 'BASIC TEST PROG'. The program written is the

one which is currently in memory. (If the start-of-BASIC and/or end-of-BASIC point-

ers are altered, other consecutive RAM will be saved under that name. See SAVE in

Chapter 5 and DSAVE in Chapter 7 for more on this subject. As a further example,

the SUPERMON and EXTRAMON programs look like BASIC, but include a long chunk

of machine-code, which the program causes to relocate into the high end of memory.

It is only possible to SAVE or DSAVE such a composite program by altering the end-

of-BASIC pointers so that they also include the machine-code).

.S "1:M/C PR0G",08,033A,037F

is a typical command to save a program-file called 'M/C PROG' onto drive 1 of disk 8.

All the code between $033A and $037E is saved.

Files of this sort can be read and written almost like sequential files. In fact,

some proprietary software (e.g. 'Wordpro') stores its files as program files, and these

can be examined and written or rewritten in this way. Similarly BASIC programs and

machine-code routines are readable and writeable at will. The OPEN command must be

the BASIC<4 type, since BASIC 4's file-handling hasn't concerned itself with these

comparatively advanced techniques. All that is required is the use of 'P as a paramet

er, when opening the file for reading or writing. Let's look at a few examples of the

kind of thing that can be done.

(a) Finding the load address of program files. This is helpful with some types of mach-

ine code, and can be useful with unusual BASICs where the normal $0401 start has

been overridden. All that is needed is something like this:

10 INPUT "FILE NAME, DRIVE NUMBER"; N$,D$: REM E.G. M/CODE#l ON DRIVE

20 OPEN 1,8,2,D$ + ":" + N$ + ",P,R" : REM E.G. "0:M/CODE,P,R"

30 GET#1,X$: IF X$="" THEN X$=CHR$(0)

35 X=ASC(X$) : REM *=L0W BYTE 0F WAB ADDRESS ...

40 GET#1,Y$: IF Y$="" THEN Y$=CHR$(0)

45 Y=ASC(Y$) : REM ... AND Y=HIGH BYTE

50 PRINT "LOAD ADDRESS IS " X + 256*Y

(b) Writing loadable machine-code or other routines directly onto disk. An assembler,

for example, might be required to assemble code into an area of RAM already occupied

by code. The normal process of putting the code into RAM, then saving the result, is

in this case unworkable. However, by writing the load address to disk, followed by

bytes of machine-code, any area of RAM can be made the subject of a loadable file,

even tricky areas like the zero-page (well, up to a point!) and also into areas like

screen RAM.

OPEN 1,8,2, "0:CODE,P,W"

PRINT#1,CHR$(1)CHR$(4); :REM LOAD ADDRESS IS $0401

PRINT#1,CHR$(162)CHR$(0)CHR$(138)CHR$(157)CHR$(0)CHR$(128)CHR$(232)CHR$(208)

CHR$(249)CHR$(96)
CLOSE 1

This prints a simple machine-code string to a file called 'CODE'. If this is LOADed,

SYS 1025 will cause the code to execute; it prints 256 different characters on the

screen

.

Programming the PET /CBM -776- 6: Disk drives

(c) Analysing BASIC programs. As we've seen in Chapter 2, BASIC is a complex
structure, and a program to deal with it needs to take account of link addresses and
linenumbers, and within the program itself, tokens, variables, and special characters
(punctuation, quotes, REM, DATA, and meaningless spaces). Examples may be found
in Kilobaud-Microcomputing (R W Baker, Sept. '80) and CPUCN (Jim Butterfield, Vol.2
#8). When using a program file, in addition the two leading bytes, which almost always
are 1 and 4, need to be read and subsequently ignored. CATALOG in Chapter 7 has
a BASIC program, designed to read a disk's directory, which shows the sort of thing.

(d) Processing BASIC (or other) programs. By opening a program, reading it byte by
byte, and rewriting the result to another file, a number of editing manoeuvres are
possible; for example, merging may be accomplished by writing one program up to a
certain linenumber, then writing in turn whichever linenumber is next. The link add-
resses have to be preserved. Machine-code may be processed in the same way; for
example, one could read it, replacing predefined combinations of characters by others.
This may make it possible to painlessly search for identifying messages and so forth.
The example shows how two programs (BASIC) may be appended, giving a third. Note
the handling of the final zero terminating byte of the first program, which has to be
replaced by the first byte of the appending program. I haven't included commands to
input file names, format the screen, or check DS$, to save space:

100 OPEN 2,8,2, "0: FIRST PROG.P.R"
110 OPEN 3,8,3, "0.BOTH PROGS, P,W" :REM THIS IS THE NEW COMPOSITE PROGRAM
120 GET#2,X$
130 Y$=X$: GET#2,X$: IF ST <> GOTO 200
140 IF Y$="" THEN Y$=CHR$(0)
150 PRINT#3,Y$; :REM PRINT SINGLE CHARACTERS TO THE NEW FILE
160 GOTO 130
200 CLOSE 2

210 OPEN 4,8,4, "0:SEC0ND PROG,P,R"
220 GET#4,Y$: GET#4,Y$
230 GET#4,Y$: IF ST <> GOTO 300
240 PRINT#3,Y$; :REM PRINT SECOND PROG TO NEW FILE
250 GOTO 230
300 PRINT#3,CHR$(0);
310 CLOSE 3: CLOSE 4

The point of the coding in lines 120-160 is to copy the whole contents of the program
file called 'FIRST PROG' into the file 'BOTH PROGS', except for the very last byte,
which is the zero terminating byte. Hence line 130, which continually reads the next
character X$, testing for end-of-file with ST, while writing only the previous charac-
ter. By line 200 file number 2 is finished with; file number 4 is opened, and the entire
contents of 'SECOND PROG' written to the end of 'BOTH PROGS', including the end
zero byte. LOADing 'BOTH PROGS' will reveal a correct append of the programs. Note
that line 220 throws away the load address of SECOND PROG; this is now subsumed
under the original program's load address, and is not needed. Note also lines 140 and
240. These are needed to cure a small bug caused by the CBM's diffieulites with the
null character "" and CHR$(0). The same conversion has to be done when construct-
ions like GET#1,X$: PRINT ASC(X$) are being used.

Another highly interesting application is in modifying BASIC; the example that
follows is based on a routine called 'LOCKSMITH', which adds code to the start of
a BASIC program (not BASIC 1, however) so that on LOAD, the stop key is disabled
by the usual interrupt address + 3 method (which also turns off the clock, TI), and
screen-clear, RUN, and carriage return are forced into the keyboard buffer. The
program is thus made to RUN simply on LOAD. (The process is more complex*than I've
made it seem here). The program 'protected' in this way is comparatively invulnerable
to listing, but of course given the correct approach is rather easy to break. The exam-
ple takes a program on drive called 'BASIC PROG' and rewrites it to drive as
'BASIC PROG AUTO'. These names are used for convenience only; obviously proper
input and formatting routines enable the program to operate in a user-friendly way.
The program itself can be locked. Note that the load address is $0100, the bottom of
the stack.

Not only the stack is overwritten, but the IRQ vector is changed (twice), the reset
vector called on Stop, NMI is used and a routine updates all the BASIC pointers.

Programming the PET /CBM -177- 6: Disk drives

100 OPEN 2,8,2, "0:BASIC PH0G,P,R"

110 OPEN 3,8,3,"0:BASIC PROG AUTO.P.W"

120 FOR J = TO 1: PRINT#3,CHR$(J) ; : NEXT

130 FOR J = TO 255: PRINT#3,CHR$(2) ; : NEXT

140 FOR J = 1 TO 3: PRINT#3,CHR$(0) ; : NEXT

150 READ J: IF J = 999 GOTO 200

160 N = N + 1: PRINT#3,CHR$(J); : NEXT

200 FOR J = 1 TO 510-N: PRINT#3,CHR$(0) ; : NEXT

210 GET#2,X$: S = ST: IF X$ = "" THEN X$ = CHR$(0)

220 PRINT#3,X$;: IF S = GOTO 210

300 CLOSE 2: CLOSE 3

500 DATA 165,144,164,145,16,12,24,105,3,144,1,200,141, 130,2,140,131,2

510 DATA 162,18,189,84,2,157,111,2,202,16,247,154,169,1,72,72,72,72,72,169,122

520 DATA 160,2,120,133,144,132,145,88,169,4,133,158,165,40,133,42,165,41,133

530 DATA 43,160,0,162,3,177,42,230,42,208,2,230,43,201,0,208,242,202,208,241

540 DATA 108,148,0,147,82,213,13,0,0,0,0,0,0,0,32,234,255,169,255,133,155,76
550 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,108,252,255,999

6.4 CBM diskette formats

Overview of data storage on diskette CBM disk drives contain their DOS in ROM
chips, and so the entire capacity of the diskette is available for files. Except, that is,

all the housekeeping details which are necessary to a file-handling system. These are

held on a single track (track 18) in 2040/3040/4040 diskettes, and on two tracks in

the larger-capacity 8050 (tracks 38 and 39). This is a very standard arrangement.

The central position is selected to cut down on track seeking time. Note that Commod-
ore documentation numbers its tracks starting from 1, so the first track is track 1.

This is not universal; it seems to be used because 'track 0' is used as a special end-

of -file indicator. The sectors are numbered from 0, on the other hand.
There are really only three distinct types of housekeeping information on disk,

and programmers who are interested in delving into the niceties of disk programming

can write utilities to examine them. The first, on track 18, sector in the -40 range,

and track 38 sectors and 3 in the -50 machines, holds mainly the block availability

map, or BAM, of the disk, and the 'directory header', which is the title of the disk

and its i.d., as written by HEADER or Disk NEW. A BASIC program, 'VIEW BAM', is

a utility program on most demonstration disks which reads this area and translates the

bits (which are on /off) into sector (=block) availability (available /used). It reads the

disk's name and i.d. too, and calculates the number of free blocks on the disk by a

running calculation.

The second region is the remainder of the directory; this is a chain of sectors,

which holds a record of each file, its type, its name, and its position on disk. So far

as I know, Commodore don't supply a utility to read these sectors. Most of the inform-

ation in any case is visible on the directory. The exception is the pointers to the first

track and sector of the file, which is the first of what may be a very long chain of

sectors. With one's own utility program, these details may be displayed on the screen

or in hardcopy. 'DISPLAY T&S' prints sectors, without following the chain.

Thirdly, the majority of the disk is occupied by its files. These are generally

chained together, with a final terminating block. In principle any file can be traced

from its directory entry through all its sectors. This can often be a valuable exercise,

and has practical applications in several types of error-correction, error-recovery , and
disk revival routines.

Before examining each of these three subdivisions in greater detail, we will look

at the arrangement of sectors on CBM disks. The arrangement (more sectors at the

outer tracks, fewer at the inner) is unique to Commodore, to the best of my know-
ledge. This table summarises the current situation:

TRACKS:
SECTORS:

2040 & 3040 4040

1-17
18-24*
25-30
31-35

0-20
0-1 9

0-17
0-16

0-20
0-18
0-17
0-16

TRACKS:
SECTORS:

8050

1-39*
40-53
54-64
65-77

0-2 8

0-26
0-24
0-22

*Includes directory track (s).

Programming the PET/CBM -178-

The Directory Header and Block Availability Map (BAM),

6: Disk drives

BYTES:
2040 3040 4040

Track 18, sector 0:

0-1 Pointer to directory

2 Format: 1 | 1 |
A

4-143 BAM: 140 bytes in total.

Each of 35 tracks has 4 bytes
144-1 61 Name of diskette + shift spaces

to make length 16 characters
162-163 Diskette's 2 character i.d.

165-166 2A
(version)

171-255 Not used
[180-191 BLOCKS FREE' may Jippear here]

BYTES:
8050

Track 39, sector

0-1 Pointer to BAM1
2 Format: C
6-21 Name of diskette +

shift spaces
24-25 Diskette's i.d.

27-28 2C (version)
33-255 Not used

BYTES: Track 38, sector

0-1 Pointer to BAM

2

2 Format: C
4-5 Tracks 1 & 51

6-255 BAM1: 250 bytes.
Each of 50 tracks has
a 5 byte entry.

BYTES: Track 38, sector 3

0-1 Pointer to directory
2 Format: C
4-5 Tracks 52 & 77
6-1 40 BAM 2: 135 bytes.

Each of 27 tracks has
5 byte entry.

141ff Not used

The left-hand diagram above shows the main features of the BAM and disk identific-

ation in the smaller drive units (2040/3040/4040). The diagrams on the right all obtain

to the 8050 drives; because of the larger storage capacity, and probably also to allow

for future expansion, 3 sectors are used for the data which could be held in 1 sector

only on the smaller diskettes. Most of the first sector is unused; BAM is divided

into two parts by track, and the first of these sectors holds pointers, a disk format

byte, the range of tracks for which it holds the BAM, and 250 bytes devoted to BAM.
This formula may be repeated indefinitely ; this makes future expansion possible with
(some) compatibility. Not all the small detail (e.g. features like shifted spaces, as
opposed to null characters) appears in these diagrams. For any disk drive, these
less important features can be checked fairly easily with 'DISPLAY T&S' or some other
similar utility program.

What is the structure of entries in BAM? As the tables show, the shorter tracks
of the smaller disk units have a 4 byte entry in their BAM, while the 8050 uses 5

bytes to map its tracks. The principle in each case is the same. The BAM is split into

4s or 5s, so that the 10th track's map starts at the 37th byte or the 46th byte, and
takes up 4 or 5 bytes. The first byte stores the free sectors in the track. This par-
meter is used when the directory computes the total number of blocks free. The 3 or 4

remaining bytes, naturally, have 24 or 32 bits in total. Each of these reflects the

status of the corresponding sector in that track. Since the largest number of sectors

per track in the 4040 type drive is 21, while the corresponding figure for the 8050 is

29, it is clear why the 8050 needs the extra byte in each track's map. Extracting the
relevant bit in a program is a bit tricky. The BASIC below shows the method: suppose
we are looking at sector number S in a track. We can find the byte which holds the

relevant bit, by counting the correct number of 4 or 5 byte units, then picking the

2nd, 3rd, 4th, or, with 8050, perhaps 5th byte. If this byte is B,

2f(S AND 7) AND B finds the bit value; if this is zero, the sector is allocated; if

not, it is a free sector.

779- 6: Disk drivesProgramming the PET /CBM

The Disk Directory

The directory - the list of files stored on a diskette - is contained in a single track,

following the header details, which occupy 1 sector. Models 204073040/4040 use track

18; the 8050 uses track 39. These tracks respectively contain 20,20,19, and 29 sectors,

leaving 19,19,18, and 28 after subtracting the header's sector. Each sector has space

for 8 files, so the maximum file storage of these devices is 152,152,144, and 224 files

in that order. A diskette can be entirely filled, therefore, if its files average about

IK bytes with the smaller units, or 2K bytes with the 8050. If the average file size is

smaller than this, the directory will run out of space before the diskette.

Directory blocks are chained in the usual way, the first two bytes pointing to

the track and sector holding the next directory block. The track pointed to is always

18 or 39 of course, except for the final sector, which has a zero terminator. The order

of sectors, as with data storage, is not sequential, but, to cut down the time spent

waiting for the disk to rotate beneath the head, distributed around the disk at about

180° intervals. Each directory block is divided into eight subdivisions of 32 bytes.

The first two bytes are unused, except in the very first such subdivision, where they

are used as the linking pointer. This table shows the overall structure:

BYTES:
2040 and 3040

Track 18, sectors 1-20
4040

Track 18, sectors 1-19
8050

Track 39, sectors 1-28

0-31 Linking track and sector pointer + file entry 1 n sector
32-63 File entry 2 in sector
64-95 File entry 3 in sector
96-127 File entry 4 in sector

128-159 File entry 5 in sector
160-191 File entry 6 in sector
192-223 File entry 7 in sector
224-255 File entry 8 in sector

Each file entry is formatted as in the following table. Note that the relative file bytes
are used only in DOS 2+, and do not appear in earlier DOSes.

BYTES: CONTENTS OF A DIRECTORY ENTRY:

0-1 Track and sector pointer in first entry. Otherwise unused.
2 FILE TYPE. #0=Scratched/ Not yet used.

#80=DELeted
#81=SEQuential file

#82=PRG, program file

#83=USR, user file

#84=RELative file

#1 - #4 signals an unclosed file. Such files are removed by COLLECT.
#80 is a scratched unclosed file, a type to be avoided.

3-4 Track and sector pointer to first block of file.

5-20 File name + shifted spaces (#A0 characters).

21-22 Track and sector pointer to relative file's first side sector.

23 Record size of relative file (i.e. parameter following L on opening file).

24-27 Unused

28-29 Replacement track and sector pointer for OPENS

30-31 Low and high byte of no. of blocks in File, as shown on the directory.

On the next page we have some actual examples, produced with the utility called

'DISPLAY T&S', but output to a CBM printer instead of the screen. The features in

these tables are marked.

Programming the PET ICBM -180- 6: Disk drives

Sector of track 18 on a DOS 1+ diskette is displayed below. The diskette is nearly

full; the BAM shows that the outer tracks have 21 + 21 + 5 free sectors, and the

inner 14 + 17 + 17 + 17 sectors. Note that most of the BAM shows as zero bytes. This

is because bit is used to indicate that a sector is allocated; and a further byte gives

the number of free sectors. All four bytes are therefore zero. The directory track's

BAM entry is visible in the middle of BAM; 11 sectors are free, so the diskette could

hold another 88 files, although they would have to be rather short. Note also the title

of the disk and its two-character identifier.

TVPICOL TRACK/SECTOR CONTENTS OF THE DIRECTORV

8© : (T2~Bi)(m) 00/l5 FF FF IF ;

ir-tr 91 ^~~^e<Si'rTv nu/wJa-f-T.88 s r*Tb hi- \-\- IF 85 88 82 0FI !

18 : 00 00 80 80 00 08 08 88 :

18 : 88 80 88 88 80 88 88 88 j

£0 ! 88 88 80 00 08 88 88 88 :

88 88 80 88 88 80 08 88 :

Block Awailatility hap.

28 s

30 ! 80 00 08 88 80 00 88 88 :

3S : 88 80 08 08 00 00 00 80 s

40 : 00 00 00 00 00 00 00 00 !

48 : |0B 68 DB 06) 00 00 00 08 : <4 <— Pi/edo<V B^n ^rfky-

50 : 00 00 80 00 00 00 00 00 i

58 : 00 00 00 00 00 00 00 00 I

66 : 00 00 00 00 80 00 08 86 :

68 : 80 08 88 88 88 88 88 88 :

70 : 80 00 00 00 00 00 88 00 i

78 s 00 00 00 00 00 00 00 00 i

80 ! 8E F5 F7 81 11 FF FF 81 : 1

—
ffllt

88 : 11 FF FF 81 11 FF FF 01 8 irir trir

98 ! 55 4E 49 56 45 52 53 41' s UN IVERSO «J>i*k NWi
98 : 4C 28 44 45 40 4F 28 28 : L DEMO + i.d.

R0 ! 08 06 56 31/28 28 R8 06 s VI
OS : 08 00 00 00 00 00 80 08 :

B8 s 00 00 00 00 12 4C 4F 43 : LOC
B8 : 4B 53 20 46 52 45 45 2E s KS FREE.
CO s 20 28 28 28 28 20 20 20 s

C8 : 20 20 20 20 28 26 28 00 :

00 s 00 00 00 00 00 00 00 80 !

D8 : 88 88 80 60 00 80 08 00 : 4-Urvatti..

E8 : 00 00 00 00 80 68 80 00 S

E8 s 00 86 66 66 66 88 88 86 :

F0 s 86 88 68 66 68 66 68 60 s

F8 s 00 00 00 00 00 60 00 00 :

A typical directory sector is listed on the next page. Note that there are exact-

ly eight file entries. The first two bytes point to another sector on the same track.

When a directory is read and printed to the screen, these sectors are read in order,

and the type of file, file name, and number of sectors occupied are all read from each

of these eight entries, and converted into readable form. The file-type entry, for

example, is converted from #81 into SEQ, which is more meaningful to the user. For

this reason, unless a special array-sorting process is used, the sequence of items as

displayed by a directory tends to be immutable, so that sometimes it is worthwhile to

plan the order in which files are recorded.
Because of CBM graphics conventions, the file-type is displayed as a reverse

character on the sector listing - the reverse heart is a sequential file, the remaining

files are all #82 = program files.

Programming the PET/CBM -181- 6: Disk drives

The first entry in this sector has been marked with 5 boxes; these mean:

(i) The next directory sector is track 18, sector 10. (18 = hexadecimal 12).

(ii) The file-type, #82, shows that this is a program file.

(iii) The program begins at track 22, sector 9.

(iv) 'DISK COMM2 ' is the program's name.

(v) The program occupies 2 sectors only (i.e. is less than 509 bytes in length).

(iV (ii). Gin. (iv).

00 S tii_ 08) [16 09)
4F 4D

/44 49 53 1 II DIS
08 3/4B

1 88
20 43 4D 32 887 K C0MM2

10 S 88 80 80 88 j'00

00
88 80
'02 80,)18 ! 08 88 00 88 88 (v).

2© : 88 88 82 16 18 44 49 53 II DIS
28 : 4B 28 43 4F 4D 4D 33 80 K C0MM3
39 i 08 (=18 80 80 80 00 88 88
38 : 08 88 80 80 00 88 83 00
48 ; 80 88 82 0D 00 44 49 53 \ II DIS
48 4B 28 57 52 49 54 45 80 : K WRITE
58 Fie 88 88 80 80 00 00 88
58 88 88 00 80 88 00 84 88
60 88 88 82 0D 81 44 49 53 : II DIS
68 4B 28 52 45 41 44 88 88 s K RERD
70 88 88 80 80 88 00 80 00
78 : ee 88 00 08 00 00 04 08
88 : 88 00 82 0D 03 44 49 53 s II DIS
88 : 4B 20 4F 56 45 52 4C 41 a K DVERL8
90 : 59 53 88 88 88 00 88 08 ! VS
98 : 08 00 88 80 00 00 82 00
88 : 88 00 82 0D 84 44 49 53 : II DIS
88 : 4B 20 44 49 52 80 80 80 s K DIR
B0 : 88 80 88 80 88 00 88 88
B8 : 88 00 00 80 00 00 05 00
C0 : 88 80 81 0D 89 20 20 50 : a P

C8 s 45 54 20 44 41 54 41 20 s ET DflfR

08 : 28 80 88 80 88 00 00 00
D8 : 88 00 00 00 08 80 38 80 : 8
E8 : 08 80 82 17 00 52 41 4E i II R8N
E8 s 44 4F 4D 20 31 2E 30 30 8 DDM 1.80
F8 ! 80 80 80 R0 8© 00 00 00
F8 : 88 00 00 00 08 80 22 00 a *'

A relative file entry is slightly more complex than the other types of file. The single

specimen below shows the extra features of

(vi) Pointer to side-sector chain, which here starts in track 15, sector 2.

(vii) Length-of-record parameter. The records in the example are 21 bytes long.

C8 s 88 88 C§g (TirgE)/52 45 4C^ : S?EL
C8 s p8 4fi 49 4C 45 88 88 88/ : FILE

D8 ; \88 88 88 88 88/feF 82) (15) 8 « (vt1,(vii)

D8 s 88 80 88 88 88 80 (04 00) :

Finally, we leave our tour of the CBM disk system with a few examples of data storage

on disk. The next page has examples of sequential file storage, BASIC storage, and

machine-code. From the diskette's point of view, these are all stored in a similar way,

in chains of sectors in which the first two bytes either point to the next track and

sector, or contain track number zero, to indicate end-of-file, with the second byte

holding the number of valid bytes in this final sector.

Program files are stored with an introductory load address pointer, so BASIC

begins 01 04 followed by the RAM dump of the program. This consists of lines linked

by pointers, each line containing a link address, a linenumber, and BASIC, terminated

by a zero byte. The exception is the very last line, which has a link address of zero

to show that the program is finished. This pattern can be traced in the BASIC dump

on the next page. Note that much of BASIC is readable, although the tokens are in an

unfamiliar form. The program includes machine-code (it is DOS Support, which is a

BASIC loader for machine-code). Typically, this is rather amorphous. On the other

hand, files, which use ASCII storage, are usually entirely readable. Note the carriage

Programming the PET/CBM -182- 6: Disk drives

return characters, which are the record separators in the CBM system.

Program file.

Ne>dr sector - track 17, sectaw- 10.

LaxA AJlJ«ss.= $o«t-oi.

\t. Ut\k ail/tss= #0*17 j 1st. UkslnuaWt - 5.

00 • 111 0fl (01 04) (17 04H05 0« •

08 : 41 82 31 32 AC 31 36 RE 3 fl-rl2.16-,
10 ! 33 3fi 8F 20 24 43 30 30 1 3:| *C00
18 : 30 00 34 04 0fl 00 8B C2 : 4 HI
28 i 28 41 29 83 Bl 37 36 A7 s <A>-|J76

|

28 : 9E 31 36 33 39 3fl 8F 20 t 01639 3 1
30 : 42 41 53 49 43 32 00 50 s BRSIC2 P
38 3 04 0F 00 8B C2 28 41 29 8 Ml<fl>
40 : B2 37 36 A7 9E 32 31 35 s -r76 0215
48 : 31 3fl 8F 20 42 41 53 49 b 1:1 BflSI
50 : 43 34 00 8F 04 14 00 99 : C4 |
58 : 22 93 11 11 11 11 11 11 s "3
€0 : 11 11 11 11 11 11 20 20 :

68 : 20 28 20 20 55 4E 49 56 s UNIV
?@ : 45 52 53 41 4C 20 44 4F s ERSflL DO
78 : 53 20 53 55 50 50 4F 52 s S SUPPOR
80 s 54 28 4C 4F 41 44 45 44 s T LOADED
88 s 11 11 11 11 11 11 11 11 8

98 i 22 00 95 04 IE 00 Fia/«fiV 3 " R
98 1 (00 00 /flfl FIR flfl flfl flfl flfl 1 1 1 1 1 1

R0 ! flfl Rfl flfl RR flfl flfl flfl flfl 3 1 1 1 1 1 1 1 1

fl8 s flfl flfl flfl flfl flfl flfl flfl flfl 3 II II 1 1 1 1

80 : flfl flfl Rfl flfl flfl flfl flfl flfl 3 1 1 1 1 III 1

B8 : FIR flfl flfl RR flfl flfl flfl flfl 3 1 1 1 1 II 1 1

ce ! flfl Rfl flfl Rfl flfl flfl flfl flfl 3 1 1 1 II 1 1 1

C8 : flfl flfl flfl flfl flfl flfl flfl flfl S 1 II Mill
D© : 01=1 RR flfl flfl flfl flfl flfl flfl 3 1 1 1 1 II 1 1

D8 ! flfl flfl flfl RR flfl flfl flfl flfl 3 III II III
E8 i Rfl flfl flfl flfl flfl flfl flfl flfl 3 Mill II 1

E8 i flfl RR RR flfl flfl flfl flfl flfl 3 Ml Mill
F8 : flfl flfl flfl flfl Rfl flfl flfl flfl 3 Mill II 1

F8 . flfl Rfl RR Rfl flfl flfl flfl flfl 3 1 MM III
00 (11 14) flfl flfl flfl Efl E6 77 3 II 1 H7
88 DO 02 E6 73 86 B3 BR BD : "1 1SHH_H
10 01 01 C9 98 D8 3fl BD 82 : ^SFls-J
18 81 C9 C3 D8 33 fl5 77 D8 s -.-T3I 71
28 2C A5 78 C9 02 D8 26 fl0 : AB-, ~\&

28 i 00 34 B3 81 77 C9 3E F8 ! »-L7-,> r
38 : 11 C9 40 F0 0D C8 85 B3

38 38 38 31 2C 50

: -.Sr IH

88 i (0D 13) 0001,

P

88 : (§B) 38 38 30 32 2C 50 45 0002,PE
18 : (80) 30 38 30 33 2C 58 45 0003, PE
18 s 54 (@B) 38 30 30 34 2C 58 T 0004,

P

28 : 45 54 20 /£Q) 30 30 30 35 ET 0005
28 : 2C 50 45 54 20 44 (00) 30 i ,PET D
30 ! 30 38 36 2C 50 45 54 20 i 006,PET
38 s 44 49 fgp) 30 30 30 37 2C : DI 0007,
48 : 58 45 54 28 44 49 53 (|5) : PET DIS
48 s 30 30 30 38 2C 50 45 54 s 0008,PET
5© : 28 44 49 53 48 (@B) 38 30 i DISK 88
58 s 38 39 2C 50 45 54 20 44 : 89, PET D
6@ : 49 53 4B 28 (@Q) 30 30 31 : ISK 801
68 : 30 2C 58 45 54 28 44 49 : 8,PET DI
7© : 53 48 20 44 (6d) 30 30 31 i SK D 881
78 : 31 2C 58 45 54 20 44 49 s 1,PET DI
88 : 53 48 20 44 41 @)30 30 : SK Dfl 88
88 : 31 32 2C 58 45 54 28 44 : 12, PET D
98 : 49 53 48 20 44 41 54 (@D) : ISK DAT
98 s 38 30 31 33 2C 50 45 54 : 0013,PET
FI0 : 28 44 49 53 4B 20 44 41 i DISK Dfl

08 : 54 41 @) 30 30 31 34 2C : Tfl 8014,

<-£>(\SlC program.

-Eni of BASIC program

.

-^arbqgc. ^ijaiZ. YKadkioe.- coin. Sfcctlo>v

+- itta&Uint — CaJLe.

.

—
\ Sequential file.

Meet sccW- is fra.ok \3
}

sex-for- II.

Programming the PET/CBM -183- 6: Disk drives

Relative files are more complex than the other types, and are stored in a more elab-

orate manner. Each file is held in two parts: the first is the main data storage, which

resembles a sequential file. The other part is the chain of side sectors. The starting-

point of each chain is recorded in the directory entry. Let's first look at the data

storage The important point to note is that the file is divided, conceptually at least,

into equal chunks of data. The size of each chunk is determined by the 'L' parameter

when the file is opened for the first time. It is convenient to refer to these subdiv-

isions as 'records', although by using the byte pointer of the RECORD statement, its

possible to write several "records' into the allocated space. A record may be divided,

by commas or colons, into 'fields': typically, a name and several lines of address make

up the fields in a record. In a sense, within each record, the data is read and written

sequentially, in a statement like PRINT#8,A","B$","C$. Good file-design takes account of

the speed of access possible with relative files, and also of the different ways in which

data may be arranged on file. As we have seen, a sequential file is straightforward to

write to: data is written, and finished off with a Return; and subsequent data is added

to the end of this, so the result is a long file punctuated by Return characters.

Writing to a relative file isn't quite as simple, because of the fact that at any

time a record can be accessed and written to. Suppose record #250 holds a name and

address at present; then the program decides that record #250 should be some other

name and address, so it calls up this record, and writes the new data into the record.

If the new address is shorter than the older one, there is a risk that garbage may be

left in the record. Consequently, any PRINT # statement to a relative file not only

writes its data, but also fills the remainder of that record, from its position at the end

of its data to the record end, with null characters (zero bytes). This must be borne

in mind if several PRINT # statements are made to the same record, using constructions

like REC0RD#1,250,10 to write from byte position 10 in the record. Apart from this

subtlety, PRINT* is usable exactly like a sequential record's PRINT*, and a Return

character is written in the same way. For these reasons, the easiest way to use

relative files is to follow these two rules:

(i) Test the length of your data before printing it to disk, to check that it 11 fit

the record size; remember the carriage return character,

(ii) Use a single PRINT # statement for each record, for example:

PRINT#8,N;",";N$;",";M;M$ which writes 3 fields to a record, consisting of a

numeral N, a string N$, and a composite field holding numeral M then string

M$.
?owi>cs

DATA SECTOR CHAIN: I I I | I I I
| \ | | I | I

Sectors.

SIDE SECTOR CHAIN:
ff pf » yZ^f^^^--- 7̂ <— Poii&rs to «*<.+£** <=£ 4a-Ta„

^ fk Of < PoMwS kctvotiLw. si tie.- sectors.

[NOTE: The chained sectors are not arranged linearly, but scattered about the diskette]

As the diagram shows, relative files have a chain of 'side sectors', which point to the

sectors holding the actual data. For example, sector 250 has its own pointer, which is

in the third side sector, and consists of its track and sector number. When a record

is accessed, the record length is used to calculate which sector(s) hold the record;

the maximum length of a relative record is 254, so two sectors at most hold it. The

appropriate side-sector is loaded into its buffer, and the pointers for two sectors read,

so the actual data can be loaded next. This is quite an efficient process. To take an

actual example, suppose we wish to read record #100, and the record length is stored

as 100. Also suppose that the file is open, and one of its buffers holds a side-sector,

and the other holds a data sector. (The third holds data for input or output). The

record starts at the 99*84 = 8316th byte in the relative file of data. In a sequential

system, we'd have to read consecutive sectors to find this. In our relative file system,

though, DOS calculates that the 8316th byte is to be found in sector 32 (i.e. 8316

divided by 254). So sector 32 (and perhaps 33) must be read. Where is sector 32 of

the data file? It's pointers are held in side sector number 32/240, i.e. 0. So the disk

is searched for this sector, which takes a single disk read unless this side sector is

in a buffer already, in which case it can perform the next step immediately, which is

Programming the PET ICBM -184- 6: Disk drives

to calculate the position in the side sector which stores sector 32's pointers, read the

track and sector from this position, and finally read the disk again. Where necessary,

the next data sector can be read either from the side sector, or from the prior data

sector. Three disk reads are therefore the maximum required by this method.
Each side sector is formatted like this:

BYTES:

0-1

2

3

4-1 5

16-255

CONTENTS:

Track and sector pointer to next side sector.

Side sector number, 0-5.

Record length of relative file.

6 pairs of pointers to every side sector.

120 pairs of pointers to consecutive sectors of data.

3 Relative files + Sequential files

2 Relative files + 2 Sequential files

1 Relative file + 3 Sequential files

Relative files + 5 Sequential files.

so that a new side sector can be found with a single disk-read only. The first pair of

pointers is the usual DOS maintenance link pointer set, so that the file can be COPYed
(in principle) and not COLLECTed. An extra channel needs to be kept open by DOS
for this type of file; one for the side sector, one for a data sector, and the third for

the data itself. (A sequential file needs only two, holding a sector and data respect-

ively). Since ten channels is the maximum allowed by the system, apart from channels
and 1, the following combinations of open files are the most obtainable (more files

may be used in a program by closing some while others are open):

or
or
or

The first issues of DOS 2.5 (for 8050 drives) permit only a maximum of 6 side

sectors to exists. This is the same number as is available with the 4040 drives, and
is something of a restriction; 'The 8050 thinks it is three 4040s', as I've heard it put.

A single relative file can't fill the whole of an 8050 disk; three can. This restriction

will be removed with the third set of ROMs for the 8050.*

Let's look at the restrictions implicit in the relative files' handling. First of all,

the number of records is held as two bytes, and can't exceed 65535. Secondly, the
length of a record can't exceed 254. Thirdly, the maximum number of sectors which
the file can occupy is limited, by the side sector restriction, to 120*6=720 sectors. So
the maximum data storage capacity of one of these files is 720*254 = 182 880 bytes. This
is not a great deal, so users of the 8050 may need to separate what could have been
a single file into several of shorter record-length. Data compression techniques may be
used, particularly with numerals, and repetitive information should be left out; for

example, the demonstration programs in section 6.3 of this chapter all write records of

the form 'RECORD NUMBER x'; in practice, only the x need be stored, as is perhaps
obvious. To calculate the longest available record-length, when the number of records
is known, divide 182 880 by that number and subtract 1 (for a carriage return); this
gives the 8050 figure. Commodore documentation puts the length of a 4040 relative file

as 167 132 bytes maximum (and implies that this is a diskette's maximum, not a file's

maximum, which is confusing). Thus, 1827 records of length 100 can be fitted into an
8050 relative file.

Another approach is the use of a large number of small files. Section 6.2 ex-
plained how 'inverted files' make a suitable structure for a database; a practical
illustration is the OZZ and the later Silicon Office retrieval system, in which relative
records are recoverable by a key such as 'SMITH218', which includes both a relative
record number (218) and its own internal system, in which a series of short files hold
pointers based on the initial of the field. Thus, a relative file holds the Ss in sorted
order, from which the corresponding data can be recovered. (Each new entry is added
to the relative file, and also merged into its index file).

As it may be important to have the facility to store large relative files, a program
like this one may be useful. It is one way (of many) to test the upper limit of DOS
with relative files. Put a formatted empty disk in drive 0:

10 DOPEN#1,"TEST",L100,DO
20 FOR J = 1 TO 1E9 : REC0HD#1, (J*100) : IF DS<>52 THEN NEXT
30 PRINT "MAX. REL. FILE APPROX.=" 100*J "BYTES": DCLOSE

Programming the PET/CBM -185- 6: Disk drives

6.5 Direct access programming to disk

CBM direct access commands Commodore's motives for introducing these commands,

whilst supplying very little documentation, seem to have been mixed. Possibly they

were a temporary measure, designed to suggest that relative files and other convenient

file-handling techniques were available with DOS 1+, when in fact implementation was

rather difficult. DOS 2+ does not appear to have been correctly updated, so that the

'Block-Allocate' function may not work correctly. There were at the time of writing

persistent rumours (or to be precise, rumors) that new CBM disks will drop these

commands, switching to others and also being 'more supportive'. This remains to be

seen. The following summary applies to DOS 1+ and DOS 2+, and consequently to the

range of 2040,3040,4040, and 8050 drives; it may not apply to later versions of DOS.

These drives contain two microprocessors; one of these processes the incoming

data on the IEEE bus, including the command channel strings and the input and output

of bytes of data. This shares RAM with the other processor, which in effect is a disk

controller chip, operating the read /write head, the motors, the encoding and decoding

of bytes, the error handling, and the housekeeping, including such matters as check-

ing clock pulses, and testing cyclic redundancy checks. This processor is less access-

ible than the other; there's a well-known Butterfield program (see e.g. IPUG, Jan. '80)

which in effect enables either chip's ROM to be disassembled. In its original form it

is written for the 2040 drive. Some programs make use of these facilities to provide

a high degree of copy protection. For example, OZZ and 'Silicon Office' have their own

'U' routines to read and write sectors, which are reputed to be different from the

normal ones, so that the resulting disks are truly uncopyable with the normal CBM
instructions. This sort of thing is rather unusual, and tends to require co-operation

from Commodore to be workable.

How are direct access commands sent? A special character in the 'open statement

signals that this type of processing is to be used, and DOS allocates a buffer. This is

numbered with a 'channel number' which is identical to the secondary address used in

the 'open' statement. The syntax is:

OPEN 1,8,2, "#" :REM ASSIGNS A DISK BUFFER TO CHANNEL 2 AND LOGICAL FILE NO. 1

OPEN 7,8[5,"#6" :REM ASSIGNS BUFFER 6 TO CHANNEL 5 (OR ERROR 70, NO CHANNEL)

DOPEN includes an irrelevant drive number. GET#1,X$ or GET#7,X$ returns the buffer

number (3-12), in our examples. The first format is less trouble, since it searches for

a free buffer itself. The channel number occurs in all the commands in which sectors

are read or written; the BAM instructions (Block-Allocate and Block-Free) don't use

it, neither do the DOS memory commands. However, the 'U' commands, which jump to

DOS RAM (and, in the 2040 only, to an expansion ROM socket), also require the

channel number. Note that secondary addresses and 1 are reserved by DOS for read-

ing and writing.

The examples that follow assume, for consistency in exposition, that

OPEN 15,8,15
OPEN 1,8,2,"#"

have been performed, opening the command channel as file #15 and a direct-access

channel as file #1, channel number 2 - the different numbers to emphasise which para-

meter is in use. Some of these commands, those beginning 'B', resemble disk comm-

ands as sent by BASIC<4, in that alternative spellings are accepted; the hyphen is the

separator between the two parts of the command name. Mnemonically , this can be a

help. A colon marks the command name's end. The *M', or 'memory', commands are less

forgiving in this respect. They are also intolerant of the use of numerals or variables

in place of strings, while 'B' and 'U' commands are able to deal with numbers as they

are received. After the alphabetic list, with its short illustrations, I've included fuller

examples of the use of these direct access commands; looking at examples is probably

the easiest way to get the feel of them.

I should perhaps add that these files, like all others, can be closed when they

are finished with. This may cause the block availability map to be written to the disk,

to reflect its updated status, and thus make permanent the changes in sectors which

these routines may have carried out. Conversely, if COLLECT (Disk VALIDATE) is

carried out at a future time, user-written sectors, even though they've been allocated

in BAM will be de-allocated, unless an elaborate system of pointers has been included

to mimic one of the acceptable file types. Such sectors will then be liable to be over-

written if files are subsequently stored oh the disk by DOS. For this reason, direct

Programming the PET /CBM -186- 6: Disk drives

access files must normally be segregated from files which are maintained by DOS, so

that an entire disk (or side of a disk, with double-sided drives) may be reserved for

this form of data storage.

B-R
BLOCK-READ command. Replaced by U1.

This command enables any block on a standard-format disk to be read. The disk must
be formatted in the same way as the drive which is reading; in particular, the number
of tracks must match, so that the stepper-motor intervals are equal. 8050 disks cannot

be read by -40 drives, and -40 disks cannot be read by 8050 drives. Ul is the more
reliable instruction, and is recommended in place of B-R, which it closely resembles.

If a sector cannot be read, because of some flaw in the recording process, Block-Write

can sometimes reconstruct the sector, so (for example) disks which will no longer init-

ialise may be recoverable.

Syntax: PRINT#15, "Ul"; channel number; drive; track; sector or:

PRINT #15, "Ul: string of four characters" where the four bytes are taken to

be channel, drive, track, and sector.

Note that commas, instead of semi-colons, may be usable as separators in the

first form, though semi-colons are the recommended character.

On executing this command, the sector is read into the channel's buffer, and
the buffer-pointer set to the start, so that characters input from the buffer will read

from the beginning. If bytes 144-145 only, say, are wanted, Buffer-Pointer can be
used to shift this pointer.

Examples: The first example is rather rudimentary; it prints 256 characters from any
sector directly to the screen. If these include screen editing characters, the screen

will clear, shift, etc. 'DISPLAY T&S' works like this, using a decimal to hexadecimal

conversion routine on ASC(X$). Remember that X$ must be tested for equality with the

null string "", and converted to CHR$(0) when it is null.

10 OPEN 1,8,2,"#": OPEN 15,8,15
20 INPUT "DRIVE, TRACK, SECTOR"; D,T,S
30 PRINT#15,"U1";2;D;T;S :REM 2 IS SECONDARY ADDRESS OF FILE NO.l

40 GET#1,X$: IF ST=64 GOTO 20 :REM END OF BUFFER

50 PRINT X$; : GOTO 40 :REM PRINT CHARACTER FROM SECTOR

The next example shows how a chain of sectors can be followed; all that's needed is to

read the first two bytes of a sector, and read the corresponding track and sector,

until eventually the track is recorded as zero, showing that the file has come to an
end. The routine prints each track-sector pair:

10 OPEN 1,8,2, "#": OPEN 15,8,15
20 INPUT "FIRST SECTOR'S DRIVE, TRACK, AND SECTOR"; D,T,S
30 PRINT "TRACK =" T " SECTOR = "S

40 PRINT#15,"U1";2;D;T;S
50 GET#1,T$: GET#1,S$
60 IF T$="" THEN PRINT "TRACK = ZERO": CLOSE 1: CLOSE 15: END
70 IF S$="" THEN S$=CHR$(0)
80 T=ASC(T$): S=ASC(S$): GOTO 30

Further examples occur in RANDOM 1.00, the 8K program to process relative files with

DOS 1. See linenumbers 410ff. for typical read, update and write disk processing.
The alternative form of syntax of this command , and of the remaining Block

commands, is less convenient to use, so I shall only briefly mention it here. (I am
talking about BASIC programming; in machine-code it is easier to send a command
string on the IEEE bus in the alternative form). It consists of a string of 7 characters:

1000 C$ = "Ul:" + CHR$(CH) + CHR$(DR) + CHR$(TR) + CHR$(SE)
1010 PRINT#15,C$

3000 PRINT#15,"U1:" CHR$(CH) CHR$(DR) CHR$(TR) CHR$(SE)

Programming the PET ICBM -187- 6: Disk drives

B-W
BLOCK-WRITE command. Replaced by U2.

This command writes the current contents of a specified buffer to any track and sector

of a disk. Data may be put in the buffer by PRINT #1, in combination with Buffer-

Pointer if the data is wanted in mid-buffer. It may be loaded from another sector, or

a combination of the two methods may be used to load/ update/ rewrite any sector.

U2 is recommended in place of B-W.

Syntax: PRINT #15, "U 2"; channel number; drive; track; sector or:

PRINT#15,"U2: string of four characters" where the four bytes are taken to

be channel, drive, track, and sector numbers.
The position of the Buffer-Pointer is not relevant to this commmand; it is used

by INPUT #1, GET#1, and PRINT #1, when reading from or writing to the buffer, but

the entire sector is written irrespective of the pointer's position. After this command,

the pointer is left at the start of the buffer (byte 1).

Examples: The first example writes to every sector in track 1. This may be used as

the basis of a test timing program; varying the order in which they are written will

cause variations in time taken. CBM disks use an algorithm to calculate the position of

the 'next' sector in a track; the -40 series for example adds about 10 to the previous

sector

.

10 OPEN 1,8,2,"#": OPEN 15,8,15

20 DATA 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

21 HEM ORDER IS VARIABLE. NOTE THAT 8050 UNITS HAVE SECTORS 0-28 IN THIS TRACK

30 FOR S = TO 20

40 READ SE

50 PRINT#15,"B-P";2,1 :REM CHANNEL 2 IS SECONDARY ADDRESS. BYTE POSITIONS

60 PRINT#1, "MESSAGE" + STR$(S) :REM THIS WILL BE WRITTEN TO THE SECTOR

70 PRINT#15,"U2";2,D,1,SE :REM D = DRIVE NUMBER, 1=TRACK, SE=SECT0R

80 NEXT: CLOSE 1: CLOSE 15

Note that BASIC<4 will add an extra line feed, CHR$(10), on the end of the message

in line 60. The next example shows a sector being partly rewritten with PRINT*. Note

that in BASIC this is accompanied by a carriage return character; this is unlikely to

be wanted if the sector is part of BASIC or machine-code, but is acceptable with files.

To avoid the character being sent, simply finish the PRINT # statement with a semi-

colon .

240 INPUT "INSERT MESSAGE FROM WHICH STARTING-POINT (1=SECT0R START) ";P

250 INPUT "MESSAGE" ;M$

260 PRINT#15,"B-P";2;P :REM 2 IS SECONDARY ADDRESS = CHANNEL

270 PRINT#1,M$; :REM WRITE MESSAGE (COULD ALSO CHECK THAT

P + LEN(M$) < 257).

B-E
BLOCK-EXECUTE command.

Block-Execute is analogous to a program LOAD then RUN. It loads the specified sector

into its buffer, then jumps, in machine-language, to the start of the buffer. On en-

countering RTS it returns to the BASIC program using it. This command is not often

used, since there is little advantage in its use unless the programmer has detailed

knowledge of the DOS ROM in the disk unit. The Memory-Execute command is similar,

but its machine-code is not kept on a disk sector, but directly PRINTed to memory,

so it is more widely used in BASIC utilities.

Syntax: PRINT#15,"B-E"; channel number; drive; track; sector or:

PRINT #15, "B-E: string of four characters" where the four bytes are taken to

be channel, drive, track, and sector numbers.

Examples: Any of the Memory-Execute type of command met with in utilities can be

written to a sector on disk, but will be vulnerable to overwriting if COLLECTed, so

that the disk cannot be an ordinary DOS disk. For example, a pair of routines in

Transactor (reprinted in CCN, July '81) give the whereabouts of DOS' subroutines to

Programming the PET /CBM -188- 6: Disk drives

compute the number of free sectors in a diskette (the routine is part of the directory,
and adds the free sectors as they appear in BAM). The information for DOS 2 and
DOS 2.5 is:

DOS 2: Put disk drive number (0 or 1) in location $12,

execute routine $DB34,
then blocks free are contained in $4377 (low byte) and $4378 (high byte).

DOS 2.5: Put drive number (0 or 1) into location $12,

execute routine $D3E7,
then blocks free are contained in $43AF (low byte) and $43B0 (high byte).

Since the B-E buffer is not fixed, unused RAM locations of DOS are needed; one of

these is Memory-Written with the drive number, and B-E called, holding this:

LDA DRIVE/ JSR DB34/ LDA 4377/ STA RAMLO/ LDA 4378/ STA RAMHI/ RTS

B-A
BLOCK-ALLOCATE command.

This is a BAM command which sets a bit in the BAM low, corresponding to a track and
sector which the parameters specify. This prevents the sector from being overwritten,
unless COLLECTed, when the BAM bit will be set high again. If the requested block
is already in use, error 65, NO BLOCK is signalled in DS$ or by GET#15,E. Some DOS
versions return the next available track and sector with the error string. This makes
the allocation of new sectors very easy, since the same sector can always be requested
(e.g. the directory header) which is known to be used, and the next parameters can
simply be read out. This works with DOS 1, but is reported to be unreliable with DOS
2; this of course makes DOS 2 more unworkable than DOS 1 in this respect. The way
to get round this bug is to try tracks and sectors in some increasing pattern, until

error 65 no longer appears. Ideally the pattern should be that of the order of sectors
used by DOS. The 'next' track and sector is evaluated by DOS according to its own
algorithms.* The syntax is identical to that of Block-Free.

Examples: With DOS 1, this type of subroutine will allocate a new T and S:

1000 PRINT#15,"B-A";D;T;S
1010 INPUT#15,E,E$,ET,ES
1020 IF E=0 THEN RETURN :REM T AND S ALLOCATED SATISFACTORILY
1030 IF E<>65 THEN GOTO . . . :REM ERROR-HANDLING ROUTINE
1040 T=ET: S=ES: IF T=18 THEN T=19: REM AVOID DIRECTORY TRACK
1050 GOTO 1000 :REM ALLOCATE THE NEXT TRACK & SECTOR AS RETURNED

DOS 2 requires a more tedious routine; the following is an outline, omitting the detail

required to test sectors for validity. See linenumbers 800ff. in 'RANDOM 1' for an ex-
ample of the type of test that's needed. Since this routine relies on incrementation of
the track number, a full diskette can only be ensured by writing from track 0, sector
0, rather than starting at the directory track's neighbourhood.

1000 GOSUB . .

.

1010 PRINT#15,"B-A";D,T,S
1020 IF DS=0 THEN RETURN
1030 IF DS<>65 THEN GOTO .

1040 GOTO 1000

REM INCREMENT SECTOR/TRACK; AVOID DIRECTORY
REM TEST THE BAM
REM T AND S ALLOCATED SATISFACTORILY
REM ERROR-HANDLING ROUTINE
REM CONTINUE LOOP

The algorithm is required to generate a series of sectors, covering the entire range
without repetition, with about half a disk's separation between consecutive sectors.

Typically, it generates even sectors in ascending pairs followed by odd sectors in

descending pairs. Example: (i) Set a constant = J the number of sectors, to the nearest

integer, (ii) Select two even constants, one greater and one less than the number of

sectors, (iii) Start with sector 0, adding the constant, subtracting the larger value

when the sector is impossibly high: when zero, set the sector to 1 and repeat, but

subtracting the smaller constant on overflow.

Consider track 1 of the -40 range, with sectors 0-20. Setting our increment to

10, and our high and low constants to 22 and 18, the following sequence is generated:

0,10,20,8, (i.e. 30-22) , 16, 4, 14, 2, 12, 1 , (i.e. in place of 0) , 11, 3, (i. e. 21-18),

13,5,15,7,17,9,19, exit (as sequence exhausted).

Programming the PET ICBU -189- 6: Disk drives

B-F
BLOCK-FREE command.

This command is the converse of Block-Allocate; it is a BAM command which sets the

specified track and sector bit in BAM high, so the sector is de-allocated. The sector

still exists, but is liable to be overwritten.

Syntax: PRINT#15,"B-F" drive; track; sector

The syntax is identical to that of 'Block-Allocate' . Note that a channel number is not

required

.

Example- The routine de-allocates all the sectors of a diskette. The BAM at the end of

this process consists of Is only. Routines of this sort may be useful in experiments

with free-format disks without a directory. Note however that de-allocating sectors

with this command is not necessary; allocated sectors can be written over, ignoring

the warning of error 65 that the sector has previously been allocated.

1000 FOR T = 1 TO 35 :REM 2040,3040 OR 4040

1010 DATA 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,19,19,19,19

1012 DATA 19,19,19,17,17,17,17,17,17,16,16,16,16: REM 4040 HAS 18, NOT 19

1020 READ X: FOR S = TO X

1030 PRINT#15,"B-F";D;T;S
1040 NEXT S,T

B-P
BUFFER-POINTER command

Buffer- Pointer controls the pointer to a buffer used by the 'Block' commands. It is

used both when PRINTing data into a buffer and when reading it out. The rationale is

similar to RECORD when relative files are used from BASIC.

Syntax: B-P has only two parameters, the channel number and the byte position. The

latter normally takes values in the range 1- 255.

PRINT#15,"B-P"; channel number; byte position

Examples: Block-Write includes several examples of this command. To illustrate how

Buffer-Pointer can be used with read, I've written this short example program; it

reads a sector from the directory, then reads the requested file details from the

buffer, using the fact that each file's data occupies 32 bytes.

10 REM DIRECTORY TRACK = 18 OR 39; SECTORS = 1-20, 1-19, 1-28; DEPENDI NG ON MODEL

20 OPEN 1,8,2,"#": OPEN 15,8,15

30 INPUT "DRIVE, SECTOR"; D,S

40 PRINT#15,"U1",2,D,39,S
50 INPUT "WHICH FILE"; F

60 PRINT#15,"B-P";2;32*F - 31

70 PRINT CHR$(34);
80 FOR J=l TO 32

90 GET#1,X$: PRINT X$; :REM PRINT DETAILS OF ONE FILE ENTRY ONLY

100 NEXT J

110 GOTO 50

M-R
MEMORY-READ command.

M-R enables the RAM and ROM in DOS to be read, one byte at a time, by the CBM

.

This has applications in disassembling DOS, peeking RAM and zero-page, looking at

BAM as it is held in memory, and so on. A new M-R command must be issued for each

new byte.

Syntax: PRINT#15,"M-R" followed by two bytes only. These constructions are accept-

able: PRINT#15,"M-R";CHR$(8)CHR$(0) and PRINT#15, "M-R"CHR$(123)CHR$(7) and

PRINT#15,"M-R" + "q" + "%" ,among others. The two parameters which follow "M-R" are

the low and high bytes respectively of the DOS address to be peeked. Note that the

form "M-R" is the only accepted form in which this command can be issued. The block

commands allow "BLOCK-ALLOCATE" for example , or other words with the initials B-A.

REM OR TRACK =18 FOR 2040, 3040, 4040

REM F FROM 1-8

REM POINTER MUST BE 1,33,65,97, ETC

REM QUOTE MARK

Programming the PET/CBM -190- 6: Disk drives

Examples: xhe first example returns the value of any byte in any location in the
IEEE part of DOS (i.e. not the disk controller's locations). I've written it as a sub-
routine, so that it can be added to a BASIC disassembler and used to disassemble DOS
ROM in hardcopy form. (This is easier than modifying a machine-code disassembler,
and not all that much slower with a printer). Assuming channel 15 is open, the byte
held by DOS in location QQ is returned in QQ. So, QQ=63030 returns from this routine
with QQ=PEEK(DOS location 63030), for example. QQ doesn't signify anything particul-
ar; I chose it only because it's unlikely to be a variable used elsewhere in a program.

10000 REM ON ENTRY, QQ = LOCATION (0-65535); QQ RETURNS AS THE DOS PEEK
10001 REM
10010 PRINT#15,"M-R" CHR$(QQ - INT(QQ/256)*256) CHR$(QQ/256) :REM L0 THEN HI BYTE
10020 GET#15,QQ$: IF QQ$="" THEN QQ$=CHR$(0)
10030 QQ = ASC(QQ$): RETURN

The second example peeks into a region of RAM in which the current disks' directory
entries are held. (For a memory map, see a few pages forward). This area will of
course be peekable by the disassembler too, but this program prints it in readable
form:

100 INPUT "WHICH BUFFER? (1=$4200, 2=$4300) ; B :REM B SHOULD BE 1 OR 2

110 INPUT "WHICH DRIVE? (1= -40 , 2=8050) ; T :REM T SHOULD BE 1 OR 2

120 IF T=l THEN T=144 :REM STARTING-POINT OF
130 IF T=2 THEN T=6 :REM NAMES AND IDS
140 FOR J=0 TO 19
150 PRINT#15,"M-R";CHR$(T+J);CHR$(65+B) :REM FETCHES AND PRINTS DISK
160 GET#15,X$:REM NAME AND I.D.
170 PRINT X$;

180 NEXT J

M-W
MEMORY-WRITE command.

M-W enables data to be placed into the disk unit's RAM. This means machine-code pro-
grams can be written to reside within the disk unit. In principle this has many uses,
including hardware control and alternative software to operate the disk, but in pract-
ice its use is rather restricted, since detailed knowledge of the working of the disk
units is not widespread. Additionally, the different ROMs are largely incompatible, so
that general-purpose machine-code is made more difficult to write. And there is not a
great deal of RAM. Each 'M-W command can write 34 bytes at most.

Syntax: PRINT#15 followed by a character string of this form:M-W start address (low byte) start address (high byte) number of bytes data.
For example, the following formats are accepted:

X$="M-R" + CHR$(0) + CHR$(16) + CHR$(1) + CHR$(0): PRINT#15,X$
PRINT#15,"M-R"CHR$(18)CHR$(0)CHR$(1)CHR$(1)

where the first puts a null byte into $1000, and the second puts CHR$(1) into the
zero-page location $12. (This in fact represents a drive number). Like M-R, this
command has no expanded form.

Examples: The first example converts an 8050 disk unit number into a new value, by
poking two zero-page locations. Typically, this is used to copy from a 4040 drive to
an 8050, by dload "basic PR0G",D1,U8: DSAVE "BASIC PROG", DO, U9 and other similar
commands

.

PRINT#15,"M-W"CHR$(12)CHR$(0)CHR$(2)CHR$(9+32)CHR$(9+64) :REM NEEDN'T BE 9.

The next example is more complicated; it shows how machine-code can be stored in the
disk buffers. Buffer number 2 is used (0 and 1 are used by DOS) and the code is

executed by the internal (not IEEE) processor, which peeks 16 bytes from that proc-
essor's addressable memory. The result is stored in the RAM shared between both
processors. It occurs in 'DISK MEMORY DISPLAY' by Jim Butterfield.

110 DATA 77,45,87,0,18,16,162,0,189 :REM MACHINE-CODE BEFORE THE ADDRESS...
120 DATA 157,64,6,232,224,16,208,245,108,252,255 :REM ... AND AFTER
130 FOR J = 1 TO 9: READ X: C$ = C$ + CHR$(X) : NEXT
140 FOR J = 1 TO 11:READ X: D$ = D$ + CHR$(X): NEXT
315 REM U=L0W BYTE, V=HIGH BYTE, OF DISK PROCESSOR LOCATION TO BE PEEKED
320 PRINT#15, C$;CHR$(U);CHR$(V);D$:REM CODE NOW IN PLACE

Programming the PET/CBM -191- 6: Disk drives

The string C$ contains M-W followed by and #$12, which is address $1200 stored

with its bytes in reverse order. The next byte is 16 decimal; this is the number of

bvtes to be written to memory. The data statements have only 14 further bytes; the

remaining two are supplied in program-line 320 by CHR$(U) CHR$(V). The effect of

the code is as follows:

$1200 LDX #$00

$1202 LDA ADDRESS,

X

$1205 STA $0640,

X

$1208 INX

$1209 CPX #$10
$120B BNE $1202

.

$120D jmp ($fffc) and this can be checked by looking at the decimal equival-

ents of the hexadecimal listing. This routine can also be written into a BASIC disass-

embler, so the workings of the disk processor can be examined.

M-E
MEMORY-EXECUTE

Jumps to the specified location in the IEEE processor's address space, and executes

the code it finds there. This may be a standard ROM routine, or user-written code

which has been stored in RAM with M-W. ROM routines can be found by disassembling

DOS or by reading other peoples' programs.

Syntax: M-E has only two parameters, the low and high bytes of the execute location.

PRINT #15, "M-E" CHR$(231) CHR$(211) is a typical example. There is no alternative

expanded form of M-E.

Examples: This command calls the hardware reset address in DOS:

PRINT#15 "M-W" CHR$(0) CHR$(18) CHR$(3) CHR$(108) CHR$(252) CHR$(255)

PRINT#15,"M-E" CHR$(0) CHR$(18) : REM PERFORMS INDIRECT JUMP TO ($FFFC)

As we shall see this is equivalent to PRINT#15,"UJ" .

The error LED and DS$ are operated by a routine at $D925 (4040) and $EEB3 (8050).

S°
PRINT#15,"M-E" CHR$(179) CHR$(238) :REM PROCESS DS$ FOR 8050

The routine in the directory processing which computes the total number of blocks free

from BAM, and stores the result in the appropriate position in the directory, is at

$DB34 (4040) and $D3E7 (8050). So again a routine like the following may be used from

BASIC to call the subroutine:

PRINT#15,"M-E" CHR$(231) CHR$(211)

This may be followed by the routine in M-R to print the directory, which should be

updated to reflect the correct total of free blocks.

The memory-execute command leads naturally to the last (documented) special

DOS commands, of which there are 10, all beginning 'U\ and referred to as user-

commands or user-defined commands. Their function is exactly the same as M-E, except

that no address is specified; it is implicit instead in the command. For example,

PRINT#15,"U3" and PRINT#15,"M-E" CHR$(0) CHR$(19)

are identical in their effects; each jumps to $1300 in DOS RAM and executes whatever

code has been written there. As the table indicates, each address is separated from

its neighbour by three bytes, so the intention is to use the commands with a jump

table - e.g. $1300 JMP (FFFC) / $1303 JMP $EEB3/ $1306 JMP $1200 and so on. As
we've seen already, Ul and U2 are exceptional - they are used in place of B-R and

B-W, and have channel, drive, track and sector parameters in their command strings.

Note that some of the jump addresses, in the early disk drives, are to non-existent

addresses in expansion ROM. This is an error, since these addresses, if required, can

always be accessed from the RAM jump table, e.g. by $1309 JMP $D 008, which keeps

more options open. Later disk units have a uniform jump table in the third buffer,

perhaps because the earliest buffer which isn't allocated by DOS, that from $1200-

$12FF, is a popular location for machine-code routines. Obviously, considerable know-
ledge of machine-code, and of the workings of CBM disk units, is necessary to use

these commands fruitfully. Some commercial software, for example, has several routines

of this sort to read and write sectors in non-standard ways to disk, as a security

measure

.

Programming the PET/CBM 192- 6: Disk drives

UA- UJ
User-defined jump addresses + NMI and RESET vectors.

COMMAND FUNCTION

U1 or UA B-R (BLOCK-READ)
U2 or UB

U3 or UC

B-W (BLOCK-WRITE)

JUMP ADDRESS TABLE
2040/3040 4040/8050

$1300 $1300
U4 or UD $1303 $1303
U5 or UE $1306 $1306
U6 or UF $D008 $1309
U7 or UC $D00B $130C
U8 or UH $D00E $130F
U9 or Ul $D0D5 $10F0 (=NMI)
U: or UJ Power-on Power-on

Notes on direct-access programming The memory-map of CBM disk units is made more
complicated by the presence of two processors, a 6502 which handles the IEEE comm-
ands, and a 6504 to control the disk. These have RAM in common, as might be expect-
ed, consisting of 4K in total, or 16 'pages' of 256 bytes. Most of these are buffers for
input and output to the disk; several hold BAMs and directory information, although,
because of the varying storage capacities between the units, the number and arrange-
ment of these buffers differs. This diagram shows the main features of the memory
map, including the differently-numbered RAM as between the two processors. Note the
way that the same RAM shows itself differently to each of the processors; if you
refer to the example machine-code under M-W, you'll see that 16 bytes of the disk
processor's ROM or RAM are put into $640 and the following locations. The memory-map
shows that $1200, from the disk processor's point of view, is $600, so that the piece
of code and the transferred bytes both occupy the same buffer of $1200-$12FF or $600-
$6FF depending on the processor.

IEEE processor
(6502)

$0000 Zero-page

$0200 PIAs

$1000 R & w buffer
-$13FF

$2000
-$23FF

MUd/i

$3000
-$33FF

MUJ

WPT
$4000 BAM/directory
-S43FF

AvPf
$EOO0

$F000

-$FFFF

ROM

ROM

Disk processor
(6504)

$0000 Zero-page

$0200 PIAs
yl&ivjf

$0400 Read buffer
Write buffer

$0600

$0C00

$1000 BAM/directory

-813FF

//

This diagram is adapted from some comments by Jim Butterfield on the early disk units.

It is not intended to be to a detailed map, but to give the general layout of the system.
It is not to scale.

Programming the PET/CBM -193- 6: Disk drives

The IEEE processor, as we've seen (see M-R), can have its accessible memory disass-

embled very easily; the easiest method is to patch a BASIC disassembler and take a

hard-copy printout. When exploring RAM, a test program can be used to poke and

read back memory locations; if the new value is retained, the location must be RAM.

This is thorough, but painfully slow in BASIC. The Disk processor is less accessible,

and requires knowledge of the working of the read buffer to extract the information.

(It is of course, also possible to disassemble ROM by taking the chip from its socket

and using alternative hardware). The key to this is location $1004 ($0404 to the disk

processor itself). If this location has its high bit set, the disk processor goes into

action, either reading/ writing the disk or executing code. When the location is reset

the IEEE part of the operation knows the operation is over, and collects its results

from RAM or performs the next operation. The following short piece of BASIC, insert-

ed into the routine in M-R, causes BASIC to disassemble the internal, disk, machine

code

.

_,

10004 PRINT#15,C$;CHR$(QQ - INT(QQ/256)*256) ;CHR$(QQ/256) ;D$

10006 PRINT#15,"M-W";CHR$(4)CHR$(16)CHR$(1)CHR$(224)

10008 PRINT#15,"M-R";CHR$(4)CHR$(16): GET#15,QQ$: IF QQ$=CHR$(224) GOTO 10008

10009 QQ = 4672

Where C$ and D$ are the machine-code strings in M-W (q.v.). Line 10004 puts the

machine-code routine into the common RAM; Line 10006 pokes 224 into $1004; line

10008 waits until that location indicates that the routine has been executed. The

resulting bytes are deposited in $640ff of the disk processor's RAM; this is the same

as $1240 ff or the IEEE processor. Hence line 10009 sets address $1240 (=4672) and

peeks it using the ordinary M-R command. One character only is taken from the buffer

so the code in C$ and D$ is over-complicated for this routine. Unfortunately, because

of ROM variations, this routine mayn't operate without some changes: the 2040 unit

for instance uses JMP $FEC1 in place of JMP (FFFC) at the end of D$, i.e. the data

statements end ...,76,193,254. At the time of writing I don't have a complete list of

corresponding addresses for all disk ROMs.

We've seen, in M-R, how to find the buffers which contain the BAMs. Some of

RAM is mappable as it is with BASIC ROM and RAM; for example location $0282 cont-

rols the LEDs on the disk units, bits 3,4, and 5 determining whether drive 0/ drive 1

/ central LEDs are lit. '$12 holds the drive number, $2B the track, and so on.

Utilities Some disk utilities are obtainable; most of them are rather disappointing.

Instead of, say, general-purpose disk de-corrupters or index sequential files, they

tend to perform comparatively trivial operations like reading disks' i.d.s or changing

names of disks. As an example of the kind of thing that could be done, there is a

BASIC routine in Compute! (Mar. '81) by D L Cone, printed in that journal's rather

peculiar typographic style, which has several CBM disk recovery routines, usable even

if the directory has been erased, relying on the track and sector links. Other maga-

zines (e.g. Liverpool Software Gazette) have had similar things. Track and sector

routines which interpret what they find aren't hard to write. Routines to find unread-

able sectors, and rewrite them so as to de-corrupt a disk, are possible, and can be

useful if for example a diskette won't initialise. There are considerable possibilities

along these lines; at the most advanced, routines to report the format of non-standard

disks could be valuable.

There are a number of utilities designed to facilitate operations which ought to

be automatic with the system, but which have residual bugs or problems, or are simply

not very easy to carry out. The programs 'COPY ALL' and 'COPY /ALL' for instance,*

available from user groups and some Commodore dealers, are intended as convenient

alternatives to BASIC 4's COPY command. The latter is designed for all file types, in-

cluding relative files. As new DOS ROMs are issued, such utilities should become out-

dated, and there is a chance that they may cease to work with different configurations.

The comparatively autonomous 'intelligence' of these units should be borne in

mind. For example, with several different disk units connected to the same computer,

copying between units becomes fairly straightforward; the units are reconfigured by

software so that their unit numbers are different (see M-W for an 8050 example), so

transfer of programs between disks, followed by backups within the units, can be

performed. The disk drives can be disconnected while a backup is taking place.

*C0PY/ALL (see CCN vol.3 #10, Nov. '81 for listing) replaces the earlier COPY.ALL

256 CHARACTERS DISPLAYED
TEST STATUS BYTE (ST)

NOT END-OF-FILE
RESTORE DEFAULT DEVICES

Programming thePET/CBM -194- 6: Disk drives

6.6 Machine-code programming with CBM disk drives

Files: opening, reading, and closing Let's start with a fairly simple example, which

reads sequential files and displays the result by poking it into the screen.

Suppose drive has a sequential file called 'DATA' on its diskette.

After OPEN 2,8,3,"0:DATA,S" logical file #2 is open for reading. (Different

numbers for the logical file and secondary address have been chosen to make the

machine-code's operation clear).
$028C LDX #$02 ; LOGICAL FILE NUMBER

$028E JSR $FFC6 ;SET INPUT DEVICE - ANY BASIC ROM

$0291 LDY #$00

$0293 LI JSR $FFCF ;GET CHARACTER FROM DISK - ANY BASIC ROM

$0296 STA $8000, Y; POKE CHARACTER TO SCREEN TOP

$0299 INY

$029A BEQ OUT
$029C LDA $96
$029E BEQ LI

$02A0 OUT JMP $FFCC

028A A2 02 20 C6 FF AO

. : 0292 00 20 CF FF 99 00 80 C8

029A FO 04 A5 96 FO F3 4C CC

. : 02A2 FF
SYS 652 reads and displays 256 characters from the file on the top of the screen, or

fewer if end-of-file is found (it is signalled by ST, the contents of $96). Because the

bytes are poked, carriage return appears as 'm' (the 13th. letter of the alphabet).

(1) The routine prints ?FILE NOT OPEN ERROR if the file (logical file #2) isn't open.

(2) Each SYS 652 reads and displays the following 256 characters of the file.

(3) CLOSE 2 finally turns off the LED and deallocates the channel.

(4) DS is not checked. (We'll see later how this is done).

Note that on branching to OUT, Y holds the character-count; this is usually zero, and
pokes to the screen as '@'. A holds ST. Either or both these figures can be printed

as numerals, for example using the routine that prints a line-number, which can be
found at the end of the reset sequence when it prints '31743 bytes free' or whatever
figure is its RAM. In BASIC 4, X holds the value, LDA #00/ JSR CF83 prints it in

decimal

.

Many cosmetic improvements can be made to the output; [CLEAR], CHR$(147),
can be printed to the screen, for instance. The file may be checked for carriage ret-

urn characters, and output one record at a time. The output routine ($FFD2) can be
substituted for screen pokes. The stop key can be tested for, and so on. 2

Can a file be OPENed using machine-code? Obviously this must be possible, since BAS-
IC itself operates exclusively with machine-code. This example is one way of doing it:

SYS 634 "0:DATA,S" with

; LOGICAL FILE NUMBER

; SECONDARY ADDRESS

DEVICE NUMBER
CHECK COMMAND STRING & PUT IN BUFFER ($F4FD BASIC 2)

OPENS FILE WITH THESE PARAMETERS ($F524 BASIC 2)

ETC. AS ROUTINE ABOVE

This routine now opens the file and displays the first 256 characters; subsequent SYS
calls to 652 continue to read the file.

027A A9 02 85 D2 A9 03 85 D3

0282 A9 08 85 D4 20 3C F5 20

028A 63 F5

*It seemed best to me to put this section in Chapter 6, although strictly it is out of

sequence. Programmers not familiar with 6502 code should skip to the next section.

2There's a good example, using the screen-scroll routine, by R Davis in CCN.Vol.3, #5.

$027A LDA #$02
$027C STA $D2
$027E LDA #$03
$0280 STA $D3
$0282 LDA #$08
$0284 STA $D4
$0286 JSR $F53C
$0289 JSR $F563
$028C LDX #$02

Programming the PET ICBM -195- 6: Disk drives

A file can be closed from BASIC using the address in FFC3 ('CLOSE') in association

with a routine to fetch parameters from BASIC. Usually it is easier to avoid the input,

simply loading the accumulator with the logical file number and entering CLOSE 5 bytes

further on. In BASIC 4, for example, LDA #02/ JSR $F2E2/ continue closes logical file

#2 BASIC 4 also has DCLOSE, which closes all files without needing file numbers. A

slightly tedious piece of code can make CLOSE transferable between BASICs, by com-

puting the indirect address of CLOSE and adding 5, as in the following example, in

which A is assumed to hold the file number:

TAY
CLC
LDA FFC4

ADC #05

STA FCL+1

LDA FFC5

ADC #00
STA FCL+2
TYA

FCL JMP FCLOSE

;SAVE FILE NUMBER

;L0W BYTE OF ADDRESS OF CLOSE

;HIGH BYTE OF ADDRESS OF CLOSE

; RECOVER FILE NUMBER

;JUMP TO ADDRESS + 5

Programs and blocks of RAM: loading and saving from machine-code As we have seen

in the section on program files, BASIC programs and RAM dumps are held in the same

way on disk (and on tape), namely with the text preceded by two bytes which hold

the load address. The ROM routines to load and save naturally use the true values ot

these parameters, but the machine-code programmer has the further option of putting

in alternative addresses, so that routines may be relocated. This is not a facility that

is much used, but remains an interesting possibility. In BASIC 4, DLOAD checks its

parameters before entering LOAD. We'll thus consider only LOAD ($FFD5). This is a

BASIC keyword, and assumes a BASIC program; this means that variables will be

CLRed and so on. The monitor's .L command does not assume this. In fact the main

part of LOAD is a subroutine used by both these commands, at $F322 (BASIC 2) or

$F356 (BASIC 4). To use this routine, the following parameters must be correctly set;

the named file will load in the normal place, but no pointers will be reset.

$D1 holds length of filename

($DA) points to start of filename (e.g. to

$D4 holds device number - usually #8

$9D holds 0. This is the LOAD/ VERIFY flag; 1 means verify

$96 holds 0. This is the status byte (ST).

DATA' or 'Fl* or 'PRG*' in RAM)

After these preliminaries , LOAD'S subroutine is called. ST can be used to test for a

successful load; both ROM loads AND ST with #$10 to test for a load error; the bit

should be low, so ST AND #$10 <> signals an error.

In order to load a block of data held as a program file to any part of memory, it

is only necessary to simulate that part of LOAD which fetches the 2-byte load address

from the file. Supposing that the list of parameters above has been set, we need:

LDA #60

STA D3
JSR F4A5
JSR F0D2
LDA D3
JSR F193
JSR F1C0
LDA $96
LSR A
LSR A
BCC CONT
JMP F3C1

CONT JSR F1C0
JSR F391

SECONDARY ADDRESS

SEND NAME TO IEEE. (F466 IN BASIC 2)

SEND 'TALK'. (F0B6 IN BASIC 2)

SEND SECONDARY ADDRESS

GET LOW BYTE OF ADDRESS

CHECK ST'S BYTE 1, I.E.

(F128 IN BASIC 2)

(F18C IN BASIC 2)

2ND FROM RIGHT

ST OK
ABORT FILES, PRINT ?FILE NOT FOUND ERROR (F56E IN BASIC 2)

GET HIGH BYTE OF ADDRESS. BOTH BYTES ARE IGNORED.

REJOIN LOAD (WITHOUT PRINTING 'LOADING ...'). (F355 IN BASIC 2)

The named file will now be loaded from ($FB) onward in memory. This address is

normally set from the two bytes which are thrown away by the machine-code routine.

So the contents of $FB and $FC must also be set by the introductory routines.

Tne code may be treated as a subroutine (e.g. followed by RTS) or used in-line.

Programming the PET/CBM -196- 6:Disk drives

SAVE's address in the kernel jump table is FFD8. It's construction is similar to LOAD,
but easier to follow, since the BASIC version doesn't require to be processed, as it

is after LOAD. Its general layout is:

51 JSR GETPAR
52 JSR STTEND
53 LDA D4

GETS NAME, LENGTH OF NAME, DEVICE, SEC. ADDRESS FROM BASIC

SETS (C9) AND (FB) TO END OF BASIC / START OF BASIC

CHECKS DEVICE NUMBER, AND BRANCHES ACCORDINGLY:

IEEE SAVE - THIS INCLUDES CBM DISKS

CASSETTE TAPE SAVE

The subroutine at entry-point SI fetches the same parameters as LOAD , and sets the

same default values, with the exception of $9D, the load /verify flag, which it ignores.

The subroutine at S2 simply stores the start of BASIC pointer in (FB) and the end of

BASIC pointer in (C9). Obviously, the monitor routine .S "0: HELLO", 08, 1234, 2345

bypasses these, storing its name pointers and address pointers in the appropriate
locations, and going straight to S3. It is, in fact, acceptable to enter this routine a

little later if the parameters are correctly set, since there's no point in comparing the
device number with #3. Once again, we can modify SAVE if we choose. For example,
instead of sending the load address as the first two bytes, we might send the horiz-

ontal and vertical screen positions at which to load the data; or we might not send any
leading values; or we could send an extra code byte with some meaning of our own.
In each case, there must be a corresponding LOAD routine to process our non-stand-
ard program file. The IEEE SAVE's major portion can be simulated like this:

LDA #61
STA D3
JSR F4A5 ;SEND NAME TO BUS (F466 IN BASIC 2)

JSR F0D5 ;SEND 'LISTEN' (FOBA IN BASIC 2)

LDA D3
JSR F143 ;SEND SECONDARY ADDRESS (F128 IN BASIC 2)

LOOP LDA ??

JSR F19E ;SEND A CHARACTER TO THE FILE..
B?? LOOP ; . . IN SOME SORT OF LOOP

END BIT D3
BMI RET ; BRANCH TO RTS
JSR F0D5 ;SEND 'LISTEN' (FOBA IN BASIC 2)

LDA D3
AND #EF
ORA #EO
JSR F143 ;SEND SECONDARY ADDRESS (F128 IN BASIC 2)

JMP F1B9 ;SEND 'UNLISTEN' (F183 IN BASIC 2)

The piece of code at LOOP sends the data from the accumulator. The ROM save, of

course, first sends two address bytes, then consecutive bytes in ascending order
from the low to the high address. It is preceded, in effect, by code which sets the
length of the name and its pointer, the device number, and ST^O. The secondary ad-
dress is not needed; the routine sets it to 1 for write.

As the entries in SAVE and DSAVE (Chapters 5 and 7 respectively) show, it's

possible to modify SAVE even from BASIC, by poking new 'start' and 'end' addresses;
BASIC followed by machine-code (e.g. Supermon) can be saved as a BASIC program
by raising the end-of-BASIC pointer to include the machine-code. A screen display can
be saved as a program file by temporarily changing the start-of-BASIC to $8000 and
the end-of-BASIC to $8400 or $8800, for a 40-column and 80-column screen respectively.

Sending a command string to a disk drive Usually the command string is put into the

input buffer, and sent from there to the disk drive. It is not however necessary that

a string be held in a buffer; it can be incorporated into a machine-code routine or

subroutine. The sequence of operations is this:

(i) Put #8 into $D4 and #6F into $D3 (device number 8 and sec. address 15).

(ii) Send 'Listen'.

(iii) Send the secondary address.
(iv) Send the command string sequentially. If the string is held in the input

buffer, a zero byte will terminate it; this should not be sent,

(v) Send 'Unlisten'. The disk operation will take place now.

Programming the PET /CBM -197- 6: Disk drives

Command strings are sent to the disk drive in the older form of disk syntax, which

the newer BASIC 4 commands (DLOAD etc.) also use, sending exactly the same strings

after checking their newer syntax. The relative file handling is accomplished in the

same sort of way, but the strings it sends are not recognised by DOS 1+. For a summ-

ary of these commands, see Chapter 15's tables of BASIC ROM; BASIC 4 from D839

lists the format of the commands, including the ,L construction which opens a new

relative file, and the P construction for RECORD (see DA31). These commands permit

relative files to be read and written from machine-code.

As an example, suppose the input buffer is used to take in the command; this

means that the cursor will flash in the usual way, and characters will appear on the

screen as they are entered at the keyboard. Carriage return terminates the input, and

in fact puts a zero terminal byte as a marker at the end of the string, which is moved

to $0200ff. This program sends a command input in this way to disk:

JSR B4E2 ; INPUT TO BUFFER (C46F IN BASIC 2)

LDA #08
STA D4
LDA #6F
STA D3

JSR F0D5 ;SEND 'LISTEN' (FOBA IN BASIC 2)

LDA D3
JSR F143 ;SEND SECONDARY ADDRESS OF 15 (F128 IN BASIC 2)

LDX #00

LOOP LDA 0200.X
BEQ END
JSR F19E ;SEND BUFFER CHARACTER (F16F IN BASIC 2)

INX
BNE LOOP ;THIS ALWAYS BRANCHES

END JSR F1B9 ; SEND 'UNLISTEN' (F183 IN BASIC 2)

CONTINUE . .

.

For example, $1 sent by this code displays the directory of drive 1, and D1=0 performs

a backup of drive onto drive 1. SO: PROG* scratches files on drive which begin

PROG. And so on.

Disk status messages (DS$ and DS) These are easier in BASIC 4 than earlier BASICs

because routines exist which recognise DS and DS$. For example,

JSR C024 fetches DS and puts it in floating-point accumulator #1.

JSR BFC9 sets up the DS$ string in BASIC RAM, and sets the length parameter

in $0D and the pointer to its start in ($0E), so that, for example:

JSR BFC9 ;GET DS$ (BA&IC 4 ONLY) AND SET UP STRING

;SET HORIZ. AND VERT. SCREEN PARAMS. IF NECESSARY (SEE HTAB.VTAB)

LDY #FF

LOOP INY

CPY $0D ; COMPARE OFFSET WITH LENGTH OF STRING

BEQ EXIT ;AND EXIT WHEN EQUAL

LDA ($0E),Y ;LOAD CHARACTER FROM STRING

JSR FFD2 ; STANDARD ROUTINE TO OUTPUT A CHARACTER

BNE LOOP ; BRANCH ALWAYS (ACCUMULATOR LOADED WITH NON ZERO CHARACTER)

EXIT CONTINUE...

DS$ can be tested at any time without printing the string by this sort of routine, used

by HEADER to decide whether the newly-formatted disk was a 'bad disk' or not:

JSR D991 ;GET DS$ (BASIC 4 ONLY)

LDY #00
LDA (0E),Y
CMP #32
BCS ERROR
CONTINUE . .

.

The rationale is that DS$ messages starting with 2 or more may be serious, while those

with or 1, i.e. 0,1,10,11,12 19 are not. In practice a number of messages

are warnings rather than errors. The easiest way to test for messages which are not

to be considered 'fatal' is probably to fetch DS as a floating-point number, convert it

to an integer with a ROM routine, then test the low byte of the resulting integer.

Programming the PET /CBM -198- 6: Disk drives

BASIC<4 can read the error channel, and display DS$, using this routine:

LDA #8

STA D4 ; DEVICE NUMBER
JSR F0D2 ;SEND 'TALK' (F0B6 IN BASIC 2)
LDA #6F
STA D3 SECONDARY ADDRESS 15, WITH 'TALK'

JSR F193 ;SEND SEC. ADDRESS (F164 IN BASIC 2) WITH 'TALK'
LOOP JSR F1CO ;GET BYTE FROM IEEE (F18C IN BASIC 2)

CMP #D ; RETURN?
BEQ OUT ; IF SO, GO OUT
JSR E202 ; PRINT TO SCREEN - CAN USE FFD2 FOR OTHER DEVICES. (E3D8 IN BASIC 2)
BNE LOOP ; BRANCH ALWAYS AS ACCUMULATOR DOESN'T HOLD NULL

OUT JSR E202 ; PRINT FINAL C. RETURN (E3D8 IN BASIC 2)
JSR F1AE ;SEND 'UNTALK' (F17F IN BASIC 2 .. SLIGHTLY DIFFERENT ROUTINE)
CONTINUE .

.

Routines like this will work with either BASIC 2 or BASIC 4, but in practice they are
unlikely to be used with BASIC 4, since they are already built into ROM and can be
used more economically than BASIC 2 allows by a direct call.

Throughout this section I have not referred to BASIC 1; in fact this is usable
with disks, but to save space I have omitted its ROM entries and other details where
the ROM and its RAM allocation differs from later BASICS. The tables in Chapter 15
can be used to help make these interconversions.

6.7 Compu /think disk drives

General 'Plug-compatibility' in the world of large computers refers to peripherals such
as disk units or printers which may be substituted for those made by the computer
manufacturer, the aim being to save time (if delivery dates are better) or money. This
phenomenon has spread to the microcomputer industry. The more successful makers of
micros have found innumerable suppliers of extra software, chips, interfaces and so
on operating from outside their companies. Sometimes ex-employees help produce the
stuff. This puts companies like Commodore in a slightly difficult position; their res-
ponse is usually to encourage such alternatives unless they themselves have a similar
product. Disk units are an important case in point, since they are expensive to buy
and costly to maintain. High capacity disk units are quite a bit more expensive than
the computers which use them. A number of non-Commodore disks have been produced
and are sometimes met with. 'Novapac' disks for example were an early entrant into the
field. Kilobaud-Microcomputing magazine ran an article on adding S100 disks to a PET
(R Freeman, Jan. '80). Byte ran a series (June '81 ff.) on connecting disk units, using
disk controller chips. New units, including hard disks and even modified full-size hard
disks, continue to be sold. However, for a long time Compu /think disk drives were the
only large-capacity storage system for the PET and CBM, so a separate section on them
seems justified. There are also many operational differences from CBM disk units, and
the comparison is often instructive. Commodore literature at present scarcely mentions
alternative disks or printers to their own. There is little published material on these
drives; Printout, and the PET Benelux Exchange magazine (in Dutch!), have run
articles

.

Physical size, capacity, operating system Twin drives, typically MPI or PERTEC, are
mounted vertically, under a standard three-sided sheet metal case. The appearance is
similar to the 8061/ 8062 drives announced by Commodore, but smaller. This small size
is achieved largely by filling the CBM with its electronics, consisting of a main board
holding EPROM and RAM. There now exist single sided versions, single sided double
density versions, and double sided, double density versions, using 5 1/4 inch disks,
with storage capacities of 2 x 100 000, 2x 200 000, and 2x 400 000 bytes respectively,
and a further 8 inch model, which is larger, and stores 2 x 800 000 bytes. These all

operate with a disk operating system called Diskmon, which is compatible only with
BASIC<4, because all the memory from $9000 to $BFFF is occupied by ROM and RAM
with this system, not all of which is free with BASIC 4. There is a further Compu/-
think product called BB-DOS which occupies ROM slot $9000- 9FFF.

The operating system of these disks is quite portable; not much Commodore ROM
is used, and even quite trivial features, such as the rectangular border around the
screen are parameterised . In fact the same system is used in a different machine,

Programming the PET /CBM -199- 6: Disk drives

distributed in the U.K. by ACT Ltd. ('Applied Computing Techniques').* It is not an

IEEE system, and does not have the autonomy of CBM drives; it is more accessible,

and can be peeked and disassembled freely. It is initialised in the same way that tool-

kits are, by a SYS call, in this case to $B000 (SYS 45056). This puts a wedge into

BASIC'S CHRGET routine, a widely-used technique to enhance BASIC - see Chapter

14 The function of the wedge is to check for the '$' symbol and interpret subsequent

characters in its own way. Only the initial of the subsequent command counts; any

following characters are ignored

,

2 unless they are either a comma, semi-colon, or end

of statement byte. This of course is fairly standard. The operating system shares many

of the cassette tape system's locations; the zero page is a little overcrowded, so for

example random numbers don't work correctly with the disk drives in operation. The

usual simple Stop-key disable prevents the disk system from working. Two commands

are designed for use with printers connected via the user port (not IEEE) and cables

equipped with Compu/think's own interface; this presumably is an RS232 connection.

The format and organisation of the disks is far simpler than Commodore's, which

must help explain its earlier arrival on the scene. The general system is less ambitious

and appears to have fewer obscure bugs as a result of this. On the other hand, it has

considerable limitations which have to be programmed around.

The drives have 40 tracks with 5 1/4 inch disks, 80 tracks with 8 inch disks.

Each track has 10 sectors. Disk handling is by a Western Digital chip; single density

drives have 256 bytes per sector, double density drives 512 bytes. The smallest unit

which Diskmon uses is the track, i.e. 2560 or 5120 bytes, all of which is saved onto

disk or read from disk. The directory is held on track zero; thus there is a maximum

of 39 or 79 files and programs on any disk side. When a record from a file is read,

the whole of this large buffer is filled, and a pointer used to find the actual record.

Compared with CBM's 256 byte buffers, this is wasteful, and one of the serious limit-

ations of this system is that only one file can be open at a time. For some purposes,

for example adding to a file which is partly complete, this is fine. But it makes ordin-

ary file updating difficult. The buffer may be updated by poking data in; since

the position of this buffer (normally $9000-$A3FF) is known, this is a practical prop-

osition, as we shall see. But it is not convenient. It is one reason why software using

these drives tends to be slow, if it isn't well written: a file is repeatedly opened and

closed, alternately with another (updated) file. As we shall also see, tracks can be

loaded and saved into non-standard buffers, notably the top of RAM after the memory

top has been lowered by poking. This can be a powerful technique. One buffer can

hold an index, the other data, so an indexed sequential system may be implemented

without too much trouble. There is an exception to the rule that tracks are the lowest

common multiple of the system. Program files, which include machine-code dumps like

CBM disks and tapes, are saved, from the starting address, in whole sectors. As long

as a programmer knows this, it causes little difficulty. But it makes overlays more

difficult, because RAM which is further up memory than the theoretical end of a pro-

gram or machine-code routine is overwritten. For example, machine-code saved in the

cassette buffers ($027A - $03FF is untouched by Diskmon) will, when loaded, reach

from $027A - $0479 if the system is double-density, and if the code started at $027A.

It cannot therefore be loaded by a BASIC program unless another program is loaded

afterwards to reinstate BASIC in $0400 and the subsequent locations. Similarly, code

of the type of Supermon or Extramon, stored at the top of memory, and saved to disk,

reprints the top of the screen as it was when the code was saved, because screen RAM
is adjacent to the machine-code, and some of it is stored with the code.

There are differences in style between these and CBM disks, which are as much

a matter of taste as anything else. These disks save with replace without comment,

where CBM disks print ?file exists error. Files are erased ('scratched') without comm-

ent. Errors are reported with an error number and track and sector number, and the

program crashes (i.e. stops, printing 'READY.'). There is no error message; the man-

ual gives a vague indication of what the errors (as returned by the disk controller)

mean. CBM's DS and DS $ system means that this need never happen, because an error

*As an example of the parameterisation , try this demonstration routine (BASIC 2) which

. : 033A A9 00 AO 00 A2 00 4C 9B repetitively prints different rectangles to the

0342 BE screen, using the machine-code subroutine:

FOR J = TO 40: POKE 827, K: K=(K+1) AND 255: POKE 829, J*. 6: POKE 831, J: SYS 826:

NEXT: GOTO
2A funny story by Gerry Weinberg tells of the consternation he aroused in an enthusiast

showing off his typing-error-resistant system, by innocently typing something like

•RELETE'. It is possible, but unlikely, that $F in place of $D will erase a disk.

Programming the PET/CBM -200- 6: Disk drives

can always be detected with DS, and an appropriate request for action issued,
e.g. 'Please put a disk in drive 0'.

Commands The table lists Diskmon's additional commands with CBM equivalents. To
simplify matters I've assumed drive 1 with Compu /think, drive with CBM, although
ranges of 1 - 4 and 0-1 respectively are normally valid . Most conversions should be
fairly easy, but there are likely to be problems if multiple files are open with CBM
disks, since Compu /think can't handle this situation. APPEND and some other com-
mands are hard to translate into Compu /think usage. A few complications are omitted.

Compu /think CBM BASIC 4 CBM BASIC < 4

$F,1 [No title or i.d. is

assigned by $FORMAT]

$D,1

$S,1, "PROGRAM"

$S, 1 , "M/CODE", "1 234", "2345"

$L # 1,"PROG"

HEADER "TITLE", DO, lid PRINT#15,"N0:TITLE,id"

PRINT#15,"$0"

SAVE "0:PROG RAM", 8

DIRECTORY DO

DSAVE "PROGRAM", DO

.S, "0:M/CODE", 08, 1 234, 2345

DLOAD "PROG", DO
|
LOAD "0:PROG",8

$L;1,"PROG" [Loads without affecting the running of the current program, unless
it is overwritten. There is no easy CBM alternative].

$X,l,"PROC" |DLOAD then RUN
| LOAD then RUN

[Loads and executes BASIC or machine-code. The first command with Compu /think
should be CLR. Similar CBM instructions include DOS support's up-arrow function,
the shift-stop key, and DLOAD or LOAD in program mode only].

$X;l,"PROG" [Loads a new BASIC program and runs it, retaining previous variables'
values, subject to the provisos on program length which also apply to CBM programs
loaded from program-mode. Because of Compu /think 's sector-loading principle, the
new program must be sufficiently short that its final sector doesn't overlap the end-
of-program pointers, and thus corrupt the stored variables].

$E,1,"FILE"

DATA FILE HANDLING :

Opening a new file

:

$0, 1, "W", "FILE", "PARAMS"

SCRATCH "FILE", DO PRINT#15,"S0:FILE"

OPEN 1,8,8,"0:FILE,S,W"
OPEN 1,8, 8, "0:FILE,L"+L$

DOPEN#l,D0,"FILE",W
or: DOPEN#1,D0,"FILE",L50

[Note that $0 has the same form with sequential and relative (or 'direct access') files.
This trick is done by storing parameters in the directory entry, for use (with sequen-
tial files) as a store of (say) creation date, but, since this can be written as a record
anyway, this is less important than its random access interpretation. Its eight bytes,
for example I$=CHR$(7)+CHR$(1)+CHR$(55)+CHR$(1)+"XXXX", define the number of
records in the complete file, followed by the record length; the rest is ignored. So
the example allocates 311 records of length 263. The directory keeps a record of the
tracks allocated to a file; records fill tracks and straddle over to the next track].

Opening a file which exists already:

$0,1,"W","SEQ FILE", "PARAMS"| DOPEN#1, DO, "SEQ FILE", W| OPEN 1, 8, 8, "0:SEQ,S,W"
OPEN 1,8,8, "0:SEQ FILE"
OPEN 1,8, 8, "0:REL FILE"

$0,1,"R","SEQ FILE",I$ |DOPEN#1,D0, "SEQ FILE"
$0,1,"D","REL FILE",I$ |DOPEN#1,D0, "REL FILE"
[These are, in order: (i) Sequential file opened for writing, (ii) Sequential file open-
ed for reading, (iii) Direct access file opened for both reading and writing].

Reading records from/ writing records to / files of sequential and direct access type:

R,R
$R;N,R$
W,R
$W;N,R$

Closing a file:

$C

INPUT#1,R$ |INPUT#1,R$
RECORD#1,(N): INPUT#1,R$ see RECORDS (Chap. 7)
PR1NT#1,R$ |PRINT#1,R$
RECORD#1,(N): PRINT#1,R$ see RECORD# (Chap. 7)

DCLOSE#1 CLOSE 1

Programming the PET/CBM -201- 6: Disk drives

Compu /think DOS has five further commands which don't appear in CBM BASIC, and

several other features.

$Band$P ('BLIST' and 'PRINT') operate only with printers connected to the user

port (not the IEEE port). $B,"NAME" prints a heading, page numbers, and a listing of

BASIC with 50 lines to the page. It does not attempt to print screen editing characters

in a readable form. $P prints a line, as PRINT# does to an IEEE port printer.

$G is intended for use with machine-code; after loading it, $G is intended to

execute it, since the load address of the code is known. The effect should be identical

to a SYS call to the first location of the code. However, this command has a bug! The

relevant code is:

B53D LDA #4C ; JUMP OPCODE (BASIC 2 VERSION)

STA 27 ; LOCATION PRIOR TO START ADDRESS

JSR 0028; SHOULD BE 0027

With BASIC loaded, the jump goes to $28-$29, holding pointer (low - high) to start of

BASIC, and to $2A-$2B, holding the pointer (low-high) to the end of BASIC. So if

BASIC is loaded, the code encountered is

0028 0RA (04, X)

002A -VARIES WITH END-0F-BASIC-

So, for example, if the program's length is varied so that PEEK(42)=96, $G will simply

return and print READY. , because RTS has decimal value 96. When trying to run

machine-code, the effect depends on the load address of the code, and is far more

variable; usually it will crash.

$H clears the memory ('HALT'), having a similar effect to a power-on reset, ex-

cept that locations below BASIC aren't affected. In this way the wedge to the system

is retained.

$M is a memory-displaying command; $M,"1234 displays 190 bytes, in hex and in

ASCII equivalent. It is rather slow in action; a fast-screen poke may be desirable.

(See Chapter 5, PRINT). The following (completely relocatable) routines supplement

this command: > and < step forward and backward to the adjacent section of memory,

] and [jump about IK, so the routine can be used to scan memory:

BASIC 1 BASIC 2

033A 20 F7 B9 C9 3E FO F9 C9 .

:

033A 20 0D BA C9 3E F0 F9 C9

0342 3C F0 09 C9 5D F0 14 C9 .: 0342 3C F0 09 C9 5D F0 14 C9

034A 5B F0 1A 60 18 C6 F8 A5 .

:

034A 5B F0 1A 60 18 C6 FC A5

0352 F7 69 84 85 F7 B0 El C6 .

:

0352 FB 69 84 85 FB B0 El C6

035A F8 90 DD A5 F8 69 0E 18 .

:

035A FC 90 DD A5 FC 69 0E 18

0362 85 F8 18 90 D3 A5 F8 69 .

:

0362 85 FC 18 90 D3 A5 FC 69

036A EE 85 F8 18 90 CA .

:

036A EE 85 FC 18 90 CA

The EPROM contains a serial number, identical to that on the disk drive. There

is a security location. This is made possible by the use of the wedge. If you trace

the jump address in $B000, you'll find the initialisation routine for the wedge, which

gives the address to which CHRGET will now jump - e.g. B43E. The routine starting

from here first saves the processor status and other things; the next operation is to

check $040A (=1034) for the presence of #2A, which is usually an asterisk.* (It may

not be; the following examples happen to include #2A in the link address or linenumber

so if either format is accidentally used, the protection will unexpectedly come into

P1^ 1

10 REMX
42 REM ANYTHING. The first line must be 2 tokens long; the second has line 42.

5 REMABC
10 REM THIS LINE MUST CONTAIN 27 TOKENS EXACTLY)

If #2A is detected, only $G, $H, or RUN are usable. $H erases BASIC; $G, as we've

seen, is liable to crash, but this can be prevented by manipulating the program length

and peeking location 42. Thus, only RUN is left. This is Compu /think ! s equivalent of

the Auto-run modifications of the CBM to BASIC. It prevents LIST and also prevents

accidental deletion of program lines by users entering numbers. We shall see how to

insert the character in the section on reading tracks and using the directory.

*Some old versions use POKE 6,100 as their security location.

Programming the PET/CBM -202- 6: Disk drives

Bugs in Diskmon The manuals record several types of bug; these chiefly relate to

string handling of the parameters used in file handling. For example, in this situation

100 $0,0,"R","SEQ FILE",I$
120 R,R

a sequential file is opened for read, and a record (R$) is read. 1$ should now take

the value assigned to 1$ when the file was originally written, and R$ should be the

record as it was written to the disk file. In practice, either of these can go wrong;
the best preventative is to assign the variables twice:

1$="": R$=""
122 R$=R$+""

These program lines correct the deficiencies which may exist.

Further bugs include the introduction of spurious characters at the end of long

program lines, the failure of integer variable (e.g. X%) parameters to operate correct-

ly, and the well-known IF problem, requiring the use of the short IF statement,

IF D=l THEN $D,1 must be replaced by
IF D=l THEN: $D,1

because the first version always performs $D,1 whether or not D=l. This is a problem
with many wedge programs; provided it's remembered, it causes no problems. Some-
times the disk drives are left spinning after an error, perhaps a failure to find a file.

The validation is not very thorough with these disk units. They can be stopped by a

SYS call to the motor-off subroutine, or, more easily, by calling a directory with $D,0
or $D , 1 etc . after which the drives stop

.

Jump table of Diskmon functions and RAM and ROM memory map

B000 45056 Inserts a jump command into CHRGET
B003 45059 Returns from CHRGET - replaces processor status and enters CHRGOT
B006 45062 Reads directory into a short buffer (e.g. IK. Depends on capacity).

B009 45065 Motor off, may also write updated directory to track 0.

B00C 45068 Clear 25 byte blocks in directory to erase file.

B00F 45071 Allocate track (read).
B012 45074 Allocate track (write).

B015 45077 Erase file - if it exists - from the directory.

B018 45080 Write buffer from $9000-$A3FF to disk track. (AFFB=drive, AFFF=track).
B01B 45083 Read track into $9000-$A3FF.
B01E 45086 Write buffer from pointers, e.g. (FB) through (C9).
B021 45089 Read track into area defined by low /high pointers, e.g. (FB) through (C9)

B024 45092 Turn motor on.
B027 45095 Turn motor off.

B02A 45098 Save program to disk.

B02D 45101 Print line with $P or $B to parallel port printer.

B030 45104 Load program from disk.

B033 45107 Read directory; set relative track to zero. Then:
B036 45110 Increment relative track number, allocate track, read program track.
B039 45113 ASCII/hex. IF X<> 0, A becomes hex of X & Y; if X=0, X & Y become ASC(A)
B03C 45116 Perform $X (load program and run it).

B03F 45119 Continue with SAVE.

Some of these routines are usable from BASIC. This is not an exhaustive list of jump
locations; those corresponding to $ commands - $R,$C,$D, and the rest - vary with

versions, but can all be found after the initialisation routine to which B000 jumps. In

BASIC2 (where peeking 45057=43) the comparisons and jumps start at B4C2; BASIC 1

(with peek of 45057=35) starts at B4B6. The pointers and absolute addresses of the
buffers vary with the model; so does the length of buffer allocated for the directory

track. The examples quoted above apply to BASIC 2's double-density version of Disk-

mon. Generally, it is not too difficult to locate subroutines which set pointers and set

absolute values of track limits, because they take the form of loading the accumulator
with a value/ storing it/ loading with another value/ and so on. Routines like $M and
$D are fairly easy, because there's a batch of in-line coding, usually near tables of

text like 'DIRECTORY' or 'MEMORY DUMP', and in association with a memory-map it

is feasible to decode such routines. The most difficult to understand are those which

deal with file opening, reading, writing, and closing.

Programming the PET /CBM

8000-C000 AtOO-AFFF

-203- 6: Disk drives

AFDO-AFFF

8000
Screen RAM

9000

5K buffer

A 000
A400
Diskmon RAM
B000
Diskmon ROM

C000
BASIC ROM

A 400
Unused RAM

A 800

AA 00 Record area

ABOO Directory
AC 00 area
AD00 (1000 bytes)

AEQ0
AF00 Current
AFFF variables

AFD0-AFD1 Block byte counter

AFD2 Switch (1 Read, 2 Write)

AFD3 Record byte count

AFD4 Counter: when 0, read/ write ends

AFD5-AFD6 Pointer to buffer lower limit

AFD7-AFD8 Pointer to buffer higher limit

AFD9 Disk read/ write, motor on /off

AFDA-AFDF
AFE0-AFEF Current file name (16 bytes max.)

AFF0 Current relative track number
AFF1-AFF8 Current file data or pointers for

load or save

AFF9 Directory write switch (#10= write)

AFFA Command mode (#22=command mode)

AFFB Drive number (1-8)

AFFC Sector number (1-10)

AFFD Disk command byte
AFFE Register save area

AFFF Track number (0-39)

BASIC programming with Compu/think disk drives Before presenting programs which

demonstrate file-handling with this system, let's look at some general programming

(i) Because of the possible bugs in string-handling, programs should begin with

the CLR command. This may be combined with a memory-lowering POKE if several

buffers are used; POKE 52,255: POKE 53,107: CLR for example reserves 5120 bytes

of RAM from $6C00-$7FFF with a 32K system.

(ii) The directory of these disks provides no information about a file type. For

this reason the manual suggests that sequential files are given names ending '.SEQ\

program files names ending '.BAS\ machine code files names with '.GO', and so on.

This is entirely optional; programs will run without these codes, but readability is

helped if some convention is used.
(iii) When a file is opened, either for reading or writing, the spindle motor is

left turning, so that delays due to motor start are minimised. (The LED on the drive

will stay on). To save wear, the motor can be turned off (see the jump table for the

SYS command), and turned on only when needed. A delay of at least a half-second is

advised in the disk manuals before writing or reading is attempted, so that the motor

speed has time to stabilise at its correct value.

(iv) Diskettes need formatting before use; this is a write-only operation (which

works even with head-cleaning diskettes). All diskettes should be formatted. (Some

manuals have a strangely-worded warning which seems to imply the exact opposite).

Disks do not need to be 'initialised' in the CBM sense. They have no names or other

identification; in practice the label is a sufficiently good reminder.

(v) $C (close file) writes a null character, CHR$(0), onto the end of the file,

and this can be used as a marker in the same way that ST =64 may be used with CBM
disks. In either case, the alternatives are to record the number of records, perhaps

in another file, or to write one's own end of file marker. Because of the arrangement

by tracks, unclosed files are less of a potential hazard than with CBM drives.

(vi) Records are terminated by CHR$(13), the carriage return character.

(vii) In program mode, a 'file not found' flag exists, so that this type of con-

struction is possible:

1000 POKE 44976,0: $0,0, "R", "SEQ FILE"

1010 IF PEEK(44976)=255 GOTO 10000: REM ERROR-HANDLING ROUTINE

(vii) A number of routines, built into CBM disk DOS, are only available in this

system as BASIC programs on disk. This includes file copy and disk copy utilities and

also utilities to read disks recorded with different densities. Some versions of the file-

copying program don't work. MONITOR is a long BASIC program which performs simil-

ar functions to SUPERMON and EXTRAMON, but more slowly. The tiny assembler has

some directives (ORG, EXT, BYT, ADR, TXT, END) of which some are implemented. The

screen won't scroll: 1531 MK=0/ 1535 MK=MK+l/ 1590 GOTO 1535/ delete 6512 remedies this

.

Programming the PET/CBM -204- 6: Disk drives

RANDOM-FORMAT computes the parameters (i.e. low and high bytes of number of
records and record length respectively) of a specified 'random-access' file, for those
who haven't found out their secret. DISKCOPY provides duplicate or backup disks;
the copy process proceeds one track at a time, and these are recorded on the screen.
A track which is difficult to read or write causes a noticeable delay; this can be help-
ful in identifying weak disks. Several test programs are available. They are not ex-
haustive, and leave much of the diskette suface untested. There are also RAM testing
BASIC programs. A few technical test programs (BOARDTEST, HAT.NR1) exist.

Demonstration programs showing file-handling These short programs are similar to
those in section 6.3 on CBM disk drives. The commands are not very different from
BASIC 4:

DEMONSTRATION OF A SEQUENTIAL FILE. WRITING TO DISK. (COMPU/THINK)

10 $0,1,"W","SEQ FILE M ,"ABCDEFGH" :REM THE PARAMETER STRING CAN BE CHOSEN TO
MEAN SOMETHING, IF YOU WISH

20 FOR J = 1 TO 10

30 X$ = "RECORD NUMBER" + STR$(J)
40 W,X
45 PRINT X$:REM REPEAT ON SCREEN
50 NEXT
60 $C :REM CLOSES THE SINGLE OBTAINABLE FILE

There is no statement corresponding to the CBM's APPEND; without elaborate work in
the tracks holding the file data, it is therefore impossible to extend such a file once
written. Also it cannot be read and simultaneously written, with corrections, to another
file, because of the restriction of one open file only.

DEMONSTRATION OF A SEQUENTIAL FILE. READING FROM DISK. (COMPU/THINK)

100 $0,1, ,,R","SEQ FILE",I$
110 FOR J = 1 TO 11
120 R,X: X$=X$+" M

125 PRINT X$: IF X$=CHR$(0) THEN PRINT "END OF FILE FOUND": GOTO 140
130 NEXT J
140 $C :REM CLOSE

REM 1$ SHOULD ALREADY HAVE BEEN DEFINED;
REM 1$ NOW SHOULD BE "ABCDEFGH" OR OTHER.
REM THE PATCH MAY NOT BE NECESSARY

Note that old records aren't deleted; if end-of-file is ignored or not tested, it may be
possible to read remaining records left from an earlier, probably longer, file.

DEMONSTRATION OF A 'RANDOM ACCESS' OR RELATIVE FILE: BOTH READING AND WRITING.

The first brief program allocates tracks and directory entries for a file called 'R FILE'
which has a maximum of 4000 records of length 80. (This includes the final carriage
return, and the record is stored with total length equal to 81 bytes).

10 1$ = CHR$(136)+CHR$(19)+CHR$(80)+CHR$(0)+"XXXX" :REM 19*256 + 136 = 5000, &
0*256 + 80 = 80.

20 $0,1,"W","R FILE",I$:REM OPENS FOR WRITE LIKE A SEQUENTIAL FILE
30 FOR J = 1 TO 5000
40 W,BL :HEM BL$ MUST BE A STRING OF 80 SPACES HERE
50 NEXT
60 $C

The point of writing spaces is to erase previous data from all the records. This can be
time-consuming. Unlike the CBM equivalent, these files don't automatically enlarge
themselves if asked to read a record beyond the current maximum number. However,
like CBM relative files, they can be either written to or read from when open; they
are not explicitly opened only for one or other of these operations. Consequently files
of this type are usually more often used than sequential files. They can be updated
while information is entered from the keyboard, or from other non-Compu /think files,
such as tape files, or CBM disk units. But they cannot be updated easily from a file
of Compu /think data without some programming effort, such as storing the new data
in string arrays in RAM, perhaps rereading a file several times, while the relative
file is closed, to read all the records in it. This is one of the penalties of the more
simple operating system of Diskmon. The next page has a read and write demonstration
program:-

Programming the PET /CBM -205- 6: Disk drives

5 R$="": 1$=""

10 $0,1,"D","R FILK",I$:REM "D" MEANS 'DIRECT ACCESS'

20 INPUT "READ OR WRITE"; RW$

30 IF RW$="R" THEN GOSUB 100: GOTO 20

40 IF RW$="W" THEN GOSUB 200: GOTO 20

50 $C: END :REM ONLY R AND W ACCEPTED

100 REM ** READ RANDOM ACCESS FILE **

110 INPUT "READ WHICH RECORD"; N

120 IF N<1 OR N>5000 GOTO 110

130 $READ;N,R$: R$=R$+"" :REM $R AND $READ HAVE THE SAME EFFECT

140 PRINT R$:REM PRINT RESULT ON THE SCREEN

150 RETURN

200 REM ** WRITE RANDOM ACCESS FILE **

210 INPUT "WRITE WHICH RECORD"; N

220 IF N<1 OR N>5000 GOTO 210

230 INPUT "TYPE IN RECORD"; R$

240 IF LEN(R$)>79 GOTO 230

250 IF LEN(R$)<79 THEN R$=R$+" ": GOTO 250 :REM PAD WITH SPACES THE LAZY WAY

260 $W;N,R$:REM WRITE THE RECORD WITH C. RETURN

270 RETURN

Reading and writing tracks The following BASIC routine (which is easily converted

into machine-code) reliably loads any track into the normal buffer from $9000-$A3FF:

700 REM ** READ TRACK TR OF DRIVE DR INTO $9000-$A3FF (36864-41983)

710 POKE 45051, DR
720 SYS 45062
730 POKE 45055, TR
740 SYS 45083
750 SYS 45095
760 RETURN

REM POKE DRIVE NUMBER INTO AFFB

REM MOTOR ON (ALSO READS DIRECTORY) . B006

REM POKE TRACK NUMBER INTO AFFF

REM READ TRACK INTO NORMAL BUFFER. BOIB

REM MOTOR OFF - B027

And the opposite process, of storing a track from $9000-$A3FF onto disk, is carried

out using the write routine SYS 45080 (B018) in place of line 740's read routine. So

a general read/ write routine for this buffer might be:

700 REM ** BUFFER READ/WRITE: TR=TRACK, DR=DRIVE, RW$="R" OR "W"

710 POKE 45051, DR: SYS 45062: POKE 45055, TR

720 IF RW$="R" THEN SYS 45083

730 IF RW$="W" THEN SYS 45080 :REM IDEALLY, SIGNAL ERROR IF RW$=0THER

740 SYS 45095: RETURN

It is also straightforward to load tracks from non-standard parts of RAM, and read

them back - if required, into different RAM areas. All that's required is to poke the

low and high addresses, and use a similar routine to those above, except that the

routine which reads or writes is selected to bypass the allocation subroutine for these

buffers. (For example, the slight difference on disassembly between $B018 and $B01E

is taken up by this allocation routine). The low and high pointers are ($FB) and ($C9)

respectively in BASIOl. For example:

800 REM ** BUFFER READ/WRITE: THIS EXAMPLE USES $6C00-$7FFF

810 POKE 45051, DR: SYS 45062: POKE 45055, TR

820 POKE 251,0: POKE 252,108: REM NOW (FC) HOLDS $6C0O IBASIC 1:247 & 248]

830 POKE 201,255: POKE 202,127: REM AND (C9) HOLDS $7FFF IBASIC 1:229 & 230]

840 IF RW$="R" THEN SYS 45089 :REM B021

850 IF RW$="W" THEN SYS 45086 :REM B01E

860 SYS 45095: RETURN

There is of course no problem in parameterising this routine further, so that entry of

the lower limit of a buffer calculates the upper limit and pokes all four bytes. Note

that a buffer need not hold 5120 bytes; the directory for example is loaded into a

shorter buffer, typically 1000 bytes long. If these routines are new to you, try exper-

imenting by adding input statements for drive and track numbers, calling a read sub-

Programming the PET/CBM -206- 6: Disk drives

routine, and displaying the result with, for example,

PRINT CHR$(34);:F0R J = 36864 TO 41983: PRINT CHR$(PEEK(J)) ; : NEXT.

As many as 7 buffers can be simultaneously stored in a 32K machine, at the expense

of space for BASIC (7 buffers leave IK, 6 buffers leave 5K, for example). There is

considerable scope for machine-code searching of RAM and similar activities. Self-

checking hashtotals can be introduced quite easily. Tracks may have their track num-

ber, drive number, and a hashtotal stored in three bytes at the end of the track; in

this way, an entire disk can be tested for its data's self-consistency with a simple

program to consecutively read and check each track. These possibilities suggest that

several CBMs may be joined to one disk unit, since reading and writing can be made
infrequent, but I suspect that the necessary boards with RAM and EPROM may not be

available independently of the drives.

The directory track Track zero, the outermost track, holds the disk's directory,

unless the disk is used in some special way, when it may contain data. Each file has

directory entries 25 bytes long. The entries are quite simple, and the following dia-

gram illustrates a typical disk directory. Note that the file names have been printed

in ASCII characters for readability, with 14 representing a single space character, and
the remaining values are represented by the PEEK value, again for readability.

— FILE NAME -- Relative
Track Ko.

Starting
Number of

Address or

Rel. Records
End Address or

Record Length
Rest of 1$ or
Seq.file parameter

BACKGAMMONWPPW i 1 4 88 27 32 32 32 32

BACKGAMMONWSWWP 2 1 4 88 27 32 32 32 32

MERGE.GOWKXWW 1 48 61 32 32 32 32

UTILITY.DATWKKK 1 32 51 32 52 56 49 32 32

[i.e. 3 481]

GALLFILE.DIR0P0P 1

OTHERS

17

236 46 6 32 32 32 32

GALLFILE.DIRPPW* 236 46 6 32 32 32 32

FREEPTRACKbJftflWP 255 32 32 32 32 32 32 32 32

Each entry has (i) 16 characters of file name, padded with space characters.
(ii) A relative track number. 'FREE TRACK' has a symbolic value of 255. All file

tracks are numbered consecutively, starting from 1. Note that a file is

assigned the earliest empty tracks, so a file may be interwoven with other
files once some erasure of files has occurred.

(iii) 8 bytes of parameter. There is no indication of the type of a file; a program
be read as a random access file, or a sequential file loaded as machine-code.
The result of such experimentation depends on the 8 parameter bytes, which
are interpreted in three different ways, viz. starting and end address for

machine-code and BASIC files (BACKGAMMON and MERGE.GO in the example)
or number of records and record length for random-access files (GALLFILE.
DIR) or a string of 8 user-assigned characters (UTILITY.DAT has the date

of last update = 3 4 81 for instance).

The program BACKGAMMON starts at 4*256 + 1 = 1025, and ends at 27*256 + 88=7000.

This is a BASIC program as its starting-point implies, although it could be machine-
code. It is about 6000 bytes long, and therefore occupies two tracks. MERGE.GO
starts at $3000 and extend to $3D00, small enough for 1 track. UTILITY.DAT is a

short sequential file. GALLFILE. DIR is a very long direct access file; its parameters
show it to have space for 46*256 + 236 = 12012 records of length 6 each. In fact, the

system allocates space for 7 bytes in each of these records; this is a peculiarity of the

system. 17 tracks are needed for the resulting file. Finally, we see a FREE TRACK
entry; all unused tracks contain this. Very occasionally, the word 'bad' appears in

reverse after a file name entry. The directory is printed by a special routine (follow

$D to find it - e.g. BB39 in BASIC 2). This lists only filenames with relative track

number 1, to avoid repetition. The number of free tracks is calculated simultaneously.
It is interesting to note that because of this, files can be recorded in a way which

Programming the PET/CBM -207- 6: Disk drives

makes them invisible on the directory: if a file name is longer than 16 characters, the

length is not checked, but the name overwrites the relative track number. So long as

CHR$(1) isn't written in the 17th position, the file won't appear. This character

should not be CHR$(255) or the file will be overwritten. Note that only 16 characters

are compared during a load or save operation, so the first 16 characters must differ

in some way between different files. (There is no system of default file names, like

it*ti or hBAS *h wjth CBM drives). So a program saved as "LENGTH=SEVENTEEN !

"

is invisible on the directory, but will load by $L,1,"LENGTH=SEVENTEEN".

The short program which follows analyses the directory track, printing the con-

tents of each track, or of one single file name when this is found. For example, a

disk has a program called 'PRINT PRICE LIST'; the program comes up with this:

NAME: PRINT PRICE LIST

ABS. REL. -LOW PROGRAM HIGH- SEQ.FILE

TR# TR# #RECS R. A. FILE LEN- 1$ PARAM

16 1 1025 BASIC 11804

17 2 1025 BASIC 11804

18 3 1025 BASIC 11804

Showing the three tracks which hold the file, which is presumed by its start address

to be BASIC, and which extends from 1025 - 11804. 1$ is not important.

10 REM **DIRECT0RY TRACK ANALYSER FOR COMPU/THINK

20 INPUT "WHICH DRIVE"; DR: IF DR<1 OR DR>4 GOTO 20

30 INPUT "FILE NAME"; F$

40 IF LEN(F$)>16 GOTO 30

50 IF LEN(F$)<16 THEN F$=F$+" ": GOTO 50

100 POKE 45051, DR: SYS 45062: POKE 45055,0 :REM TRACK

110 SYS 45083: SYS 45095 :REM READ IT, CLOSE DRIVE

200 PRINT "NAME"; F$: PRINT

210 PRINT"ABS. REL. -LOW PROGRAM HIGH- SEQ.FILE";

220 PRINT"TR# TR# #RECS R. A. FILE LEN- 1$ PARAM"

230 DIM DE$(39) :REM FOR 40 TRACK UNIT

300 IN = ASC(F$) :REM INITIAL VALUE FOR FAST TEST

310 FOR DE = 1 TO 39: IF IN<>PEEK(36839 + 25*DE) THEN NEXT: GOTO 500

320 FOR DE = DE TO 39 : REM BUILD TABLE OF NAMES . .

.

330 K = 36839 + 25*DE

340 IF INOPEEK(K) GOTO 390 :REM ... IGNORING IMPOSSIBLE ONES

350 FOR J = K TO K+15
360 DE$(DE) = DE$(DE) + CHR$(PEEK(J))
370 NEXT J

380 IF F$=DE$(DE) THEN N=l: GOSUB 450

390 NEXT DE
400 IF N=0 GOTO 500 :REM FILE NOT FOUND

410 END

450 PRINT DE TAB(4) PEEK(J) TAB(IO) PEEK(J+1) + 256*PEEK(J+2)

;

460 IF 1025 = PEEK(J+1) + 256*PEEK(J+2) THEN PRINT " BASIC";

470 PRINT TAB(25) PEEK(J+3) + 256*PEEK(J+4) TAB(31)

;

480 FOR K = 1 TO 8: PRINT CHR$(PEEK(J+K)) ; : NEXT K

490 RETURN

500 REM ** FILE NOT FOUND - LIST ENTIRE DIRECTORY

510 PRINT F$; "NOT FOUND": PRINT

520 FOR DE = 1 TO 39: K = 36839 + 25*DE: FOR J = K TO K+15

530 DE$(DE) = DE$(DE) + CHR$(PEEK(J)) :
NEXT J

540 PRINT " " DE; DE$(DE)

;

550 NEXT DE

Programming the PET/CBM -208- 6: Disk drives

A similar program can 'Unlist' programs, by poking an asterisk in the correct place.

Or it may be modified to Re-list a protected program. Renaming of files is also easy,

and some protection can be achieved by including cursor-control characters in a file

name. An 'Unlist' program, too long to be included here, has to (i) search the direct-

ory for the specified name, typically by loading track zero into RAM and searching it;

(ii) If the name is found, calculating the absolute track of the first relative track of

the file, which is the first met with in the directory; (iii) loading this track, poking

in 42, and finally saving back on disk. The program should begin with REM, preceded

by not more than 4 tokens, or some other arrangement immune from the influence of a

foreign CHR$(42). The business part of such a program is something like this:

1010 TH=DE :REM TRACK NUMBER = DIRECTORY ENTRY

1020 RW$="R": GOSUB 700: REM READ FIRST TRACK OF PROGRAM

1030 POKE 36873,42: REM EQUIVALENT TO LOCATION 1034 OF BASIC

1040 RW$="W": GOSUB 700: REM WRITE MODIFIED TRACK
1050 PRINT "UNLIST "; F$; "COMPLETE": END

Machine-code and RAM buffers This subsection deals with machine-code processing

of data held in RAM buffers. Because of Compu/think's track-handling system, this is

principally relevant with Compu/think, but is also usable with CBM disks, in which
buffers of data can be loaded and saved by the save command .S and its BASIC
equivalents and .L and LOAD.

It may be useful to erase a buffer; this short machine-code routine, which uses
no zero-page locations and is consequently not immediately relocatable, puts zero bytes
into all locations $9000-$A3FF. It can be modified to erase any set of locations whose
lower and upper limits are of the form $xxOO-$xxFF. SYS 800 runs it:

0320 A9 00 AA 9D 00 90 E8 DO
0328 FA EE 25 03 A9 A4 CD 25

0330 03 DO ED A9 90 8D 25 03
0338 60

The next example is a routine which searches a buffer for a record. A form of

indexing may be implemented in this way; a short code or identifier, followed by a

record number, enables a two-stage operation to find the record by its code. The
search routine uses a flowchart like this:

c START
)

INITIALISE

Set record no. =1

Set low limit
(Top limit is 7FFF)

3:

<J
REPEAT SEARCH1

Compare
sought field'

with rec

.

Same

'Found byte'
set to 1

c

$

Found byte'
set to 255

Add rec. len.

to pointer

T~
Result

exceeds
7FFF?

RETURN)

Increment
Record number

Programming the PET/CBM -209- 6: Disk drives

This is a sequential search: records are scanned from one end to the other. When the

search is carried out (the routine takes a fraction of a second) a location, 847, is set

with a coded value to show whether a match was found between a record and the

field stored in RAM. A value of 1 shows it was found; 255 shows the search was not

successful. An alternative entry point enables a search to be repeated, if a record

exists more than once. The diagram illustrates the rationale behind this type of search.

A subfield within a record - perhaps a single character only - can be sought. Given

that the records are of uniform length, the important starting position is the point at

which the comparison field begins; this need not coincide with the start of the buffer.

The locations used in this example program are:

832-846 Sought field. Maximum length is 15 characters.

847 Found byte. l=Found; 255=Not found.

848-849 Current record number. Starts at 1.

850-851 Start point of search. Not necessarily equal to the start of the buffer.

852 Record length.

853 Length of sought field (1 - 15)

.

854-855 Current pointer into buffer.

-Record length -

Compared field

RECORD N U M B E R 1 RECORD NUMBER2 RECORD NUMBER3
Start of

Buffer

MACHINE-CODE SEARCH ROUTINE TO HUNT STRING IN BUFFER

1 FOR L=856 TO 967s READ Ms POKE L,Ms NEXTs REM SETS UP M/C IN CASS, BUFF.

2

2 DATA 169,0,168,141,81,3, 169,1. 141, 80, 3, 173, 82, 3, 141, 86, 3, 173, 83, 3> 141, 87 »

3

3 DATA 173,86,3,141,124,3,173,87,3,141,125,3
4 DATA 185, 0, 16, 217, 64, 3, 208, 9, 200, 204, 85, 3, 240, 52, 76, 123, 3
5 DATA 24, 173, 84, 3, 109, 86, 3, 141, e6, 3, 169, 0,109, 87, 3, 141, 87,

3

6 DATA 174, 85, 3, 202, 138, 24, 109, 86, 3, 169, 255, 109, 87, 3, 201, 127, 16, 18
7 DATA 238,80,3,208,3,238,81,3,160,0,76,111,3
8 DATA 169,1,76,196,3,169,255,141,79,3,96
10 PRINT 'lCLR.1 MACHINE CODE BUFFER SEARCH ROUTINE"
15 PRINT "[DOWN 3LOCATIONS* " s PRINT " "

20 PRINT " ROUTINE IS ENTERED AT *358 (=856)"
22 PRINT " OR AT *38C (=908) TO REPEAT"
25 PRINT "CD0WN3 *340-*34E (= 832 - 846) HOLD THE SOUGHT STRING"
30 PRINT "C DOWN 3 BYTE *34F (847) IS THE CHECK BYTE"
31 PRINT " AND HOLDS 255 IF NOT FOUND,"! PRINT" 1 IF RECORD FOUND,"
35 PRINT "C DOWN 3 ASSUMPTION IS THAT THE 5120 BYTES"
36 PRINT "FROM *6C00 (27648) TO *7FFF (32767)"}
37 PRINT " HOLDRECORDS OF EQUAL LENGTH"
1000 REM ** ROUTINE HERE (EG COMPU/THINK TO LOAD TRACK OF DRIVE) **
2000 PRINT "C DOWN 3 DO YOU WISH TO EXAMINE THE BUFFER? "i

2010 INPUT "IF SOPRESS A KEY DURING PRINTOUT TO STOP"? YN*
2020 IF YN*="N" THEN 3000
2030 FOR L=27648T032767*GETX*s IFX*=""THENPRINTCHR*(PEEK(L)) * sNEXT
3000 PRINT* PRINT* INPUT "SOUGHT ITEM*"* CT*
3010 FOR L = 1 TO LEN(CT*)s POKE 831+L, ASC(MID*(CT*#L, 1)) « NEXT
3020 POKE 853,LEN^CT*)
3030 PRINT "ENTER TOTAL RECORD LENGTH (EG, INCLUDING RETURN)"
3040 INPUT " (REC, LENGTH=1 FOR COMPLETE SEARCH)"* R
3050 POKE 852,

R

3060 INPUT "START OF SEARCH (EG 27648)* "*S
3070 POKE 851, INT(S/256)* POKE 850,S-INT(S/256)*256
4000 SYS 856
4010 PRINT "CDOWN 3CHECKSYTE CONTAINS "J PEEK(847)
4020 PRINT "CD0WN3REC0RD NO (START=1) IS*"* PEEK(848)
4030 IF PEEK (847) =255 GOTO 4060
4040 PRINT* IF PEEK(847)=1 THEN INPUT "REPEAT THIS SEARCH?"? YN*
4050 IF YN*="Y" THEN SYS 908* GOTO 4010
4060 GOTO 2000

+ 256*PEEK(S49>

Programming the PET/CBM -210- 6: Disk drives

A hashtotal routine (Chapter 10) and merge routine (Chapter 3) are also well adapted

for use with these disks. Techniques involving indexed files, and other uses for

merges, are not however for the faint-hearted.

There is no routine to turn off these disks once SYS 45056 has been issued.

Any other routines using wedges, however, are unlikely to co-exist, unless the wedge

is specially written to allow for the existence of other wedges. See Chapter 14 on this.

However, a machine code routine to do this is easy to write. Because of the time spent

processing the wedge, there may be noticeable time-saving, perhaps 20-30%. The same

effect can be achieved by turning off the interrupt altogether, with

POKE 59411, PEEK(594ll)-l but the clock and keyboard are not updated/scanned

if this is done, until POKE 59411, PEEK (59411) +1 restores the interrupt. This may be

inconvenient, or it may not, depending on the type of program. A report program with

no other function than to print out data probably doesn't need the keyboard on.

The BASIOl code which returns BASIC to normal (so $C for example causes

?SYNTAX ERROR) is this 14 byte relocatable routine:

027A 78 A9 E6 85 70 A9 77 85

. : 0282 71 A9 DO 85 72 60

SYS 634 (with this location) replaces the first bytes of CHRGET with their normal

values. This call can be made within a program; its converse, SYS 45056, can also be

called in program mode, to reconnect the $ commands.

6.8 Problems, reliability, and maintenance

Problems and reliability Whilst the electronic circuitry of correctly-assembled comput-

ers is very reliable, it cannot be expected that disk and tape units, and other devices

with moving parts, should be as error-free. This is not a problem exclusive to small

computers. 'Head crashes' (where the recording head scratches the disk surface) are

not unknown in large installations. For this reason, backup copies of data are almost

invariably kept. There is also, of course, a possibility that human errors will occur.

Disks may be mislaid, damaged, or demagnetised; or a software error may cause data

to be deleted or overwritten; perhaps failure to follow some procedure will mean that a

disk of useful data is lost. The purpose of this subsection is to give some perspective

on these potential difficulties.

Minimising the chance of error The following general points apply to all microcomputer

systems using diskettes. Hard disks ('Winchesters') are more reliable; nevertheless, in

any applications where loss of data or programs would be inconvenient, similar pre-

cautions ought to be taken.
(i) Use some systematic copying method. A commonly-recommended technique is

the 'grandfather-father-son' method, in which each disk has an earlier version pre-

served and a still earlier one. In this way, software errors or errors in the way data

has been processed can be corrected by repeating a process on the original version.

The point at which a copy is taken has to be decided on empirical and common-sense

lines. Systematic labelling of diskettes helps. The Tieader' feature with CBM disks,

and the disk i.d., can be useful here. A log may be kept of dates on which copies

were taken, and the processing which was performed on them. Important disks - i.e.

any disk containing information difficult to replace and worth keeping - also need
physical storage in a place where they will not be confused with other disks and are

not likely to be damaged. They may, for example, be kept in lockable boxes, or in

clearly-marked cases in a lockable drawer. Similarly it may be worth keeping copies in

a different place - another room or another building - for security.

(ii) Ensure that all diskettes are storing data correctly. Since all the data is

stored on diskettes, which are inherently a somewhat delicate medium, it makes good

sense to have techniques to validate them. In the case of new diskettes, if they are

destined to store valuable information, they should be tested thoroughly with a utility

program which writes and reads back every location on the diskette's surface. This is

worth doing even with diskettes which are warranted error-free. Most test programs

aren't exhaustive, and confine themselves to opening a few files. Sectors or tracks of

random data can be used. Alternatively, the bit patterns in RAM testing are suitable

(i.e. 1010 1010 and 0101 0101. #$AA and #$55 and CHR$(170) and CHR$(85) are the

hexadecimal and ASCII equivalents). Disks which hold data need a different approach.

The point is that a user has a set of disks in envelopes which are unreadable in the

Programming the PET /CBM -211- 6: Disk drives

normal way, unlike card-indexes or ledgers, say. It is important that validation pro-

grams should exist which enable a disk to be checked for self-consistency of its data,

providing some reassurance that its data does, in fact, correspond to its label. This

precaution is quite often lacking in many systems, notably those from the cheap end of

the market. But it is difficult to see how a user can have total confidence in a system

lacking a verification facility. As an example of the type of thing I have in mind, a

system's disks may be run through a program which calculates a hashtotal of a batch

of data, and compares it with the same hashtotal previously stored on disk, reporting

the results. Or a utility program may page rapidly through all the records, or a group

of them, displaying the results. Or a routine may check the integrity of files by read-

ing consecutive sectors through to the end. In this way, a diskette which perhaps was

exposed to a magnetic field, or is otherwise suspect, can be checked without an actual

program run. If this aspect of a system is thought out at the time of design, the

subsequent effort is likely to be less than if it is introduced as an afterthought.

(iii) Don't overuse disk drives. Error rates are usually quoted as a proportion

of disk accesses attempted. While this is a statistical artefact to some extent, it is true

that drives which continually write data all over the disk's surface are more likely to put

a sector in the wrong place than the same drives under conditions of less heavy load-

ing. Other things being equal, it is likely to be good policy to cut down on disk use.

For example, when relative files are opened, CBM's DOS allocates only enough disk

space for the current records. If a relative file is intended to grow, it is best to gen-

erate the entire length of the file at the start, so that sectors will tend to be arranged

in a tidy pattern, not interspersed with other data. A new diskette, free from the

chaotic organisation of sectors resulting from many files being saved and later scratch-

ed, is a better vehicle for relative files for the same reason, that track-seeking move-

ments are reduced. Data which is frequently reused may be better stored in RAM than

repeatedly read from disk. This rule, however, is very dependent on other features

of a system. If, for example, the chance of the computer being switched off or losing

data in some other way is greater than the (small) chance of disk failure, then data

should be stored immediately on disk.

(iv) If possible have a standby system. An advantage of microcomputers is that

exact duplicate systems may be easily accessible, in the same organisation or user

group. When they are, reciprocal agreements may be possible, so that even serious

breakdown doesn't affect a system's work. Organisational quirks may make this more

difficult to arrange than appears likely at first sight.

Summary of software bugs These remarks apply to CBM disk units with DOS 1.x or

DOS 2.x, including 2.5; new releases of DOS will make the comments obsolete, for

those versions of DOS. At the time of writing, definite announcements on DOS bugs
are infrequent from Commodore, and in the absence of fact, it it not surprising that

rumour abounds.
(i) Write-protect tabs. CBM DOS detects the existence of a write-protect tab,

which prevents an immediate write to the disk , as it is intended to . But a software bug
in the internal processor leaves the head's write-gate enabled, so that as a diskette is

searched by the head, a magnetic trace moves across the disk, erasing data, sync

marks, and so on. The effect is as though a small magnet had run over the diskette;

much of the data will be destroyed. Don't, therefore, use these tabs with CBM disks.

(ii) Duplicate disks. There is a potential problem with duplicate disks; since

their i.d. is the same, they're treated as identical by the machine, so that the wrong
disk of a pair, one of which has been updated, used by accident, while DOS stores

the other's BAM, will cause a wrong BAM to be written, and cause sectors to be put in

the wrong places. This is not likely to be a serious problem if all disks except back-

ups have different i.d.s, or if disks are not taken out and replaced by others with

identical i.d. It is also not a problem with the newer drives which automatically

ini.tid.lis6 &11 disks
(iii) Unclosed files. COLLECT or PRINT #15, "V. .

." is the command which erases

unclosed files. Again, this is not likely to be a problem, since it is rather easy to

close files. Program development is a likely time for this bug to strike, since a syntax

error aborts files, which may not be closed properly afterwards.

(iv) COPY. This is a useful command, which unfortunately has a bug when used

to copy an entire disk, e.g. in COPY DO to Dl or PRINT#15,"C1=0". If the disks have

different i.d.s, only 8 files can be copied at one time. Also, relative files often copy

Programming the PET /CBM -212- 6: Disk drives

wrongly; a utility such as COPY /ALL is preferable, or BACKUP of course can simply

create a duplicate disk without bothering with COPY. Note the syntax of COPY and of

the equivalent PRINT #15 command. The reversal in order of the drive numbers can

cause a file to be wrongly replaced by its earlier version. BACKUP and PRINT#15,"D.'.'

have the same reversal. This will not be a problem unless a user is careless; the best

precaution is to use a program with explicit instructions to help perform these func-

tions.
.

(v) Relative and sequential files. Several files can be opened to a single relative

file. This is probably best avoided; there are several reports of buffers being wrongly

written in these circumstances. Short relative files, with total record length less than

254, may have incorrect side sectors allocated. Make them several sectors long at least.

DOS 2.5 can fill only about a third of the disk with a single relative file; several may

have to be used where one would theoretically be best. However, it may be unsafe to

write to relative files when several relative files are open; 'Before the write is complete

a buffer may get overwritten', is one theory. The best way of using relative files

seems to be not to have several parallel files, holding between them data on items 1 to

N, but to have several files covering the range 1 to N/3, N/3+1 to 2N/3, and so on;

in this way, the minimum number of files need be open. There are other rumours; to

quote Jim Butterfield, 'There are a lot of rumors flying about ... you hear a lot of

stories you can't believe'. One of these is that sequential and relative files ought not

to be mixed. This may be a legacy from DOS 1, when relative files were a different

species altogether, and seems to be without foundation.

(vi) A disk full error causes files to be left unclosed, since there is insufficient

space on disk to store the final sector. Use COLLECT if this happens. (It should in

any case never happen with a properly organised working system).

Software problems (i) Timing. Whenever large amounts of data are going to be stored

on file, or when complex processing is to be carried out, the usual guesstimate style

of inferring processing time from benchmarks based on small files should be replaced

by an accurate trial. If this isn't done, it may be discovered late in the day that a

sort takes 36 hours, or a sequential read takes 24 hours to get through a file. Test

data can be generated by a program, and used to check the efficiency of a system in

action. The data may be nonsensical, but its function is to be processed, not to sim-

ulate actual data. Sometimes program redesign can make a huge difference to overall

processing time. I've seen a set of programs whose author didn't know about arrays;

each of a hundred or so categories was extracted from a single file, in about six min-

utes per category. As a result, a report which could have been produced in about 10

minutes took about 10 hours.
(ii) Inaccurate storage. Despite the system of internal checks used by diskettes,

there is a small chance that data may be stored wrongly; the most likely defect is a

dropped bit, where a byte which should be #D0 loads as #90, for example, the correct

bit pattern of 1101 0000 loading as 1001 0000. This is only likely to happen to old

disks which have been untouched for some time, and is a very uncommon fault. But it

is not impossible; I've found examples in old copies of DOS Support programs. The
easiest way to check for this, if it is felt to be necessary, is to use a hashtotal pro-

gram to conflate all the bytes of the program into a single-figure value, and check

that the value agrees with the figure computed. This is a simple thing to do: see

Chapter 14 for an example. Again, it is rarely done, in spite of the extra assurance

it provides that a program has correctly loaded. This seems a pity, since long machine

code programs are difficult to validate in any other way, and a few incorrect bytes can

cause baffling failures and errors.

Diskette care Most diskette envelopes have a set of symbols printed on the back,

providing pictorial warnings against maltreatment. Smoking and dust can damage the

surface, and slowly degrade the performance. Magnetism is an obvious hazard: electric

motors, TV sets, VDUs, transformers, telephones, demagnetizers can all help to erase

data from disks. Diskette boxes can be lined with metal foil to provide a Faraday shield

against magnetism; this looks efficient and may actually be useful. Some people believe

that underground trains and X-ray scanners can erase disks unless they are metal-

wrapped. Diskettes can be damaged ('glitched') by small pulses of magnetism if drives

are turned on or off with disks in place. The probability of harm is reduced if the

drive doors are open. 4040 and 8050 drives, unlike their predecessors, seem safe in

this respect. Note that the earlier drives don't have a centering mechanism for their

disks , so the recommended procedure is to keep the drive door open until the disk has

begun to turn.

Programming the PET/CBM -213- 6: Disk drives

Disk drive care and maintenance For obvious reasons, disk drives should ideally not

be subjected to smoke or dust. It is usually good policy not to physically move them

much. Individual manufacturer's units vary in their resilience; some drift out of

adjustment quite easily, so that disks become more likely to be non-interchangeable

between drives; others are more secure and robust. A sudden movement in one direc-

tion may be more harmful than in another direction. Facts on this topic are hard to

come by, and tend towards the anecdotal ("X used his system for a year without any

trouble"). Most drives sold in the U.K. to date have been American. The long trans-

American and trans Atlantic journeys aren't always good for these machines. Often they

are not resold without being unpacked and checked, a fact which annoys some buyers.

Routine maintenance is usually concerned with the heads: these can be cleaned with

cotton wool and a solvent such as isopropyl alcohol, or with a head-cleaning diskette,

which is a diskette case housing a diskette-shaped thin absorbent cloth.

Disk drives are serviced by cleaning and lubricating the appropriate parts, per-

haps replacing components if a design improvement has been announced, and realigning

the heads. This is done by checking the track zero end stop, and using a specially

recorded master diskette to check the output from the head. Disks of this sort are

recorded eccentrically (in the technical sense!) so a suitable high-frequency oscillo-

scope records a pattern (called a 'Cat's eye') of two adjacent areas on the screen of

the oscilloscope; when these areas are equal the head is in the middle of its track.

The spindle motor is checked too. The price-range of disk units is such that servicing

them is a tricky business, and there is considerable temptation for dealers not to get

involved with this sort of work. For example, a sales director of a British chain said

he was reluctant to get involved with hard disk units, because it would take another

eight weeks to train the engineers. It is therefore worth making sure that you have

access to a technically competent dealer, or to people whose business it is to design

and use electronic hardware. The work is sometimes farmed out to other organisations;

the results of this are unpredictable, and from a consumer viewpoint it's easier to

deal with one company than with a maintenance organisation which is completely differ-

ent from the hardware supplier.

Sometimes because of a software quirk a unit may appear to be defective when

in fact there is no serious fault. One example with Commodore's series of drives is

connected with the use of two processors in those drives: the internal one can be lost,

inaccessible to the IEEE. Initialization will bring it back to life.

There are several points worth mentioning about the 8050 series CBM disk drives

and its descendants. The double-sided version, called the 8250, runs a DOS version

(2.7) apparently different from any 8050 DOS; Commodore may have problems number-

ing its subsequent ROM issues for the 8050 because of this. The 8061 and its double-

sided equivalent the 8062 (8 inch IBM compatible diskettes), in spite of appearances in

brochures, may be pre-empted by the 8250, and perhaps not appear. On shipping

problems of these units: '... the 8050 drives are intended to float freely within their

mounting case. However, in shipping, the outer case flexes against the too-tight

cutouts, thus bending the drives. This in turn misaligns the heads, which are very

critical on this octal density drive. Moral of story: dealers, learn how to realign

Micropolis drives...'. This is Jim Strasma, quoting Bill Seiler of Commodore in Canada.

New units use Tandon disk drives, replacing Micropolis, which themselves succeeded

Shugart. These are presumed to be more reliable, but solid information about this is

hard to get. It may be worthwhile specifically ordering the most up-to-date units, if

you can find out what they are. This is a point on which user groups may be more

helpful, or at least have alternative views, when compared with dealers who may have

to shift relatively old stock. Finally, a smaller single disk unit is to be made available

for the VIC; probably to be called the 4031 the idea is to provide cheap disk backup

for home users, like the single Apple drives. At the time of writing the specification

remains vague; these drives may be compatible with PET7CBM, or they may not.

Programming the PET/CBM -214- 7: CBM disk commands

CHAPTER 7: ALPHABETIC REFERENCE TO DISK BASIC COMMANDS

7.1 Notes on BASIC disk commands. BASIC 4 has fifteen keywords which earlierBASICs

lack and which are all concerned with the disk operating system of Commodore's disk drive

units. They are not intended for use with other manufacturer's equipment. The keywords
are CONCAT, DOPEN, DCLOSE, RECORD, HEADER, COLLECT, BACKUP, COPY , APP-
END, DSAVE, DLOAD, CATALOG, RENAME, SCRATCH, and DIRECTORY in ascending
order of token. There is also a disk status indicator, resembling ST, which takes two
forms, DS$ and DS. Earlier BASICs cannot list these tokens without a special program;
in fact other keywords from FOR to REM and including 7SYNTAX ERROR will appear in

their place. At first sight these commands look like radical additions to BASIC: they
suggest that now we can read and write to disk in a way that was impossible before. In

fact , this is not the case . The important thing to grasp about CBM disk units is that most

of the processing is performed within the disk unit. All that BASIC does is send 'command
strings' and data to the disk units, and receive data back again. The disk units are

'intelligent' and carry out their functions without the CBM's processor. Many other

microcomputers store their DOS in RAM, or in ROM, like the cassette system of the CBM
range, where it can be disassembled and examined. CBM's disk system resembles, and
can be treated as, a 'black box'. What is all-important is the set of ROMs in the unit.

The early disk operating systems, DOS 1 to DOS 1.2, have fewer features than DOS 2

to DOS 2.7, notably the absence of relative files. This difference is independent of the

version of BASIC which uses the disks. So a DOS 2.1 disk is controllable even by the

earliest PET but without the extra commands listed above. For this reason I have included

equivalent IEEE commands using strings containing controlling characters along with the

simpler BASIC 4 commands. Most DOS systems try to abbreviate as far as possible; often

clashes between commands with the same initials have to be avoided, with strange circum-

locutions like *X' for 'Exit'. CBM disks have not been free of this difficulty. The table

shows which BASIC 4 commands correspond to which command string characters and the

names previously assigned to them. See also Chapter 15, BASIC 4 ROM from $D839.

7.2 Notes on BASIC U disk command syntax. BASIC 4 has an elaborate syntax checking

technique (see Chapter 15, $DC68 in BASIC 4) allowing all the parameters including the

file number to be arranged in any order, dopen "FILE", w, #3 and dopen#3, w, mfile"

are effectively identical. This has forced out some constructions which would now be am-
biguous. R shows that a sequential file is to be read; it cannot be also used to indicate

a relative file. So only the length of the record (e.g. L100) is a parameter when a new
relative file is opened. On the other hand, some extra ambiguities have been introduced.

Device number 9 may be specified by ON U9 or ,U9. Strings and numerals may be en-

closed in brackets, but need not be if they begin with " or with 0-9 respectively. All

string expressions, and numeric expressions not beginning with a numeral, must be in

brackets, or 7SYNTAX ERROR appears. The following four examples of a DOPEN state-

ment are equivalent, provided that drive of device #8 holds the destination diskette:

D0PEN#1,"FILE OF NAMES5", U8,D0,W
DOPEN ("FILE OF NAMES" + N$),W,#1 ON U8 :REM ASSUMING N$="5"

DOPEN # (X),(FN$ + CHR$(N)),W :REM IF X IS 1, FN$ IS "FILE

D0PEN#1 , "FILE OF NAMES",

W

OF NAMES", AND N=53

In this section I have assumed for consistency that the command /error channel with sec-

ondary address 15 has been opened with open 15,8,15. I have used upper-case to

distinguish BASIC from ordinary text, and in the BASIC 4 examples used some lower-case

commands (the 8032 - not the 4000 series though! - powers on into this mode).

BASIC<4 BASIC 4 BASIC<4 BASIC 4

APPEND LOAD DLOAD

D[UPLICATE] BACKUP OPEN DOPEN

CATALOG DS, DS$

V[ALIDATE] COLLECT SAVE DSAVE

CONCATENATE] CONCAT N[EW] HEADER

C[OPY] COPY I INITIALISE]

CLOSE DCLOSE RECORD

DIRECTORY R[ENAME] RENAME
S [CRATCH] SCRATCH

Programming the PET /CBM -215- 7: CBM disk commands

APPEND
BASIC 4 disk file command

PURPOSE: APPEND reopens a closed sequential file, setting pointers to the end of the

file and preparing to write to disk. In this way a sequential file can easily be

extended to store more data.

NOTE: This BASIC 4 command has no direct connection with the techniques

discussed alsewhere to join BASIC programs end-to-end.

Syntax: DOS 1+: APPEND is not directly available; concatenation of the old file to the

new file must be used instead. See CONCAT.
DOS 2+: The DOS interface is 'Drive number: file name, A'.

APPEND is followed by these parameters in any order:

(i) # then expression for the logical file number.
(ii) String or string expression in brackets. This is the name of a sequential file.

(iii) Optional drive number. ,D followed by an expression for or 1.

(iv) Optional device number. ON U or ,U with an expression for 4-31.

Typically this looks like:

APPEND* arith. expr. , "name" [,D arith. exp.] [,U arith. exp.]

Spaces - except within APPEND itself or the string, are skipped by BASIC and

have no Substantial effect.*

Examples: BASIC 4. The first example creates a sequential file called "file of names"

holding one hundred names, which are assumed to be present in the array N$().

Some time later - perhaps almost immediately, perhaps months after the file had

been written - more names need to be added to the file. By definition, there is

no alternative, with a sequential file, to writing these onto the end. The method

is to open the file with APPEND, and write to the file, as program line 110 does

here.When line 120 closes the file, the new data has been appended like this:

START OF FILE: RECORD 1 RECORD 2 RECORD 100 NEW RECORD 1 . . . NEW RECORD N

10 dopen#l "file of names" ,w :rem open a sequential file for writing

20 for j=l to 100: print#l, n$(j): next: rem write 100 strings

30 dclose #1 :rem close the file

100 append #2, "file of names" :rem s,w, are both implicit in this

110 for j=l to n: print#2,n$(j) : next : rem write n more strings

120 dclose #2 :rem close the file

BASIC<4 . The example below is exactly equivalent, but omits BASIC 4's special

commands. It may of course be run on a BASIC 4 machine, if it is required to

ensure that a program is compatible with any BASIC.

10 OPEN 1,8,2,"0:FILE OF NAMES, S,W": REM SEC. ADDRESS IS UNIMPORTANT

20 FOR J=l TO 100: PRINT#1,N$(J) CHR$(13);: NEXT

30 CLOSE 1

100 OPEN 2,8,2, "0:FILE OF NAMES, A"

110 FOR J=l TO N: PRINT#2,N$(J) CHR$(13);: NEXT

120 CLOSE 2

Notes: [1] APPEND implies both a sequential file, and 'write' mode. The reason is that

appending is not needed with relative files, since any record can be selected by
its number. And since the pointers are set to the end of file, reading from this

point would not achieve anything. Sequential files, because of their irregular rec-

ord length, must usually be read from the beginning.

[2] Some CBM disk manuals omit this command.

Abbreviated entry: aP

Token: $D4 (212)

Operation: See Chapter 15 under $D977 in BASIC 4.

ROM entry: The kernel jump address is $FFAB; this jumps to $D977.

This is true of all BASIC 4 disk commands, and I shall not explicitly state this fact

for each of them

Programming the PET ICBM -216- 7: CBM disk commands

BACKUP
BASIC 4 disk system command

PURPOSE: Creates an exactly identical disk for security purposes and for the creation

of multiple copies of programs.

Syntax: DOS 1+ and DOS 2+ have the same DOS interface, which is:

'D destination drive number: source drive number'. However, their processing is

not identical - see note [1].

BACKUP is followed by one or two parameters:

(i) D then expression for or 1 TO D then expression for 1 or 0.

(ii) Optional device number. ON U or ,U with an expression for 4-31.

Typically, this appears like: BACKUP DO TO Dl.

Examples: BASIC 4 . The example duplicates a diskette in drive (the right-hand

drive) onto a disk in drive 1. The duplicate is formatted (and could be a new,
unused disk) and copied block for block. For this reason a disk to be duplicated

must be the same type as the drive which does the duplication, since the number
of tracks and sectors must match. (Cp. COPY).

10 ? "Place ORIGINAL disk in Drive (right-hand drive)"

20 ? " COPY disk in Drive 1 (left-hand drive)"

30 ?:?"Press spacebar to duplicate"
40 get x$: if x$<>" " goto 40

50 backup d0 to dl

60 goto 10

BASKX4 . The following example performs the same function, without BASIC 4's

special command. Note that the order of disks in duplication is apparently re-

versed! In fact the DOS interface interprets the number after D as the destin-

ation drive, and the number after the ':' as the source, so BASIC 4 takes the

two disk drive parameters and sends them on the IEEE bus in this different

order. If the drive numbers are entered wrongly and the command goes to com-
pletion, the data will be completely irretrievable; this is why it is desirable to

use a program - like the above - with explicit instructions.

50 PRINT#15,"D1=0": REM READ THIS AS 'DRIVE 1 BECOMES DRIVE 0'*

D in this command string is the initial of 'Duplicate'. Perhaps this was felt to be
too long a command for BASIC; hence 'Backup'. Note that only the initial is

relevant; 50 PRINT#15,"DAISY1=0" would do as well.

Notes: [1] Older versions are slower (about 6 minutes compared to about 1-3 minutes
depending on the type of unit). There is also a difference in the underlying phil-

osophy: the earlier duplicate command took no account of errors, whereas the
later BACKUP command aborts on finding errors. In fact some CBM disks are

'copy protected' by misreeording a few sectors. BACKUP starts at the outside of

the disk and works inward.

[2] Remember that the disk formats must match. There are (at the time of writ-

ing!) three of these: 2040 and 3040, 4040, and 8050. Each type of disk must be
treated separately when duplicating disks - see COPY.

Abbreviated entry: bA

Token: $D2 (210)

Operation: Chapter 15 explains BASIC 4's operation; the disk unit does most of the work

ROM entry: The kernel jump address is $FFA5; this jumps to $DA7E.

Throughout this chapter I have assumed that the command/ error channel has been

opened with logical file number 15, thus: OPEN 15,8,15.

Programming the PET/CBM -217- 7: CBM disk commands

CATALOG & DIRECTORY
BASIC H disk system command

PURPOSE: Displays the contents of a CBM disk on the screen. Data written directly

to sectors will not show up, since it bypasses the file creation and directory

entry routines which are otherwise used. Other types of disk, for example those

formatted on other machines or not readable because of incompatibility (e.g. 8050

on 4040 drives), will, not surprisingly, not have their directories read in this way.

Syntax: DOS T+ and DOS 2+ each store their directories in similar ways, as a BASIC
program, complete with link addresses and line numbers, and zero termination

bytes to signal that the end has been reached. The difference is that the 'line-

numbers' represent sectors occupied by the program or file data, and need not

be sequential. DIRECTORY and CATALOG (these have identical effects) are

BASIC 4 commands which do not rely on a DOS interface, but instead display

the directory by reading bytes, formatting them like BASIC with a number and

text, and printing the result directly onto the screen. RAM is unaffected, except

screen RAM, which becomes the storage device. Once DIRECTORY has scrolled

off the screen it can be recovered only by another DIRECTORY. The syntax is

DIRECTORY [D arith. expr. for or 1] [, or ON U arith.expn. for device no.]

Examples: BASIC 4 . Unlike the DOS universal wedge program, this may be called in

program mode; this is useful when producing hardcopy listings of the contents

of a lot of disks. Both CATALOG and DIRECTORY or their short forms, e.g.

cA and diR, are accepted. Note that this form lacks some of the features which

are available by loading the catalog as a program, notably the production of

subsets of the catalog. Since BASIC 4 is designed for use with larger amounts
of storage than before, this seems a little strange.

open 4,4: cmd 4,;: cA d0 : rem print catalog of diskette in drive

10 input "drive number";d: if d<>0 and dol goto 10

20 print "[clr] Press spacebar to pause"

30 directory d(d)

BASIC<4 . The directory is loaded as a BASIC program; this has the drawback of

overwriting any BASIC in memory, and the advantage of retaining it in memory.

The disk operating system is able to identify several useful variations on the

simple directory:

LOAD "$pr",8

LOAD "$1",8

LOAD "$0:MY*",8
LOAD "$0:??M/C*",8

:REM LOADS DIRECTORY INTO MEMORY; NOW LIST IT.

:REM SAME, EXCEPT THAT DIRECTORY IS FOR DRIVE 1.

:REM LISTS ALL PROGRAMS, FILES, BEGINNING 'MY'.

:REM LISTS ALL PROGRAMS, FILES WITH *M/C IN

3RD, 4TH & 5TH POSITIONS (ON DRIVE #0)

.

LOAD "$1:FILE*=P",8 :REM PROGRAMS ONLY, STARTING 'FILE', ON DRIVE 1

LOAD "$0:*=S",8 :REM DIRECTORY OF SEQUENTIAL FILES ON DRIVE 0.

DOS SUPPORT (UNIVERSAL WEDGE) . This program is usable with both BASIC 4

and BASIC <4. Its method of displaying the directory is identical with that of

BASIC 4, at least in outline: some differences may well show up, since several

versions of DOS support exist. These differences largely affect the I/O process-

ing but not much else, so that one version will print a directory to a printer

after CMD, another won't. However, the commands sent to the disk are more
flexible than BASIC 4 will permit, because any characters can be loaded into the

buffer. The following constructions are therefore all acceptable:

: REM DIRECTORY OF DRIVE TO SCREEN.

:REM DIRECTORIES OF BOTH DRIVES ARE DISPLAYED -

BE SURE EACH HAS A DISKETTE!

.REM DIRECTORY OF DRIVE 1, BUT ONLY OF PROGRAMS/

FILES WHOSE NAMES BEGIN 'ASSEM'

.

@$0:*=P or >$0:*=P :REM DIRECTORY OF PROGRAMS ONLY FROM DRIVE 0.

@$0 or >$0
@$ or >$

e$i ASSEM*
or >$1:ASSEM*

Programming the PET/CBM -218- 7: CBM disk commands

Notes: HI Contents of a directory . The specimen - ,-,, ,,— , ,

directory, from an 8050 drive unit, shows &J»«mAmBdMfmmmm^^
the appearance of a typical diskette directory JJ

,.SccDDrr-2-'op» PPn
on which programs and files have been stored. ^ ^^i, l£l
The top line prints the drive number, and, in Jt>

n?|rKnr?Mooir» per
reverse, the diskette's name and i.d. charac- 4 JELhoLh; I WHKt r*u

ters. The version of DOS is indicated, not as 1* EEEPRUULHooETTE Hkb

2.1 or whatever, but 2A or 2C or some similar 4 I NFU ^*
code. 2C is DOS 2.5, the 8050 version of DOS 4 "Pi" £tu

2, which allocates space for 2052 sectors (or 4 "^r "JOE*

blocks') on the diskette. Each filename, in 4 „dk' „ ?pn
quotes, is displayed with the number of sectors

4

",},' Sen
which it occupies; the first three,programs, 4 ||H1|| ^tU

for example, all occupy about 35 sectors, and 4 El
^

otu

since CBM sectors are 256 bytes long, these 4 Nl^ *tf..

programs are about 35/4 or 9K of BASIC. 4
"f Sen

4 v 1 otu
NOTE: files which were not CLOSEd, or which 4 "GEL" SEQ
were SCRATCHED when open, show various 4 "NL1" SEQ
warning signs, including file-type DEL or an 1875 BLOCKS FREE.
unexpected asterisk. At this point, if the data

is important, the disk should be overwritten

by a backup; if one has not been taken, in-

dividual files may be COPYed to another disk,

with luck.

[2] Initialisation . DOS 2.1 and 2.5 automatically 'initialise' (q.v.) their diskettes,

but earlier versions don't. This can be done by:

OPEN 15,8,15: PRINT#15, "10" :REM "II" FOR DRIVE 1

or, when DOS support is loaded, by:

@I0 or >I1

Whenever a new disk is put into a drive it should be initialised, since otherwise

the operating system may write data according to a wrong block availability map,

overwriting data. If a program includes initialisation, or if it is automatic, then

it needn't be repeated. So directories always require initialisation, unless the

disk has been initialised or this is an automatic function. (I hope this is clear!).

It is possible to disable (i.e. switch off) the auto initialisation; this is a possible

though unlikely source of trouble.

[3] Other versions . The directory is an exceptionally accessible piece of code,

and it is instructive to disassemble DOS support or BASIC 4 if you wish to use

machine code with disks. An example: with DOS Support loaded, use the monitor

to examine the high end of RAM, e.g. 7F80-7FFF in a 32K machine. About 9 lines

up from the bottom is an 0D, a carriage return character. Replace this by 92, the

hexadecimal equivalent of [RVSOFF]. Now the directory will print across the page

instead of in columnar form. This BASIC program mimics some of the DOS Support

and produces program and file names in columns:

10 OPEN l,8»0f"*0" sREM DIRECTORY OF DRIVE
->0 GETfil. X*s GETfel. X* s REM REJECT TRACK & SECTOR BYTES

30 IF X = 4 THFN X = Os PRINT s REM PRINTS 4 COLUMNS. FOR 8032;

40 PRINT TAB(20*X)J s REM (X-2 PRINTS 2 COLUMNS ONLY).

50 GET£l.X*t GET£1»X«. GET£i.X*s CET£l»X*t IF ST OR DS THEN CLOSE It END

51 . sREM REJECT 4 BYTES INC. NO. OF SECTORS

60 GETfel. X*s IF X* = " " THEN X = X + is GOTO 30

70 IF X* = CHR*(34) THEN Q = NOT Q« GOTO 60
80 IF Q THEN PRINT X*J t REM PRINT ONLY ...

90 GOTO 60 s REM ... STUFF WITHIN QUOTES

Abbreviated entry: cA and diR Token; $D7 (215) and $DA (218)

Operation: See Chapter 15 on BASIC 4 and Chapter 14 on DOS Support.

ROM entry points: Both keywords have the same jump address, $FFB4 which jumps to

$D873.

Programming the PET/CBM -219- 7: CBM disk commands

COLLECT
BASIC 4 disk system command

PURPOSE: COLLECT (or Validate) rewrites a diskette's 'Block Allocation Map 1 to

exclude sectors in files which have not been closed correctly. The first byte of

a file's directory entry indicates to the disk operating system that a file was open

but was not closed. Files are checked, by reading consecutive sectors, for a

correct termination byte. If this is not present, the file will be assumed to cont-

inue in another part of the disk , and sooner or later will become entangled with

some other file. The object of COLLECT is to delete such files and ensure that

a diskette contains only sound files.*

NOTE: This command is suitable for data which is held in the form of linked

sectors. This includes BASIC programs, sequential files, and (DOS 2+ only)

relative files. But data written by the user directly in sectors is not treated in

the same way, so that the sectors are de-allocated from the block availability

map. Subsequent write-to-disk operations by the file-handling system will erase

these sectors as soon as the remaining disk-space before them is full. For this

reason, disks with 'user files' are best kept distinct from disks with DOS files.

Syntax: DOS 1+ and DOS 2+ have the same DOS interface: 'V drive number*, which in

DOS 1 meant 'Validate', and was often confused with VERIFY, which is a program

verification command, not a file verification function. There are differences in

processing between DOS ROMs, notably when dealing with relative files, which

DOS 1 doesn't recognise.

COLLECT is followed by D and an expression for or 1.

(COLLECT alone defaults to drive 0).

Examples: BASIC 4 . The example validates or collects - whichever you prefer - the

files on drive 0:

collect d0
BASIC<4 . This example does the same, without BASIC 4's keyword:

PRINT#15,"V0"

Notes: [1] COLLECT exists because of the possibility of corruption of data by files

which are incorrectly stored. This type of difficulty is inevitable with any disk

system which allows sectors to be written anywhere on a disk. The problem may

be a long time in the making: an error may have been working on your disk for

months, to quote Jim Butterfield. CBM machines are unusual in not having the

validation as a normal part of the operating system. Similarly, they don't seem to

have a method of indicating 'bad' sectors on disks. COLLECT therefore probably

always ought to be used when programs and files are stored on disk; but data

written to sectors by B-W and similar commands cannot be COLLECTed, since,

instead, the block allocation map will reassign their sectors as unused, and

subsequent file-writing will sooner or later occupy these sectors.

[2] See SCRATCH: this command too has special properties when corrupted data

is involved. See also COPY with reference to relative files.

[3] If COLLECT signals an error - usually failure to read the disk - the block

map on the disk isn't changed - yet. But the block map in RAM will have been
modified to some extent, probably, so that it's risky to proceed without initial-

izing the diskette again, reloading the old block map.

Abbreviated entry: coL

Token: $D1 (209)

Operation: See Chapter 15 for BASIC details.

ROM entry points: The kernel jump address is $FFA2; this jumps to $DA65.

*Thls command-like many in BASIC-operates by switching pointers and flags, leaving data

largely intact. The data in dud files still exists after COLLECT, but the file name is

removed from the directory, and its sectors are no longer officially in existence as

recorded by the block availability map, and hence are liable to overwriting.

Programming the PET ICBM -220- 7: CBM disk commands

CONCAT
BASIC 4 disk file command

PURPOSE: CONCAT concatenates sequential files, so that the resulting single file

contains all the data from the original files in sequence.

Syntax: DOS 1 + and DOS 2+ have the same DOS interface, which is:

'C Destination drive number : destination file name = drive: first file , drive: 2nd file'

.

After this command, the destination drive holds a file of the destination name

specified, which consists of 'first file' with '2nd file' appended to it. Note that

CONCAT does not allow a new name to be specified; instead the name is taken

by default from the second file name parameter. So a construction like:

CONCAT old file TO newer file GIVING up-to-date file is not available with

CONCAT, but is available when using the alternative form with 'C.

The syntax is CONCAT [D with expr. for or 1,] file name string or variable

in brackets TO [D with expr. for or 1,] file name [ON U device number expr.]

In practice, this looks like: CONCAT DO, "NEW STUFF" TOD1, "TOTAL FILE",

which appends the data called "NEW STUFF", from drive 0, onto "TOTAL FILE"

on drive 1. Files which are not sequential data files give an error in DS$.

Examples: BASIC 4 . The first example concatenates two files from the same drive; the

second concatenates files from different drives. Note that there is no provision

for concatenation between drive units.

1000 concat dO, ("new data" + str$(n)) to d0,"all data" on u8

1500 concat d0,"datal" to dl,"data"

The first example could be part of a loop which appends several files with names

"new data 1", "new data 2", and so forth, onto the file "all data". Note that,

because the drives are identical, the first file will disappear from the directory,

The second example performs a copy before concatenating, so that the original

files both still exist separately.

BASIC<4. To make the operation of this command clear, I've included a listing

of a demonstration program which concatenates a file on drive 1 called "FIRST

FILE", and a file on drive called "SECOND FILE". The concatenated file is

"RESULT", and is on drive 1. Lines 10-150 write the two sequential files which

are to be concatenated. Lines 300-330 perform the concatenation, using syntax

identical to that of the DOS interface, and which avoids the keyword CONCAT.
Finally, lines 400-440 read the file called "RESULT" and print its contents, to

show that the required concatenation has in fact taken place correctly. The
syntax of the crucial command is

310 PRINT#15,"C1:RESULT=1: FIRST FILE, (2: SECOND FILE" : REM FOLLOWING IS OK:

310 PRINT#15,"C0NCAT1:RESULT=1:FIRST FI LE , (3 : SECOND FILE"

Notes: [1] This command operates by switching the pointers at the end of the first file

to point to the start of the second. Then the directory entry of the second is

erased, so the file simply reads from one file to the next: the position of the

sectors on disk will reflect this history. Relative files cannot be concatenated,

with the present DOS, partly, presumably, because of the greater difficulty of

programming this as compared with sequential files. CONCAT is closely related

to COPY; when different drives are involved in CONCAT, the first stage is to

execute COPY, so that the file to be appended is present on the same disk as

the major file.

[2] BASIC<4 can execute what is effectively APPEND using concatenation; all that

is needed is the data which would have been written to the file opened by APP-
END on its own file, which after CLOSE can be concatenated onto the main file.

Abbreviated entry: conC

Token: $CC (204)

Operation: See Chapter 15 for BASIC details.

ROM entry point: The kernel jump address is $FF93; this jumps to DAC7.

Programming the PET /CBM -221- 7: CBM disk commands

DEMONSTRATION OF THE USE OF 'C TO CONCATENATE

10 OPEN 5>8#5»"1jFIRST FILE.SEQ.W"
20 PRINTfcS, "FIRST FILE.. 20 RECORDS"
30 FOR J= 1 TO 20
40 PR ;NT£5» "RECORD NO. "J

50 NEXT
60 CLOSE 5

100 OPEN 5, 8, 5, "0* SECOND FILE.SEGbW"
110 PR INTfcS, "SECOND FILE.. 10 RECORDS"
120 FOR J= 1 TO 10
130 PRINT&5. "RECORD NO. "J

140 NEXT
150 CLOSE 5

160 END
300 0PEN15>8»15
310 PRINT£15,"ClsRESULT=lsFIRST FILE, Ot SECOND FILE"

320 CLOSE 15
330 END
400 OPEN 5r48, 5, " Is RESULT* SEG, R"

410 INPUTfc5»X*s
420 PRINT X*{
426 IF STOO THEN CLOSE 5s END
430 NEXT

J

440 GOTO 410

'RUN' SFTS UP TWO SEQUENTIAL FILES, ONE ON EACH DISKETTE IN THIS CASE?

'RUN 3<XV CONCATENATES THE TWO FILES INTO A NEW FILE CALLED 'RESULTS'?

AND 'RUN 400' DEMONSTRATES THE SUCCESSFUL CONCATENATION.

FIRST FILE.. 20 RECORDSRECORD NO. 1 RECORD NO. 2 RECORD NO. 3 RECORD NO. 4 RECOR

D NO. 5 RECORD NO. 6 RECORD NO. 7 RECORD NO, 8 RECORD NO. 9 RECORD NO. 10 RECORD

NO. 11 RECORD NO. 12 RECORD NO. 13 RECORD NO. 14 RECORD NO. 15 RECORD NO. 16 RE

CORD NO. 17 RECORD NO. 18 RECORD NO. 19 RECORD NO. 20 SECOND FILE. . 10 RECORDSRE

CORD NO. 1 RECORD NO. 2 REOORD NO. 3 RECORD NO. 4 RECORD NO. 5 RECORD NO. 6 RECO

RD NO, 7 RECORD NO. 8 RECORD NO. 9 RECORD NO, 10

Programming the PET/CBM -222- 7: CBM disk commands

COPY
BASIC 4 disk file command

PURPOSE: COPY permits the selective copying of any files from one diskette to

another, except relative files (at the time of writing). It also permits an entire

diskette to be copied onto a second diskette, without erasing the current con-
tents of either disk except with DOS 1+, in which case each file must be copied
individually. Note the distinction between COPY and BACKUP (or DUPLICATE);
COPY reads the file and writes it back as though it were being written from a

program; it is added to the current diskette contents. For this reason COPY can
convert the format of any readable disk into its write format; 3040 diskettes may
be copied by a 4040 drive. BACKUP is less 'intelligent' and produces an exact
replica, provided the format is consistent. This of course is essential if tracks
and sectors have been written by the user in ways which can't be read as ord-
inary files.

Syntax: DOS 1+ and DOS 2+ appear to have identical facilities as regards both COPY
and CONCAT, except that DOS 2+ can copy an entire disk when no file names
are specified in the COPY command. The DOS interface used by BASIC 4 is:

'C Destination drive : destination name = Source drive: source filename'. This is a

subset of the full interface, which causes concatenation rather than copying.

The syntax is: COPY [D expr. for or l,][name] TO [D expr. for or 1,]

[name], where both names may be omitted, or both names present. The destin-
ation file name is checked, and if found to exist, ?file exists error (63) is set

in DS$. So copies made to the same disk must use a different name.

Examples: BASIC 4 . The first example copies an entire disk onto another. Since the
destination disk is not cleared in any way, the copy may abort with ?disk full.

Running HEADER first is therefore common - see note [1]. The second and third
examples copy a file to the same disk, and the other disk, respectively. Note
that the names cannot be the same in the second example.

100 copy d0 to dl

200 copy d0,"text" to d0,"textl"
300 copy d0,"text" ti dl,"text"

BASIC 4 . These are the equivalents without the keyword 'COPY'. Note that the
first example only works with DOS 2+, which was specially extended to include
1 :

100 PRINT#15,"COPY1=0": REM NOTE THE REVERSAL OF SOURCE AND DESTINATION!!
200 PRINT#15,"C1:TEXT=0:TEXT"
300 PRINT#15 , "C0PY0 : TEXT1=0 : TEXT"

Notes: [1] When converting from DOS 1+ to DOS 2+, either through ROM upgrade or
change of hardware, COPY may be used to reformat the disks by reading the old
files and writing them to new disks. However, 8050 disks have more tracks, and
can't be read by smaller disk units, and vice versa. To copy this type of data
needs two disk drives connected to the same machine and a copy program: two
are available through user groups and clubs: COPY ALL by Jim Butterfield and
another version, COPY/ALL which copies relative files too. COPY with relative

files gets most of the copy correct, but not all. There is no syntax error.

[2] Watch for the reversal of order between COPY and PRINT#15,"C ...". This
occurs in BACKUP and PRINT#15,"D ..." too. It is less serious here; a mistake
simply won't find the source file, unless it erroneously exists on the destination
file, so ?FILE NOT FOUND ERROR is about the worst that can happen. Ofcourse
the destination disk may be copied in its entirety onto the source disk too.

Abbreviated entry: eoP Token: $D3 (211)

Operation: See Chapter 15 for BASIC details.

ROM entry point: The kernel jump address is $FFA8; this jumps to $DAA7.

Programming the PET /CBM -223- 7: CBM disk commands

DCLOSE
BASIC 4 disk file command

PURPOSE: DCLOSE performs exactly the same function as CLOSE. It has an optional

form, however, which closes all open files. The file closed need not be a disk

file; any IEEE file, opened to device number 4 to 31, may be closed by DCLOSE.

Syntax: DOS 1+ and DOS 2+ can both handle this command, which is identical, except

for syntax, to CLOSE.

The syntax is DCLOSE [#arith. exp.] [, or ON U arith.exp.J

where the first parameter is a logical file number (1-255) and the second the

device number.
DCLOSE closes all files;

DCLOSE #1 closes logical file #1;

DCLOSE #1 ON U 9 closes logical file #1 on unit 9;

DCLOSE U8 closes all files on unit #8.

Examples: BASIC 4 . The first example shows individual files being opened and closed;

the second shows the use of DCLOSE to close all files. The BASIC<4 equivalent

is in the REM statement. There is little difference between them.

10 OPEN 4,4 :REM OPEN FILE 4 TO A PRINTER

20 DOPEN #8, "TEST", W: REM BASIC 4 IS 0PEN#8, 8,2, "0:TEST,S,W" (ASSUMING

DEVICE 8 AND DRIVE 0)

.

30 — PROCESSING
1000 DCLOSE #4 ON U4: REM OR USE BASIC 4'S CLOSE 4

1010 DCLOSE #8 : REM SAME AS CLOSE 8

or 1000 DCLOSE : REM CLOSES ALL FILES ON DEVICE 8 ONLY. UNLESS OTHER FILES

HAVE BEEN OPENED, THIS IS EQUIVALENT TO CLOSE 8 HERE.

Notes:: [1] DCLOSE, like CLOSE, has the effect of completing file processing. More

details are given in CLOSE, but basically there are two things which may need

to be done: one is to remove the file details from the file table, so that further

attempts to read or write will need the file to be reopened. This happens to all

closed files. However, files for writing (as opposed to files for reading) must

also be finalised by writing the last buffer of data onto disk; otherwise there

will be no record of the last items which were to have been written; and, what

is worse, the chaining of blocks and sectors is left incomplete. This is the reas-

on that correct file closure is stressed. This is not important with tape, as a rule

but should be avoided on disks used for serious data storage. Very often, of

course, this is not a problem: the programmer simply CLOSEs the files! If a

syntax error of some kind occurs, however, it may be important to close write

files from the keyboard; DCLOSE is useful for this purpose. But note that files

are closed if a program is edited; in this case use the method in CLOSE, of

poking the number-of-files-open location. A CBM manual says that (using our

file numbering convention for the error channel) OPEN 15,8,15: CLOSE 15 will

close all the files currently open. Both the directory entry, showing the length

of the file, and the Block Allocation Map, as well as the data, are written on

CLOSE or DCLOSE of a write file.

Abbreviated entry: dC

Token: $CE (206)

Operation: After checking the syntax, this routine calls CLOSE after the point at

which parameters have been input. A single file number is checked to ensure it

isn't zero; DCLOSE alone simply searches the table of device numbers for any

file of the correct device - usually the default U8 - and closes each of these.

(The routine is from DA IB - DA 30).

ROM entry point: The kernel jump address is $FF99; this jumps to $DA07.

Programming the PET/CBM -224- 7: CBM disk commands

DLOAD
BASIC 4 disk file command

PURPOSE: Loads a BASIC program (or other contiguous RAM, e.g. machine-code)

into RAM at the same locations from which it was saved. DLOAD unless otherwise

stated assumes CBM disk unit #8. DLOAD is in fact virtually identical to LOAD;
the only differences are the syntax and the fact that DLOAD validates the device

number to ensure it is an IEEE device, so tape files for example won't DLOAD.
See LOAD, therefore, for more about this subject.

Syntax: DOS 1+ and DOS 2+ are similar: in each case individual bytes are returned by
the unit when it is made a talker, and these bytes are processed by BASIC
which pokes them into memory from the start address which it also receives.

DLOAD 's syntax permits the following parameters, separated by commas, to be
used in any order:
(i) String or string expression in brackets. This is the program name,
(ii) Optional D followed by expression for or 1. This is the drive number; it

defaults to drive 0, so drive will be searched for the program if this para-
meter is omitted. It will go on to search drive 1 in this case if the file doesn't

exist on drive 0.

(iii) Optional unit number, U followed by expression for device number 4-31.

Modes : The action of this command when called from within a program differs from that

in direct mode; the difference is identical to that for LOAD, q.v. See note [2]

on this page.

Examples: BASIC 4. All the following examples assume that the diskette is correctly

initialised; this may or may not be an automatic function.

DLOAD "MY*" :REM LOAD 1ST PROG. FROM Dpi WHOSE NAME STARTS 'MY'

100 DLOAD (X$ + . COPY), U8: REM LOADS THE COMPUTED FILENAME
DLOAD "PROGRAM", Dl :REM LOADS 'PROGRAM' FROM DRIVE 1

BASIC<4 . The following are exact equivalents. I've assumed device 8 throughout:

LOAD ":MY*",8
100 LOAD ":X$"+".C0PY",8
LOAD "1: PROGRAM",

8

In each case, if the file isn't found, the disk error channel will return error 62, ?FILE
NOT FOUND ERROR.

DOS SUPPORT (UNIVERSAL WEDGE) . The slash symbol (/) is equivalent to

DLOAD; the up arrow (f) to DLOAD and RUN. So, for example,

f* :REM LOADS & RUNS 1ST FILE ON DRIVE (ERROR IF IT'S DATA!)
/MY* :REM LOADS FIRST PROGRAM STARTING 'MY' FROM DRIVE 1.

t 1 : PROGRAM ,: REM LOADS 'PROGRAM' FROM DRIVE 1, THEN RUNS IT

Notes: [1] BASIC 4 forces dl"*[RETURN]run [RETURN] into the keyboard queue if the

Shift-stop key is pressed. This is quite easy to do when editing the screen, and
acts like dload "*", then run. This will erase your current program if you are
using BASIC. See Chapter 17 for remedies.

[2] On DLOAD, a program is re-run from the beginning, retaining its variables.

How can machine-code be loaded? Suppose we have saved 'OLD' on disk and wish
to load it from a program: DLOAD "OLD" loads the routine, but then starts the
program over again; so the program keeps loading OLD until Stop puts it out of

its misery. However, since the variables are retained, this construction may be
used, provided the machine-code doesn't change variables' values:

X = X + 1

1 IF X=l THEN DLOAD "SCREEN" :REM LOADS INTO $8000 ff

2 IF X=2 THEN DLOAD "OLD" :REM LOADS ON SECOND RUN

3 CONTINUE FROM HERE!

[3] The DOS interface is Drive number : command string with secondary address
zero. The program in note [3] to CATALOG & DIRECTORY illustrates this.

Abbreviated entry: dL Token: $D6 (214)

Operation: Apart from some syntax checking, DLOAD is identical to LOAD: see Ch.5.

ROM entry point: The kernel jump address is $FFB1; this jumps to $DB3A.

Programming the PET/CBM -225- 7; CBM disk commands

DOPEN
BASIC 4 disk file command

PURPOSE: Opens a file, entering its parameters in tables, and sends a message to an

IEEE device on the bus to set up its buffer. Only sequential or relative files may
156 TjperrecTfor write with DOPEN; but any file (SEQ, REL, PRC.USR) may be

opened for read. Unless otherwise stated, device #8 is assumed. This command

is very similar to OPEN, except for syntactical differences, the restriction of the

device number to 4 or more, and limitations on file types. See OPEN.

Syntax: DOS 1+ and DOS 2+ differ considerably: the first will not, and the second will,

accept commands to set up relative files. Apart from this difference, the disks

are not very different. However, DOPEN only sends a subset of the commands
available from OPEN: in particular, USR and PRG files cannot be mentioned-not

that they are used much anyway. For this reason OPEN can still be useful even

when BASIC 4 is fitted. Note that DOS Support has no short form of OPEN.
The syntax is fairly complex: the following parameters appear in any order :-

(i) #, then expression, whidh is the logical file number. This must be 1-255.

(ii) String or string expression in brackets, which is the name of the file to be

OPENed. This has a maximum length of 16 - unless the open-with-replace

option is used, when it begins with '@' and may be 17 characters long. In

this case a file of the same name is overwritten without causing error 63,

?FILE EXISTS. See e.g. SAVE for warnings about this function,

(iii) Optional D followed by expression for or 1. This is the drive number,

(iv) Optional unit number, denoted by ON U or ,U with expression for 4-31.

(v) Optional file type parameter. This may be one of:L then expression for 1-

254; this is the relative file record length parameter, and write is assumed.

Or: W alone, which indicates write, but to a sequential file. Parameters like

S,R,P and so on are not accepted. The table should make this clear:

'L' parameter W parameter Signification

Yes
No
No

No
Yes
No

Open relative file for write to diskette

Open sequential file for write to diskette

Open relative, sequential, program or

user file for read only

Finally, when writing to disk is involved, remember that a logical file number of

1-127 sends carriage return after PRINT* ..: while higher file numbers send

carriage return plus line feed.

Examples: BASIC 4 . The DOS interface has three forms, exemplified by:

'1.-FILE', '1:FILE,W and '1 :FILE,L,100' . The third will not work with 3040 or

2040 drives, and usually causes ?file not found error. These three types are ex-

emplified, as they appear in BASIC, by these commands:-
DOPEN#5,"OLD DATA"
DOPEN#6,"NEW DATA",W
DOPEN#7,"REL DATA",L87

REM OPEN FILE - COULD BE REL , SEQ , PRG , USR - FOR READ

REM OPEN 'NEW DATA' AS A SEQUENTIAL FILE FOR WRITE

REM OPEN NEW RELATIVE FILE FOR WRITE. REC.LEN.=87

All these assume drive zero, unit eight. Most practical examples will look like

them, but for completeness we may add the following examples:

DOPEN#8,"@NEW REL FILE",L55,D(X) ON U(Y) : REM WRITE A NEW RELATIVE FILE,

WITH REC.LEN. 55, ON DRIVE X OF UNIT Y

D0PEN#9,"#" REM OPEN CHANNEL FOR DIRECT ACCESS TO DISK

The first of these final two examples opens logical file number 8 to a new relat-

ive file, which, when it writes, will replace the previous file of the same name,

if there is one. The record length is 55; this includes the carriage return char-

acter at the end of each record. The drive and unit numbers are expressed as

variables, and are therefore controlled by the rest of the program; 7SYNTAX
ERROR will appear, of course, if they are not within their allotted ranges.

The last example opens a 'direct access' channel to a disk, so that tracks and

sectors may be written and read without the intervention of DOS. These can be

very useful, although they are not well documented and not particularly easy to

Programming the PET /CBM -226- 7: CBM disk commands

BASIC<4 . The following OPEN statements are exactly equivalent to the DOPEN
statements which we've just examined. Note especially the format to be used to

open a relative file without DOPEN; the parameter must be sent as a single byte
to simulate DOPEN.*

OPEN2 5,8,5,"0:OLD DATA , SEQ , READ" :REM OR OPEN 5,8,5, "0:OLD DATA.S.R" &C

or OPEN 5,8,5,"0:0LD DATA, PRG, READ"

or OPEN 5, 8, 5, "0: OLD DATA , USER , READ"

Note that OPEN 5, 8, 5, "0: OLD DATA.REL.READ" is accepted only by DOS 2+. The
secondary address 5 has no particular significance. BASIC 4 generates its own
from a table. Secondary addresses of 0,1, and 15 are, of course, already re-

served for other purposes.

0PEN i! 6,8,6,"0:NEW DATA, SEQ, WRITE" :REM OR OPEN 6, 8, 6, "0:NEW DATA.S.W" &C

OPEN 7,8,7, "0:REL DATA.L" + CHR$(87)*

Again, this latter form can only work if the disk is fitted with DOS 2, DOS 2.1,

or DOS 2.5; what I've loosely referred to as DOS 2+. The parameter for the

record's length must be within the range 1-254. In BASIC 4 this is checked by
DOPEN 's syntax, but here it is the programmer's job to keep the parameter in

acceptable limits.

OPEN 8,Y,8,X$ + "@NEW REL FILE.L" + CHR$(55)

Where Y is the device number, and X$ is assumed to be either "0" or "1".

OPEN 9,8,9,"#"

This is an example of a file opened for direct access to the disk unit; now,
PRINT#9 is followed by commands of the B-W and M-E type (q.v.) This is a

user file and it might be expected that a name could be assigned to it when it

is opened, but this seems never to be done in practice

Notes: [1] There is not space here for full demonstration programs to open files/ write

to them/ close/ read back. These in any case involve many of the functions of

DOS, such as RECORD, DCLOSE, SCRATCH and so on. Chapter 6 has a set of

disk file demonstration programs which illustrate the possible permutations and
combinations of the CBM disk drives.

[2] Relative files, opened for write, are treated differently from sequential files

.

The latter, roughly speaking, are allocated a buffer and identification on the

catalog, and are written as the need arises, so that if several are written at one
time their sectors will interweave in a leapfrog-like manner. Relative files need
an indexing system. On DOPEN or OPEN a buffer has to be allocated for the
side sectors as well as the main file. Now, if RECORD # file-number, 200 is

executed by BASIC, the entire file must be generated for 200 records. In this

way the file may be created in a more orderly fashion than is possible with
sequential files. This may reduce disk read errors, since the read head has far

fewer track and sector skips (on average).

[3] A complete list of interface commands available through OPEN can only be
made by disassembling each DOS. There are certainly more than appear in CBM
documentation. Mike Todd (in IPUG , July '81) says that opening a sequential file

for read, while it is being written, using something like OPEN 8, 8, 8, "FILE, N"

enables the file to be read back, or at least its buffers. Harry Broomhall found
a command using '&' which may be used as a diagnostic routine - if you know how

.

Abbreviated entry: dO Token: $CD (205)

Operation: Chapter 15 and Chapter 5 outline the workings of DOPEN and OPEN so far

as BASIC goes. The other work is performed by the disk units themselves.

ROM entry point: The kernel jump address is $FF96; this jumps to $D942

This is not the only example of undocumented CBM functions which use a parameter of

this type. Some CBM printers can only be made to perform certain functions when a

byte parameter is sent in this way.
2 There's a serious bug in OPEN which shows itself if the drive number is omitted (this

is sloppy programming, of course). The data default is different from the directory

default, so data is written to the wrong disk unit! Hence all the drive numbers.

Programming the PET /CBM -227- 7: CBM disk commands

DS$ & DS
BASIC H reserved variables

PURPOSE: provides a record of the status of the disk system after any operation.

In this way an error condition can be noted without stopping BASIC. The

variables DS and DS$ are reset on being read. These extra variables are part of

the price paid for having an external DOS. If DOS were accessible to BASIC, ST

could record all status conditions, although not in its present form with only 8

values at most. However, in fact it must be read from the disk drive like other

data ST is still needed to convey information like ?device not present, while DS$

stores information about the results of disk handling. Errors can range from the

gross, when for example no diskette is found, or a blank disk can't be read, to

the subtle, such as a failure to exactly match a file name. These are not serious

errors; in fact, they show that the system is working correctly. Hard errors, on

the other hand, such as mistakes in the internal checking system of a sector,

may be serious.

Syntax: DOS 1+ and DOS 2+ both treat DS and DS$ in the same way; in each case the

variable is read from disk through the command/ error channel with secondary

address 15. However, the variable is only recognized as DS or DS$ by BASIC 4

or some toolkit-enhanced BASIC<4 variations (notably Disk-0-Pro). Otherwise it

is input! and any convenient name may be given to the variable(s). Like TI and

ST, DS and DS$ are not variables in the normal sense; they are not stored in

RAM with other variables, but instead are computed when they are asked for.

Statements like DS=5 or DS$="HI!" are specifically filtered out by LET, but the

either variable may be printed or compared:

?DS$
IF DS>19 THEN PRINT DS$: STOP

DS at present may take values below 75; not all are used, some perhaps have

been reconsidered, others (e.g. 2-19) never used.

DS$ has the format 'Error number, message, track, sector' where the latter two

variables may be irrelevant and set to zero. '0, ok, 0,0' ,
'21, read error, 18, 01'

'50, record not present, 24, 7' are typical disk status messages.

Examples- BASIC 4. This, like the other examples, assumes the error channel is open.

If it isn't, OPEN 15,8,15 will open it - the file number may be different, the dev-

ice may not be 8, but the secondary address must be 15.

PRINT DS$: REM PRINT FULL MESSAGE WITH FOUR PARAMETERS

IF DS>19 THEN GOSUB 10000: REM GO TO AN ERROR-HANDLING ROUTINE.

BASIC<4. If DOS Support isn't loaded, the following can be used:

1000 INPUT#15,EN,EM$,ET,ES
1010 IF EN>19 THEN PRINT EN "," EM$ "," ET "," ES :

CLOSEl: CLOSE 15

1020 RETURN

If a program crashes with a disk error, the error channel may need to be read

in direct mode. The easiest entry is

oP15,8,15: iN15,e,e$: ?e,e$: rem only bother with major variables

DOS SUPPORT (UNIVERSAL WEDGE) . All that is needed, provided the error

channel is open , is

or >

.

Notes- [1] The problem with this variable is when to use it, like ST. DS could be

checked after every disk operation, but the drives won't usually indicate errors^

if a good program is running. A program which crashes, and leaves the red Lr^

in the centre of the drive on, is an obvious candidate for directly reading DS:

to find out what went wrong (and turn off the LED). Programs which INPUTS

data can afford to test DS after each field is read; but can programs which us

GET*9 There is no general answer to this question: it depends on the degree of

security which the system requires. It may also depend on suclj hardware factors

as the age of the system, its state of maintenance, and the quality of the disks.

Programming the PET/CBM -228- 7: CBM disk commands

[2] All BASIC 4's keywords for disk handling clear DS$, DS and ST. The rout-

ine to do this, at $DBE1, is called whenever the command string buffer is filled

prior to transmission on the IEEE bus. To read DS$, a routine at $D991 or

$D995 is called, depending on whether the string is being fetched or re-fetched.

It's read one byte at a time until a carriage return character is encountered,

after making the disk a Talker on secondary address 15. The string is poked

into RAM at the low end of the strings, and pointed to by ($0E), with length

parameter in $0D. From here it can be printed. This process avoids any prob-

lems associated with inputting strings containing commas. DS is evaluated by

converting the first characters up to the first comma into a numeral in a floating

point accumulator. (In fact Disk-0-Pro evaluates this string and stores it after

all disk operations, so it more closely resembles a normal variable). Some pre-

BASIC 4 programs use DS and/or DS$, unaware of the promotion in store for

these variables, and these programs will crash when they meet statements like

40 INPUT "SIZE OF DIRECTORY" ;DS$: DS=VAL(DS$) if they are run on a BASIC 4

machine. DS and DS$ can be set up, like TI and ST, as ordinary variables by
poking, but this is a trick of little practical value.

[3] The table summarises the important features of disk status messages.

Message Information Programming mistake or Hard error

type: (not an error) simple mechanical error

Everything OK
1 Files scratched
(gives number)

2-19 Undocum-
ented. Not
important

.

20 Sector header not found
21 Sync mark not found

Input/
22 Sector not found
23 Checksum error in byte

Output
24 Byte read error

Errors 25 Readback compare error
at 26 Write protect tab on*
Disk 27 Checksum error in header
Level

28 Next sync mark not found

Init'ion 29 Disk i.d. /BAM mismatch 2

30 Syntax error
Syntax 31 Unrecognised command
Errors 32 Overlength command

33 Wrongly used ? or * in name
34 File name omitted
39 Unrec . command to channel 15

Relative 50 Expand rel. 50 Reading past end of file

and file size 51 Relative record too long

Seq. 52 Relative file too big for disk

Files

60 Attempt to read a write file

File 61 File not open
Errors 62 File doesn't exist

63 File does exist

64 File type mismatch

65 Block-Allocate error: gives
Track & next available track & sector

Sector 66 Track or sector out of range.
Errors 67 System track or sector error

70 Channel to disk unavailable
DOS 71 Error in BAM 2

Errors 72 Disk (or directory) full

74 8050 drive hasn't disks
73 DOS mismatch 3

*3 These may lead to problems later. See Chapter 6 on write-protect tabs on CBM disks

and on DOS incompatibilities. 2 Generally re-initialisation is required.

Programming the PET /CBM -229- 7: CBM disk commands

DSAVE
BASIC 4 disk file command

PURPOSE: Writes a consecutive block of RAM bytes to CBM disk, usually a BASIC

program, and updates the directory so the RAM dump is retrievable. DSAVE is

similar to SAVE in most respects.

Syntax: DOS 1+ and DOS 2+ use the same DOS interface for SAVE. This is simply the

drive number followed by the file name. An additional feature is the optional

leading @ before the file name, producing the much-discussed 'save-with-replace'.

DSAVE uses the following parameters, in any order, separated by commas:

(i) String or string expression in brackets. This is the file name.

(ii) Optional D followed by expression for or l.This is the drive number. The

default value is drive 0.

(iii) Optional U followed by expression for 4-31. This is the IEEE device number.

Its default is 8.

A null name ("") is not accepted; the name string must have length>0, even if

it is only CHR$(0)!

Examples: BASIC 4 . The examples are typical DSAVEs. Usually this command is used

in direct mode to save a new or rewritten BASIC program, but it may be used

within BASIC sometimes: see note [2].

DSAVE "BASIC PROGRAM" :REM SAVES ONTO RIGHT-HAND DRIVE, DRIVE 0.

DSAVE "@BASIC PROGRAM", Dl

DSAVE Dl, (X$) ON U8

If the program exists, DS$ signals error 63, unless save-with-replace (the second

example) bypasses this test. The usual maximum length restriction holds: BASIC

checks the name, ensuring 16 characters maximum. (More than 16 characters can

be sent to the device by avoiding this test).

BASIC<4. The commands corresponding to the previous three examples are:

SAVE "0: BASIC PROGRAM",

8

SAVE "1:@BASIC PROGRAM",

8

SAVE "1:" + X$,8

DOS Support provides no short form of SAVE.

Notes: [1] Save-with-replace . The remarks made in Chapter 5 on SAVE apply also to

DSAVE. A fairly early manual mentions error 67 in DS (this is 'system track or

sector error') as a possible result of DSAVE "@...". It seems best to avoid the

construction with

SCRATCH "BASIC PROGRAM", Dl: DSAVE "BASIC PROGRAM", Dl

[2] SAVE and DSAVE dump RAM from pointers ($28) to ($2A) or, with the old

BASIC 1, from ($7A) to ($7C). The very last byte is not saved. The machine

code monitor relies on this to save different areas of RAM. In fact it is easy to

save from BASIC, using only a few pokes to reset the 'start of BASIC and 'end

of BASIC to new values, and repoke them to the true values after saving your

data. The following example shows how a screen can be saved; in future, when

it is loaded, its contents will replace whatever was present on the screen. This

can be useful in demonstrations, graphics, and so on.

57000 PL=PEEK(42): PH=PEEK(43) : REM STORE END-OF-BASIC POINTERS FOR BASIOl

57010 POKE 40,0: POKE 41,128: POKE 42,0: POKE 43,136: REM OR 132 IF 40 COLS

57020 DSAVE "SCREEN PIC" :REM OR SAVE "0: SCREEN PIC",

8

57030 POKE 40,1: POKE 41,4: POKE 42, PL: POKE 43, PH : REM RESET POINTERS

57040 RETURN
Now, drive zero has 'SCREEN PIC stored on its disk. In direct mode, DLOAD or

LOAD will put it straight into the screen. In program mode, you'll need something

like this (see DLOAD and LOAD for the reason):

ON X GOTO 400,600,1000,..
990 X=3: DLOAD "SCREEN PIC", DO

1000 REM CONTINUE HERE WHEN 'SCREEN PIC IS LOADED AND PROGRAM RESTARTS

Abbreviated entry: dS Token: $D5 (213)

Operation: Chapter 15 and Chapter 5 under SAVE discuss this command.

ROM entry point: The kernel jump address is $FFAE; this jumps to $DB0D.

Programming the PET /CBM -230- 7: CBM disk commands

HEADER
BASIC 4 disk system command

PURPOSE: HEADER (or NEW) formats a blank disk which then becomes usable for any
CBM disk operation. It allows a name to be given to the disk, and a two-
character identifier. There is an alternative short form which erases a disk's

directory and enables the disk to be renamed, but does not change the identifier.

NEW as a disk command - not the same as BASIC NEW - is the BASIC<4 version
of HEADER.

Syntax: DOS 1+ and DOS 2+ have identical DOS interfaces for this command:
'N D1:F1 [,D0]' where N or NEW signals the command, Dl and Fl are drive num-
ber and header name respectively, and DO is the optional identifier. Although
the interfaces are identical, they are processed differently, or so the document-
ation says. BASIC 4 has several differences compared with earlier BASICs; the

syntax is different, the cautionary ARE YOU SURE? message prevents accidental

disk erasure, and ?BAD DISK ERROR appears if, after the disk unit is finished,

DS exceeds 1. This is checked within the BASIC 4 ROM.

HEADER uses the following parameters in any order, separated by commas:
(i) String or string expression in brackets; this is the header name, and it is

checked to ensure that it doesn't exceed 16 characters.
(ii) D with expression for or 1. This drive parameter is compulsory.
(iii) Optional 2-character identifier. This is entered as I followed by the two

characters (e.g. Al or 00 or $a or zz etc.). Note that these two characters
are stored in $033F and $0340 and could be poked in if a modified HEADER
command were used. The characters are simply read directly by BASIC. So
I (X$) or 14, or I , where the syntax is variously wrong, yield i.d.s of

(X and 4, and , in order.
(iv) Optional unit number. U followed by an expression which evaluates to 4-31.

Examples: BASIC 4 . The first is a 'long', the second a 'short', header or new.
HEADER D 1, IRW, "PRICE LIST PROGS"
HEADER DO, "EXPERIMENTS"
HEADER (X$), Dl ,U9 :REM LEN(X$) MUST BE >0 AND <17

The final example shows how a string expression is used.

BASIC<4 . Exact equivalents are given, omitting the BASIC 4 keyword 'HEADER':
PRINT#15,"NEW1: PRICE LIST PROGS, RW", 8: REM ANY ALPHABETICS OK, EG NOUGAT
PRINT#15, "NO : EXPERIMENTS" ,

8

PRINT#15,"N1:" + X$,9
In this case, ARE YOU SURE? won't appear and DS or DS$ must be read by the
programmer if something seems amiss. The system won't do it for you.

Notes: [1] If HEADER or NEW shows an error, read DS to establish the cause. It may
be something as trivial as a missing disk. Or it may be that the disk is of poor
quality, or a write-protect tab may be in place. There is a potential risk in this

situation that other disks will be partly erased: see Chapter 6 on write-protect
tabs for example. If the disk won't be formatted switch off before using other
diskettes if you wish to be certain that they won't be corrupted.

[2] The shorter version is faster: say 45 seconds against several minutes, dep-
ending on the DOS. Note that part of the directory is cleared, but the files all

remain on disk without their pointers, a situation rather like BASIC NEW when a

BASIC program is 'erased'. Issue 10 of Compute! ('Disk File Recovery Program',
by David L. Cone) has a program to make data recovery possible.

[3] After HEADER put DOS Support (or any other program which you would like

to be the first to load) on the disk before other programs.

[4] $DB9E (56222) prints ARE YOU SURE? and expects either Y or YES (unshift-
ed, with no spaces) and clears carry if it finds it. Not very usable from BASIC.

Abbreviated entry: hE Token: $D0 (208)

Operation: See Chapter 15 for the BASIC ROM processing.

ROM entry point: The kernel jump address is $FF9F; this jumps to $D9D2.

Programming the PET /CBM -231- 7: CBM disk commands

INITIALISE
Disk system command unavailable directly in BASIC 4

PURPOSE: Causes the disk unit to read the directory and the block allocation map

(BAM) from a diskette in drive or 1 or both. This operation may be performed

in direct mode - when starting up, for example - or in program mode. It is not

needed usually in drives fitted with DOS 2+.

NOTE: Some disk systems (e.g. Apple/ITT 2020) use the same command INITIAL-

ISE to format a diskette, an operation called HEADER or disk NEW in the CBM
system. INITIALISE will not damage the data on a CBM disk; it will erase it from

an Apple/ITT disk.

Syntax: DOS 1+ and DOS 2+ all recognize this command and employ the same DOS
interface 'I [,D0]\ 8050 units, sensibly, perform this as a hardware feature,

so disks cannot be sneakily changed without initialisation. 4040 units don't have

this feature; instead DOS checks, before some operations, that the disk i.d.

matches the disk in the drive. See note [1].

The syntax is PRINT#15,"I [,0 or 1]" or PRINT#15, string expression which

evaluates to "I [,0 or 1]".

Modes: Direct and program modes are both accepted.

Examples: oP 15,8,15: pR15,"i": 10 "*",8 :rem do this on switching on.

This is the short form of OPEN 15,8,15: PRINT#15, "I": LOAD "*",8 and may be used

with any BASIC /DOS combination to initialise two disks, then load the first pro-

gram from drive into RAM. I've assumed device #8. Shift-Stop with BASIC 4

will load and run the same first program. It uses DLOAD "*".

PRINT#15,"I0" and

PRINT#15,"I1"
Initialise disks in drive and drive 1 respectively (provided channel 15 is open).

DOS SUPPORT (UNIVERSAL WEDGE) . PRINT#15 is performed by this wedge, so

@I or >I

@I0 or >I0

@I1 or >I1

may be used in direct mode to initialise both disks, drive 0, or drive 1.

Programs running disks equipped with DOS 1+ need to initialise new disks put in

the drives; and 4040 disk units will need this too for disk operations which do

not read the directory (see note [1]). Either type of routine is satisfactory :

-

100 INPUT "DRIVE";D$: D$="I"+D$: PRINT#15,D$:REM EXCLUDES VALIDATION

100 PRINT#15,"I0"

Notes: [1] After initialisation, the disk read/write head is left positioned over the dir-

ectory track (18 or 39 in the 8050), ready to read/write to sectors of the disk;

this central position is used to cut down head seeking time. If a disk hasn't been

initialised the DS$ error message will read DISK ID MISMATCH (error 29). This

is true unless the disk has the same i.d. as the BAM, but nevertheless was not

the disk initialised, in which case data will simply overwrite the disk now in

place, because DOS cannot tell that it has changed. For this reason strong warn-

ings are often made of the disasters which may happen if disk i.d.s aren't

carefully selected to be different. Similarly, backup disks should be treated with

care, stored, perhaps, in another place. Automatic initialisation of 4040 disk

units is not invoked by BACKUP, COLLECT, HEADER, or RECORD, or any

direct access command. To be on the safe side, therefore, initialisation, using

the format above, may well be carried out before these commands are used; for

example, COLLECT on a wrong disk may scramble up data.

[2] A CBM manual gives this method for turning off auto-initialisation ,
apparent-

ly for 4040 disks: PRINT#15, "M-W" CHR$(243) CHR$(16) CHR$(1) CHR$(1)

Programming the PET /CBM -232- 7: CBM disk commands

RECORD
BASIC 4 relative file command

PURPOSE: Positions the relative file pointer to the start of any record within the

relative file, or to any byte position within a record. This command is unusable

with sequential files, and works with DOS 2+ only, not DOS 1+. It may be

simulated by BASIC<2, provided this BASIC runs DOS 2+ disks.

Syntax: DOS 1+ has no relative file facility, unless specially written direct access

commands are used. DOS 2+ accepts RECORD; the DOS interface is

P sec . address byte record no . low then high byte position within record

.

As an example, the string "P"+CHR$(5)+CHR$(9)+CHR$(0)+CHR$(D sent with

PRINT #15 to the disk positions the pointer to the relative file opened with sec-

ondary address 5 at the first byte of record 9. The syntax of RECORD is less

baffling. Unlike most other BASIC DOS commands the order of its parameters

is invariable. The syntax is:

RECORD # expression for logical file (1-255), expression for record number
(0-65535) [, optional expression for byte within the record (1-254)].

If the byte parameter is omitted, the value 1 is assumed by default.

Examples: BASIC 4 . The short illustrative program opens a relative file and writes ten

records into it. See Chapter 6 for a longer example. Note that the records are

shorter than their permissible length. This is possible because the starting point

of every record is computed by the system, and because a record, as it is

written to disk, is terminated by Return. On reading back, by INPUTS for

example, the record is read until the next Return is encountered, so the lack of

data at the end of the record has no effect. There is one proviso, however -

RECORD must be issued before each PRINT # statement, to move the pointer to

the required record. If this isn't done - try renumbering line 30 as line 15 -

the records may be written consecutively. This could be a useful feature, but
appears to be unreliable. It's safer to use RECORD with the byte parameter.

10 dopen #1, "random file", 140 :rem length parameter implies open for write

20 for j = 1 to 10

30 record #1, (j)

40 print #l,"abcdef" + str$(j)

50 next: dclose #1

I have omitted references to DS$ from this program. If it is checked after line

30, it will return status message 50, 'record not present', showing that the file

is being expanded. As an example of the byte parameter, run this program too:

10 dopen #1, "random file" : rem open for read, by default
20 for j = 1 to 10

30 record #l,(ll-j),4 :rem read records in order 10-1 starting at 4

40 input#l,x$: print x$: next: dclose#l
This prints def 10 then def 9 then def 8 . . .

BASIC<4 . The equivalent programs are as follows, avoiding BASIC 4 keywords:
OPEN 1,8,5,"0:RANDOM FILE.L," +CHR$(40)

-0 FOR J = 1 TO 10

30 PRINT#15,"P" + CHR$(5) + CHR$(J) + CHR$(0) + CHR$(1) : REMEMBER CHANNEL 15!

40 PRINT#1,"ABCDEF" + STR$(J)
50 NEXT: CLOSE 1

3nd
10 OPEN l,8,5,"0:RANDOM FILE" :REM READ ASSUMED
20 FOR J = 1 TO 10

30 PRINT#15,"P" + CHR$(5) + CHR$(11-J) + CHR$(0) + CHR$(4)
40 INPUT#1,X$: PRINT X$: NEXT: CLOSE 1

Notes: [1] 'Error' 50 is generated whenever a relative file is expanded beyond its

currently allocated limits. If INPUT # attempts to read beyond these limits, the

same message appears, and ST is set to 64. BASIC returns carriage return.

Abbreviated entry: reC Token :$CF (207)

Operation: See Chapter 15 (BASIC 4 references from $D7AF).

ROM entry point: The kernel jump address is $FF9C; this jumps to $D7AF.

Programming the PET/CBM -233- 7: CBM disk commands

RENAME
BASIC disk file command

PURPOSE: Changes the name of a disk file. Any type of file may be renamed. If the

new name selected is already present on the diskette, DOS generates error 63,

file exists.

Syntax: DOS 1+ and DOS 2+ each have this command. In each case the DOS interface

is identical: 'R D1:F2 = D1:F1' where Fl and F2 are the old and new names, and

Dl is the code for whichever drive the file is on. The internal operation of each

DOS may be different. Certainly Harry Broomhall*detected errors in DOS 1 in

which scratched entries in the directory made RENAME (or to be precise

PRINT #15, "R ...") fail to work. Like COPY, this operation has the odd feature

of having its parameters reversed in its two versions.

RENAME has the following parameters in any order separated by colons:

(i) Two strings, or string expressions in brackets, separated by TO. These of

course are the before-and-after file names,
(ii) Optional D with an expression for or 1. This is the drive number; the

default is drive 0.

(iii) Optional U with expression for 4-31. This is the device number; its default

value is 8.

Examples: BASIC 4 . A couple of typical RENAMES follow. Note that COPYing a file to

the same drive - if there's space for it - or to another drive, then scratching

the original and recopying the file back if it's now on another disk, has the

same effect as RENAME.

RENAME D1,"0LD NAME" TO "NEW NAME"

RENAME (X$) TO (Y$)

1000 rename ("file" + str$(x)) to ("file" + str$(x+l))

The final example shows how a file's name can reflect a version number after

being updated, for example, so that its current standing or historical status is

easy to see. A date or some other meaningful numbers or letters can be used

in the same general way.

BASIC<4 . The examples which follow are identical in effect to the three just

printed, but don't use the BASIC 4 keyword. They will therefore work with any

DOS and any disk (subject to possible bugs ... see note above, and note [1]).

PRINT#15,"RENAME1:NEW NAME=OUD NAME" :REM NOTE THE ORDER!

PRINT#15,"R0:" + Y$ + "=" + X$
1000 PRINT#15,"REN0:" + "FILE" + STR$(X+1) + "=" + "FILE" + STR$(X)

Notes: [1] This doesn't work with unclosed files. They should be closed in any case.

Abbreviated entry: reN

Token: $D8 (216)

Operation: Apart from the syntax check this is carried out entirely by DOS.

ROM entry point: The kernel jump table address is $FFB7; from here the routine

jumps to $DB55.

Harry Broomhall (of Heronview Ltd) is a British authority on the CBM and its disks

Programming the PET 1CBM -231- 7: CBM disk commands

SCRATCH
BASIC 4 disk file command

PURPOSE- Deletes one or more files from disk. CBM's pattern matching sequence may

be used - with caution - to scratch several files. DS$ returns DS=1 followed by

files scratched' and a parameter showing the number of files which have been

scratched. 'Scratch' is a word peculiar to Commodore; most systems 'erase' or

'delete' files.

Syntax: DOS 1+ and DOS 2+ use the same DOS interface. BASIC 4 however only sends

a subset of the possible command string, namely 'S D1:F1' where S signifies

SCRATCH, Dl is a drive number and Fl a file name. As the examples in BASIC

<4 demonstrate, more elaborate constructions may be used. The penalty for

making a mistake is high - a scratched file is not easy to recover.

SCRATCH uses the following parameters in any order separated by commas:

(i) String, or string expression in brackets. This is the 'name string'; often

simply a name, it may include * and /or ? symbols, and thus be treated as

a string holding pattern-matching symbols,

(ii) Optional drive number, D followed by an expression for or 1. This

defaults to drive 0.

(iii) Optional unit number, U followed by an expression for 4-31. This defaults

to unit number 8.

Note that scratch prints ARE YOU SURE? and expects Y or YES, in direct mode.

Like HEADER, when called from a program, this question-and-answer precaution

is omitted. After SCRATCH, and again only in direct mode, DS$ is read, and

if it is not null (i.e. if some files actually were scratched) printed out, as for

example 01, FILES SCRATCHED, 03, 00 when 3 files were scratched. This same

sequence of messages is obtainable from BASIC <4, but must be input from the

error channel manually.

Finally, note that there is no warning if a file to be scratched doesn't exist. If

its name was misspelt it'll still be there.

Examples: BASIC 4 . These examples are, I hope, self-explanatory. Note the program

example; this is the way to avoid dopen "@test",125.

SCRATCH "FIND CHECKLETTER" , Dl : REM SCRATCHES A PROGRAM (OR COULD BE DATA)

SCRATCH D0,"DIS*" :REM SCRATCH ALL STARTING 'DIS'

scratch d0,"*",u9 :rem scratch all on drive of unit 9

100 scratch "test file",dl

110 dopen "test file", dl, 125

BASIC<4. The equivalents to BASIC 4 follow. There's an extra example to show

the extended syntax possible with this version of the command.
PRINT#15, "SCRATCH1:FIND CHECKLETTER"
PRINT#15,"S0:DIS*"
PRINT#16,"S0:*" REM ASSUMES OPEN 16,9,15 TO UNIT 9

100 PRINT#15,"SCR1:TEST FILE"

110 OPEN 1,8,8,"1:TEST FILE.L," + CHR$(25)

PRINT#15,"S1:TEST,1:MC.OLD,0:X-FILE4,0:TESTER" :REM MULTIPLE DELETES

Notes: [1] Files currently open, or thought to be open, aren't scratched. COPY is said

to have the effect of using internal channels so that SCRATCH believes the file to

be open, and leaves it. It can be scratched later.

[2] Don't scratch unclosed files; COLLECT or VALIDATE the disk. Otherwise the

last existing sector will not point to a sector with a zero termination byte, and this

sector may apparently connect with another file, so DOS will scratch parts of that

too. Suppose a sequential file, writing to disk, signals 'disk full'; its directory is

marked '*' as unclosed. SCRATCH now replaces this with file type DEL, and will

probably produce strange effects. But COLLECT is fine, or read and write back

with CLOSE if the data is valuable. Or ?syntax error may abort a write file; re-

open channel 15, then close all files. Make COLLECT/ VALIDATE a rule.

Abbreviated entry: sC Token: $D9 (217)

ROM entry point: The kernel jump address is $FFBA; this jumps to $DB66.

Programming the PET JCBM -235- 8: Other peripherals

CHAPTER 8: OTHER PERIPHERALS AND HARDWARE

8.1 Tape cassettes .

Cassettes and tape recorders Commodore's tape recorders exist in three forms: built

into the machine, in the earliest models; the C2N external recorder; and VIC s tape

recorder. There have been internal changes in printed circuit board construction, so

that special load/ save routines may not operate with every model. The C2N has a short

cable and edge-connector; power is supplied from the PET/CBM, so the device is not

easily usable away from the computer. VIC's recorder is in white plastic in place of

the earlier black. It is compatible with the PET/CBM and cheaper. Each PET7CBM has

ports for two cassettes, and a small amount of software exists which keeps files on one

tape, reading and updating them onto the second. The ports are arranged differently

in each of the main designs; see the diagram in Chapter 1. This is usually no problem,

but from time to time, when switching machines, a user may be surprised to find no

response from the machine, because he is addressing the wrong port. The recorders

are assigned device numbers 1 and 2, and the whole of their operating system is in

ROM. There are improvements in BASIOl over the original, but the main features are

identical in all ROMs. Consequently external tape recorders, which are portable and

robust, are often useful in transferring programs between machines even when they

are equipped with disk drives, because there are few compatibility problems. The top

of the edge-connector should be labelled; it's often possible to connect it upside-down,

when recording won't take place.

All tape recorders use similar principles: there is an erase head and a record-

ing head, arranged so that during recording the tape is first demagnetised, then rec-

orded. Physically, the recoding takes the form of vertically magnetised fields on the

tape , their form depending on the amount and frequency of the magnetic flux generat-

ed in the recording head. On reading back, the erase head is off and the recording

head acts in reverse as a read head, the tape, as it passes, inducing current in it

which is amplified. (Some machines have separate heads for recording and playback).

The capstan and pinchwheel drive the tape at a constant speed; the capstan rotates,

driving both the wheel and the tape, whenever they are brought in contact by press-

ing 'Play'. The leading (right-hand) spool is maintained under tension, so the tape is

tightly wound, and variations in the effective diameter of the take-up spool have no

effect. Leaving 'Play' pressed when the recorder is off may cause the (now static)

capstan to dent the pinchwheel, and cause irregular playback. In fast forward or fast

backward mode, the capstan is disengaged and drive applied directly to one or other

spool. Routine recommended maintenance involves cleaning and demagnetizing; again,

all recorders are much the same, and cleaning kits for non-computer cassettes are fine,

consisting of cotton-wool swabs and solvent (e.g. isopropyl alcohol) to remove tape

debris. Demagnetizing is always recommended, and sometimes carried out. The movable

type of demagnetizer, relying on the inverse-square law to magnetize the head in alt-

ernate directions with ever-decreasing flux, seem to be best. Head alignment problems

may arise when using tapes recorded on equipment different from that used in play-

back. A recorder with its recording head not vertical will usually read back without

difficulty, because reading exactly matches the magnetic pattern deposited on writing,

a recording made with the same machine. If a recorder has persistent difficulty in

loading tapes, this may be the reason. Adjusting the head is fairly easy.

Cassette tape is cheap, portable, and easy to send through the post. (Some

tape 'magazines', e.g. 'Cursor', and Petsoft and Commodore cassette programs bear

commercial witness to this). The best type is ferric oxide (not chromium) of reasonable

quality. A screw-type casing (which can be taken apart if the tape is tangled) may be

better than the glued type. We shall see how to estimate storage on tape; the best

length of tape depends on the user's purpose, some preferring C-10 or C-12, others

C-45 or C-60. Avoid thin tape. In principle it's a good idea to test tape, and a number

of test programs exist.* Unfortunately this is a time-consuming process, much more

so than with disks. The best compromise is probably to test tapes to be used for

'master' storage. Three tips: (i) don't save useful stuff directly onto a brand-new

tape- test it or unwind and rewind it first to unstretch it; (ii) it may help to demag-

netize tape, since PET/CBM uses high recording levels, to erase old programs or data;

(iii) record the first program /data with a few seconds' extra leader.

*J Butterfield (e.g. CCN Sept. -81) and Kilobaud-Microcomputing (March -80) for example.

Programming the PET /CBM -236- 8: Other peripherals

Commodore's newest cassettes are equipped with a tape counter; the older models

are not Section 8.4 has information on ways around the restriction. It has additional

material on fast forward winding and the possibilities of constructing tape directories.

8.2 Data Storage on CBM Tape .

Introduction Commodore's tape system stores data coded as square waves. The dia-

gram shows, as an example, how a byte is stored; it has a marker followed by nine

bits, the last being the parity bit. (Odd parity is used).

4 Byte Marker >< Low Bit-> <—High Bit -4 Parity Bit

__j—l_j—L_n i—i i l_t~i
-684ns-* *-524ns-H364|isy«524ns—> <— 524nst«364|iS>

There are three frequencies, which we can call short, medium and long. A byte mark-

er is one long wave followed by a medium wave. A bit is either a single short wave

followed by a single long wave (bit 0), or vice versa (bit 1). The periods in micro-

seconds in the diagram were quoted in an article by M Maynard of Audiogenic Ltd.

The actual process of record and readback is complex. So far as I know, source code

for the operating system has not been released.*

Data storage with BASIC There are two types of file available, which are exactly

analogous to disk files' PRG and SEQ file types. BASIC programs are held, like mach-

ine code routines, as a continuous dump from memory. The header holds the load add

ress, so the program may be reloaded in the correct (i.e. original) place in RAM. Data

is stored sequentially in ASCII form, i.e. as if PRINTed to the tape, and, like disk

sequential files, the result can be read back, but not updated directly. This type of

storage needs buffers in RAM, since there is no equivalent to the entire program in

memory; instead, data is generated and stored in a buffer. When the buffer fills, it

is written to tape and emptied. Conversely, when a file of data is read from tape, the

cassette motor automatically runs from time to time, loading the next batch of data.

At this point, without looking at the separate items stored on tape, lets consider tape

timing, and the estimation of the storage capacity of tape in the CBM system.

PROGRAM FILE : \
— LEADER —

DATA FILE: < — LEADER —
HEADER TONE -PROGRAM (1)- —PROGRAM (2)-]ZZ}
HEADER

d)i(2)

TONE 1ST BUFFER
(1)1 (2)

TONE 2ND BUFFER
(1). I (2)

TONE 3
10 2 About .009 seconds per byte /2+ sec. gapTIME (SECS) :

We can see from the diagram that 10000 program bytes are written or read in about

196 seconds. 10000 bytes of data take more time, because of the 'wastage' caused by

the inter-block gaps. The increase is something like 60%. (It may appear to be more,

because the buffers need to be filled too). The amount of tape used is increased in

proportion. Using approximate figures, 10000 program bytes require 3 1/3 minutes to

store or load; 10000 data bytes require about 5 minutes.

CASSETTE TYPE: C10 C20 C30 C60

Minutes per side: 5 10 15 30

PROGRAM STORAGE SPACE IK average
PER SIDE: 5K average

10K average

8

2

1

16

5

3

25

8

H

50

16

9

DATA STORAGE SPACE 1 file

PER SIDE: 5 files

9K
UK

20K
3K

30K
5K

60K
11K

*There is little published material on tape storage. Those wishing to know more might

disassemble their ROMs and examine the result in association with the notes in Chapter

15. A pair of articles in Compute! (G Campbell, Sep. /Oct. '80 and K Falkner, Jan. '81)

has respectively, a method to load Applesoft programs (Apple floating-point BASIC)

into the CBM, and an Apple program to load CBM tapes. The latter is a well-documented

source listing, with error-recovery -better than the PET'. Much of it converts tokens

into the Apple equivalents, and performs other functions not very relevant to the CBM.

•Rabbit' is a 2-K package (available on tape or as a 2-K ROM (A000-A7FF) for fast load/

save of programs only. Its rewrite of the operating system doesn't work with every

recorder. PCW (M Shelley, Jan. '81) has a BASIC 2 routine, with explanation, which is

designed to help recover partly overwritten tapes. (The explanation, however, says

nothing of its actual procedure). "Arrow" is another fast tape system in EPROM.

Programming the PET/CBM -237- 8: Other peripherals

The table gives a guide to the storage capacity to be expected from typical cassette

types.* Thus, a C20 cassette will hold about 5 5-K programs, if they are recorded

consecutively. Each will take about 2 minutes to record or ready because 10 minutes of

playing-time is shared between 5 programs. 10K of data takes a little more than five

minutes to record, and so on. Tapes can be played on ordinary recorders 2 and the

phenomena illustrated in the pair of diagrams on the previous page verified. There is

a short tone separating the two halves of the program and the block recordings, each

of which is recorded twice for security.

LOADing and SAVEing BASIC programs For detail on the workings of these commands,

see Chapter 5. Briefly, the syntax appears like this:

LOAD "NAME",1 or LOAD "NAME", 2 :REM SEARCH FOR PROGRAM CALLED 'NAME' ON

CASSETTE#1 OR CASSETTE #2

LOAD :REM LOADS FIRST PROGRAM ON CASSETTE #1

LOAD "",2 :REM LOADS FIRST PROGRAM ON CASSETTE #2

LOAD "NAME" :REM LOADS 'NAME' FROM CASSETTE ftl

These examples show that the default is device 1. The instruction 'PRESS PLAY ON
TAPE #1' or '#2' always appears on the screen; further display includes 'OK' when the

key is sensed, and 'READY.' or '?FILE NOT FOUND ERROR' or '?LOAD ERROR', de-

pending on the success of the search and load. When the program's header block has

been found, the message 'LOADING' or 'LOADING NAME' also appears on the screen.

If the LOAD is carried out in program mode, most of these messages (i.e. unless there

is an actual error) are suppressed, to keep the screen relatively tidy. And if 'Play'

on the cassette is down before LOAD, no messages at all appear, unless there is some

error. Loading from within a program causes the new program to begin execution once

it has finished loading; the object is to enable programs to chain, keeping their var-

iable values. With small (say 8K) machines, this can be useful, both in extending the

processing capacity, and spreading the tape-reading time out. This may require care

with the relative lengths of programs, and with strings (which must be stored in high

RAM if they are to transfer properly). Function definitions also aren't generally carr-

ied over between programs. (Chapters 2 and 5 explain in detail).

SAVE is equally simple:

SAVE "PROG NAME",

2

:REM SAVES BASIC IN MEMORY ON TAPE #2 AS

'PROG NAME'

SAVE :REM SAVES BASIC IN MEMORY ON #1 WITH NO NAME

Security . To be on the safe side, SAVE important programs twice, either on the same
tape or on a master tape. Note that SAVE always begins the recording process at

the point at which the tape is positioned; there is no searching process as there is

with LOAD. As for LOAD, ?LOAD ERROR occurs if bit 4 of ST is set. Sometimes
errors can occur in the absence of this message, and recommended practice is to print

ST to check that it is zero as it should be. A further refinement is to look at the re-

sults of the error-correcting processes of the operating system: PEEK (192) for tape #1,

or PEEK (193) for tape #2, should also be 0, although values up to and including 4 are

also acceptable. 3 (For BASIC 1, the peek locations are 630 and 631 respectively).

LOADing in program mode does not reset ST, so these tests can be incorporated

in the start of a new program, if a wrong load would cause trouble. Or a machine-code
routine to calculate a hashtotal of the program bytes may be used, similar to that sug-

gested for disk-based programs in Chapter 6. However, these methods are normally

used only when tapes are being tested or head alignment is being checked.

The figures are calculated on the basis that each file has 16 seconds of leader; then

program storage (BASIC or machine-code) takes a further .009 x 2 seconds per byte,

since each byte is recorded twice. Data storage takes place in 191 byte chunks, each

being written twice. The number of blocks required must be rounded up; each takes about

2 seconds for the inter-block gap and 2 x 192 x .009 seconds to record or read. The

total is about 5$ seconds per 191 bytes (which is rather slow). For example, a 5000

byte program file records in 16 + 90 = 106 seconds. 5000 data bytes need 27 blocks,

taking 16 + 27 x 5j = 165 seconds.

2 If a speaker is attached to the machine, as explained in Chapter 9, a pin on the user

port can be attached, like CB2, and the program listened to while loading. Pins 6 and

7, for tape #1 read and tape #2 read (see manual) are the ones.
3 See e.g. D Isaacson, 'Detecting Loading Problems...', in Compute! Jan. '81

Programming the PET/CBM -238- 8: Other peripherals

End-of-tape Marker When a tape is being written (either by SAVE or by OPEN/
PRINT #) a secondary address of 2 - strictly, of a non-zero even number - causes an
'End-of-tape' marker to be written when the SAVE is finished, or the file CLOSEd.
This is quite a simple idea, but can cause some puzzlement. An extra buffer is written
onto tape, exactly like any other buffer except for its very first value. When this tape
is read back, a buffer of this sort is interpreted as the end of the tape, and the
reading process will go no further. The marker need not actually coincide with the
physical end of the tape; a 200-byte program can be saved with an end-of-tape mark,
so if the tape is searched for some other program, reading will go no further than
the marker, and the user will be spared the tedious process of waiting for the rest of

the cassette to read. Thus:

SAVE "IMPORTANT PROGRAM", 1,2
OPEN 7, 1,2, "MAJOR FILE"

respectively save BASIC to tape 1, with end-of-tape marker, as 'IMPORTANT PRO-
GRAM', or rather as the first 16 characters of this name; and open a file, for writing,
to tape 1, called 'MAJOR FILE' , again with end-of-tape.

Writing and reading files: OPEN, PRINT#, INPUT# # CET#, and CLOSE These BASIC
commands (with CMD) are all that is required for tape files. Although these files are
really quite straightforward, they aren't all that easy to get used to; the next page
has a simple demonstration program, which writes data and reads it back, printing
the results at each stage on the screen. Lines 10-60 open a file for writing, without
assigning it a name, and print 256 values to tape. Lines 100-160 read them back, with
GET#, so that each byte is separately read from tape; you will see that carriage ret-
urn characters act as record separators. Lines 200-260 read the same file with INPUT #,

which accepts only a range of ASCII values, and also implicitly regards carriage ret-
urns as separators.

OPEN and CLOSE typically look like this:

OPENl :REM OPEN LOGICAL FILE 1 TO DEVICE 1 FOR READ
OPEN 3,2,1, "DATA" :REM OPEN FILE 3 TO TAPE 2 FOR WRITING; NAME IT 'DATA*
OPEN 1,1 :REM SAME AS 'OPEN 1'

As these examples suggest, the four parameters (logical file, device, secondary add-
ress, and name) have defaults, apart from the compulsory file number of 1-255. The
device defaults to cassette #1, the mode to 0, or read, and the name to spaces. De-
faulting to read is of course intended to avoid accidental overwriting of data.

When a file is closed, its last buffer is written, with an end-of-file zero byte.
This is picked up on readback, setting ST to its end-of-file value. It is probably
better to write some end-of-tape marker, or to include a count of the records being
written, than to rely on ST, the treatment of which varies between ROMs.

Tape files are sequential files, like disk files of type SEQ, and they are subject
to the same rather painful restrictions. These are made worse with tape by the fact
that only one file may be open at once, unless two cassette units are available. The
attempt to OPEN one file for read, and another for write, although legal, leaves the
tape positioned as though only the second command had been issued. Tape data files
are therefore used only to hold data which was input, or which is for printing, or
which can be updated entirely in RAM before rewriting to tape, unless there is a sec-
ond cassette or disk unit.

BASIC 1 (the oldest BASIC version) has two bugs in its data file operating
system: see section 8.4 for corrections.

Storage of machine-code programs and data via the monitor The syntax for save or
load from the monitor is illustrated by these examples:

.S "MACHINE CODE", 01, 0400, 0615

.L "MACHINE CODE", 01

which save the contents of memory from 0400-0614 on tape #1 as 'MACHINE CODE', and
load it again, respectively. Note that .S operates from the start address until its point-
er equals the end address; the last byte does not get written to tape. (An end-of-tape
marker can be forced by poking $D3 = 211 with 2. (BASIC 1: $F0 = 240). As we shall
see (Section 8.4) this process can be carried out from BASIC, without entering the
monitor, when the appropriate locations have been found. Before this we'll examine the
way data is held on tape in rather greater detail, which includes the structure of the
header block and the four types of buffer which the PET/CBM system has.

Programming the PET/CBM -239- 8: Other peripherals

TAPE DEMONSTRATION PROGRAM: Showing how to write to tape, and the differences

between the two methods ('GET and ' INPUT') of reading it back .

REM ##
1 rem # SHORT BASIC TAPE DEMONSTRATION PROGRAM #

2 REM ##
3 REM
4 REM
5 REM MttMMMMMMMtM
6 REM #«#« WRITE TO TAPE ######
7 REM ##############################
8 REM
9 REM
10 OPEN 1,1,1 :REM OPEN THE FIRST TAPE RECORDER FOR WRITING; FILE NUMBER = 1

20 FOR J = TO 255
25 X$ = CHR$(J) :REM THE LOOP GENERATES ALL THE POSSIBLE SINGLE CHARACTERS

26 PRINT J;:REM SHOW ON SCREEN THE ASCII VALUE OF THE CHARACTER BEING WRITTEN.

30 PRINT#1, X$:REM PRINT A SINGLE CHARACTER - AND ALSO A CARRIAGE RETURN

40 NEXT
60 CLOSE 1,1,1
70 PRINT: PRINT "WRITING TO TAPE IS COMPLETE.

71 PRINT: PRINT "PLEASE STOP THE TAPE RECORDER AND REWIND THE TAPE;

72 PRINT: PRINT"THEN PRESS ANY KEY TO CONTINUE.
73 GET X$: IF X$ = "" THEN 73 :REM WAIT FOR ANY KEY TO BE PRESSED

94 REM
95 REM MMtMttMmMtM.ttMtMMMM
96 REM ##### GET SINGLE CHARACTERS FROM TAPE #####

97 rem ***
98 REM
99 REM
100 OPEN 1,1,0 : REM OPEN THE FIRST TAPE RECORDER FOR READING; FILE NUMBER - 1

120 FOR I = TO 520 :REM THE LARGER NUMBER OF 'GETS' HAS TO ALLOW FOR RETURNS

130 GET#1, X$: REM GET A SINGLE CHARACTER FROM TAPE

135 IF X$ <> "" THEN PRINT ASC(X$) ; :REM KLUDGE, BECAUSE ASC("") IS DISALLOWED

136 IF X$= "" THEN PRINT "NULL"; : REM FOR REASON GIVEN BEFORE
140 NEXT
160 CLOSE 1

170 PRINT: PRINT "GETTING SINGLE CHARACTERS FROM TAPE IS COMPLETE.

171 PRINT: PRINT "PLEASE STOP THE TAPE RECORDER AND REWIND THE TAPE;

172 PRINT: PRINT"THEN PRESS ANY KEY TO CONTINUE.
173 GET X$: IF X$ = "" THEN 173 :REM WAIT FOR ANY KEY TO BE PRESSED

194 REM
195 REM *******************************
196 REM ****** INPUT FROM TAPE ******
197 REM *******************************
198 REM
200 OPEN 2,1,0 : REM OPEN THE FIRST TAPE RECORDER FOR READING; FILE NUMBER. = 2

210 FOR I = TO 260 :REM NOTE THAT THE SMALLER NUMBER APPLIES NOW
220 INPUT#2, X$: REM THIS TIME, INPUT A SINGLE CHARACTER FROM TAPE

230 IF X$ <> "" THEN PRINT ASC(X$) ; :REM KLUDGE, BECAUSE ASC("") IS DISALLOWED

240 IF X$= "" THEN PRINT "NULL"; : REM FOR REASON GIVEN BEFORE
250 NEXT
260 CLOSE 2

270 REM ***********
2 71 REM ** END ##
2 72 REM ***********

Headers, cassette buffers, and blocks When a program is saved to tape, or a file is

opened to write to tape, the cassette operating system writes a 'header' to the tape.

This is a single buffer of data, containing the program or file name, two addresses,

and a single byte at the start, which the system identifies as the marker for a header.

Conversely, when a program is loaded, or a file opened for read, the operating system

searches the tape for blocks of the form which declare themselves as headers. The
name is checked, and, if it matches the required name, loaded into RAM (program) or

stopped until GET# or INPUT # asks for data from subsequent buffers. OPEN 1 loads

the first header on tape into the cassette buffer for the (default) device, tape #1;

OPEN 1,2,0, "HELLO" loads HELLO 's header, from cassette #2, into cassette buffer #2.

The RAM buffers are 192 bytes long* but only 191 bytes store data; the first is the

marker. Buffer #1 is $027A-$0339 (634-825); buffer #2 is $033A - $03F9 (826- 1017).

Programming the PET/CBM -240- 8: Other peripherals

These buffers are used only by tape, except in BASIC 4 disk handling with CBM

disks. Consequently, if disks and tape are both in use together, cassette #1 only

should be used; two cassettes and BASIC 4 disks can be used provided the disks are

not used while a file is open to cassette #2. Alternatively, the disks can be controlled

by commands which avoid BASIC 4's special disk commands, concat, dopen, dclose,...

Note also that both buffers are usable to store machine-code, provided that no tape

activity overwrites them. For example, a BASIC routine which pokes machine-code

into either buffer is fine, and can be loaded from tape. But machine-code in buffer #1

can't be saved to tape: the first thing that happens is that the buffer is replaced by

the header details of addresses and name, which will delete any code in the buffer.

Buffer 2, when BASIC 4 disk commands are used, is safe from $0381-$03E8 (897-100Q).

The limits of the buffers are automatically set by ROM routines depending on the

device number. See F667/F656/F695 in BASIC 1/2/4.

Program headers have this structure

17

i.d. start end
$0401 $0411

72 69 76 76 79 32 32 32 32

program nameHELL spaces

This header is for the program 10 print"HELLO" , which was loaded from a tape in

cassette #1. So PEEKing 634-650 or so gives the decimal information listed. (Note that

BASIC 1 startsj at $0400). The first byte is $01 = 1.

Data headers have a marker byte of 4:

122 58 65 84

id.

68
file nameDAT

65 32 32 32 32 3
spacesstart end

$027A $033A

This is the header for a file called 'data', which will load into cassette buffer #1. Note

that the end address is recorded as $033A; in fact, addresses $027A - $0339 only are

used by the file data as it is read from tape.

Data is stored in buffers of this form:

72 69 76 76 79 13

id. CR. Zero

The marker byte is 2. Data is followed by carriage return. (It may also be separated

by commas and colons; see INPUT in Chapter 5 for details). The zero-byte is the

end-of-file marker, written when the file was CLOSEd. On detecting this, ST is set

to 64. However, if ST is ignored, the zero byte is simply read past, and previous

data ('garbage') will be read.

The End-of-tape header is a duplicate of the file's header, but with id=5:

58 3 250 32 32 32 32 32

start end spaces

This example follows an unnamed data file stored in cassette buffer #2.

Programs are stored in a single block of data; ST=4 or ST=8, 'short block' and
long block' errors, happen if a program is read as data. They do not have a marker
value; all the information needed to load them is held in the header.

In addition to CHR$(0), which causes ST=64 to be set, CHR$(10), linefeed, is

treated as a special character: in fact it isn't written (as data) to a tape. There is a

special routine to remove it. The absence of such a routine led to problems with the

disk unit's files. CHR$(29), cursor right, also doesn't get through. The demonstration

program shows these features. As far as INPUT# is concerned,! though not GET#, many
characters are anomalous: CHR$(13), CHR$(32), CHR$(34), CHR$(44), and CHR$(58),

which are Return, space, quote, comma, and colon, for example, give strange effects.

Leading spaces are deleted, for instance.

CMD enables programs to be stored as data; a data file is opened, CMD directs

output to the file, then LIST saves the program as an ASCII file, so yiat PRINT is

stored as 5 bytes. See 'MERGE' (Chapter 5) for details and examples.

Since OPEN 1 loads a program's header, its load address and save address can

be found with PEEK (635) + 256*PEEK(636) and PEEK (637) + 256*PEEK(638). The name

can also be peeked out; so can any machine-code which may have been written into

Programming the PET/CBM -241- 8: Other peripherals

the buffer as a security device.

ROM routines and machine-code programming OPEN, CLOSE, LOAD, and SAVE can be

investigated by disassembling the kernel (the jump table almost at the end of ROM).

Each of these commands has a jump address here. Then, at some later point, after

taking in the command's parameters, a set of branches occurs:

lda $D4 ; DEVICE number This, or something similar, is the routine at

BEQ xxxx; BRANCH IF KEYBOARD which IEEE devices are separated from cass-

CMP #03 ettes. The address after BCC is the start of

BCC xxxx; TAPE routines the tape processing. After this, the two poss-

ible tape device numbers are distinguished in

various ad hoc ways, for example by decrementing and branching if equal to zero,

which finds device #1. The tape timing mechanism is complicated; it involves both VIA
timers, and also resets the interrupt vector from a table; there are three interrupts

(apart from the usual keyboard servicing routine), which deal with writing the header,

writing data, and reading tape respectively. The keyboard processing is cut off, so no

keypress gets through to the keyboard buffer. But the stop key is tested by its own
subroutine, so there is some control over the tape. A method like this is necessary to

maintain accurate timing, since the keyboard processing routine doesn't take a const-

ant time. The instruction DEC $813 is used to disable the normal interrupt, prior to

resetting the interrupt vector; it has the effect of setting bit to 0. $E813 = 59411,

so the same trick can be performed from BASIC: POKE 59411, PEEK(59411)-1 turns off

the interrupt, and with it the keyboard and stop key; it also speeds processing

slightly. The interrupt must be turned on again if the keyboard is to be reactivated.

The table below lists some RAM locations, in the interface chips, which are rel-

evant to tape. A few other locations (ROM and RAM) are included, where they are

closely connected with cassette operating:

CASSETTE:
ROM:

Motor : On

Off

Cassette status flag"

Both motors off

Restore normal IRQ

Key Sense pressed :

CASSETTE #1

BASIC 1 BASIC 2 BASIC 4

CASSETTE #2

BASIC 1 BASIC 2 BASIC 4

Bit 3 of $E813 (59411) off

[Usual value $35 (53)]

Bit 3 of $E813 (59411) on
[Usual value $3D (61)1

$207 (519)

JSR FFED
SYS 65517

SYS 64763

$F9 (249)

JSR FCA6
SYS 64678

JSRFCFB JSR FC7B
SYS 64635

JSR FCEB
SYS 64747
JSRFCCQ
SYS 64704

not pressed

Chrs. in tape buffer

Buffer addresses

Tape read interface

Tape write interface

Bit 4 of $E810 (59408) off

Bit 4 of $E810 (59408) on

$271 (625) $BB (187)

$027A - $0339 (634 - 825)

Bit of $E811 (59409)

Bit 3 of $E840 (59456)

Bit 3 of $E840 (59456) off

[U sual value $CF (207)]

Bit 3 of $E840 (59456) on
[Usual value $DF (223)]

$208 (520) $FA (250)

same

same

Bit 5 of $E810 (59408) off

Bit 5 of $E810 (59408) on

$272 (626) $BC (188)

$033A - $03F9 (826 - 1017)

Bit 3 of $E84D (59469)

same

*If non-zero, the contents of this location signal that a cassette key is pressed

2 Reverse, Fast Forward, or Play

The tape motor(s) can be turned on and off from within BASIC with the help of data

from this chart. A complicating factor is the IRQ service routine (E685/E62E/E455),

which under normal circumstances turns off either or both motors if it finds them on.

(The sequence LDA E810/ ASL/ ASL/ ASL tests the cassette sense line for both cass-

ettes: if the carry flag is set, a button is not pressed on cassette #2, and if the min-

us flag is set, a button is not pressed on cassette #1. In either case the motor is

turned off, provided the cassette status flag (asterisked in chart) is zero). To avoid

the motor being turned off by the usual interrupt processing, poke a non-zero value

into the status flag location for the cassette.

Programming the PET/CBM -242- 8: Other peripherals

OPEN, CLOSE, LOAD, and SAVE can of course all be performed from machine-code.

To see how the inbuilt routines might be used, let's consider some published examples

of unorthodox use of the cassettes:

(i) A program can be loaded into addresses different from those on the header,

by first loading the header alone, then changing its pointers and loading the remaind-

er of the program. It could, for example, be watched loading into the screen; or a

machine-code routine, saved on a machine with a lot of memory, might be loaded into

a smaller machine in this way.
(ii) 'Append' of tape programs or subroutines can be achieved by loading two

programs so that the second starts where the first ends.
(ili) A program can be saved along with data in its header. Normally, this can't

be done, since SAVE clears the buffer, filling it with spaces, before putting the start

and end addresses and program name in. If a program is saved with machine-code in

its header, this acts as an anti-copying device up to a point, since SAVE in the usual

way will erase this buffer, so the copied program won't run if the buffer's routine is

essential to it.

(iv) Another anti-copying device is to change the header pointers so a program
loads into the keyboard buffer. It can thus be made to RUN immediately on LOADing.
Provided the stop key is disabled, the program is made relatively difficult to enter.

(v) Some programs for BASIC 1 were made 'uncopyable' by setting the header

pointers to start at an address below the start of BASIC, causing SAVE not to work.

'Microchess' used such a principle; it also included its own save routine, so that an

appropriate SYS call copied the program.

The table which follows should provide a useful map for those readers who wish to ex-

plore tape ROM . Some significant ROM routines and RAM locations concerned with load-

ing and saving programs from/ to tape are listed. Roughly speaking, the lower-level

subroutines are further toward the end of ROM, so the trickiest programs must use

routines with higher ROM addresses.
BASIC 1 BASIC 2 BASIC 4FUNCTION/ LOCATION

Tape LOAD (assumes parameters are set)

Tape SAVE (assumes parameters are set)

F3A5
F6F6

Save (i.e. write) header (LDA #1) or e-o-t (LDA #5)

Save program or own header etc.*

F5AE
F8C1

Load (i.e. read) next header
Load named header
Load rest of program
Load any data*

Device number (1 or 2, stored as $01 or $02)

Length of name (0 means no name assigned)

Start address of name, if there is one

Start address for load/ save
End address -1 for load /save

Load/ verify flag (0 =load, 1 = verify)

Secondary address (0,1, or 2)

Delay before writing ^^

F5AE
F495
F3C3
F88A

Fl
EE
(F9)
(F7)
(E5)
020B
F0
0279

F395
F703
F5DA
F88E
F5A6
F494
F3B9
F85E

F3D4
F742
F619
F8D3
F5E5
F4D3
F3F8
F8A3

D4
Dl
(DA)
(FB)
(C9)
9D
D3
C3

*Start and end addresses, and other parameters, need to be set.

Examples , (i) Loading machine-code or BASIC into screen RAM: The easiest de-

mon stration
-
is
-
to load the header, change its pointers, and load 1 or 2 K of the pro-

gram. OPEN 1 reads the first header on tape #1. Locations $027A onwards (i.e.

634 onwards - try FOR J = 634 TO 654: PRINT PEEK(J);: NEXT for i.d. and addresses

and ASCII values of the name) hold the header, so we poke the start address with

$8000 and the end address with $8400 or $8800. POKE 635,0: POKE 636,128: POKE 637,0:

POKE 638,132 or 136 works for any ROM. Then calling F3C3/F3B9/F3F8 completes the

load, after taking these addresses form the buffer. So (depending on the ROM)
SYS 62403/ 62393/ 62456 completes the load into screen RAM.

(ii) Saving machine-code from BASIC. RAM can be saved to tape as a named
program file without entering the monitor. All that's needed is to poke all the relevant

parameters into place, and call a routine which writes to tape. This is not entirely

straightforward, because the X-register needs to be loaded with zero before SAVE is

Programming the PET/CBM -243- 8: Other peripherals

called , and this can only be done in machine-code . If we save this machine code at the

start of BASIC, we have a routine like this:

REM ""J lv7" SYS 1031 CALLS: LDX #1 DEX JMP $F6F6 or $F703 or $F742

1 REM BYTES IN 1031-1036 ARE 162,1,202,76, AND THE 2 JUMP BYTES (LOW-HIGH)

10000 REM * SUBROUTINE TO SAVE MEMORY IMAGE TO TAPE OR DISK FROM BASIC *

10010 REM * LIMITS ARE $0400-$8000, AS CASSETTE BUFFERS ARE USED, AND *

10020 REM * MEMORY ABOVE $8000 ISN'T SAVED ON TAPE. *

10030 REM * INPUTS . B=B0TT0M OF MEMORY TO BE SAVED, T=TOP+l; N$=NAME; *

10040 REM *

10050 POKE 251, B AND 255: POKE 252.B/256: REM BOTTOM ADDRESS INTO ($FB)

10060 POKE 201 ,T AND 255: POKE 202.T/256: REM TOP ADDRESS INTO (C9)

10070 FOR J = TO LEN(N$)-1: POKE 826+J, ASC(MID$(N$, J+l)) : NEXT: REM POKE NAME

INTO CASSETTE BUFFER #2

10080 POKE 212,1: POKE 209,LEN(N$): REM DEVICE IN D4; NAME'S LENGTH IN Dl

10090 POKE 218,58: POKE 219,3: REM 033A = (DA) = START OF NAME

10100 SYS 1031: RETURN : REM CALL SAVE ROUTINE

Note than line has been used to store machine-code. Everything after REM is ignored

so this is perfectly acceptable. However, there must be no zero in the line, or it will

be treated as an end-of-line marker and generate a spurious line if the program is

edited; hence the use of LDX #1/ DEX in place of LDX #0. The bytes remain intact

unless line is edited, in which case some may be changed - peek them to check.

Quite long machine-code routines can be stored like this. Note that BASIC 1 has a

different set of zero-page addresses, which can be found in the table on the previous

page.

8.3 Miscellaneous: fast forward winding, directories of tapes, BASIC 1 bugs, security

Timing fast-forward tape movement CBM cassettes have no fast-seek facilities of the

sort which are sometimes met with, for example in the 'stringy floppy' with loops of

tape, or certain of Sharp's machines, which store a marker on track 2 of the tape, to

give advance warning of the presence of a header. This perhaps makes no great diff-

erence; tape is inevitably clumsy compared with disk. Nevertheless it is possible to

say a few useful things about fast-forwarding tape.*
In fast -forward mode, we can assume that the drive motor is rotating at a fixed

speed, so - with apologies to those who don't know calculus - after time t seconds,

the distance (ds) the tape moves in interval dt is proportional to the circumference of

tape on the take-up spool x dt. This circumference = 2*pi*(radius of spool + k*t),

where k is a constant related to the speed of the motor and the tape thickness.

So s = kijk2 + k3*t dt = kjt + k 2t
2

. In other words, we can expect, or at least

hope, that a simple quadratic expression relates fast-forward time to distance along the

tape.2 The diagram illustrates the situation. In fact, this model does approach reality

with sufficient precision to be useful. Note that the tape is predicted to advance faster

towards the end, which of course it does.

,, / Fast-forward
Distance /
along tape / ^^_____Jiormal

^^L-— Time

The point of this type of relationship is this: suppose we have a program on tape

which is (say) 5 minutes' playing-time from the start. Can we estimate the fast-forward

equivalent time? If we have a graph like the one sketched above, we can simply read

off an estimated time; in view of the latitude allowed by leaders, this is usually good
enough to find the program in a reasonably cost-effective way.

Articles (empirical rather than theoretical) include N Thomas, IPUG Jan.'80 and Sept.

'80 and W McCracken, CPUCN #7. 'Micro' has published articles on this topic.
2 Readers who have followed me so far will be able to check that:

ds = circumference * revs. per sec. * dt, so that

ds=2*pi* (radius of spool + revs. per sec.*thickness*t) * revs. per sec. * dt

So Fast-forward distance in t f sees. = 2*pi*rps* (radius*t + rps*th*ta /2)

.

Distance in normal operation = 1 7/8 * tQ inches. So the ratio of fast-forward to

normal time required to cover some fixed distance of tape is implicit in

1 7/8 * t„ = 2*pi*rps*r*tf + 2*pi*rps2 *th*t2 /2. The constants can be guessed or

measured to provide a quadratic equation; typically, to the first term, t f=.008 * tn .

Programming the PET /CBM -244- 8: Other peripherals

There are two ways in which this information can be applied. We can design a tape

system so that a number of equal spaces are allocated on tape; in this way, we can

fast-forward to any program, either to write or read it, fairly easily. Alternatively, we
can write a directory program which reads any tape, printing the times taken to find

each program, and perhaps predicting the corresponding fast-forward time. (The pro-

grams of McCracken and Thomas respectively illustrate these approaches). For a

precise job, it's necessary to write test data to tape, then read it back after a timed

fast-forward. A program to do this is probably of too limited interest to be included

here. How can fast-forward timing be measured? We can turn off the motor after a

predetermined time like this:

10 INPUT "NUMBER OF SECONDS FAST FORWARD" ;S

20 PRINT "PRESS FAST FORWARD KEY"

30 IF PEEK (59411) <> 53 GOTO 30 :REM AWAIT KEYPRESS

40 T = 60*S + TI

50 IF TKT GOTO 50 :REM TIME LOOP FOR 60*S JIFFIES

60 POKE 249,1: POKE 59411,61 :REM STOP MOTOR (USES STATUS FLAG)

and in this way we can fast-forward to any point on tape.

Tape directories It is easy, and useful, to write a program to list the contents of a

tape. It is true, however, that such a program will be slow, and isn't really a substit-

ute for notetaking on the contents of tapes. The program below repeatedly loads head-
ers, reporting "the start /end addresses found, printing the name of the file, and rep-

orting the time taken to read the tape at normal speed.

10 T0=TI: OPEN 1: T1=TI : CLOSE 1 :REM READS HEADER; T1-T0 IS TIME TAKEN

20 PRINT "NAME :

" ;

:

30 FOR J = 639 TO 654: PRINT CHR$(PEEK(J)) ; : NEXT : PRINT: REM 16 CHARACTERS
40 PRINT "START ADDRESS"; PEEK(635) + 256*PEEK(636)

50 PRINT " END ADDRESS"; PEEK(637) + 256*PEEK(638)

60 T = T + (Tl-T0)/60
70 PRINT "NORMAL SEARCH TIME"; T; "SECONDS"

80 GOTO 10 :REM CAN INCLUDE END-0F-TAPE TEST, PEEK (634) =5

This simple program can be enlarged to report whether a file holds a program or data ,

for which PEEK(634) is 1 and 2 respectively. Hex addresses, likely BASIC programs,
estimated fast-forward times, and the contents of headers which have other than
spaces after the program name, are examples of the sort of thing which may be of use.

Bugs in BASIC 1's tape handling There are two serious bugs in the data file operat-

ion of BASIC 1, not the program loading and saving, which can be corrected by soft-

ware kludges, (i) A write file opened from cold doesn't set the pointers to cassette

buffer #1 or #2 as it should; poke them into (F3) with POKE 243,122: POKE 244,2

($027A for cassette #1) or poke 243,58: POKE 244,3 ($033A for cassette #2).

(ii) The interblock gap doesn't allow for motor start-up: the kludge
for this is to start the motor before the buffer is full, e.g.

40 PRINT#1,Z$:REM WRITES DATA TO TAPE FILE #1 ON CASSETTE 1

50 IF PEEK (625) >160 THEN POKE 59411,61 :REM MOTOR ON

The value of the parameter in line 50 depends on the length of the strings being
written to tape, &nd the frequency with which they are written. The maximum value in

625 is 192; allow enough time for the motor to run about l/3rd second.

Miscellaneous (i) The '<' key . There is a programming error in BASICS 1 and 2 which
makes this key appear to relate to cassette #1. (See locations $E6AB ff. in BASIC 2,

for example). Because of this, if a key is sensed from cassette #1, '<' repeats if it is

held down if for example the tape holds a recording. Sometimes '<' appears to

become inactive; poking E811 (59409) so bit 7 is low may help, e.g. POKE 59409, PEEK

(59409) AND 127.
(ii) SYS 62485/ 62493/ 62556 print the last-loaded or last read name to

the screen, both for cassette #1 and cassette #2. •

(iii) Security . Tapes are less copyproofable than disks, because ordin-

ary audio copying can be used (and is, for commercial duplication of programs on
tape). An interesting routine ('Auto-Run-Save') for BASIC 1 only by W Kolbe

Programming the PET/CBM -245- 8: Other peripherals

in 'Micro' (Sept. '80) enables a BASIC program to be saved with a modified header so

that it always runs immediately on being loaded. This, combined with disabling of the

Stop key, provides considerable security against LISTing and amending of BASIC. The
program ('Auto Run Saver') offers a further possibility of modifying the interrupt to

test for direct mode at every interrupt, and calling the reset routine if direct mode is

detected. This makes automatic running very secure against LISTing. (Something like:

LDA $78/ CMP #02/ BEQ RESET/ JMP IRQ inserted before the normal interrupt detects imm-

ediate mode; in BASIC 1 the equivalent is LDA $CA/BEQ RESET/JMP IRQ). Unfortunate-

ly, while this process is relatively easy for BASIC 1, BASICS 2 and 4 have been re-

organised in a way which makes auto running difficult to achieve. (It can be done

with disks- see Chapter 6). This diagram shows why:

KEYBD. BUFFER PROG. MAIN PROGRAMHEADER (192 BYTES)

1
Prog. loads

NAME MACHINE-CODE
from | to

SYS655[RETN]
BASIC or MACHINE-CODE

with e.g. SYS 1037

634 639 655
The program is saved in three parts, not the usual two with a header and program.

The diagram is intended to be read from left to right; this is the order in which the

three components are saved to tape and read back. The header has a start and end

address pointing to $020D to about $0218; these 12 bytes include the keyboard buffer

($020F- $0218) and the location holding the number of characters in the buffer. When
the header loads (into cassette #1 only), the short following program is loaded and

direct mode is entered; but since the program deliberately fills the keyboard buffer,

the operating system inputs the buffers contents, which are SYS 656 [Return]. The
header has machine-code saved with it; this is called by the SYS command, and has

two functions: (i) to put Run [Return] in the keyboard buffer, (ii) to load the next

(i.e. ordinary BASIC) program using the header already in cassette buffer #1. So the

program is loaded and immediately RUN.
BASICS 2 and 4 have the keyboard buffer in the same place as BASIC 1, but the

location containing its contents has been moved to the zero-page. This means that the

intermediate pseudo-program must load into a region which crosses the stack. Since

the tape loading routine uses the stack, this is difficult or perhaps impossible to arr-

ange. The only alternative seems to be to load a one-byte 'program' into the IRQ vec-

tor, ($90), in the zero-page, to temporarily deflect the interrupt into machine-code in

cassette-buffer #1. This seems impossible with BASIC 2, because the interrupt points

to the wrong part of memory, but it should be possible with BASIC 4.

To save a header and program with machine-code included in buffer #1 and with

any load address and end address, use this routine, which can be called from BASIC
or machine-code:

This routine writes a header, including

program name and machine-code, using
details assumed to have been assembled
directly in cassette buffer #1; other
locations of course are possible. It

also writes the program which the

header will load; a second program, to

be loaded by the header's machine
code, can be written by entering a

second set of start /end addresses and
writing the bytes without a header.

; DEVICE #1 = TAPE #1

POINTER TO START OF
NAME, ASSUMED PRESENT
IN BUFFER #1

LENGTH OF 'NAME' , I

INCLUDING M/CODE
E.

START LDA #01
STA $D4
LDA #7F
STA $DA
LDA #02
STA $DB

LDA #AA
STA $D1
LDA STLO
STA $FB ;L0AD ADDRESS TO BE
LDA STHI ; STORED IN HEADER
STA $FC
LDA ENDLO
STA $C9 ; END ADDRESS TO BE

LDA ENDHI; STORED IN HEADER
STA $CA
JSR $F656;SET TAPE #1 BUFFER [BASIC 4:$F695]
JSR $F847; AWAIT PLAY & RECORD [BASIC 4:$F88C]
LDA #01 ; HEADER TYPE = 1

JSR $F5DA;WRITE HEADER [BASIC 4:$F619]

LDPRG STORE POINTER TO START OF PROGRAM
OR PSEUDO-PROGRAM IN ($FB)

STORE POINTER TO END OF PROGRAM

OR PSEUDO-PROGRAM IN ($C9)

JMP $F71B; WRITE WITHOUT HEADER [BASIC 4:$F75A]

Programming the PET/CBM -246- 8: Other peripherals

8.4 Printers

Printers in general Printers serve several purposes: they enable permanent records

to be kept on paper, for example of program 'listings', as they are invariably called.

They enable data to be output in a more-or-less readable form, as 'printout'. This may
include both finished output and audit trails. Finally, they can produce documents with

features which mimic typed or printed output, for use in word processing, letter-writ-

ing, and so on. In principle, they are simple: often they are receive-only devices,

which convert a limited range of bytes into characters. In practice there are several

complications making this aim difficult to achieve. Some printers, usually the more

expensive daisy-wheel type, are available with 'KSR' (keyboard send and receive)

features, enabling messages typed at the printer to be received by the computer, but

we need not consider this aspect in detail, since it is unlikely to be useful except for

configurations of several remote computers. Let's first look at the current methods

by which the actual impression is made on paper, before considering the questions of

interfacing and of firmware.
In approximate order of expense, these are the printer types now available:

(i) Teletypes. These provide a paper terminal which can both send and receive

data to a computer. They were widely used in computer installations, but have been
largely superseded by VDUs. They are rather large, heavy, and noisy, and have
upper-case text only; however, second-hand models can be got very cheaply. The
interface is RS232.

(ii) Thermal and spark printers . Printers of these types require specially pre-

pared paper, sensitive to heat in one case, and conductive in the other. Characters

are made up of dots on the dot matrix principle. Thermal printers have a head con-

taining elements which rapidly vary in temperature, causing dots to be plotted as the

head moves across its paper. Spark printers use aluminised paper; a series of small

high-voltage bursts burns dark marks on the paper. Printers like this are silent, but

the paper is expensive, and usually available in narrow rolls only.

(iii) Modified electric typewriters . Reconditioned golfball typewriters with an

interface to accept computer data have had some popularity before prices of dot-matrix

printers dropped to competitive levels. They produce good-quality text, but the speed

is limited by mechanical components driving the golfball.

(iv) Dot-matrix printers . These are by far the most widely-used printers with

microcomputers. The print-head, made by a specialist manufacturer, has typically 7-9
wires arranged vertically, which are driven into contact with the ribbon and paper by
solenoids, each wire having its own solenoid. The 4022 for example has 8 wires; as the

head scans the paper, any of the 256 combinations of wires printing or not printing

can be triggered, and characters are built from these fundamental dot patterns. Each

4022 character is 6 dots wide, so six separate sets of impacts make a character, unless

some of the 'impacts' are of a blank column of dots. So, for example, a printer working
at the rate of 100 characters per second, with an 8 by 6 character structure, makes
600 sets of impacts per second maximum. Printing at this maximum rate may cause
problems of overheating; 4022 users are warned in the manual not to print much text

in reverse characters.
(v) Daisywheel printers . A 'daisywheel' has 100 or so spokes (or 'petals'!)

arranged radially around a thicker hub, each spoke terminating in a raised, reversed
character. The wheels are made of light metal or plastic, designed with low rotational

inertia so that they can be spun fast. Fortunately they are largely standardised, so

that (for example) Qume and Diablo wheels run on each others' machines. Some wheels

(e.g. Ricoh) have upper and lower case on the same spoke. Speeds of 50 or 60 ch.p.s.

are quite common. The print quality is good. As is the case with golfballs, the common
letters (e,t,a,i,o,n,s) are clustered near each other, to cut down on time spent mov-
ing the correct letter into place. 'Spinwriter' is similar, but uses a 'thimble'.

Features of printers A few words on stationery, ribbons, switch-selectable printer

features, and maintenance are necessary here.

(i) Paper drive mechanisms and stationery . Computer printers normally use

continuous fan-fold stationery driven by sprocketed rollers. 'Pinfeed' or 'sprocket

feed' usually implies that the roller has sprockets of a fixed separation; 'tractor feed'

implies variable width, the 'tractors' being able to slide along the roller, and, in some
designs, spreading the load over several perforations with a caterpillar-track arrange-

ment. 'Pinchfeed' permits some printers to use unperforated stationery, e.g telex

paper. Single sheets can be fed, one at a time, using 'cut sheet feeders'; these are

Programming the PET/CBM -247- 8: Other peripherals

optional extras (usually for daisywheel printers) and are expensive. Computer station-

ery can of course be obtained in multi-thickness form; printers vary in their capacity

to handle copies.
(ii) Ribbons . Many printers have cartridge ribbons; the cloth type is arranged

as an endless loop , held within the cartridge either loose , packed in a random pattern

so the direction is constant. Also the typewriter-style spools which reverse direction

are sometimes met with; these are cheaper than cartridges, but there is a risk of dam-

age with some types of ribbon, for example through clogging the print head (with the

wrong type of ink) or bending the wires (with eyelets in the ribbon). Carbon or film

ribbons are used for high quality impressions with daisywheel and golfball printers.

Multi-strike ribbons are more economical and give a slightly inferior appearance. Such

ribbons offer once-only use, and it may be important to ascertain how much work a

single ribbon can produce, since otherwise a program run may require more attention

than ought to be necessary, at a greater cost.

(iii) Features . External switches on printers - apart from on /off! - may include

paper control (paper feed, set top-of-form, move to top-of-form) and /or automatic

linefeed on /off, at the simpler levels, up to a full range of facilities, controlling baud

rate, parity, horizontal and vertical spacing, margins, tabs, etc. Internal switches,

accessible only by removing the lid, may be used to set characteristics like the baud

rate, the type of interface, and (e.g. with Centronics printers) the type font suited

to national needs, permitting currency symbols, diacritical marks, and special charac-

ters (Dutch >j, German B) to be printed. Many printers have some form of self-check

or 'internal diagnostic' routine; Commodore's smaller printers for example have two

channels available on reset, so switching on with the paper feed button pressed causes

a jump to be made to a subroutine which repeatedly prints out the character-set.

The speed of a printer is usually quoted in characters per second or lines per

minute. Neither measure is completely satisfactory. A 50 ch.p.s. daisywheel printer

may produce a fairly sparsely-filled document more rapidly than a matrix printer rated

at twice the speed, by skipping blank spaces instead of covering them at the same

speed as the text. A bidirectional matrix printer is likely to be faster than a similarly

rated unidirectional printer, because it need not waste time returning to the leftmost

margin after every line. A printer with a large buffer may take less computer time to

print, since the buffer (RAM held within the printer) may be able to accept larger

batches of data for printing before spending time handshaking, waiting to take in the

next batch. Some 'intelligent' printers move to the next line when they detect that the

rest of a line is blank; 'Lines per minute' is a useful measure only when this doesn't

happen, and even then there may be variability if the lines' total length can be con-

trolled .

Maintenance is generally a dealer function; some machines may have to be deliv-

ered by the user, particularly if they are cheap, even if there is a maintenance

contract. It is worthwhile estimating the probable amount of use of a machine; if (say)

an average page has 60 lines of 50 characters, a box of 1000 fanfolded sheets takes

3 million characters.
Printer features which are relevant to operating convenience include noise, port-

ability, ease of paper loading, and, with some models, the choice between a free-

standing machine or the desk-top equivalent.

8.5 Commodore and CBM-plug-compatible printers

2000, 3000 and 4000 series These printers are Commodore's standard low-cost range.

The 2022 and 2023 are, or were, 80 column printers, the first having 'tractor feed',

i.e. sprocket drives of adjustable separation and the second, cheaper, model pinch feed.

These were renamed the 3022 and 3023 to coincide with the 3000 series CBM computers.

The 4022, with tractor feed, superseded these at about the start of 1981. There is no

4023. It differs from its predecessors, and in fact is closely related to the Epson

MX-70. The firmware in these printers has not been completely successful. Two sets

of ROMs (set 3 and set 4) have been issued, and others have been tested but not

issued. Apart from minor bugs, the principal error is in the handling of lower-case

lettering, which has to be done in a way not compatible with output to the screen or

to other printers. Future ROM issues will have to be designed on the basis of the

difficult decision of making the printers easy to use, but incompatible with existing

CBM printer software, or to retain the previous weaknesses.

Programming the PET/CBM -248- 8: Other peripherals

The 4022 dot-matrix printer This printer is wired as IEEE device #4. It is controlled

by a 6502. A red LED gives evidence that a channel is open to receive data. The dot

matrix is 8 by 6; most characters are printed within a 7 by 6 rectangle, with descend-

ers and the lowest line of reversed characters occupying the bottom row. The printer

is controlled in two ways: firstly, a range of secondary addresses enables semi-perm-

anent aspects of a printout (lines per page, spacing between lines etc.) to be set; and

characters similar to the screen-editing VDU characters enable the second set ot more

temporary features to be controlled. These include reversed characters and multiple

length, 'enhanced' , characters. The 4022 has 11 secondary addresses; earlier models

had 7. We shall first look at these secondary addresses. I have assumed that a chann

el to the printer has been opened with open 4,4. Other channels, which assign a file

number to a secondary address, also need to be opened, and usually it is easiest to

number the file equal to the secondary address, for example open 6,4,6. A few points

are worth noting: print# has to be used as a rule, because CMD followed by PRINT

sometimes fails to work (e.g. after gosub). Some parameters have to be entered as

CHR$() although this is not mentioned in the manual. If a command seems not to be

working, try the combinations of (say) "60", CHR$(60), and 60 until you find the

correct formulation. And the special features of output formatting and of user-defin-

ition of a character only apply to a single format string and a single character at one

time So a table, in which each line resembles the previous line's layout, is straight-

forward to print; whereas interleaved lines of different format require that the format

string be redefined within the printer. Finally, beware of plugging the printer into

the PET/CBM with its plug upside-down, which may be possible if the polarising pins

in the plug work loose; this will damage the computer.

4022
Secondary address Function

7

8

9

10

Print 'as received'

Print in format

Define format

Set lines per page

Enable diagnostics

Define character

Set vertical spacing

Upper case
Lower case (in part)

Disable diagnostics

Reset

Notes

This is the default option (no secondary address]

Tab, Clear, etc. don't work; hangs on back-

space, CHR$(20).
Prints according to the format last printed to

secondary address #2. Overflow (or other error

resets secondary address to 0, fills the field

with warning asterisks, and prints out the type

of error if this is enabled by sec. address #4.

A single format can be defined at one time in

COBOL-like form, e.g. S$$$$9.99 causes 12.345

printed to secondary address 1 to appear as:-

+ $12.34
This sets the number of lines which are printed

before six blank lines automatically print (to

move past the perforations). CHR$(147) turns on

paging; CHR$(19) turns it off.

OPEN40,4,4:PRINT#40:CLOSE40 causes diagnostic

messages to appear on errors. There are six

messages, consisting of a single letter prefixed

by '*PE:'. ('Printer Error' presumably).

Define own CHR$(254). One only at a time.

Can't be changed during a line; this gives a

•Terminator error'. Can print several on one line

using CHR$(14l) as Return without linefeed.

OPEN 6,4,6: PRINT#6,CHR$(N) : CLOSE 6 sets the

line separation to 144/N inches. So CHR$(18)

prints 8 lines /inch, keeping the characters

their usual height, so there is no separation.

OPEN 7,4,7: PRINT#7: CLOSE 7

OPEN 8,4,8: PRINT#8: CLOSE 8

OPEN 9,4,9: PRINT#9: CLOSE 9

Reset all the semi-permanent features set via the

secondary address to the values obtaining on

switch-on, with OPEN 10,4,10:PRINT#10:CLQSE 10.

Programming the PET /CBM -249- 8: Other peripherals

The most significant aspect of printing in formats is that numbers are easier to deal

with than would otherwise be the case. 23 and 1234.567 can be converted instantly to

23.00 and 1234.56 with these printers. Unfortunately the formatting process deals only

in whole lines, so it often happens that text is mixed with numerals, and text is often

easy to align without the need for a format definition. In other words, when printing

a mixed output of text and numerals, the textual part may well be more tiresome to

arrange in formatted form than it would have been to print out directly. The full

details of formatting, with examples, would take too much space here, but the short

example which follows illustrates how a literal, a string, and a numeral can all be

simultaneously formatted.
The object is to print a single line, given a name N$ and a sum of money D (in

dollars - the only currency symbol available when formatting). When a set of lines are

printed, they are to appear like this:

PAY EHROL T. ZINZINHEIMER $45.67

PAY J. DIBBINS $7.50

that is, the word 'PAY' followed by the left-justified name N$ and finally D, formatted

to 2 decimal places and preceded by '$'. The following program rounds D to the nearest

half-cent as well:

100 OPEN 1,4,1: OPEN 2,4,2
110 PRINT#2,"[RVS]P[RVS]A[RVS]Y AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA $$$$$.99"

120 INPUT N$,D: REM NAME AND AMOUNT

130 PRINT#1,N$ CHR$(29) D+.0045
140 GOTO 120 ,

Line 120 causes a format to be stored in the printer's RAM. Note that a reverse char-

acter signals that the next character (only) is to be treated as a literal: hence line

130 prints 'PAY' immediately, followed by N$ left-justified into the alphabetic field. The

cursor-right or 'skip', CHR$(29), forces an end to the field, so the numeral with the

leading '$' and numerals after the decimal point prints next. The maximum value is

9999.99 in the example; if secondary address #4 is active, D larger than this will gen-

erate a brief and modest error-message, which the programmer can pretend has some

esoteric function. Even if D is zero, the decimal point appears: $.00 and this keeps

the appearance tidy. There is no easy way to retain a leading zero for values less than

1; .55 is easier to print than 0.55, although many people prefer this latter form.

Error messages . The 4022 has 6 diagnostic error messages, which are printed if

secondary address #4 has been enabled. These are:

PE:C ... Secondary address exceeds 10.

PE:E ... Exponent error; number in scientific format requires E+xx.

PE:F ... Format sent to secondary address #2 was invalid.

PE:L ... Lines per page, sent to secondary address #3, were out of range.

PE:M ... Mismatch - alphabetic data sent to secondary address #1 numeric field

.

PE:T ... Secondary address changed before Return or Linefeed send.

4022 printer control characters . These characters are printed to the channel

with secondary address zero, either in quotes or in the form CHR$(x). They are exact-

ly analogous to screen editing characters, such as cursor right or Clear, which may be

'printed' to the screen. In fact some screen editing characters are also printer control

characters, affecting the printer differently from the screen. Because of this inconsist-

ency, it it usually not possible to print the same output either to the screen or the

printer , unless all characters are upper-case.

n chr$(n) chr$(n + 128)

1 chr$(1) Enhanced printing chr$(129) [or Return] Unenhanced printing

10 chr$(10) Linefeed

13 chr$(13) Carriage return chr$(141) Carriage return without linefeed

17 chr$(17) Lower case chr$(145) Upper case

18 chr$(18) Reverse printing chr$(146) Reverse off

19 chr$(19) Top of form chr$(W) Set top of form

29 chr$(29) Skip space
32 chr$(32) Space chr$(160) Shift-space; not a leading space

34 chr$(34) Quote
chr$(254) User-defined special character

Programming the PET/CBM -250- 8: Other peripherals

Enhanced Printing Most dot-matrix printers have this feature, which is quite easy to

implement (in contrast to daisywheel printers, for example, where the best approxim-

ation to this facility is to overprint like this). In Commodore's version, CHR$(1) causes

subsequent characters to be printed with an additional column of dots; carriage return

or CHR$(129) turns off this feature. This is not a doubling of character width for each

CHR$(1), as it is often described. The diagram schematically shows what happens.

Presumably, the printer's RAM is loaded with a constant, which is decremented, acting

as a counter for the number of columns in each character.

UNENHANCED

• •••••
•• « • *

•

WITH CHR$(1) WITH CHR$(1)CHR$(1) WITH CHR$(1)CHR$(1)CHR$(1)

Remember that enhanced characters will fill a line with fewer characters than are

required with normal-width characters.

User-defined character, chr$(254) The single programmable character available to

users of this printer is defined by printing a six-character string into a file opened to

secondary address #5. Subsequently, print#4,CHR$(254) prints out the character, and

print#4,chr$(1)CHR$(254) prints it double width, and so on. The character apparently

is confined to 7 by 6 dots, so that descenders are impossible to get. The columns of

dots correspond straightforwardly to the bit patterns:

So the pattern of dots illustrated is printed by
the String CHR$(2)+CHR$(65)+CHR$(73)+CHR$(90)+
chr$(9)+chr$(0). The example program below

defines a character (made up of CHR$(65)s),
puts this in secondary address #5, and prints

the result as CHR$(254). This gives a rather

unexciting pair of vertical lines, one row at the

64 (top) level, the other representing 1.

64 * • *

32

16 f •

8 • • •

4

2 m •

1 • • •

TOTAL: 2 65 73 90 9

SPECIAL PRINTER CHRRACTER-

lPi riPEN 4,4 s REM PRINTER CHANNEL
20 OPEN 5,4,5 : REM SPECIAL CHANNEL TO PRINTER., INTO WHICH „ .

30 PRINT#5, "AAAAAA" : REM . . WE PRINT A S-CHARACTER STRING
48 PRINT#4., CHR*<254>: REM PRINT THE SPECIAL CHARACTER
50 CLOSE 4: CLOSE 5

In the U.K., the '£' sign is useful. One example is CHR$(l)+CHR$(l3)+"?MM!" or you
may prefer CHR$(9)+"?IIA!". Try these strings in line 30 of the demonstration pro-

gram, replacing "AAAAAA", to get the feel of the procedure.

Lower-case printing This is a problem. The designers of the system don't seem to

have realised the considerable similarities between 'lower-case' and 'graphics' modes on

the screen (most characters, except alphabetics, remain the same in each mode). In

place of a simple switch, similar to that caused by POKE 59468 with 12 or 14, and per-

haps an optional set of routines to take account of BASIC l's oddities, each lower-case

line has to be prefaced by a cursor down character. Without the cursor-down, even in

lower-case mode the printer produces this sort of thing:

ET UP STOCK FILE
kSAKSQU

ADD NEW RECORDS ONTO END OF FILE

So that in order to produce a printout like this extract:

Hazard:
Status: #

Tax: 4
Origin: B
Spare 1

:

Foreign: Q
Distribution: M

Spare2 >

The following print statements are necessary:

lee© print" r-aa -r—• h>
1085 PRINT" IS ALES:^ ! fl"J*<12>"DIS I AX j "J*a3>"Dia -OREIGN: H J*C14>'

Dl
1098 PRINT" IB lAZARDs "J*<15V'Dia rRIGIN: " J*<16>"3I»-ISTRIBUTI0N: "J*<17>"31

1095 PRINT" IB STATUS t ".J*<18>"3|W •PflREi s "J*<19>"3IH OPRRE2: "J#<20>"3I

1108 PRINT" •

1185 PRINT"H OUPPLIER CODE: "J*<21>"!

PflREi: "J*<19>"3I

Programming the PET /CBM -251- 8: Other peripherals

The machine-code routine which follows is a lower-case LISTer. It is written for BAS-
IC 2 ROMs. The alternatives are BASIC 4 equivalents. The routine is entirely relocat-

able, except for the underlined 2-byte address, which must be reset if a relocated

version is to work .
*

. : 033A A9 00 85 11 85 12 20® A3

. : 0342 <e§) 68 68 AO 01 84 09 Bl B5

. : 034A 5C FO 46 20 El FF 20 <H) DF N<ite_i -may r**X P0K.C tt,1X5 6n- WiL-^uA..

. : 0352 @> C8 Bl 5C AA C8 Bl 5C BA

. : 035A

. : 0362
C9
84

FF DO
46 20(

04 EO FF
A9

FO
11

31

20'D9~~DC) 83 CF
. : 036A (4"5~ CA)A9 20 A4 46 29 FF 46 BB
. : 0372 20 C2 03 C9 22 DO 06 A5 Address (03C2) to be changed on relocation

. : 037A 09 49 FF 85 09 C8 FO 11

. : 0382 Bl 5C DO 10 A8 Bl 5C AA

. : 038A C8 Bl 5C .86 5C 85 5D DO

. : 0392 B2 4C(89 03^ 10 DA C9 FF B3 FF

. : 039A F0 D6 24 09 30 D2 38 E9

. : 03A2 7F AA 84 46 AO FF CA FO

. : 03AA 08 C8 B9 (IJlTcq) 10 FA 30 B2 BO

. : 03B2 F5 C8 B9 92 CO 30 05 20

. : 03BA f45 CA^DO F5 49 80 DO AC 46 BB

. : 03C2 48 09 CO C9 DB 90 08 C9

. : 03CA EO 10 04 68 49 80 48 68

. : 03D2 4C /45 CA) 46 BB

Other Commodore printers Commodore offer two other printers, at the time of writing;

a heavy-duty dot-matrix machine, and a daisywheel printer. Both seem to have been
produced in conjunction with other printer manufacturers, and are less distinctively

CBM than might appear at first sight. The 8024 is a 9 by 7 dot-matrix printer with a

head speed of 160 ch.p.s and capable of producing multiple copies. It prints standard

ASCII, i.e. no PET /CBM graphics. Or so at least the (rather scant) documentation

says; presumably, since true ASCII has upper and lower case different with respect to

CBM, there is some facility for mixed lower- and upper- case printing. Its ST differs

from that of other CBM printers; it can accept 3 secondary addresses.

The daisywheel printer is a modified Olympia electronic daisywheel typewriter.

The 8026 is the keyboardless receive-only version; the 8027 has a keyboard. The cost

is similar to the 8024. The maximum speed of the unit (16 ch.p.s) is, by printer

standards, very slow; a page like this one (without the type-face changes!) might take

five minutes or more. 2

The 8026 and 8027 have many features found on more expensive machines, but
as might be reasonably expected, these are typically not so easy to use. Line feed,
form feed and tabbing, for example, are all relatively awkward. Moreover, several sets
of ROMs have already appeared, which are (in small ways) incompatible with each
other. Some ROMs lack variable line separation. The control commands are similar to
those of many printers, using ASCII control characters of CHR$(10) and CHR$(13)
for linefeed and return, CHR$(7) for BEL, and in particular the escape character,
CHR$(27), followed by a whole set of possible parameters. These include horizontal
spacing (10,12, or 15 ch.p.inch), tabs, direction of printing, and allowance for the
type of printwheel.

CBM 'plug-compatible' printers Because of Commodore's major market position in the
U.K. it is not surprising that manufacturers have produced printers which plug into

the computer without an external interface box. For example, Anadex have done this,

and there are a few very cheap Japanese printers. The Epson MX- 80 (though not in

This routine, published in 'Micro', is the work of Jim Strasma and is printed here
with his permission. (The BASIC 4 amendments are straightforward ROM address changes;
I have not tested the result). Jim Strasma is active in the Central Illinois PET Users'
Group, which publishes the 'Midnite Software Gazette', a quarterly review. The third
edition of Osborne/McGraw-Hill ' s 'PET Guide' is edited by Jim and his wife.

2 CCN, Sept. '81, gives some information on Commodore's daisywheel printers.

Programming the PET /CBM -252- 8: Other peripherals

this 'very cheap' category) is widely preferred to CBM's printers. These machines,

many of which were sold when CBM printers were subject to delivery delays, are

often non-Commodore in fairly subtle ways; they may be advertised as having graph-

ics, but the character-set may be non-CBM; the handling of print statements and

formatting is very likely to differ from Commodore's, since mimicry of the entire range

of secondary addressing and other features would involve a lot of work. Often this

makes no difference; only when a program is run on a new machine (i.e. one which

uses different conventions) will any problems arise.

Non-CBM and non-plug-compatible printers Many of the major names in printers make

machines which cannot be directly connected to PETs; Qume, Centronics, Diablo, Spin-

writer are examples. Centronics printers have their own standard; other standards

include the 'current loop' and the 'RS232', a serial interface which accordingly needs

few wires. These need 'interface boxes', devices which plug into the computer and also

into the printer. An interface box may need its own power supply. There are a few

hazards to watch for. The most important, yet again, is the treatment of upper and

lower case text. The switch between modes within the computer cannot generally be

detected by an interface box, so that, unless this is fitted with a switch, you may

find that only upper-case text, say, can be easily printed. Probably some sort of con-

version routine will be provided, perhaps a painfully slow one in BASIC. This is prob-

ably something most users could do without. It is occasionally true that an interface,

because of a design oversight, won't transmit certain characters, such as 'Escape'.

As an example of the methods of programming such printers, which rely on ASCII

control characters rather than secondary addressing, look at the following short BASIC

program extracts. They apply respectively to a Qume and a Centronics printer. There

is no standardisation in the characters following 'Escape'; the specimen printout shows

a Qume printing data sent from a program designed for a Centronics machine. Note

that an appendix has a complete list of ASCII characters, mnemonics, and their mean-

ings.
1000 OPEN 4,4: PRINT#4,CHR$ (12); : REM QUME . FORM-FEED...

1010 PRINT#4,CHR$(27)"E10"CHR$(27)"L04"; : REM HORIZONTAL SPACING 10/120 = 1/12

INCH; VERT. SEPN. =4/48 = 1/12 INCH

4100 OPEN 4,4: CMD 4 : REM CENTRONICS

4110 PRINT CHR$(27)CHR$(20)CHR$(27)CHR$(15): REM COMPRESSED AND ELONGATED CHRS!

BX6J Bf r B 4.1U 8 , 3 01

BE8N MS Cra d An 2 2 £ 1«U '

BE4XH §eet 1w 02 E 243UB 7

Printers: a Summary Users looking for good-quality printing, without the obviously

computer-produced appearance of dot-matrix printers, have little other choice than a

daisywheel or modified golfball printer. If there is a definite need for speed, and many

copies of an original, or 132 columns per page, then a heavy-duty printer will be nec-

essary in the first cases, and a wide platen or programmable narrow characters (e.g.

16.7 ch.p.inch) in the second. Paper width(s) and type may be restricting factors,

since many machines aren't versatile in their paper-handling. If an interface box is

necessary, be sure a good one is available. It may be necessary to ensure that a

printer can operate with several different types of computer. Because of the chance of

unexpected programming difficulties, it is advisable to test any combination of hard-

ware which is new to you; mixed upper- and lower-case text, and graphics if these

are important, are likely to be problem areas. In this way, with luck, a good, fast

system can be put together, in which fundamental aims of the system have not been

overlooked. Many users, of course, simply buy CBM equipment. Current market

surveys may (or may not) suggest better buys. Many such surveys though are not

very thorough, and are little more than assemblages of information provided by advert-

isers. In practice, I suppose dealer advice and exchange of recommendations between

friends and colleagues are about equally important forces determining final choice of

hardware. There is one other , perhaps obvious, point: be sure that paper, ribbons,

spare fuses, extra daisywheels and so on aren't too inaccessible, and that maintenance

is available if it's needed.

Programming the PET /CBM -253- 8: Other peripherals

8.6 The Modem.

Commodore's Modem (the '8010') is wired as IEEE device #5, and can be read/ written

to with the normal INPUTS/ PRINT* commands to logical files with secondary address

5. The function of a modem ('modulator-demodulator') is to process ordinary data as

it is output from a computer into a form suitable for transmission to another modem,

which reconverts it into data to be input by a second computer. In this way data or

programs can be transmitted across country or between continents. Typically, ASCII

data is formatted with start bits , a parity bit, and framing by a UART or USRT type

chip, sent out, and decoded by a similar chip at the other end. High speeds of data

transfer are possible. The 8010 is an 'acoustically coupled' modem, using modulated

sound sent by normal telephone lines. (It has Post Office approval in the U.K.). A
telephone handset is used in conjunction with the 8010.

Software - programs and development aids - can be received in this way; since

thay can also be sent through the post, this may not be very advantageous. However

data can also be received from and sent to other computers; if the CBM is to be used

to process a subset of a company's data, this may be very useful, since data which

might otherwise need to be keyed in can be processed by program automatically.

Several points related to the actual operation of the modem should be borne in

mind. Its rated speed is 300 baud, presumably meaning an upper limit of about 30

bytes per second. At this rate, a 40-column screen will take about 30 seconds to fill,

and an 80-column screen 1 minute. This may be too slow for some purposes. There are

likely to be difficulties over the transmission of mixed upper- and lower-case CBM
alphabetic characters, since these are not consistent with the ASCII set. Finally, some

software is needed to process the transmitted data, and moreover hardware interfacing

may be needed to correct disparities of convention between the computers. Some comm-

ercial products are available incorporating one or both of these facilities, for example

to read and store Prestel pages.*

8.7 The keyboard .

Introduction and physical description The keyboard is not a peripheral in quite the

same sense as the other items of hardware discussed in this chapter, because of its

intimate connection with the computer. It resembles the screen in this respect. The

next chapter is concerned largely with programming the CBM's screen, but there is an

overlap because of the echo of keyboard to screen which usually happens except with

GET commands.
All Commodore keyboards are equipped to handle most ASCII characters, with

the exception of the control characters (not needed) and the more obscure punctuation

symbols (curly brackets, underlining, single quotes sloping backwards). Many have

graphics characters, but in the 'business machines' the decoding is different, and

these are excluded to some extent. The keyboards have evolved in several stages,

from the early tiny rectangular array of keys to the typewriter- style keyboard, with a

numeric keypad, and with punctuation characters obtained by shifting (e.g. ! is shift

-

1 and so on). All include screen editing keys and the stop /run key, which are spec-

ifically CBM functions. TAB, ESC, and repeat occur on the 12 inch models only. There

are some minor differences; some 3000 series machines' keys are marked with very wide

characters for instance.
The keyboards are very reliable; sometimes an old one may benefit from being

taken out and cleaned. They are not quite free from software bugs: the '<' key has

been mentioned already; in BASIC 4, the 8032's right shift with reverse and C,B,>,

and 3 repeats the wrong character.
In 8 inch models, RVS slows the screen scroll (J second delay before scrolling).

In 12 inch models, the left arrow slows scrolling, and * or : cause scrolling to

pause indefinitely, until one of a range of other keys is pressed.

There are a few incompatibilities that may be a source of difficulty; for example,

the Run key on the 8032 is in the same position (top right) as Clear on earlier key-

boards, so it is rather easy to load and run a disk program instead of clearing the

screen if a user is accustomed to the early layout. This of course will erase any

BASIC program in memory.
Commodore keyboards have no inbuilt reset key; this has drawbacks, notably

when developing machine-code. If a crash results, the machine has to be switched off

*CCN Aug '81 has an article by P Barker on microcomputers as terminals which includes

some explanatory detail and programs relevant to the 8010. CCN of Oct .

• 81 has a 16

page centre section and some useful programs.

Programming the PET ICBM -254- 8: Other peripherals

and reloaded - if the programs were saved, that is. On the other hand it prevents

a program being wrecked in mid-run, something which is possible on (say) the Apple

II. (VIC has a reset, using the NMI line). See the next section (8.9) on methods of

constructing reset keys for PET/CBMs.
Physically, the keys are made of light plastic, surmounted by a grey or black

key bearing the legend. The tops of the keys can be levered off and replaced; there

is a feeble- seeming spring inside each one which prevents the contact at the base

being made until it is pushed. As we shall see, we can redefine the keyboard decoding

function, so that non-standard keyboards, such as the 'Dvorak' non-QWERTY layout

can be tried out.

A reliable way to disable the Stop key, but still keep it usable for emergencies,

is to use a guard over the key. The diagram

(plotted by a PET !) shows the general app-

earance and dimensions of such a guard. (The ^x
figures may not apply to all keyboards). A 1.5cm^^ N^.8 cm
rectangle of stainless steel, and access to

metalworking facilities, are necessary prelim-

inaries. The hole in the top allows the key
to be pressed with a pencil or biro. I have
found this system completely reliable.

BASIC and the keyboard On the subject of

disabling the Stop key, the most well-known
method is to use a simple poke:

POKE 537,139 [BASIC 1]

POKE 144,49 [BASIC 2]

POKE 144,88 [BASIC 4]

BASICS 2 and 4 can be simultaneously covered with POKE 144, PEEK (144) +3. This popular

method has the drawback of turning off the clock, for reasons we shall see. Also, any

operation changing the interrupt vector (tape operations for example) is likely to re-

store the normal interrupt with its test for Stop. Poke the identical value minus 3 in

each case to return to normal operation.

The keyboard is treated as device #0 by the operating system; then come the

cassettes and the screen (#3), before proceeding to the IEEE bus. We can open a file

to the keyboard:
OPEN 1,0 :REM OPEN 1,0,55,"XYZ" IS SYNTACTICALLY OK, BUT HAS NO EXTRA EFFECT

and now, in program mode, we can INPUT #1 and GET#1 from this file. (PRINT #1 gives

an error message). This can be used to give rudimentary input protection; if Return

is pressed with no other entry, INPUT#1 returns CHR$(0). Commas and other punctu-

ation separators won't now print ?EXTRA IGNORED, because a file is considered to be

open.
This same (input protection) effect can be more easily got by a simple poke,

POKE 3,X [BASIC 1] POKE 14, X [BASIC 2] POKE 16,X [BASIC 4]

where X is any non-zero value. Surprisingly, this method has never yet been docu-

mented, so far as I know.
GET is the BASIC function which takes characters directly from the keyboard.

As we have seen in chapter 4, this is a relatively easy way to modify keyed input, to

avoid the limitations of INPUT and to code keys for some purpose, without echoing the

character to the screen, as in this simple example:

10 GET X$: IF X$="" GOTO 10 :REM GET KEYBOARD CHARACTER (WAIT FOR KEYPRESS)

20 IF X$>="A" AND X$<="Z" THEN PRINT "ALPHABETIC!"

30 IF X$>="0" AND X$<="9" THEN PRINT "NUMERIC!"

40 IF ASC(X$)=13 THEN PRINT "[CLEAR]" :REM DEFINE RETURN KEY TO CLEAR SCREEN

50 PRINT "OTHER": GOTO 10:REM IGNORING SHIFT CHARACTERS, TO SIMPLIFY PROGRAM!

BASIC 1 and 2 have a feature (seemingly carried over from non-PET BASIC by Micro-

soft) in which input of CHR$(15), 'Shift In' in ASCII, causes no output to appear on

the screen. In fact, this character doesn't exist on CBM keyboards, but the suppress-

ion feature remains: POKE 100, X [BASIC 1] and POKE 13, X [BASIC 2] where X exceeds

127 prevents PRINT from operating.

There are differences between (true) ASCII and PET/CBM's somewhat modified

version, but these are only important when communicating between machines. A table

Programming the PET /CBM -255- 8: Other peripherals

of true ASCII characters is printed in the appendices.

ROM: how the keyboard is scanned When a PET /CBM is operating normally, its pro-

gram is interrupted at regular intervals and a subsidiary routine performed; this pro-

cesses the cursor, turns off one or both cassette motors if they are on, and scans the

keyboard for a keypress. If a new key is pressed, it is added to the keyboard buffer,

unless this is full. If it is, BASIC 4 ignores the key, BASICS 1 & 2 cancel the buffer

and start over. Let's examine this process in greater depth.

Firstly, how many interrupts occur per second? We can time them approximately

with BASIC and a 6502 subroutine: Type SYS 4 to enter monitor; now type .M 027A 027A

. : 027A E6 00 4C xx xx where the unknowns are the IRQ low and high bytes respectively

as they appeared on entry to the monitor. Overwrite IRQ with 027A and enter .G 0004,

which causes the interrupt to execute the short routine; it increments location $00

with each interrupt. Type .X and enter the BASIC program IF TI-T<60G0T0 and

lPRINTPEEK(O) :T=TI:POKE0,0:GOTO which is written to run as fast as possible. The

contents of $00 after 1 second are printed out. The value is about 60 for 8-inch screen

machines, 50 for 12-inch screen machines.

When an interrupt is generated, the 6502 finishes its current instruction, saves

values on the stack, and jumps to the address in ($FFFE), if the interrupt is not

masked. This address is E66B, E61B, and E442 in BASICs 1,2, & 4. If these addresses

are disassembled from, it is clear that A,X, and Y are all saved, for later recovery;

this means that the interrupt program is entirely separate from the normal program.

Moreover, the status register is examined to test for a BRK, signalled by the break

flag, or a standard interrupt. In the former case, the monitor is entered (except in

BASIC 1), which is why SYS 4 or SYS 1024 or SYS of any location containing zero

causes a break entry (signalled by *B) to monitor. The interrupt jumps to an address

held in RAM as two bytes; this address can be changed, so the programmer can write

new interrupt servicing routines (like the small-scale example above which increments

$00 at each interrupt).

($90) holds the address of the interrupt servicing routine; this is the address

printed under IRQ when .R is entered in the monitor. This is ($0219) in BASIC 1.

Thus fifty or sixty times per second the interrupt takes place and the code pointed to

by this address is executed. This code - at E685.E62E, and E455 in BASICs 1,2, & 4
-

is of some length, and takes up a measurable time, perhaps 7% of the total, to per-

form. This time can be saved by temporarily turning off the interrupt.

There are four parts to the interrupt servicing, which those interested can see

by disassembling the appropriate code and examining it. The parts are:

(i) Update the clock (TI and TI$ locations) and check the Stop key. FFEA is a

kernel jump command which carries this out. BASIC 4 (12-inch screen) includes a

patch which increments the clock an extra 'jiffy' every 5 interrupts, so the timekeep-

ing is irregular. See TI in Chapter 5 on the 'correction clock'.

(ii) Service the cursor by reversing the character under the cursor whenever

the countdown becomes zero.

(iii) Switch off the cassette motor(s), unless a flag is set.

(iv) Scan the keyboard and perhaps update the keyboard buffer.

Of these, (iv) is the most intricate and takes the longest time. A table on the next

page lists all the relevant RAM locations of these operations in an easily-referenced

form. Some - the screen processing and the clock - are not directly relevant to the

keyboard, but a single table is more convenient than several smaller tables.

To understand the keyboard scanning process, we must briefly consider the

6520 chip (PIA, or 'Peripheral Interface Adapter') which handles the hardware side of

it. Chapter 14 maps out and explains this chip in greater detail. The PET /CBM has

two of these chips; the first, 'PIA1', appears at E810 - E813. The locations which

control the keyboard are labelled:

E810 (59408) I I I I I .
Row select "| PORT A

E811 (59409) | 1 1 | I
|0/1*

I I I
PORT A'S CONTROL REGISTER

E812 (59410) j
Row input

; (ail 8 bits)] PORT B

E813 (59411) | | 1 1 |
jO/l* | |0/1

2
|

PORT B'S CONTROL REGISTER

*When 0, Port A's or B's contents configure the port for input or output. On switchon,

bits 0-3 of Port A are configured as output, and bits 4-7 as input, by storing #0F in

A. Port B is configured for input only.
2When 0, the interrupt is disabled; this turns off the keyboard scanning process.

Programming the PET /CBM -256- 8: Other peripherals

E812 is wired so that all 8 bits are normally 1. The pattern of bits 0-3 of E810 deter-

mines which (of 9) rows is examined. To scan the entire keyboard therefore requires

a loop to change E810's rightmost bits from 1 through 9, testing E812 each time for a

zero bit, which indicates a keypress. There is an elaborate loop in the interrupt ser-

vicing routine which shifts the contents of E812 rightwards, looking for a zero, and

continues this process while changing E810. When a zero is found, the corresponding

key is found from the keyboard decode table. (See Chapter 15 for a diagram) t is

quite easy to mimic this process in BASIC (there is a routine in 'PET Revealed). The

short machine-code routine shows which keys belong to which rows :

START LDA #00
STA E810
LDA E812
TAX
LDA #00
JMP DC9F/DCD9/CF83 [BASIC 1/2/4]

This code and its BASIC driver prints out the contents of E812 in decimal; if a single

key is pressed in the row being scanned, a value 127,191,223,239,247,251,253, or 254

will be printed. No key is shown by 255. Each of these figures has a bit pattern of

a single within seven Is (0111 1111, 1011 1111, etc.). The figures correspond with

those shown in the keyboard decode tables; for example, 40-column BASICSs include

=,-, Stop, <, Space, [, and Reverse in row 9. This row represents the normal state of

E812 (on'switchon and after the keyboard scan) which is the reason that LDA E812

is used as a test for the Stop key, and can also be used to test for the other keys in

the row. Thus 'Wordcraft' for example uses the Reverse key and the Stop key to con-

trol its modes. Note that the rows are not arranged in straight lines on the keyboard,

but are wired to select alternate keys (roughly).

The keyboard decoding matrix has 80 entries, 10 rows of 8 ASCII values, some

disused. The table is scanned from the end to the beginning. Note that the shift key

is signalled by 0.

027A A9 00 8D 10 E8 AD 12 E8

. : 0282 AA A9 00 4C xx xx

INPUT "ROW (0-9)";R

1 POKE 635, R: SYS 634: GOTO 1

IRQ Servicing - Keyboard, Screen, and Clock Locations.

Description

3-byte clock

Correction (2 bytes)

Stop key test (copy of E812)

Cursor - 0=off, <>0 means on
Cursor countdown (from #$14)

Blink flag - 0=unreversed, 1=reversed

True character under cursor (peek)

Displacement 1-80 from start of table

(or 255 if no key pressed)

Shift key - 0=off, 1 =on

Displacement 1-80 of previous key, for

comparison with 0223/A6/A6

Number of characters in keybd. buffer

Length of keyboard buffer

Keyboard buffer

Repeat - <128 off, 128+ on
Repeat countdown
Change of key indicator

IRQ SERVICING ROUTINE
KEYBOARD DECODING TABLE

BASIC 1

Locations

:

BASIC 2 BASIC 4

0200-0202
0205-0206
0209
0224
0225
0227
0226
0223

0204
0203

020D

020F-0218

E685
E75C-E7AB

8D-8F
99-9A
9B
A7
A8
AA
A9
A6

98

97

9E

026F-0278

E62E
E6F8-E747

8D-8F
99- 9A
9B
A7
A8
AA
A9
A6

98

97

9E
E3
026F-
E4
E5
E6

12" 40 col :

03EB

03EE
03EA
03E9

E455
E609-E658 (40-col)

E6D1-E720 (80-col)

Bit 2 of the control registers of the PIA controls the data direction of the ports; by

setting the bit low and entering new values in port A or port B anomalous results

can bf obtained. POKE 59409,0 is a simple BASIC example; the full range of rows is

no lone-er obtainable. Similarly, if the cassette interrupts are in use poking E810 (in

macS-code) wUh #XA in place of #X9 disables the Stop key. At this point, we can

pause to examine Stop-key disabling: the usual POKE mentioned previously works by

Programming the PET/CBM -257- 8: Other peripherals

redirecting the interrupt vector to point 3 bytes beyond its normal point; in this way,
the first instruction of the IRQ servicing routine (e.g. JSR FFEA) is skipped; thus

the Stop key is disabled and the clock turned off. Another method is to store #FF in

the location which copies E812, and which is used to test for Stop:

JSR FFEA; UPDATE CLOCK/ COPY E812 FOR STOP TEST
LDA #FF
STA 9B ; COPY OF E812 SET TO 'NO KEY'

JMP E458; CONTINUE NORMAL INTERRUPT

This routine, for 40-column BASIC 4, when inserted into the IRQ, behaves exactly like

the usual interrupt, except that the Stop key, when pressed, is overwritten. Thus the

internal clock runs normally, while Stop is disabled.

The Keyboard Buffer It is well-known in CBM circles that the keyboard buffer can be
programmed independently of the keyboard. (The process is sometimes described as

'a program writing itself with certain applications). For a description see section 4.1.9 in

Chapter 4. The keyboard buffer can be watched as it queues characters. This is worth
doing to understand the process. Enteroneof these routines:

027A A5 9E 09 30 8D 00 80 AO
0282 OA B9 6E 02 99 02 80 88
028A DO F7 4C 2E E6

A5 9E 09 30 8D 00 80 A4

E3 B9 6E 02 99 02 80 88

DO F7 4C 55 E4

:A5 9E 09 30 8D 00 80 AO
:0A B9 6E 02 99 02 80 88

:D0 F7 4C 55 E4
BASIC 2 BASIC 4, 40-C0L . BASIC 4, 80-C0L .

Then change the IRQ vector to 027A. The keyboard buffer, and the number of bytes
in it, are displayed in the top-left of the screen. (Lower-case mode will make them
more readable). A short routine of this sort: 1 GET X$: FOR J=0 TO 1000: NEXT: GOTO 1

will enable characters to be queued up from the keyboard; they are then removed at

about 1 per second. The separate routine for 12" screen BASIC 4 allows for the fact

that the buffer is not fixed at the normal 10 characters, but can be varied by poking
$E3 (=227). Characters remain in the buffer until they are fetched by GET or INPUT,
or until the buffer is deleted (in BASIC <4) when more than 10 characters are entered.
Poking the number of characters to zero in effect clears the buffer, giving the same
effect as 100 GET X$: IF X$<>"" GOTO 100. Conversely, poking the number of charact-

ers to some non-zero value makes them available to the system. Try:
10 FOR J=623 TO 627 : READ X: POKE J,X: NEXT : REM 5 BYTES IN KEYBOARD BUFFER
20 POKE 158,5 : END : REM SET # BYTES = 5

30 DATA 72,69,76,76,79

The five bytes are printed out by the system when the program ends, exactly as if

they had been keyed in. Replace the data statement with 30 DATA 76,73,83,84,13.
Now the word 'LIST' followed by a carriage return is entered in the buffer, and the
command is carried out. There are several examples of this type of routine in this

book; see for example DELETE in Chapter 5. Note that BASIC 1 has different locations

(525= #characters, 527-536 = buffer).

Examples of programming using the Interrupt We shall see now how to carry out some
ambitious routines involving the interrupt. First, we shall consider software repeat
keys. These are not needed in 12" screen CBMs, which include repeating keys as a

standard feature. But in the other models they are useful. The principle is not very
difficult; the keyboard normally prevents automatic repeating by comparing the key
pressed during a scan with that pressed before . If they are the same , nothing is done.
Therefore, if our program intercepts the interrupt and sets the previously recorded
key value to 255, the key is reinput to the buffer. See the next page for examples.
The second example moves the entire interrupt routine into RAM, where it can be
modified freely. For example, the rate of cursor flash can be changed, and this can be
a useful reminder that a non-standard keyboard is in use. In this way the keyboard
can be modified, as mentioned before, perhaps to provide a hex keypad, or a Dvorak
typewriter, or to use one or both shift keys as special function keys. The third ex-
ample is a single-key BASIC entry routine; one shift key, plus a key, enters an en-
tire keyword. This principle can be generalised, so that for example a key may print

any predefined string to the screen, and some commercial software and toolkits can do
this. The processing is of course virtually instantaneous; similar effects can be got

in BASIC, with GET X$: IF X$="X" THEN X$="SOMETHiNG ELSE" , but this is slower, and
takes up program space. Moreover, individual keys (e.g. both Shift keys) cannot be

-258-Programming the PET/CBM

distinguished from BASIC.

Software repeat keys (for 8" PET/CBMs, BASICs 1,2, and 4)

REPEAT KEY FOR BASIC 2.

8: Other peripherals

027A LDA #84
;

027C STA 90

027E LDA #02

0280 STA 91

0282 RTS

0283 NOP ;

0284 LDA #FF

0286 CMP 97

0288 BNE 028F

028A LDA #14

028C STA 0283
028F DEC 0283
0292 BNE 029F
0294 STA 97

0296 LDA #05
0298 STA 0283
029B LDA #03
029D STA A8

029F JMP E62E

INITIALISE

REPEAT

First delay 1/3 sec.

1/12 sec. between
repeats

1/20 sec. between
cursor flashes

027A A9 84 85 90 A9 02 85 91

0282 60 EA A9 FF C5 97 DO 05

028A A9(H)8D 83 02 CE 83 02 ; Delay,

0292 DO OB 85 97 A9 @5) 8D 83j#£/*L&t",

029A 02 A9 (153)85 A8 4C 2E E6;Curso<~.

SYS 634 INITIALISES THIS REPEAT KEY.

Notes:

[1] Varying the three bytes controls the

time taken before repeating starts, the

rate of repetition, and the rate of flash

of the cursor. For example, POKE 1 into

each for the maximum repeat rate of 60

characters per second.

[2] .M 0090 0090 from the monitor can be

used as a method of turning 'repeat' on

and off, and redirecting IRQ generally.

[3] If the cassette buffer is corrupted

while the repeat is operational, the

interrupt will probably crash. The

exception is for tape activity itself,

which resets the IRQ and so disables

the repeat

.

BASIC 1 : Old ROMs differ in (i) IRQ vector, (ii) IRQ servicing location,

(iii) keypress indicator location, and (iv) cursor flash countdown.

These are: (i) ($021A) , (ii) $E685, (iii) $0223, and (iv) $0225.

The same logic may be used, but the resulting code inevitably occupies

more space. The cassette buffer #2 version is this:

DATA 169,70,141,26,2,169,3,141,27,2,96: REM INITIALISES

1 DATA 0,169,255,205,35,2,208,5,169,20,141,69,3,206,69,3,208,13,141,35,2

2 DATA 169,5,141,69,3,169,3,141,37,2,76,133,230: REM REPEAT KEY DATA

3 FOR J=826 TO 870: READ K: POKE J,K: NEXT: SYS 826

BASIC 4 : 80-column machines are equipped already with repeat. (Incidentally, this

can be turned off by poking $E4 (228) with a value<128 and vice versa.

And the repeat cursor flash rate is controlled by the contents of $E5)

.

40-column machines are similar to BASIC 2, except that the IRQ destination

is different: so substitute JMP $E455 and ... 4C 55 E4 in each BASIC 2

program on this page. 12" screen 40-column models have some differences.

TINY REPEAT KEY .

By using a zero page store, and

reduced to 19 bytes only. This

and I include it for those who

LDA #FF
CMP 97
BNE +6-v

,»STA 97

LDA #10
STA 00

DEC 00«J

BEQ -10

JMP E62E

delay constant
zero page store

(can use others)
decimal branch

(BASIC 2)

having only one delay constant, 'repeat' can be

is the shortest routine I've been able to write,

like little routines:

A9 FF C5 97 DO 06 85 97

A9(lcT)85 00 C6 00 F0 F6 } .Pelay Constant

4C 2E E6

Use .M 0090 0090 to point ($90) to the

start of this routine.

At fast rates of repeat the cursor will

flash too slowly to be always visible.

Programming the PET/CBM -259- 8: Other peripherals

BASIC RELOCATING LOADER TO ENABLE USER TO DEFINE HIS OWN KEYBOARDS (E.G. HEX PAD) .

BASIC 2

PRINT" [CLEAR] [REVS] LOADS USER-DEFINED SPECIAL KEYBOARD AND PROTECTS IT IN TOP OF M
EMORY

10 L = PEEK(52)+256*PEEK(53): T1=L: REM L IS CURRENT TOP OF MEMORY; Tl STORES IT

15 T = L - 302: REM WE RESET TOP OF STRINGS TO ENABLE SAFE INPUT OF CHARACTERS

16 LH%= T/256: LL% = T - LH%*256
17 POKE 52,LL%: POKE 50,LL%: POKE 48,LL%: POKE 53,LH%: POKE 51,LH%: POKE49,LH%

20 FOR J = 59207 TO 58926 STEP -1: POKE L-l, PEEK(J) : L = L-l: NEXT

30 REM MOVE INTERRUPT ROUTINE $E62E-$E747 TO TOP OF MEMORY - 1; L = LOWER LIMIT

40 KT = L+201: REM THIS IS THE KEYBOARD-TO-ASCII-TABLE POINTER IN RAM (RTS)

50 KH% = KT/256: KL% = KT - 256*KH%: REM LOW AND HIGH BYTES OF NEW TABLE

60 POKE L+111,KL%: POKEL+112,KH%
70 POKE L+160,KL%: POKEL+161,KH%
80 REM BOTH REFERENCES TO THE KEYBOARD TABLE CHANGED TO POINT TO RAM, NOT ROM

90 PRINT" [CLEAR] [REVS]ENTER *** WHEN YOUR KEYBOARD IS COMPLETE": REM COULD BE OTHER E

XIT STRING
100 PRINT" [DOWN] PRESS KEY TO BE CHANGED [REVS]OR[RVSO] ENTER
101 INPUT"ITS ASCII VALUE, LIKE THIS: V14";K$:REM TO DISTINGUISH 3 FROM CHR$(3)

102 IFK$="***"THEN500
105 K=ASC(K$) : REM IF A VALUE HAS BEEN ENTERED, NEXT LINE FINDS CORRECT K
110 IF LEFT$(K$,1)="V" AND LEN(K$)>1 THEN K=VAL(MID$(K$, 2))

120 FOR J = 1 TO 80:IF PEEK (59127+J)OK THEN NEXT: PRINT "[REVS]NOT FOUND": GOTO100

—T30-J-- J + KT : REM J IS THE POSITION IN THE ROM TABLE AS RAM TABLE MAY VARY

140 REM WE NOW HAVE POSITION («J) OF SOUGHT KEY IN RELOCATED TABLE IN RAM
200 PRINT" [DOWN] PRESS KEY TO REPLACE [REVS]OR[RVSO] ENTER
201 INPUT"ITS ASCII VALUE, LIKE THIS: V14";K$
202 IFK$="***"THEN500
205 K=ASC(K$)
210 IFLEFT$(K$,1)="V" AND LEN(K$)>1 THEN K=VAL(MID$(K$, 2)

)

220 POKE J,K :REM REPLACE THE PREVIOUS KEY IN THE RAM TABLE WITH THE NEW ONE

230 GOTO 90 : REM NOW DO THE NEXT CHARACTER
500 REM FINAL ROUTINE; POKE 2 ROUTINES TO CHANGE INTERRUPT ADDRESS

510 DATA 120,169,46,133,144,169,230,133,145,96
520 DATA 120,169,46,133,144,169,230,133,145,96
530 FOR J = L-20 TO L-l: READ X: POKE J,X: NEXT
540 L = L-20: REM NEW LOW MEMORY LIMIT = START OF ENTIRE ROUTINE

550 PRINT" [CLEAR] [DOWN] SYS" ;L; "TURNS ON THE NEW KEYBOARD,AND

560 PRINT"SYS";L+10; "RETURNS TO NORMAL KEYBOARD
570 POKE L+2, (L+20) - INT((L+20)/256)*256: POKE L+6, (L+20)/256
580 REM TURN-ON ROUTINE WILL NOW LOAD THE CORRECT INTERRUPT ADDRESS.

590 PRINT" [DOWN] SAVE FROM"L"TO"Tl „ „
595 PRINT " ($";: GOSUB600: PRINT " TO $";: L = Tl : GOSUB600: PRINT ")"

596 END
599 REM ### ONE LINE DECIMAL TO HEX CONVERTER #«
600 L=L/4096:FORJ=lT04:L%=L:L$=CHR$(48+L%-(L%>9)*7):PRINTL$;:L=16*(L-L%):NEXT:RETURN

Modifications for BASIC 1

10 L=FlEKU34>+256*PEEK(135)s Tl=Ls REM L IS CURRENT TOP OF MEMORY? Tl STOR
ES

15 T = L - 319: REM WE RESET TOP OF STRINGS TO ENABLE SAFE INPUT OF CHARACTE
RS

17 P0KE134»LL*s P0KE132, LLXs P0KE130»LLXs P0KE135,LHXs P0KE133,LHXs P0KE131
, LHX

20 FOR J = 59307 TO 59013 STEP -Is Q=PEEK(J)s POKE L-l, 9* L = L-ls NEXT
40 KT = L+214s REM THIS IS THE KEYBOARD-TO-ASCI I-TABLE POINTER IN RAM (RTS)

60 POKE L+158,KLXs POKE L+159,KHX
70 POKE L+187,KL%s POKE L+188»KHX
120 FOR J = 1 TO 80s IF PEEK (59227+J) <> K THEN NEXT* PRINT "[RVS1NOT FOUND"

s GOTO 100
510 DATA 120,169,133,141,25,2*169,230, 141,26,2,96
520 DATA 120,169,133,141,25.2,169,230,141,26,2,96
530 FOR J = L-24 TO L-ls READ Xs POKE J, Xs NEXT
540 L = L-24s REM NEW LOW MEMORY LIMIT = START OF ENTIRE ROUTINE
550 PRINT "tCLRDCiiOWNJSYS";Lf "TURNS ON THE NEW KEYBOARD, AND
560 PRINT "SYS" ?L+12; "RETURNS TO NORMAL KEYBOARD
570 POKE L+-2, (L+24) - INT(< L+24) /256)*256: POKE L+7, <L+24)/256

Programming the PET/CBM

REDEFINE KEYBOARD FOR 8632 ONLY:-

-260- 8: Other peripherals

© PRINT" CCLRHRVS 3LOADS USER-DEFINED SPECIAL KEYBOARD AND PROTECTS IT IN TO

P OF MEMORY
10 L = PEEK<52>+256*PEEK<53>: Tl=Ls REM L IS CURRENT TOP OF MEMORY; Tl STORE

S IT
15 T = L - 736: REM WE RESET TOP OF STRINGS TO ENABLE SAFE INPUT OF CHARACTE

RS
16 LH?-; = T/256: LL2 = T - LHX*256
17 POKE 52,LLK« POKE 50,LLX: POKE 4S,LLJi: POKE 53,LHJi: POKE 5i,LHKs P0KE49,L

LJV

20 FOR ".J = 59168 TO 58453 STEP -1: POKE L-l, PEEK<J> : L = L-l: NEXT

30 REM MOVE INTERRUPT ROUTINE *E455-*E728 TO TOP OF MEMORY - 1; L = LOWER LI

MIT
40 KT = L+635: REM THIS IS THE KEYBOARD-TG-ASCI I-TABLE POINTER IN RAM <RTS>

F.0 KHK = KT/256: KLJi = KT - 256*KHK s REM LOW AND HIGH BYTES OF NEW TABLE
60 POKE L,32: POKE L+ 1,234: POKE L+2,255: REM JSR *FFEA TO UPDATE CLOCK
65 SR=L+105: SHJi=SR/256 : SL;<=SR-256#SH;< : POKE SR-5,SLX: POKE SR-4,SHX
66 REM PREVIOUS LINE ALTERS A JSR INSTRUCTION TO POINT TO OUR RAM ROUTINE.

70 POKE L+135,KLX: P0KEL+136,KHX
89 REM BOTH REFERENCES TO THE KEYBOARD TABLE CHANGED TO POINT TO RAM, HOT RO

M
90 PRIHT"CCLR3CRVS3ENTER *** WHEN YOUR KEYBOARD IS COMPLETE": REM COULD BE

THER EXIT S
l«Pi PRINT" CDOWN3PRESS KEY TO BE CHANGED CRVS30RCRVS03 ENTER
101 INPUT" ITS ASCII VALUE, LIKE THIS: V14";K* :REM TO DISTINGUISH 3 FROM CHR*

*C 3 !>

102 IFK*="***"THEN500
105 K=ASC<K*> : REM IF A VALUE HAS BEEN ENTERED, NEXT LINE FINDS CORRECT K

11 Pi IF LEFT*<K*,1>="V" AND LEN<K*>>1 THEN K=VAL<MID*<K*,2>

>

120 FOR J = 1 TO 80: IF PEEK <59088+J > <> K THEN NEXT: PRINT "CRVS3NOT FOUND":

GOTO 1 80
130 J = J + KT : REM J IS THE POSITION IN THE ROM TABLE AS RAM TABLE MAY VARY

140 REM WE NOW HAVE POSITION <=J> OF SOUGHT KEY IN RELOCATED TABLE IN RAM

208 PR I NT "[DOWN] PRESS KEY TO REPLACE [RVS30RCRVS03 ENTER
201 INPUT" ITS ASCII VALUE, LIKE THIS: V14";K*
202 IFK*="***"THEN500
205 K=ASC<K*>
21 PI IFLEFT*<K*,1> = "V" AND LEN < K* > > 1 THEN K=VAL<MID*<K*,2>

>

220 POKE -T,K :REM REPLACE THE PREVIOUS KEY IN THE RAM TABLE WITH THE NEW ONE
230 GOTO 98 : REM NOW DO THE NEXT CHARACTER
500 REM FINAL ROUTINE; POKE 2 ROUTINES TO CHANGE INTERRUPT ADDRESS
510 DATA 120,169,85,133,144,169,223,133,145,96
528 DATA 1 28 , 1 69 , 85 , 1 33 , 1 44 , 1 69 , 223 , 1 33 , 1 45 , 96
538 FOR J = L-20 TO L-l: READ X: POKE J,X: NEXT
540 L = L-20 : REM NEW LOW MEMORY LIMIT = START OF ENTIRE ROUTINE
550 PR INT" CCLR3CDOWN3SVS".:L; "TURNS ON THE NEW KEYBOARD, AND
568 PRINT"SVS".fL+10.?"RETURNS TO NORMAL KEYBOARD
570 POKE L+2. <L+20:> - INT< <L+20>/256>#256 s POKE L+6, <L+28>/256
588 REM TURN-ON ROUTINE WILL NOW LOAD THE CORRECT INTERRUPT ADDRESS.
590 PR I NT " CDOWN 1SAVE FROM "

L
" TO " T

1

595 PRINT " <*";: GOSUB608 : PRINT " TO *".s: L = Tl : GOSUB600 : PRINT
H •, ii

596 END
599 REM ### ONE LINE DECIMAL TO HEX CONVERTER ###
680 L=L/4896 :FORJ= 1 T04 :LK=L : L*=CHR* < 48+LK- < LK>9 > *7 :> % PR I NTL* ; : L= 1 6* < L-LX > :NEXT

: RETURN

Programming the PET/CBM -261- 8: Other peripherals

Single-key entry of BASIC keywords &c. Special-purpose programmable keys can be

implemented on the PET/CBM. The Shift-Stop key of course is a ROM example of this;

it forces dload "*",8 in compressed form into the keyboard buffer. Commodore's VIC

and the 'standard data entry' machine-code routine also have programmable keys. The
following example illustrates a method of patching the IRQ vector, after moving it into

RAM, to add extra keys. It does this by coding the right-shift key as ASCII 7, which

is not otherwise used, then checking for this value when the keyboard is scanned. If

it is found, a short routine converts the shifted key into a BASIC word and prints it.

This version is BASIC 2; I've used addresses almost identical to those in ROM purely

for ease of reference, moving the IRQ routine from E62E to 362E for instance. The

principles are similar for any ROM, although 12" screen models tend to have longer

decoding routines to process the automatic repeats. The left shift key operates with

the shift-lock; for this reason the right shift is preferable as a control key. The key-

board has about 64 alphanumeric and punctuation keys. The routine that follows ex-

cludes some of the 76 BASIC 2 tokens, including +,-; ...,>,=,< which are single keys

already, END, and GO.
(i) If BASIC in in use, set the top-of-memory to $3000.

(ii) Move E62E - E747 to 362E - 3747. This is the whole of the interrupt servicing

routine and the decode table. We can add our extensions to this routine at 3748.

(iii) Poke 36CF and 369E with 36 in place of E6 . [These locations look at the

ROM decode table; they are both LDA E6F7,x. After the poke they reference the RAM
table].

(iv) Poke $3702 with 7; this is the right shift key, appearing as the first of two

zeroes in the decode table.

(v) We put a patch at the point where the shift key is tested. The short piece

of code following lda E6F7.X /bne xx/ processes the shift key, storing 1 in its flag.

After our modification, right-shift stores 7 in the flag.

;JUMP TO THE FIRST RAM ROUTINE AFTER THE DECODE TABLE

;THESE 3 INSTRUCTIONS IMITATE THE ROM ROUTINE (BUT JMP, NOT BNE)

;LOOK FOR RIGHT-SHIFT

; IMITATES THE ROM ROUTINE, RE-ENTERING TO COMPARE #FF

; STORES RIGHT-SHIFT IN SHIFT LOCATION

; BRANCH ALWAYS TO EXIT FROM SHIFT-FOUND PART OF ROUTINE

The keyboard with IRQ directed to this routine will behave normally, because #7 is

processed by a shift-right, and appears similar to #1 from the point of view of shift-

key processing. What is needed now is a further patch, within the coding which ORAs
shifted keys with #80, to test for the right- shift.

(vi) In BASIC 2, E6D2 has the BCC instruction testing for shift; we replace it:

3766 CMP #20
; CALLS THE SECOND ROUTINE AFTER THE TABLE

;IF SHIFT PRESSED, CARRY IS SET

;TEST FOR #7 IN RIGHT-SHIFT

;LEFT-SHIFT. PUT IN UPPER-CASE
;AND RETURN
; RIGHT-SHIFT PROCESSING BEGINS.

At this point we have isolated the right-shift from the left,

and can insert any routine which will serve our purposes.

The example tests for reverse and cursor-control characters,

with ASCII value less than 32, leaving these unchanged;
it corrects for the 9 arithmetic tokens, already single keys;

and it prints the Xth. BASIC reserved word, using logic

largely taken from LIST.
(vi) Finally, set the IRQ vector to 362E to drive the

new routine. Poking $91 (=145) with $36 (=54) is convenient

from BASIC.

369F JMP 3748

3748 BNE 3751

374A LDA #01

374C STA 98

374E JMP 36B6
3751 CMP #07
3753 BEQ 3758
3755 JMP 36A7
3758 STA 98
375A BNE 374E

36D2
36D5

JSR
NOP

37 5C

375C
375E

BCS
RTS

375F

375F LSR 98

3761 BCS 3766

3763 EOR #80
3765 RTS

3766

3768 BCC 3765

376A SBC #1E

376C CMP #2B
376E BCC 3772
3770 ADC #09
3772 TAX
3773 LDY #FF

3775 DEX
3776 BEQ 3780

3778 INY
3779 LDA C092,Y
377C BPL 3778
377E BMI 3775

3780 INY

3781 LDA C092.Y
3784 BMI 378B
3786 JSR CA45
3789 BNE 3780
37 8B AND #7F

378D JMP CA45

Programming the PET/CBM -262- 8: Other peripherals

8.8 Other firmware and hardware .

Reset switches There are three (at least) reset switches usable with the PET/CBM;

two are hardware, one is software. A reset switch provide an alternative to turning the

machine off, then on, when a program has 'crashed'. A crash (i.e. completely unresp-

onsive machine) is caused by the execution of an infinite loop. It will only happen in

BASIC if the program has peeked, poked, SYSed, or USRed, although slow machine-

code routines (notably memory freeing in BASIC<4) may give the appearance of a crash.

Code like this: 027A LDA #00/ 027C BEQ 027C or: 0300 JMP 0303/ 0303 JMP 0300

obviously gives an infinite loop; so do some pseudo-opcodes ending in 2 when written m
hexadecimal. Usually, of course, the cause is more subtle than this. Typically, RAM

code is overwritten accidentally, or a wrong location is jumped to, and the new code

happens to have a loop somewhere. Incorrect stack handling can easily cause this type

of problem; so can memory-move routines.

How do hardware switches work? The earliest, for BASIC 1, made use of the

reset vector at (FFFC) in all 6502-based machines. Normally, this vector is used when

the machine is switched on, and jumps to a routine to initialise the whole of BASIC,

poking in software values, and incidentally calculating the amount of RAM, and also

configuring all the input-output chips so the keyboard and cassettes and so forth

will operate properly. However, if the so-called 'diagnostic sense' pin (bit 7 of PIA

1) is low, i.e. grounded, an alternative routine is entered, originally a test routine

for BASIC 1. This feature has been retained in BASIC >1, but the alternative is now a

'call' entry to the monitor, printing *C in place of the break entry's *B. This is use-

ful, because this entry retains most of the features of the program in RAM. So this

switch requires two connections: one from pin 5 of the user port to ground (see the

diagram at the end of Chapter 9. Pins 5 and 12 are the relevant ones). And another,

connected from pin 22 to pin 25 on the J4 connector along the right-hand side within

the PET/CBM. This puts the machine into the monitor. (If the 'diagnostic sense' pin is

left low, switching on causes entry to the monitor, not BASIC. If it is disconnected,

pin 22 to pin 25 will reset the machine into BASIC, clearing most RAM). Unfortunately

this process is not hazard-free, since grounding reset is not safe (on the PET/CBM)

for more than a few seconds. Moreover, the start of the resetting process alters the

stack pointer irretrievably. The usual process on entering the monitor is to enter .X

to return to BASIC, then CLR to set the stack (among other things). Machine-code is

tidied by entering a meaningless command (usually .; is used) then changing SP to

#F8 or (BASIC 1) #FA.
A safer method (with fewer wires) uses the non-maskable interrupt (NMI) line,

which has a vector at (FFFA). This was unusable in BASIC 1, but BASIOl sets this

vector to print READY. In this case, pin 24 of J4 is momentarily connected to pin 25

of J4. Either of these methods, to be used routinely, require proper hardware, with

a capacitor arrangement to debounce the connection. (Note that these pins are marked

on the printed circuit board).* The NMI method fails with the X 2-type crash.

Software uncrashing relies on the normal interrupt sequence for its effect. If the

interrupt is off the method cannot work. And it too fails with X2 crashes. These re-

strictions are not very serious. The method is straightforward; we can redefine the

Stop key as a reset key by slightly modifying the interrupt processing.

An interrupt causes the program counter and status register to be pushed on the

stack, and the program counter to be loaded with the contents of (FFFE) .
In the PET

A,X, and Y are saved and a RAM address jumps to E685/E62E/E455. This is: JSR update

clock & load A from E812 (to test Stop), then the remainder of the routine and RTI to

return to the main processing.

If the RAM address points to a routine of this sort:

JSR update clock/load E812

CMP #EF
BEQ -1-3

JMP remainder of interrupt processing routine

JMP machine-code monitor

then the software reset is operational.

This routine leaves three bytes from the interrupt on the stack. Naturally a different

version is needed for each type of PET/CBM. BASIC 4 is slightly different from the

Instructions for wiring both types (simultaneously!) are printed (e.g.) in Kb-Micro-

computing, (J Strasma, Sept. '80). Some other hardware tricks of this sort are possible

with the 6502; RDY (ready) can halt the 6502 when it is fetching opcodes, so that

single instructions can be executed, for example.

Programming the PET /CBM -263- 8: Other peripherals

others; the version here causes the clock to run at 5/6ths normal speed with 12-inch

screen CBMs!*

BASIC 1 BASIC 2 BASIC 4

JSR FFEA 20 EA FF JSR FFEA 20 EA FF JSR FFEA 20 EA FF

CMP #EF C9 EF CMP #EF C9 EF CMP #EF C9 EF

BNE +3 DO 03 BNE +3 DO 03 BNE +3 DO 03

JMP 040F 4C OF 04 JMP FD11 4C 11 FD JMP D472 4C 72 D4

JMP E688 4C 88 E6 JMP E631 4C 31 E6 JMP E458 4C 58 E4

EPROMS Unmodified PET /CBMs have 7 sockets for ROMs on their printed circuit

boards; BASIC<4 uses 4, and BASIC 4 5, so that there are empty sockets spanning

$9000- 9FFF, $A000-$AFFF, and (BASIC <4 only) $B000-$BFFF. The sockets accept eith-

er 2K or 4K EPROMs, of type 2716 or 2532 respectively. An 'EPROM' ('Erasable Pro-

grammable Read-Only Memory') appears in use like a ROM; it can be read from, but

not written to. As its name implies, its contents can be erased and replaced; to do

this, an EPROM Programmer or 'Burner' has the required bytes loaded into it, and
these are entered in a semi-permanent way into the EPROM with a relatively high volt-

age pulse of 27 volts or so. Erasure is performed by removing the opaque covering on

top of the chip and exposing the chip to UV light from what has been called 'the

world's most expensive ultra-violet lamp'. One of the first PET chips was Nestar's

'Toolkit'; it was also one of the most popular. It added commands to BASIC using a

wedge. These are rather rudimentary trace, step and renumber facilities, tape append,

'find', and variable dump. Later BASIC extenders included 'Disk-o-Pro' for BASIC 2,

which adds the disk commands found in BASIC 4, and 'Command-O' for BASIC 4, with

screen and directory scrolling up and down, a 'print using', and search-and-replace

.

'Power' is another well-known EPROM, but there are many more, including some
complete packages (Visicalc, word processors). Most are designed for the $9000-$9FFF
slot, with $A000-$AFFF a close second. Obviously it is impossible to run EPROMs which
conflict in their requirements simultaneously. Some have alternative versions for several

slots; few if any will relocate. Multiple sockets are available which accept several chips

and allow switching between them, and this may be convenient (if expensive). Amongst
the several dozen chips on sale are some of the 'Toolkit' utility type, intended to help

with writing BASIC, and some providing similar help with machine-code. Others are

designed for business use, easing input and output for example, for graphics use,

some in association with hardware, and for tape or disk use. Some few are specific in

nature, dealing (say) with matrix calculations. Unfortunately, documentation is often

poor, and reviews are usually rush jobs which fail to mention bugs and pitfalls. The
purchaser of EPROMs therefore should be wary. Moreover, as the technology to copy
chips becomes more widely available, some of the incentive to produce good-quality
firmware is lost or at least weakened.

Other types of EPROM - EAROM = Elec trically Alterable ROM , for instance - are
only important when hardware modifications allow the CBM to write to 'ROM', so that

software can be held semi-permanently, in 'Instant ROM' and other products. This re-

quires the write-enable line and a power supply connected to the 'ROM' package.

Other Black Boxes More ambitious add-ons include CP./M, a well-known standard
microcomputer control program, designed for the Z80. The CBM has an external Z80,

which runs the program in place of its 6502. This is a radical difference. At the time

of writing, the U.K. company 'Small Systems Engineering' appears to have the only

working version. Prestel (Videotex in the US) is often demonstrated on micros, and
at least one system is available. At present this is (virtually) a receive-only system,
but 2-way transmission may be feasible - Mullard's 'Lucy' chip is reported to be able

to handle this at speed. Some multiple PET-to-disk systems exist, enabling users to

share the use of the relatively expensive disks.

Industry, process control, and research Industrial applications of PET-type micro-

computers range from dedicated (i.e. single) operation as an electronic instrument, to

'''This can be programmed around by loading the accumulator from E812 independently of

the clock update routine; LDA E812/ CMP E812/ BNE -8/ CMP #EF/ BNE +3/ JMP MONITOR/
JMP IRQ SERVICE. The E812 processing provides a simple debounce.

-264- 8: Other peripherals
Programming the PET /CBM

fairly large-scale process control. Full explanation of the hardware side of this is out-

side the scope of this book.* But a few examples illustrate what can be achieved with

the aid of these machines. Most such applications are developed in industrial or acad-

emic laboratories, with some interchange of ideas between the two. Early examples in-

clude stepper motor control, one of the easier devices to program, and measuring and

inspection machinery, "such as balances and gauges. Data loggers, taking advantage ot

the video display, include equipment like transient recorders and spectrum analysers.

Control equipment has been developed to handle the more mechanical side of research

into animal behaviour. Smaller-scale models of test rigs have been constructed: a much-

publicised motor-engine tester and a computer-controlled drill, again are typical of the

sort of thing. There is a well-known standard computer application of mathematical

theory to cutting up sheets of metal, paper, etc., which is the sort of optimisation pro-

cess capable of calculation by the microcomputer . Recently, the computer press carried

a story of a CBM equipped with hardware (via the user port) and software which were

able between them to control a dairy packaging system. The engineering side of the

packaging machinery was controlled by pneumatic valves.
_

Successful hardware of any degree of complexity requires considerable skill in

design partly because of the difficulties in estimating overall tolerances and cumulat-

ive errors in all the parts when they are put together. As for the software, I quote

the Chairman of Research Machines Ltd: "It is virtually impossible to overstate the time

taken to get software up and running ... a successful application withm one year

means you're doing well at the moment...".

Single on-off switches are easy to implement with machines like the Fkl
;

ail

that's needed is a set-up which protects the PET from excessive current or voltage

while amplifying its signals. Chips which demultiplex (e.g. 3 wire to 8 wire convert-

ers) are commonplace. Analogue-to- digital conversions and vice-versa are more diffic-

ult, because more lines are used up; so (say) temperature control is harder work, un-

less simple on-off controls are sufficient. Such devices may have to be polled (i.e.

examined in turn), or controlled by regular timing, or perhaps use an interrupt. In

addition, data conversion may be needed by or from pieces of equipment with non-Fbl

data conventions. Of course, an off-the-shelf package of combined hardware and soft-

ware, if it exists, may be able to deal with all these matters satisfactorily.

The program reads and displays the

input from an analogue-to- digital converter.

This one (a Siliconix LD130) converts volt-

ages from 0-1 into binary coded decimal

output, one digit at a time, so the hundreds,

tens, and units figures are output individually

The result is .000 to .999. Bit 7, when set

low, signals correct data in the byte; bits 4,

5, or 6 signal units, tens, or hundreds, de-

pending on which one is high; and bits 0-4

hold the current value, 0-9, of units, tens,

hundreds. Hardware programming differs

from ordinary PET /CBM program in that the

addresses which look like RAM in fact vary

according to external events, so the style of

programming has to reflect this. The compar-

atively long-winded programs which result

are typified by this specimen.

: VALID PULSE

TABLE #40 #20 #10; TEST H,T, OR U

START LDA E84F ; AWAIT END OF
BPL START
LDX #00
LDA E84F
BMI WAIT

WAITV

COMP

NEXT

; AWAIT VALID DATA

BIT TABLE, X; 100s? [10s? Is?]

BEQ NEXT ;IF NOT, BRANCH

CLC
ADC #30
STA 8000, X; NUMBER ON VDU
BNE WAITV
INX
CPX #03 ;ALL 3 DIGITS?
BNE COMP ; BRANCH IF NOT YET
BEQ WAITV

*A small number of books deal with CBM-related hardware. The most recent is 'PET Inter-

facing' by J Downey and S Rogers; this is not an introductory text. 'Programming and

interfacing the 6502'
.
(M DeJong) deals with the 6502, not specifically the PET/CBM, xn

some detail. Both these titles are listed as 'Blackburg Series' publxcatxons xn the

US Of earlier books, Caxton Foster's 'Programming a Microcomputer: 6502' xs all about

hardware, but mostly the KIM-1; and Zaks ' '6502 Applications Book' has nothing specxfxc

011 the

Th7computing press has hardware articles; often, rather surprisingly, hardware

is covered more reliably by journals of the Wireless World and Practical Electronxcs

type where Presumably! the readership and editorial staff expect a reasonable stand-

ard of accuracy. Sometimes outside contributors have a similar effect; for example

CPUCN 3 #3 has an article on parallel to serial conversion by A Strutt & K Hobbs of

ICI which is unusually well thought-out.

Programming the PET/CBM -265- 9: Graphics and sound

CHAPTER 9: GRAPHICS AND SOUND

9.1 PET/CBM Screens

Screen and character-generating ROM All CBM machines to date have had a screen

(or VDU - visual display unit) built in. Commodore's VIC ('Video interface chip' - or

'Volkscomputer' in Germany, to avoid an unfortunate pun) departs from this tradition,

using, like Apple and Tandy, an external TV, so that colour is available. PET/CBMs
have 8 inch or 12 inch screens, always black and white; a colour computer demonstrat-

ed by Commodore at a show hasn't subsequently resurfaced.

Confining ourselves to current models, we can see that the original, blue-white

phosphor 8 inch screens were replaced by 8 inch green screens, which have now been

replaced by 12 inch green screens, presumably to cut down on manufacturing hassle.

All new models, whether 40 or 80 column, now have 12 inch screens. In the course of

time, probably the 40-column models will be discontinued in favour of 40-column VICs.

(This is a guess on my part). The internal circuitry has been tidied and modularised

in the process. Its system is peculiar to Commodore.
The signal sent to the screen (or to an external monitor) has three components:

horizontal position, vertical position, and indication whether or not to put a dot on the

screen. Each character is made up of 8 dots by 8; typically only 7 by 5 make up the

actual area holding the points of the character, so the edges of characters don't inter-

fere too much with their neighbours. Nevertheless the appearance of reversed capitals

can be improved by printing CHR$(100)s above them; and the 12-inch machines have

the facility to change line separation using the CRT chip. CBM printers have 8 by 6

characters, and so cannot exactly reproduce the screen. Since each screen character is

8 dots deep, there are 8*25 = 200 scans of the screen before flyback to the start. As

we shall see, the flyback is handled differently by the newer machines, making for

some ROM incompatibilities with the older models.

External monitors can be connected to PET/CBMs to enable (say) a class to watch

a demonstration program; the hardware is connected to the user port, which provides

video, vertical, and horizontal signals from connections 2,9, and 10 respectively. See

CPUCN, joint issue 1 and 2 or the 'Pet Revealed' for circuit diagrams (neither of which

I've tested). These produce output suitable for monitors, not UHF TVs.

The actual pattern of dots making up a character is created by the character-

generating ROM,*which is in the main board of the PET/CBM near the other ROMs. It

converts any byte into a fixed pattern, in a manner similar to a look-up table. 256

separate patterns are stored within it, although it is possible to switch between several

ROMs, and Commodore has its well-known pair of character sets available. POKEing
59468 with 12 or 14 switches the character generator ' into its upper case/ graphics

mode or its lower/ upper case mode. The character sets are in fact very similar, ex-

cept for the fact that A-Z when shifted produces graphics characters in the one case,

and alphabetic characters in the other. Most (all but four) of the remaining characters

are unaffected by the ROM poke; the chart on the following page shows the arrange-

ment. If PRINT statements are being used, it is impossible to have both the full set of

graphics and lower- and upper-case, as the chart shows, and experiment will prove.

Commodore's VIC uses analogous, but different, principles. The 22-column version has

22 by 23 characters, fitting slightly less than 2 pages of RAM - 506 bytes of 512. The

character generation is a RAM function, so user-definable character sets are quite easy

(if laborious) to write. Each character's colour is controlled by 3 bits, from a byte

in a 506-byte table. Only one background colour and one border colour can exist.

NEXT PAGE: Table of CBM 'ASCII' characters, in decimal/ hex order:-

Example: PRINT "$" and PRINT CHR$(36) print the dollar symbol.

PRINT CHR$(65) prints 'a' or 'A' depending on the screen's mode.

PRINT CHR$(19) and PRINT "[HOME]" (i.e. PRINT "") home the cursor.

*These control characters are available only on the 8032 and 12-inch 4032.

2Note that 96- 127 and 224- 255 appear as repeats of characters 32-63 and 160- 191.

So PRINT CHR$(98) prints a quote mark; however, the quotes flag is not set. There

are 64 ordinary characters and 64 graphics/ upper case characters in all.

3 8032 only.

Programming the PET
00

1 01

2 02

3 03

4 04

5 05

6 06

7 07

8 08

/r-RM

STOP

9 09

10 0A
11 OB
12 0C
13 0D
14 OE
15 OF
16 10

17 11

18 12

19 13

20 14

21 15

22 16

23 17

24 18

25 19

26 1A
27 IB
28 1C
29 ID
30 IE

31 IF
32 20

33 21

34 22

35 23

36 24

37 25

38 26

39 27

40 28

41 29

42 2A
43 2B
44 2C
45 2D
46 2E
47 2F

48 30

49 31

50 32

51 33

52 34

53 35

54 36

55 37

56 38

57 39

58 3A
59 3B
60 3C
61 3D
62 3E

63 3F

BELL*

TAB*
LINE FEED

RETURN
TEXT*
SET TOP 3

CURSOR DOWf*

REVERSE
HOME CURSOR
DELETE CHR.
DELETE LINE*
ERASE END*

SCROLL UP*

ESCAPE*

CURSOR RIGHT

SPACE
I

QUOTE

/

1

2

3

H

5

6

7

8

9

64 40

65 41

66 42

67 43

68 44

69 45

70 46

71 47

72 48

73 49
74 4A
75 4B
76 4C
77 4D
78 4E

79 4F

80 50

81 51

82 52

83 53

84 54

85 55

86 56

87 57

88 58

89 59

90 5A
91 5B
92 5C
93 5D
94 5E

95 5F

96 60
97 61

98 62

99 63

100 64

101 65
102 66

103 67

104 68

105 69
106 6A
107 6B
108 6C
109 6D
110 6E
111 6F
112 70

113 71

114 72

115 73

116 74

117 75

118 76

119 77

120 78

121 79

122 7A
123 7B
124 7C
125 7D
126 7E
127 7F

A
B
C
D
E
F
G
H

i I

J
J

k K
I L
m M
n N

-266- Q- r.rnnhir* nnri snunrl

P
Q
R
S
T

u U
v V
w W
x X

128 80

129 81

130 82

131 83 [D]LOAD&RUN
132 84

133 85

134 86

135 87

136 88

137 89 SET TAB*
138 8A
139 8B
140 8C
141 8D
142 8E
143 8F
144 90

145 91

146 92

147 93

148 94

149 95

150 96

151 97

152 98

SHIFT-RETURN
GRAPHIC*
SET BOTTOM 3

CURSOR UP
REVERSE OFF
CLEAR SCREEN
INSERT CHR.
INSERT LINE*
ERASE START*

y y 153 99

z Z 154 9A

[155 9B

\ 156 9C

] 157 9D
t 158 9E
<- 159 9F

SPACE 2 160 A0
; 161 Al
ii 162 A2
163 A3
$ 164 A4
% 165 A5
& 166 A6
1 167 A7
(168 A8
) 169 A9
* 170 AA
+ 171 AB
r 172 AC
- 173 AD
. 174 AE
/ 175 AF

176 B0
1 177 Bl
2 178 B2
3 179 B3
4 180 B4
5 181 B5
6 182 B6
7 183 B7
8 184 B8
9 185 B9

186 BA
; 187 BB
> 188 BC
= 189 BD
< 190 BE
7 191 BF

SCROLL DOWN*

CURSOR LEFT

SHIFT-SPACE
c
u

CH
Q
LBE
QH
H
E3
CC
aan
gz
n
aaH
fg

192 CO
193 CI
194 C2
195 C3
196 C4
197 C5
198 C6
199 C7
200 C8
201 C9
202 CA
203 CB
204 CC
205 CD
206 CE
207 CF
208 DO
209 Dl
210 D2
211 D3
212 D4
213 D5
214 D6
215 D7
216 D8
217 D9
218 DA
219 DB
220 DC
221 DD
222 DE
223 DF
224 E0
225 El
226 E2
227 E3
228 E4
229 E5
230 E6
231 E7
232 E8
233 E9
234 EA
235 EB
236 EC
237 ED
238 EE
239 EF
240 F0
241 Fl
242 F2
243 F3
244 F4
245 F5
246 F6
247 F7
248 F8
249 F9
250 FA
251 FB
252 FC
253 FD
254 FE
255 FF

B
A ^
B [D
c B
B
HO

D
E
F
G
h a
i a
j eg
k ED
L
M S
N 12
o
p
Q
R
S
T
U
V
w
X
Y
z

BB
E
m

n

3
m

_ H
SS H
REPEATS 5

Programming the PET /CBM -267- 9: Graphics and sound

The earliest PETs followed other computers in giving capital letters primacy, so

the shift key moves from upper case to lower case. CBM machines adopted the normal

typing convention of shifting to upper-case. Their character-generating ROMs are

consequently different, so that the chart on the previous page has its two sets of

alphabetics arranged with 65-90 as upper case only, and 193- 223 as lower-case or

graphics. This leads to a confusion of terminology. We can talk about 'lower-case mode'

and 'graphics mode' with anything except BASIC 1; 'standard' and 'alternate' character

sets are often used to describe this earliest arrangement, where 'standard' means that

shift gives lower-case, and 'alternate' shifts to graphics. I shall use 'graphics mode'

(POKE 59468,12) and 'lower-case mode' (POKE 59468,14), hoping that business key-

board users, with graphics obtainable only by poking, will understand!

A couple of simple programs show how the screen memory and the character-gen-

eration interact. PET /CBM screens are wired so that consecutive RAM locations store

the characters in the screen in the normal left-to-right then down sequence. The
starting location is $8000, exactly midway in the 6502's memory map. 40 column mach-

ines store 40*25 (1000), and 80 column machines 80*25 (2000) bytes in this way. The
address decoding is incomplete, so PEEKs and POKEs to locations outside the expected

range produce echoes or 'images' in the screen. The 40 column machine uses 1000 of

1024 bytes, $8000- $83E7, to map the screen. (This is 32768- 33767). The 24 bytes

from $83E8- $83FF are normally unused.
In a 40-column machine, $8400 behaves just like $8000. An 80-column machine, of

course, maps its screen to $8000- $8800. Since the starting address ($8000 = 32768) is

identical in each machine,* the following simple program displays all 256 characters

which the ROM can generate:

10 FOR J = 32768 TO 32768 + 255 :REM 256 VALUES NEED 256 SCREEN LOCATIONS

20 POKE J,K: K=K+1 :REM POKE 0, 1, 2, 3, . .
.

, 255

30 NEXT

This fills the top few lines of the screen with an entire character-set. We can look at

both character sets by adding this line to switch between the two:

40 POKE 59468,12: FOR J = 1 TO 500: NEXT: POKE 59468,14: FOR J=1T0500 : NEXT : GOT040

This displays all the characters which can be generated, since no other values than

to 255 can be stored in the screen RAM, and only two modes exist. It may surprise

business keyboard users to see all these graphics, which cannot be entered from the

keyboard; the decoding process of the keyboard is rewritten (e.g. in the 8032) to

remove these characters. Chapter 13 gives a machine-code routine to enable any char-

acter to be input from the keyboard. A table of CBM screen memory, showing decimal

and hex values corresponding to graphics poked / peeked to the screen, on the next

page shows the entire gamut of characters for BASIOl. Where lower-case mode and
graphics mode differ, the two alternative appearances are placed side by side. It is

impossible for the pi symbol and the 4 by 4 chequered symbol to appear on the same
screen, or for lower-case x and the heart symbol to co-exist; limitations like these

should be borne in mind.
By careful synchronization, it is possible to watch characters changing modes. In

fact, with machine-code, the screen can be made to display non-existent characters,

made up of single lines from several different characters! However, the severe time

requirements make this technique hard to use. This BASIC program 2

10 FOR J = 1 TO 1000: PRINT "A";: NEXT: REM I.E. SHIFT-A. USE 2000 FOR 80-C0LS

.

20 X=59468: Y=12: Z=14 : REM ROM LOCATION AND ITS POKES

30 POKEX,Y:POKEX,Z:GOTO30 : REM RAPID SWITCH BETWEEN MODES

first fills the screen with a character which changes when the mode alters; I've put a

shifted letter to ensure that the program will work with BASIC 1! Line 30 takes about

l/120th of a second to execute; BASIC 4 machines find this too fast, so slow line 30,

*VIC again is different: although the screen is memory-mapped to RAM, the actual loc-

ation can vary, depending on the amount of RAM installed.

2 Dr R Chiswell, in SUPA of March 1981, writes that people with certain forms of epil-

epsy (e.g. temporal lobe epilepsy) may have an attack induced by the program.

'Creative Computing' (Vol.6, #10; dated Oct. '78) has some information on video

displays. This journal specialises in, or at least is biased towards, articles on

graphics, games, and sound.

Programming the PET/CBM -268- 9: Graphics and sound

00 @ 32 20 ft 64 40 B 96 60 128 80 m 160 A0 192 CO B 224 EO m
1 01 a A 33 21 i 65 41 Affl 97 61 E 129 81 HH 161 Al a 193 ClHa 225 El u
2 02 b B 34 22 ii 66 42 B[D 98 62 B 130 82 HE 162 A2 B 194 C2[3n 226 E2 H
3 03 c C 35 23 # 67 43 CB 99 63 D 131 83 SB 163 A3 195 C3HB 227 E3 B
4 04 d D 36 24 $ 68 44 DQ 100 64 D 132 84 H0 164 A4 ki 196 C4®H 228 E4

5 05 e E 37 25 9. 69 45 EQ 101 65 n 133 85 S@ 165 A5 ffi 197 C50S 229 E5 IB

6 06 f F 38 26 ?, 70 46 FB 102 66 B. 134 86 QH 166 A6 s 198 C6QB 230 E6 M
7 07 g G 39 27 71 47 cm 103 67 a 135 87EJIS 167 A7 u 199 C713B 231 E7 P
8 08 h H 40 28 (

72 48 HO 104 68 S 136 88 038) 168 A8 u 200 C8QQB LS& bo B5a

ma
9 09 i 1 41 29)

73 49 1 a 105 69KH 1S7 89 HH 169 A9 m 201 C9HH 233 E9

10 0A j J 42 2A * 74 4A J Q 106 6A a 138 8ABH 170 AA 202 CAHH 234 EA

11 OB k'K 43 2B + 75 4B K0 107 6B DB 139 8BES12 171 AB a 203 CBSB 235 EB

12 OC 1 L 44 2C 76 4CLD 108 6CQ 140 8CBDI 182 AC Wk 204 CCHH 236 EC B
13 OD m M 45 2D - 77 4D MS 109 6DH 141 8DB3EB 183 AD B 205 CDfflB 237 ED ts

14 OE n N 46 2E . 78 4E N0 110 6E El 142 8EBGS 184 AE m 206 CEBQB 238 EE Bl

15 OF o 47 2F / 79 4F on 111 6F H 143 8FBS 185 AF a 207 CFHH 239 EF H
16 10 p P
17 11 q Q
18 12 r R

48 30 n 80 50 PCJ 112 70 Q 144 90 HH 186 B0 ~W 208 DO SB 240 FO B
49 31 1 81 51 Q® 113 71 B 145 91 ESQ 187 Bl B 209 D1@D 241 Fl H
50 32 ? 82 52 RQ 114 72 146 92JHH

147 93JB0
188 B2 m 210 D2EH 242 F2 B

19 13 s S 51 33 3 83 53 s a 115 73 ffl 189 B3
-S-

211 D3BC 243 F3 O
20 14 t T 52 34 4 84 54 TP 116 74 C 148 94HH 190 B4 E3 212 D4HB 244 F4 WL

21 15 u U 53 35 s 85 55 UQ 117 75 E 149 95 Hffl 191 B5 H 213 D5QSB 245 F5 Li

22 16 v V 54 36 6 86 56 VH 118 76 [J 150 96 Hffl 192 B6 s 214 D6fS§3 246 F6 U
23 17 w W 55 37 7 87 57 W@ 119 77 n 151 97 BIB 193 B7 u 215 D7HKS 247 F7 W_
24 18 x X 56 38 8 88 58 Xffl 120 78 H 152 98 BBS 194 B8 m 216 D8J2H 248 F8 B
25 19 y Y
26 1A z Z

57 39 q 89 59 YQ 121 79 H 153 99J3S3 195 B9 H 217 D9H1 249 F9 B5OB58 3A 90 5A ZIS 122 7A0Q 154 9AH@ 196 BA B 218 DA@Q 250 FA

27 IB [59 3B 91 5BQ3 123 7BH 155 9B Q 197 BB B 219 DB S3 251 FB 9
28 1C \ 60 3C < 92 5Cf] 124 7c n 156 9C B 198 BC H 220 DC B 252 FC B
29 ID]

30 IE f

61 3D 93 5D ni 125 7DE1 157 9D H 199 BD B 221 DD D 253 FD a
«2 3E > 94 5EBH 126 7EB 158 9E 200 BE S 222 DE0B 254 FE u

31 IF <- 63 3F 7 95 5FSH 127 7F H 159 9F S 201 BF ti 223 DFSK 255 FF H5

shifted t
shifted ;

reversed

PET /CBM SCREEN MEMORY

for example with redundant spaces, to about 1/ 100th second. When the program runs,

the screen fills with repeats of a character - this tedious part can be speeded up in

various ways, e.g. by printing fewer, longer strings - then enters an infinite loop. A

band, corresponding to the times when the character set is changed by a poke from

line 30, but is not yet changed back, appears on the screen. Close examination of

individual characters shows they are partly made up from shift-A, and partly from the

spade graphics character. (I am referring to those characters which form the bound-

ary of the bands). How does this happen? Line 30 runs in synchronization with the

screen refresh. That is, every 60 times per second, or 50 with the 8032, the screen

finishes scanning (the scan reaches the bottom) and an interrupt is generated, the

identical interrupt to that which drives the keyboard input processing. After a short

period of flyback, the screen is refreshed, scanning again from top to bottom. Our

BASIC program changes the mode exactly twice during one complete scan, so the screen

is separated into bands. If the timing of BASIC slows slightly, the bands will start to

roll up, and vice versa. (Try pressing a key). The analogous process in machine-code

works on the following lines: there are 8*25 = 200 lines of dots, all of which are scan-

ned in (say) l/50th second. Therefore one row of dots takes about 1/10 000 th second

to be refreshed on the screen. This interval allows 100 clock pulses to occur, so a

machine-code routine can replace some of the characters (not all 40 or 80!) before the

next line of dots is scanned. The process must be repeated with each. screen refresh

to give a static image. .

Alternative character-generating ROMs to those supplied can be made in EPKOM

form fairly cheaply, although in practice there does not seem to be much demand for

them The entire 'graphics mode' set can be changed, so that POKE 59468,12 makes

the alternatives (e.g. Prestel) available, while retaining 'lower case mode for use

Programming the PET /CBM -269- 9: Graphics and sound

when the system is loading and running normal programs.

PRINT, POKE and PEEK The double usages of the screen memory and ASCII can be

very confusing. It may be some consolation to recall that Commodore themselves seem

to have been confused when designing the software for their printers. Let's start with

the screen memory. We've seen that POKE puts a character on the screen, and that

each poke corresponds to a character. In fact, there is a one-to-one relation, with the

sole exception of space (CHR$(32)) and shift-space (CHR$(160)) which look alike but

PEEK differently. There is no ambiguity about the screen: provided we know which

mode it is set to, and provided we're not worried about shifted or unshifted spaces,

the character's appearance tells us the value we shall peek from its RAM location. This

diagram shows the relationship between the keys pressed and the screen:

BIT 7 BIT 6 BITS 5,4,3,2,1,0
1=REVERSED 1=SHIFTED REPRESENT ANY CHARACTER

0=UNREVERSED 0=UNSHIFTED FROM 0-63 IN SCREEN RAM

Because of this, bit 7 simply needs to be reversed to switch a character from reversed

to unreversed and back. For example, EOR #$80 has this effect in CBM graphics. Not

all computers use this system. Apple high resolution graphics use EOR #$FF, since

every bit has to be reversed. Bit 6 selects either the unshifted or shifted part of the

character set. In this case, EOR #$40 shifts and unshifts a character alternately. The
remaining bits offer 26 = 64 combinations, which are roughly divided into the alphabetic,

numeric and punctuation symbols, and graphics. There is a maximum of 64 graphics;

but reversing each of these extends the set, and in fact is the only way to complete

some of the graphics subsets, as we shall see.

PRINTing has to convert ASCII characters into the screen form. True ASCII
reserves the first 32 characters for control information, and PET took this idea over,

although many PET screen editing functions bear little relation to any ASCII function.

So, because of the screen memory arrangement, PRINT CHR$(65) or PRINT "a" has

to poke 1 into the screen. To do this it simply drops the 6th bit from the ASCII

value, after testing whether the character to be printed might be a control character.

This is the reason for the repeats in the table of CBM 'ASCII' characters, two pages
before this. Note that a reversed character cannot simply be printed; it must be pre-

ceded by the [RVS] key, or, what amounts to the same thing, the reverse flag must

be set, $9F ($020E in BASIC 1) holding a non-zero value. This can be irritating when
a graphics set is saved from the screen as strings: one of the manuals demonstrates

graphics with a rocket which is drawn on the screen, then saved as BASIC by homing
the cursor and typing 10" [return], 20" [return], and so on. What they don't say is

that reversed characters, which are often necessary for a full effect, can't be saved

in this way in a string. Instead the string must be punctuated with [RVS] and
[RVSOFF] symbols.

How does PRINT work? Chapter 5 has information on this; we need consider only

output to the screen. Typically this involves the kernel routine $FFD2, 'OUTPUT A
CHARACTER'. This first checks for the device number; when 3 (i.e. screen) is found,

the current A,X, and Y values are saved, and a set of routines entered, depending
on whether the shift key was pressed, and so on. Control characters are tested by
routines which are, in wide-screen CBMs, remarkably tortuous. Ordinary characters

go by a different route to subroutines which put the correct byte into the screen (at

last!) and update the screen cursor postions and so on, before recovering A,X, and Y
and returning. It is not surprising that poking the screen direct in machine-code is

the fastest way to transfer data to the screen. For this reason, all games and graph-
ics programs, and routines which perform functions like reversing the screen or stor-

ing screens in RAM, directly load and save the RAM values in machine-code using
load accumulator - store accumulator style operations. So why use the routine to print

at all? The answer is: it is convenient. All the screen scrolling, calculation of new
lines, cursor homing and movement, is easily done. Poke requires both machine-code

and screen-position calculations; BASIC POKEing is not efficient.

The portion of PRINT which puts a byte into the screen differs between 8 inch

screen PETs/CBMs and their later counterparts. The difference is in hardware, and it

is reflected in the software. The routines (E7AC in BASIC 1, E6EA in BASIC 2, E606

in BASIC 4) are of two types; one waits until bit 5 of $E840 is zero before storing the

accumulator's contents in the screen. The other, more recent, type doesn't wait, but

slaps the characters in at full speed. (I quote Jim Butterfield). In the first case, the

Programming the PET /CBM -270- 9: Graphics and sound

object of the delay is to wait for the 'retrace interrupt' to be signalled which means

that flvback is taking place. In the earliest PETs the screen was blanked during this

Sterol! and new characters written into the screen memory. When refresh took place,

£e new characters appeared. Direct poking caused 'snow', because the character gen-

erator couldn't tell whether some dots were supposed to be black or white. Hence this

type of thing:
TAY ; SAVE BYTE . .

.

LDA E840 ; AWAIT RETRACE INTERRUPT...

AND #20
BNE —7

TYA ;AND RESTORE BYTE FOR SCREEN POKE.

BASIC 2 has this same formula in it; BASIC 4 has dropped it, at least in the 12 inch

versions. A hardware rearrangement made it unnecessary. Because of this, BAbic 4

in the very earliest PETs will give a 'snowstorm' effect (well, it's not really that bad).

With PRINT, a fair amount of time is wasted if retrace has to be waited tor,

because only a very small proportion of the scan's time is taken up with the interrupt.

In fact, only a tiny number of bytes, perhaps ten, can be fitted into each of these

flybacks. The fast-screen POKEs, discovered several years ago, and then recalled Irom

some software when their harmful effects on certain machines became known, work by

causing this delay not to happen. POKE 59458,62 speeds up screen writing by a factor

of about 6, in BASIC 1 and BASIC 2 machines. This improves the appearance so much

that it is pretty well compulsory with BASIC. Unfortunately, the hardware modification

which helped take the 3032 into the 8032, and which made this type of poke redundant,

is affected by the poke, so that software including the poke should not be transferred

to BASIC 4 machines. The damage is not immediate; the screen picture collapses or

diminishes, and eventually a curl of smoke comes from the machine ...(I quote Jim

Butterfield again).

9 2 The CRT Controller chip 12 inch screen CBMs, but not 8 inch, contain a 6845

CRT (cathode ray tube) controller chip. Motorola's MC6845 is designed for raster-scan

displays and can be configured for 'almost any' screen density; notably 80 by 25. It

includes facilities for cursor control and light pen operation, not used by CBM. The

manufacturer's data sheets are informative and include examples of parameter calcul-

ations used when initialising the chip. Confining ourselves to Commodore's implement-

ation, we find the two RAM locations, wired to the address register and the register

file, at $E880 and $E881 respectively. The first of these is an 'indirect' or 'pointer'

register: its contents may be 0-17 (it has 5 bits only) and, depending on the value,

the corresponding register, 0-17 is accessed, and a new parameter may be put in it.

To see how this works, we find that a jump table in the CBM controls the CRTC. On

switching on, the CRTC is initialised by a jump to $E018. This puts the machine into

lower-case mode and separates the individual lines of text. The same effect is obtained

by PRINT CHR$(14), 'Set text', or of course by SYS 57368 or JSR $E018 from BASIC

or machine-code. Graphics mode is initialised by a neighbouring jump, $E01B, which

can be performed by PRINT CHR$(142), 'Set graphic mode', or by SYS 57371, or by

JSR $E01B.* A further jump table entry, $E01E, should be loaded before it is called

with appropriate values for A,X, and Y; it is a user-definable entry point.

When any of these three routines arrives at $E088, A and X are assumed to

point to ROM or RAM, X being the high byte and A the low. The Y-register holds 12

or 14 decimal; this is poked into the location to control upper /lower case and graphics.

Then 18 bytes, from the address pointed to up, are poked into the register file; this

means that the address register is alternately poked with the register number. On the

next page is a listing of a short BASIC program which exactly simulates the action of

this The order, from 17 to 0, mimics that of the machine-code, and the table of 18

bytes is identical to that for lower-case mode. Running the program therefore has no

effect when in normal lower-case mode. However, if the screen is set to graphics mode,

or lowercase mode with the lines next to each other (e.g. PRINT CHR$(142): POKE

59468 14) the program will make the screen revert to its switch-on appearance. The

DATA values for graphics mode are: 0,0,0,0,0,16,0,0,7,0,37,25,0,49,15,41,40,49.

These addresses relate to the 8032; at the time of writing I haven't definite evidence

on 12 inch 4032s. In any case it's not hard to find the relevant code; for example,

the reset vector can be followed until a reference to locations E880 & E881 is found.

Programming the PET/CBM -271- 9; Graphics and sound

CRT CONTROLLER PROGRAM IN BASIC (80 COLUMN CBM)

100 FOR J = 17 TO MTEP -1

I 10 POKE 59520,

J

120 READ X: POKE 59521,

X

130 NEXT
200 DATA 0»0»0»0»0»16»0»0»9»0»32»25,0,39»15»41»40»49
210 REM PUT EACH DATA ITEM ON ITS OWN LINE FOR EASIER EDITING

There is little difference in setting for each mode. (These values are from tables at

E72A - E73B and E73C - E74D for lower-case and graphics modes respectively). We can

now, using this table of registers as a guide, investigate the chip further. Note that

some combinations of inputs produce odd effects with the CRT; I've been told that it's

unlikely that damage could result, but nevertheless the high-voltage equipment which

operates the tube can emit noises of the sort you'd rather hear on other peoples'

machines.

REGISTER # REGISTER FILE DESCRIPTION CBM LOWER CASE/ UPPER CASE VALUES REGISTER BITS

HORIZONTAL TOTAL 49 ($31) 49 ($31) 0-7

1 HORIZONTAL DISPLAYED 40 ($28) 40 ($28) 0-7

2 HORIZONTAL SYNC POSITION 41 ($29) 41 ($29) 0-7

3 HORIZONTAL SYNC WIDTH 15 ($0F) 15 ($0F) 0-3

4 VERTICAL TOTAL 39 ($27) 49 ($31) 0-6

5 VERTICAL TOTAL ADJUST ($00) ($00) 0-4

6 VERTICAL DISPLAYED 25 ($19) 25 ($19) 0-6

7 VERTICAL SYNC POSITION 32 ($20) 37 ($25) 0-6

8 INTERLACE MODE ($00) ($00) 0-1

9 MAXIMUM SCAN LINE ADDRESS 9 ($09) 7 ($07) 0-4

10 CURSOR START ($00) ($00) 0-4*

11 CURSOR END ($00) ($00) 0-4

12 START ADDRESS (HIGH) 16 ($10) 16 ($10) 0-5

13 START ADDRESS (LOW) ($00) ($00) 0-7

14 CURSOR (HIGH) ($00) ($00) 0-5

15 CURSOR (LOW) ($00) ($00) 0-7

16 LIGHT PEN (HIGH) ($00) ($00) 0-5

17 LIGHT PEN (LOW) ($00) ($00) 0-7

Note that register 1 holds the horizontal display; this is 40, not 80, as might be ex-

pected. If this register is changed to say 41, by POKE 59520,1: POKE 59521,41 then

the text will slope diagonally to the left, and the cursor moves in a crablike diagonal

direction. A program called 'CBM 4032 C CHEE' reconfigures the 8032 as for a 40-column

machine by (I presume) putting 20 into register 1. Register 9 controls the number of

scans given to each character. 7 puts no blanks between adjacent lines; 9 puts 2. A
value of 6 in this register loses the bottom line of dots, including lower-case decend-
ers. A short program of the following type can be used to watch the effect of any
register:

10 POKE 59520, R :REM REGISTER NUMBER; CHOOSE 0-17
20 FOR J = TO 128 :REM OR CHOOSE OTHER LIMITS; TABLE ABOVE INDICATES MAXIMA

30 POKE 59521, J: GET X$: IF X$="X" THEN PRINT CHR$(14): END

40 GET X$: IF X$<>" " GOTO 40

50 NEXT

Each press of the space-bar will change the register-value . Entry of 'X' at the key-

board provides an emergency exit (just in case!) and returns to normal.

Register 6 controls the number of lines printed; if these exceed 25, garbage

appears from higher up the screen memory. Register 13 alters the start address- the

screen shifts left with wraparound. Register 12, holding 12io, reverses the screen!

So POKE 59520,12: POKE 59521,12 reverses the screen. Registers 4 and 7 between

them control the position of the characters on the screen, rather like horizontal hold

on a TV. I have been unable to get characters to come out in reverse, although I

suspect this may be possible.

*Bit 5 sets blink period control, and bit 6 sets blink/non blink.

-272- 9: Graphics and sound
Programming the PET /CBM

9.3 Graphics and the PET/CBM

BASIC qraphics Commodore has retained its set of graphic characters in all its

machines, including VIC. As we have seen, there are 128 graphics in total, or more if

some of the alphanumeric or punctuation symbols are included. They have not added

a high resolution facility, though hardware is commercially available which will do this.

Some other machines have upgraded to high resolution graphics, such as the newer

Sharps; and some, notably Apple, have had high resolution, and colour of a sort, all

along PET/CBM users generally have to do without elaborate graphics; Commodore nas

allocated such activity to its VIC evolutionary branch. CBM graphics displays usually

have a Prestel-like quality, apparently being made of a jigsaw of little bricks. The

character-generation also has an annoying defect, causing some adjacent blocks ot

reversed characters not to connect properly, leaving small lines. Nevertheless there

are advantages in the CBM approach. Unlike external TV sets, the monitor picture is

stable. Moreover the graphics are fast, since only one or two thousand fill the screen.

Apple high-resolution pictures need 8K of RAM storage. It is also possible to replace

the character-generator with a fast EPROM containing (say) Prestel characters or

128 user-defined graphics (the other 128 being their reversed forms).

'Cross-reference to CBM graphics characters' - see the table on the following

page - groups the individual graphics in a helpful way. There seems to be no method

in the ordering of these characters in ROM. Note that, when reverse is taken into

account, the sets of graphic type are all complete, with the exception of the shaded

blocks. ,

Programmers unused to the graphics set, or perhaps looking for ideas on now

best to combine graphics characters, could to worse than experiment with a short

BASIC program like this:

10 POKE 59468,12: INPUT "LOWER CASE SET (Y/N)"; YN$: IF YN$="Y" THEN POKE

59468,14
20 INPUT "CHARACTER STRING"; X$

30 FOR J=l TO 5: X$=X$+X$: NEXT: REM INCREASE LENGTH OF STRING FOR SPEED

40 FOR J=l TO 1000/LEN(X$): PRINT X$; : NEXT: RUN

This accepts input of a short string of graphics characters, then fills the screen with

repetitions of the string. Interesting optical effects can be found; for example, the

diagonally-shaded squares in lower-case mode produce a herringbone pattern which

displays a well-known optical illusion. A string with format xxxyzzy may work well,

and so on. Obviously, if the input string is 2 or 4 characters long, the result will be

rectilinear, since each line will exactly repeat the previous line. Otherwise, the patt-

ern naturally has a diagonal symmetry. Note that the program is designed for a 40

column machine; line 40 prints about a thousand individual characters. The 8032 is less

amenable to graphics than its earlier counterpart; to display the full range, input a

set of numbers (see the table) and convert them by CHR$ into a printable graphic

equivalent. Also change the constant in line 40 to 2000. Business keyboard users will

find a number of graphics hard to obtain; the rather useful lines, permitting boxed

formats, for example like the screen pictured below, which is authentic apart from the

figures, aren't obtainable by keyihg-in. This is because shift-! through shift-? in the

ASCII table have been combined typewriter-fashion: shift-1 becomes ! rather than a

T-shaped connecting graphic symbol.

PRINT PRICE LIST

Date <DD MM VV> s

Price Basis <C,H,E,or S> : KU*^
Edition Ref : 1989 Special Issue
Number o-f I+ems per Pages 80 ;

r-BHSMMmmtfdMBsrsWW t^mtmrnsm—.
20700 ™- 25.00

c 25.90 p 55.33
E 75.00 F 33.33
G 75.00 ,T 100.00
K 120.00 M 44.45
P 64.20 T : 15.00
V : 64.34 X : 21. 0W

Start
Fin

CHECK OK? yes

Programming the PET/CBM -273- 9: Graphics and sound

CROSS-REFERENCE TO CBM GRAPHICS CHARACTERS

KEY: sh-$ sh-r sh-f sh-e sh-c sh-d sh-e sh-#
CHR$: 228 210 198 192 195 196 197 227
POKE: 100

D
82

D
70

B
64

B
67

a
68

B
69 99

n
KEY: sh-% sh-t sh-g sh-b sh-] sh-h sh-y sh-'

CHR$: 229 212 199 194 221 200 217 231
POKE: 101 84

D
71 66

m
93

ffl

72 89

a
103

KEY: REVERSE, CHR$(18) , THEN-
KEY: sh-$ sh-/ sh-9 sh-*' sh-8 sh-7 sh-# sh-space

CHR$: 228 239 249 226 184 183 163 160
POKE: 100

a
111 121

u
98

u
248

B
247 227 224

KEY: REVERSE, CHR$(18) , THEN-
KEY: sh-% sh-4 sh-5 sh-! sh-6 sh-* sh-' sh-space

CHR$: 229 244 245 225 182 170 167 160
POKE: 101 116 117

D
97

E
246 234

n
231 224

KEY: sh-o sh-p sh-

:

sh-l sh-v sh-[sh-m sh-n
CHR$: 207 208 186 204 214 219 205 206
POKE: 79 80 58

a
76

D
86

El
91

ffl

77 78

KEY: sh-= sh— sh-0 sh-. sh-l sh-2 sh-3 sh-+
CHR$: 189 173 176 174 177 178 179 171
POKE: 125 109

Q
112 110

a
113

H
114

s
115

ffl

107

ffl

KEY: sh-< sh-> sh-, sh-; sh-?
CHR$: 190 188 172 187 191
POKE: 126

H
124

3
108 L23

H
127

H
KEY: sh-k sh-j sh-u 3h-i sh-w sh-q

CHR$: 203 202 213 201 215 209
POKE: 75 74 85

Q
73 87

O
82

®
KEY: sh-) sh-«- sh-& 3h-(sh-\

CHR$: 169 223 166 L68 220
POKE: 105

B
95

a
102 L04

S3

92

KEY: sh-a sh-s sh-z sh-x sh-t
CHR$: 193 211 218 216 222
POKE: 65

11

83

m
90 88 94

if

NOTES : (i) There are ambiguities in many of the CHR$ figures - CHR$(227) or CHR$(163)
might equally well be chosen. I've preferred the values with a constant difference of
64 or 128 from the screen POKE/ PEEK value.

(ii) As the characters are made of 8 dots by 8, a line cannot appear exactly in
the centre of any character; some characters, when positioned as neighbours, will not
exactly line up together.

(iii) The table has more than 64 entries, because some appear twice. Note that
the lower-case mode special graphics - chequered square, diagonally shaded squares, and
square-root or tick sign- have not been included. The full 128 graphics characters are
obtained by reversing all those in the table, by PRINTing the reverse character first,

or by POKEing the values listed here + 128.

so

,. opt icrm -27H- 9: Graphics and sound
Programming the PET /Com h*

'Digital clock' is a reasonably short specimen graphics program; it converts TI$ into

lS|er characters, modelled on a 7-segment LED or ^^*>f^\J™ 'ite
faces ordinary and 'modern', are available! This program is in BASIC and is quite

Sow so Sat 1 second is sometimes not enough time to allow the tbne to be updated

it will skip a second. Also, of course, the program does nothing e se but 'draw' the

cloS The subroutoe starting at line 10 draws a single numeral; it can be used to

prTnt"any other numerals, whlre a display somewhat larger than normal is wanted, on

a similar basis.
A lete square is not available in the

graphics sef' so a layout like that in diagram 2 is needed, in which 5 adjacent squares

Srol the final appearance. I've used the order D,B,A,C,E,F of diagram 3; in this

way th* cursor is always left in a position to start the next number, if there is one.

Diagram 1 Diagram 2

If we make up a table with 10 rows, one for each digit, we can write out the ASCII

values required in segments A- E. Zero for example needs H,B,E,B,and E, or, in

ASCII values, 164,165,165,204 and 165. The five lines of subroutine in the program

each process one of these segments, using a logical formula to embrace every value of

numeral X

.

A decimal point can be allowed for;

5000 IF MID$(X$,J,1)="." THEN PRINT "[St';: GOTO 5020 shows the sort Ot thing.

DIGITAL CLICK

10
G
PRINT°CHR*<204 + 172*<X=1 OR X=4 OR X = 7> + 40*<X=3 OR X = 5 OR X=9>> ? "CLEFT3C

'SPRINT CHR*(204 + 172*(X = i> + 40*(X=2 OR X-3) + 39*<X=0 OR X-7)ll "CLEFT3CUP3

3f> PRINT CHR*<164 + j:r2*<X = l OR X=4))J

40 PRINT CHR»(165 + 133*<X=5 OR X=6))J

50 PRINT CHR*U65 + 133*<X=2))?
60 RETURN
1000 PRINT "CCLR3CDOWN3"

X* = TI*
FOR I = 1 TO 6 STEP2
FOR K = TO 1

X = VAL< MID*(X*»I+K»1))s G0SUB 10

NEXT Ks PRINT". "f! NEXT I

PRINT " CH0ME3 C DOWN 3"

GOTO 1010

"CD0WN3"J
•[LEFT 3 [DOWN

3"

1010
1020
1025
1030
1040
1050
1060

READY.

SIMILAR ROUTINE WITH COMPUTER-STYLE TYPEFACE:

10 PRINT CHR*(204 + 172*<X=1 OR X=4 OR X=7) + 29*(X=3 OR X=5 OR X=9))J "[LEFT3[

20 PRINT CHR*(204 + 172*(X-1) + 40*(X=2 OR X-3) + 24*<X=0 OR X-7))» "CLEFT3CUP3

30 PRINT CHRSU64 + 132*<X=1 OR X=4>)J "CD0WN3"?

40 PRINT CHR*(180 + 148*<X=5 OR X=6)>? "[LEFT3 CD0WN3

"

i

50 PRINT CHR*(180 + 148*(X=2))J
60 RETURN

Programming the PET/CBM -275- 9: Graphics and sound

Special features of BASIC H screen handling BASIC 4 machines are more complex

than their predecessors. There are currently three distinct models: the 8032, which

has 80 columns; the 8" screen 4032 (and 4016, 4008), which is no longer manufactured,

and the 12" screen 4032 (and 4016, 4008). The 80-column machine has the most feat-

ures, largely because a chunk of RAM previously used for screen-line tables is not

needed. This enables it to be equipped with several features not obtainable on any

other machines, even those with BASIC 4, notably a definable screen 'window'. These

differences are made possible by varying the ROM which deals with E000-E7FF. The

presence of the CRT controller chip distinguishes 12" screen machines from the earlier

8" models.

Text/ graphics 12" machines have machine-code which both sets the CRT and puts

the character-generator into the appropriate mode. For 'graphics', the lines are moved

so as to be adjacent, and upper-case/ graphics mode is selected; in 'text', or 'lower-

case' mode, the process is reversed. PRINT CHR$(14) selects text mode; the value 14

was presumably suggested by the use of POKE 59468,14 to select lower-case mode.

print chr$(142) sets graphics. The ROM routine can be called directly, with SYS
57368 or SYS 57371. The [ESCAPE] key allows yet another variation; 'n' is the 14th

letter of the alphabet, so PRINT "[ESCAPE]UNSHIFTED-N has the effect of PRINT CHR$(14),

and PRINT "[ESCAPE] [RVS]UNSHIFTED-N acts like PRINT CHR$(142).

8032 screen window One screen window only may be defined at any one time; however

the redefinition time is small , so there is little difficulty in apparently generating such

windows at will anywhere on the screen. When a window is defined, four RAM para-

meters are set: locations $E1 and $D5 (225 and 213 in decimal) hold the screen pos-

itions of the bottom and right of the window; $E0 and $E2 (224 and 226) hold the top

and left. The top and left parameters have a minimum value of zero, corresponding

to the topmost line and leftmost screen position. The bottom has a maximum of 24,

and the right a maximum of 79. If these values are exceeded, garbage will appear on

the screen when it scrolls, and information at the rightmost end of lines will be lost.

If the bottom parameter is less than or equal to the top, or if the right is less than

or equal to the left, a single row or column only is printable. A window must have a

certain minimum width to be usable. For example, RUN[RETURN] needs at least 4 col-

umns. A narrower window will not permit the command RUN to operate.

The parameters may be poked into the locations given, or the specially allocated

characters may be printed: PRINT CHR$(15) makes the cursor's current position into

the window's top-left, and print CHR$(143) sets the bottom-right.

A window is erased by two consecutive [HOME]s, which are counted in RAM
location $E8 (=232 in decimal).

10 to 80 column interconversion 40-column programs can be run on the 80-column

machine by redining the screen with the CRT chip, as previously mentioned. Generally

the reverse process is impossible, because 80-column software requires 2000 bytes of

screen RAM, which the smaller-screen machines do not have. However, by editing

the larger-screen output, provided its total storage requirement isn't too large, conver-
sion to the smaller format may be possible. 40-column software may run without mod-
ifications on 80-column machines: if only PRINT statements are used, and if these are

terminated with carriage returns, the output will align itself down the left half of the

screen. When PRINT is followed by ';' .relying on the end of the screen to force

printing on the next line, its line will extend across the screen. Direct pokes into

screen RAM fill the top half of the screen. Either of these latter possibilities can be
avoided by CRT reconfiguration.

Other screen-editing characters in BASIC 4 Apart from TABs, BASIC 4's new screen

editing commands are:

PRINT CHR$(2l) Delete line from screen PRINT CHR$(149) Insert line into screen

print CHR$(22) Erase line up to end print chr$(150) Erase line from start

print CHR$(25) Scroll screen up PRINT CHR$(153) Scroll screen down
These may be easier to use if a string is defined to store the appropriate characters;

for example, SD$=CHR$(153) is mnemonically helpful in PRINT SD$.

Using TABs print chr$(137) sets a tab position; PRINT CHR$(9) moves the cursor to the

next tab position, or to the end of the line. However, if a tab is already set at that

position, print chr$(137) unsets it. Tab data is stored in ten bytes of RAM, just

below BASIC. (See Chapter 15's RAM map). Each of the eighty bits may be 1 or 0;

and 1 denotes a tab setting. The first byte stores tabs for columns 0-7, the second

for 8-13, and so on. However, the bits are arranged in the reverse order, so poking

the first byte with (say) 2 sets a tab near the left of its set of columns.

Programming the PET/CBM -276- 9: Graphics and sound

Machine-code graphics As we've seen, BASIC is liable to be slow when dealing with
graphics. In this section we'll look at machine-code graphics, which enable graphics
effects to be realised in a far faster manner. This will have to be skipped by those
not yet familiar with machine-code; nonetheless many of the examples can be entered
and run by inexperienced programmers.

Machine-code is chiefly used (with graphics) to put characters directly into
screen RAM, rather than PRINTing them with FFD2 or a similar output routine. The
beginner, to understand this idea, can enter this short program into the machine with
the monitor:

Enter SYS 4; the monitor now displays the program counter and other registers.
Enter M 033A 0342; two lines from the machine (16 bytes in all) are printed in
two lines. This is the start of the second cassette buffer; in BASIC<4 it is
inviolate, unless the second external cassette port is used; in BASIC 4 it
stores some disk data, but in our example this isn't important. Now type in:

M 033A A2 00 8A 9D 00 80 E8 DO
M 0342 F9 60 the remaining symbols are unimportant.
Enter X to return to BASIC.

$033A (=826) is now the starting-point for the following machine-code:

LDX #00 ; load register X with value zero
TXA ; transfer contents of X to A
STA 8000.X ; store accumulator contents into address $8000 + offset in X
INX ; increment X
BNE -7 ;if X is non-zero, branch back 7 (count from RTS) to TXA
RTS ; return when X is zero - after 256 loops.

Now SYS 826 pokes 256 values, from 0-255, into the top of the screen. They should
correspond to the table of screen poke values a few pages back. Note the greatly in-
creased speed with which characters are printed to the screen. This program is short
because its values are computed; they needn't be looked up. The next example pokes
the word 'hello' into the screen, in lower- or upper- case depending on the mode:

M 0350 A2(04JBD 5B 03 9D (23 81>—^. „,, , ^ L ..

M 0358 CA DO F7 60 (08 05 0C 0C f-J!L!i~ f'ff "^"jL * ^<**= *61*-3 ^o
M 0360 OF - anf^

^ >= T&Ue °* b-^«

When this routine is entered, SYS 848 prints 'hello', starting at $8123. The table of 5

bytes holding 'hello' appears after 60, which is the RTS opcode. Again, the beginner
is recommended to try this; it is quite easy to understand. The values ringed can be
changed freely, and the result examined.

Screen reversal and flashing . These effects are easy to get in machine-code,
subject to the usual problem of managing RAM so that the routine doesn't occupy
space taken up by other routines. We have already seen that the high bit of screen
RAM characters detemines whether the character is reversed or not. To reverse an
entire screen, therefore, all we need to do is scan the entire screen RAM, replacing
every character by its equivalent with the high bit reversed. If we repeat the process
the screen will return to its previous condition. Note that this method reverses all

characters; if they are reversed already, our routine will return them to the unrev-
ersed state.

LDA #80
STA 01
LDA #00
STA 00 ; indirect address (00) points to $8000 now

LI LDY #00 ;this loop processes one page (256 bytes) of screen
L2 LDA (00),

Y

; this loop uses Y to count from 0-255
EOR #80
STA (00), Y; poke reversed value back into the screen
INY
BNE L2
INC 01 ; indirect address (00) points to $8100, $8200, etc.
LDA 01
CMP #84 ;stop when $8400 reached; 80-column machines use #88
BNE LI
RTS

Programming the PET/CBM -277- 9: Graphics and sound

This machine-code (not quite identical - a tighter version) reverses the screen:

M 033A AO 00 84 01 A2(JJ3)86 02 >-«? W «0-c*Wwn. mackvws

.

0342 Bl 01 49 80 91 01 88 DO

034A F7 CA 30 F2 60 -any

So SYS 826 reverses the screen (in l/50th second or l/25th with 80-columns), and

10 FOR J = 1 TO 10: SYS 826: NEXT flashes the screen ten times, leaving it unreversed.

This code is relocatable (i.e. can be entered unchanged anywhere in RAM); locations

1 and 2 are used, so USR jumps will no longer work until their correct jump address

is loaded.
Is it possible to reverse only part of the screen? This too is quite easy. Let's

suppose we have the starting address (e.g $8050) of the region to be reversed, and

let's suppose we want a certain number of bytes (<256) after the starting address to

reverse; for example, 40 or 80 bytes will reverse one line of text. The following short

routine, also relocatable machine-code (for a change, I've put it at the start of the

first cassette buffer, starting $027A), and demonstration BASIC driver program is one

way of doing this:

M 027A A4 00 88 Bl 01 49 80 91

0282 01 98 DO F6 60 —any

—

:REM HOLDS NUMBER OF CHARACTERS, SAY 20, AS HERE

:REM (01) POINTS TO $8050

:REM REVERSE 20 CHARACTERS FROM $8050 ON

1000 POKE 0,20
1010 POKE 1,80: POKE 2,128
1020 SYS 634

Different effects can be obtained by modifying the core of all these routines,

which is LDA from an address/ E0R #80 to switch the high bit/ STA back into address.

For example, AND #7F unreverses the entire screen; 0RA #80 puts every character in

reverse form; E0R #40 switches all shifted characters to unshifted, and vice versa;

INC address (e.g. INC (01), Y /nop /NOP/ NOP/ NOP) replaces every character by the next

character in the screen RAM table.

Note that all these examples use purely software methods. When the screen

scrolls, the reversed text will scroll up with it, leaving normal text.

Using switches . With the help of the interrupt routine, we can call up machine-

code routines with a simple poke; this provides a convenient way to call a batch of

routines. For example, we may have ten stored screens of data; poking a preset loc-

ation with 1-10 can automatically display any of them. To show the method, I'll assume

that the routine at the top of this page is present in RAM. We can use 034F as the key

location. Then enter:

M 0350 AD 4F 03 DO 03 4C 55.J54 BASIC 2: 2E E6, BASIC 1: 85 E6

0358 20 3A 03 10 F8 —any

—

Now enter .R, to display the registers, and change IRQ from E455 or E62E or E685

to 0350. The IRQ vector isn't changed until a GO command, so enter .G 0004 to

BRK. Now, this machine-code is processed at every interrupt:

0350 LDA 034F
0353 BNE 0358
0355 JMP E455; OR E62E OR E685

0358 JSR 033A; executes subroutine at 033A, in this case screen reverse

035B BPL 0355; unconditional branch, because of 033A's method of operation.

When $034F (=847) is POKEd with any non-zero value, the screen is reversed at each

interrupt; therefore the screen flashes, and processing also slows down a great deal

because there are 50 or 60 interrupts per second, and our routine takes l/25th or

l/50th of a second to run! POKE 847,0 stops the flashing. The routine at $0350 is easy

to extend so that it perhaps reverses the screen once, or reverses it n times when n

is poked into $034F. The real point, however, is the relative ease by which subrout-

ines can be called like this; this is as true in machine-code as BASIC. A value of in

a location might signal that nothing is to be done; values from 1-16 might draw object

number 1 in any of sixteen preset positions on the screen; values of 17-31 might do

the same for another object, and so on. If necessary the interrupt can test several

locations 'Space Invaders' in its PETyCBM version uses a technique like this. Having

seen a few methods at work, we can consider some of the published work on graphics.

Programming the PET/CBM -278- 9: Graphics and sound

Published utilities . 'Compute!' (March '81; Vol.3, #3) has a six-page article by
D Malmberg including machine-code (long) and BASIC enabling one rectangle at a time
to be filled with a character, reversed, or made to flash; and also to be shifted else-

where bodily, shifted continuously or 'made to grow or shrink in size'. This last feat-

ure means that, as a rectangle moves, its previous incarnations are left on the screen,
not erased. D Simons (CPUCN Vol. 3, #2) has a long routine, for BASIC 2, which inter-

cepts BASIC, providing various screen facilities, including the interchange of two
screens in RAM, and vertical-bar graphics. 'Printout' (Jan. '81) has a few routines,
taken from 'PET User Notes'. CCN (Vol.3, #8) has some machine-code, without, how-
ever, instructions on using it. Probably, if you have access to back issues of journals,

you can find more. Don't expect much though; you may be disappointed. A different
style of screen image processing is represented by 'systematic routines', as I've called

them , for lack of a better name. These include 'SET', which plots double-density dots
on the screen (see Chapter 5).

Systematic machine-code utilities Three pages before this you'll find a table entitled
'Cross-reference to CBM graphics characters'. From the layout, notably of the topmost
rows, it is clear that the completeness of the graphics character sets enables some
progress to be made towards high resolution graphics. SET (in Chapter 5) exploits the
fact that all sixteen combinations of squares with internal quadrants exist on the PET/
CBM; the machine-code has a table of the appropriate values built in. Similarly, a CBM
manual has a demonstration program including a histogram of US national income, in

which the horizontal bars include, at the end, fractions of a square, as listed in the
fourth row of the graphics chart. D Simons' 'Super BASIC (see reference above) in-
cludes a routine to plot vertical bars in the same way. And some EPROMs, e.g. the
'PicChip', include routines to approximate curved lines with short segments, taken
from the first and second rows of the chart. To show the methods which such pro-
grams use, let's write a routine to plot vertical bars in histogram-fashion, to the
nearest l/8th of a square, i.e. including for 0-7 rows of dots on top of each column of
solid characters. For this, the third row in 'Cross-reference' is needed. I shall assume
that the starting-point in the screen (e.g $83C0, the bottom-left of a 40-column screen)
is stored in the two bytes ($01), and that the height of the column is stored in $00,
so that a 'height' of 20 means 2 solid squares (making 16 rows of dots) topped by
CHR$(226), adding the final 4 rows of dots.

LDY #00
Ll LDA 00

CMP #08
BCC +23 ;exit routine when this value is zero to seven at L2
SBC #08
STA 00
LDA #/\0

STA (01), Y; put reverse-space into screen
LDA 01
SBC #28 ; subtract 40^q. 80-column machines use #50 instead.
STA 01

LDA 02
SBC #00
STA 02
BCS Ll ; unconditional branch back to continue

L2 TAX ;A and X hold value 0-7, which now becomes the table's offset
BEQ L2 ; don't plot if zero...
LDA TABLE, X; otherwise, load Xth value from table (holds row 3 poke values).
STA (01),Y;store final few rows of dots

L2 RTS
TABLE #64 #6F #79 #62 #F8 #F7 #E3 ; in decimal, 100, 111, 121, 98,248,247,227

The routine relocates, and works with all BASICs (in graphics mode). It looks like
1S:_

M 027A A0 00 A5 00 C9 08 90 16
0282 E9 08 85 00 A9 A0 91 01
028A A5 01 E9 f28)85 01 A5 02 ^ 50 w'.tk SO -coLwwot. »wseW« •

0292 E9 00 85 02 B0 E4 AA F0
029A 05 BD AO 02 91 01 60 64
02A2 6F 79 62 F8 F7 E3 -any-

So POKE 0,H:P0KE l,P: POKE 2,131 ; SYS 634 draws a column of height H on $8300 + P.

Programming the PET /CBM -279- 9: Graphics and sound

Using 'SET' . The disassembled version of SET is too long for inclusion here; its

method, briefly, involves (i) Calculating the position in the screen which corresponds

to X-coordinate and Y -coordinate ; (ii) Loading the character at that screen position;

(iii) Modifying it, by ORing the offsets in the table of 16 characters together; (iv)

Replacing the character with a new one, with one quadrant changed (or nothing chang-

ed if the dot already exists).

Instructions for ROM modifications and relocation appear in Chapter 5. Note that

the X- and Y-coordinates, stored in $00 and $01, are changed in the course of the

routine's execution, and must be entered afresh for each plot. Any characters in the

screen which are not in the lookup table (i.e. everything except the sixteen graphics

characters which are part of the set of quadrants) causes nothing to happen, so that

leetering on graphs is ignored. Obviously, because locations 0-2 are utilised, it is

necessary if USR subroutines are called from BASIC to poke the jump byte ($4C=76)

into 0, and the indirect address into (01). Its worth noting that the character gener-

ating ROM has defects which show up in this instruction. Reverse- shift- > , shift-;

and shift-? do not abut correctly to reverse-space, leaving little vertical lines.

Demonstration programs . 'Conic sections' is a mathematical routine, which draws

a conic section from 6 general parameters. It includes a subroutine to enlarge and
reduce the scale on which the conic section is plotted; the limits on the X-axis are

shown on the screen. In this way (with luck) a conic section can be viewed at a

reasonable scale. It is interesting to see how the two branches of a hyperbola appear,

when reduced in scale, as intersecting straight lines. Some equations, of course, are

incapable of being plotted, having only imaginary solutions. The program simply

calculates 80 solutions to a quadratic, scanning from left to right, and plotting the

result if it exists, and fits into the current screen's limits. Line 508's function is

the sign; its function is mainly cosmetic. The scaling factors have to convert any

range of X values into 0-79. For example, X limits of 20 to 50 are transformed so

that X=20 becomes 0, X=50 becomes 79; at l/10scale the transformation is recalculated

so that -115 to 150 is the range for which X becomes - 79. An 80-column machine

requires a few changes, to lines 10 and 510.

DOUBLE DENSITY CONIC SECTIONS PLOTTER Feb 81

PRINT "[CLEAR] [REVS] NOTE [RVSO] NEEDS 'HIRES $033A' TO BE LOADED": WAIT 158,1: RE

M WARNS
2 GOTO 500
10 FOR I = TO 79: X = XI + I*SF
20 IF C=0 THEN A1=FNA1(X): A2=FNA2(X): Y=-A2/A1: GOTO 56

30 Al = FNA1(X)/C
31 A2 = FNA2(X)/C
35 IF A1*A1 < 4*A2 THEN NEXT: GOTO 110: REM FASTER THAN 'GOTO 100

40 A3 = SQR(A1*A1-4*A2)
50 Y = (-Al+A3)/2.6 :REM DIVISOR 2.6 IS A SCALE CORRECTION (FOR ROUND CIRCLES!)

51 Y =25 + Y/SF
52 IF Y>1 AND Y<50 THEN POKE 0,1: POKE 1,Y: SYS 826

55 Y = (-Al-A3)/2.6: REM THIS IS THE OTHER SOLUTION THE QUADRATIC
56 Y - 25 + Y/SF
58 IF Y>1 AND Y<50 THEN POKE 0,1: POKE 1,Y: SYS 826
100 NEXT
110 INPUT" [HOME] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOW

N] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN]0 (EXIT)/ ENLARGEMENT

FACTOR" ;A1
115 IF Al = GOTO 500
120 S2 = (X2+XD/2: S3 - (X2-XD/2
130 XI - S2-S3/A1: X2 = S2+S3/A1: GOTO 510
500 PRINT"COEFFICIENTS OF A,B,C,D,E,F :":INPUT A, B, C, D, E, F

502 INPUT "INITIAL LIMITS OF XI, X2 ARE";X1, X2
504 DEF FN A1(X) = (B*X + E)

506 DEF FN A2(X) - (A*X*X + D*X + F)

508 DEF FN SG(X) - - (X<0)*45 - (X>=0)*43
510 SF - (X2-XD/79 : REM SCALE FACTOR
512 PRINT "[CLEAR]"; A; "[LEFT]X~2"; " "; CHR$(FNSG(B)) ;

" "; MID$(STR$(B) ,2) ; "XY";

513 PRINT " "; CHR$(FNSG(C)) ; " "; MID$(STR$(C) ,2) ; "Y-2"; " ";

514 PRINT CHR$(FNSG(D)); " "; MID$(STR$(D),2) ; "X"; " "; CHR$(FNSG(E)) ; ";

515 PRINT MID$(STR$(E),2); "Y - "; -F
518 PRINT "FOR X="; SGN(X1)*INT(ABS(X1)+. 1) ; "TO"; SGN(X2)*INT(ABS(X2)+. 1) ;

":"

520 GOTO 10

Programming the PET/CBM -280- 9: Graphics and sound

Extensions . An obvious addition to SET is a command to plot 'straight lines',

i.e. small squares as nearly straight as the resolution will allow. There is insufficient

space here to go into details. (CPUCN Vol. 3, #2 has a 40-col. routine by D Middleton).
The algorithm is reasonably straightforward; something like this is required:

(i) arrange the end-points a,b and c,d so that a is less than or equal to c.

(ii) Test a=c and b=d; if true, plot one point only and exit.

(iii) Is ABS(d-b) > ABS(c-a)? If so, the gradient, either up or down, is steeper

tha 1. Branch to one of two routines depending on the gradient:
(iv) Gradient<=l. Every horizontal position will have a corresponding point;

some verticals may be duplicated, like this

Plot a,b. Increment a; if it exceeds c, exit.

Calculate the next b = b + x-increment*(d-b)/(c-a).
Go back to plot a,b again.

(v) Gradient > 1. Test for a vertical line: if found, draw it with its own sub-
routine. 'Vertical' includes nearly vertical lines, which otherwise will be too short.

Increment vertical positions, not horizontals, like this:

Plot a,b. Increment b, calculate the nearest a,

and continue until b exceeds d.

'SET' is slower than it need be: a lookup table for screen lines saves time in

performing calculations, but occupies more space. The slowest part of the routine is

the search for one of the sixteen characters. With CBM ROMs this process is inevitable

because of the unordered arrangement of the relevant graphics screen form. A system
in which the screen value corresponded to the graphic's appearance (e.g. POKE
giving a blank, POKE 1 a single quadrant in the top left, etc.) would be faster.

Demonstrations. Finally, a few more simple BASIC demonstration programs. Some
of the results are illustrated on the next page.

HIGH RESOLUTION GRAPHICS DEMONSTRATIONS (ASSUMING SYS 826)

400 FOR J = 6 TO 2 STEP -1
410 FOR X = TO 79 STEP Js FOR Y = TO 49 STEP J* POKE 0»Xs POKE l.Y
420 SYS 826* NEXT Y, X, Js END
500 FOR J = 60 TO 2 STEP -1
510 FOR X = TO 79 STEP Js FOR Y = TO 49 STEP Js POKE 0,Xs POKE 1»Y
520 SYS 826* NEXT Y» X, Js END
600 DEF FN Y(X) = 25 + X*SIN(X/3) /10
610 FOR X = TO 79s Y = FNY(X)s IF Y < OR Y > 255 THEN 630
620 POKE 0»X* POKE l#Ys SYS 826
630 NEXT
640 END
700 OFF FN Y(X) = 25 + SIN(X/10)*C0S< X/10)*25
710 FOR X = TO 79s Y = FNY(X)* IF Y<0 OR Y>255 THEN 730
720 POKE 0#X* POKE l,Ys SYS 826
730 NEXT* END
800 DEF FNY(X)=X*J
810 FOR J = TO 2 -STEP .2
820 FOR X = TO 79s Y = FNY(X)* IF Y<0 OR Y>255 THEN 840
830 POKE O.Xs POKE l.Ys SYS 826
840 NEXT X»J
850 END
900 INPUT NO. OF PETALS"*M* INPUT "STEP SIZE .01--10" JSP
910 IF M = INT(M/2)*2THEN M = M/2
920 FOR TH = TO 100 STEP SP
930 S = ;UN(TH*M) + .2
940 X = S*COS(TH)*Y = S*SIN(TH)
950 X = 40+30*X* Y = 25+20*Y
960 POKE 0,Xs POKE l.Y* SYS 826
970 NEXT

Programming the PET /CBM -281- 9: Graphics and sound

9 4 Dumping PET /CBM graphics to a printer 'DUMP', in Chapter 5, has a program

to scan and print the screen to non-CBM printers; graphics characters are printed

as '#' or some other symbol, to show that they exist, but cannot be printed. The

BASIC routine below will print screen produced by SET to any printer; the top and

bottom halves of each character are printed as

LISTING OF 'HI RESOLUTION' PLOTTING PROGRAM

I T 4:f 1 3|: 1 or I**!

PRINT"LOAD SCREEN WITH PICTURE TO BE PRINTED IN LINE 00": END

10 OPEN 4,4: CMD4: REM PRINTER OPENED AND READY

20 SCREEN = 8*4096: REM START OF SCREEN

30 FOR V = TO 24: REM SWEEP VERTICAL POSITIONS OF SCREEN

40 FOR H = TO 39: REM SWEEP HORIZONTALLY AND PRINT HIGH HALF OF CHARACTER

50 CH - PEEK (SC+ 40*V + H) : REM ASCII VALUE OF CHARACTER ON SCREEN

60 IF CH-32 OR CH=98 OR CH=108 OR CH=123 THEN PRINT " "; :G0T0 100

70 IF CH=124 OR CH=225 OR CH=254 OR CH=255 THEN PRINT " *"; :GOTO 100

80 IF CH=97 OR CH=126 OR CH=127 OR CH=252 THEN PRINT "* "; .-GOTO 100

90 IF CH=160 OR CH=226 OR CH=236 OR CH=251 THEN PRINT "**";

100 NEXT H

110 PRINT

140 FOR H = TO 39: REM SWEEP HORIZONTALLY AND PRINT LOW HALF OF CHARACTER

150 CH = PEEK (SC+ 40*V + H) : REM ASCII VALUE OF CHARACTER ON SCREEN

160 IF CH=32 OR CH=124 OR CH=126 OR CH=226 THEN PRINT " "; :GOTO 200

170 IF CH=108 OR CH=127 OR CH=225 OR CH=251 THEN PRINT " *"; :GOT0 200

180 IF CH=97 OR CH=123 OR CH=236 OR CH=255 THEN PRINT "* "; :G0T0 200

190 IF CH=98 OR CH=160 OR CH=252 OR CH=254 THEN PRINT "**";

200 NEXT H

210 PRINT

250 NEXT V

260 CLOSE 4: END

tv tv i ••• ; v tv t 't i v I ••• *v :v :v »v t ••• s
f.j : .'.5..•.:.•..: as*...... :••«••:

:v : v : v :v : ••• :v s ••• :v : v : ••• t ••• :v iv

:

..................... ... * * *J * * * * * • •_• S// i

. .. t :•• :%•• s .vi .1 1 ••• s r. r.». : .vt .t t .: s r. sv. s

:t : ••• :"•• t •••: ••• : *r sv v.' : •••: ••• : *r sv rv

:

• *r •»••••":•".•i •t • s" "••" « •"•• *n •t • 8" v-

1

«X«X::%iXj:%|X|:%|XiXJXiH:XiH:

jxixixixlxixixixixixixixixi
a • • a •• •• • • • • •

• •«•••« • *w • •• • •«•••••••»••»••••••«••«•••«••••••
•••••••••••••••••••••••••••••••••••••••J
t .lb t .% U% I »%4 .*• « .«. t •*• u\ 1 .«.4 .\ I a. t ••• u% s

• .w . .w . *w . *w . mm . *m . »m • .w . *w . ••• • m. . .«. . .«• .

tV 1 1.' J.V t VJ 'J «V IW Iff I V4 •* I ••• IW If.' I

. s I H i s .

.H."!««iii!irrjr

rr\sr\8%8!Jn«8.:«?r.%:. ••

jr .«•.« :: » «« »•«. "8^"»« ?Ss s :•- vs

.**,;*, ****%*** #.

'***:*:*;«»»>*:

****-*-*:*;.*.*

Programming the PET ICBM -282- 9: Graphics and sound

Users with Commodore printers can of course reproduce the entire graphics set on
paper. This machine-code program, 'Keyprint', is the BASIC 4 version of a routine

which has appeared twice in 'Compute!', in March '81 (Vol. 3, #3) for BASIC 1, and in

Nov. /Dec. '80 (Vol. 2, #4) for BASIC 2.

•KEYPRINT' (BASIC 4)

027A 78 A9 02 85 91 A9 85 85 ; Points to $0285 here

0282 90 58 60 A5 97 C9fjf] DO ; ClnthYindhr (^ . .backitaiU).

028A 03 20 91 02 4C 55 E4 A9 ; Points to $0291 & IRQ

0292 80 85 20 A9 00 85 IF A9

029A 04 85 B0 85 D4 20 D5 FO

02A2 20 48 Fl A9 19 85 22 A9

02AA OD 85 21 20 D2 FF AO 11

02B2 AE 4C E8 EO OC DO 02 A9

02BA 91 20 D2 FF AO 00 Bl IF

02C2 29 7F AA Bl IF 45 21 10

02CA OB Bl IF 85 21 29 80 49

02D2 92 20 D2 FF 8A C9 20 BO

02DA 04 09 40 DO OE C9 40 90

02E2 OA C9 60 BO 04 09 80 DO

02EA 02 49 CO 20 D2 FF C8 CO

02F2 (2T)90 CB A5 IF 69 27 85; Columns (&Q.Z o<- * 5#).

02FA IF 90 02 E6 20 C6 22 DO

0302 A6 A9 OD 20 D2 FF 4C CC

030A FF

Notes:

[1] Has no test for 'stop'; if inadvertently started, switch off the printer.

[21 Designed for upper case with graphics mode.

[3] The marked byte controls the width of the output: change this to #$50 (80 in

decimal) with 8032 machines, else you'll get 50 lines of 40 characters.

[4] The other marked byte controls the character which starts the print at any

time during program running. The backslash character is #$2F in location $97
with 8032 machines, but #$45 in others, because of differences in the
keyboard organisation

.

[5] Calling $027A (by SYS 634) redirects the IRQ vector so every sixtieth of a

second backslash is tested for, and, if found, the program stops while the

entire screen is dumped. Obviously, if the IRQ vector is reset, by you or
by tape activity, or if the interrupt is off, 'keyprint' won't work.

[6] This is positioned in cassette buffer #1, for compatibility with disks (which

in BASIC 4 use parts of buffer #2) and external casset tes (device 2) . A few

early addresses need changing to relocate the routine.

9.5 Animation Before examining programming methods, let's briefly look at some of

the stock-in-trade methods of animators.*

Broadly speaking, the object is to get an impression across at least expense. In
practice this means using as much repetition as possible, as few elaborate drawings,
and as few frames-per-second as looks reasonable. Significant features are enlarged,
e.g. head, nose, eyes; less inportant features are suppressed. The overall figure must
have its configuration of (say) arms, legs and body correct with respect to the centre
of gravity, if motion is to be suggested. Too many 'in-betweens' should be avoided:
a stylised face may have only a profile or full-face, perhaps a 3/4 face. Symbols will

obviously be needed: 'Microchess' successfully used very stylised chess pieces in its

PET version. 'Space invaders' has led to the acceptance of things like busloads of
people and orange lawnmowers whizzing around screens. An article by an advertiser,
D Ross ('Creative Computing', Jan. '81) lists rules of thumb for eyecatching animations,

Computer graphics can produce very impressive (and expensive) effects; some simulators
for air and sea pilots have real-time displays in colour of considerable realism. Some
west-coast US universities, and the New York Tech, are renowned for their work
in this field. See (e.g) 'Principles of Interactive Computer Graphics' (Newman &
Sproull, McGraw-Hill), which is however heavily mathematical. Work of this type, which
may involve data transfer rates of many megabytes per second, is outside the capacity
of present microcomputers

.

Programming the PET/CBM -283- 9: Graphics and sound

largely based on the idea that any motion attracts attention. ('"If it moves, salute it' is

a biological imperative not confined to the quarter-deck"- G Spencer Brown).

Paraphrasing this and other articles gives 'rules' something to this effect:

i. Always have something on the screen (i.e. don't just clear it).

ii. Always have movement of some kind, blinking or flashing text, etc.

iii Vary the speed (but keep it at at least medium-pace) and vary styles of

lettering - large, small, overwriting, rolling right-to-left, 3-D -and their relations to

objects. Words may appear on a board, within a speech balloon, from an 'alphabet

soup', or shot from a gun.
iv Even apparently dull things may be animatable; Ross quotes a trypan with a

flickering flame' and 'bread popping from a toaster'. The BASIC loader of Supermon

puts numbers in the top left of the screen, so you have something to watch.

Animation by replacement of the screen . An obvious method to achieve motion is

to rewrite the screen at intervals of a fraction of a second. With a 32-K 40-column

machine, a maximum of about 30 different screens can be held in RAM simultaneously;

this is more than enough to provide good animations of such things as engines. The

worst part of such a program is the effort of 'drawing* and storing the individual

screens. Once they have been stored in RAM - it's sensible to practise storing them to

disk before all the work of entering them - they can be displayed by a program like

the following machine-code. I've assumed that the screens are arranged in 1-K sets

starting just below screen RAM; adjustments for non-32K and non-40 column machines

aren't too difficult. The start of each screen therefore is a block of RAM starting at a

page. For convenience I've arbitrarily numbered the screens in descending order,

starting 1. The object is to access any screen easily; let's use the idea of a switch,

so that a POKE into some key location with 3, say, instantly displays screen 3. Then

it's easy to control the animation in either machine-code or BASIC; for example BASIC

needs only something like: 10 FOB J=l TO 10: POKE 634, J: NEXT: GOTO 10 to show 10

screens in sequence.

fc/M-
$7000
#4

$7400
#3

$7800
#2

$7C00
#1

$8000-$83FF
SCREEN DISPLAY

This machine-code (I

$027B) fits the bill,

in the zero-page.

've omitted the initialisation routine to direct the IRQ vector to

It stores the addresses 'from' and 'to' in the random-number area

02 7A
027B
027E
0280
0281
0282
0284
0285
0287
0289
028B
028C
028E
0290
0293
0295
0297
0299
029B
029D
029E
02A0
02A2
02A4
02A5
02A7

00
AD
F0 27
0A
0A
49 FF
38
69 80

7A 02

85 89
A9 00
A8
85 88
85 8A
8D 7A 02
A9 80
85 8B
A2 04
Bl 88
91 8A
88
DO F9
E6 89
E6 8B
CA
DO F2
4C 2E E6

BRK
LDA
BEQ
ASL
ASL
E0R
SEC
ADC
STA
LDA
TAY
STA
STA
STA
LDA
STA
LDX
LDA
STA
DEY
BNE
INC
INC
DEX
BNE
JMP

5027A
502A7

#$FF

#S80
S§9
#$00

$0299
$E62E

;Holds key byte 0,1,2,...
;Load key byte
;Exit if it's zero

;Key byte now 4,8,12,...
;Flip bits. .

.

;+l for 2's complement
; Gives #80 minus 4*screen#
;High byte of start address

; Initialise offset Y

;Set low bytes to zero
;And reset key byte off.

;Now (88)=7C00 etc; (8A)=8000
; Counter for 4 pages

; Transfer loop for 1 page

; Continue interrupt. [E62E BASIC 2]

Programming the PET/CBM -284- 9: Graphics and sound

027A 00 AD 7A 02 F0 27 OA OA
0282 49 FT 38 69 80 85 89 A9
028A 00 A8 85 88 85 8A 8D 7A
0292 02 A9 80 85 8B A2 04 Bl
029A 88 91 8A 88 DO F9 Jlfi_S2
02A2 E6 8B CA DO F2m -BASIC 4- ; 55 C4-.

Test the routine by displaying the registers from monitor (type .R) and changing IRQ
to 027B. Enter .G 0004, which substitues the new IRQ for the old. If 027A did not

hold zero, the screen will immediately fill with some lower part of RAM.
The appearance of this type of animation can be improved with a form of 'in-

betweening'. A screen is not simply moved bodily in one movement. Instead, each
screen replaces its predecessor in two stages. The first compares the two screens, and
puts blanks in all locations which are not identical. Then it shifts the new screen. The
effect is to simulate movement more accurately, by keeping the fixed parts of the image
but temporarily deleting the moving parts. Thus part A does not instantly reappear in

position B, but only after a very short delay. This is worth trying, although with
some images which rely on reversed graphics there may be too much flickering.

Table of screen memory locations

Screen line Start of line

number 40 columns 80 columns

$8000 32768 $8000 32768

l $8028 32808 $8050 32848

2 $8050 32848 $80A0 32928

3 $8078 32888 $80F0 33008

4 $80A0 32928 $8140 33088

5 $80C8 32968 $8190 33168

6 $80F0 33008 $81E0 33248

7 $8118 33048 $8230 33328

8 $8140 33088 $8280 33408

9 $8168 33128 $82D0 33488

10 $8190 33168 $8320 33568

11 $81B8 33208 $8370 33648

12 $81E0 33248 $83C0 33728

13 $8208 33288 $8410 33808

14 $8230 33328 $8460 33888

15 $8258 33368 $84B0 33968

16 $8280 33408 $8500 34048

17 $82A8 33448 $8550 34128

18 $82D0 33488 $85A0 34208

19 $82F8 33528 $85F0 34288

20 $8320 33568 $8640 34368

21 $8348 33608 $8690 34448

22 $8370 33648 $86E0 34528

23 $83C0 33688 $8730 34608

24 $83E8 33728 $8780 34688

9.6 Pen Plotters . Plotters are not common peripherals; they are used for computer-
aided design, and are not often found in the micro world. The best plotters are large
pieces of equipment, either 'flat-bed' or 'rotary*; the latter use wide rolls of paper.
Benson is one manufacturer of this type of equipment; Calcomp is another. Smaller

scale plotters are available from, for example, Hewlett-Packard and Houston Instru-

Programming the PET/CBM -285- 9: Graphics and sound

ment make smaller models, desk-top size. The principle of these machines is to attach

a pen to a carrier which is movable in perpendicular directions under program control

Typically, two stepper-motors drive the carrier. An 'unintelligent' plotter can move its

pen only in steps; 'intelligent' plotters can 'home' and store coordinate positions. They

may have other features, such as a set of alphanumeric character plotting routines in

ROM The precision of the motors controls, to some extent, the maximum plotting-speed

obtainable. And the step-size controls the fineness of the resulting drawings, which,

because of the stepwise nature of the plotting process, inevitably have a slightly

serrated appearance. Typically, several step-size and step-rate combinations can be

selected. For example, a small Houston 'HiPlof can plot either 240 steps per second at

01 inch step-size, or 480 steps per second at .005 inch step-size. Thus the fastest

rate of drawing is about 2J inches with this model. This parameter is rather important;

a complicated drawing can take a lot of time. Moreover, the baud rate is also ™Port-

ant Suppose a CBM has an interface set at 600 baud; this means 600 bits (not bytes)

per second. If the programming system is such that one byte generates one movement

of a motor, then a maximum of only about* 75 bytes can be sent per second; this is

fine for (say) a daisywheel printer, but confines a plotter to perhaps an inch per

second at most. , .. ,„. , ,,

To illustrate the programming methods used with plotters, I'll take the Hiplot

as an example. This machine is controlled by only ten commands; 8 of these are

directions as shown in the diagram, and the remaining two commands move the pen

down to the paper and lift it from the paper. All other positioning, for example of the

pen before plotting starts, is done manually. Each direction on the diagram is labelled

with the character which, when sent from the computer, causes one step to be plotted

in that direction. Obviously, each motor can step in the positive direction, or in the

negative direction, or not at all. Thus there are 3*3 = 9 combinations. There is no

particular command for no-movement-at-all

.

J*

The 45° lines are of course generated by simultaneously activating both motors. This

is useful, because some of the jaggedness of lines can be taken out. When plotting a

straight line, for example, the appearance can be improved by building it from 45

lines with either horizontal or vertical lines, rather than drawing it only with lines

parallel to the x- and y- axes. The diagrams show the difference. The program on the

next page draws the best straight line between two points in this way. Note that it

uses the notation NW$, E$, SE$, and so on as a rather obvious mnemonic. These

strings have to be initialised elsewhere in the program, by

1000 n$="P" : e$="R" : s$="T" : w$="V" : ne$="Q" : se$="S" : sw$="U" : nw$="W" : u$="Y" : d$="Z"

Lines 107 and 109 test the gradient of the line which is to be drawn; those with grad-

ient < 1 are drawn by program lines 110 - 195, and steeper steeper straight lines are

dealt with by the part of the program starting at 300. Note that steep lines require

N$ or S$, while gentle lines use W$ or E$. Logical file #4 is assumed to be open to

the plotter.
.

Circles can be difficult to program. The standard algorithm, which uses the

minimum of trigonometrical calculation, is:

500 REM Q=DEGREES SUBTENDED BY EACH STRAIGHT-LINE SEGMENT. EG Q=10 PLOTS A

36-SIDED FIGURE

510 G=R: H=0: REM R=RADIUS. G AND H ARE INTERMEDIATE VALUES

520 N=360/Q : REM N=NUMBER OF SIDES=NUMBER OF REPETITIONS OF LOOP

530 F=C0S(Q*[PI]/180): I=SIN(Q*[PI]/180) :REM TRIG PARAMETERS

540 FOR J = TO N

550 C=G*F-H*I: A=G*I+H*F :REM THESE ARE THE X- AND Y-COORDINATES OF THE NEXT PT.

560 REM DRAW THE STRAIGHT-LINE SEGMENT TO THE POINT X=C,Y=A

570 G=C :H=A

580 NEXT J

In practice, 1 byte may be transmitted with 10 bits (say); hence the vagueness.

Programming the PET/CBM -286- 9: Graphics and sound

99 REM **
100 RUI ** SUBROUTINE TO PLOT LINE BETWEEN POINTS* GIVEN X AND Y DISTANCES
101 REM **
105 XP=0; YP=0
106 IF XD=0 THEN M=lE9s GOTO 300
107 M=ABS(YD/XD>
109 IF M>1 THEN 300
110 IF XD>0 THEN X*=E*: Y*=NE*s IF YD<0 THEN Y$=SE*
120 IF XD<0 THEN X*=W*s Y*=NW*s IF YD<0 THEN Y*=SW*
130 XO=ABS<XD)s YD=ABS(YD)
160 FOR S=l TO XDs PRINT£4»X*
170 IF M*S>YP THEN PRINTfe4,Y*t YP=YP+is S=S+ls IF S<XD GOTO 170
180 NEXT
190 FOR J=0 TO 1E5; IF YP-KYD THEN PRINTfc4»Y*s YP=YP+ls NEXT
195 RETURN
300 IF YD>0 THEN Y*=N*: X*=NE*s IF XD<0 THEN X*=NW*
302 IF YD=<0 THEN Y*=S*s X*=SE*« IF XD<0 THEN X*=SW*
304 XD=ABS(XD): YD=ABS(YD)
305 FOR S=l TO YDs PRINTfc4»Y*
310 IF S>M*XP THEN PRINTfc4,X*s XP=XP+1: S=S+ls IF S<YD GOTO 310
320 NEXT
330 FOR J = TO 1E5* IF XP-KXD THEN PRINTfc4>X*s XP=XP+ls NEXT
340 RETURN

Pattern plotting Mathematical curves and drawings, either as single long lines

(e.g. Lissajou figures - see 'SET') or as repeated plots (straight line segments mimic-
ing string and nails/ repetitive drawings in which parameters are slightly varied/ etc.)
have been fairly popular. They may also be useful in mathematical education. Curves
with plottable formulas include these following examples. These equations are all para-
metric, so pairs of values are generated, and can be plotted immediately. The scale of
course has to be adjusted so the drawing is aptly sized.

Trisectrix: x=cosa + cos2a Cycloid: x=a + sina Cardioid: x=2cosa + cos2a
y=sina + sin2a y=l - ncosa y=2sina + sin2a

Folium: x=t/(l+t 3
) Epicycloid: x=mbcosa - bcosma Strophoid: x=(t2 -l)/(t2 +l)

y=t 2 /(l+t 3
) y=mbsina - bsinma y=t(t 2 -l)/(t2 +l)

There are of course innumerable equations of functions of y in terms of x, which are
instructive to plot; for example:

Catenary: y=c cosh(x/c) Normal: y=e Damped sine: y=e (Asinwx + Bcoswx)

The specimen below, and that at the foot of the page before last, were con-
structed by a different principle; four separate types of 'tile', used as building-blocks
and drawn next to each other in random sequences chosen by the computer, make up

-287- 9: Graphics and sound
Programming the PET/CBM

the entire drawing. This example plots 'tiles' of these designs; when drawn as neigh-

bours, their lines must always link, forming an Islamic-style abstract pattern.

T

**#

The program is too long for reproduction here; it has four subroutines, one for each

'tile', and a routine to convert the random sequence of five or so 'tiles' into a sym-

metrical array. The actual loop which performs the plot is this:

3500 REM **** NOW PLOT SYMMETRICAL PATTERN USING CAX(.) ARRAY DATA

3510 V = 1 ;REM 'LOOP'
352<"> FOR H = 1 TO 2*HRIZ
3530 ON CAX(H»V) GOSUB 100>200,300.400
3540 NEXT H
3550 V=V+1: IF V>2*VERT THEN END
3560 PRINTfc4»PU*s FOR J=l TO 3*Ss PRINTfc4,SW*s NEXT

3570 FOR J=i TO 3*S*(2*HRI Z-l) s PRINT£4« W*: NEXT

3580 GOTO 3520

Lines 3560-3570 move the pen back from the end of one line of tiles to the start of the

next.

Three dimensional drawings . Perspective drawings are possible, but the pro-

grams are mathematically difficult. Each corner has to be entered as three co-ordinates

and their positions on plotting calculated so that the geometrical shape is projected on

a plane The picture of a CBM below was plotted like this; in fact it is a stereo plot,

the original being a stereoscopic pair in red and blue. When viewed through two

filters red for one eye and blue the other, this creates a stereo image. Several black

and white films have been made using this colour separation technique. Again, the

program is too long for reproduction. Readers interested in this will need to consult

textbooks on the theory of perspective projections; matrix arithmetic is usually the

preferred way to store data and process it. There are some snags: one is the hidden

line removal problem, which tries to deal with lines which would be blocked out by an

opaque object, but which the computer may not recognise as unwanted. (The CBM

picture had no 'corners' input of its far side, which evaded the difficulty). Another

snag may involve the conceptual framework of the projection: the arithmetic may

assume that the object is fixed, and the viewpoint moves around it; or the object it-

self may be rotated. If the method isn't suited to your needs, you may find it necess-

ary to calculate angles and distances in order to make the image the correct size or

make a series of images bear the correct relationships to each other.

Pseudo-perspective drawings - axonometric or isometric - are easier because

there is much less calculation involved. As an example, consider what is required to

Axonometric Isometric

plot a mathematical function in 3-dimensions. The aim is to plot a function to produce

an image of the sort indicated in the sketch.

How can this be done? The simplest method is

to ignore the hidden-line problem, simply

plotting cross-sections of the curve from left

to right for a range of values. Taking account

of hidden lines makes the programming, and

the running time* longer. The easy programming

Programming the PET/CBM -288- 9: Graphics and sound

solution is to adopt a modified axonometric
projection, exactly like this diagram except
that the horizontal y-axis is drawn to coin-

cide with the z-axis. Now, for each point

xn , a set of values z(x,y) are found, and
plotted as dots provided that each value
exceeds the previous value. In this way a

column of dots builds up, scanning from
left to right, which takes the form of the
type of drawing we have in mind. This method is fine with a VDU, but not very good
with a plotter, because more time is spent moving the pen than actually plotting. So
a more elaborate method must be used, which stores the maximum value plotted so far

at every x , and plots a continuous line from left to right, except where it is inter-

rupted by some larger value.

*-X

Ll

FOR Y = Yl TO Y2 STEP YS
FOR X = XI TO X2 STEP XS
Z = FN(X,Y) + Y

N=(X-X1)/XS
IF Z<MAX(N) GOTO Ll
MAX(N)=Z: PLOT SEGMENT
NEXT X: NEXT Y

:REM XS.YS MEANS X-STEP SIZE, Y-STEP SIZE
:REM EXTRA Y GIVES 'PERSPECTIVE', INCREASING THE
'HEIGHT' OF FAR POINTS
REM NTH COL. OF PLOT; N=0,l,2,...
REM DON'T PLOT SEGMENT IF VALUE < MAXIMUM
REM SAVE NEW MAXIMUM AND PLOT

This schematic BASIC program shows the method.

9.7 Sounds and the PET/CBM

Introduction Computer synthesized music has achieved considerable success, notably
with organ-like sounds and special effects; ordinary orchestral instruments remain
resistant to synthesis, because of the extremely complicated waveforms which they
generate. Before considering microcomputer music, let's look at a typical note-synthes-
ising method. We may distinguish three stages in the life of a note: attack, sustain,
and decay. The attack - the period in which the note is becoming established - has a
spiky and irregular waveform because of the note's instability. This part is difficult

to synthesize. The sustained part of the note has a steady waveform, including
harmonics characteristic of the instrument. Finally, the decay also has the same wave-
form, but harmonics tend to disappear as the note attenuates.

Attack Sustain Decay

To simulate these stages, we can hold a table of, say, 256 bytes per note. Each byte
may have a value of 0-255; and all the bytes together provide samples of the wave-
form from the start of a wave to its end (i.e. 1 wavelength). If we cycle through the
'attack' table a number of times, then the 'sustain' table, and finally the 'decay', the
entire note is simulated in this manner:

\AAAAAAAJVU\AAAAj--- - '

Start -Attack

-

-> <— Sustain - -> <r- Decay

If the digital values generated are converted to analogue signals by a digital-to-anal-
ogue converter (DAC), an approximation to the original sound will result. Speech
is synthesized from a vocal cord analogue (buzzing sound) with perhaps 3 bandpass
filters for each of the major formants of speech sounds. Chips are available, and are
used commercially in some products, to produce sounds of specified waveform, frequen-
cy, and envelope shape, to synthesize speech, and so on.

New, 12 inch screen CBMs are all equipped with an internal speaker (of very
low volume). This provides, as we'll see, an easy way to generate tones, clicks,
squeaks, and so on; it relies on a square wave, produced, in the CBM's case, by the
shift register, which periodically shifts a bit to be amplified by the speaker. This has
only two positions, out and in, so the sound is cruder than that produced by digital

to analogue conversion.

-289- 9: Graphics and sound
Programming the PET/CBM

The frequency produced by these methods can be calculated easily enough for any

particular case, but what is the corresponding note? Several musical scales exist,

including the scientific ('Just') scale with middle C of 256 Hz, and two equal-tempered

chromatic scales, of which the American standard has middle C of 261.63, and the

International standard a middle C of 258.65. Chromatic scales have,12 notes before the

octave repeats, and their frequencies have a constant ratio of 21'" (1.05946...). An

abridged summary of the full range of notes for each scale follows:-

NOTE

EQUAL TEMPERED CHROMATIC SCALE SCIENTIFIC SCALE

FREQUENCY : ASA INTERNATIONAL PITCH

C4 261.63 258.65 256

C#4 277.18 274.03

D4 293.66 290.33 288

D#4 311.13 307.59

E4 329.63 325 . 88 320

F4 349.23 345.26 341.33

F#4 369.99 365.79

G4 392.00 387 . 54 384

G#4
A4

415.30 410.59
440 435 426 . 67

A#4 466.16 460.87

B4 493.88 488.27 480

Sounds with microcomputers Hal Chamberlin is one of the most well-known authorities

on music generation by computer; see Byte, Sept. '77, or his more recent book, 'Mus-

ical Applications of Microprocessors' (Haydon/ Wiley). Both user-port techniques for

the PET appear to have originated from him. (A commercial product for 4-voice sound

synthesis, by MTU, is his. Another well-known product is the 'Visible music monitor ,

or VMM, by AB Computers. Each has software with a digital-to-analogue converter).

VIC has a 4-voice synthesizer built in. Other machines, e.g. Apple, have speakers

built in as standard. As we'll see, the usual PET system uses a different system of

operation which is probably easier to work. Let's first look at square-wave generation

on the PET, using extra hardware. The programming is identical to that for the wide-

screen models, which have the same circuitry ready supplied.

Square-wave generation with the VIA's shift register Before the specimen programs,

here are three alternative methods to make the VIA's square waves audible. They are

arranged in order of ease of implementation. I don't recommend users without hardware

experience to try this, and can't accept responsibility for disasters which may result.

(Not that anything untoward is likely to happen, in fact).

(i) It's not widely known that the PET's sound can be amplified without any

connections at all, except one to the M pin, corresponding to CB2, which is the right-

most-but-one pin on the underside of the user port. (This port is next to the IEEE

port - check in the manual). If a single connection to this pin is taken as a wire near

a radio, its radio frequency signals will be picked up, and the sound broadcast. The

result is rather noisy, in the technical sense, but is better than nothing.

(ii) The same single wire can be attached to the radio's volume control. Assum-

ing this is a thumbwheel, connect the output to A or B, enabling the volume control

to operate. (Not C, which doesn't).

AO Q
oB

C
(ill) A simple amplifier circuit, of three components plus a small speaker, gives

very adequate sound. The circuit diagram shows how the components are arranged;

a sketch on the following page shows how they appear, in unmounted form, with the

computer. It is of course possible to buy amplifiers as chips, which makes very neat

and compact units available. g- vours
1

. _

3*1-000 £i
70&. (Tyfi<*.[)

&I&C lOT (or /"8 <w /l).

Programming the PET/CBM -290- 9: Graphics and sound

The signal may be reduced by increasing the smaller resistance from 100 ohms. The

larger resistor's value is set at 34000 ohms since the gain is of the order of 200, so

200 x (100 + 70) = 34000.

(5 (lOtfS-V

lOOfi.

SOSli 5pei!iQ.c Bcio<\ •frw^isW.

Programming the speaker is a fairly easy matter. The usual method is to use the VIA's

Shift Register, at $E84A. A shift register moves one byte to the right at regular time

intervals determined by a clock. In our case, the location $E848, which is the low byte

of timer 2, controls the rate of shifting. Also, the Auxiliary Control Register, which

has 8 alternative shift-register settings, is set for 'Free Running Output Mode'. Let's

first look at a machine-code example; in fact the routine which BASIC 4 uses to tinkle

its internal bell.

The jump-table address (E02A in the 8032) causes the chimes to ring once; the

jump is to E6A7. To ring the bell twice, call E6A4, which has the command JSR E6A7,

and consequently tinkles the bell, then drops through to tinkle it again. The bell-

ringing routine is like this:

LDA #$10
STA $E84B ;AUX. CTRL. REG. ('ACR') INTO FREE RUNNING OUTPUT MODE, T2 CONTROLLED

LDA #$0F
STA $E84A ; SHIFT REGISTER HOLDS 0000 1111

LOOP LDA xxxx ;L0AD A WITH SOME TABLED VALUE
STA $E848 ;PUT A INTO TIMER 2 (LOW)

EXIT LDA #$00
STA $E84A ; SHIFT REGISTER HOLDS 0000 0000

STA $E84B ;ACR HOLDS 0000 0000

The values the CBM loads are OE/ IE/ 3E/ 7E/ 3E/ IE/ 0E in turn. The delays before

shifting are in proportion to 1:2:4:8:4:2:1 (i.e. spanning 3 octaves, because the fre-

quencies are halved by the delay's doubling). The rationale is this:

(i) Bits 2,3, and 4 between them control the shift register; if for example they
hold 000, no shifting occurs; 101 causes just 8 bits, the present contents of the shift

rgister, to be shifted under control of T2; and - our sound generator - 100 causes
the shift register to shift in 'free run' output under the control of T2. This means that

T2, which is decremented at every clock cycle, causes 1 bit of the shift register to be
output when ever T2 becomes zero. T2 is automatically reloaded in this mode; so is

the shift register. ACR is E84B (59467).

(ii) T2 has a high byte and a low byte. As we shall see, only the low byte is

usually used for tone generation. Its location is E848 (=59464).

(iii) The shift register itself is E84A (=59466). Its pattern of bits determines
the frequency of the note and its timbre.

To see how these three VIA registers cause a square wave to be generated,
consider these illustrations of the shift regist-

er at regular intervals as T2 times out. A bit
*- is set high or low (1 or 0) on CB2 at each of
*- these intervals, and the resulting wave train

=j *- appears as shown; it has only two amplitudes,
—

i

—*~ and is a square wave (with disturbances dep-
**~ ending on mechanical and electrical error).

Many of these wave trains corresponding to SR's bit patterns sound identical to waves

originating from other bit patterns which at first sight appear different. For example,

Start: llQllOOllI

T2 out : 1 010110011 CB2=1 ~~
1_

T2 out : rgoToTTODI CB2=1
T2 out: lOOOlOllOl CB2=0_J~
T2 out

:

1 00001011

1

CB2=0
T2 out: 100000101

1

CB2=l""

L

Programming the PET/CBM -291- 9: Graphics and sound

01 (0000 0001) and $80 (128 decimal). 1000 0000 sound identical, because each produces

a single pulse. More subtly, $0F = %0000 1111, changes the note's apparent frequency

because the ear picks up the period of the wave as half that of, say, 1110 1100. This

applies also to 0011 0011 and 0101 0101 and their variants, in which the frequency

shifts (of an octave each) are caused by the repetitive bit pattern. Note also that

patterns Which we might call 'inversions' - e.g. 1111 1000 and 0000 0111 - sound alike

to the ear; this is a fact about the psychology of perception, rather than physics. We

can list all the fundamentally different bit patterns; they are

RESULTS OF M ZIMMERMANN' B 'MUSIC GENERATOR' PROGRAM (FEB 81 BYTE)

c 1~J 1

3 Q 1 1

5 C c c c 1 1

7 O 1 1 1

9 C c c c 1 c c i

il 1 1 x

i5 o II 1 1 1 1

17 1 1

j.9 1 1 1

21 1 1 L

7t3 1 1 1 1

27 1 1 1 i

37 1 1 1

43 1 1 1 1

^5 1 1 1 1

51 1 1 1 1

85 1 1 1 1

Zimmerman's 'Byte' article also includes Fourier Analysis methods, routines being given

for the BASIC 1 PET.* * ,, •
The great advantage of this method of tone generation is that, once started, it

continues. Apple's system requires the machine to continually tweak the speaker, so

no other processing can be carried on. To show how this can be used, the following

short machine-code program uses the interrupt to help play a tune. (It is written for

BASIC 2; other BASICs need their correct IRQ in place of E62E). The overhead in

terms of time is tiny; the space overhead depends on the table of notes. This example

'plays' the zero-page, producing 1 note with each interrupt; you should therefore be

able to hear repetition of the 'tune' each 4 seconds or so. Load the routine, and point

the IRQ to $0300 (e.g. SYS 4/ M 0090 00 03 — same —). The routine is now active.

Program Demonstrating use of the Interrupt to Play a Tune while BASIC runs .

NO. DEC. HEX DUMP DISASSEMBLY

1 768 E6 00 $0300 INC $00 ; LOCATION $00 IS A COUNTER; EACH TIME IT IS

2 770 F0 03 $0302 BEQ $0307 ; INCREMENTED TO #00, THE NOTE IS CHANGED.

4 775 A9 FF
^

$0307 LDA #$FF
E

; RELOAD THE COUNTER (SMALL VALUE = SLOWER)

I III l\ ™ Ininn fnt S78 ; OUR DEMONSTRATION PICKS ITS NOTES FROM THE

7 78? FE OC 03 S030D INC $030C ? ZER0 PAGE '
CYCLING THROUGH 256 VALUES.

8 ill S So E8 lollO STA SmS * STORE ACCUMULATOR IN THE TIMER.

9 787 4C 2E E6 $0313 JMP $E62E ; AND CONTINUE NORMAL INTERRUPT.

POKE 59467,16 starts SR shifting in free-running mode. This starts the 'tune'. POKE
59466.X enters a byte (and may be needed to make the tune audible!). It also controls

the timbre of the notes produced, within the restrictions imposed by the square wave.

A BASIC program can be run while the noise continues. (POKE 59467,0 to turn it off).

*Tnese are fairly easy to convert to other ROM sets; see Chapter 15. Fourier was a

French mathematician who proved that any periodic waveform could be generated by adding

sine curves together (sometimes - as with square waves - infinitely many in number).

•Fundamentals' and 'overtones' are an aspect of this. The process is similar to that

of Ptolemy, who in effect synthesised ellipses from many circular motions.

Programming the PET/CBM -292- 9: Graphics and sound

POKE 776.X varies the rate at which notes are changed; this location is used to count

interrupts; the smaller the value, the longer is each note played, up to a maximum of

4 or 5 seconds. Obviously, a table of bytes can be played, so a recognisable tune will

emerge, while BASIC runs. A table of 256 bytes (say) played at the rate of 2 notes

per second (the equivalent of POKE 776,25 or so in our example) will run for 2 minutes

before repeating. We can use our technique of 'switching', i.e. using a special POKE
location to cause the interrupt to choose different tunes, from tables of perhaps 4 or

5. In fact, these could be chosen by the program; thus, a game program might be

accompanied by music of the appropriate mood, like a piano accompaniment to a silent

film.

This demonstration BASIC program plays 2 octaves:

92 REM ##
93 REM # DEMONSTRATION OF CHROMATIC SCALE OF 2+ OCTAVE RANGE #

94 REM # EACH NOTE OBTAINABLE BY A SINGLE 'POKE' FROM BASIC OR MACHINE-CODE #

95 REM ##
96 REM
97 REM
100 POKE 59467, 16: REM FREE RUN MODE
110 POKE 59464,0 : REM SWITCH OFF IF CONTENTS EXIST
120 POKE 59466,22: REM OTHER VALUES WILL PRODUCE THEIR OWN TIMBRES/ TONES
130 DIM N(30) : REM ARRAY WHICH WILL HOLD THE CONTENTS OF DATA
140 FOR X = 1 TO 1000: READ N(X): IF N(X) <> 999 THEN NEXT: REM READ DATA IN.
150 N = X - 1: REM N IS THE NUMBER OF ITEMS IN THE TABLE OF NOTES
191 REM
192 REM
193 REM ###
194 REM # PLAY ALL THE NOTES FROM THE DATA TABLE IN ASCENDING SEQUENCE #
195 rem mmmmmmmmmmmmmmMmMmmMMmmmm
196 REM
200 FOR X = 1 TO N: REM PLAY ALL NOTES
210 POKE 59464, N(X): REM POKE TIMER WITH DATA
220 FOR J = TO 200: NEXT J: REM DELAY LOOP BETWEEN NOTES
230 NEXT X
500 POKE 59467,0: END: REM SWITCH OFF
991 REM
992 REM
993 rem mmmmmmmmmmmmmmmmmMmmmMMMm
994 REM # STARTING VALUE OF 252.1 FOUND BY TRIAL TO GIVE CLOSE APPROXIMATIONS #
995 REM # TO TRUE CORRECT CHROMATIC RATIOS; BUT DOES NOT HAVE PERFECT PITCH. #
996 REM # START VALUE MULTIPLIED BY 2 " ONE-TWELFTH; THEN 2 CYCLES SUBTRACTED.//
997 REM ###
998 REM
1000 DATA 250,236,223,210,198,187,176,166,157,148,139,132 :REM FIRST SET OF 12
1010 DATA 124,117,110,104,98,92,87,82,77,73,69,65 :REM SECOND SET OF 12
1020 DATA 61,999 :REM 999 SIGNALS END

How can we calculate the absolute frequency of a note? Let's say that timer 2 contains
the value T (<256). The timer decrements once every microsecond, so one bit will shift

every T microseconds .
* So 8 bits are sent in 8T microseconds , and the full period of

a wave is twice this, assuming a pattern like 0000 0001, not an internally repeating
one such as 0101 0101; so the frequency is 1000000/ 16T cycles per sec. This is the
same as 62500/T. So a frequency of 256 is obtained by poking 244 into T2. When gen-
erating square waves, the greatest precision can be got by using the longest possible

value of T2; this means a correspondingly fast square-wave, 0101 0101. This has 4

times the frequency of 0000 1111. Timer 2's high byte (in E849 = 59465) may need to

be used as well as its low byte.

Several square waves can be generated simultaneously, although the resolution

is inevitably poor: this requires the reloading of the shift register after each timer

countdown, with the next in the sequence of combined waveforms. The timing could be

carried out by enabling T2's interrupt, but the technique is tricky.

*This seems a reasonable assumption. R Zaks ('6502 Applications Book') implies that

the half-period is N+1.75, made up of an average from N+2 (top of pulse), and N+1.5
(bottom of pulse). His method gives slightly different values for the constants; it

was used in the BASIC program above - see line 996. At the time of writing I haven't

found a definitive answer to this simple question.

Programming the PET ICBM -293- 9: Graphics and sound

These short BASIC routines demonstrate typical easily-achieved sound effects:

(i) Glissando

1000 POKE 59466,15: POKE 59467,16

1010 FOR J = 255 TO 1 STEP -1

1020 POKE 59464,

J

1030 NEXT: POKE 59467,0

(ii) Beep

1000 POKE 59466,15: POKE 59467,16

1010 POKE 59464,140
1020 FOR J = TO 20: NEXT

1030 POKE 59467,0

REM REGULAR SQUARE WAVE + SR ON

REM LOW TO HIGH PITCH

REM BRIEFLY PRODUCE TONE

REM SR OFF WHEN LOOP ENDS

REM OR USE DIFFERENT (<>15) TIMBRE...

REM ... OR TONE

REM SHORT DELAY LOOP

REM SWITCH OFF AFTER BEEP

REM NOTES VARY AROUND THIS

REM ASSt/MES N() HOLDS TABLE OF NOTES

(iii) Murmur

1000 POKE 59466,45: F-59464

1010 FOR J = 1 TO 200

1020 X=RND(1)*16
1030 FOR K = TO 8*RND(1)

1040 POKE F,N(X+K)
1050 NEXT K,J: POKE 59467,0

SUMMARY OF CB2 SOUND VIA LOCATIONS .

E848 59464 Timer 2 (low byte) T2L 0=off ; otherwise, small means high pitch

E849 59465 T2H Only useful for slow timing

E84A 59466 Shift Register SR Contents determine timbre and octave

E84B 59467 Auxiliary Control ACR Bits xxxxxxxx control SR (Free run 100)

Tones with 8-bit resolution Output port A of the VIA has bits PA0-PA7 connected to

pins C D,E,F,H,J,K, and L of the user port. (These are on the underside). The dia-

gram shows a digital-to-analogue converter which allocates weights to each bit, so that

the most significant bit L has twice the effect of pin K, which in turn has twice the

effect of pin J, and so on. The resistor values chosen are 'preferred values'; their

values are only approximately in the ratio 2 to 1. Greater precision requires the use

of a 'ladder' circuit, corrected for the IK resistor to ground. The diagram includes

only 5 pins, ignoring the least significant 3 bits, whose effect, in such a simple cir-

cuit is small. The resistor-capacitor arrangement provides some smoothing. Pin M is

included, so CB2 sound is available as well; pin 6, with a resistor, can be added, so

tape loading can be aurally checked. The output should be amplified by (for example)

a plug inserted into a portable radio's DIN socket. A simple transistor circuit isn t

sufficient. ,.._ Parallel UsEK PoRT IEEETAPE-

DEMONSTRATION PROGRAM

LDA #FF ; CONFIGURE PORT A_

STA E843; FOR OUTPUT

LI LDA 2000,

X

STA E84F;SEND OUTPUT

INX

BNE LI

LDA 9B ;TEST STOP KEY

CMP #EF ; [0209 IN BASIC1]

BNE LI

RTS ; RETURN TO BASIC

[OR BRK IN M/CODE]

This simple demonstration routine first configures all 8 bits of port A for output, then

repeatedly stores 256 bytes (1 page) of bytes into the output port. This repeating

pattern constitutes the waveform. A routine to stop the output is provided. In this

wav 256 separate speaker positions model one wavelength of the sound. For high fre-

quencies this is too great, and a smaller table, perhaps 32 bytes, must be used. Two

examples follow; note that the starting value of $2000 (=8192) is arbitrary, and other

values, such as the top of RAM, can be used. An oscilloscope will display the waveform.

1=0- FOR J = 8192 TO 8192+255: POKE J, I: 1=1+1: NEXT: REM GIVES SAWTOOTH

I=oi FOR J = 8192 TO 8447: POKE J, 128+125*SIN(I) : I=I+2*[PI]/256: NEXT: REM SINE

Programming the PET/CBM -294- 10: Transition to machine-code

CHAPTER 10: THE TRANSITION TO MACHINE-CODE

10.1 Introduction and some 8-bit concepts-

Machine-code programming can only be learnt by trial and error, by experimenting with
sample programs to see what they do, and transferring the results of this learning to
one's own programs. This chapter explains the connection between decimal and hexa-
decimal notation, and the meaning of 'bit', 'byte', and other related words. It also has
short examples of machine-code programming; these are continued and expanded in the
next chapter. But the bulk of the present chapter is concerned with monitors: not the
VDUs, but software enabling the programmer to get to the 6502 chip. The novice in
6502 machine-code will find some of the detail hard to follow: the problem being that
machine-code can be understood only with the help of a monitor, but a monitor cannot
be understood without knowledge of machine-code. Some of the detail must be skipped
on the first reading. Chapter 12 has an alphabetic guide to the 6502, to which refer-
ence may be made, but again, because of its comprehensiveness, much will be obscure
to the comparative beginner.

The 6502 microprocessor performs all the processing of the PET/CBM. It is sup-
plemented by chips to control the keyboard, screen, and other peripherals, and cir-
cuitry to perform such functions as the screen scanning and the control of the power
supply. A crystal-controlled clock determines the speed of operation of the 6502, so
it is possible to calculate the precise time taken by a program.* Each variety of micro-
processor has its own version of 'machine-code' or 'machine-language'. This is a map
or dictionary (in effect) giving a one-to-one translation of the contents of locations
accessed by the chip to the chip's activity. Each separate machine-code instruction has
little effect; only the combined effect of millions of instructions enables a computer to
achieve anything. The 6502 is an 8-bit processor. It operates in units of 8 bits. A 'bit'

(as many people know) is a 'binary digit' . Conventionally represented as for off and
1 for on, it is the smallest unit of data. Note that a bit isn't actually a '0' or a '1'; it

is a voltage, interpreted as 'off in the range zero volts and up, and 'on' in the range
five volts down, with the exact range depending on the chip. Most of the 6502's data
is stored in RAM or in ROM. If a static charge or voltage spike causes a voltage to
drop from (say) 4 volts to 2, the bit will no longer hold its correct value; the data
will be 'corrupted'.

A byte is a set of 8 bits wired so that they correspond to a single address. 8
pins on the 6502 are used for data transfer, both into and out of the chip. The indi-
vidual bits are usually represented as bits number 7 to in descending order, with
bit 7 the 'high' and bit the 'low' bit. This is consistent with ordinary mathematical
notation, using standard base 2 (binary) arithmetic. The value of a byte can be any
integer from to 255; there are 256 (=28) different possibilities. The table below,
familiar to everyone exposed to 'modern' mathematics, shows the connection between
bits and the overall byte value: ONE BYTE:

BIT NUMBER: '

"~

POWER OF 2:

WEIGHT 1
:

7 6 5 4 3 2 1

7 6 5 4 3 2 1

128 64 32 16 8 4 2 1

So, for example, the decimal equivalent of 0000 0000 = 0,

0000 0001 = 1,

0000 0110 = 6,

1111 1110 = 254.

The division of a byte into two halves of 4 bits (known, sometimes, as 'nybbles' , by
a process of paronomasia) is another convention: it is impossible to remember 256 sep-
arate numeric symbols for a byte, so hexodec/mo/^notation is widely used instead. Each
nybble is represented by 0-9, A,B,C,D,E, or F. 'A' in hexadecimal ('hex' for short)
means 10 in decimal, 'B' means 11, ... ,'F' means 15. This is the representation used
by the CBM's built-in monitor. This notation expresses a decimal number of - 255 in
two characters at most; and decimal numbers up to 65535 (=216) in four characters at
most. The appendix has a complete table of hexadecimal-decimal 8-bit conversions, and
""This suggests that programs (calculations for example) might be accelerated by the
use of a faster clock.
2 'Sedecimal ' (all-Latin in origin) is sometimes recommended as a more satisfactory
word, naturally without much success.

Programming the PET ICBM -295- 10: Transition to machine-code

a conflated table of values multiplied by 256. These may be used to^e*
J

6:™^"
adecimal numbers into decimal and vice-versa. The 6502 is ^**?X$£%£^
ress bus- Dins 9-20 and 22-25 between them carry address data. This design allows

256" =65536
P
RAM/ ROM addresses to be used directly, without a system of sw«.

16-bit, 2-byte hexadecimal numbers are represented by an extension of the notation to

four characters: „,,.,.,
TWO BYTES (16 BITS):

BIT NUMBER:
POWER OF 2:

256* POWER:
'WEIGHT':

So that, for example, the following conversion relationships hold:

DOUBLE BYTE HEX DECIMAL VALUE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

15 14 13 12 11 10 9 8 7 6 b 4 A 2 1

7 6 5 4 3 2 1

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

0000 0000

0001 0000
0000 0100
1010 1011

1111 1111

0000 0000

0000 0000

0000 0001

1100 1101
1111 1000

$0000
$1000
$0401
$ABCD
$FFF8

4096 (= 16*256 = 16 3
)

1025 (= 4*256 + 1)

43981 (= ((10*16 + 11)*16

65528 (= 65535- 7)

+ 12) *16 + 13)

I have used the convention of prefixing a hexadecimal number with '$'. This avoids

ambiguity in the case of those numbers which happen to include no alphabetic charac-

ters (An alternative convention, unusual with the 6502, is to write 'H' after the numb-

er. This is not always satisfactory: 'BEACH' can be a hexadecimal number or an ass-

embler label) ^ geems Qdd _ .

t appearg strange that E $ p

represent an ordinary number, and that $20 is 32, and $100 is 256. With practice the

Sferconversion becomes fairly easy, at least with small values which can be converted

mentally - $A2 is clearly 10 sixteens plus 2, i.e. 162; $55 is 5 sixteens plus 5, 88.

Chapter 4, section 4.1.1 has one-line BASIC interconversion routines which may be use-

ful. In the absence of a computer or tables, conversions can be carried out with a cal

culator:
Hexadecimal tQ decimal . A four-digit hex numeral (say FGHJ) has weights of

163, t62) 16, and 1 respectively to be multiplied by each respective digit s^ decimal

value. (This is what is meant by 'Base 16'; it is exactly analogous to^10'', 10», 10 and 1

weighting the digits of a decimal number). So the result is F*16* + 0*16* H*16 J,

where f7g,H and J are intended as algebraic representations of any value 0-15.

It is often easier to evaluate the result as a continual calculation, multiplying F by lb,

adding G, multiplying the result by 16, adding H, multiplying by 16 again, and lastly

adding J. In this way, the correct weights are automatically assigned,adding^
^ecimal to

y
h

'

exadecimai. The method is to first divide by $1000, which is

4096; this gives the first, most significant hex digit, of 0- 15. Note this digit, then

subtract it from the currently-stored decimal value, and multiply by 16. This reveals

the second most significant digit. Continue until all four have been found

The combination of two bytes into an address is an important feature of the 6502

chip, and the formula for a two-byte value, which equals 256*the high byte + the low

byte recurs in machine-code, POKEs and PEEKs, and SYS commands. It is perhaps a

pitv that the 6502 handles double-byte numbers assuming that the low byte is stored

first, followed by the high byte. In other words, the order is opposite to what you

would expect from a normal number. (Some other chips, for example the 6809, have

double-bvte addressing in 'natural' order). Because of this, pointers used by BASIC

BASIC are almost always in this format, which can be used without modification by the

ChiP
'

Two other general points about the computer's handling of hexadecimal arithmetic

can be made at this point; they are not enormously important, and may be skipped:

M™ Two's complement arithmetic. This is a convention for the representation of

negative numbers, which is implemented on the 6502. In its simplest form with 8 bits

only, bit 7 determines the sign of a number: 0' means positive '1 , bit 7 set, means

negative. The rule to change the sign is to flip th
l

b,t^. a^a
h
tĥ ; £ {£<>

nattern 0101 1001 ($59 = 89 decimal) is made negative by flipping the bits (to *«"»

?1 0) and addig 1 to give 1010 0111. Normally this counts «,
$A 7 = 167 dec^al and

this example shows that a number and its two's complement add to 256 or $0100. ine
this example snows «

negative numbers is consistent with normal use,

£ ma" teiS^.ls^fuTtdd fo $100, which, ignoring the bit which over-

Programming the PET/CBM -296- 10: Transition to machine-code

flows, is zero, which is the result required from the addition of two numbers of opp-
osite sign but equal magnitude. Simply flipping the bits does not provide this, as the

numbers add to $FF or 255. Note that the complement of zero ($00 = 0000 0000), i.e.

minus zero, does not exist. For experienced programmers, there is an example in

section 9.5 which involves subtraction by taking the two's complement. As we shall see,

branches use two's complement arithmetic to calculate the address to jump to; only one
byte is allowed for this offset, which therefore has a maximum value of 0111 1111 - 127

in the forward direction, and 1000 0000 = -128 in the backward direction.

(iv) The meaning of 'K'. The prefix 'K' or 'Kilo' implies a unit of measurement
one thousand times larger than some standard unit. In computer jargon, however, a

'kilobyte' is not a unit of 1000 bytes, but 210 = 1024 bytes, a figure which derives

naturally from the organization of present-day computers, with on-off storage. 1024

bytes is not the same thing as $1000 bytes; the hexadecimal interpretation of '1000' is

16 3 =4096. Not surprisingly, this can lead to confusion. For example, the RAM needed
to store a high-resolution graphics display may occupy (say) $9000 - $AFFF, which is

two batches of length $1000. It is easy to think that the display occupies 2K, whereas
in fact it uses 8K. This table, of decimal and hex equivalents to integer multiples of

1 K, may be helpful:

TABLE OF KILOBYTE VALUES

16K 16384 $4000 32K 32768 $8000 48K 49152 $C000
IK 1024 $0400 17K 17408 $4400 33K 33792 $8400 49K 50176 $C400
2K 2048 $0800 18K 18432 $4800 34K 34816 $8800 50K 51200 $C800
3K 3072 $0C00 19K 19456 $4C00 35K 35840 $8C00 51

K

52224 $CC00
4K 4096 $1000 20K 20480 $5000 36K 36864 $9000 52K 53248 $D000
5K 5120 $1400 21

K

21504 $5400 37K 37888 $9400 53K 54272 $D400
6K 6144 $1800 22K 22528 $5800 38K 38912 $9800 54K 55296 $D800
7K 7168 $1C00 23K 23552 $5C00 39K 39936 $9C00 55K 56320 $DC00
8K 8192 $2000 24K 24576 $6000 40K 40960 $A000 56K 57344 $E000

9K 9216 $2400 25K 25600 $6400 41K 41984 $A400 57K 58368 $E400

10K 10240 $2800 26K 26624 $6800 42K 43008 $A800 58K 59392 $E800

11K 11264 $2C00 27K 27648 $6C00 43K 44032 $AC00 59K 60416 $EC00
12K 12288 $3000 28K 28672 $7000 44K 45056 $B000 60K 61440 $F000

13K 13312 $3400 29K 29696 $7400 45K 46080 $B400 61

K

62464 $F400

UK 14336 $3800 30K 30720 $7800 46K 47104 $B800 62K 63488 $F800
15K 15360 $3C00 31

K

31744 $7C00 47K 48128 $BC00 63K
64K

64512 $FC00
65536 $10000

Note that 32K marks the half-way point for a 64K system. The PET/CBM screen starts
here, and generally RAM is below this dividing-line, and ROM above, except in the
case of RAM on boards accessed by the memory-expansion ports, and other special

cases

.

10.2 CBM machine-language monitors - TIM and MLM .

The earliest (BASIC 1) machines have no machine-code monitor in ROM: instead, an
assembly listing of machine-code was provided in the manual (pp . lOOff) . This occupies
the space of a BASIC program, and in fact consists of 10 SYS (1039) followed by the
monitor, saved as a single program by extending the end-of-BASIC pointers to include
the monitor. (The redundant brackets enclosing 1039 have recurred elsewhere ever
since). Since this machine lacks a monitor, entering the program is difficult- there is

no way to directly key in the hex information provided! A series of pokes will do the
trick, but there are a great many. The easiest way (apart from copying someone else's

tape) is to use a loader program like the following, which inputs hex bytes, turns
them into decimal, and pokes the result into the correct location. But the BASIC will

itself have to be overwritten by poking the values of the bytes relevant to the monitor
into place; and, finally, the end-of-program pointer must be altered to include the
monitor.

10 INPUT "START ADDRESS" ;S

20 INPUT "BYTE";L$

30 L=0:FORJ=1T02:L%=ASC(MID$(L$, J)):L=16*L+L%-48+(L%>64)*7:NEXT

40 POKE S,L: S=S+1: PRINT S; : GOTO 20

Programming the PET ICBM -297- 10: Transition to machine-code

TIM ('tiny monitor') has a 'call entry' of $040F (=1039), and a 'Break entry' point of

$0427 (=1063). The latter works only if ($021B), the pointer from BRK, is set to $0427.

TIM has similar features to later monitors, but displays PC SR AC XR YR SP only.

BASIC 2 machines have a built-in monitor (called MLM', 'machine-language mon-

itor'; rather more dignified than 'TIM'). This displays the interrupt request address

(IRQ) in addition to the program counter, status register, A, X, and Y, and the stack

pointer. It has a few slight improvements; for example, the decimal flag is cleared.

From BASIC, a SYS call to any location with peek-value zero causes the monitor to be

entered at the break entry point. SYS 1024 (using BASIC'S initial 0) or SYS 4 (using

a flag which is only set when a program is running) are the favourites. The caE entry

point is $FD11 (=64785), although this is not often used.

BASIC 4 has a monitor similar to BASIC 2. The differences are (i) it occupies

different locations in ROM; see Chapter 15, starting at D472 in the BASIC 4 column,

for comparative locations of the subroutines, (ii) The break entry is modified to abort

output to printer; the idea is that a BRK always displays the registers on the screen,

without printing strange information onto a printout or listing. Because of this, the

call entry point is easiest with a printer: $D472 (=54386) is the relevant address, and

OPEN 128,4: CMD 128;: SYS 54386 a typical series of commands to divert the output to

a printer. The file-number, larger than 127, ensures a carriage-return character is

accompanied by line-feed. If this feature is unwanted, use a lower file-number (e.g. 4)

or switch 'auto-line-feed' off.

MLM commands The machine-language monitor contains a table of single-byte commands,

which are checked against the actual input. These commands are : ; R M G X L and S,

in that order. The monitor also puts a period or full-stop at the start of each line, the

sole function of which is to verify that a line is to be considered input into the monitor.

The syntax and operation of each command is as follows. (For actual entry addresses

and other detailed information, see Chapter 15).

; Alter registers takes 7 parameters and stores them in a buffer from $0200 - $0208,

where they remain until (i) they are altered again, or

(ii) exit to BASIC ignores them, or (iii) the command
G ('GO TO' or 'GO RUN') loads them all into their res-

pective locations and executes machine-code accordingly

Note that nothing happens until C is entered; in this

way, the altered values are controllable.

MLM values are input according to their absolute pos-

ition. The following line, for example, inputs the val-

ues which are underlined, ignoring the others:

. ;12345678901234567890123456789[RETURN]

PC IRQ SR AC XR YR SP

: Alter memory contents inputs a four-character starting address and eight bytes,

which it stores in the eight memory locations from the starting address on.

Like the previous command, the values depend on absolute positions.

.: 0400 00 06 04 00 OA 8A 00 00 00 for example puts 8 bytes into RAM,
where they make a BASIC program 10 RUN . Any other values in the line

are simply ignored. This routine incorporates a read-back comparison, so

that an attempt to write to ROM or non-existent RAM gives .?

R Display registers (no parameters) is always called on entering the monitor. After

this, .R has the same effect. This command is normally a preliminary to

changing the registers; for instance, suppose the interrupt vector is to

be changed from BASIC 4's E455 to a routine at $027A in the first cassette

buffer. First, .R displays the text PC IRQ SR AC XR YR SP with

.; 0005 E455 32 32 32 32 FA
or something similar. After moving the cursor up, E455 is overwritten with

027A. Nothing happens until G; .G 0004 causes a break entry, in

effect performing SYS 4, and the IRQ is changed, as the screen will show.

M Display memory contents has syntax .M fghj fghj, where the two hex addresses are

mandatory, and the second must be not less than the first. Sets of eight

$0200 PC High
$0201 PC Low
$0202 Flags
$0203 Accumulator
$0204 X-Register
$0205 Y- Register
$0206 Stack ptr.

$0207 IRQ High
$0208 IRQ Low

bytes are output, preceded by .:

.M 0070 0080

0070 E6 77 DO 02 E6 78 AD 8A

0078 OD C9 3A BO 0A C9 20 FO

0080 EF 38 E9 30 38 E9 DO 60

and their start address, like this:

Programming the PET /CBM -298- 10: Transition to machine-code

G Go to. Go run has two valid syntactical structures: G alone executes code from the
current program counter, PC; G fghj executes code starting at the hex
address here represented algebraically as fghj. The effect is similar to a
SYS call in BASIC, control being transferred to the new address. However
.G 027A differs from sys 634 in having the capacity to set values for the
registers, stack pointer, and so on as a standard feature.

X Exit to BASIC (no parameters) returns to BASIC in direct mode. This is therefore
the converse command to a SYS call into monitor.

S Save machine-code to tape or disk has this syntax:
.S "NAME (LENGTH<17)",01,027A,0304
.S "0:DISK NAME", 08, 027A, 0304
for tape (cassette #1 in the example; could also be 02) and disk (drive
in the example) respectively. The commas are necessary, and help en-
sure correct input. Note: SAVE finishes when the final address is reached;
consequently, the 'end address' must be at least one byte beyond the true
end of the machine-code.

L Load machine-code from tape or disk has this syntax:
.L "NAME", 01
.L "0:NAME",08
for cassette #l,and drive of CBM disk with device #8, respectively.

Adding commands to MLM. BASIC 4's monitor can be represented in a simplified form
by a flowchart such as that on the following page, which shows the major features, but
omits the details of line-input and so on. If a command doesn't match any of those in
the table, for example if .Q was entered, a jump takes place with one level of in-
direction, to the address stored in the two bytes $03FA and $03FB. The default value
in these bytes, put there when the machine is turned on, points to the subroutine in
the monitor which prints .? and waits for another input. However, the pointer can be
changed to a RAM routine which mimics the action of the monitor, enabling new comm-
ands to be added. In this way, extended monitors of much greater versatility can be
written for these machines. Note: TIM lacks this feature, and must be slightly mod-
ified to include it.

10.3 Extended machine-code monitors.

Before we look at the extra commands offered by extensions to MLM, let's briefly
survey some of the programs currently available. The first to become widely available
was SUPERMON, which is available in versions for BASICs 1,2, and 4. Several versions
exist within each type. This program includes work by Bill Seiler, and includes a dis-
assembler based on Steve Wozniak and A Baum's Apple program, with a single-step
utility written by J Russo. The whole thing was 'combined, choreographed, and trim-
med up' by Jim Butterfield, and written in the form of a relocating loader, so that the
code is put into the top of RAM, wherever this may happen to be, and protected from
overwriting by BASIC by lowering the top-of-memory pointers. The result is powerful
and easy to use. Later versions have a machine-code routine to do the relocating; this
is much faster than the earlier BASIC. These are public domain programs; the append-
ices include listings of the BASIC 2 and BASIC 4 versions, for readers who lack the
programs, but not the patience to key them in.

Supermon has itself been modified and extended by other users. The next major
monitor was EXTRAMON, by Bill Seiler, which has more features than Supermon, and
has been revised as MICROMON and also modified into other forms by non-Commodore
software people. The main differences between this program and Supermon are:

(i) Machine-code 'trace' allows breakpoints, so program execution stops when some
address is reached a pre-set number of times. Single-step trace is often too slow to be
practically useful.

(ii) A relocater enables code to be moved about in memory so that it will run
correctly. The command is not as easy to use as this bare description suggests.

(iii) An ASCII dump is provided, so tables and messages can be identified and
read more easily.

(iv) Comparatively small, cosmetic, changes include improved scrolling, so that
(for example) disassembled output to printers is easier, and better screen editing.
VIC has a monitor, available as a plug-in module, which includes most of these feat-

Programming the PET ICBM

CALL ENTRY

(SYS call, or RESET
with diag. sense
low) . Store "C"

Reset flags/print

c.rtn. & ' . '/input

line (Accumulator

holds command)

I I

-299- 10: Transition to machine-code

BREAK ENTRY

(I.E. 'BRK' FOUND)

Save A,X,Y, and SP

on the stack.

Store "B"; CLC/

CLD/ abort files/

pull SP.Y.X, & A

Pull PCL, PCH

PRINT C* or B*

Load accumulator
with "R" command

Compare commands

in table with
accumulator

Instruction
found? / N

JL
Jump to address
in table + 1

ALTM

r
; R M

ALTR DSPLYR DSPLYM GO

JUMP TO (USRCMD)

.

Jump to address in

($03FA). Default
value prints ?

T
X

1
L,S

EXIT LOAD
& SAVE

i I

FLOWCHART OF BASIC 4 MACHINE-LANGUAGE MONITOR.

upes, plus a disassembler that works backwards.
Among other monitors, BASMON is distributed by IPUG in the U.K., and is

essentially Supermon with additions, notably to allow printout to a wide range of print-

er types, and to accept a larger range of input formats. For example, a table of bytes

can be entered directly into the mini-assembler. Like some other monitors the interrupt

is redirected to test for the Stop key, so a program in an infinite loop can be aborted

(usually) by software. (Section 8.9 gives the method). ULTRAMON is an enlarged

version of Extramon; it is an American monitor, containing (according to a review by

J Strasma) assorted unacknowledged bits of code from diverse sources, including

Compute! magazine. Occasionally one meets HIMON in user-group collections; this is

simply one or other of the main monitors ready relocated into the high end of RAM,

and naturally this will operate successfully only if the recipient CBM has the same RAM

storage fitted.

., 748C AD 44 7A LDA $7A44

., 748F 85 34 STA $34

., 7491 AD 45 7A LDA $7A45

., 7494 85 35 STA $35

. , 7496 AD 42 7A LDA $7A42

., 7499 8D FA 03 STA $03FA

., 749C AD 43 7A LDA $7A43

., 749F 8D FB 03 STA $03FB

., 74A2 00 9RK

. , 74A3 A2 08 LDX #$08

., 74A5 DD 24 7A CMP S7A24.X

., 74A8 DO OE BNE $74B8

., 74AA 86 B4 STX $B4

., 74AC 8A TXA

., 74AD OA ASL

., 74AE AA TAX

., 74AF BD 2F 7A LDA $7A2F,X

., 74B2 48 PHA

., 74B3 BD 2E 7A LDA $7A2E,X

., 74B6 48 PHA

., 74B7 60 RTS

Programming the PET/CBM -300- 10: Transition to machine-code

Extended monitor commands: (i) SUPERMON

Most extended monitors consist of machine-code followed by tables: in Supermon's ease
these include assembler/ disassembler characters ($,#,X,Y and so on), opcodes, and
other data, followed by the commands (T F H D C , A and I) and their respective
addresses, which are stored (for reasons connected with the operation of the RTS
instruction) one byte smaller than the true value. Some versions have an 'N' command
which is not used. Note that each letter is different from those in MLM; this is clearly

necessary, since otherwise they would never be executed, but it means that rather odd
circumlocutions have to be used to rationalise some commands. 'S' is used for 'SAVE',
so single-step has to be something else - in fact, I, perhaps implying '1' step.

, Alter memory, then disassemble screenful of data
The screen-dump (right) shows a
Supermon disassembly, consisting of a
screenful of disassembled data which was
generated by .D 784C. In fact it is the
start of BASIC 2's Supermon. Up to three
bytes on any line may be changed; when
Return is pressed, the new values are put
into RAM and the disassemble command re-
entered, with the same start point; 748C
in the example. The new screen is there-
fore very similar to the previous one.

A Assemble is a 'tiny' or 'mini' assembler, which con-
verts opcodes and addresses into the
correct byte form (deducing the address-
ing mode from the input format), but not
permitting labels or directives or any of
the other features to be found on true
assemblers. (See Chapter 14 on these).
The format is illustrated in the screen
dump (right). Pressing Return alone (or

entering any erroneous data) causes the
error routine to be called, so a query is

printed, followed by the monitor's '.'on
the following line. While assembly contin-
ues, new '.A's are printed at the start

of each new line.

C Calculate branch offset uses a format like this:

.C ABCD ABFF , from which the positive or
negative offset is calculated. This is one
byte only, and is counted as negative if

its high bit is set. If the range is too
large, the command replies with a query.
This was intended to help with branches in a
probably not widely used. Later Supermons

D Disassemble is a standard disassembler (with $ and #

mode, respectively), without labels. See the

F Fill memory has three parameters, demonstrated
by this example:
F 3000 4000 AA
which has the effect of filling RAM
from $3000 to $4000 with $AA. This is

useful in clearing an area of RAM. $00
may be used; $EA (NOP or 'no operat-
ion') is also popular.

H Hunt memory (for bytes or ASCII) reports all in-

stances of a byte combination or a string

of ASCII characters, between two add-
resses. The two formats are:
.H ABCD CDEF AB[CD][EF] ...

.H ABCD CDEF 'HELLO

I Single-step through program (see example, right)

.A 0300 LDA #$00
• A 0302 LDX #$FF
• A 0304 STA $8000,

X

.A 0307 DEX
• A 0308 BPL $0304
.A 030A INC $0306
.A 0300 LDA $0306
.A 0310 CMP #$84
.A 0312 BNE $0300
• A 0314 RTS
.A

,

0315 ?

forward direction, but was
(SUPERMON. REL) dropped it.

for hexadecimal and immediate
example above under '

,
' .

PC IRQ SR AC XR YR SP

. ; 748C

.1

E62E 32 04 5E 00 F8

A0 8C 5E 00 F8 748F 85 34 STA 34
A0 8C 5E 00 F8 7491 AD 45 7A LDA 7A45
20 74 5E 00 F8 7494 85 35 STA 35
20 74 5E 00 F8 7496 AD 42 7A LDA 7A42
A0 A3 5E 00 F8 7499 80 FA 03 STA 03FA
A0 A3 5E 00 F8 749C AD 43 7A LDA 7A43
20 74 5E 00 F8 749F 8D FB 03 STA 03FB
20 74 5E 00 F8 74A2 00 BRK
A1 77 F8 00 F6 FDD0 A9 0D LDA #00
21 00 F8 00 F6 FDD2 4C 02 FF JMP FFD2
21 0D F8 00 F6 FFD2 4C 32 F2 JMP F232
21 00 F8 00 F6 F232 48 PHA
21 00 F8 00 F5 F233 A5 B0 LDA B0
21 03 F8 00 F5 F235 C9 03 CMP #03
23 03 F8 00 F5 F237 DO 04 BNE F23D
23 03 F8 00 F5 F239 68 PLA

Programming the PET/CBM -301- W: Transition to machine-code

performs GO to the location indicated by the program counter, loading the

values of the status register, A,X, and Y, the stack pointer, and the int-

errupt vector. From then on it displays the contents of the five registers,

plus the location, disassembly and corresponding byte(s), at each step in

the program. The illustration shows the effect of running the program in

memory from 748C; the program is Supermon itself, as listed in the first

diagram of the three. Chapter 14 explains the working of this routine. In

brief, each instruction is interrupted during its execution; this means that

the interrupt is serviced when the instruction is finished. At this juncture

the data displayed is collected together. This is the reason for the absence

of the very first command. Note, for example, how the Y-register remains

unchanged; how BRK causes a jump to a new part of the program; how

the status register changes as the contents of the accumulator change; and

how a JMP retains all the flags - the status register is unchanged - but

alters the program counter.

The speed at which single-stepping takes place is controllable from the

keyboard. < causes just one instruction to execute; RVS steps at a constant

slow pace; and the space-bar causes rapid stepping. Nothing happens if no

key is pressed. Press the Stop key to return to the monitor.

P Printer disassembler as its name implies gives a continuous output to a printer; the

syntax is .P 3000 3100 , or whatever other limiting addresses are to be

disassembled between. This command is not available on all Supermons;

early versions disassemble 22 lines only, as though the printer were the

screen

.

T Transfer memory moves a block of memory.
TD . U c F pR mfmory

As the example (right) implies, only transfer memory

three parameters are required, two T 1000 noo 5000

to delimit the block of memory, and
another to indicate the starting-point transfer memory in the range 1000

of the transferred block. The end- hex to noo hex and start storing it at

point of the new block is implicit in address 5000 hex.

these three values.

Extended monitor commands: (ii) EXTRAMON

EXTRAMON's table of commands is ABDEFHINQTUW'and,. Some of these

are closely similar to the corresponding Supermon commands, namely Assemble, Disass

emble, Fill memory, Hunt, and Transfer memory. Extramon's W is Walk code, identical

to Supermon's single-step. The new commands are as follows:

B Breakpoint set & Q Quick trace let a program be single-stepped without any results

appearing on the screen, so that a graphics program can be watched as it

develops at any of the speeds allowed by single-stepping. These are:

< FOR SINGLE STEP;

RVS FOR SLOW STEP;

SPACE FOR FAST STEPPING.

The process aborts at a breakpoint, when a specified location is entered

a pre- set number of times. Each command has alternative syntaxes:

.B 2345 breaks when location $2345 is entered for the first time; and

.B 2345 A0 breaks only when it is entered the 160th time.

.q traces with the data currently displayable by .R, whereas

.Q 2000 alters the program counter to $2000 (so .R isn't necessary).

E Exit 6 U Undo are complementary routines which respectively set up and undo an

emergency exit routine from an infinite loop. This is valuable when a pro-

gram appears to be lost in an infinite loop. (The rationale is explained in

section 8.9. It involves redirection of the interrupt vector through a test

routine, with a jump to the start of the monitor if the test succeeds. This

method fails if the interrupt is reset - for example by cassette tape activ-

ity - or with 'X2' type crashes, which are not susceptible to this cure).

In order to permit normal use of the Stop key, a combined keypress is

needed to trigger the return to monitor. 40-column machines rely on both

= and Stop, which are checked by examination of $E812. Two keys pressed

at once register the logical AND of each separate key: $6F in this case.

The syntax is simply .E and .u in each case.

Programming the PET /CBM -302- 10: Transition to machine-code

'Integrate memory' (not to be confused with Supermon's single-step) provides a hex
dump of 8 bytes, plus the equivalent in ASCII, so that tables, messages,
and so forth are readable. It is analogous to the .M command, except that

(i) ASCII is present after the hex, (ii) the colon of .M is replaced by a

new symbol, '. Thus I and ' between them perform a similar function to,

and may be used in place of, M and : . There is however a slight syntax
difference

:

.1 ABCD continues to the end of memory (FFFF) unless stopped, whereas

. M abcd elicits the ? error indication.

.1 abcd bcde behaves like .M ABCD BCDE and ceases at the second address.

.1 FOOO

.' FOOO 54 4F 4F 20 40 4 1 4E 59T00 MANY

.' F008 20 46 49 4C 45 D3 46 49 FILESFI

N 'New locater' is a true relocater, not just a memory-move routine like .T . It has
six parameters , three of which are identical to those of . T , and which
specify the start and end addresses of the chunk of code to be moved and
the new starting-point. The end-point is of course implicit in these. Two
types of code may be moved: continuous machine-code, or 'word tables',

i.e. individual bytes of data not intended to be 'run' as a program. If we
consider machine-code first, our chunk of code may not be an entire pro-
gram; and if it is a subroutine or subprogram, it may be called by code
outside itself. So, in addition to an indication that the code is of program
type, the remaining parameters define the range to be examined for calls

to the relocated code. 'Word tables' can also be referred to externally, but
do not themselves require any internal changes of the sort required by
absolute addressing. (See Chapter 13 on relocation, for further details).

The way to use this command is (i) Put zero bytes into the receiving area
of RAM (.N will not move BRK instructions); (ii) Move the tables next,
and (iii) Move the code. The examples given in the instruction program
are

•N 7000 77FF 1000 0400 8000

.N 7000 77FF 1000 0400 8000 W

in which the whole of normal RAM from $0400 to $8000 is examined for
references to $7000- $7FFF, and, if any are found, are converted into

the range $1000- $1FFF. Even if many entirely disparate machine-code
routines coexist in RAM, this will probably be successful, since it is not
likely that any of them will reference each others' tables or subroutines.
This routine will not relocate zero-page programs; it will relocate ROM
routines, which can be useful, as they are modifiable in RAM, but tables
may their references rewritten manually, to make the resulting relocated
code compact.

Modifying monitors. An advantage of programs stored in RAM is their accessibility to
the programmer. Given some experience in machine-code , it is possible to introduce
modifications to carry out functions otherwise unattainable, but at the same time to
preserve the input and formatting features which make monitors easier to use than ad
hoc pieces of coding. On the other hand, this process is tricky if a source listing of
the routine doesn't exist, because machine-code is typically written in a compact form,
'fitting together like polished mahogany' as Churchill wrote. (Of Latin sentences!).
Let's consider a concrete example: the 'Hunt' function enables us to search any part
of RAM for any sequence of bytes which will fit into a single line;

.H B000 FFFF AD 48 E8
searches BASIC 4 ROM for three bytes which dissamble as LDA E848. What must we do
to allow the use of a 'wild card', e.g. 00 in this example:

.H B000 FFFF 85 FB 00 00 85 FC
assuming our only software tool is an extended monitor, and not, say", an assembler
with a label-generating disassembler? The object is to permit 'Hunt' in which the bytes
in the positions corresponding to 00 may take any value, so STA FB any 2 bytes

STA FC will be sought by the particular input line just quoted. As it happens, this is

an easy modification to make. To illustrate the method, I'll use BASIC 2 Supermon in

Programming the PET ICBM -303- 10: Transition to machine-code

Section of unmodified code:

a 32K machine. Other monitors and memory-sizes will therefore not give identical dis-

assemblies, but the method should be clear enough.

First we have to find the routines which process H. By examining the tables (at

the end of the program) we can find $48 (ASCII for H) within the table of other ASCII

characters whicE mike up the additional commands. We then use the relative Position of

H in its table to deduce the entry address of H, by looking through the programs for

a table of addresses which seem to correspond to entry-points in the monitor. It. as is

usual, the address is entered by two PHA commands followed by RTS, we must add 1

to this address. The resulting possible entry-point

can be checked by inspecting the code for CMP #$27

(checking for ', as in .H ABCD BCDE -hello). At

this point the code separates; if we follow the branch
- since we are not concerned with the ASCII string

test - we find a block of code from which exit occurs

on CMP #$0D. The function of this loop is to fetch

the bytes from the screen and store them in a buff-

er. Finally, we reach the code where comparisons

are made. (See the disassembly, right). Location B4

holds the number of bytes being matched; 7BBC and

7BBE compare the contents of memory with the con-

tents of the buffer, and, if these are equal for all

X values, the address is printed, to show that a

match has been found.
To introduce our modification, all we need do

is insert a test for the presence of our 'wild card'

byte, and, if one is found, treat it as a genuine

match. The second batch of code (see right) is one

version of this. Line 7BBB and 7BBD (4 bytes in all)

compare the buffer contents with #00 and branch past

the memory comparison if #00 has been found. (7BBC

may be altered to any other value, should a #00 wild

card be unsuitable; namely when #00 bytes are them-

selves sought). Because of the four-byte patch, some

branches have to be slightly changed; moreover, the

hunt function for ASCII strings cannot be made to

coexist with our new function, without a great deal

of rewriting. In practice, the new version would be

stored separately under a different name from the

original

.

All the modifications are marked on the second

piece of code, including the chunk of code which was

relocated 4 bytes back in RAM. Apart from rewriting

the comparisons, the remaining changes only dealt

with recalculating branch destinations.

Rather obviously, this type of adjustment can't

be made without a fair amount of machine-code exper-

ience. In the same way, comparative beginners will

not find it a simple matter to decipher the workings

of these monitors. Supermon, for example, starts

with a series of ten subroutines, which have the

following functions:

(i) Reset top-of-BASIC and USRCMD;
(ii) Search for extra Supermon instruction;

(iii) Decrement contents of (FD) or (FB);

(iv) Get next character from input, ignoring spaces;

(v) Input hex address into (FB), ignoring spaces;

(vi) Skip a character. Get hex address into (FB).

(vii) Print X spaces;

(viii) Increment address in (FB);

(ix) Exchange contents of FB and FC with contents

of 020B and 020C respectively;

(x) Test for equality of (020B) and (FB). If equal,

Z flag is set; if less, carry flag is cleared.

1 7BB3 36 B4 STX $B4

. , 7BB5 20 DO FD JSR $FDD0

. , 7BB8 A2 00 LDX #$00

. , 7BBA A0 00 LDY #$00

. , 7BBC B1 FB LDA ($FB),Y

., 7BBE DD 10 02 CMP $0210,X

. , 7BC1 DO 0C BNE $7BCF

. , 7BC3 C8 INY

. , 7BC4 Ed INX

. , 7BC5 E4 B4 CPX $B4

. , 7BC7 DO F3 BNE $7BBC

. , 7BC9 20 6A E7 JSR $E76A

. , 7BCC 20 CD FD JSR $FDCD

. , 7BCF 20 D5 FD JSR $FDD5

. , 7BD2 A6 DE LDX $DE

. , 7BD4 DO 92 BNE $7B68

. , 7BD6 20 D9 7A JSR $7AD9

. , 7BD9 B0 DD BCS $7BB8

Code after modification:

. , 7B7F C9 27 CMP #$27

., 7B81 DO (To) BNE $7B93

. , 7B83 20 EB E7 JSR $E7EB

., 7B86 9D 10 02 STA $0210,

X

. , 7B89 E8 INX

. , 7B8A 20 CF FF JSR $FFCF

. , 7B8D C9 0D CMP #$0D

. , 7B8F F0 22 BEQ $7BB3

., 7B91 E0 20 CPX #$20

7B93 8E 00 01 STX $0100

7B96 20 BE E7 JSR $E7BE
7B99 90 (CA) BCC $7B65
7B9B 9D 10 02 STA $0210,

X

7B9E E8 INX
7B9F 20 CF FF JSR $FFCF
7BA2 C9 0D CMP #$0D

7BA4 F0 09 BEQ $7BAF
7BA6 20 B6 E7 JSR $E7B6
7BA9 90 (ba) BCC $7B65
7BAB E0 20 CPX #$20
7BAD DO EC BNE $7B9B
7BAF 86 B4 STX $B4

7BB1 20 DO FD JSR $FDD0

7BB4 A2 00 LDX #$00

7BB6 A0 00 LDY #$00
.' ~7BB8 fBD 10 02 \

LDA $0210,X

. , 7BBB C9 00 CMP #$00

. , 7BBD F0 04 BEQ $7BC3

. , 7HBF\D1 FB / CMP ($FB),Y

. , 7BC1 DO OC BNE $7BCF

., 7BC3 C8 INY

., 7BC4 E8 INX

. , 7BC5 E4 B4 CPX $B4

. , 7BC7 DO (EF) BNE $7BB8

., 7BC9 20 6A E7 JSR $E76A

. , 7BCC 20 CD FD JSR $FDCD

. , 7BCF 20 D5 FD JSR $FDD5

., 7BD2 A6 DE LDX $DE

., 7BD4 DO 92 BNE $7B68

., 7BD6 20 D9 7A JSR $7AD9

., 7BD9 B0(D9) BCS $7BB4

. , 7BDB 4C 56 FD JMP $FD56

., 7BDE 20 94 7A JSR $7A94

• F 7BE 1 8D 0D 02 STA $020D

10: Transition to machine-codeProgramming the PET /CBM -304-

10.4 Monitors in BASIC.

Although good machine-code routines are unquestionably superior to their BASIC
counterparts, there are often advantages in BASIC monitors to offset their slow speed
and relatively large memory requirements, (i) They can be transferred between PETs
without compatibility problems, except possibly with regard to top-of-memory pointers
or printer formatting. This may not be true of machine-code programs, leaving the
would-be user with the options of modifying a present program, or going back to
BASIC, probably temporarily, (ii) The control of BASIC is familiar: the ability to stop
the program and LIST it can be valuable, (iii) BASIC is easily changed to allow for
smallish variations and differences. For example, a new printer, with different control
characters, can easily be accommodated in BASIC. Decimal numbers can be used in
place of hexadecimal, or alongside hexadecimal, if required. Different opcode conven-
tions can easily be implemented. Changes of this sort are far more difficult in mach-
ine-code .

Beside these reasons, writing a disassembler is a useful exercise in understand-
ing a chip. The next page has a PET /CBM 6502 version which runs on all models.
A simplified flowchart of its logic (see below) shows that it operates by waiting for
input of a starting address, then disassembling from that point by peeking the ad-
dress and converting it into the equivalent opcode form, and looping back to repeat
the process with subsequent addresses. As an example, suppose 027A holds this:

. : 027A 20 E4 FF FO FA 60 00 00
On entry of starting address = 027A , the program peeks 027A, finding 32 (in decimal).
This figure corresponds to "JSR" with address mode 10. This is processed by the
subroutine at line 700, which prints the following two bytes, in hex, in the reverse
order. Meanwhile, this instruction has 3 bytes (NB=3). So JSR FFE4 is printed, and
the address to be peeked is updated, now being 027D, and the process continues.
If line includes a poke to lower the top of memory, (see HIMEM in Chapter 5), RAM
below $8000 can partly be used for machine-code. Line 10 provides a 'warm start', re-
entering the program without clearing the variables. The data storage method used
here causes no garbage collection delays with any version of BASIC.

TABLE OF VARIABLES.

CA=current address (usu. of opcode)
L & L$=decimal and hexadecimal numb-

ers for interconversion
M=addressing mode, coded 0-12
M%()=opcodes' address modes
NB=number of bytes in current

instruction (always 1-3)
OP=decimal value of opcode
0P$()=table of opcodes by decimal

value (e.g. OP$(0)="BBK")
P=peek value of current address

(usually corresponds to opcode)

TABLE OF SUBROUTINES.

100 Print 4-byte hex number given L
200 Print 2-byte hex number given L
300 Convert 4-byte hex number into L
350 Convert 2-byte hex number into L
400 Print hex number from next two

bytes in reverse order
500 Print next byte in hex
600 - 710 Print address or data after

the opcode, punctuated in the
standard way. See the REMs for
details of modes M, 0-12

2000 Initialises...
2500 is warm start...
3000 Disassembles until spacebar is

pressed (see line 3070)

c START }
INITIALISE
Set up tables of
opcodes & their
addressing modes

/ INPUT STARTING AD-
'DRESS FOR DISASSEMBLY/

I
UDDRESS HOLDS*
ITALID OPCODE?

PRINT ONE LINE OF
DISASSEMBLY

Location , opcode ,

&

poss .data/address

UPDATE ADDRESS

Address =

Addr.+l, 2, or 3

NOT AN OPCODE

Print ???

Programming the PET /CBM -305- 10: Transition to machine-code

CUR: GOTO 2000: REM FITS 7K WITH SOME REMS REMOVED

10 GOTO 2500 _
100 L=L/4096:FORJ=1TO4:L%=L:PRINTCHR$(48+L%-(L%>9)*7);:L=16*(L-L%):NEXT:RETURN
200 L=L/16:FORJ=1T02:L%=L:PRINTCHR$(48+L%-(L%>9)*7);:L=16*(L-L%):NEXT:RETURN
300 L=0:FORJ=1TO4:L%=ASC(MID$(L$,J)):L=16*L+L%-48+(L%>64)*7:NEXT:RETURN
350 L=0:FORJ=1TO2:L%=ASC(MID$(L$,J)):L=16*L+L%-48+(L%>64)*7:NEXT:RETURN
400 FORK=2T0 1STEP- 1 : L=PEEK (CA+K) : GOSUB200: NEXT : RETURN
500 L=PEEK(CA+1): GOSUB 200:RETURN
600 PRINT "(";: GOSUB 400: PRINT ")": RETURN: REM INDIRECT JUMP
610 GOSUB 500: PRINT ",Y": RETURN: REM ZERO PAGE, INDEXED BY Y REGISTER

620 PRINT "(";: GOSUB 500: PRINT ",X)": RETURN: REM INDEXED INDIRECT (ZERO PAGE,X)

630 PRINT "(";: GOSUB 500: PRINT "),Y": RETURN: REM INDIRECT INDEXED (ZERO PAGE),Y

640 L=PEEK(CA+1): IF L>127 THEN L=L-256
642 L=CA+2+L: GOSUB 100: PRINT: RETURN: REM RELATIVE BRANCH
650 GOSUB 400: PRINT ",Y": RETURN: REM ABSOLUTE, INDEXED BY Y REGISTER

660 PRINT "#";: GOSUB 500: PRINT: RETURN: REM IMMEDIATE
670 GOSUB 400: PRINT ",X": RETURN: REM ABSOLUTE, INDEXED BY X REGISTER

680 GOSUB 500: PRINT ",X": RETURN: REM ZERO PAGE, INDEXED BY X REGISTER
690 GOSUB 500: PRINT: RETURN: REM ZERO PAGE
700 GOSUB 400: PRINT: RETURN: REM ABSOLUTE
710 PRINT: RETURN: REM IMPLIED AND ACCUMULATOR
2000 DIM OP$(255), M%(255): SP$="
2010 FOR J = TO 150: REM TOTAL OF 151 DIFFERENT OPCODE/MODE COMBINATIONS
2020 READ OP, OP$(OP), M%(OP)
2030 NEXT J
2500 INPUT "ASSEMBLE OR DISASSEMBLE" ;L$
2510 IF L$="A" GOTO 4000
3000 INPUT "DISASSEMBLE FROM"; L$
3005 GOSUB 300: CA=L
3008 INPUT "DEVICE*",-N
3009 OPEN N,N: CMD N, ;

3010 L=CA: PRINT L LEFT$(SP$,7-LEN(STR$(L))) ; : GOSUB 100
3015 P=PEEK(CA): M=M%(P)
3020 IF OP$(P) <> "" THEN 3025
3022 L=P:PRINT " "; :GOSUB200:PRINT" ???" :NB=1 :GOTO3065
3025 NB=2: IF M=0 OR M=5 OR M=7 OR M=10 THEN NB=3
3030 IF M=1 1 THEN NB=1
3035 PRINT "

3040 FOR K=0 TO NB-1
3045 L=PEEK(CA+K): GOSUB 200: PRINT " ",-

3050 NEXT K
3055 FOR J = NB TO 3: PRINT " ";: NEXT: PRINT OP$(P) " ";

3060 ON M+1 GOSUB 600,610,620,630,640,650,660,670,680,690,700,710
3065 CA=CA+NB
3066 CLOSEN
3070 GET L$: IF L$ = " " THEN 2500
3075 GOTO 3009
5000 DATA 0,BRK, 1 1 , 1 ,ORA, 2, 5,ORA, 9, 6,ASL,9,8, PHP, 1 1 ,9,ORA, 6, 10,ASL, 11

5010 DATA 13,ORA, 10, 14,ASL, 1 0, 16,BPL,4, 17,ORA, 3, 21 ,ORA, 8, 22,ASL, 8,24,CLC, 1

1

5020 DATA 25,ORA, 5, 29,ORA, 7, 30,ASL,7,32, JSR, 10, 33, AND, 2, 36, BIT, 9, 37, AND,

9

5030 DATA 38,ROL,9,40,PLP, 1 1 ,41 ,AND,6,42,ROL, 1 1 ,44, BIT, 10, 45, AND, 10

5040 DATA 46,ROL, 10, 48, BMI, 4, 49, AND, 3, 53, AND, 8, 54, ROL, 8, 56, SEC, 11,57,AND,5
5050 DATA 61, AND, 7, 62, ROL, 7, 64, RTI, 1 1 ,65,EOR, 2, 69,EOR,9,70,LSR,9,72,PHA, 1

1

5060 DATA 73,EOR,6,74,LSR, 1 1 , 76, JMP, 10, 77,EOR, 10,78,LSR, 10,80,BVC,4
5070 DATA 81 ,EOR, 3, 85,EOR, 8,86,LSR, 8,88,CLI, 1 1 ,89,EOR, 5, 93,EOR,

7

5080 DATA 94,LSR, 7,96,RTS, 11, 97,ADC, 2, 101,ADC, 9, 102,ROR, 9, 104,PLA, 1

1

5090 DATA 105, ADC, 6, 106, ROR, 1 1 , 108, JMP, 0, 1 09, ADC, 10, 1 10,ROR, 10

5100 DATA 1 12, BVS, 4, 11 3, ADC, 3, 11 7, ADC, 8, 1 18, ROR, 8, 120,SEI, 1 1 , 121 ,ADC,

5

5110 DATA 125, ADC, 7, 126, ROR, 7, 129, STA, 2, 132, STY, 9, 133, STA, 9, 134, STX,

9

5120 DATA 136, DEY, 1 1 , 138,TXA, 1 1 , 140,STY, 10, 141, STA, 10, 142, STX, 10,144,BCC,4
5130 DATA 145, STA, 3, 148, STY, 8, 149, STA, 8, 150, STX, 1 , 152,TYA, 1 1 , 153,STA,

5

5140 DATA 154,TXS,11,157,STA,7, 160,LDY,6, 161,LDA,2
5150 DATA 162,LDX,6,164,LDY,9, 165,LDA,9, 166,LDX,9,168,TAY, 11

5160 DATA 169,LDA,6, 170,TAX, 1 1 , 172,LDY, 10, 173,LDA, 10, 174,LDX, 10

5170 DATA 176,BCS,4, 177, LDA, 3,180, LDY, 8,181, LDA, 8, 182, LDX, 3, 184, CLV, 11

5180 DATA 185, LDA, 5, 186, TSX, 1 1 , 188, LDY, 7, 189, LDA, 7, 190, LDX, 5, 192, CPY,

6

5190 DATA 193,CMP,2,196,CPY,9, 197, CMP, 9, 198, DEC, 9, 200, INY, 11, 201, CMP,

6

5200 DATA 202, DEX, 11, 204, CPY, 10, 205, CMP, 10, 206, DEC, 10, 208, BNE, 4, 209, CMP,

3

5210 DATA 2 1 3, CMP, 8, 2 14, DEC, 8, 216, CLD, 1 1,2 17, CMP, 5, 221, CMP, 7, 222, DEC,

7

5220 DATA 224, CPX, 6, 225, SBC, 2, 228, CPX, 9, 229, SBC, 9, 230, INC, 9,232, INX, 1

1

5230 DATA 233, SBC, 6, 234, NOP, 1 1 ,236, CPX, 10,237, SBC, 10, 238, INC, 10,240, BEQ,

4

5240 DATA 241, SBC, 3, 245, SBC, 8, 246, INC, 8, 248, SED, 11

5250 DATA 249, SBC, 5, 253, SBC, 7, 254, INC,

7

306- 10: Transition to machine-code

1234567890 MODE
ABS.IND.
O-P.Y
(IND.X)

(IND),Y
BRANCH
ABS.Y
IMMEDIATE
ABS.X
O-P.X
0-PAGE
IMPLIED/A

J IIP

LDA
IDA
IDA
BEQ

dApCDI)

1

Programming the PET ICBM

Tiny assemblers in BASIC are a little harder to write; each line must be validated,

and the addressing-mode deduced from the input. The additional batches of code (see

below) may be added to the disassembler, and called from line 2500. They do not pro-

vide full validation, but are designed for ease of programming. The rationale of sub-
routine 800, which determines the mode, is illustrated in I I I I 1 1 1 1 I I

|i

this table of addressing modes, numbered as in the pro-

gram, arranged as examples in columnar form, so that

the lengths of each complete instruction and the pos-
itions of the punctuation symbols can be seen at a glance

Lines 3035 - 4045 check for the existence of the
opcode and for the correctness of its addressing mode,
rejecting "PQR" and "PHA 1234", for example. The sub-
routines starting at 900 extract the address from the
string which was input; and lines 4060 ff. poke the

'assembled' values into RAM. Note that line 4015 puts
a " before the input; this enables commas to be accepted
without ?extra ignored. The pokes apply to BASIOl.

This version does not include '$' symbols before
hexadecimal numbers; there is little problem in introducing them, however. In some
cases (e,g, line 3010) the TAB function has been replaced by a longer expression, as

not all printers process TAB. Line 3009 may need to open a file-number > 127.

IDA
IDA
IDA
IDA
LDA
BRK

|AB

(AB

(AB)

ABCD
ABCD
#AB
ABCD

AB.IX

AB

1

2

3

4

5

6

7

8

9

10

REM IMPLIED
REM ZERO PAGE
REM IMMEDIATE

REM ZERO PAGE,X
REM ZERO PAGE,Y
REM INDIRECT,

X

REM INDIRECT,

Y

800 L=LEN(AS$)
805 IF L=3 THEN M=1 1 : RETURN
810 IF L=6 THEN M= 9: RETURN
815 IF L=7 THEN M= 6: RETURN
820 L$=MID$(AS$,8, 1)

825 IF L$="X" THEN M=8: RETURN :

830 IF L$="Y" THEN M=1:RETURN :

835 IF L$="," THEN M=2: RETURN :

840 IF L$=")" THEN M=3 : RETURN:
845 L$=RIGHT$(AS$,1)
850 IF L$="X" AND L=10 THEN M=7 : RETURN : REM ABSOLUTE,

X

855 IF L$="Y" AND L=10 THEN M=5:RETURN : REM ABSOLUTE,

Y

860 IF L$=")" AND L=10 THEN M=0 : RETURN : REM ABSOLUTE INDIRECT
865 IF LEFT$(AS$, 1)="B" AND MID$(AS$, 2, 1)<>"I" THEN M=4: RETURN: REM BRANCH
870 IF L=8 THEN M=10: RETURN: REM ABSOLUTE
875 PRINT "MODE ?":M=12: RETURN: REM CATCH ALL OTHER INCORRECT ENTRIES
900 P=6:L=4:GOSUB 960:RETURN
905 P=5:L=2:GOTO 960
910 P=6:L=2:GOTO 960
915 P=6:L=2:GOTO 960
920 P=5:L=4:GOSUB 960: GOSUB 300
921 L=L-CA-2: IF L>127 OR L<-128 THEN PRINT "BRANCH?" :M=1 2 : RETURN
922 IF L<0 THEN L=L+256
923 RETURN
925 P=5:L=4:GOTO 960
930 P=6:L=2:GOTO 960
935 P=5:L=4:GOTO 960
940 P=5:L=2:GOTO 960
945 P=5:L=2:GOTO 960
950 P=5 : L=4 : GOTO 960
960 L$=MID$(AS$,P,L): RETURN

4000 INPUT "ASSEMBLE FROM"; L$
4005 GOSUB 300: CA=L
4010 L=CA: PRINT L TAB(7);: GOSUB 100
4015 POKE 527,34: POKE 525,1: INPUT " ",-ASSEMBLERS
4020 IF AS$="END" GOTO 2500
4025 CO$ = LEFT$(AS$,3)
4030 GOSUB 800: IF M=12 THEN 4010
4035 FOR J=0 TO 255
4040 IF COOOP(J) THEN NEXT: PRINT "OPCODE?": GOTO 4010
4045 IF MOM%(J) THEN J=J+1 : GOTO4040
4050 NB=2: IF M=0 OR M=5 OR M=7 OR M=10 THEN NB=3
4055 IF M=1 1 THEN NB=1
4060 POKE CA, J: REM POKE OPCODE INTO MEMORY
4065 IF NB=1 THEN 4900
4070 IF M=4 THEN GOSUB 920: IF M=1 2 THEN 4010
4075 IF M=4 THEN POKE CA+1,L: GOTO 4900
4080 ON M+1 GOSUB 900,905,910,915,920,925,930,935,940,945,950
4085 IF NB=2 THEN GOSUB 350: POKE CA+1,L: REM ONE ADDRESS BYTE ONLY; TWO:-
4090 IF NB=3 THEN GOSUB 300: POKE CA+1 ,L-INT(L/256)*256: POKE CA+2,L/256
4900 CA=CA-HJB:GOTO4010

Programming the PET ICBM -307- 10: Transition to machine-code

10.5 Introduction to 6502 coding: elementary examples.

I shall assume in this section and subsequent chapters that the reader has a reasonable

grasp of hex arithmetic, and has either a BASIC or machine-code monitor available.

Equipped in this way, s/he can experiment with the 6502 and become confident in its

use. This chip is not particularly easy to program. One of the designers of Commod-

ore's 'Micro-mainframe' has said, among other things, 'If you can program the 6502

you're a genius' and 'After the 6502, everything from then on is easy'. Without going

as far as this, it remains the case that machine-language cannot be mastered overnight.

We'll look at some of the simplest instructions and addressing-modes in this sec-

tion, since progression from these to the more subtle instructions is a natural route

which most or all programmers (I suppose) take. Each example can be entered either

from the machine-language monitor in the CBM (SYS 4 is usually the easiest method of

access), or via a monitor; I have used the convention of prefixing hex numbers with

'$', which however should be omitted if the BASIC routine is the previous section is

used. There are, of course, many other examples throughout the book: SYS and USR
in Chapter 5, and some graphics routines in Chapter 9, ought to be fairly accessible

even to quite inexperienced programmers.

Example 1: poking a single character to the screen.

Starting at 027A, enter the following 6 bytes, either with .M, or with a monitor's

assembler. The two forms are exactly equivalent to each other, and are simply differ-

ent ways of writing the same information . The opcodes are more readable - with exper-

ience - than the individual bytes, but either form can be deduced from the other. Thus

disassembly of the bytes entered by .M will yield the result shown; and inspection of

memory after entering the instructions from an assembler will show the same pattern of

six bytes as though entered using MLM.

.M 027A A9 00 8D 00 80 60 xx xx $027A LDA #$00
$027C STA $8000

(xx may be any value)

.

$027F RTS

What does this short routine do? $027A = 634, so SYS 634 causes the code to execute.

RTS, 'ReTurn from Subroutine', has the effect of returning to BASIC, so we may

execute SYS 826 as often as we like from direct- or program-mode BASIC. Its effect is

to print an '& symbol in the extreme top- left corner of the screen, unless the screen

scrolls and the character is lost. This top-left screen location, as we already know, is

location $8000 in RAM . This should give a clue to the meaning of ' STA $8000 '
. In fact,

we can read the code like this: Load the accumulator with #0 (i.e. value zero), store

the accumulator in $8000, and return to BASIC. The accumulator, abbreviated to A,

and shown by MLM as 'AC when the registers are displayed, is an 8-bit location within

the chip itself, which can therefore be loaded with any value from 0- FF. Our example

has the same effect as poking $8000 with zero.

Can we do more with this? If we POKE 635,1 then SYS 634, the letter 'a' or 'A',

depending on the upper- or lower-case mode, appears on the screen; and disassembly

shows that our short routine now reads: « 27A LDA #$01

$027C STA $8000
$027F RTS

because 027B was changed (from BASIC) into 1. This direct-mode statement:

FOR J=0 TO 255: POKE 635, J: SYS 634: NEXT

runs through the entire gamut of characters: very rapidly changing, they are all dis-

played one after the other in the top-left corner of the CBM screen. The machine-code

has been executed 256 times, each time in a slightly different form, being left with

its first instruction changed to $027A LDA #$FF, because $FF, 255 in decimal, was

the last value put into $027B.
When this is fairly clear to you, look at the .M form of the six bytes again.

Note that the address $8000 is held in reverse order, with $00 preceding $80. This is

a feature of all 3-byte commands in the 6502 and many other chips. (But not the 6809).

If we modify 027D's contents, SYS 634 will load! the accumulator, then store it, not in

$8000, but in a location from $8001 - $80FF, i.e. within the first few lines of the

screen. Try this:

FOR J=0 TO 255: POKE 635, J: POKE 637, J: SYS 634: NEXT

which calls the routine 256 times again, but this time prints each character separately

on the screen, in ascending order. The final form of the routine, after 255 has been

Programming the PET /CBM -308- 10: Transition to machine-code

poked in, is:
$027A LDA #$FF
$027C STA $80FF
$027F RTS

You should now be able to print any character into any location on the screen, after

a certain amount of calculation. Section 9.1's table of PET /CBM screen memory char-
acters lists the values corresponding to each poked character; and section 9.1 has a

table of the hex values of the start of each screen-line.

Example 2: Indexed addressing.

Enter the 7-byte routine $027A LDA #$00

.M 027A A9 00 AA 9D 00 80 60 xx J?!!™ ™? *„„„„ „$027D STA $8000,

X

(xx may be any value)

.

$0280 RTS

This introduces two ideas: the idea of the X-register, and its use as an index. TAX
stands for 'Transfer Accumulator to X-register'; X is an 8-bit register, similar to the
accumulator, into which the contents of A are loaded when TAX is executed. $8000,

X

is a special notation, meaning the address $8000+X's current contents. That is, what-
ever value is in X is added to $8000, and the resulting address used in the command.
Since X is 8 bits long, the range of addresses spanned is $8000- $80FF in our example.
What happens when SYS 634 runs this code? We can read it like this: Load A with the
value zero; transfer A to X, so that X now also holds the value zero; store A in the
address $8000 indexed by X, which is therefore $8000; and return to BASIC. The
effect is to put '@' in the top-left of the screen again.

POKE 635,1: SYS 634 runs
this modified version: *>f*

LDA **01
$027C TAX
$027D STA $8000,

X

$0280 RTS
which puts 'a' or 'A' in the top-left-but-one location on the screen. This happens be-
cause STA $8000, X when X holds #1 is understood by the 6502 to refer to $8001.

Example 3: Incrementing and branching to generate loops.

Type in the next routine, which introduces a few more introductions. Once again, the
PET's monitor and the 'assembler' and disassembler are dealing with identical data; the
appearance may be different , but the essence is the same

:

.M 027A A2 00 8A 9D 00 81 E8 DO $027A LDX #$00 ;LOAD REGISTER X WITH #00

.M 0282 F9 60 xx xx xx xx xx xx |»$027C TXA ; TRANSFER X TO ACCUMULATOR
$027D STA $80A0,X; STORE ACC'R IN $80A0,X
$0280 INX ; INCREMENT X-REGISTER BY 1

-$0281 BNE $027C ; BRANCH IF RESULT IS NOT
$0283 RTS ; RETURN (TO BASIC)

Now enter SYS 634 from BASIC. The effect is to print all 256 screen values in 256
adjacent locations (i.e. reading across, then down), starting at the fourth line of the
screen, or the second with an 80-column screen. How does this work? The instruct-
ions have been annotated to help make the process clear. (These comments won't be
accepted by many tiny assemblers, so don't try to enter them with the program).

First, X, like A, can be loaded with any 8-bit value; #0 in our example. TXA
transfers X to A. At this stage, therefore, both hold #0, or, in terms of bits,

0000 0000. $80A0 is the start of a line on the screen; when X holds #0, the indexed
address 80A0.X is therefore calculated to be $80A0. So #0 is poked into $80A0. The
next instruction, INX, adds 1 to the contents of the X-register. If the value is #FF,
it is incremented to #0. So long as it is not zero, BNE ('Branch if Not Equal to zero)
will cause the program to jump to the address specified; in the example, therefore, the
code from 027C to 0281 is executed 256 times, the value of X at the start of the loop
being incremented from #0 to #FF. After this, the branch fails and RTS returns to
BASIC. Note that the branch command, in spite of disassembling to three bytes, none-
theless occupies only two bytes of machine-code. All branches have relative addressing
in the 6502. This is a fairly simple concept. When the branch is instruction has been
read by the chip, the program counter points just after it, to the next instruction -

RTS here. The byte following the branch is added to the program counter, and a jump
made to the new address , if the branch 's test succeeded . In the example , counting back
from RTS to TXA gives -7 bytes. This is 256 - 7 = 249 in 2's complement form, or F9.

(xx may be any value)

,

Programming the PET /CBM -309- 70: Transition to machine-code

Example 4: Subroutines and comparisons.

The previous machine-code example is a subroutine, which we called from BASIC. It is

also callable from machine-code; the routine which follows calls it 256 times, each time

incrementing the address which, when indexed, determines the placing of each charact-

er on the screen. Type in the code, retaining that of the previous example, which it

uses: $0284 JSR $027A ;CALL SUBROUTINE AT $027A

M 0284 20 7A 02 EE 7E 02 AD 7E $0287 INC $027E ; INCREMENT CONTENTS OF $027E
'

M 028C 02 C9 A0 DO F3 60 xx xx $028A LDA $027E ;L0AD ACC'R WITH NEW CONTENTS

$028D CMP #$A0 ; EQUAL TO #A0 YET?
(xx may be any value). $028F BNE $0284 ; IF NOT, REPEAT LOOP

$0291 RTS ;BUT IF SO, RETURN TO BASIC

From BASIC, SYS 644 runs this. ($0284 = 644 in decimal). It takes about .8 of a second

to return to BASIC; meanwhile the entire set of characters is printed on the screen 256

times, the starting-points varying from $80A0-$80FF, then $8000-$80AO. INC 027E has the

same effect as poking J from BASIC when J is incremented from within the FOR ... NEXT

loop. CMP ('CoMPare accumulator'), in our example, compares #A0 with the contents of

the accumulator, which holds the incremented value in $027E. The branch back occurs

until the accumulator's contents equal #A0, after a complete cycle of 256 increments.

Note that it is easier to test for equality with zero (as in the previous example); a

comparison with #0 is not usually needed. Note that JSR, which is analogous to GOSUB
in BASIC, returns when RTS is encountered. JSR actually means 'Jump Saving Return

address', not 'jump to subroutine' as might be thought. The branch instruction is a

little longer here, jumping 13 bytes back; this is F3 in 2's-complement hexadecimal.

Example 5: Decrementing and counting.

If we call the previous routine 256 times (taking almost 4 minutes) the pattern of char-

acters repeats. We can use the third and final register to count; this is the Y -register.

.M 0292 A0 00 20 84 02 88 DO FA $0292 LDY #$00 ;L0AD COUNTER

.M 029A 60 xx xx xx xx xx xx xx $0294 JSR $0284 ;CALL PREVIOUS SUBROUTINE

$0297 DEY ; DECREMENT COUNTER
(xx may be any value). $0298 BNE $0294 ; BRANCH IF COUNTER NON-ZERO

$029A RTS ;BACK TO BASIC

SYS 658 sets this going. Note that the Stop key will have no effect, since this works

in BASIC only by specially being tested before the execution of each statement. Y is

very similar to X, although there are some differences in indexed addressing modes,

which are asymmetrically distributed between X and Y. Decrementing, when used to

count, is very similar to incrementing, but is often superior from the programming

point of view, enabling a few bytes to be saved. Like an increment, this command
passes directly between #0 and #FF. In the example, therefore, the value of Y within

the loop is #0, #FF, #FE, #FD, ... , #0.

Example 6: Simple program with BASIC driver to look at CBM's memory.

The machine-code subroutine, which we shall call from a BASIC program, moves 256

bytes of memory from some portion of the CBM to the screen. (Note that the originals

are not altered in any way by the process of being read). The BASIC program loops

until Stopped; any keypress causes the 256 bytes following those currently on the

screen to be displayed - except the comma, which moves back. Any other key may be

used instead of the comma - see line 10030. Put the keyboard into lower-case mode to

make strings, BASIC keywords in ROM, etc., readable.

.M 027A A2 00 BD 00 CO 9D 00 80 $027A LDX #$00

.M 0282 E8 DO F7 60 xx xx xx xx $027C LDA $C000,X ;L0AD ACC'R FROM INDEXED

$027F STA $8000, X ; ADDRESS & SAVE IT
(xx may be any value)

.

$02g2 INX

$0283 BNE $027C
$0285 RTS

A simple BASIC program is this:

10000 L=192 : REM THIS CORRESPONDS TO $C0 OF $C000; IT COULD BE INPUT AS A HEX NUMBER

10010 POKE 638, L: SYS 634 :REM DISPLAY 256 BYTES

10020 GET X$: IF X$="" GOTO 10020 :REM WAIT FOR KEYPRESS

10030 IF X$="," THEN L=L-2 :REM IF SPECIAL CHARACTER, REDUCE ADDRESS BY 2

10040 L=L+1: GOTO 10010 :REM INCREMENT ADDRESS; DISPLAY BYTES ETC.

Programming the PET/CBM -310- 77: Programming the 6502

CHAPTER 11: PROGRAMMING THE 6502 MICROPROCESSOR

11.1 Hardware features of the 6502.

This section deals with the following topics:

11.1.1 Addressing modes 11.1.2 The status register; NVBDIZC flags
11.1.3 The program counter, zero-page, and stack
11.1.1 Hardware vectors in the 6502: NMI, RESET, and IRQ
11.1.5 Instructions and opcodes

Note that Chapter 12 has a comprehensive guide to the 6502, prefaced with a table
which indicates the meanings of the standard mnemonics. The appendices include a
comprehensive set of tables of reference on the 6502.

11.1.1 Addressing modes. The 6502 has 12 or 13 addressing modes, depending on how
they are counted. Most of them are quite easy to understand; a few are difficult. Let's
first consider how addressing modes are built into the chip. We've seen, in the ele-
mentary examples of the previous chapter how an instruction may be followed by one
or two bytes, or stand on its own. This is inescapable with this chip: no command
extends, in total, over more than three bytes. Now suppose an instruction is encount-
ered while a program runs, and assume it to be a three-byte instruction. It might
appear like this: xx 00 80 , referring to the address $8000. Without knowledge of
the precise instruction, however, it is impossible to state what addressing-mode is in
use; as the previous chapter showed, xx=AD loads the accumulator with the contents
of $8000; xx=BD loads it from $8000, X. So the instruction has, implicit within it, an
addressing mode; and in fact this determines whether the total instruction is 1,2, or 3
bytes long, and the position at which the next instruction is deemed to begin. Note
that all addressing modes but one deal in memory locations; typically, the contents of
some location may be added to the contents of another, and compared with the contents
of a third. Only 'immediate' mode addressing loads an explicit value. This rather ab-
stract property of processors takes some time to grasp. Now we can examine each mode
in turn. For convenience, we can divide instructions into those of length 1,2, and 3
bytes

:

1-byte instructions have no reference to either address or data, and therefore oper-
ate only on hardware features within the chip itself. In a sense, the phrase 'address-
ing mode' doesn't apply at all, but for consistency these are described as possessing
'implied addressing'. Some of the flags, and some stack operations, can be processed
by these commands, as we'll see in the next sections. The accumulator can also be
shifted or rotated bit by bit with a single-byte instruction; this is sometimes disting-
uished as 'Accumulator addressing'.

2-byte instructions consist of an instruction followed by a single byte. If this byte is
treated as data, the instruction uses 'Immediate mode'. This is usually indicated by a
hash symbol (#) before the data; we had examples in the elementary programs of the
last chapter, for example lda #$oo and ldx #$oo. Apart from loading one of the three
registers with a value, this addressing mode is used in arithmetic operations, logical
operations, and comparisons.

All other 2-byte instructions refer to addresses, not data. There are six differ-
ent types. We have already used branches in the previous chapter. Their addressing is
usually called 'Relative', because off its use of an offset, which, in the 6502, confines
the maximum range reachable by a branch to a backward distance of 128 and a forward
distance of 127 bytes.

The remaining five 2-byte modes all use zero-page addressing. The zero-page is
not a feature of the chip itself; it is the section of RAM (or ROM) which is wired to
addresses $0000- $00FF. However, the chip has the facility of enabling the most sig-
nificant byte, of zero, to be ignored, so that, for example, LDA $34 can be written in
place of LDA $0034 . This saves a byte, which in turn shortens programs and increases
their speed.* For this reason, the first 256 bytes are usually in great demand in 6502

*The appendices include a quick-reference chart of 6502 addressing-modes' timing which
condenses the information on timing provided by the manufacturers of the chip. The MOS
manuals on the chip have examples to show how the timing is determined by the separate
sub-instructions carried out at each clock-cycle. For our purposes it is probably
sufficient to note that long, complex instructions are slower than short simple ones.

Programming the PET/CBM -311- ": Programming the 6502

programs, so that machine-code routines which coexist with BASIC must be careful to

takl into account BASIC'S use of these locations. The five types of addressing are

illustrated by these examples:
,

(i) Zero-page. This is the simplest type: LDA $55 (A5 55) loads the accumulator

with the contents of address $55. $55 may hold any value from #0 to #FF. Note the

difference between this and the immediate mode instruction IDA #$55 (A9 55) which

loads the value #55 into the accumulator, and has no connection with location $55.

(ii) Zero-page indexed by X . LDA $A0,X (B5 AO) loads the accumulator from

$A0 plus the contents of the X-register at the time the instruction is carried out. Note

that the total of $A0+X is itself treated as a zero-page address; if there is overflow,

it is ignored. If X holds #60, AO+60 is treated as 0, not $0100, and the contents of

address are loaded into A.
(iii) Zero-page indexed by Y . This is exactly analogous to the latter mode, but

the chip is designed so that only two commands can use this mode, viz. LDX and STX .

(iv) Indexed indirect . An example of this type is: LDA ($00, X) (Al 00). The

brackets are a convention, which indicates that A is loaded from an indirect address.

That is, two bytes point to the address from which the data is taken. Let's assume

for the moment that X contains #0, to simplify matters. In effect, we now have

lda ($00) , since the indexing effect of X is zero. Suppose the start of the zero-page

is like this:

.M 0000 01 80 84 02 xx xx xx xx.

Now, LDA ($00) loads A from the address it finds in ($00), which is $8001. So the

instruction, in this instance, has the same effect as lda $8001. In fact, pure indirect

addressing like this is not available on the 6502; 'indexed indirect' addressing, as the

name implies, allows indexing of the indirect address. Thus, if X were loaded with

#2, then lda ($00, X) has the effect of loading A from the indirect address of $00+2,

or ($02). In effect, therefore, with the figures above, lda $0284 is executed. The

command is useful (a) when X=#0, as pure indirect addressing of the zero-page; (b)

when a table of pointers exists in the zero-page. The BASIC pointers to the start of

BASIC, its end, and its variables, provide an example.

This command is again asymmetrical with respect to the X and Y registers; see

STY in Chapter 12 for some comment on this.

(v) Indirect indexed . An example of this type is: LDA ($2A),Y (Bl 2A) .
As with

the latter mode, the brackets indicate indirect addressing; if Y holds #0, the effect is

identical to that obtained when X holds #0 and LDA ($2A,X) is executed. Apart from

this special case, however, this mode is post-indexed by Y; that is, the indirect add-

ress is calculated, then Y is added, and the resulting address is the object of the

processing. To show how this works, consider the data shown above, of four possible

bytes at the very start of RAM. Now, lda ($00), y loads from $8001 + Y, so the 256

bytes from $8001 to $8100 can all be accessed, depending on Y's value. Chapter 9 has

some graphics examples which use this mode. See for example the routine to plot

vertical bars, histogram-fashion, in section 9.3.

3-byte instructions in the 6502 always consist of an instruction followed by a 2-byte

address. (Since the accumulator, for example, is an 8-bit register, 'LDA #$1234' makes

no sense). There are four interpretations of the address:

(i) Absolute . This mode is a simple reference to a 2-byte address, as in:

LDA $1234 or LDA $8000 or LDA $0012.

(ii) Absolute, indexed by X . The contents of X are added to the address to

give the actual referenced address. Thus, if X holds #$50, LDA $8000, x loads the

accumulator from $8050. As with zero-page indexing, the maximum value cannot exceed

the legitimate range, so LDA $FFF0,x when X holds #$11 loads the accumulator from

$0001, not from the non-existent $10001.

(iii) Absolute, indexed by Y . This is exactly analogous to the previous mode.

(iv) Absolute indirect . The 6502 has one instruction only with this mode, namely

JMP. An indirect jump transfers the program's flow of control to a new address; this

is found from the contents of the address pointed to, by the indirect command. An
example is perhaps in order here: JMP ($0000) with the zero-page data we've used

before has the same effect as JMP $8001; and JMP ($0001) jumps to $8480, and so on.

This command is useful when a table of addresses exists in a block, like the three vec-

tors at the top of RAM, without JMP commands between the addresses. The RESET

vector at (FFFC) can be called by JMP ($FFFC) irrespective of BASIC ROM. Tables with

JMP, the kernel for example, do not need this.

Programming the PET/CBM -312- 11: Programming the 6502

11.1.2 The status register and N,V,B,D,I,Z and C flags

The status register or 'Processor status register', recorded as 'SR' by the PET/CBM
monitor, is an 8-bit register within the chip containing seven status bits or 'flags'.

The eighth bit, bit 5 in fact, is not used, and is fixed at 1. The flags are intimately

related to the chip's operation, at least three being in a position in the register which

is directly related to their function. A chart in the appendices enables a status reg-

ister to be separated into its individual bits; from it, an SR of A4 (say) can be imm-
ediately recognized as having its N and I flags on, and its other flags off. Before we
examine each flag's purpose, it is important to make clear the idea that the flags do
not change unless a command explicitly alters them; the decimal (D) bit for example
typically remains off throughout the entire operation of all the programs which a CBM
runs. The appendices have a double-page table of opcodes, which includes a list of

flags, those which are altered by a command being marked. All the blank spaces in

this part of the table mark flags which are left unchanged. LDA alters both the N and
Z flags, but no others, for example. Where a flag is marked, a '1' or '0' implies that

the command explicitly sets this value in the flag. 'CLD' for example 'CLears the Dec-
imal' flag; the flag is set to 0, irrespective of its value before. The flags marked as

'N','V','Z' and so on may be set in either direction, depending on the result of the

processing. LDA sets the 'Z' or 'Zero' flag true when the accumulator loads the value

of zero, and so on.

The 'N 1

, 'Negative' flag (bit 7 of SR) usually holds bit 7 of the result of an operat-

ion, or of an intermediate result, and can be pictured as a direct copy of bit 7 into

the status register. LDA #$D3 loads #D3 into A, and is a command which affects N.
Since D3 = 1101 0011 in bit terms, with bit 7 high, the N flag is turned on by the

instruction. The word 'negative' is based on the 2's complement idea: where this is in

use, N = 1 shows a negative, and N = a positive, number. In other cases the flag

may be used in a conventionalised sense: hardware may be wired to bit 7, and BMI
and BPL (Branch on Minus and Branch on PLus) used to detect whether bit 7 is high
or low. See BMI and BPL in Chapter 12. These branches depend on the state of N;

when on, BMI is taken; when off, BPL. So 'BPL' really means 'branch if bit 7 is low',

or 'branch if zero or positive'.

The 'V, 'internal oVerflow' flag (bit 6 of SR) is probably the least-used 6502 flag,

because of the infrequent use of 2's complement arithmetic outside the chip's own
branch istructions. See the entry under BVC in Chapter 12. V is altered by only five

instructions, including addition (ADC) and subtraction (SBC).

The 'B', 'Break' flag (bit 4 of SR) is usually set only on BRK and when the SR is

examined after having been pushed on the stack. Its purpose is to enable a BRK
instruction to be distinguished from an interrupt, since both jump to the same address.
Section 11.1.4 explains the hardware vectors on the 6502.

The 'D', 'Decimal calculation mode' flag (bit 3 of SR) changes the mode of operation
of the chip from hexadecimal arithmetic to 'BCD' or 'binary-coded decimal'. See SED in

Chapter 12. When bit 3 of the status register is on, the effect on addition is to add
6 to the low nybble if its result exceeds 9, and to add 6 to the high nybble if that

result exceeded 9. When this bit is set - see SYS in Chapter 5 for an example - the
normal arithmetic operations of the PET become confused. For this reason the built-in

monitor takes the precaution to clear the decimal flag.

The 'I', 'Interrupt disable' flag (bit 2 of SR) prevents the interrupt request line from

causing the 6502 to service an interrupt, when it is on. When off, any interrupt which
uses the IRQ line will cause an interrupt, as explained in 11.1.4. In this way, the

program can be made to ignore interrupts of this sort until it is ready to deal with

them. See SEI and CLI in Chapter 12. The CBM uses a regular interrupt to read the

keyboard. If this is redirected to a new program, it may be necessary to set the dis-

able flag to ensure that the interrupt is not itself interrupted.

The 'Z', 'Zero result 1 flag (bit 1 of SR) is set by most of the instructions which set

N. Instead of registering the result in a single bit, Z in effect logically ORs together

all the bits of a result; if this process gives a value of zero, the Z bit is set, to show
a zero result; otherwise, when Z is off, the result was non-zero. The notes to BEQ
and BNE in Chapter 12 expand on this.

The 'C' # 'Carry' flag (bit of SR) is primarily of use in additions or subtractions,

where its function is similar to the carry which is used (or was used, before cheap

Programming the PET /CBM -313- 11: Programming the 6502

calculators) to denote overflow from a column of figures to a more significant column.

BCC in Chapter 12 has notes on this flag, and an example involving addition; CIA,,

SEC, and BCS are other commands involving this flag.

11.1.3 The proaram-counter, zero-page, and stack. The program-counter is a pair of

8-bit registers, usually represented as PCL and PCH, connected to appear like a 16-

bit register. This counter keeps a record of the current RAM or ROM location of the

command being executed. Because of its 8-bit structure, updating in order to point to

consecutive items of data takes 2 clock cycles, which is why the fastest instructions

take 2 cycles with this chip. The registers can only be accessed indirectly; BRK or an

interrupt causes the value to be saved, as does JSR, where the 'Save Return address

refers to the program counter. RTS and RTI accordingly both load their saved data

into the program counter, so these commands can be used to load values directly into

PC CBM BASIC uses 'RTS' to jump to the addresses at which BASIC keywords are

run; and the MLM uses 'RTI' to load the status register and the program counter when

.G is run. The same effect could be got - perhaps more easily - with a JMP instruct-

ion, whose function is solely to reload PC with some new value.

The zero-page, as we've seen in 11.1.1 on addressing, is the section of memory

from $00- $FF. The stack is a hardware feature of the chip. It uses page 1, i.e. $100

- $1FF of RAM. (Note that memory is divided into 256-byte pages. Some machine-code

instructions take an extra clock cycle to compute branches and indexed addresses it

the result happens to cross the boundary of a page). The stack is difficult to under-

stand, for several reasons. In the first place, the area of RAM from $0100 - $01FF

which holds the stack also doubles as normal RAM; it is not reserved for the stack

alone. Secondly, bytes 'pushed' onto the stack are added at the bottom of the present

stack Thirdly, the stack pointer, in order to be consistent, behaves in an apparently

inconsistent way, operating differently when pulling than pushing. The stack pointer

is another 8-bit register, which in the 6502 is always preceded by $01, and which

keeps track of the current stack of data. (The leading $01 forces the pointer into the

range $0100 - $01FF). Two complementary pairs of instructions exist on the 6502:

PHA and PLA,and PHPand PLP. Any of these instructions followed by the other member

of the pair must leave the accumulator or processor status flags unchanged. Because

of this, the sequence store data/ update pointer is used with a 'push', and the se-

quence update pointer/ load data with a 'pull'. Chapter 12 has examples and comment

under PHA, PHP, PLA, and PLP. Four other commands operate on the stack automat-

ically: these are JSR and its complement RTS, BRK, and RTI. The stack pointer is

accessible by transfer with the X-register only: TSX and TXS respectively transfer

the current stack pointer (omitting $01-) to X, and vice-versa.

11.1.1 Hardware vectors in the 6502: NMI, RESET, and IRQ. The 6502 has, like

many microprocessors, a clutch of specially reserved addresses at the top of ROM. On
activation of the non-maskable interrupt line, the reset line, or the interrupt request

line while the interrupt-disable flag (I) is off, the chip automatically sets the program

counter to the address in (FFFA), (FFFC), and (FFFE) respectively. The designer of

the system has to ensure that suitable processing routines exist at the destination

addresses. For example, BASIC 4 has
.M FFFA 49 FD 16 FD 42 E4 xx xx,

so the effect of causing a non-maskable interrupt can be investigated by disassembling

from $FD49; the reset sequence (triggered at switch-on) follows $FD16; and ordinary

maskable interrupts are processed from $E442. These three vectors are the 650 2' s total

complement of special vectors; some chips have many more. The BRK ('BReaK') instr-

uction in fact shares the IRQ vector, so a routine has to be used to work out whether

a BRK or interrupt caused the execution of the routine: this is easy to find in the

PET /CBM by disassembling the machine-language from (FFFE). If the entry on the

stack has its BRK flag (B) set, an instruction like SYS 4 is assumed, and the monitor

is entered; otherwise, the regular keyboard and screen servicing routine is entered.

(Note: the PET, with BASIC 1, is different - see Chapter 15). An interrupt has a

similar effect to BRK, in that it pushes the program counter and status register onto

the stack. (But not A,X, and Y). In this way, RTI (ReTurn from Interrupt) can con-

tinue execution of the interrupted routine when the interrupt has been serviced. For

this reason, BRK and RTI respectively push and pull the same data on the stack, and

so carry out their operations in the opposite sense from each other.

The NMI vector (which is usable in BASIOl) is sometimes used to supply a

reset switch to the CBM, so that infinite loops in machine-code can be aborted. See

section 8.9. The RESET vector is self-explanatory; JMP (FFFC) calls it, and can be

Programming the PET/CBM -3M- 77: Programming the 6502

used to erase a program after it has been used, for instance, IRQ is used in the PET
and CBM to scan the keyboard, the frequency depending on the VDU screen. Setting
the interrupt disable flag (with SEI) turns this off indefinitely. In process-control
systems, most interrupts use IRQ, and can be temporarily ignored by disabling the
servicing routines; the NMI is reserved for emergency use as a rule. The pins on the
6502 which correspond to the vectors are pins 6, 40, and 4 respectively.

11.1.5 6502 instructions and opcodes. An opcode ('operation code') is a mnemonic,
intended to make machine-language relatively easy to read. 6502 opcodes are all three
letters long (unlike e.g. Z80 opcodes) which makes for tidy assembler and disassemb-
ler listings. An alphabetical list of opcodes in the next chapter explains the workings
of each instruction. It is prefaced by a table to summarise the mnemonics 1 meanings.
An opcode bears the same relation to machine-language that a BASIC keyword does to
its tokenised form. Just as a BASIC keyword is stored in one byte, but LISTed by a
special routine which expands it into a recognisable word, so a machine-code instruct-
ion occupies one byte only, and is converted into a three-letter opcode for the sake
of readability. Although the opcodes are standard, there is nothing to stop anyone
using their own, for example by modifying the BASIC program in the previous chap-
ter. This may in fact be helpful as a learning aid, although it would be unorthodox.

There are 56 opcodes, some with one addressing mode, some with as many as
eight. We can group them by function as follows:

i Add/ Subtract ADC ('Add with carry') and SBC ('Subtract borrowing carry') are
the 6502's arithmetic functions. Both addition and subtraction are carried out on
all 8 bits, using the carry flag (C) for overflow. 2's complement arithmetic is not
used,*but flags are present which enable it to be implemented. Binary-coded dec-
imal (BCD) arithmetic is available if it's wanted.

ii Branches The 6502 has eight branches, all conditional on the status of a flag,
and all having a single-byte 2's complement offset. The instructions are: BCC &
BCS, BNE & BEQ, BPL & BMI, BVC & BVS, and the branch is taken if the C, Z,
N, and V flag is off /on respectively.

iii 'Break' BRK causes an unconditional jump to (FFFE), having first saved
both bytes of the program counter and the status register on the stack.

iv Comparisons CPX, CPY, and CMP enable X, Y, and A to be compared with data
or with memory contents. The data or memory is subtracted from X, Y, or A and
flags are set, without storing the result. N, Z, and C are set, so a comparison
may be followed by any branch (except BVC or BVS) to test the comparison.

v Data transfers Data can be loaded from RAM or ROM by LDA, LDX, or LDY; it can
be stored in RAM by STA, STX, or STY. These few commands are extended in
power by being equipped with a large number of addressing modes.

vi Decrements/ increments alter X, Y, or memory by subtracting/ adding 1 bit, set-
ting N and Z. The instructions are DEX, DEY, DEC and INX , INY, INC.

vii Flag clear/ set enable some flags to be altered at will: CLC, CLD, CLI, and CLV
clear flags C, D, I, and V; SEC, SED, and SEI set flags C, D, and I.

viii Jumps JMP acts like GOTO in BASIC. JSR acts like GOSUB, with RTS the
equivalent of RETURN. JSR saves 2+current address on the stack.

ix Logical operations AND, EOR ('Exclusive or') and ORA ('Inclusive or 1

) perform
binary logical operations on the Accumulator and data or memory, retaining the
result in A, and setting N and Z. BIT sets 3 flags.

x No operation NOP does nothing
xi Return RTS returns to the instruction following JSR by jumping to the

address currently on the stack + 1. RTI jumps to the address on the stack and also
loads the status register from the stack.

xii Rotate/ shift ROL and ROR act on the Accumulator and the C flag (a 9-bit rot-
ation). ASL ('Arithmetic shift left') and LSR ('Logical shift right') also involve A
and C, but do not rotate C, so that bit with ASL and bit 7 with LSR are always
set to zero. Flags N, Z, & C are set.

xiii Stack operations are PHA, PHP, PLA, and PLP. These are explicit operations on
the stack, but BRK, JSR, RTS, and RTI also use the stack. TSX and TXS allow
the stack pointer to be found/ set respectively.

xiv Transfers between registers Six instructions allow transfers between any two neigh-
bours of Y,A,X, and S. The opcodes are TYA & TAY, TAX & TXA, TXS & TSX.

*For example, CLC/ LDA #50/ ADC #50 leaves A holding #A0, which is obviously not a
negative number. However, the results are consistent with 2's complement arithmetic;
in this case, the N flag signals overflow into the sign bit.

Programming the PET /CBM -315- 11: Programming the 6502

11.2 Software methods using the 6502.

This section deals with the following topics:

11.2.1 Incrementing 2 bytes 11-2.2 Decrementing 2 bytes

11.2.3 Adding 2-byte pairs 11.2.4 Subtracting 2-byte pairs

11.2.5 Multiplying single bytes 11.2.6 Division of 2 bytes by a single byte

11.2.7 Comparing 2-byte pairs 11.2.8 Negation by 2's complement

11.2.9 Other 2-byte operations 11.2.10 Loops

11.2.11 Saving and restoring zero-page 11.2.12 Memory-moving several pages

11 2.13 Using shift and rotate commands 11. 2. 14 Jump tables, data tables, address tables

1K2ll5 Random numbers 11.2.16 Addressing modes

11.2.17 Testing for range of data 11.2.18 Using subroutines

11.2.1 Incrementing 2 bytes. The best method is

INC LOBYTE
BNE +2 or +3; depending on position in BAM of Mbyte

INC HIBYTE

where the more significant byte is incremented only if the low byte has just been in-

cremented from #FF to #0. Note that a branch after INC HIBYTE can be put in to test

for the transition from FFFF to 0000, if this is important.

11.2.2 Decrementing 2 bytes. There is no unique test for a decrement from #0 to #FF

so this is less simple than incrementing two bytes:

LDA LOBYTE
BNE +2 or +3

DEC HIBYTE
DEC LOBYTE

DEC HIBYTE may be replaced by LDA HIBYTE/ BEQ EXIT/ DEC HIBYTE if it is required to

go to EXIT when the two bytes hold #0000.

11.2.3 Adding 2-byte pairs. The carry bit (C) is used to carry from the low to the

high byte ; if the carry bit is set on exit from the routine, overflow has taken place

from the high byte; i.e. the result is too large for 16 bits.

CLC e.g. CLC

LDA LOl LDA $2A

ADC L02 ADC $01

STA L02 STA $01

LDA H II LDA $2B

ADC HI2 ADC $02

STA HI2 STA $02

Note that an addition leaves the result in the accumulator; it must therefore be stored

in some way if it is to be kept. In the example, the 16 bits made up of HI1 and LOl

are added to the 16 bits of HI2 and L02; the result is stored in HI2 and L02, but

could equally well be stored in any other locations. The example with numerals adds

the contents of ($2A) to those of ($01), leaving the result in ($01). For instance, if

$2A holds #34 and $2B holds #AB, ($2A) contains the 16-bit value #AB34. And if $01

holds #FF and $02 holds #11, ($01) contains #11FF. The machine-code will leave ($2A)

unaltered, but change ($01) to #BD33.

11 2.4 Subtracting 2-byte pairs. The carry bit is usually set before subtraction. If it

is cleared on exit, the result is negative; the first address held data of smaller value

than the second. The general reasoning is similar to that in the previos instruction.

SEC e.g. SEC

LDA LOl LDA $2A

SBC L02 ADC $01

STA L02 STA $01

LDA HI1 LDA $2B

SBC HI2 SBC $02

STA HI2 STA $02

Programming the PET/CBM -316- 7 7: Programming the 6502

11.2. 5 Multiplying single bytes. Multiplication and division are not functions present
on the 6502. The following example uses two zero-page bytes only; the answer is left
in the same two bytes, erasing the original values. The actual zero-page locations are
those for the NMI vector, which is unlikely to be used: if it is, switch to other locat-
ions. It is possible to test a routine of this sort exhaustively, which is quite unusual.
The routine is relocatable; the actual values given (i.e. in the middle of cassette buff-
er #1) can of course be changed, but as the routine stands this BASIC program can
demonstrate the machine-code:

10 INPUT X,Y: POKE 136, X: POKE 137, Y: SYS 768: PRINT PEEK(136)+256*PEEK(137)

$0300 18 CLC
$0301 A9 00 LDA #$00
$0303 A2 08 LDX #$08
$0305 6A R0R A
$0306 66 88 ROR $88
$0308 90 03 BCC $030D
$030A 18 CLC
$030B 65 89 ADC $89
$030D CA DEX
$030E 10 F5 BPL $0305
$0310 85 89 STA $89
$0312 60 RTS

This routine can be expected to take about 165 clock cycles on average - depending
on the number of internal branches. So about 6000 multiplications of this type can be
performed in one second. The method of operation relies on the ROR instruction, which
is used both to detect bits in $88 and to store both bytes of the result.

11.2. 6 Division of 2 bytes by a single byte. The routine that follows has the con-
verse effect to the latter routine. A 16-bit number is divided by an 8-bit number; the
answer is assumed to be in the range 0-255, and this is normally taken care of by the
way the routine is used. The division is therefore a slight cheat: the multiply routine
allows any pair of single-byte values (i.e 0- 255) to be multiplied, giving results from

- 65025 (=FF01), but division, although permitting any of these calculations to be
performed in reverse, won't work correctly with (say) 65025 divided by 1.

Three zero-page bytes, ($88) for the numerator and $8A for the denominator,
are assumed here, partly to make the routine easily workable from BASIC, like this:

10 INPUT X,Y: POKE 136,X-INT(X/256)*256: POKE 137.X/256: POKE 138,

Y

20 SYS 768: PRINT "RESULT =" PEEK(136) " AND REMAINDER =" PEEK(137)

$0300 18 CLC
$0301 A2 08 LDX #$08
$0303 A5 89 LDA $89
$0305 26 88 ROL $88
$0307 2A ROL A
$0308 B0 04 BCS $030E
$030A C5 8A CMP $8A
$030C 90 03 BCC $0311
$030E E5 8A SBC $8A
$0310 38 SEC
$0311 CA DEX
$0312 DO Fl BNE $0305
$0314 26 88 ROL $88
$0316 85 89 STA $89
$0318 60 RTS

The numerator is held in the analogous locations to the multiply routine, so the two
may be used together. On average, a division takes about 185 microseconds, about
5400 per second. An exhaustive test of this routine is much slower than obtains with a
multiplication routine, since all the remainders need to be checked. Note that, at the
start, the high byte of the numerator must be less than the denominator, because an
answer less than 256 is taken for granted. For each of eight loops, the denominator
is doubled by a pair of leftward rotations, and the numerator subtracted, if this is
possible; if not, C is clear. The low byte is replaced by the result ; A is the remainder

.

Programming the PET /CBM -317- 11: Programming the 6502

112 7 Compa ring 2-byte pairs . The trick in this case is to avoid the comparison

instructions , using SBC instead, which (unlike CMP &c) retains the result of subtract-

ion without only setting flags. This enables. us to write a routine to test for equality

as well as for the less-than-or-equal-to condition which the carry bit tests. For

example

:

SEC
LDA L01

SBC L02
STA TEMP
LDA HI1
SBC HI2
ORA TEMP

;LOW BYTE OF THE FIRST VALUE'S LOCATION

;LOW BYTE OF THE SECOND VALUE'S LOCATION

; TEMPORARY STORE FOR RESULT (MAY BE ZERO)

;HIGH BYTE OF THE FIRST VALUE'S LOCATION

;HIGH BYTE OF THE SECOND VALUE'S LOCATION

; RESULT ZERO IF BOTH ACC'R AND TEMP WERE ZERO

If the contents at the first address equalled the contents of the second, the Zero flag

(Z) is set. If the contents at the first were less than those at the second, the Carry

flag is clear; and if the contents at the first address exceeded those at the second, C

is set. So BEQ, BCC, and BCS respectively test for =,<, and >.

11.2.8 Negation by 2's complement. The rule for 2's complement is 'flip the bits and

add 1'. As we've seen, this ensures that a number and its conventionalised negative

add to exactly zero, with overflow. 8-bit numbers which add to 256 (=$0100) are 2's

complements; so are 16-bit bumbers adding to 65536 (=$10000). AN 8-bit number is

easily 2's complemented:
LDA NUMBER
EOR #$FF ;THIS REVERSES EACH BIT

CLC
ADC #$01 ;OR SEC/ ADC #$00

If this process is performed twice on a number, the original number is obtained; there

is no need to subtract 1 and then flip bits. The 16-bit equivalent involves EOR #$FF

with both bytes, and then a 2-byte addition of #1.

11.2.9 Other 2-byte operations. Since there are two registers in addition to the acc-

umulator, it is often possible to write compact code using these to store the two bytes

of a 16-bit address. For example, suppose ($2C) contains a pointer which we wish to

decrement and store in ($0300). We can combine these objectives like this:

LDX $2A

LDY $2B
DEX
BNE LABEL
DEY

LABEL STX $0300
STY $0301

Loops generally use either the X-register or Y-register as a counter,

and often as an offset too. Three example programs below print the word 'HELLO' at
11.2.10 Loops.

the top-left of the screen. In each case, X is a counter, but is also used as an offset

to select one letter from the 5 bytes of 'HELLO' which are stored in RAM. In the first

example, X is incremented (with INX), and needs CPX #05 to test for the end of the

text. The second and third examples use DEX, which is more elegant, since DEX sets

the Z flag (on transition from #1 to #0) and also the N flag (on transition from #0 to

#FF). BPL allows X to take the value #0; BNE does not, and the differences between

the routines (e.g. X starting at #4 or #5, the use of 7FFF.X or 8000, X) are the result

of this. Possibly BPL gives code which is easier to follow.

$027A A2 00 LDX #$00
$027C BD 88 02 LDA $0288,

X

$027F 9D 00 80 STA $8000,

X

$0282 E8 INX

$0283 E0 05 CPX #$05

$0285 DO F5 BNE $027C

$0287 60 RTS

$0288 48 45 4C .BYTE 'HELLO

$027A A2 05 LDX #$05

$027C BD 85 02 LDA $0285,

X

$027F 9D FF 7F STA $7FFF,X

$0282 CA DEX

$0283 DO F7 BNE $027C

$0285 60 RTS

$0286 48 45 4C .BYTE 'HELLO

$027A A2 04 LDX #$04
$027C BD 86 02 LDA $0286,

X

$027F 9D 00 80 STA $8000,

X

$0282 CA DEX

$0283 10 F7 BPL $027C

$0285 60 RTS

$0286 48 45 4C .BYTE 'HELLO'

Programming the PET/CBM -318- 11: Programming the 6502

Nested loops can be

$027A 78 SEI
$027B 18 CLC
$027C A9 00 LDA #$00
$027E A2 00 LDX #$00
$0280 AO 00 LDY #$00
$0282 E8 INX
$0283 DO FD BNE $0282
$0285 C8 INY

$0286 DO FA BNE $0282
$0288 69 01 ADC #$01
$028A DO F6 BNE $0282
$028C 60 RTS

Section 11.2.14 has other methods for accessing tables of data
written for the 6502; this is a delay
loop, which uses all three registers
(A,X, and Y) as counters. When run
from BASIC, it shows how setting the
interrupt disable flag turns off the
CBM's internal BASIC clock. With the
addresses given here,

PRINT TI: SYS 634: PRINT TI

gives equal or virtually equal values
for TI, in spite of the delay, which
is over a minute with the values as
they appear in the program. (Loading
A with other values alters the length
of the delay in direct proportion).
Note that the innermost loop runs 256
times for each execution of the next
loop, which in turn runs 256 times as
often as the outermost loop. To estimate
the duration of such a loop, the outer
loops can often be ignored (as they
contribute less than J% to the overall
time). Reference to the timing charts shows that INX takes 2 clock cycles, and BNE
with a successful branch, not across a page boundary, takes 3 cycles. So the total
delay is about 256 3 * 5 / 1000000 seconds, or 1 minute 24 seconds.

11.2. 11 Saving and restoring the zero-page. This is sometimes a useful trick, either
to enable a long machine-code program to run in tandem with BASIC, or when using
certain ROM routines which would otherwise change BASIC pointers. The TRACE
routines in Chapter 5, for example, do this. The point about machine-code programs
is that they are likely to be faster if the zero-page is used; in any case, a program
may be written already, using these locations, and the effort of rewriting to fit CBM
zero-page usage may not be worthwhile. The routines, one to save in RAM, the other
to restore, are simple enough; the only difficulty is to ensure the inviolability of the
RAM area in which the zero-page is stored. Usually this will be in the top of RAM,
below the screen.

SAVE ZERO-PAGE

LDX #$00
LABEL LDA $00,

X

STA STORE,

X

INX
BNE LABEL

RESTORE ZERO-PAGE

LDX #$00
LABEL LDA STORE,

X

STA $00,

X

INX
BNE LABEL

11.2.1 2 Memory-move with several pages. The maximum range spanned by an 8-bit
register, used for post-indexing, is 256 bytes, so moving (say) IK bytes normally
means moving four batches of 256 bytes, with either a counter to run from 4 to 1 or

to 3 or whatever, or a test on the actual addresses. Section 11.2.16 has examples
of ways to do this, and includes timing comparisons.

11.2.13 Using shift and rotate commands. Shift instructions (ASL, LSR) are useful
whenever a byte is to be processed bitwise. After shifting, the Carry flag holds the
latest bit to be shifted, so BCC or BCS processes the routine appropriate to a high
or low bit respectively. In Chapter 14, a VIA program displays the contents of all 16
registers in this chip, in bit form, using this method. Routines to convert parallel
data to serial (e.g. RS232 output and input routines) typically load the byte into A,
then shift it 8 times, sending individual bits serially down the connecting wire, with a
few other bits for parity, etc. Rotations involve 9 bits, including C, and so may be
used to inspect bits while eventually returning a location to its original condition, or,
more subtly, entering some new, dependent value; the routines in 11.2.5 and 11.2.6
for multiplication and division do this. Rotations involving A are much faster than
those operating on memory locations, so it is good practice to work on A where poss-
ible, for example in 16-bit calculations. On the next page is a typical calculation sub-

Programming the PET /CBM

routine. It shows how a process of

successive shifts and rotates left

(which in effect multiply by 2) can

be used in computations. Three
parameters are involved:

$00 holds an X-coordinate (0- 39),

$01 holds a Y -coordinate (0- 24),

and $02 holds #$20.

The object is to set up a pointer

to the Xth column of the Yth row
of a 40-column screen. This can be

done with a table (and in fact it is

faster with that method). However,

the method demonstrated here cal-

culates #8000 + 40*Y, putting the

result in ($01), so an instruction

like LDY $00/ LDA ($01),

Y

references the correct position on the

-319-

LDA $01
ASL A

ASL A

ADC $01
ASL A
ASL A
ROL $02
ASL A

ROL $02
STA $01

7 7: Programming the 6502

A holds Y-coordinate

A holds 2*Y-coord. (0 - 48)

A holds 4*Y-coord. (0-96). C=0

A holds 5*Y-coord. (0 - 120).

A holds 10*Y-coord. (0 - 240)

A = 20*Y-coord (0-480); overflow C

#4000 + overflow

A = 40*Y-coord (0-960) ; overflow C

#8000 + overflow

($01) holds #8000 + 40*Y-coordinate

screen. This is used in SET (see Chapter 5).

11 2.14 Jump tables, data tables, and address tables. Jump tables contain JMP in-

structions and addresses. The point is to provide a table of values which are either

(i) easy to remember, or (ii) easy to program (the actual addresses to be used only

being filled in later), or (iii) constant, even with different ROMs (say). BASIC 4 has

such a table at E000 in the 80-column version. All BASIC s have the 'kernel ,
so that

JSR FFE4 always 'gets' a character, for example, even though FFE4 has different add-

resses following JMP. Data tables store ASCII data, arithmetic values, messages, and

so on CBM BASIC for example has keywords stored in a table, and these are separ

ated from each other by setting the high bit of the final letter of each keyword. The

high bit is masked (by AND #7F) before printing, but the N flag determines the end

of a keyword. A similar method is to Store strings terminated by a zero byte; this

wastes one byte per string, but makes it easier to have strings of different lengths.

A routine to print such a string looks
---»-- ldx #$00

LABEL LDA START,

X

BEQ EXIT
JSR PRINT
INX
BNE LABEL

EXIT

;START=START OF DATA TABLE

USE STANDARD ROUTINE (S)

ASSUMES X IS PRESERVED

BRANCH ALWAYS TAKEN

CONTINUE PROCESSING

something like this, assuming no string

is longer than 255 characters (so X on

its own spans the whole length of it).

Address tables are similar in purpose

to jump tables, but contain addresses

only, normally in 2-byte form with the

order reversed, without JMPs inter-

spersed. The beginning of CBM BASIC
. .

has several (very long) tables of this sort. Address tables in practice are tricky to

access. CBM BASIC has examples in which BASIC keywords' addresses are jumped to

by pushing two bytes on the stack and performing the routine to get the next BASIC

character, which ends RTS, and thus both loads the accumulator with the appropriate

value and jumps to any required address. (However, the addresses are actually stored

as address-1, because RTS always increments the return address). A similar process,

using RTI, is used by the machine-language monitor; this allows the status register to

be set, in addition to jumping to a specified address. These manoeuvres are necessary

because this part of BASIC is in ROM. From RAM, tables can be accessed by the

indirect jump instruction. This example

assumes that the addresses are tabled 027A STX 027E ;X ASSUMED TO BE OFFSET

starting at $B000, and that the X-reg- 027D JMP (B0xx);xx ALTERED BY X

ister contains the offset from the start
,

of $B000 of the desired address. This method is far easier than using the stack, but

has the drawback that the indirect jump command has a bug, which causes it to work

wrongly if a page-boundary is crossed. See the appendices ('Further aspects of the

6502' on this). Also, the table mayn't begin at precisely $B000 or $C100 or whatever,

so X may need to be increased by some value.

='rsrsM.Mas ttz&vtrsnisiv-vi r •

Programming the PET/CBM -320- 11: Programming the 6502

forced into this range by putting the exponent to #80. So a random integer in the
range - 256 can be generated by calling the routine, replacing its exponent by #88,
and calling the routine to convert this to an integer. This, though thorough, is long;
two alternatives follow:

(i) Using the VIA counters. This method, like RND(O), is strictly dependent
on time for the value it yields, so if it used within any regularly repeating code will
show regularities. Nevertheless it is easy and quick to program:

LDA $E844 ; TIMER 1 LOW
EOR $E845 ; TIMER 1 HIGH
EOR $E848

; TIMER 2 LOW
EOR $E849 ; TIMER 2 HIGH

This leaves A with an 8-bit value, which for many purposes is "random 1

.

(n) Pseudo-random number calculations . We'll consider 1-byte and 2-byte ran-
dom numbers only; the principles are the same for larger byte numbers. The usual
formula for pseudo-random numbers is a recurrence relation:

x
i+1

= a * x + c (mod m).

If we set m=256 or 65536, the modulo condition, which means take the remainder after
division by m, is automatically set by ignoring any overflow. A theorem of Gauss's
says that the maximum period of repetition is obtained when a=4n + 1 and c is an odd
number. That is, if we base our calculations on a single byte, a formula in which 'a'
is a multiple of four, plus one, and c is odd, will generate values which repeat with
a cycle of length 256. The simplest case is

c
i+l

= 5 * x
i

+ 1 (raod 256) which is easily programmed:x.

LDA STORE
ASL A
ASL A
SEC
ADC STORE
STA STORE

LOAD LAST RANDOM NUMBER
DOUBLE IT (IGNORING OVERFLOW)
QUADRUPLE (IGNORING OVERFLOW)
THIS WILL ADD 1

FIVE TIMES NUMBER + 1

SAVE NEW RANDOM NUMBER

This gives 0,1,6,31,156,13,66,75,120,89,190,183,148,229,122,99,240,177,118,79,140,
which, because of the small values (5 & 1) may give an obvious sequence of ascending
values when the seed becomes low (e.g. 2,11,56) but otherwise is probably satisfact-
ory.* The process is similar with 16-bit numbers. We may use this easily-programmed
relation: x .

+i
= 257*x. + 43981 (mod 65536). 43981 is #ABCD; other values are of

course usable. If we represent the 16 bits by bytes HI and LO, this program gener-
ates a sequence of pseudo-random numbers recurring every 65536 repetitions:

CLC/ LDA LO/ ADC HI/ STA HI/ CLC/ LDA #CD/ ADC LO/ STA LO/ LDA #AB/ ADC HI/ STA HI

11.2.16 Addressing modes. To show how different addressing modes may be used to
solve a programming problem, consider the question of memory-moving 1024 bytes from
6000 - 63FF into the screen area of a 40-column CBM, 8000- 83FF. Four separate
'pages' of 256 bytes have to be moved. Section 9.5 has a solution to this problem, in
which X counts from 4 to 0, while a loop involving indirect indexed addressing uses Y
(changing from #0 through to #0 again) takes care of each page. It is possible to im-
prove on that routine; it can be made both smaller and about 13% faster. Using its
address locations, we could use routine (a):

(a) (b)
L 0297 LDA (88),

Y

L 0297 LDA 63FF.Y
0299 STA (8A),Y 029A STA 83FF.Y
029B INY 029D INY
029C BNE L 029E BNE L
029E DEC 88 02A0 DEC 0299 ; DECREMENTS HIGH BYTE OF EACH
02A0 DEC 8A 02A3 DEC 029C ; ADDRESS IN LDA AND STA ABS.Y
02A2 BPL L 02A6 BPL L

which uses no counter, but relies instead on the fact that #80, decremented to #7F,
leaves the N-flag clear. Routine (b) is similar in its operation but modifies absolute ad-
dresses). It is faster, since the commands within the loop take less time. But it is

Note: it is a peculiarity of this system of pseudo-random number generation that the
values it produces are always alternately odd and even. In addition, particular series
may have internal repeats or subseries of many kinds.

Programming the PET/CBM -321

less easily relocated, since the program modifies itself as

modify exactly the right addresses. Program (a) has the

zero-page locations to store its temporary data wherever

For the same reason, (b) cannot be used in ROM.

Self-modifying code is occasionally used by the

CBM: the example (right) is part of the GETCHR
routine, which BASIC uses when scanning through

a program (See Chapter 14 on this topic). This

avoids the need to reserve an index for use with

indirect addressing; it also means the routine has

to be present in RAM, not ROM.

11.2. 17 Testing for the range of a byte of data.

A mysterious construction sometimes met with is

illustrated (right) in a form which should make

its operation fairly clear. Note that the first SEC

is not necessary, since the carry flag is known
to be clear at that point, so sec/ SBC #30 could

be replaced by SBC #2F . However, it draws attent-

ion to the fact that #30 and #D0 are 2's complements.

The point is that, on exit, the contents of A are

unchanged, but the carry flag is clear for values

#30 - #39, and set for all other values. This range

is of course the ASCII equivalent of numerals 0-9.

As a variation on the theme, the second piece of

code is an ASCII-to-hex routine; this replaces

#30 - #39 by #00 - #09, and #41 - #46 (ASCII for

A- F) by #0A - #0F. Note the temporary storage

of the status register, later recovered to test for

the status of C after the comparison.

7 7: Programming the 6502

it runs, and it is essential to

advantage of using the same

the routine is put in memory.

0070 INC $77

0072 BNE $0076

0074 INC $78
0076 LDA xxxx ; CURRENT ADDR.

0079 ; CONTINUE

LDA xxxx

CMP #3A
BCS L

SEC
SBC #30
SEC
SBC #D0 ;0-9 CLEAR C

BRANCH IF

>= #3A
#00 - #39
-»D0,D1, , ,0,9

; CONTINUE

LDA xxxx

CMP #3A

PHP
AND #0F
PLP
BCC L

ADC #08

; REMOVE HIBITS

;ADDS 9, AS C=

: CONTINUE

11 2 18 Using subroutines. JSR and RTS are complementary instructions, designed

to be easy to use and trouble-free; usually they perform perfectly well, the exceptions

being caused by failure to appreciate the workings of the stack. See PHA.and 11.2.14,

for details on loading the stack with a new address for RTS, and for RTI; and see

PLA on 'popping' return addresses from the stack, in the next chapter. Note that

JSR xxxx/ RTS can always be replaced by JMP xxxx, saving two bytes from being

pushed onto the stack. Conversely, however, JMP can be replaced by JSR / RTS only

if it includes RTS at some stage.

Neither JSR nor RTS alters A,X, or Y, or any of the flags. This means that

flags, set within a subroutine, can be tested

on return. This is a valuable feature, which

the specimen program (right) demonstrates.

The subroutine's function is to examine the

RAM area from $0100 - $010B for the presence

of the character in A on entry. For example,

to test for #45 in the buffer (ASCII for E),

LDA #45
JSR 7F5E
BCS FOUND

7F5E
7F60
7F63
7F65
7F66
7F68
7F6A
7F6B

LDX #00
CMP 0100,

X

BEQ 7F6B
INX
CPX #0C
BNE 7F60
CLC
RTS

can be used. BCS appears because, on return, the carry flag is clear if the character

wasn't found; it is set if the character was found, and moreover X holds its position

in relation to $0100. The INX construction has been used because the subroutine is

intended to search the buffer from left to right; in fact, this buffer holds numerals as

they are converted into strings for output to the screen or the printer. PRINT USING

(Chapter 5) uses this subroutine.

Although subroutines can save a great deal of memory space and make pro-

grams more readable, they have one (admittedly small) drawback in the 6502, which is

that they use only absolute addressing; relocating them is therefore tedious. Chapter

14 has remarks and methods to help get round this difficulty.

Programming the PET/CBM -322- 12: 6502 opcodes

CHAPTER 12: ALPHABETIC REFERENCE TO 6502 OPCODES

This chapter lists each opcode with full details on its use. Short demonstration pro-
grams are provided for most opcodes.

The following conventions have been adopted:

:= is read 'becomes'. For example, A:=X means that the value in A becomes that
in X.

x,0 and 1 show the effect on the status flags of an opcode, x means that the flag is

set, but its value may be or 1. and 1 represent flags which an opcode always
sets to and 1 respectively. All other flags are left unchanged.

$ and % prefix hexadecimal and binary numbers; where these are omitted, a number is

decimal

.

A,X, and Y are the accumulator and the two index registers X and Y.
M means memory; this may be ROM in the case of load instructions. Note that

(immediate mode) loads from memory immediately following the opcode. All other
addressing modes load from elsewhere in memory.

PSR or SR is the processor status register.
SP is the stack pointer.
PC is the program counter; this is composed of two 8-bit registers, PCL and PCH.

The table below is intended as a reminder or summary of opcode mnemonics on the
6502, for readers who are not yet familiar with the opcodes or who have forgotten what
they mean

.

GUIDE TO 6502 OPCODE MNEMONICS

A accumulator/ arithmetic shift

AD add
AND logical AND
B borrow the carry bit/ branch
BIT bitwise instruction
BRK break
C carry bit/ flag is clear
CL clear flag

CMP compare accumulator
CP compare X or Y register
D decimal flag

DE decrement X or Y register
DEC decrement memory
E exclusive OR
EQ equal to zero
I interrupt flag

IN increment X or Y register
INC increment memory location

JMP jump to new address
JSR jump to subroutine, saving return

L left/ logical shift

LD load accumulator, X, or Y
Ml minus
NE not equal to zero
NOP no operation
OR logical OR
P processor status register
PH push onto stack
PL pull from stack
R right
RO rotate byte
RT return
S flag set/ shift/ stack pointer/

subroutine/ subtract
SE set flag

ST store accumulator, X, or Y
T transfer between registers
V overflow flag

X X register
Y Y register

Programming the PET ICBM

ADC
-323- 12: 6502 opcodes

A:= A+M+C

INSTRUCTION ADDRESSING BYTES CYCLES

$61 (97 %0110 0001) ADC (zero page,X) 6

$65 (101 10110 0101) ADC zero page 3

$69 (105 10110 1001) ADC # immediate 2

$6D (109 %0110 1101) ADC absolute 4

$71 (113 %0111 0001) ADC (zero page),Y 5*

$75 (117 10111 0101) ADC zero page,X 4

$79 (121 %0111 1001) ADC absolute, Y 4*

$7D (125 %0111 1101) ADC absolute,

X

4*

*Add 1 if page boundary crossed

Flags: N V - B D I Z C
x x

Operation: Adds together the current contents of the accumulator, the byte

referenced by the opcode, and the carry bit. If the result is too large for

a single byte, C is set to 1. The internal overflow flag, V, is set if there

is overflow from bit 6 into the high bit, bit 7. If A holds zero (i.e. each

bit = 0) the Z flag is set to 1; otherwise it is 0.*lf bit 7 in A is 1, the N

flag is also set 1, to denote a 'negative' value in A.

Uses: [1] Single, double and multiple byte additions. The carry bit automatically

provides for overflow from one byte to the next. For example:

CLC
LDA $4A
ADC #$0A
STA $4A
LDA $4B
ADC #$00
STA $4B

[2] Increasing

BCS AWAY
ADC #$01

ENSURES CARRY BIT IS

WE WISH TO ADD #$0A (10 DECIMAL) TO THE CONTENTS

OF ($4A), I.E. THE DOUBLE-BYTE ADDRESS WHERE $4A

IS THE LOW BYTE AND $4B THE HIGH BYTE.

; ADDS THE CARRY BIT WHERE APPLICABLE

; RESULT MUST BE STORED, ELSE IT WILL REMAIN ONLY IN A.

or decreasing the accumulator; there is no 'INC A' opcode.

; EXAMPLE ONLY. (WE KNOW CARRY BIT IS CLEAR NOW).

; INCREMENTS A; #0 BECOMES #1, #1 #2,..., #FF BECOMES #0.

; ANOTHER EXAMPLE. CARRY BIT NOW 0.

; THIS SUBTRACTS 1 FROM A AND SETS CARRY FLAG UNLESS A=0
CLC
ADC #$FF

[3] In binary-coded decimal mode, obtained by setting D to 1, each nybble

represents 0-9 and addition is corrected for this basis. This mode is unused

in CBM equipment at present. On switching on and on entry to the monitor,

D is always cleared, so ADC is in hexadecimal mode unless D is specifically

set. This example adds 123 (decimal) to the contents of locations and 1,

which are assumed to contain, in ascending order, 4 binary coded digits.

Thus locations and 1 contain, in BCD, 0-9999.

SET THE DECIMAL FLAG

CLEAR CARRY FLAG
WE'VE ASSUMED THE BCD DATA IS STORED IN NORMAL ORDER,

WITH LOW BYTES FOLLOWING HIGHER ONES, NOT 6502 ORDER

ADD 23 DECIMAL

ADD 01 DECIMAL PLUS POSSIBLY CARRY BIT EQUIVALENT TO 100

SED
CLC
LDA $01
ADC #$23
STA $01
LDA $00
ADC #$01
STA $00
CLD

Notes:

; CLEAR THE DECIMAL BIT, UNLESS MORE DECIMAL MATH NEEDED

[l]*In decimal mode, the zero flag doesn't operate normally with ADC
because of the automatic correction (adding 6) which the 6502 carries out.

Testing for a zero result requires (for example) TAX/ BEQ ... or CMP #00/

BEQ . . . which is an extra step not required in hexadecimal arithmetic

.

[2] The V flag is important if the 2's complement convention is in use, in

which case it tests whether the high bit means negative, or implies that the

addition has overflowed to bit 7. In BCD, 2's complement is unusable.

Programming the PET ICBM -324- 12: 6502 opcodes

AND
Logical AND of memory with the accumulator. A:=A AND M

INSTRUCTION ADDRESSING BYTES CYCLES
$21 (33 10010 0001) AND (zero page,X) oo

6
$25 (37 10010 0101) AND zero page oo

3
$29 (41 %0010 1001) AND # immediate oo 2
$2D (45 %0010 1101) AND absolute ooo 4
$31 (49 %0011 0001) AND (zero page),Y oo 5
$35 (53 10011 0101) AND zero page,X oo 4
$39 (57 %0011 1001) AND absolute,

Y

ooo n*
$3D (61 %0011 1101) AND absolute,

X

ooo 4*

*Add 1 if page boundary crossed

N V - B D 1 Z C
X x

o,

Flags:

Operation: Performs AND of the 8 bits currently in the accumulator and the 8 bits
referenced by the opcode. See BASIC'S AND command for a description of
the truth table of AND. Essentially, when both bits are 1, the result is 1,
but if either or both bits are zero, the result is 0. (So the first bit AND
the second must be 1). The resulting byte is stored in A. If A now holds
i.e. all its bits are zero, the Z flag is set to 1; and if the high bit is set,
i.e. bit 7 is 1, the 'negative' flag N is set to 1. Otherwise the flag is 0.

Uses: [1] 'Masking' off unwanted bits (cp. ORA) typically to test for the existence
of a few high bits, or to test that some bits are zero:

LDA $E081,X ; LOADS ACCUMULATOR FROM A TABLE OF CODED VALUES..
AND #$3F ; .. TURNS OFF BITS 6 AND 7, LEAVING ALPHABETIC ASCII.

LDA $E840 ; LOADS ACCUMULATOR FROM VIA'S IEEE REGISTER + CASSETTE
AND #$EF ; MOTOR CONTROL. THEN TURNS OFF BIT 4 WITH %1110 1111.
STA $E840 ; STORES RESULTING VALUE BACK IN REGISTER

[2] AND #$FF RESETS FLAGS AS THOUGH LDA HAD JUST OCCURRED;
AND #$00 HAS THE SAME EFFECT AS LDA #$00

ASL
Shift memory or accumulator left one bit. (c~H7 6 5 4 3 2 1^0~|«fb~l

INSTRUCTION
$06
$0A
$0E
$16
$1E

6 10000 0110)
10 %0000 1010)
14 %0000 1110)
22 %0001 0110)
30 %0001 1110)

ADDRESSING
ASL zero page
ASL accumulator
ASL absolute
ASL zero page,X
ASL absolute, X

BYTES

Flags: N V - B D I Z C

CYCLES

Uses:

Operation: Moves the contents of memory or the accumulator left by one bit position,
moving into the low bit, and the high bit into the carry flag, erasing its
current value. The carry bit therefore is set to or 1 depending on bit 7
previously being or 1. Z and N are set according to the result; thus Z
can be true (1) only if the location or A held #$00 or #$80 before ASL. The
N bit can only be set true if bit 6 was previously 1.

[1] Doubles a byte (though not in decimal mode). If signed arithmetic is
not being used the result can safely reach values not exceeding 254, after
which the carry must be taken into account, often with ROL. This example
uses A from to 127 to load two bytes from a table of address pointers

:

ASL A/ TAY/ lda ADDHI.Y/ PHA/ LDA ADDLO.Y/ pha and store them on the
stack. Another example: LDA $20/ ASL A/ ADC $20 multiplies the contents
of $20 by three, provided that it originally held #85 decimal at most. In this
case, the carry bit is automatically cleared by the shift.

[2] Tests a bit by moving it into Z or N, perhaps with a flag in BASIC. Note
that 4 ASLs move the low nybble into the high nybble.

Programming the PET /CBM -325-

BCC
Branch if the carry bit is 0. PC: = PC + offset

12: 6502 opcodes

INSTRUCTION
$90 (144 %1001 0000)

ADDRESSING
BCC relative

BYTES CYCLES
2*

*Add 1 if branch occurs; add 1 more if the branch crosses a page

N V - BDIZCFlags:

Operation: If C holds 0, the byte following the opcode is added to the program

counter, which is set to the following command. If C holds 1, the program

counter is unaffected. The effect is to cause a jump to the offset address

when C is clear.

Uses: [1] If the carry bit is known to be clear, this command becomes effectively

a 'branch always' instruction. So the flag may be set in a purely signalling

sense, with no significance other than to show that one of two conditions

applies. For example, BASIC'S commands to END and STOP a program are

almost identical, except that one command prints a message with a line-

number, and the other doesn't. So:

C763 BCC C768 ; CARRY BIT IS SET FOR STOP, CLEAR FOR END...

C765 JMP C37E ; PRINT "BREAK IN LINENUMBER" MESSAGE

C768 JMP C389 ; PRINT "READY"

[2] Usually the test is concerned with the result of a previous operation

which may or may not set the carry flag; this compare routine for

in. stflncG *

LOAD THE ACCUMULATOR WITH A VALUE (DEVICE NO. .TRACK, SEC-

TOR, OR WHATEVER). COMPARE WITH #0A; THIS SETS C.

BRANCH TO PROCESS THESE LOW VALUES;

; CONTINUE HERE WITH HIGH VALUES, 10-255 DECIMAL.

ADC and SBC, the add and subtract operations, are obvious candidates

here, but occur less often with BCC than might be expected, because the

value of the carry bit can often be taken care of by the mathematical routine

without the need for branching. This example might be used in 2-byte

addition where an overflow warning is needed:

JSR GETCHAH
CMP #$0A
BCC TO 0-9

CLC
LDA LOADD
ADC #L0
STA LOADD
LDA HIADD
ADC #HI

STA HIADD
BCC CONT
JMP OVERFL

CLEAR FOR ADD
ACCUMULATOR HOLDS CONTENTS OF THE LOWER BYTE .

.

. . ADDS THE LOWER BYTE VALUE

AND STORES IT; C MAY BE OR 1.

ACCUMULATOR HOLDS MORE SIGNIFICANT ADDRESS BYTE..

. . ADDS THE HIGHER BYTE VALUE

AND STORES IT. AGAIN, C MAY BE OR 1

:

IF IT'S CLEAR, THE ADDITION HASN'T OVERFLOWED.

IF IT'S 1, PROCESS ACCORDINGLY; E.G. ERROR INDICATION

BCS
Branch if the carry bit is 1. PC : = PC + offset if C=l

INSTRUCTION
$B0 (176 11011 0000)

ADDRESSING
BCS relative

BYTES CYCLES
2* 3

*Add 1 if branch occurs; add 1 more if branch crosses a page

N V - B D I Z CFlags:

Operation: Identical to BCC, except that the branch is taken if C=l and not C=0.

Uses: [1] The uses are identical to those of BCC; the choice between BCC and

BCS at a branch point depends on convenience only. For example, suppose

a hardware port is to be read until bit 1 is set to 0; this routine:

LOOP LDA PORT
LSR A

LSR A
BCS LOOP

LOAD FROM HERE UNTIL xxxx xxOx

is more natural than one involving BCC, and easier to read.

Programming the PET/CBM -326- 12: 6502 opcodes

BEQ
Branch if zero flag is 1. PC : = PC + offset if Z= 1

Flags:

INSTRUCTION ADDRESSING BYTES CYCLES
$F0 (240 11111 0000) BEQ relative oo 2*

*Add 1 if branch occurs; add 1 more if branch crosses a page

N V - B D I Z C

Operation: If Z=l, the byte following the opcode is added, in 2's complement arith-
metic, to the program counter, which currently points to the next opcode.
The effect is to cause a jump, forward or backward, up to a maximum of
about ±128, if the zero flag is set. IF Z=0 the branch is ignored.

Uses: [1] The zero flag cannot be set directly (there is no 'SEZ'). But since it is

very often set in the course of a program, the use of BEQ as an unconditional
branch is common. This sort of thing may be used to make short routines
relocatable, where the branch command isn't quite wide-ranging enough to

LDA #$F5; SOME VALUE OR OTHER P?™ tt

f"
the

+

b
.

ranflirig that is needed

BEQ BACK; these TWO branches
W1

t

thm the routine to take place without an

BEQ FWRD rely ON z=l
intermediate hop. This, of course, is not
really recommended with large programs.

[2] A common use is to end a loop, either when a counter is decremented
to zero, or because a zero byte is deliberately used as a terminator:

LOOP LDA TABLE, X ; LOAD A WITH THE NEXT CHARACTER
BEQ EXIT ; EXIT LOOP WHEN ZERO BYTE FOUND
... CONTINUE, E.G. STA OUTPUT, X/ INX/ BNE LOOP

[3] BEQ is popular after comparisons because it's easy to use:
JSR GETCHR/ CMP #$2C/ BEQ COMMA looks for a comma in BASIC.

Notes: [1] When a result is zero, the zero flag Z is made 'true'- i.e. 1. This point
can confuse people. 'BEQ' is usually read 'branch if equal to zero' but when
comparisons are being made it could be read 'branch if equal'.

BIT
Test memory bits. Z flag set on A AND M; N flag = M7; V flag=M6

INSTRUCTION ADDRESSINC BYTES CYCLES
$24 (36 %0010 0100)

$2C (44 10010 1100)

BIT zero page
BIT absolute

00

ooo
3

4

N V - B D I Z C
M7M6 x

Flags:

Operation: BIT affects only three flags leaving registers and data unchanged. Z is set
on A AND M : if no bit of the memory location and of A has a 1 in each , then
A AND M is zero and Z- 1. Also, bits 6 and 7 are copied from memory to V & N.

Uses: [1] The 3-byte, absolute address BIT is the only instruction regularly used
LDA #$0D A9 OD ; LDA #0D for unconventional disassembly from a non-
BIT $20A9 2C A9 20 ; LDA #20 standard entry point. The example loads A
BIT $1DA9 2C A9 ID ; LDA #1D with Return, space, or [RIGHT] depending
on the entry point into the routine.

[2] BIT with BMI/BPL or BVC/BVS tests bits 7 and 6. This is often used
BIT $07 with PIA/VIA locations- see the IEEE examples. The example
BMI ERR here tests location $07, with an error indication if it holds a
RTS negative. $07 is in fact used to check for type mismatches.

ERR jmp ERROR #FF denotes a string, #00 a numeric variable.

[3] This example shows the AND feature in use. CHRFLG holds #0 if no char-
LDA VALUE acter is to be output, and #FF otherwise. Assuming the
BIT CHRFLG accumulator holds a non-zero value, BIT tests whether to
BEQ NOTOUT branch past the output routine, while retaining A's value.

Programming the PET/CBM -327- 12: 6502 opcodes

BMI
Branch if the N flag is 1 . PC: = PC + offset if N=1

INSTRUCTION
$30 (48 10011 0000)

ADDRESSING
BMI relative

BYTES CYCLES

*Add 1 if branch occurs; add 1 more if branch crosses a page

N V - BDIZCFlags:

Operation: The program counter is incremented to point at the next opcode, and

if N holds 1 the byte following the branch opcode is added to the program

counter in 2's complement form . The effect is to force a jump to the new

address. The maximum range of a branch is therefore about ±128. When N

holds the branch command is ignored.

Uses: [1] Testing the 'negative' bit of a location; for example:

LOOP BIT $E840; BIT 7 IS CONNECTED TO DATA VALID SIGNAL..

BMI LOOP ; .. THIS LOOP WAITS UNTIL DAV IS 0.

Like other flags, N may be used in a purely conventional sense. As an ex-

ample, consider BASIC'S keyword tokens: these all have values, in decimal,

of 128 or more, which keeps keywords logically separate from other BASIC,

and also permits instructions like this schematic branch

:

LDA NEXT
BMI TOKEN

LOAD NEXT CHR INTO ACCUMULATOR

BRANCH TO PROCESS A KEYWORD

OTHERWISE, PROCESS DATA AND EXPRESSIONS

Notes: [1] It's important to realise that the 'minus' in BMI refers only to the use

of bit 7 to denote a negative number in 2's complement arithmetic. It may be

easier to think of this operation as 'branch if the high bit is set'. BPL is

exactly the opposite of BMI. Where one branches, the other does not.

BNE
Branch if Z is 0. PC : = PC + offset if Z =

INSTRUCTION
$D0 (208 11101 0000)

ADDRESSING
BNE relative

BYTES CYCLES
2* 3

*Add 1 if branch occurs; add 1 more if branch crosses a page

N V - B D I Z CFlags:

Operation: BNE operates exactly like BEQ, except that the condition is opposite.

If Z=0 the offset contained in the byte after BNE is added to the program

counter, so the branch takes place. If Z=l the branch is ignored.

Uses: [1] BNE may be used in unconditional branches in circumstances like those

which apply to BEQ- see note [1] on BEQ.

[2] BNE is very often used in a loop in which a counter is being decrem-

ented. This is probably the easiest type of loop to write, although the

LDX #$OA starting address of the loop's data needs to be

LOOP LDA TABLE,

x

fixed with care, as offset isn't executed by a

JSR OUTPUT loop like this. The example prints ten characters

DEX from a table, their offsets being 10,9,8, ...,2,1.

BNE LOOP

[3] BNE, like BEQ, is popular after comparisons

B4C0 LDA $C1

B4C2 CMP #$42; IS IT B?

B4C4 BNE $B4C9

B4C6 JMP $B876
B4C9 CMP #$48; IS IT H?

Comparisons like this can continue over

many bytes of machine-code.

Notes: [1] When a result (say, of LDA) is non-zero, the zero flag Z is made false,

i e set to 0. This can be confusing. 'BNE' is usually read 'branch if not

equal to zero' . The result of a comparison is zero if both bytes are identical

,

because one is subtracted from the other. Hence the use of BNE and BEQ.

Programming the PET/CBM -328- 12: 6502 opcodes

BPL
Branch if the N flag is 0. PC:=PC + offset if N=0

Flags:

INSTRUCTION ADDRESSING BYTES CYCLES
$10 (16 10001 0000) BPL relative oo 2*

*Add 1 if branch occurs; add 1 more if branch crosses a page

N V - B D I Z C

Operation: BPL operates exactly like BMI, except that the condition is opposite.
The branch is taken to the new address given by program counter plus
offset // N=0. This means that if the result was positive or zero the branch
is taken. ^

Uses: [1] In testing the negative bit of a memory location. This code, for example
LOOP LDA testlocn waits until the accumulator holds a b^te

BPL LOOP with bit 7 on. Such a location must be
hardware cotrolled, not just RAM.

[2] Testing for the end of a loop where a counter is being decremented, and
the counter's value is needed. This simple loop prints 10 bytes to screen:

LDX #$09
LOOP LDA BASE.X

STA 8000,

X

DEX
BPL LOOP

X REGISTER WILL COUNT 9,8,7, ... ,1,0
'BASE' IS THE STARTING ADDRESS OF THE 10 BYTES
CBM SCREEN STARTS AT $8000. (OTHER MACHINES DIFFER).
DECREMENT X
BRANCH WHEN POSITIVE OR ZERO

BRK
Force break. S: = PCH # SP:=SP-1, S: = PCL, SP:=SP-1, S:=PSR, SP: = SP-1, PC:=(FFFE)

INSTRUCTION ADDRESSING BYTES CYCLES
$00 (%0000 0000) BRK implied 7

N V - B D 1 Z C
1 x

Flags:

Operation: BRK is a forced interrupt, which saves its current position and status
and jumps to a standard address. Note that (i) The program counter saved
points to the BRK byte plus two (like a branch), and (ii) The processor
status register on the stack has flag B set to 1. In CBM machines, the new
address is shared by the IRQ service routine and generally with the 6502
maskable interrupts always jump to ($FFFE); the break flag is a sort of
designer's patch so that BRK can be recognized as different from other
interrupts.

Uses: [1] BRK can be used to patch programs (as mentioned in Zaks' 6502 book),
but this requires (i) a change in the interrupt's vector, i.e. ($92) in BASIOl
or ($0219) in BASIC 1 and (ii) processing required by the program. Also a
return, using the stack program counter and processor status, is needed.
This is sufficiently complex not to be done often.

[2] With BASIC vectors left as on power-up, BRK causes BASIC to jump to
the monitor, or to location $0 in BASIC 1. This is why SYS 1024 or SYS 4
may be used to enter the monitor. 1024 normally contains a zero byte at the
start of BASIC; 4 is zero whenever quotes mode is not set, e.g. when in
direct mode. On entering the monitor the data on the stack is pulled off
and displayed. The program counter is (for some reason) decremented;
since PC+2 is stored, the monitor address points at the byte after BRK.

Programming the PET/CBM -329- 12: 6502 opcodes

BVC
Branch if the internal overflow flag (V) is 0. PC: = PC + offset if V=0

INSTRUCTION
~£50 (80 %0101 0000J

ADDRESSING
BVC relative

BYTES CYCLES
"5*

LES I

*Add 1 if branch occurs; add 1 more if branch crosses a page

Flags: N V - B D I Z C

Operation: If V is clear, the byte following the opcode is added, as a two's

complement number, to the program counter, set to point at the following

instruction. The effect is to jump to a new address, which must be within

a range of about ±128 bytes. If V=l the next instruction is processed and

the branch ignored.

Uses: [1] As a 'branch always' instruction:

CLV
BVC LOAD

[2] With signed arithmetic, to detect overflow from bit 6 into bit 7, giving

a spurious negative bit. This is rather rarely used since the sign of a

number can be held apart from the number, perhaps as #0 or #FF, so that

ordinary arithmetic can be used without the extra complication of the Vbit.

See the note for an explanation of V's derivation.

LDA ADD1
CLC
(CLV)

ADC ADD2
BVC OK

JMP OVERFL

This routine adds two numbers, in 2's complement form;

their range therefore is -128 to 127. Clearing V is only

used in examples like [1]; unlike the carry bit C, it is

never added in to results, so clearing is not needed.

CLC is necessary; it may add in 1 to the result.

[3] BIT copies a location's 6th bit into the processor status register, so

BVC or BVS can be used to test bit 6. For example, this routine:

F103 BIT $E840
F106 BVC $F103

waits until the hardware sets bit 6 of location $E840

equal to 1.

Notes: [1] The Meaning of V . When using signed arithmetic, two numbers of

opposite sign cannot overflow. The most extreme values, e.g. -128+0, are

always within the acceptable range. However, if the signs are the same,

overflow is possible. #$6A + #$5B overflows: the result is not in the range

-128 to 127. We have: %0110 1010 + %0101 1011 = %1100 0101. When the two

leftmost bits are 0, each original number is positive; if in addition the

result has bit 7 equal to 1, an overflow must have occurred. Similarly, two

negative numbers with overflow behave like this: consider -100 and -89, in

decimal. When added, these overflow, since -189 is out of the acceptable

range for signed bytes. Now, +100 = #$64 and +89 = #$59. The negatives

are therefore -100 = #$9C and -89 = #$A7. We have: %1001 1100 + %1010 0111

= %0100 0011. The overflow shows itself in causing two negative numbers

to apparently add to a positive. V is thus calculated by complementing the

EOR of 2 negativebits, and ANDing the result with the EOR of the result's

negative bit and ont the original number's negative bits. This is not so

complicated as it might seem.

BVS
Branch if the internal overflow flag (V) is 1. PC:=PC + offset if V= 1

INSTRUCTION ADDRESSING BYTES CYCLES
$70 (112 %0111 0000) BVS relative

oo 2*

*Add 1 if branch occurs; add 1 more if branch crosses a page

N V - B D I Z CFlags:

Operation: This branch is identical to BVC except that the test logic to decide

whether the branch is taken is opposite. See notes on BVC.

Programming the PET /CBM -330-
12: 6502 opcodes

CLC

INSTRUCTION ADDRESSING BYTES CYCLES
$18 (24 %0001 1000) CLC implied 2

N V -- B D Z C

Clear the carry flag. C: =

Flags:

Operation: The carry flag is set 0. All other flags are unchanged.

Uses: The carry bit is an automatically included feature in add and subtract
commands (ADC and SBC), so that accurate calculations require the flag
to be in a known state. CLC is the usual preliminary to additions:

CLC
LDA #$02 After CLC, this routine adds 2 and 2 and prints the
ADC #$02 resulting byte, which is 4. In multiple-byte additions
JSR PRBYTE C is cleared at the start but subsequently used to

carry throughthe overflows, if they exist.

CLD
Clear the decimal flag. D: =

Flags:

INSTRUCTION ADDRESSING BYTES CYCLES
$D8 (216 %1101 1000) CLD implied o

2

N V -- B D Z C

Operation: The decimal flag is set 0; all other flags are unchanged.

Uses: Resets the mode for ADC and SBC so that hexadecimal (binary) arithmetic
is performed, not binary-coded decimal. Typically, SED precedes some
decimal calculation, with CLD following when this is finished.

Notes: Commodore BASIC uses no decimal mode calculations; on switching the
machine on, CLD is executed and the flag is permanently left off. Entry
to the monitor clears D, should it happen to have been set. There have
been reports that future BASICs may contain BCD arithmetic.

CLI
Clear the interrupt disable flag.

Flags:

l:=0

INSTRUCTION ADDRESSING BYTES CYCLES
$58 (88 %0101 1000) CLI implied o

2

N V -BDIZC
Operation: The interrupt disable flag is set to 0. From now on, interrupts will

be processed by the system, using the IRQ vector in ($FFFE),

Notes

:

[1] Interrupts through the NMI line ('non-maskable interrupts') take place
irrespective of the I flag.

[2] Commodore use the interrupt to process the keyboard and clocks.
Typically, CLI is used after SEI plus changes to interrupt vectors. Often,
CLI isn't needed when used with BASIC, as a number of BASIC routines
themselves use CLI. See SEI for an example including CLI .

CLV
Clear the internal overflow flag. V:=0

Flags:

INSTRUCTION ADDRESSING BYTES CYCLES
$B8 (184 %1011 1000) CLV implied o 2

N V - B D 1 Z C

Programming the PET/CBM -331-

CMP
Compare memory with the contents of the accumulator. PSR set by A

12: 6502 opcodes

M

INSTRUCTION ADDRESSING BYTES CYCLES
$C1 (193 %1100 0001) CMP (zero page,X) 2 6

$C5 (197 %1 100 0101) CMP zero page 2 3

$C9 (201 11100 1001) CMP # immediate 2 2

$CD (205 11100 1101) CMP absolute 3 H

$D1 (209 %1101 0001) CMP (zero page),Y 2 5*

$D5 (213 %1101 0101) CMP zero page,X 2 H

$D9 (217 11101 1001) CMP absolute, Y 3 H*

$DD (221 %11 01 1101) CMP absolute, X 3 H*

N V -- B D Z C
X X X

*Add 1 if page is crossed

Flags:

Operation: CMP affects three flags only, leaving registers and data intact. The

accumulator is not changed. The byte at the address specified by the

opcode is subtracted from A, and the three flags N, Z, and C set depending

on the result. Thus, if the accumulator holds the same value as the memory

location, the result is zero, and BEQ causes the appropriate action to be

taken. Before performing the subtraction, the carry bit is set by the chip.

Within the chip, what happens is that the accumulator's contents are added

to the 2's complement of the data, and the result of this determines how

the flags are set.

Uses: [1] With the zero flag, Z . This is the easiest flag to use with CMP*:-

FF22 JSR FFCF; INPUT A CHARACTER
IS IT A SPACE? This is part of a routine

YES. INPUT AGAIN to parse BASIC lines from

IS IT C. RETURN? the keyboard; the characters

YES. BRANCH ... it looks for are typical of

..NO. maybe "? such routines.

FF25 CMP #$20;
FF27 BEQ FF22;

FF29 CMP #$OD;

FF2B BEQ FF47;

FF2D CMP #$22;

[2] With the carry flag, C . This is quite straightforward. If the memory

contents are less than A, or equal to A, the carry flag is set. 'Less than'

means in the absolute sense, not the 2's complement sense. Thus, 100 is

less than 190, although in 2's complement notation, 190, being negative,

would count as the smaller number of the two.

lda 085D
CMP #$3A
BCS 0087
CMP #$20

LDY #$00
LDA (PTR),Y
CMP #$20
BCC Bl

CMP #$40
BCC B2

This is part of CHRGET, where A is loaded with one

byte of the BASIC program in memory. It's then pro-

cessed; see Chapter 14 for details. This extract

compares with the ASCII for a colon, which is #3A, and

branches for any less value, or if equal, to RTS.

This example shows how a range of values may be tested

for and processed. Starting with the lowest ranges,

comparisons are carried out until the correct range is

found; each comparison is followed by a branch to Bl,

B2 etc. where processing is carried out for 0-#lF, #$20-

#$39, and so on.

[3] With the negative flag, N . This is the most obscure flag to use with

CMP. The reason is that 2's complement numbers are assumed, and if you

are working with these CMP operates as expected, subtracting the memory

from the accumulator, and therefore giving a negative answer whenever the

memory exceeds the accumulator. If both numbers are positive, or both neg-

ative, the N flag is set as though absolute subtraction were being used, and

in these circumstances BMI/BPL can be used. But if the two data items have

different signs, the comparison process is complicated by the fact that the V
bit may register internal overflow. See Chapter 11 for more detail.

*We have it on the authority of Gerry Weinberg that poor quality machine-code

invariably has a branch of this type; you have been warned!

Programming the PET/CBM 332- 12: 6502 opcodes

CPX
Compa re memory with the contents of the X register. PSR set by X - M

INSTRUCTION
$E0 (224 %1 110 0000)
$E4
$EC

l iit -si i iu uuuuj

(228 11110 0100)
(236 %1110 1100)

ADDRESSING
CPX # immediate
CPX zero page
CPX absolute

BYTES
oo

00

ooo

CYCLES

N V -- B D Z C
X X X

Flags:

Operation: CPX affects three flags only, leaving the registers and data intact. The
byte referenced by the opcode is subtracted from X, and the flags N.Z.and
C set depending on the result. Within the chip, X is added to the 2's comp-
lement of the data, and the result of this determines how the flags are set.

Uses: [1] With the zero flag, Z . This flag tests equality.
LDX #$oo

LOOP LDA $0270 ,X The loop in this example is part of the keyboard
STA $026F,x buffer processing, showing how the contents of
INX the buffer are shifted one character at a time.
CPX $9E $9E is a zero-page location, updated whenever a
BNE LOOP new character is keyed in, which holds the current

number of characters in the buffer: the comparison provides a test to end
the loop.

[2] With the carry flag, C . This flag tests for X>=M and X<M:-
LDX $00
CPX #$50 The test routine is part of a graphics plot program

;

BCS EXIT j IF X>79 location $00 holds the horizontal coordinate, which
is to be in the range 0-79 to fit the screen. The

comparison causes exit, without plotting, when X holds 80-255.

[3] With the negative flag, N . When X and the data have the same sign, i.e.
both are 0-127 or 128-255, BMI has the same effect as BCC, and vice versa.
When the signs are opposite, the process is complicated by the possibility
of overflow into bit 7. For example, 78 compared with 225 sets N=0, but 127
compared with 255 sets N=l. (Because 225=-31 as a 2's complement number;
thus 78+31=109 with N=0, but 127+31=158 with N=l)

CPY
Compare memory with the contents of the Y register. PSR set by Y - M

INSTRUCTION ADDRESSING BYTES CYCLES
$C0 (192 %1 100 0000)
$C4 (196 %1100 0100)
$CC (204 %1100 1100)

CPY # immediate
CPY zero page
CPY absolute

oo

oo

ooo

2

3

4

N V -- B D 1 Z C
X X X

Flags:

Operation: CPY affects three flags only, leaving the registers and data intact. The
byte referenced by the opcode is subtracted from Y, and the flags N, Z,
and C set depending on the result. Apart from the use of Y in place of X,
with the resulting asymmetry in the implementation of addressing, this
opcode is identical in its effects to CPX.

Notes: The major difference in addressing between X and Y is the fact that post-
indexing of indirect addresses is available only with Y . So this type of

LDY #$00 construction, in which a set of consecutive bytes,
LOOP LDA (PTR),Y perhaps a string in RAM or an error message, is

JSR OUTPUT processed up to some known length, tends to use
INY the Y register.
CPY LENGTH
BNE LOOP

Programming the PET/CBM

DEC
Decrement memory contents. M: = M-1

-333- 12: 6502 opcodes

INSTRUCTION
$C6 (198 %1100 0110)

$CE (206 %1100 1110)

$D6 (214 %1101 0110)

$DE (222 %1101 1110)

ADDRESSING
DEC zero page
DEC absolute
DEC zero page,X
DEC absolute, X

BYTES CYCLES

Flags: NV-BDIZC

STA $00 ;

STA $01 ;

LOOP DEC $00
BNE LOOP;

DEC $01
BNE LOOP

SET THESE BOTH
TO ZERO

255 LOOPS. .

.

... BY 255

Operation: The byte referenced by the addressing mode is decremented by 1,

setting the N flag and the Z flag. If the byte contained anything from

#81 to #0, after DEC the N flag will be set; however, Z will be except

for the one case where its value was #1 before the decrement. Probably

#FF is added within the chip itself, setting N and Z on the result. Note

that the carry bit is unchanged irrespective of the outcome of DEC.

Uses: [1] LDA $93 This short routine shows an efficient method to decrement

BNE +2 a zero page pointer or any other double-byte value. It uses

DEC $94 the fact that the high byte must be decremented only if the

dec $93 low byte is exactly zero. Compare INC.

[2] Counters other than the X register and Y register can easily be

implemented with this command (or INC). Such counters must be in RAM;
there is no 'DEA' instruction. This simple delay loop which decrements

locations $00 and $01 shows the type of thing :-

AND #$00; FOR A CHANGE
A zero page decrement takes 5 clock cycles

to carry out; a successful branch takes 3.

(We'll assume a page isn't crossed, as in

fact it is statistically unlikely to be if this

code is put into RAM at random) . The
inside loop therefore takes 8*255 cycles to

complete, and the whole loop is a little more than 8*255*255 cycles. We can

divide this by a million to get the actual time in seconds, which is about

half a second.

DEX
Decrement the contents of the X register. X: = X-1

Flags:

Operation: The contents of the X register are decremented by 1, setting the N
flag if the result has bit 7 set, and setting the Z flag if the result is 0.

As with DEC, the carry bit is unaltered.

Uses: DEX is almost exclusively used to count X in a loop. Its maximum range,

of 255 bytes, is often insufficient, so several loops may be necessary.

E12F LDX #$1C
E131 LDA E0F8.X This routine moves 28 bytes from ROM to RAM,
E134 STA 6F,X including the CHRGET routine, in BASIC 2.

E136 DEX
E137 BNE E131

INSTRUCTION ADDRESSING BYTES CYCLES
$CA (202 %1100 1010) DEX implied o 2

NV-BDIZC
X X

LDX #$00
LOOP LDA #$20

STA $8000,

X

STA $8100,

X

STA $8200,

X

STA $8300,

X

DEX
BNE LOOP

This is a screen-clearing routine, which puts 1000

bytes of #$20 (space) into RAM. With an 80-column

machine only the top half of the screen blanks out,

because 80 columns by 25 rows gives 2000 locations.

Programming the PET/CBM -334- 12: 6502 opcodes

DEY
INSTRUCTION ADDRESSING BYTES CYCLES
$88 (136 11000 1000) DEY implied o 2

N V - B D 1 Z C
X X

Decrement the contents of the Y register. Y: = Y-1

Flags:

Operation: The contents of the Y register are decremented by 1, setting the N
flag if the result has bit 7 set (i.e. is greater than 127), and setting the Z
flag if the result is #0. As with DEC, the carry bit is unaltered.

Uses: DEY, like DEX, is almost exclusively used to count within loops. There are
more opcodes which have indexing by X than by Y , so X is more popular for
this purpose. This example is less of a loop than those I've chosen for X:-

LDY #$02
LDA (PTR),Y; LOAD 2ND BYTE This inclusively ORs together three adjacent

bytes; so that if the result is #0, each of
the three must have been zeros. Note the
addressing mode, which is indirect indexed,
the indirect mode which is post-indexed by
the Y register.

DEY
ORA (PTR) Y; ORA 1ST BYTE
DEY
ORA (PTR) Y; ORA OTH BYTE
BNE CONT ; END IF ZERO

EOR
Accumulator's contents are exclusively ORed bitwise with the contents of memory.
A:= A EOR M

INSTRUCTION ADDRESSING BYTES CYCLES
$41 (65 10100 0001) EOR (zero page,X) oo

6

$45 (69 10100 0101) EOR zero page oo 3

$49 (73 %0100 1001) EOR # immediate oo 2

$4D (77 %0100 1101) EOR absolute ooo 4

$51 (81 10101 0001) EOR (zero page),Y oo 5*

$55 (85 %0101 0101) EOR zero page,X oo 4

$59 (89 %0101 1001) EOR absolute, Y ooo n*
$5D (93 %0101 1101) EOR absolute,

X

ooo n*

*Add 1 if page is crossed

N V -
- B D Z C

X X
Flags:

Operation: An exclusive OR (compare ORA for a description of an inclusive OR)
is a logical operation in which bits are compared, and EOR is considered to
be 'true' if A or B - but not both, or neither - is true. For example,
let's evaluate #AB EOR #5F. Now #AB is %1010 1011, i.e. in decimal, ten
followed by eleven. #5F is %0101 1111. So the EOR of these two is

%1111 0100, or #F4. We arrive at this result by a process of bit comparisons,
where bit 7 is EOR 1=1, and so on.

Uses: [1] CBM graphics use bit 7 to signal reverse video. In BASIC, this screen
POKE can be used to reverse any character(s): poke p, (PEEK(P) or 128)
and NOT (PEEK(P) and 128). This exclusively-ORs the high bit with the peek
value, reversing the video byte. In machine code, the same reverse effect

LDA LOCN is more elegantly and quickly achieved with this
EOR #$80 EOR, which is not directly available in BASIC.
STA LOCN Chapter 9 has more on this topic.

[2] EOR is exceptional among CBM and 6502 logical functions in that no
'information' in the technical sense is lost. If you repeatedly AND, you will

finish with #0; if you ORA, you'll end with #FF. For this reason, hashtotals
and data encryption algorithms often use EOR. To code data, each byte is

EORed with a byte generated by some secret, repeatable process. When the
result is EORed again with the identical sequence, all the original bytes are
restored.

Programming the PET/CBM

INC
Increment memory contents. M:-M+1

-335- 12: 6502 opcodes

INSTRUCTION
$E6 (230 %1110 0110)

$EE (238 %1110 1110)

$F6 (246 %1111 0110)

$FE (254 %1111 1110)

ADDRESSING
INC zero page
INC absolute
INC zero page,X
INC absolute,X

BYTES CYCLES

Flags: N V - B D I Z C

Operation • The byte referenced by the addressing mode is incremented by 1, setting
P

the N flag and the Z flag. The N flag will be 1 if the contents' high bit is

1, and otherwise 0; and Z will be 1 if the contents now equal zero exactly.

The carry bit is unchanged.

Uses- [1] INC $93 This short routine shows an efficient method to increment a

BNE CONT zero page pointer or any other double-byte value. The high

INC $94 byte must be incremented only when the low byte changes

CONT ... from #FF to #00. Compare DEC.

[2] Exactly as note [2] in DEC, INC may be used to implement counters in

RAM where the X and Y registers are insufficient. Suppose we use the IRQ

interrupt servicing to (say) flash a cursor or repeat a key. Something like:

IRQ INC $00 . , ,

BEQ +3 where IRQCONT is the interrupt's usual routine enables

JMP IRQCONT some periodic routine to be performed. Here, the zero

LDA #20 page location $0 is used to count from #20 up to #FF and

STA $00 #00, so the processing occurs every 255-32=223 jiffies

about every 3 . 7 seconds

.

Notes- [1] The accumulator can't be incremented using this; CLC/ ADC #01 or SEC/

ADC #00 must be used, or TAX/ INX/ TXA or some other variation.

[2] Remember that INC doesn't load; if the incremented contents are to be

used in A, or in a register, then INC $C6 say must be followed by LDA $Gb

or LDX $C6 or LDY $C6.

INX
Increment the contents of the X register. X:-X + 1

INSTRUCTION
$E8 (232 %1110 1000)

ADDRESSING
INX implied

BYTES CYCLES

Flags: N V - B D I Z C

Operation: The contents of the X register are incremented by 1, setting the N flag

if the result has bit 7 set, and the Z flag if the result is zero. These flags

may both be 0, or one of them may be 1; it is impossible for both to be set

1 by this command. The carry bit is unchanged.

Uses: INX is common as a loop variable. It is also often used to set miscellaneous

values which happen to be near each other, like this:

LDX #$oo
STX $033A
STX $033C
INX
STX $10

Stack pointer processing tends to be connected with the use of the X

register, because TXS and TSX are the only ways of accessing SP. Most

of CBM's stack handling and memory checking for BASIC uses the X register.

Programming the PET/CBM -336- 12: 6502 opcodes

INY
Increment the contents of the Y register. Y: = Y+1

B
INSTRUCTION
$C8 (200 %1100 1000)

ADDRESSING
INY implied

BYTES CYCLES

N V -- B D Z C
X X

Flags:

Operation: The contents of the Y register are incremented by 1, setting N^l if the

result has bit 7=1, and vice versa, and setting Z=l if the result is zero, and
vice versa. A zero result is obtained by incrementing #$FF. Note that the

carry bit is unchanged.

Uses: Like DEX, DEY, and INX this command is often used to control loops; and
like them it is often followed by a comparison (CPY) to check whether its

exit value has been reached. See CPY for a typical example.

JMP
Jump to a new location anywhere in memory. PC: = M

Flags:

INSTRUCTION ADDRESSING BYTES CYCLES
$HC (76 %0100 1100)
$6C (108 %0110 1100)

JMP absolute
JMP (absolute)

ooo
ooo

3

3

N V - B D I Z C

Operation: JMP is the 6502 equivalent of a GOTO, transferring control to some
non- sequential part of the program. An absolute JMP, opcode $4C, causes
the following byte to be transferred to the low byte of the program counter
and the next-but-one to the high byte of the program counter, resulting in

a jump. The indirect absolute jump is more elaborate, and takes longer:
PCL and PCH are loaded from the address following JMP and from the next
address respectively. This is the only absolute indirect command available

on the 6502.

Uses: JMP, unlike JSR, keeps no record of its present position, and transfers
control unconditionally to its new destination. The resulting code is not

lda PTRLO relocatable and in the ease of ROM routines not
LDY PTRHi usually portable between CBMs, so branching may
JMP ADD be preferable where possible- i.e. in short programs.

CMP #$2C ;
'

,

These extracts from programs demonstrate how JMP
BEQ +3 is used. The first loads two pointers to a work area
JMP ERROR for calculations; a routine to add accumulator #1 to

this data is jumped to. The second is part of a
parsing subroutine which checks for a comma in a BASIC line; if the comma
has been omitted, an error message is printed to inform the user of this fact.

Notes: [1] Indirect addressing . This is a 3-byte command which therefore looks like

this: JMP ($0072) or JMP ($7FF0). A concrete example is the IRQ vector in

the CBMs. When a hardware interrupt occurs, an indirect jump to ($0090)
takes place. (($0129)in BASIC 1). A look at this region of RAM with the
monitor reveals something like this:

0090 2E E6 17 FD 89 C3 00 FF NOTE: THIS IS BASIC 2
So JMP ($0090) is equivalent to JMP $E62E. And JMP ($0092) jumps to $FD17.
Pairs of bytes can be used in this way to form an indirect jump table. Note
that this instruction has a bug: JMP ($02FF) takes its new address from
$02FF and $0200, not $0300.

[2] JSR, RTS, and JMP . As the depth of subroutine nesting grows with
increasing program complexity, inevitably some subroutines which themselves
call other subroutines develop code like this:

LOAD VALUES And the point is that a subroutine call followed by a

JSR PROCESS return is exactly identical to a jump, except that the

JSR CHECK stack use is less and the timing is shorter. Replacing

RTS JSR CHECK/ RTS by JMP CHECK is a common trick.

Programming the PET/CBM 337

JSR
Jump to a new memory location saving the return address.

S:=PC+2H, SP: = SP-1, S:=PC+2L, SP: = SP-1,
.

PC: = M

12: 6502 opcodes

INSTRUCTION
$20 (32 %0010 0000)

ADDRESSING
JSR absolute

BYTES CYCLES
6

N V - B D I Z CFlags:

Operation: JSR is the 6502 equivalent of a GOSUB, transferring control to another

part of the program until an RTS is met, which has an effect like RETURN.

Like BRK, this instruction saves PC +2 on the stack, which is the last byte

of the JSR command, RTS therefore has to increment the stored value in

order to execute a correct return. Note that no flags are changed by

JSR. RTS also leaves flags unaltered.

Uses- [1] JSR is a very valuable command and is used a great deal in complex

programs: see for example the ROM BASIC interpreter. It has drawbacks

which are similar to those of JMP. In particular, JSR is not relocatable

except as regards fixed addresses such as those in ROM ; and even these

don't usually carry over between ROMs. The exception is the so-called

'kernel' commands. JSR $FFE4 is a GET command and is relocatable in the

usual sense between any CBM ROM. Note that the 6809 has 'BSR\ branch

on subroutine, with both short and long offsets permitted, which overcomes

the relocatability difficulties*.

The first two examples here show how ROM routines

in the kernel may be used. It is not necessary to

know how they operate; all that's needed is know-

ledge of their principal features, which in these

examples are that data is transferred by the accum-

ulator, and that the flags are set by FFE4 as though

LDA had been used. So the first example loops until

a non-null byte has been fetched ; the second loads

a byte from memory and outputs it to cassette or

printer or whatever. The third example, part of a

routine inserted into the IRQ servicing routine,

LOOP JSR FFE4
BNE LOOP

LDA CHAR
JSR FFD2

0300 BNE 0305
0302 JSR 0308
0305 JMP IRQCONT

0308 PROCESS

030D
0310
0313
0316
0319
031C
031E

RTS

JSR
JSR
JSR
JSR
JSR
BCS
JMP

E0F9; INCREMENT GETCHR ADDRESS

CC9F; EVALUATE EXPRN; PUT IN ACC#1

D72C; ADD .5 TO ACC#1 TO ROUND

D6D2; CONVERT ACC#1 TO INTEGER IN ($11)

C52C; SEARCH FOR LINENUMBER IN BASIC

0321; CARRY SET IF FOUND

C7EB; ?UNDEF'D STATEMENT ERROR

has checked for some condition - possibly a particular keypress - and, if

the condition was true, calls a subroutine before returning to the interrupt

servicing as usual. This example illustrates the point made before about the

problem of relocation. Suppose the routine were shifted to a new part of

RAM It would reappear as: 0200 BNE 0205/ 0202 JSR 0308/ 0205 JMP IRQCONT/

0208 PROCESS ... RTS. What is wanted is JSR 0208. See Chapter 14 on this

subject

.

The fourth example is part of a computed GOTO routine for BASIC, which

uses ROM routines (in fact, BASIC 2 routines). BASIC subroutines provide

debugged code, but need rewriting to cope with each new issue of ROM.

Notes- See RTS for the PLA/ PLA construction which 'pops' one subroutine return

address from the stack. RTS also explains the special construction in which

an address (minus 1!) is pushed onto the stack, generating a jump when

RTS occurs. Finally, see JMP for a note on the way in which JSR... /RTS

may be replaced by JMP.

—

Very often there is no need to worry about this aspect of the 6502, of course.

Programming the PET ICBM 338- 12: 6502 opcodes

LDA
Load the accumulator with a byte from memory . A: = M

INSTRUCTION ADDRESSING BYTES CYCLES
$A1 (161 %1010 0001)

$A5 (165 %1010 0101)

$A9 (169 %1010 1001)

$AD (173 %1010 1101)

$B1 (177 %1011 0001)

$B5 (181 %1011 0101)

$B9 (185 11011 1001)

$BD (189 %1011 1101)

LDA (zero page,X)
LDA zero page
LDA # immediate
LDA absolute
LDA (zero page),Y
LDA zero page,X
LDA absolute, Y
LDA absolute,

X

oo

oo

oo

ooo

oo

oo

ooo

ooo

6

3

2

4
5*

4
4*

n*

*Add 1 if page boundar•y crossed

N V - B D 1 Z C
X X

Flags:

Operation: Loads the accumulator and sets the zero flag Z to 1 if the accumulator

now holds zero (i.e. all bits = 0). Bit 7 is copied into the N ('negative')

flag. No other flags are altered.

Uses: [1] General transfer of data from one part of memory to another needs a

temporary intermediate store of data, which A (or X or Y) can be. As an
LDX #00 example, this program transfers 256 consecutive

LDA 7000.X bytes of data from $7000 ff to $8000 ff. The
STA 8000,

X

accumulator is alternately loaded with data and
DEX written to memory.*
BNE -9

[2] Some binary operations use the accumulator: ADC, SBC, and CMP all

require A to be loaded before adding/ subtracting/ comparing. The addition

or whatever can't be made directly between two RAM locations. (Even if

it could the opcode would make a 5-byte instruction).

LDA 97 ; WHICH KEY?
CMP #FF ; PERHAPS NONE?
BNE KEY ; BRANCH IF KEY

When the CBM is switched on, the code it executes

contains this instruction. It initialises a register

by reading from it. The value is not important; the fact of reading out is.

[3] LDA $E843

LDX
Load the X register with a byte from memory. X: = M

INSTRUCTION ADDRESSING BYTES CYCLES
$A2 (162 %1010 0001) LDX # immediate oo 2

$A6 (166 %1010 0101) LDX zero page oo 3

$AE (174 %1010 1110) LDX absolute ooo 4

$B6 (182 %1011 0101) LDX zero page,Y oo 4

$BE (190 %1011 1110) LDX absolute,

Y

ooo n*

*Add 1 if page boundary crossed

N V -- B D Z C
X X

Flags:

Operation: Loads X from memory and sets Z=l if X now holds zero. Bit 7 from the

memory is also copied into N. No other flags are altered.

Uses: [1] Transfer of data and holding temporary values (e.g. for comparisons).

These closely resemble LDA (q.v.)

[2] X has two characteristics which distinguish it from A: it is in direct

communication with the stack pointer and it can be used as an offset with

indexed addressing. (There are other differences too!) So constructions

like these are common: LDX #$FF/ TXS and LDX #$00/ ... / DEX/ BNE ...

*Some chips (e.g. Z80) have documentation in which 'load' means 'load into memory'

-339-
Programming the PET /CBM

LDY
Load the Y register with a byte from memory. Y:-M

12: 6502 opcodes

INSTRUCTION
$A0 (160 %1 010 0000J

$A4 (164 %1010 0100)

$AC (172 %1010 1100)

$B4 (180 %1011 0100)

$BC (188 %1011 1100)

ADDRESSING
LDY # immediate
LDY zero page
LDY absolute

LDY zero page # X
LDY absolute, X

BYTES CYCLES
2

3

4

4

*Add 1 if page boundary crossed

Flags: N V - B D I Z C

Operation: Loads Y from memory and sets Z=l if Y now holds zero. Bit 7 from

memory is copied into N. No other flags are altered.

Uses: [1] Transfer of data and storage of temporary values: Cp. LDX, LDY.

[2] Since Y can be used as an index, and can be incremented/ decremented

easily, it is often used in loops. However, X generally has more combinations

of addressing modes in which it is used as an index; often therefore X is

reserved for indexing, while A and Y between them process other para-

meters. When indirect addressing is used this preference between X and Y

is reversed, since (usually) LDA (addr.X) is less useful than LDA (addr),Y.

LDY #00
LOOP DEX

BEQ EXIT
LDA (PTR).Y

JSR PRINT
CMP #0D
BEQ EXIT
BNE LOOP

X HOLDS LENGTH
DECREMENT IT

EXIT WHEN
LOAD ACCUMULATOR
PRINT SINGLE CHR

EXIT IF

' RETURN *

CONTINUE LOOP

This (admittedly rather unexciting)

example shows how A,X, and Y have

distinct roles; the ROM routine to print

the character is assumed to return the

original X and Y values (as in fact it

does).

LSR mj ._
Shift memory or accumulator right one bit. [oJ->|_7_6__5 4 3 2 1_0j-»-|Cj

INSTRUCTION
$46 (70 %0100 0110)

$4A (74 %0100 1010)

$4E (78 %0100 1110)

$56 (86 10101 0110)

$5E (94 %0101 1110)

ADDRESSING
LSR zero page
LSR accumulator
LSR absolute
LSR zero page,X
LSR absolute,

X

BYTES CYCLES

Flags: N V - B D I Z C

Operation: Moves the contents of memory or the accumulator right by one bit position,

putting into bit 7 and the negative flag, and moving the rightmost bit,

bit 0, into the carry flag. Z is set to 1 if the result is zero, and cleared

if not. Z can therefore only become 1 if the location before LSR held either

#0 or #1.

Uses- [1] This instruction is similar to ASL (and could just as well be called

'arithmetic shift right'). A byte is halved by this instruction (unless in

decimal mode, with D set), its remainder moving into the carry flag. See

for example the machine-code corresponding to the BASIC 'SET' command,

which halves the coordinates of a point in 'high resolution' graphics to fit

the screen. A rotate command can save the carry bit; see ROL.

[2] Miscellaneous uses include: (i) LSR/ LSR/ LSR/ LSR move a highnybble

into a low nybble; (ii) LSR/ BCC tests bit 0, and branches if it was not set

to 1- (iii) LSR turns off bit 7; sometimes this is an easy way to convert a

negative number into its positive equivalent, when the sign is stored as a

separate byte. The BASIC ABS function for instance does this.

Programming the PET/CBM -340- 12: 6502 opcodes

NOP
No operation.

INSTRUCTION ADDRESSING BYTES CYCLES
$EA (234 %111 1010) NOP implied o 2

Flags: N V - B D I Z C

Operation: Does nothing. (Well, not quite nothing - it increments the program
counter and continues with the next opcode).

Uses: [1] Filling disused portions of program; this is useful with hand 'assembly'

and other methods where recalculation of branch addresses and so on can't

be done easily. Some CBM ROM has this feature: for example, BASIC 2's

PEEK has many NOPs left over from deleting the PEEK protection from
BASIC 1.

[2] Conversely, when writing machine-code which hasn't been thoroughly
thought out beforehand (I am assured that this does very rarely happen)
a large block of NOPs, or occasional sprinkling of them, can make the task

of editing the code and inserting corrections easier. There is some time

lost in this process; NOP can be used as part of a timing loop.

ORA
Logical inclusive OR of memory with the accumulator. A: = A inclusive OR M

INSTRUCTION ADDRESSING BYTES CYCLES
$01 (1 %0000 0001) ORA (zero page,X) oo 6

$05 (5 10000 0101) ORA zero page oo 3

$09 (9 %0000 1001) ORA # immediate oo 2

$0D (13 %0000 1101) ORA absolute ooo 4

$11 (17 %0001 0001) ORA (zero page),Y oo 5

$15 (21 %0001 0101) ORA zero page,X oo 4

$19 (25 %0001 1001) ORA absolute, Y ooo n*

$1D (29 %0001 1101) ORA absolute, X ooo n*

*Add 1 if page boundary crossed

N V -- B D Z C
X X

Flags:

Operation : Performs the inclusive OR of the 8 bits currently in the accumulator
with the 8 bits referenced by the opcode. The result is stored in A. If

either bit is 1, the resulting bit is set to 1, so that for example:
%0011 0101 ORA %0000 1111 is %0011 1111. The negative flag N, and the
zero flag Z, are set or cleared depending on the result.

Uses: [1] 'Flagging in' a bit or bits. This is the opposite process to 'masking out'

bits, as described under AND. These two examples are typical extracts

LDA (PTR),Y from larger routines which use this function: the

ORA #$80 first loads a character from the screen, then sets

the high bit, reversing it - unless the character
was already in reverse, in which case it is left

unchanged. (Cp. EOR). The second is the method
by which an error code of #1,#2,#4 or whatever, held in A, is flagged into

the status byte ST. ST is stored in $96. Note the necessity for STA $96;

without it, only A holds the correct value of ST.

[2] Other miscellaneous uses include the testing of several bytes for cond-

itions which are intended to be true for each of them, for instance that 3

consecutive bytes are all zero, or that several bytes all have bit 7 equal to

zero. LDY #00/ LDA (PTR),Y/ INY/ ORA (PTR),Y/ INY/ ORA (PTR),Y/ BNE ...

branches if one or more bytes contains a non-zero value.

ORA $96
STA $96

-341-
Programming the PET /CBM

PHA
Push the accumulator's contents onto the stack. S:-A y SP:-SP 1

12: 6502 opcodes

INSTRUCTION
$48 (72 %0100 1000)

ADDRESSING
PHA implied

BYTES CYCLES

Flags: N V - B D I Z C

Operation: A is put into the stack at the current position pointed to by the stack

pointer; the stack pointer is decremented. This diagram illustrates the

position before and after the 'push':-

$0100 MAXIMUM EXTENT OF THE STACK — $01FF

|— 4,
|

STACK IN USE I

SP (STACK POINTER)
STACK IN USE 1

Uses:

Note:

SP (STACK POINTER)

This instruction is used for temporary storage of bytes; examples include

intermediate values of calculations produced during the parsing of numeric

expressions, temporary store while A is processed for later recovery, storage

when swapping bytes, and storage of A,X and Y registers at the start of a

subroutine, to be recovered on exit. The example shows how a printout

PHA routine works which is designed to end

AND #7F ; MASK OFF BIT 7 when the high bit of a letter in the table

JSR PRINT- OUTPUT 1 CHR is 1. The output requires the high bit

PLA
'

to be set to 0; but the original value is

BPL LOOP ; CONTINUE IF BIT 7=0 recoverable from the stack and may be

used in a test for the terminator at the end of the message.

PHA This next example shows how A,X and Y

TXA can all be saved on the stack for future

PHA recovery. Naturally these three registers

tya must be recovered in the reverse order:

PHA PLA/ TAY/ PLA/ TAX/ PLA.

'Push' is a rather misleading term for the action of this instruction; and the

well-known 'stack of plates' analogy is also seriously misleading, and no

doubt responsible for the puzzlement with which the stack is often viewed.

PHP
Push the processor status register's contents onto the stack. S:-PSR, SP:-SP

INSTRUCTION
$08 (8 %0000 1000)

ADDRESSING
PHP implied

BYTES CYCLESg
Flags: N V - B D I Z C

Operation: The operation is exactly similar to PHA, except that the processor status

register is put in the stack. The PSR is unchanged by the push.

Uses: Stores the entire set of flags, usually either to be recovered later and

displayed by a monitor program, or for recovery followed by a branch.

PHP This leaves the stack in the condition it was found; it also

PLA loads A with the flag register. The first example under PHA
shows the recovery of A, which sets either/ neither of N and V. The same

effect can be achieved, with the full range of flags, with LDA CHR/ PHP.

Programming the PET/CBM -342- 12: 6502 opcodes

PLA
INSTRUCTION ADDRESSING BYTES CYCLES
$68 (104 %0110 1000) PLA implied o 4

Pull the stack into the accumulator. SP: = SP + 1, A:=S

Flags:

Operation: The stack pointer is incremented, then the RAM address to which it

points is read and loaded into A, setting the N and Z flags. The effect is

similar to LDA. This diagram illustrates the position before and after the

'pull':-

N V -- B D I Z C
X X

$0100 MAXIMUM EXTENT OF THE STACK $01FF

STACK IN USE
SP (STACK POINTER)

STACK IN USE
SP (STACK POINTER)

Uses:

PHP
PLA

[1] PLA is the converse of PHA. It retrieves values put on the stack by
PHA, in the reverse order. So for example:

PLA This code leaves the stack unchanged, but leaves

PHA A holding the contents of the current 'top' of the

stack . Flags N and Z are set as though by LDA

.

This next example shows how the processor status

register may be examined by loading it into the

accumulator from the stack. For example, if A now has bit 3 equal to 1,

the decimal mode is set.

[2] A frequent use of PLA is to 'throw away' the top two bytes of the

stack. This is equivalent to adding 2 to the stack pointer. This is done
to 'pop' a return address from the stack; in this way, the next RTS which
is encountered will not return to the previous J S R , but to the one before

it. It assumes, of course, that the stack has not been added to since the

JSR. The following short example illustrates the point :-

033A LDX #FF

033C JSR 0340
033F BRK

0340 JSR 0350
0343 LDX #01
0345 RTS

0350 PLA
0351 PLA
0352 RTS
register holds #FF on
stack, has been lost,

Enter this trio of routines into a CBM with a monitor
(i.e. not BASIC 1, unless a monitor is specially

loaded). However, use $0350 RTS at first. If the
routine is run, by .G 033A which goes to the
machine-code address $033A and executes the code
there, on BRK the registers are displayed, among
them X, which equals #01. This is ordinary nested
subroutine logic; the earlier value of X is over-
written in the subroutine starting at $0340. But
if you use routine $0350 as it appears here, the X

BRK. The return address of $0342, as it is held in the
so RTS goes straight to BRK.

PLP
Pull the stack into the processor status register. SP:=SP + 1, PSR: = S

INSTRUCTION ADDRESSING BYTES CYCLES
$28 (40 %0010 1000) PLP implied o 4

N V -- B D 1 Z C
X X X X X X X

Flags:

Operation: The operation is exactly similar to PLA, except that the processor status
register, not the accumulator, is loaded from the stack.

Uses: Recovers previously stored flags with which to test or branch. See the
notes on PHP. This can also be used to experiment with the flags, perhaps
trying to set bit 5 (which is set to 1) or to set V, for example.

Programming the PET ICBM ~^3-

ROL
Rotate memory or accumulator and the carry flag left one bit.

UcW7 6 5 4 3 2 1 IFU-l

12: 6502 opcodes

INSTRUCTION
$26 (38 %0010 0110)

$2A (42 %0010 1010)

$2E ('!G %0010 1110)

$36 (54 %0011 0110)

$3E (62 %0011 1110)

ADDRESSING
ROL zero page
ROL accumulator
ROL absolute
ROL zero page.X
ROL absolute,

X

BYTES

ooo
oo
ooo

CYCLES

Flags: N V - B D I Z C
x x

Operation: 9 bits, consisting of the contents of memory referenced by the instruction,

and the carry bit, are 'rotated' as the diagram shows. In the process, C is

changed to what was bit 7, bit becomes the previous C, and the negative

flag, bit 7, becomes the previous bit 6. In addition, Z is set or cleared

depending on the new memory contents.

Uses- [1] Like ASL, ROL doubles the contents of the byte which it references, but

in addition the carry bit may be used to propagate the overflow from such a

doubling. Multiplication and division routines take advantage of this property

where a chain of consecutive bytes has to be moved one bit leftward. ROR is

used where the direction of movement is rightward, and often these commands

are used together.
i ASL $4000 The first example moves the entire 24 bits ot $4000 -

ROL $4001 $4002 over by 1 bit, introducing into the rightmost

ROL $4002 bit; if there is a carry, the carry flag will be 1.

The second example demonstrates an alternative
ii. ROL $7FE3,x method for clearing bit 7 of a location to the more

CLC obvious LDA / AND #7F/ STA . It is however far
ROR $7FE3,x

'slower', taking half as long again to execute. All

rotations and shifts are slow, with the exception of operations on A which are

as fast as the 6502 allows. If possible, therefore, rotations and shifts should

use A. Parity bits are a good example of the type of application for which

ROL is ideal. Zak's 6502 book has an example in which ONECNT holds the

count of Is in a byte, and A holds the character; what should follow is:

ROL A ; BIT 7 OF THE CHR NOT YET KNOWN

LSR ONECNT; PUTS (EVEN), 1 (ODD) INTO C

ROR A ; INCORPORATE C INTO BIT 7

[2] Like ASL, ROL may be used before testing N,Z, or C, especially N.

ROL A ; ROTATE 1 BIT LEFTWARD

BMI BRANCH; BRANCHES IF BIT 6 WAS ON

ROR
Rotate memory or accumulator and the carry flag right one bit.

^Tc]»[7~6~'5 4 3 2 1 "oVa/5: old 6502s lack this instruction, but all PET/CBMs have it.

INSTRUCTION ADDRESSING BYTES CYCLES
$66 (102 %01 10 0110) ROR zero page oo 5

$6A (106 %0110 1010) ROR accumulator 2

$6E (110 %01 10 1110) ROR absolute 6

$76 (118 %0111 0110) ROR zero page,X 6

$7E (126 10111 1110) ROR absolute, X 7

N V - B D 1 Z C
x x x

Flags:

Operation: 9 bits, consisting of the contents of memory referenced by the instruction,

and the carry bit, are 'rotated' as the diagram shows. C becomes what was

bit 0, bit 7 becomes the previous C, and Z is set or cleared depending on

the byte's current contents. For applications, see ROL.

INSTRUCTION ADDRESSING BYTES CYCLES
$40 (64 %0100 0000 RTI implied 6

N V -BDIZC
X X X X X X X

Programming the PET /CBM -344- 12: 6502 opcodes

RTI
Return from interrupt. SP: = SP + 1, PSR = S, SP: = SP+1, PCL: = S, SP: = SP + 1, PCH:=S

Flags:

Operation: RTI takes 3 bytes from the stack, deposited there when the hardware

triggered the interrupt, assuming that the stack has been tidied up before

RTI with equal numbers of pulls following the pushes. The processor status

flags are recovered as they were when the interrupt occurred, and the

program counter is restored so that the program resumes operation at the

byte at which it was interrupted. Note that A,X, and Y are not saved or

recovered automatically in this way, but must be saved by the interrupt

processing and restored immediately before RTI. If you follow the vector

stored in CBM ROM at ($FFFE), you will see this operation taking place.

Uses: [1] Obviously, to resume after an interrupt. Unless you are using your own
hardware to generate interrupts, or programming the VIA to generate inter-

rupts, this instruction is unlikely to be useful to you.

[2] However, it is possible, as with RTS, to exploit the automatic nature of

this command to execute a jump by pushing 3 bytes on the stack, imitating

an interrupt, then using RTI to pop the addresses and processor status.

LDA Hi
pha This routine, by simulating the stack contents

LDA LO left by an interrupt, jumps to 256*HI + LO (in

PHA decimal!) with its processor flags equal to what-

LDA PSR ever was pushed on the stack as 'PSR'.

PHA
RTI

RTS
Return from subroutine.

Flags:

SP: = SP + 1, PCL: = S, SP: = SP + 1, PCH: = S, PC: = PC + 1

INSTRUCTION ADDRESSING BYTES CYCLES
$20 (32 %0010 0000) JSR implied o 6

N V - B D I Z C

Operation: RTS takes 2 bytes from the stack, increments the result, and jumps to the

address found by putting it into the program counter. It is similar to RTI,

but does not change the processor flags, since an important feature of

subroutines is that, on return, flags should be usable. Also, unlike RTI in

which the address saved is the address to return to, RTS must increment

the address it fetches from the stack, which points to the second byte after

a 'JSR'. (Presumably, the chip uses the routine for BRK and for JSR in

common).

Uses: [1] To return after a subroutine. This is entirely straightforward :-

033A JSR 0350; CALL SUBROUTINE
033D RTS ; RETURN TO BASIC SYS 826 calls the routine at

033A which is a short program,
calling a subroutine before
returning to BASIC . The

subroutine starts at 0350 and continues until RTS is found; this example simply

pokes A into the top-left corner of the screen before returning.

Notes: [1] See PLA for the technique for discarding subroutines' return addresses.

Also see JMP for the essential identity of JSR .../ RTS and JMP... .

Finally, as with RTI, a jump can be generated by pushing bytes onto the stack

and executing RTS, even though no subroutine call was actually made.

0350 STA $8000;
0353 RTS ;

PUT A IN SCREEN
RETURN

-345-
Programming the PET/CBM

SBC
Subtract memory with borrow from accumulator. A:-A-M-(1 C)

12: 6502 opcodes

INSTRUCTION
$E1

$E5
$E9
$ED
$F1

$F5
$F9
$FD

(225
(229
(233
(237
(241

(245
(249

(253

illlO

%1110
%ino
%mo
%iin
%nii
%im
%nn

0001)

0101)

1001)

1101)

0001)

0101)

1001)

1101)

ADDRESSING
SBC (zero page, X)
SBC zero page
SBC # immediate

SBC absolute
SBC (zero page),Y
SBC zero page,X
SBC absolute, Y
SBC absolute, X

oo

oo

oo

ooo

BYTES CYCLES
6

3

2

4

5*

4
4*

4*

*Add 1 if page boundary crossed

Flags: N V - B D 1 Z C
x x X X

Operation: It is usual to set the carry bit before this operation or precede it by an
P

operation which is known to leave the carry bit set. Then SBC appears to

subtract the data referenced by the addressing mode from the accumulator.

If the carry flag is still set, this indicates that the result did not borrow ,

i e that the accumulator's contents were greater than or equal to the data.

When C is clear, the data exceeded the accumulator's contents and C snows

that a 'borrow 1 is needed. Within the chip, A is added to the 2's complement

of the data and to the complement of C.*This affects the N,V,Z, and C flags.

Uses- Til Single byte subtraction. This has quite a number of applications:

"Sic ; CARRY FLAG IN KNOWN STATE The first is a conversion

lda CHR; ASCII NUMERAL ('0'=#30 &C) routine which simply subtracts

SBC #2F- convert TO byte 00 TO 09 a fixed amount from an Abcn

jsr out : print or calculate with value numeral to convert it into a

byte value 0-9, perhaps for the purposes of calculation. Numerals have

ASCII value #30- #39 (48-57 decimal) which subtraction converts to #0- #9.

Note:

LDA HORIZ
SEC

LOOP SBC #0A

BCS LOOP
EOR #FF

ADC #01

The next example is more elab-

orate and is a detail from PRINT.

When processing the comma in

a print statement, the cursor

is moved to position 0,10,20,

etc. Suppose the cursor is

LOAD CURRENT CORSOR POSN

CARRY FLAG SET DURING LOOP

SUBTRACT 10S UNTIL CARRY..

. .IS CLEAR (I.E. A IS NEG)

FLIP BITS AND ADD 1 TO

hi*. »ui , CONVERT TO POSITIVE. ..

now at 17 horizontally; we subtract 10s until the carry flag is clear, when A

will hold -3. The 2's complement is 3, and 3 spaces or cursor rights take us

to the correct position on the screen. Note that ADC #01 adds 1 only; the

carry flag is known to be zero by that stage.

[2] Double byte subtraction . The point about subtracting one 16-bit number

from another is that the borrow is performed automatically by SBC. First

C is set to 1; then the low byte is subtracted; then the high byte is sub-

tracted, with borrow if the low bytes were such as to make this necessary.

SEC In this example #026A is subtracted from the

LDA LO contents of addresses (or data) LO and HI. The

SBC #6A result is replaced in LO and HI. Note that SEC is

STA L0 performed once only. In this way, borrowing is

LDA hi performed properly. For example: suppose the

SBC #02 address from which #26A is to be subtracted holds

STA HI #1234. When #6A is subtracted from #34, the carry

flag is cleared, so that #2 and 1 is subtracted from the high byte #12.

Subtraction is sometimes used twice, in a way which clears the^ carry bit

for values in A within a certain range. In this way, JSR .
.
./BCC ..may be

used. See Chapter 14 on CHRGET for an example. Other examples include

a check for alphabetic characters (A-Z) only.

Strictly speaking, l's complement and C are added to A. For example: SEC/

LDA #A0/ SBC #55 takes #A0 and adds AA and 1=#4B with C=l. Whereas SEC/

LDA #A0/ SBC #BC takes #A0 and adds 43 and 1=#E4 with C-0

.

Programming the PET ICBM 346- 72: 6502 opcodes

SEC

INSTRUCTION ADDRESSING BYTES CYCLES
$38 (56 10011 1000) SEC implied o 2

Set the carry flag to 1 . C:=1

Flags:

Operation: Sets the carry flag; this is the opposite of CLC, which clears it.

Uses: Used whenever the carry flag has to be put into a known state; usually
SEC is performed before subtraction (SBC) and CLC before addition (ADC)
since the numeric values the used are the same as in ordinary arithmetic.
See ADC and SBC for examples.

N V -- B D Z C
1

SED
Set the decimal mode flag to 1 . D:=1

Flags:

INSTRUCTION ADDRESSING BYTES CYCLES
$F8 (248 %1111 1000) SED implied o 2

N V -- B D Z C
1

Operation: Sets the decimal flag; this is the opposite of CLD, which clears it.

Uses: Sets the mode to BCD arithmetic ('binary coded decimal') in which each
nybble holds a decimal numeral. For example, ten is held as #10 and ninety
as #90. Two thousand four hundred and fifteen is #2415 in 2 bytes. ADC
and SBC are designed to operate in this mode as well as in binary, but
the flags no longer have the same meaning, except C.

Where indefinite precision is required with calculations buffers can be
allocated for storage and addition of large numbers. No precision will be
lost within the range specified. (It's possible to do a similar processing job
on numerals stored in single bytes; these of course occupy twice as much
space, and take longer to work with). This mode is unused in BASICs 1-4.

SEI

INSTRUCTION ADDRESSING BYTES CYCLES
$78 (120 10111 1000) SEI implied O 2

N V -- B D 1 Z C
1

Set the interrupt disable flag to 1 . I:=1

Flags:

Operation: Sets the interrupt disable flag; this is the opposite of CLI, which clears it.

Uses: When this flag has been set, no interrupts are processed by the chip, except
non-maskable interrupts (which have higher priority) and reset. With CBM
equipment, ordinary maskable hardware interrupts occur every l/50th or l/60th
of a second; setting I will cause the processing associated with this, i.e.

clock (TI and TI$), keyboard and cassettes, to cease until CLI. Maskable
interrupts are processed by ($FFFE), like BRK. If the vector in the very top
locations of the BASIC ROM is followed, the interrupt servicing routines can

be found. These are not (entirely) hardwired in

ROM: the vectors use an address in RAM before
jumping back to ROM. So the example here is a

typical initialisation routine to redirect the vector
into the user's own program, where it may set a

musical tone, process a repeat key, turn off STOP,
or whatever. See Chapter 13 for more detail.

033A SEI
033B LDA #45
033D STA 90
033F LDA #03
0341 STA 91
0343 CLI

0344 RTS

-347-
Programming the PET/CBM

STA
Store the contents of the accumulator into memory.

12: 6502 opcodes

M: = A

INSTRUCTION
$81

$85
$8D
$91

$95
$99
$9D

(129 %1000 0001)

(133 %1000 0101)

(141 %1000 1101)

(145 %1001

(149 %1001

(153 %1001

(157 11001

0001)

0101)

1001)

1101)

ADDRESSING
STA (zero page,X)
STA zero page
STA absolute

STA (zero page),Y
STA zero page,X
STA absolute, Y
STA absolute, X

BYTES
oo

00

ooo

oo

oo

ooo

ooo

CYCLES

Flags: N V - B D I Z C

Operation: The contents of A are sent to the address referenced by the opcode.

All registers and flags are unchanged.

Uses- [1] Transfer of blocks of data from one part of memory to another needs a

temporary intermediate store; this can be A, X, or Y. This is alternately

loaded and stored. See LDA. Another example in addition to the one given

LDY #00
LOOP JSR LOADCHR;

STA (PTR),Y;

INC PTR ;

BNE TEST
INC PTR+1

TEST JSR TESTPTR;

BNE LOOP ;

LOAD A WITH CHR

STORE A INTO MEM
INCREMENT POINTER

TEST FOR LIMIT
CONTINUE IF NOT END

there is this outline of a

routine, where LDA is carried

out by some routine and
there is a further routine to

check whether all characters

have yet been moved.

[2] Binary operations using the accumulator, notably ADC and SBC, are

performed within the accumulator; a common bug in machine code programs

is the omission to save the result:

LDA $96; ST BYTE

AND #$FD;BIT 1 OFF

STA $96 ; REMEMBER THIS!

[3] Another very common use is storing isolated values during initialisation,

to set the contents of certain locations to known values:

LDA #89
SETS ($94)STA 94 ;

LDA #C3
STA 95 ;

LDA #17

TO $C389.

&C.

STX
Store the contents of the X register into memory. M:-X

INSTRUCTION
$86 (134 %1000 0110)

$8E (142 %1000 1110)

$96 (150 %1001 0110)

ADDRESSING
STX zero page
STX absolute
STX zero page,Y

BYTES CYCLES

Flags: N V - B D I Z C

Operation: The contents of X are sent to the address referenced by the opcode.

All registers and flags are unchanged.

Uses: The uses are identical to those of STA; there is a tendency for X to be

used as an index, so STX is less used than STA.

Programming the PET/CBM -348- 12: 6502 opcodes

STY
Store the contents of the Y register into memory. M:

INSTRUCTION ADDRESSING BYTES CYCLES
$84 (132 %1000 0100)

$8C (U0 11000 1100)

$94 (148 %1001 0100)

STY zero page
STY absolute
STY zero page,X

oo

ooo

oo

3

4

4

Flags: N V - B D I Z C

Operation: The contents of Y are sent to the address referenced by the opcode.
All registers and flags are unchanged.

Uses: STY resembles STX; the comments under STX apply.

TAX
Transfer the contents of the accumulator into the X register. X: = A

Flags:

INSTRUCTION ADDRESSING BYTES CYCLES
$AA (170 %1010 1010) TAX implied O 2

N V -- B D Z C
X X

The N and Z flags are set as though

EOR #FF
ORA 94

EOR #FF
TAX
LDA TABLE X

PLA
TAX
PLA
TAY

Operation: The byte in A is transferred to X.
LDX had taken place.

Uses: This transfer is mostly used to set X for use as an index or a parameter,
or to temporarily hold A. These examples illustrate the type of thing. The

first is from a 'high resolution' screen plotting
routine; the object is to plot a black dot in a
location with a coded value of 1,2,4 or 8 in $94.
X on entry holds the position of the current
graphics character in a table. On exit X holds the
position of the new character. Intermediate calcul-
ations use the accumulator because there is no
'EOR with X' instruction. The second example is

a straightforward reconstruction of X and Y values
stored on the stack. This has to be done when
returning from interrupt processing.

Note:: Registers A,X, Y and the stack pointer are interchangeable with one
instruction in some cases, but not others. The connections are these:

Y ^ A ^X^S.

TAY
Transfer the contents of the accumulator into the Y register. Y: = A

Flags:

Operation : The byte in A is transferred to Y . The N and Z flags are set as though
LDY had taken place.

Uses: See TAX; TAY is similar to this other instruction.

INSTRUCTION ADDRESSING BYTES CYCLES
$A8 (168 %1010 1000) TAY implied o 2

N V - B D 1 Z C
X X

-349-
Programming the PET /CBM

TSX
Transfer the stack pointer into the X register

12: 6502 opcodes

X:=SP

INSTRUCTION
$BA (186 %1 011 1010)

ADDRESSING
TSX implied

BYTES CYCLES

Flags: N V - B D I Z C

Operation: The stack pointer is transferred to X. Note that the stack pointer is
Operation. ^ ^^ ^ ^ mQQ> ^ .^ when tne st k ls accesSed

the nigh byte of RAM is always set to #1. The pointer itself is a single

byte.

Uses- [1] To inspect the stack; in the case of CBM BASIC, for GOSUB and FOR
'

tokens when processing NEXT and RETURN. The stack P^^sfrVoes
to estimate the amount of space left on the stack; again, CBM BASIC does

this, typically printing ?OUT OF MEMORY ERROR if the stack is not

sufficient for some manoeuvre. Since the pointer does not point at the last

item pushed on the stack, but the byte below it, LDA $0101, X can be used

to peek the last pushed item.

[2] This is sometimes used to store the stack pointer when a different (i.e.

lower) part of the stack is temporarily moved to for processing.

TXA
Transfer the contents of the X register into the accumulator. A:-X

INSTRUCTION
$8A (138 11000 1010)

ADDRESSING
TXA implied

BYTES CYCLES

Flags: N V - B D 1 Z C

Operation: The byte in X is transferred to A. The N flag and Z flag are set as

though LDA had taken place.

Uses: See TAX.

Programming the PET/CBM -350- 12: 6502 opcodes

TXS
Transfer the X register into the stack pointer. SP: = X

INSTRUCTION
$9A (154 %1001 1010)

ADDRESSING
TXS implied

BYTES CYCLES

Flags: N V - B D I Z C

Operation: X is stored in the stack pointer. Now, PHA or PHP will place a byte

into the stack at $0100 + the new stack pointer, and PLA or PLP will pull

from the next byte up from this. Also RTI and RTS will return to addresses

determined by the stack contents at the new position of the stack.

Uses: [1] TXS initialises the stack on switchon, when the RESET line is activated,

and also in some BASIC commands like RUN and CLR. The stack extends
from $0100 - $01FF in principle; this is the area of RAM which is reached
as the stack pointer varies from #0 to #FF. Not all of this is used by PET/
CBM machines. Since the stack pointer is decremented when data is pushed
on to the stack - i.e. if memory is pictured starting at location zero on the

left and increasing rightward, the stack 'grows' to the left as data is push-
ed - the initial value is usually something like #FF on setting the machine's

starting values:
LDX #FF
TXS

[2] The other use is to switch to a new stack location. As a simple example,
CLC the routine presented here is an equivalent to

TSX PLA/ PLA which we've seen under RTS to be a

TXA 'pop' command, deleting a subroutine's return
ADC #02 address. Incrementing the stack pointer by 2 has
TAX the identical effect. For a more complex example,
TXS see 'POP' in the BASIC reference section, which

is similar in conception but more complex in execution because of the

greater elaboration of BASIC compared to machine-code.

TYA
Transfer the contents of the Y register into the accumulator. A: = Y

INSTRUCTION ADDRESSING BYTES CYCLES
$98 (152 11001 1000) TYA implied o 2

N V -- B D I Z C
X X

Flags:

Operation : The byte in Y is transferred to A . The N flag and Z flag are set as
though LDA had taken place.

Uses: See TAX. The transfers TAX, TAY , TXA, and TYA all perform similar

functions.

..u ocT/roM -351- 13: Using ROM routines
Programming the PET /CBM "' a

CHAPTER 13: ROM ROUTINES AND THEIR USES

13.1 The RESET sequence.

As we saw in Chapter 11, the RESET line* in any 6502 is used to cause a jump to a

standard address (FFFC). Most 6502-based equipment has a ROM routine which is jump-

ed to on RESET; this includes CBM printer and disk systems. Disassembly of such

routines can give useful information about a system. The input/ output chips JAM
locations and contents on reset, for example, show which registers are configured for

input and which for output, which interrupts are enabled, and so on. BASICS 1 to 4

have similar reset routines, at FD38, FCD1, and FD16 in order. Chapter 15 lists the

operations they perform. The routines are in two parts, like this:operations^ y^p ^ ^ ^ ^^ ^ ^^ ^ FD3g> pcD1> or FD16 is run.

(ii) Most of the hardware-oriented aspects of the PET /CBM are initialised: the

I/O chips are configured to match the system, the screen is cleared (to erase

its 'random' garbage), the screen table set up in 40-column machines, the

decimal flag cleared, and NMI, IRQ and other addresses set up.

(iii) Now the 'diagnostic sense pin- is checked; see Chapter 8 on 'Reset switches

for information about this.
. „ „oi->

(iv) Depending on the diagnostic sense pin, BASIC is initialised (this is usual)

or MLM is entered, or, in BASIC 1, a diagnostic routine maybe run.

(v) BASIC initialisation (at E0D2/ E116/ D3B6) sets the stack, USB
1

address,

CHRGET and the random number seed, BASIC start and end addresses
,
and

other specific BASIC items. Finally, a loop tests RAM by writing #55 and #AA

into RAM from $0400, until either $8000 is reached or the read-back value no

longer equals the poked value, indicating end of RAM. This leaves the end-

of-Lmory pointer set; by subtraction, the number of bytes free u'computed

and printed. So a 32K system prints 31743 bytes, since 1024 + 31743 -#7FFF.

(If a RAM chip is carefully removed, you may get (say) 15359 bytes tree,

where 1024 + 15359 = #3FFF). ™. + ^ s

Any of these routines can be entered, bypassing the earlier initialisation. Chapter 5

has
Y
examples in SYS to clear the entire memory from $00 not just $0400. Normally

the RAM below BASIC in untouched by RESET, which is why machine-code in the cass

ette buffers can sometimes survive a power-off and immediate power-on.

13.2 The interrupt routine.

The CBM interrupt-processing sequence has two branches, like RESET. One is for BRK

commands, the other for interrupts generated by the screen and used to control the

keyboard, tape, and cursor. These branches are distinguished by the presence or

absence of the B flag in the status register; both BRK and IRQ share the same vector,

(FFFE). Disassembly reveals that A,X, and Y are saved on the stack (an interrupt

saves the program counter and status register, but not the other registers), and an

indirect jump is made to (90) for IRQ and (92) for BRK. Either of these addresses may

be poked to point at user-written routines; Chapter 8 has several examples, involving

repeat keys, keyboard redefinition, and so on; Chapter 9 also includes examples. The

ROM in BASIC 1 uses ($0219) and ($021B) for IRQ and BRK.

Example: displaying a part of memory continually on the screen The fairly short mach-

ine-code routine presented here works like this:

SYS 634 awaits input. 0100 000A displays 10 characters from $0100 onwards;

0200 0028 displays 40 characters from the input buffer.

It uses MLM routines to input a pair of hex addresses, the first of which ^ stored in

(FD), the second in (FB). Some operations will overwrite these addresses; this can be

avoided by using (say) $00 - $02, at the cost of a slightly longer program. The IRQ

is diverted to run part of this routine, beginning A0 00 . . . ,
which continually, i.e.

everv 50th or 60th of a second rewrites its data at the top of the screen. In this way,

numbers can be watched being formatted; the input buffer can be patched; and so on.

A maximum of 256 bytes can be displayed - again, there is no reason why more can t

be used. Note that SYS 634 then 8001 OOFF continually shifts the top of the screen.

SYS 671 turns the routine off.
. . .

Reference to 6502 data-sheets shows this process is as follows: the line is to be

held low on switchon; it must be held low until the voltage Vcc reaches its operating

level and a little longer; when RESET now goes high, the chip resets itself in six

cycles sets the interrupt disable flag, and loads the program counter from (FFFC)

.

Programming the PET/CBM -352-

DISPLAY BYTES USING IRQ: BASIC 2 VERSION

027A 20 A7 E7 20 97 E7 20 EB
0282 E7 20 A7 E7 78 A9 02 85

028A 91 A9 90 85 90 60 Ap/OO
0292 Bl FD 99 00 80 C8,^C4 FB
029A DO F6 4C 2E E6 78 A9 E6

02A2 85 91 A9 2E 85 90 60 xx

13: Using ROM routines

BASIC 4 VERSION

027A 20 54 D7 20 44 D7 20 98

0282 D7 20 54 D7 78 A9 02 85

028A 91 A9 90 85 90 60 AO 00

0292 Bl FD 99 00 80 C8 C4 FB

029A DO F6 4C 55 E4 78 A9 E4

02A2 85 91 A9 55 85 90 60 xx

Example: pause loop By combining
a redirected interrupt with a ROM
routine to GET a character from the
keyboard, we can write a pause
loop. This example is activated by
'@', a key for which there is usually
little use. The interrupt routine at

this point enters a loop, in which it

will remain until '@' is pressed again.
Additional code can be written to

alter the address in ($90) to $027A, and to change it back to its normal value; or it

can be activated by changing IRQ in the monitor to 027A or whatever other address
this code is put into (it it relocatable). LIST, for example, is stopped by the routine,
and can be continued at will. BASIC 4 has routines of this sort built in.

13.3 Other ROM routines.

027A JSR FFE4
027D CMP #40
027F BNE 0288
0281 JSR FFE4
0284 CMP #40
0286 BNE 0281
0288 JHP E455

GET CHR. FROM KEYBOARD IN A
IS IT @?
NO - CONTINUE INTERRUPT
GET ANOTHER CHARACTER IN A

;KEEP LOOPING UNTIL @
;0R E62E WITH BASIC 2

Disassembly of ROM routines CBM ROMs are easily disassembled, and (except for
BASIC 1) have no peek protection. Chapter 15 has a guide to all CBM BASIC ROMS so
far issued. Nevertheless it is not very easy to use such routines, since they are all

(with few exceptions) very complex. The next page has an example of a disassembly
(of 'OPEN') written out in English; this sort of translation is essential if a ROM rout-
ine is to be used and reused. Less detailed examples include the flowchart for PRINT
(in Chapter 5) and for the machine-language monitor (in Chapter 10). Unannotated
disassembler listings are difficult to follow. Many important routines are collected in a
jump table near the end of memory called the 'Kernel'.* It is possible to deduce their
functions by looking through ROM for calls (i.e. JMP or JSR) to them; for example
FFE4 is GET. The kernel routines and their jump addresses for all ROMs are listed at

the end of Chapter 15; the entry points for BASIC keywords are noted in Chapter 5;

and the machine-code monitor and its subroutines are listed in BASIC 4 sequence,
starting at about D400 in the BASIC 4 column of Chapter 15.

There are far too many routines to cover exhaustively. Let's consider
GET and PRINT.
GET in BASIC is closely similar to GET#, which, however, calls a routine to set the
input file number. In effect, the device number is usually zero for GET, and may be
1 or 2 (tape), 3 (screen), or 4 or more with GET#. In any of these cases, JSR FFE4
fetches a single character into the Accumulator. If it is the null byte, no character is

assumed to have been found. GET also, of course, has an assignment routine, so that
GET X$ not only fetches a character, but causes X$ to be set up with length 1 to hold
the character. On disassembling FFE4, we find that ST is set zero and the device num-
ber is checked. This is a standard feature of CBM I/O: in OPEN on the next page,
we have LDA device number; BEQ or BNE tests for the keyboard (device #0). After
this, A is compared with #3; if equal, the device is the screen (device #3); if the
carry flag is clear, one of the cassettes (#1 or #2) is assumed; and if the carry flag is

set, the device number exceeds 3, and may be (for example) #4 (printer) or #8 (disk).
So, by controlling the device number, we can control the device which FFE4 gets its

character from. The pause loop, above, assumes the input device is the keyboard,
which is the usual default value. By disassembling, we can see that $AF holds the
device number ($0263 in BASIC 1); we can also find (for example) that the cursor's
position on the screen, and whether or not it flashes, are controllable when the screen
is used as an input device. Similarly, assuming a file is open to a device, we can get
characters in machine-code much faster than is possible with BASIC , at'least with disk

(since tape will be slow in any case). There is a password routine on the next page;
SYS 634 waits until a password has been entered , using FFE4 so it isn't echoed to the

screen. If it is wrongly entered, RESET is called. More sophisticated versions allow

several attempts to be made, and prompt the user with 'Enter password 1

, but the

^Commodore literature, at the time of writing, seems to have adopted 'Kernal' as its

official spelling.

Programming the PET/CBM -353- 13: Using ROM routines

EXAMPLE OF ROM DISASSEMBLY: 'OPEN 1

JSR inputs and stores logical file, device, and secondary address parameters.

LDA logical file number
BEQ print ?SYNTAX ERROR rejects logical file number 0.

LDY #offset for FILE OPEN message in table $F000 ff.

JSR checks table of up to 10 logical-file numbers for match with accumulator.

BEQ print ?FILE OPEN ERROR if the file number exists already.

LDX number of open files.

LDY #0

STY status byte ST. Sets ST to 0.

CPX #$0A
BEQ print ?TOO MANY FILES ERROR if X is 10 at present.

INC number of open files.

LDA logical file number.
.

STA File table, X. X still holds the previous value, i.e. 0-9.

LDA secondary address „i„„„
ORA #$60 sets bits 5 & 6. Secondary addresses>95 repeat earlier values.

STA secondary address: stores the result.

STA Secondary address table, X. Also stores the result in the second table.

LDA device number . . ,

STA Device number table, X. Finally, stores the device in the third table.

BEQ RTS. If device number is 0, i.e. keyboard , file is now open.

CMP #3 „., .

BEQ RTS. If device number is 3, i.e. screen , file is now open.

BCC +3. Branch is taken if device is 1 or 2, i.e. cassette.

JMP sends name string to IEEE for device numbers > 3, usually disk.

String is usually of form "d: filename, type, mode" and the receiving device

processes it. If the device is present and answers, its file will be opened.

Tape :

LDA secondary address
AND #0F removes bits 5 & 6 again, leaving secondary address-0, 1, or l.

BNE Wl. Write tape if the branch is taken, that is if secondary address-1 or 2.

JSR |rTnTs PRESS PLAY and waits for cassette key (unless
.
a key's down now)

.

JSR prints SEARCHING and, if name has non- zero length, FOR FILhNAMb ...

LDA length of name
BEQ Tl. If a name's not given, loads the first header.

JSR find a named header matches the first characters of the names

BNE T2 If the accumulator holds 0, the header wasn't found; in this case,

print ?FILE NOT FOUND ERROR, abort files, and if in program mode

print IN LINENUMBER with the current linenumber.

Tl JSR find first tape header (i.e. or next on tape)

BEQ prints ?FILE NOT FOUND ERROR, as before, if no file can be found.

BNE +8 unconditionally branches to T2 when the file is_ found.

Wl JSR prints PRESS PLAY & RECORD and OK on cassette key depression.

LDA #4. Indicates the type of file (data).

JSR writes tape header Write .

T2 20 byte routine which sets the pointer to the cassette buffer to tor

write, 191 for read. If writing to tape, puts #2 into the zeroth. byte

of the buffer as a marker.

Old ROM BASIC 1 differs in some ways from this schema, which closely follows

both BASIC 2 and BASIC 4. There is a rather misleading appearance that tape

handling predominates in OPEN, because the IEEE processing is done elsewhere

.

OPEN is one of the commands from the 'kernel'; its address is $FFC0, from

which the following addresses are jumped to:

ROM entry points:

BASIC 1: $F52A (62762)

BASIC 2: $F521 (62753)

BASIC 4: $F560 (62816)

Programming the PET /CBM

general idea should be clear enough
from the example:

The loop construction in

027E - 0282 is a standard wait-for-

entry, exactly analogous to BASIC'S

-354- 13: Using ROM routines

100 GET X$: IF X$= GOTO 100

027A LDA #00 ; ERASE KEYBOARD BUFFER

027C STA 9E ;0263 IN BASIC 1

027E JSR FFE4
0281 BEQ 027E ;LOOP IF NO ENTRY

0283 CMP #41

0285 BNE 0291 ; RESET IF NOT CORRECT

0287 JSR FFE4
028A BEQ 0287
028C CMP #42
028E BNE 0291 ; RESET IF NOT CORRECT
0290 RTS
0291 JMP (FFFC)

and usable because JSR FFE4 acts

like LDA, setting the zero flag when
a zero byte is loaded into A. The
'password' is 'AB'; in practice, a

longer routine can input longer
passwords; the resulting program
will be more compact if it keeps the password in a table, and relies on indexing rather

than the straight-line style of "programming here.

PRINT can be directed to any output device in a way analogous to GET. The kernel
corresponding to FFE4 is FFD2; on disassembling, this has a very similar device num-
ber check, but its location is $B0, not $AF, as this is the output device; its default

value is 3, since the usual output device is the screen. ($0264 is BASIC l's location).

Operation is the opposite of GET: a value is loaded into A, the routine called, and the
ASCII equivalent printed. Chapter 15 has a lot of information about this. PRINT calls

this routine in a loop when a string is being printed to the screen; each character is

simply loaded, with the LDA (Zero-page), Y command, and individually output. This
method may be easier than relying on CA27/ CA1C/ BB1D in ROM

Demonstrations which use various ROM routines A short selection of programs which
use BASIC routines and demonstrate their operations follows. Most ROM routines refer
to standard zero-page and other locations; skilful use of ROM therefore usually in-

volves a certain amount of disassembly to investigate the most important parameters of
a routine, plus some searching for routines which will do as much work as possible
given minimum preliminary work. See for example POP and VARPTR in Chapter 5, each
of which largely relies on ROM routines, the first on RETURN, the second on LET. In
both cases the actual working of the ROM routines doesn't need to be understood fully.

(i) 'Receive line from keyboard' . This is an important routine, used, among
other things, to take in lines of BASIC and combine them into a program. To watch
it in operation, key in the 'Display bytes using IRQ' program (2 pages back) and set

it to display 80 bytes from $0200, which is the start of the input buffer. (BASIC l's

buffer starts at $0A). The buffer is 81 bytes long; when a line is input, a zero byte
is put at the end, so 81 bytes are needed to store a line of 80 bytes maximum. In

the machine-language routine to show how
this works (right) I have separated out the
two functions of inputting a line and token-
ising it; a leading space causes tokenisation

,

no leading space inputs the line without
changing it. Both processes can be watched
as they take place. (Note: use lower-case
mode, i.e. poke 59468,14, to ensure alpha-
betic characters are readable). SYS 826 prints a flashing cursor, and awaits input;
when Return is pressed, the line is input, as you will be able to see. When the line
includes a leading space, you will also see the tokenisation process occurring.

(ii) 'Get linenumber from BASIC line' . To save space, we'll consider BASICs 2

and 4 only here. On exit from 'Receive line from keyboard', X and Y hold #FF and
#01. They are set to point to $01FF. We
can use these values with BASIC'S GETCHR
routine as shown, with the 'Get linenumber'
routine. The effect of this is to store the
number in ($11); if no number is found, or
the number is zero, ($11) holds #0. To
prove it's worked, the final subroutine
prints the value of ($11), using another
ROM routine which prints 256*A + X.
Now SYS 826 awaits a line, and on Return

prints the value of its leading integer.

033A JSR C468/ C46F/ B4E2; BASICS 1,2,4
033D LDA 0200
0340 CMP #20
0342 BEQ 0345
0344 RTS
0345 JMP C48D/ C495/ B4FB; BASICS 1,2,4

033A JSR C46F/ B4E2 ;GET BASIC LINE
033D STX 77
033F STY 78
0341 JSR 0070 ; GETCHR AFTER $01FF
0344 JSR C873/ B8F6 ;GET NUMERALS
0347 LDA 12

0349 LDX 11

034B JSR DCD9/ CF83 ; PRINT NUMBER
034E RTS

Programming the PET /CBM -355-

(iii) Search BASIC for linenumber.

GOTO, GOSUB, and other BASIC operations

use the subroutine C522/ C52C/ B5A3 to

find a specified linenumber. Confining our-

selves to BASIC 2 and 4 (BASIC 1 uses

different storage locations), this machine-

code (right) hunts BASIC for the line-

number in (033A); if found, the carry flag

is set on leaving the ROM routine, so this

program uses a location to register whether

or not a line actually exists in BASIC; this

is 033E, which is zero when the line exists,

but #FF otherwise. (033C) holds the pointer

to the position of the line's start. Because

both ($11) and ($5C) are liable to be over-

written, they are saved in these special

locations, but machine-code programs usually

will make use of the values without needing

to do this. The short BASIC program which

follows, entered at the end of any BASIC,

lists all the linenumbers and their positions:

033A
033B
033C
033D
033E
033F LDA
0342 STA
0344 LDA
0347 STA
0349 LDA
034B STA
034E JSR
0351 BCC
0353 LDA
0355 STA
0358 LDA
035A STA
035D RTS
035E DEC
0361 RTS

13: Using ROM routines

LINENUMBER LO BYTE

LINENUMBER HI BYTE

POINTER TO LINE LO BYTE

POINTER TO LINE HI BYTE

LINE FOUND/ NOT FOUND FLAG

033A
11
033B
12

#00
033E
C52C/
035E
5C
033C
5D

033D

033E ;FLAG = #FF IF NOT FOUND

B5A3 ; BASIC 2 OR 4

;N0T FOUND IF C=0

62500 FOR L=0 TO 65535: POKE 826,L-INT(L/256)*256

62510 SYS 831: IF PEEK(830)=0 THEN PRINT "LINE" L

+ 256*PEEK(829): NEXT

POKE 827.L/256
"STARTS AT" PEEK(828)

(iv) RUN. This routine (at C775/
= LINENUMBER
; BASIC 2 OR 4

;N0 SUCH LINE

;SET ($11)

JSR C52C/ B5A3

BCC EXIT
LDA 5C

ADC #FE

STA 77

LDA 5D
ADC #FF
STA 78

JMP C78A/ B80D ; RUN FROM LINENUMBEF

C785/ B808) has four lines of machine-code

only; one jumps to RUN, two jump to RUN n

where n represents a linenumber, and one

is a branch to separate the two, depending

on whether RUN is an isolated keyword or is

followed by a number. The machine-code

program (right) shows how the option which

runs from a linenumber can be mimicked with

the linenumber search program. Note that

RUN assumes CHRGET points to the zero

byte preceding a line: for this reason it is
0/q^:T,„

necessary to Subtract #1 from the pointer ($5C), which the program does by adding

#FFFE plus the carry flag to (5C) and storing the result in (77).

(v) Memory move. A routine at C2E1/ 033A ;B0TT0M OF AREA TO BE MOVED

C2DF/ B357 is one of several in BASIC ROM 033B ;

which move blocks of memory; this one is used 033C CLC

to open space in BASIC, so ROM calls which 033D LDA 033A

make use of it move memory from a lower to a

higher point. The demonstration routine fills

the screen (40 columns - $8000-$83E7) with

bytes from memory, starting from the location

stored in (033A). ($5C) holds this value;

($57) has to hold the top of the area to be

moved + 1, so this is calculated by adding

#03E8. Finally ($55) holds the top of the area

to be moved to + 1; this is $83E8 in the

example. This can of course be modified to

move other blocks of RAM than those of

length #03E8 bytes, and into other locations

than the screen top, for example by poking

^"M'emorytove- routines aren't as simple as they might appear at first sight: the

DroblerSccurs if a region to be moved overlaps with the region it is to be moved to.

SuDooTe the firs four bytes of ABCDEF are to be moved to the region now occupied

by
P
CDEF If thf memory-move operates by taking bytes from the taftajl

J«J
™S *>

the right, the result will be ABAB, not ABCD. The order, here, should be right

0340 STA 5C

0342 ADC #E8

0344 STA 57

0346 LDA 033B

0349 STA 5D

034B ADC #03

034D STA 58

034F LDA #E8

0351 STA 55

0353 LDA #83

0355 STA 56

0357 JMP C2DF/ B357 ; BASIC 2 OR 4

Programming the PET /CBM -356- 13: Using ROM routines

left. The short BASIC routine is a bug-free example of what is needed. If you are
not aware of this potential problem, baffling errors may result.

993 REM #***********#***********##*#************************#**************
* MEMORY MOVE IN BASIC. *

SA=START ADDRESS OF BLOCK TO BE MOVED *
EA= END ADDRESS OF BLOCK TO BE MOVED *
TA= START ADDRESS OF BLOCK TO BE MOVED TO *

99fi REM ***#******#****#**#****************#*******************************
999 REM
1000 IF TA>SA AND EA>=TA THEN 1020
1010 C=0s FOR I = SA TO EAs POKE TA+C.PEEK (I>s C=C+ls NEXTs RETURN
1020 C=EA-SAs FOR I = EA TO SA STEP -Is POKE TA+CPEEK (I); C=C-ls NEXTsRETURN

994 REM
995 REM
996 REM
997 REM

* PARAMETERS;

(vi) String comparison. CF1E/ CF10/ COCE is the start of the string comparison sub-
routine; its parameters are listed in Chapter 15. Like many ROM routines - and this
feature serves as a bridge to the next section of this chapter - the relevant part of
the routine is embedded in other processes, not separated out as its own subroutine.
For this reason, the routine must be relocated into RAM and modified there. If the
central part of 'String comparison', i.e. after the parameter-setting code and up to
the exit from the comparison loop, is relocated, it may be followed by RTS and used in
isolation. In this way, it is possible to confirm that X is set to #FF/ #0/ #1 according
as the first string is </=/> the second. SORT (Chapter 5) relies on the relocated
comparison routine for its operation.

13.4 Examples of modified ROM routines.

13.4.1 PRINT USING. The number formatting buffer, in which numerals are placed
for printing after conversion from the floating-point accumulator or elsewhere, extends
roughly from $00FF to $010F. 'Display bytes using IRQ' can show how this buffer is

used in practice, and the table below gives specimen results from a variety of number
outputs, including string conversions, calculations, and simple print statements. The
notes on PRINT USING in Chapter 5 explain how the normal number printing routine,
which is made up of three consecutive subroutines, can be copied, but with the add-
ition of an extra routine to alter the buffer from the way it appears in the diagram to
a new, formatted and justified arrangement.

1EXAMPLES OF NUMBER FORMATTIN<

WHEN
PRINTING:

BUFFER
OFF 100 101 102

CONTENTS:
103 104 105 106 107 108 109 10A 10B 10C 10D 10E 10F

45

24.1234
999 999 999.1

sp
sp
sp
sp

4

2

9

@
5

4

9

Unchanged
@

1 2

9 9 9

3

9

4

9

@
9 9 @

Unchanged . .

.

Unchanged . .

.

Unchanged
9 999 999 999

2T12.1
LOG (.5)

ASC("T")

sp
sp

sp

1

4

8

b
3

6

4

+ 1

8 9

9 3 1

@

9

4

8

7

4

1

1

8

1

@

Unchanged . .

.

@ Unchanged ...

Unchanged . .

.

Unchanged
Tl*
Tl$*

STR$(44)
STR$(1/3)

sp
1

sp 4

sp .

2

4

3

1

3

i
3

6 6 8

4 4 @

3 3 3

9 1 @

Unchanged

3 3 3 3

Unchanged ...

Unchanged . .

.

@ Unchanged . .

.

STR$(-pi)
.009

-1E-23
12345678.9

3

sp

SP

9

1

1

1

E
E
2

4 1 5

3

2 3

3 4 5

9

@

@
6

2

7

6

8

5 y

9

Unchanged . .

.

Unchanged . .

.

Unchanged . .

.

@ Unchanged . .

.

123456789
SIN(pi)
11 111 111 111

.8

sp
sp
sp
sp

1

7

1

2

8

3 4 5

3 1 4

1 1 1

@

6

5

1

7

9

1

8

1

9

4

1

@

E
1

Unchanged . .

.

1 @

E + 1 @
Unchanged ...

*These values are specimens only
'@' represents the null character

Programming the PET/CBM -357- 13: Using ROM routines

PRINT USING is too long to explain fully here; the buffer-editing routine formats the

data in either floating-point or integer form, by inserting or dropping the decimal

point; it also checks for the presence of E and the null byte, among others and has

exits which it takes if a number appears to be of the incorrect form It makes no

attempt to format a number containing 'E\ for instance. On leaving the routine, ($61)

is made to point to $0100, the start of the buffer, from which point the string-print

routine takes characters, printing them until the null byte is encountered.

13 4 2 LIST. Chapter 5 has a BASIC lister which generates program listings in which

the cursor control characters appear as [DOWN],IRVS], etc. Apart from the problems

of lower-case listings with CBM printers, this is probably the most wished-for feature

of LIST. It is fairly easy to implement, once LIST has been moved from ROM to RAM,

because LIST is a compact routine and a patch is quite easy to put in. A BAbie t

version (see below), called by SYS 7*4096 or SYS 28672, lists in exactly the same way

as the ordinary LIST, except for the special characters; these are held, with their

equivalent output, in two tables after the machine-code. This sort of routine must

have a control over the length of a printed line, since any line with many special

characters in it will be printed out to a length which may cause some characters to be

lost The annotated BASIC 4 version shows how a BASIC loader can improve a pro-

gram's versatility; it relocates its code into any BASIC 4 machine, and allows easy

changing of the target characters to be specially listed. It too has a linelength control;

a short specimen shows the sort of effect which can be achieved.

B*
PC IRQ SR AC XR YR SP
0401 E62E 32 04 5E 00 F8

7000 A9 01 85 5C A9 04 85 5D
7008 A9 FF 85 11 85 12 A0 01

7010 84 09 B1 5C F0 43 20 E1
7018 FF 20 B0 70 C8 B1 5C AA
7020 C8 B1 5C C5 12 DO 04 E4
7028 11 F0 02 B0 2C 84 46 20
7030 D9 DC A9 20 A4 46 29 7F
7038 20 BA 70 C9 22 DO 06 A5
7040 09 49 FF 85 09 C8 F0 11

7048 B1 5C DO 10 A8 B1 5C AA
7050 C8 B1 5C 86 5C 85 5D DO
7058 B5 4C 89 C3 10 28 C9 FF
7060 F0 D6 24 09 30 20 38 E9
7068 7F AA 84 46 A0 FF CA F0
7070 08 C8 B9 92 CO 10 FA 30
7078 F5 C8 B9 92 CO 30 B5 20
7080 BA 70 DO F5 53

(M) DD (E0
00 8E 85

7088 70 A2 70) F0 09
7090 CA 10 F8 AE 85 70

BDfFO 70)7098 70 8A 0A 0A 0A AA
70AO 70 F0 06 20 BA 70 E8 DO
70A8 F5 AE 85 70 4C 3B 70 00
70B0 20 E2 C9 A9 06 8D 84 70
70B8 60 EA 48 20 45 CA EE 84
70C0 70 AD 84 70 C9 ds F0 02

70C8 68 60 20 B0 70 20 CA FTN.

70D0 20 CA FD 20 CA FD 68 60 \
70D8 00 00 00 00 00 00 00 00
70E0O1 12 13 1D 91 92 93 9eT)

70F.8 00 00 00 00 00 00 00 00
' 70F0 5B 44 4F 57 4E 5D 00 00

")

70F8 5B 52 45 56 53 5D 00 00
7100 5B 48 4F 4D 45 5D 00 00
7108 5B 52 49 47 48 54 5D 00
7110 5B 55 50 5D 00 00 00 00
7118 5B 52 56 53 4F 5D 00 00

7120 5B 43 4C 45 41 52 5D 00

7128 5B 4C
x 7130 00 00

45 46 54 5D 00 00
00 00 00 00 00 oo-J

7138 00 00 00 00 00 00 00 00

MACHINE-CODE LIST FOR BASIC 2.

SYS 7*4096 runs this routine, which lists

the entire BASIC program in memory,

starting at $0401. It processes characters

within quotes. There are (here) eight

characters which are specially dealt with;

they are stored in a table starting at $70E0.

The corresponding output is held in another

table, starting at $70F0. So character $11

(17 decimal), the first item in the first

table, appears as [DOWN], which is the

first item in the second table.

A zero byte has been used to terminate

printing, so an output item can have a

maximum length of 7 only.

OPEN 4,4:CMD4:SYS7*4096

then PRINT#4:CLOSE4 lists to a printer.

This routine is suitable for a 32K machine;

see chapters 13 and 14 for information on

relocating machine code.

^Corftok Lfr^t^ <& line. ~^ cUrAC-fefiS.

Programming the PET/CBM -358- 13: Using ROM routines

ELOCATING LOADER FOR SPECIAL 'LIST' - BASIC 4.0

lO DATA 169, O, l :;!3, 48. 133. 50. 1 33. 52. 169. 0. 133. 49. 133. 51. 133. 53. 96

li DATA 169, 1,133,92,169, 4, 133, 93:REM 1) LOWER MEMORY. 2) SET LINENUMBERS

12 DATA 142. -350. 1 62. 8. 221. -259. 240. 9, 202. 16.248. 1/4. -350; /6. -440. 138,10

13 DATA 10, 10. 170. 189, -243. 240. 6. 32. -297. 232. 208. 245. 174. -350. 76, -437

14 DATA 0,32.273. 186. 169.6, 141 , -351,96, O, 72, 32, 70, 187, 238, -351 , 173, -351 , 2U1

15 DATA 90, 240, 2, 104, 96, 32, -307 , 169, 6, 141, 56, 125, 169, 32, 32, 210

16 DATA 255,206,56,125,208,246,104,96
1000 REM
1001 i-'i-'M

**

1002 REM ** USER-DEFINABLE LIST FOR BASIC 4.0 **

1003 i'VEM **

1004 REM
1050 T = PIEK<52) + 256*PEEK<53> t REM CURRENT TOP OF MEMORY

1060 L = T - 513 s REM ASSIGN 513 BYTES
1100 REM
1101 REM **

1102 REM * BASIC 4.0 MEMORY-MOVE OF 'LIST' ROUTINE INTO RAM. *

1103 REM * *B657 - *B6DD (46679-46813) *

1104 REM *************************** * "• *************************************

1105 REM
1110 X =

1120 FOR J = L + 25 TO L + 159
1130 POKE J, PEEK (X+46679)
1140 X = X+l i NEXT
1160 FOR J = L TO L + 24: READ X s POKE J,X: NEXT : REM STARTUP ROUTINES

1170 FOR J = L + 164 TO L + 251 * REM PROCESSING ROUTIN

1180 READ XX: IF XX<0 THEN Y=XX+Ts XX=Y/256: Z=Y-XX*256: POKE J,Z: J=J+1

1190 POKE J , XX
1200 NEXT
1250 REM
1251 RFM ******** **

1252 REM * CHANGE BRANCH AND JSR COMMANDS IN 'LIST' TO RUN OWN ROUTINES *

1253 REM **

1254 REM
1260 REM * SEARCH BYTE TABLE ROUTINE
1261 REM
1265 POKE L+110, 53* REM CHANGE BRANCH DESTINATION (VALUES 00-7F)

1266 POKE L+114. 49: REM CHANGE BRANCH DESTINATION (VALUE FF =PI

)

1267 Pi IKE L+118, 45: REM CHANGE BRANCH DESTINATION (VALUES 80-FE)

1269 REM
1270 REM * CRLF ROUTINE
1271 REM
1275 X = T-307 : REM CRLF POSITION RELATIVE TO TOP OF MEMORY
1276 XX = X/256 : Z = X - XX*256
1277 POKE L+43, Z s POKE L+44, XX
1279 REM
1280 REM * PRINT BYTE ROUTINE
1281 REM
1285 X = T-297 : REM PRINT CHARACTER ROUTINE RELATIVE TO MEMORY TOP

1286 XX = X/256 : Z = X - XX*256
1287 POKE L+74, Z : POKE L+75, XX
1288 POKE L+156, Zs POKE L+157. XX
1300 REM
1301 REM ********** **

1302 REM * PUT NEW, LOWER TOP OF MEMORY INTO MEMORY POINTER ROUTINE *

1303 REM **
1304 REM
1305 XX = L/256 : Z = L - XX*256
1310 POKE L + 1 , 2 s POKE L + 9, XX

1400 REM
1401 REM ***

1402 REM * USER'S TABLES OF BYTES AND OUTPUT (EG 157 PRINTED CLEFTJ > *

1403 REM * CAN BE CHANGED SUBJECT TO MAXIMUM OF 16 ITEMS OF LENGTH 7 *

1404 REM ***

Programming the PET /CBM -359- 13: Using ROM routines

1408 DATA TABLES, 10, 17, 18, 19, 29, 145, 146, 147, 157, 160, 255* REM 10 =ITEMS IN TABL

1410 DATA [D0WN3, [RVS3, [H0ME3, [RIGHT], CUP3, CRVSO]
I,
JXLR3,JLEFT3 , [USPi;3 , CPI 3

1420 FOR J = 1 TO 1E9 : READ X* s IF X* <> "TABLES THEN NEXT

1430 READ X* « REM NUMBER OF ITEMS IN THE TABLE

M40 POKE L\ 168 , XX - 1 * REM SETS LOOP IN H/CTDE FROM TO XX-1

JJS RF^X^'pOKflx^'NEXT
5

- REBUILD TABLE OF BYTES IN MEMORY

tlSRSD^^ORT-™ VL™^X»
X

)

,I* fl

"K J*X. ASC(MID*CX*,X,1)) , "EXT

{J?? poS J ; X , 0. NEXT . REM POKE NULL TERMINATING BYTE AFTER EACH

1 Sf>0 REM
1501 REM **

1502 REM * PRINT INSTRUCTIONS AND ADDRESSES *

1503 REM *««***««*«#*»«»*»»«*»«*«*»*«»**»*****<HHI********************

1504 REM
1510 PRINT "CCLR3CRVS3CDOWN3CDOWN3 R0M4 LIST BY RAY WEST

1520 PRINT "[D0WNKRVS3LIST SYS, CLEFT] " f L+17

1530 PRINT "[DOWN 3 POKE"! L+227 i "TO CHANGE LINELENGTH"

1540 PRINT "[DOWN] [DOWN 3SAVE FROM" i L i " TO" i L+512

1550 PRINT " (*" !i X=Ls GOSUB 5000

1560 PRINT " TO *" ii L=X+512t GOSUB 5000 s PRINT")"

1570 PRINT"CD0WN3SECURE IN MEMORY WITH SYS" I X *PRINT "WHICH LOWERS TOP-OF-ME

MORY
1580 PRINT" [D0WN3 [D0WN3" J * LIST 1410

4900 END
4999 REM DECIMAL TO HEX CONVERSION wfyt.pftiir
5000 L=L/4096sF0RJ«lT04*LX«LtPRINTC»-IR»(48+LX-<LX>9)»7)ML-16#<L-LX/sNEXTsKETUF

N
10 DATA 169,0,133,48

,133,50,133,52,169
,0, 133,49,133,51,1
33,53,96

11 DATA 169,1,133,92

SAMPLE SHOWING EFFECT OF CHANGING LINELENGTH (=24) 4 i^LQWE^MEMORY^
> SET LINENUMBERS

12 DATA 142,-350,162
,8,221,-259,240,9,
202,16,248,174,-35
0,76, -440,138,10

13.4.3 TRACE. The TRACE routine in Chapter 5 is another application of LIST, in

this case written to display single lines at the screen-top. It operates by intercepting

the GETCHR routine; this is a standard technique, explained in full detail in the next

Chapter. Its controlling keys are determined by the keyboard decoding table, and

apply to BASICS 1 and 2 and the 40-column BASIC 4. There is insufficient space to

include two more versions, so BASICs 1 and 2 only appear in TRACE in Chapter 5.

The flowchart of the routine (see next page) shows how CHRGET has intermediate

instructions; this version of trace' does not distinguish between statements, but by

linenumbers, so that a line is listed for as long as it is being executed. The trace is

turned on by pressing RVS, and off again by pressing the same key, so keyboard

control of the routine is good. A,X, and Y are saved and restored, so CHRGET's

running isn't disturbed. The status flags are set at a later stage, and need not be

stored. Note that a single-step is available; when the trace is on, '-' causes a BASIC

line to be executed, and no further lines are executed until either '=' is pressed again

,

or the routine is reset by the speed change command, '[' followed by a number from

0-9. Lines are executed every 5 seconds with 0, down to every .5 second when 9 is

chosen. This, however, is overridden by the space key, which removes the action of

the delay loop, and traces through the program very rapidly. LIST is not very easy

to incorporate in programs like this, because it uses many zero-page locations which

are normally allocated for other purposes. This is probably the reason why LIST is not

allowed in program mode without terminating the program run. My version of trace

Programming the PET/CBM -360- 13: Using ROM routines

sidesteps this problem by saving the zero-page, and restoring it when LIST has done
its work. This approach also enables the horizontal and vertical screen positions to be
retained even after the cursor is homed and the top of the screen cleared for LIST

.

There is insufficient space for full documentation or explanation here. However, the
memory map of the routine is arranged like this:

(i) Initialisation routine to alter CHRGET and lower memory pointers.
(ii) Switch-off routine to restore CHRGET.
(iii) Space for 9 bytes. These are: A,X, and Y storage; Trace flag (#0 off, #FF

on); Step flag (#0 off, #7F on); current linenumber, stored as low byte then high
byte; delay parameter; countdown for delay loop, starting from delay parameter value.

(iv) Routine as in the flowchart, excluding ...

(v) LIST routine, slightly modified (e.g. not to print crlf at the start).
(vi) 256 spare bytes for the stored zero-pages.

Store new line-
number; LIST new
line on screentop

Load A,X,& Y

Gback to CHRGET>

Programming the PET/CBM -361- 14: Effective 6502 programming

CHAPTER 14: EFFECTIVE 6502 PROGRAMMING

14.1 Assemblers.

We have seen the improvements in machine-code readability brought about by the use

of opcodes, and by the use of hexadecimal notation, over *e fundamental 8-bit binary

storage of this system. An assembler carries this improvement much further by
|

al ow

ine a fully algebraic notation to represent machine-code. Before going into detari, let s

consider what is involved. A diagram on the next page illustrates features found in

most assembler listings, without representing any one actual assembler's output. Note

that the object code
\
is identical to that produced by a simple disassembler This is not

surprising, since the same fundamental data underlies both approaches and enforces

some uniformity. The main novelty is the so-called source code. Around the core
s

of

familiar opcodes is a collection of names and symbols, some of which (e.g. LDA ADRTAB.xj

are punctuated to resemble addressing modes. This code is usually held as a source

file which is in effect a sequential file of everything labelled 'source code on the

diagram. The job of the assembler is to convert the file into object code an example

of which appears on the same diagram. Object code is not usually relocatable without

some effort; it is designed to be run where it is, from $2000 m the example The

great versatility of assemblers is illustrated by the command m lmenumber 12 of the

code, in which the starting-point of the assembly is assigned as $2000 A simple

change to *=$3000 , followed by assembly, generates code identical in its effect, but

positioned to start at $3000. In the same way, new instructions can be inserted by

editing the source file and reassembling; this is far less laborious than attempting the

same process manually. Note, though, that a source file may be much longer than the

machine-code it generates: compare the number of bytes in a typical assembler line with

the total length of the line. A ratio of between 20:1 and 50:1 is common. This means

that long programs of IK or more are already difficult to fit in RAM and have to be

separated into sections. Conversely, disassemblers which generate labels, producing

a version of source code without comments but with assembler format, are likely to be

unable to cope with long programs, for instance the BASIC ROM. Some widely-available

software for the CBM was in fact developed on other machines.

CBM's assembler (issued some years back originally; try to get the latest version

including the source files LOADERSRC, ED16SRC and ED32SRC, and U-LD16SRC and

U-LD32SRC, which have useful documentation) is widely used and has these features:

it is disk based,* designed for use with CBM disk units and printer, and without

EPROMs or other hardware, so there are potential conflicts between assembled code and

the set of programs constituting the assembler package. Everything is in RAM, as

this diagram shows

:

ASSEMBLER I
EDITOR

Normal BASIC storage (for 32K) Screen BASIC ROM

. ___—

,

$FFFF
$0000 — LOADERS

There are three essentially different programs in the package: an editor, an assembler,

and several loaders. The editor is pictured at the high end of RAM. It actually loads

into the low end and relocates on being run, so it can coexist with the assembler, if

it (the editor) is loaded and run first. The function of the editor is to enable the user

to set up a source file; the line numbered format is similar to BASIC, lines being typed

in and modified from the keyboard, and saved to disk and perhaps printed out. To

facilitate this process, line renumbering, block deletion, automatic numbering and soon

are provided. Files can be loaded from disk, edited, and stored back on disk, to corr-

ect errors which have shown up. PUT and GET are the commands to save and load,

respectively. (There may be an undocumented CPUT which stores the file without

surplus spaces). All this is very standard in editors.

The assembler reads a source file into RAM (or uses a source file already there,

starting at $2000) and proceeds to convert it into object code, which may be stored

directly into RAM or saved on disk as an object file. The data saved is formatted in

a manner similar to a program file, with the length of the routine followed by its

starting address, and then all the data bytes written as hexadecimal numbers.

The loaders read the object file just described, and poke its contents into RAM.

If the machine-code program is being loaded high in RAM, the low-memory loader is the

*I'm uncertain whether it's impossible, or merely difficult, to use cassette tape.

Programming the PET /CBM -362- 74: Effective 6502 programming

LINE-

NUMBER
AD-

DRESS OBJECT CODE
[LABEL/ OPCODE or DIRECTIVE/ OPERAND/ COMMENT]

SOURCE CODE

2

4

6

8

10

12

14
16

18
20

22

24

26

28

30
32
34
36

38

40
42
44

46

48

50
52

53

54

56

2000
2000
2000
2000
2003
2005
2007
200A
200C
200D
200F
2011
2014
2015
2016
2017
201A
201B
201E
201F
2020
2021
2024
202A

20 E4 FF
FO FB
A2 02
DD 21 20

FO 05
CA
10 F8
30 EF
8D 20 20
8A
OA
AA
BD 25 20
48

BD 24 20
48
60

41 42 43
29 20 6F
AO 00

ROUTINE TO AWAIT A KEY, THEN EXECUTE CORRES-
PONDING CODE, USING TABLED VALUES

GETCHR=$FFE4
=$2000
.PAGE

START JSR GETCHR
BEQ START
LDX #2

LOOP CMP CHRLIS,

X

BEQ FOUND
DEX
BPL LOOP
BMI START

FOUND STA STORCH
TXA
ASL A
TAX
LDA ADRTAB+1,X
PHA
LDA ADRTAB.X
PHA
RTS

STORGH *=*+l
CHRLIS .BYTE 'ABC
ADRTAB .WORD A-l, B-l,
A LDY #0

TYPICAL 'EQUATES* DIRECTIVE
TYPICAL STARTING-POINT DIRECTIVE
TYPICAL TOP-OF-FORM DIRECTIVE

STANDARD KERNEL 'GET' INTO ACC'R
WAIT UNTIL KEY PRESSED
TABLE HAS THREE VALUES ONLY
COMPARE VALUES IN TURN,
UNTIL FOUND OR NOT FOUND

LOOP FROM X=2 TO X=0 INCLUSIVE
KEY NOT IN TABLE; GOTO START
STORE THE ASCII CHARACTER
STANDARD JUMP ROUTINE FOLLOWS,
IN WHICH THE STACK HOLDS BOTH
BYTES OF THE DESTINATION, AND
RTS CAUSES THE JUMP.

HIGH BYTE ON STACK . .

.

; AND LOW BYTE.
;JUMP TO ADDRESS NOW ON STACK
;USES ASSEMBLER LOCATION POINTER
;SETS UP TABLE OF ASCII BYTES
C-1;SETS UP TABLE OF ADDRESSES - 1

; START OF PROCESSING FOR ROUTINE A

Features of a typical assembler listing.

one to use, while code destined for low RAM needs the high-memory loader. We may
summarise the process of writing machine-code with an assembler in three stages:

(i) The editor creates a source-file, usually stored on disk.
(ii) The assembler creates an object-file from the source file, again on disk.
(hi) A loader puts the program in memory; from here it can be saved as an

ordinary machine-code routine by SAVE or .M .

It is not necessary to store the intermediate stages; it is merely advisable. Accidental
loss of a long program, usually when incompletely debugged machine-code executes, is
common

.

By way of contrast, assemblers may be available in hardware. An EPROM called
'Mikro' illustrates this. It modifies BASIC to include its own instructions, which include
a command to assemble; and it uses BASIC'S line input facility as an editing system.

Most assemblers use the 'two pass' system, in which forward addresses are calc-
ulated on a second pass. To understand why this is necessary, imagine that you are
assembling the example above, and have arrived at line 24. Its address has not yet
been reached, so its value (i.e. the value of CHRLIS) is temporarily left unfilled. If
there is no such operand the assembler prints an error message (or should do) , which
probably will be one of many. First-time assemblies without any errors are rare. Unlike
BASIC, which can run fairly successfully with syntax errors dotted about, assembler
is intolerant of errors in its source file. Often, removing errors becomes a sub-goal in
itself, the triumph of finally achieving no 'errors' leading the programmer to fail to
notice that the resulting program doesn't quite do what it should.

Assemblers vary in the way they scan source code. Some assume fairly strict

column formatting, and may require source code to be arranged tidily; others don't
check, beyond expecting one or more spaces as separators. For this reason, line 18

Programming the PET /CBM -3S3- U: Effective 6502 programming

is rejected by some assemblers, because START seems to contain the opcode STA.

Assembler features. Assemblers for the 6502 and other chips typically have features

meThose Usted below, most of which make an appearance in the specimen listing:

(i) Labels. These mark entry-points to which branches, jumps or subroutine

calls are made. Often there is a maximum length of six characters.

Z°^^^»<^"*™ a similar effect to opcodes, carrying out

a single^S^sSS function. Often they are preceded by a V, which is picked up

L The asstmbler's
P
parsing; sometimes they resemble opcodes, having three-letter

mnemonics. The most important directives are probably these:

*Tr ORG. This sets the starting point or origin form which the object code is

to be assembled. * has a further use, as a location pointer, illustrated in line 52 ot

the specimen where it reserves 1 byte as a storage location. Similarly, *-*+50 reserv

ef 50
P
SSs anT.BYTE -LABEL calculates the difference between the current location

and an earlier label, storing it in one byte.

= or EQU The 'equates' directive is self-explanatory. Most directives of this

type are collected at the start of source code, where they can be both easily seen and

checked and ea
T
sgT

alt^' TXT> These provide variations on a theme; in some assem-

blers the functions are combined in .BYTE, in others .BYTE and .TEXT differ.

BYTE enters singlebytes into RAM, as these examples show:

!BYTE 31,$EA,%0100 0001 puts three bytes IF EA 41 into RAM,

.BYTE COUNT + 1 puts the value of COUNT + 1 into RAM; e.g. it

COUNT = 4, the hexadecimal number 05 is stored in RAM.

BYTE 'HELLO' and .TEXT 'HELLO' are alternative forms of the function which

stores 'five bytes (48 45 4C 4C 4F) in RAM, and generally sets up ASCII tables.

WORD takes a 16-bit number, storing it in RAM with the low byte first and

hie-h bvte second The 'word-length' of a computer is usually the minimum length it isSS to handle, e?g. 4 bytes in IBM machines, 2 bytes in DEC. In 8-bit machines,

-word' and 'byte' are sometimes used synonymously, but assembler convention assigns

2-byte words to the 6502. Line 54 in the specimen listing has an example. Note that

A - $202A so A-l = $2029, and this is stored, with bytes reversed, at the start ot

the 6-byte' table labelled 'ADRTAB', some of which is omitted by the listing.

DBYTE assigns two consecutive bytes to memory in the normal order. Since this

can be accomplished in any case with .BYTE, this directive may be absent.

.END marks the end of the source code.
.

(iv) Symbols. The names (GETCHR, CHRLIS, LOOP, or whatever), including

labels, are called 'symbols'. An assembler usually constructs a 'symbol table on its

first pass, filling in forward references from it on the second pass.

(v) Operands. The 'operand' following an opcode is a symbol or absolute value

punctuated in the standard way, i.e. possibly including $, %, « to signify hex, octal

and binary numbers, # to signify immediate mode, for ASCII values, and () ,
X Y

.

fvi) Comments. Often signalled by a semicolon, which causes the assemblers

parser to ignore the remainder of the line, these, like BASIC REMs, help make a

program readable.

The CBM assembler. This has .PAGE and .SKIP which turn to a new page and

skin a line (for easier reading) respectively. .OPT allows control over the printing ot

SrmaSn after Sembly. .<?PT NOLIST, NOERRORS, NOMEMORY NOSYMBOLS

NOGENERATE causes only assembler error messages to appear on the screen, with no

other output either to screen or printer. CBM's assembler, like some'Others, allows an

operand syntax including < and >, to load low and high bytes of 16-bit addresses. If

WORD M has set up the two bytes corresponding to the value of the symbol M, then

LDA #>M /LDY #<M loads A and Y with the high and low bytes.

Assembly can be stopped with the Stop key; the program then awaits entry of

M or B after which the monitor or BASIC is entered. Conditional assembly, where

values set at assembly-time modify the assembler output, is valuable in producing

Ifightly different versions of similar routines, for example to fit different capacities of

RAM. Examples occur in the source code (q.v.). Other special features include LIB

and .FILE directives. .LIB permits library software to be used, which means that a

named file can be read and assembled into another source file during the course of its

assembly. .FILE transfers assembly to another file, so a string of segments of code

can be assembled one after the other. Finally, let's look at an assembler function which

Programming the PET/CBM -364- 74: Effective 6502 programming

cannot quite be carried out with this assembler. A macro is a directive which causes
an assembler to expand a pseudo-command into several machine-code commands, which
carry out the functions of the pseudo-command. An example might be MACRO INC
ADDR, which would increment the 16-bit ADDR, by inserting INC #<ADDR/ BNE *+4/
INC #>ADDR at the point in the source code where the macro instruction appeared.
The point is that parameters are allowed, so MACRO INC OTHER would be expanded in
a similar way, but with values appropriate to the address of OTHER. CBM's .LIB files

don't work in quite this way, as there is no scope for varying parameters easily. But
library software is not very different from macro generating software. Consider this
example, which reverses the low and high nybbles in the accumulator.
The code works for any value, and leaves the processor status flags PHP
unchanged, even where this doesn't matter, so it can be inserted in PHA
any position where the operation of exchanging nybbles is wanted. HOR A
The directive .FIL will do this, and provided that the filename is PLA
reasonably meaningful, the resulting source code should be improved ror A
in readability. PHA

(At first sight, four rotate instructions might be expected to ROR A
reverse the nybbles, but, since the carry flag is included in the PLA
rotation, this is not the case. An extra bit would end up between ror A
two halves of the original byte. The code (right) gets round this by PHA
setting the carry flag at each stage to equal the current rightmost ROR A
bit). PLA

ROR A
14.2 Conversion of machine-language programs between ROMs. pha

All PETs/ CBMs and VIC are sufficiently similar for machine-code R0R A

interconversion to be likely to succeed. Generally, the later versions PLA

of BASIC include earlier ones' features as subsets, so upward con- R0R A

version tends to be fairly easy, while downward conversion may not PLP

be possible. The steps are as follows: first, the program is disass-
embled. All jumps and subroutine calls to ROM are likely to be different in other ROMs,
with the exception of kernel routines. Some of these calls may be made in disguised
form by pushing bytes on the stack and executing RTS or RTI, and if they are, these
too must be changed, although as a rule this method is used to jump to tables within
the routine itself. Zero-page values, and those for the region $200 - $400, may have
different functions; this is particularly the case with BASIC 1 as against BASICs 2 & 4,
and again with VIC. Without an intelligent disassembler to create labels, it can be very
tedious indeed to convert 2-byte instructions into three bytes. Other difficulties in-
clude special values, for example of keyboard decode tables, which vary (sometimes)
between machines, so that lda E812 for example is interpreted differently. ROM rout-
ines may have slightly different effects in their various ROMs. Thus, the 'print string'
routine at CA27/ CA1C/ BB1D is different in BASIC 4. Chapter 15 has details of all
PET/CBM ROMs to date, and many standard entry points are listed. Intermediate entry
points can usually be found with some detective work on disassembled listings of the
relevant parts of each ROM.

Some interconversion problems are obviously insoluble: VIC colour programs can't
be imitated on PETs, CRT controller chips can't be programmed in 8-inch screen mach-
ines, disk commands aren't available on BASIC 2 (unless they're in RAM), an ESCAPE
key may not exist on the keyboard, BASIC 1 cannot be used with NMI. In cases of
this sort parts of a program will have to be modified if the original workings are to be
retained; otherwise, slightly different keyboard instructions and output formats from
the original will result. It is impossible to lay down firm rules, since programming
methods and styles vary, so that while many routines are trivially easy to convert,
a twist in the method used makes another far more difficult.

Machine-independent routines (as regards the PET/ CBM and perhaps VIC, but
almost certainly not other machines too) can be written, or at least approached, by
taking advantage of standard features. Thus, LOAD is likely to have a similar effect
on all these machines, so if non-kernel ROM routines are stored in RAM the resulting
code will be independent of ROM. Some of BASIC 2, for instance, may be transplanted
into other BASICs, where its performance will be known. The same applies to some
calculation and string routines. Apart from this, kernel routines for input, output,
testing Stop, and so on, can obviously be used until such time as Commodore decides
to change this aspect of ROM. It must be said that many important aspects of pro-
grams are difficult to move between machines; 22-, 40-, and 80-column screens

Programming the PET ICBM ~365- 74: Effective 6502 programming

nresent between them, a considerable challenge to the would-be programmer of machine

independent code. In cases like this, the easiest course may be simply to have several

proerams which run independently; an identifying ROM feature, tested at the start ot

execution, causes the appropriate program of the several co-resident programs to run.

Alternatively, an approach less wasteful of space is to collect the divergent parts of

the program into subroutines with ROM version tests.

14.3 Coexi stence of machine-code with BASIC: CHRGET, wedges, and utilities.

lit 3 1 The CHRGET routine. BASIC is almost always held in RAM; during execution,

further RAM pointers are necessary to keep track of the stage reached at every point

in the run CHRGET processes one of these pointers, which is the location in RAM ot

the current byte of BASIC. A line like 100 ?"HELLO" is scanned by CHRGET from

beginning to end, and in each case the accumulator contains a character - the token

for PRINT, ASCII for ", ASCII for H, and so on. (The link addresses and line numb-

ers are processed differently). This routine is therefore important to BASIC. As we

shall see, extra BASIC commands can be inserted into BASIC by altering CHRGET.

It is easy to confuse the operation of CHRGET with the interrupt, as both deal with

fast-moving events at the core of BASIC. The interrupt is a regular event, which

occurs absolutely independently of BASIC, while CHRGET is necessary to process all

BASIC bytes from start to finish. Thus, extensions to BASIC must use CHRGET, and

TRACE, if it is to record every line processed, must also use CHRGET. Any other

processing for which regular updates are wanted is an interrupt function; examples

include repeat keys, cursor flash rate controls, Stop key testing, and music played

while a normal program runs.
.

When the PET/CBM or VIC is turned on, part of the reset routine moves CHK-

GET from ROM to RAM. It is held at E0B5/ E0F9/ D399, and moved by a loop at E0E5/

E12F/ D3C7. For speed of operation, it is

invariably held in the zero-page, at $70 in

BASICS 2 and 4, at $C2 in BASIC 1, and at

$73 in VIC. The version here (right) is

that of BASIC 2 or 4. All the versions are

similar, but since this is a self-modifying

routine the address incremented at the very

start of CHRGET varies.

Many 6502-based microcomputers with

BASIC use an identical routine. It shows
Microsoft's skilful use of the flags as indic-

ators. By (for example) putting characters

0-255 into the screen RAM and pointing

($77) at their start, the effects of CHRGET
can be determined empirically, and they are

summarised in the following table:

JSR $0070

B

0070
0072
0074
0076
0079
007B
007D
007F
0081
0082
0084
0085
0087

INC 77 ; INCREMENT 2 BYTES

BNE 0076
INC 78

LDA 0401 ;LOAD FROM RAM

CMP #3A ; '

:

BCS 0087 ; BRANCH IF ACO=#3A
CMP #20
BEQ 0070
SEC
SBC #30

SEC
SBC #D0

RTS

;SKIP SPACES
;SET CARRY FLAG
;WHEN ACC IS OUT OF

; RANGE #30- #39,

; CLEAR IF #30-#39

CHRGET and CHRCOT

(labelled A) returns with the accumulator holding the next BASIC byte.

JSR $0076 (labelled B) returns with the accumulator holding the current BASIC byte.

Note that the accumulator never returns with a space character, however,

which is always skipped by the loop labelled C.

Subroutines A and B are sometimes called 'CHRGET' and 'CHRGOT'.

Carry flag, C
Cleared if the accumulator holds #30- #39, i.e. an ASCII numeral. (BCC succeeds).

Set if the accumulator holds any other value. (BCS succeeds in this case).

Zero flag, Z

Cleared if the accumulator holds any value other than null or colon. (BNE succeeds).

Set whenever the accumulator holds #0 or #3A. BEQ thus tests for end-of-statement.

Negative flag, N and internal overflow flag, V
These are not important, but, for the record:

N is cleared when A holds #00 - #B9, and set when A holds #BA - #FF.

V is always cleared, except in the one case when A holds #3A (the colon) and V was

previously set.

Summary: (a) CHRGET skips spaces, (b) detects numerals such as linenumbers by

JSR 0070/ BCC, (c) detects the end of a statement by JSR 0070/ BEQ, and (d) does not

detect tokens by setting the negative flag, as it might have been expected to do.

Programming the PET /CBM -366- 74: Effective 6502 programming

14. 3. 2 Wedges. Extensions to BASIC all use so-called 'wedges'; this generic name
applies to any RAM processing which is triggered via CHRGET. Toolkits, DOS support,

trace utilities, additional keywords prefixed by !,$,@, and others, all rely on this

method. Brad Templeton's EPROM 'Power' has an automated keyword-defining feature

.

The process is basically quite simple, but as usual there are plenty of hazards lying

in wait for the unwary programmer.
Let's first look at some modifications of CHRGET which are not wedges.

(i) Deletion of the test for spaces. We can eliminate the loop at C on the dia-

gram from BASIC. If we poke, in sequence, $7E with $EA (this is NOP, no operation),

$7D with $EA, $80 with $EA, and $7F with $EA, the entire space-skipping loop is

replaced by NOPs. The sequence must be followed; remember that POKE from BASIC
itself uses CHRGET, so the subroutine must make sense at each intermediate step.

CMP #EA always fails, since large values have already been taken out by the branch
after cmp #3A ; and, with beq 0070 preceded by BCS #3A, this branch too always fails.

So:
POKE126, 234:POKE125, 234:POKE128, 234:POKE127, 234

with BASICS 2 and 4 eliminates the space test. Now, any BASIC including a space will

give ?syntax error - including the POKEs listed above. This shows how BASIC which
has been CRUNCHed, or written without spaces, can be run faster than normal, by
altering CHRGET from machine-code to remove the redundant four bytes. (SEC can
also be dropped if SBC #30 is replaced by SBC #2F)

.

(ii) Use of the CHRGET in ROM. Even if RAM is changed, the ROM routine

remains immutable. We can exploit it in a variety of ways. A subroutine call to entry-

point A will increment ($77), returning an irrelevant value in the accumulator. A call

to CMP #3A will process the current accumulator contents in GETCHR's normal way,
clearing C if the accumulator holds a numeral, for example; this is a compact, though
non-ROM-independent, method for performing such tests. Entry-point D can be called

from RAM; 0081 JMP ROM-D leaves CHRGET unaffected, apart from taking longer, and
liberates three zero-page bytes - not RTS, which is still used by a branch.

Now let's look at some programming considerations relevant to wedges.
(i) Registers

.

X and Y are not altered by CHRGET; A, which is loaded with a

new value, is. A wedge routine may need to save X and/or Y, if these are used in its

processing. In the case of TRACE, and other extensions to BASIC which are intended
to leave the program running normally, A will also need to be saved, and perhaps PSR.

(ii) Return address. When JSR 0070 or JSR $0076 is executed from ROM, the

return address is saved on the stack. Therefore, a wedge with TSX/ LDA 0101, X /,,,/
LDA 0102.X can recover the return address - 1, and find where the call was made from.

This is sometimes used (e.g. in DOS support) to exclude some calls, for example those

in program mode as opposed to direct mode. If a wedge includes a JSR command, the
extra return address may need to be popped from the stack, depending on the way
the subsequent programming is carried out.

(iii) Current BASIC address. The address in ($77) can sometimes be used from
within a wedge: an obvious example is testing for direct mode, where the high byte
in $78 is #2, because the buffer extends from $0200 (except in BASIC 1).

(iv) Positioning a wedge within CHRGET. Only two basic types of wedge are
possible; those with a JMP or JSR at the start of CHRGET, and those with JMP(s) or
JSR(s) after 0076. These are fixed by ROM. Calls to 0070 and 0076 both occur from
ROM, so each must be respected. Moreover, location ($77), the pointer to BASIC, is

used in ROM, and therefore cannot easily be moved; this rules out 0076 JMP or JSR.
Any location after line 0076 can include a wedge. 0079 JMP is an obvious possibility;

0081 JMP can be used, but will only be entered if the accumulator holds a value less

than #3A, unless 007B is changed to 007B BCS 0081 and the routine exits through the
ROM equivalent of 0079. The two types are illustrated here:

CHRGET JMP WEDGE—
XX XX XX

CHRGOT LDA BASADR
CMP #3A
BCS EXIT
CMP #20
BEQ CHRGET
. ..ETC...

WEDGE INCREMENT ($77)
JSR 0076
CMP #CB
BEQ +3

JMP 0076
. . .PROCESS.

.

.<

JMP 0070 or 0076

Early wedge in CHRGET.

WEDGE CMP #CB
BEQ +3 —

CHRGET INC 77
BNE 0076
INC 78

CHRGOT LDA BASADR/
JMP WEDGE
XX XX XX
XX XX XX

XX XX XX

Later wedge, after CHRGOT.

JMP ROM-CMP #3A
. . . PROCESS . . . <r-!

JMP 0070 or 0076

Programming the PET/CBM -367- »: Effective 6502 programming

For the sake of an example, I have written each wedgeto ^t for the GC.token T£s

means that GO might be used to trigger a computed GOTO or GOSUB. Other PossiDie

svmbols include any not usually found in BASIC, !,$,8, have been used and other

noSSittes tacluSf shift-space, cursor-control characters, and space itself. A whole

table of^processes might follow such a symbol; thus @D 1,3 might plot a pant at 1,3,

wWPV mlans 'd3; 'C might clear the whole of memory; $D,1 might display a

dS directory and each of thfse commands might be only one of several alternatives.

The iSspe'cM character makes processing somewhat easier but isn't necessary,

an! keywords like DUMP or FIND can be checked for and acted upon when found,
and keywo °-

commands. JSR is often used, and, where applicable RTS

can be used for example in the wedge in the first example. However, if subsequent

Processing doesn't return to the saml place, a construction of the^^""J^
0070 will be necessary, where the return address is removed, leaving only the return

address from which CHRGET was called.

Examples. These three examples illustrate some of the points mentioned, and introduce

a few refinements which we haven't yet dealt with:

m Use of ' from BASIC to reverse the screen. This is straightforward; one of

the routines in Chapter 9 can be inserted to perform the reversal. First, enter the

routine (right) which processes the wedge.

Then enter the subsidiary machine-code t

modify CHRGET, and run it. If this is done

first, BASIC will crash, producing effects

similar to those which occur when the IRQ

vector is changed to some non-existent

subroutine

.

Note that the wedge processing has

a test for direct-mode; if this is in force

the 'command' is ignored. The object of

this is to prevent unwanted direct-mode

screen reversals. This, of course, hardly

matters, but it might be important in

other cases. Conversely, only direct-mode

might be required, as it is in the DOS support programs

0300
0302
0304
0307
0309
030B
030D
030E
030F

EXIT

CMP #21

BEQ 0307 ; BRANCH IF ! IN ACC'R

JMP E0BE/ E102/ D3A2;BASICS 1,2,4

LDA 78

CMP #02
BEQ EXIT ; BRANCH IF DIRECT MODE

TYA
PHA ;SAVE Y ON STACK

—REVERSE SCREEN USING A & Y—
PLA
TAY ; RECOVER Y

JMP 0070 ;NEXT BASIC INSTRUCTION

Now,

.M 0079 0079

. : 4C 00 03 xx xx xx xx xx

0070
0072

0074
0076
0079

INC 77

BNE 0076

INC 78

LDA BASADR
JMP 0300

converts CHRGET to its new form (right).

LDA #4C/ STA 79/ etc can of course also

be used. (BASIC 1 has different addresses).

The mechanism by which the wedge operates

should, I hope, be clear. Usually, CHRGET
won't find ! , and following the routine from

The start on this assumption shows that the operation of CHRGET is exactly as normal,

except for a small slowing caused by the extra code.

(ii) TRACE The version in Chapter 5 inserts a wedge at entry-point D, of the

form JMP WEDGE where the wedge is high in RAM. The code then follows the sequence

STA/ STX/ STY/ LIST LINE, WHERE NECESSARY/ LDA/ LDX/ LDY / JMP E0C6 or E10A or D3AA.

These latter alternatives apply to BASICs 1,2, and 4, and are the ROM entry-points

which correspond to D. In this way, CHRGET is left fundamentally unaltered, but

processing takes place using parameters (e.g. current linenumber) of BASIC. This is a

slightly risky routine for use with TRACE, because entry-point D can only be reached

if the BASIC byte is in the range #0 - #$39. The wedge is therefore ofM:en bypassed^

In practice, all BASIC lines include an end-of-line null character and/or ASCII numer

als in GOTO, and the added versatility given by a wedge which can leave others in

place to run normally is an advantage.

(iii) Computed GOTO and GOSUB. The favoured form of wedge is the replace-

ment of 070 INC 77 by JMP WEDGE , where the address WEDGE is typically in high

RAM or in EPROM. Unlike wedges lower down in CHRGET, this «fres P™"* *
whatever new coding is to be introduced. The logic.is^slightly dif *rent^rom the

previous examples, because the wedge replaces GETCHR rather than GOTCHR. In other

words, wedge processing here must include incrementing the contents of ($77).

Programming the PET/CBM -368- H: Effective 6502 programming

An elegant way to do this is to use the three bytes after JMP. A subroutine to incre-

ment ($77)'s contents can be put here, so JSR 0073 functions exactly like CHRGET. The
subroutine can be INC 77/ bne +3/ INC 78 or, what is perhaps slightly easier, the ROM
routine. The revised CHRGET routine and its wedge has this structure:

0070
0073
0076

JMP WEDGE
JSR E0B5/E0F9/D399
LDA BASADR etc.
. . .unchanged. .

.

WEDGE JSR 0073 ;LOAD A WITH NEXT BASIC CHR.

,

;SET STATUS FLAGS, AS GETCHR
. . .Perform processing; return either
with JMP 0076 or with RTS, if A and
status flags are correctly set. ...

The following example is a computed GOTO using the GO token; it is written for BASIC 2

but easily modified to BASIC 4. There is a shorter, but less easy to understand, version
by B Templeton [in BASIC 2: JSRCC8B/ JSR D6D2/ JSR C7B0/ JMP 0076] which reappears
in the GOSUB routine below, apart from the additional stack manipulations. It is poss-
ible to combine computed GOTOs and GOSUBs in the same wedge, using this.

0070
0073
0076

JMP 0300
JSR E0F9
. . .unchanged.

.M 0070 4C 00 03 20 F9 E0 xx xx

With this wedge in place, try this:

PRINT "1":

4 PRINT "3":

8 PRINT "2":

20 PRINT "4":

GO SQR (64)

GO X*X + 4

X=4: GO X
END

0300
0303
0305
0307
030A
030D
0310
0313
0315
0317
0319
031B
031D
031F
0321
0324

JSR 0073
CMP #CB
BNE 0321
JSR E0F9
JSR CC9F
JSR D6D2
JSR C52C
BCC 0324
LDA 5C
ADC #03
STA 77
LDA 5D
ADC #00
STA 78
JMP 0076
JMP C7EB

; GETCHR. NEXT BASIC BYTE IN A
;IS IT A 'GO' TOKEN?
;N0. EXIT TO RESET STATUS FLAGS
;YES: INC POINTER TO NEXT BYTE,
; INPUT AND EVALUATE EXPRESSION,
; CONVERT FPACC#1 INTO INTEGER,
; SEARCH FOR LINENUMBER IN ($11)

,

; CARRY CLEAR IF LINE NOT FOUND;

; ($5C) POINTS TO LINK ADDRESS,
;S0 ADD #4 [CARRY IS SET]
;AND PUT RESULT IN ($77).

; CONTINUE BASIC
;'UNDEF'D STATEMENT ERROR'

Lines like 100 : ! may be nec-

which prints 1 to 4 during execution.
Some odd anomalies tend to occur with
wedges unless there is specific pro-
tection within them against direct-mode
entry and entry from the input buffer.
If either of these is omitted, entering
programs when the wedge is enabled may give oddities.
essary. The DOS support ('Universal Wedge') is instructive in this respect. Another
type of anomaly is the behaviour of conditional statements; if x=i then @123 , a typ-
ical wedge, may always execute, irrespective of the value of X, unless rewritten in
the form IF X=l THEN: @123.

Since the wedge is processed before CHRGET
is able to pass its results to ROM, ordinary tokens
can be altered: #$89 ('GOTO') can itself be mod-
ified, for instance. Computed GOSUB (right) is

more complex than GOTO. On disassembling GOSUB
in ROM, one finds a lot of stack activity followed
by GOTO. RETURN unravels the stack information.
It is important with a wedge to save the return
address of GETCHR (which is called by GETCHR 's

final RTS), for use by the exit JMP 0076 from the
wedge. In the example it is stored in RAM.

Subroutines can be called by name, rather
than linenumber. If a date-processing subroutine,
say, starts at 10000 and DA=10000. then GOSUB
DATE is usable. Such names must contain no res-
erved BASIC words, of course, and their values
must be correct. They will not, for example, in

general survive renumbering correctly.
The use of location $300 in these examples

has no particular significance and is for convenience 0326
only. Note that all wedges inevitably have a slowing
effect on BASIC, so a routine to 'kill' the wedge
when it's not in use may be worth including in the
overall program. Also, of course, a routine to turn
it on is convenient; SYS 40960 or SYS 45056
has this function in many hardware add-ons.

0300 JSR 0073 GET NEXT CHARACTER
0303 CMP #8D GOSUB TOKEN?
0305 BNE 0337 IF NOT, EXIT.
0307 PLA RECOVER RETURN
0308 STA 033A ADDRESS AND
030B PLA STORE IT.

030C STA 033B
030F LDA #03
0311 JSR C31B CHECK STACK DEPTH
0314 LDA 78
0316 PHA
0317 LDA 77
0319 PHA
031A LDA 37
031C PHA
031D LDA 36
031F PHA
0320 LDA #8D
0322 PHA
0323 JSR E0F9 ; INCREMENT (77)
0326 JSR CC8B ; EVALUATE EXPRESSION
0329 JSR D6D2 ; CONVERT TO 2-BYTES
032C JSR C7B0 ; UPDATE (77) ADDRESS
032F LDA 033B ; REPLACE RETURN
0332 PHA » ADDRESS FOR RTS
0333 LDA 033A ; ON STACK
0336 PHA
0337 JMP 0076 ; CONTINUE
033A ; 2 BYTES STORAGE

Programming the PET ICBM -369- U: Effective 6502 programming

14 3 3 BASIC utilities. Chapter 5 has a number of examples of machine-code pro-

gram's which process BASIC. Two examples here exemplify suitable methods for dealing

with this type of problem.

(i) Search and replace. A fairly simple routine for any BASIC, which changes

single characters , follows. It can exchange all occurrences of PRINT to PRINT # or of

PEEK to USR, for example; or, within quotes, all shift-spaces may be converted into

spaces, or all cursor-downs into (say) reverse characters. The logic is shown m the

flowchart. Note (a) how the end-of-line

test is necessary to prevent link addresses

and linenumbers being wrongly changed,

(b) how the end-of-program is tested,

(c) the use of the quotes flag to show

whether or not some particular region of

BASIC is within quotes, and therefore

may require special treatment.

The routine uses addresses $0 - $2

in the zero-page, but no other RAM apart

from its own (relocatable) code.

c START

~r~
~)

Set pointer=$0404

Quotes flag off

$00=QUQTES FLAG (#0 OFF, #FF ON)

$01=POINTER (LOW BYTE)

$02=POINTER (HIGH BYTE)

0300

0308
0310
0318
0320
0328
0330
0338
0340
0348

A2 00
85 01

E6 02

DO 08

00 68
DO E2
Bl 01

18 86
01 8A
60 xx

86 00 A0
85 02 E6

Al 01 F0
48 A5 00

E4 00fD0
A9(98)81
C8 11 01

00 A9 05

65 02 85
XX XX XX

01 A9 04

01 DO 02

1A C9 22
49 FF 85

E6)C9(99)
01 DO DC
F0 11

65 01

02 DO CA
XX XX XX

88
85

Increment pointer

and load character

Null?
[CHR$(0)]

No

Quote?
[CHR$(34)]

Yes

Reverse the

quotes flag

Next two
bytes null?

I No"

Turn quotes
flag off; add

#4 to pointer

Yes

No

Is quotes
flag on?

i
"""

Byte match

k
with sought,

^character?/

Replace the
character

X

c END 3

(£99) ('PRINT') IS CHANGED TO

(H® ('PRINT#') IN THIS EXAMPLE.

(DO E6) : IGNORE CONTENTS OF QUOTES,

CFQ E6Y. CHANGE ONLY QUOTE CONTENTS,

fEA EA) : CHANGE BOTH, ON SYS 768

N .B . : The quote character itself

cannot be changed using this

routine as it stands.

(ii) Hashtotal

.

A BASIC or

machine-code hashtotal is often

helpful in checking whether load

errors may have occurred or

whether the correct version of a

program has been loaded . We need

a routine to combine each byte

from the start to the end in a

repeatable way. The example

program (next page) creates a

single-byte hashtotal, by exclus-

ive-ORing every byte from ($28) to ($2A) and printing the result. This value could

be stored in RAM and checked automatically by the program itself. The routine uses no

zero-page pointers, but instead is self-modifying. The hashtotalling process stops when

this modified address equals the end-of-program pointer in ($2A) Obviously, .other

zero-page start and end pointers can be substituted, such as ($7A) for BASIC 1 or

($2B) for VIC. The print routine (this prints linenumbers, and can be tracked down

at the end of RESEtT where it prints the number of bytes free) differs between ROMs.

I have used SYS 700 because the location is easy to remember, at least in decimal, ine

routine needs six address changes if it is to be relocated.

Flowchart: replace only characters outside quotes.

Programming the PET/CBM -370- 14: Effective 6502 programming

;EXCLUSIVE-OR POINTER CONTENTS WITH HASHTOTAL SO FAR

02BC LDA 28 ; STORE START-OF-PROGRAM POINTER IN RAM ADDRESS

02BE STA 02C9
02C1 LDA 29

02C3 STA 02CA

02C6 PHA
LOOP 02C7 PLA

02C8 EOR xxxx
02CB PHA
02CC INC 02C9 ; INCREMENT POINTER
02CF BNE 02D4
02D1 INC 02CA
02D4 SEC
02D5 LDA 02C9
02D8 SBC 2A

02DA LDA 02CA
02DD SBC 2B

02DF BCC 02C7
02E1 PLA
02E2 TAX
02E3 LDA #00
02E5 JMP DC9F/ DCD9/ CF83; PRINT 256*A + X, WHICH NOW

; COMPARE POINTER WITH END-OF-BASIC. BRANCH TO LOOP WHILE LESS

; RECOVER HASHTOTAL (STORED ON STACK AS SBC USES ACCUMULATOR)

HASHTOTAL

14.4 Machine-code loaders in BASIC: ordinary loaders and relocating loaders.

14.4.1 Ordinary loaders. When machine-code is to be stored in some fixed place in

RAM - notably the cassette buffer(s), which, except for buffer#2 in BASIC 4 disk
operations, are only used by BASIC during tape input/ output - a simple series

of pokes provides an easy way to load the individual bytes. Section 4.1.9 has a BASIC
routine which uses the keyboard buffer and screen together to convert consecutive
bytes into decimal BASIC values, for later poking back into RAM. It may be easier and
less space-consuming to use hexadecimal strings; the two subroutines below are comp-
lementary, the first generating strings like that in line of the second program, which
in turn, given a starting address, reconstitutes the code in RAM.

61491 REM ###
61492 REM ## ROUTINE WHICH STORES MACHINE CODE FROM RAM INTO A BASIC STRING. ##
61493 REM //# ** SEE THE FOLLOWING ROUTINE FOR TYPICAL PROGRAM TO RECONSTRUCT ##
61494 REM ## ** THE CONTENTS OF RAM FROM WITHIN ANOTHER BASIC PROGRAM. ##
61495 REM ###
61496 REM
61500 INPUT " RAM START LOCATION" ;S

61510 INPUT " RAM END LOCATION" ;E
61515 INPUT "STARTING LINENUMBER";L
61520 PRINT "[CLEAR]";MID$(STR$(L),2);"MC$=MC$+";CHR$(34);:G=PEEK(54)+256*PEEK(55)
61530 FOR J = S TO E
61540 IF POS(0)+ PEEK(196)>74 THEN PRINT CHR$(34) ;"[HOME] [DOWN] [D0WN]L=";L;"+1:S="; J;":E

=» .£.»*. GOTO11
• G

61550 IF POS(0)+PEEK(196)>74THEN POKE623, 19:POKE624, 13:POKE625, 13:POKE158, 3:END
61560 P=PEEK(J):Q%=P/16:P=P-Q%*16:REM Q% IS HIGH BYTE, P LOW BYTE, IN DECIMAL.
61570 C=P:G0SUB 61600:C=Q%:GOSUB 61600:REM Q%>9 THEN Q%=Q%+16: PRINTCHR$(Q%);
61580 NEXT
61590 PRINT CHR$(34): POKE 623,19: P0KE624, 13: POKE158,2: END: REM LAST LINE
61598 REM
61599 REM ** CONVERT DECIMAL FROM 0-15 INTO HEX FROM 0-9, A-F AND PRINT DIGIT **

61600 C = C + 48: IF C > 57 THEN C = C+7
61610 PRINT CHR$(C);
61620 RETURN

MC$
61745
61746
61747
61748
61749
61750
61760
61770
61780
61790
61800
61810
61820
61830

=MC$+"E600F0034C2EE6A9FF8500A578EE0C038D48E84C2EE60O" :REM EXAMPLE ONLY
REM
REM ##
REM ## TYPICAL PROGRAM TO CONVERT A BASIC HEX STRING BACK INTO MEMORY ##
REM ###«##
REM
INPUT "START LOCATION OF CODE"; S
FOR J = 1 TO LEN (MC$) STEP 2

Q% = ASC(MID$(MC$,J,1)) : REM ASCII VALUE OF HIGH BYTE
P = ASC(MID$(MC$,J+1,1)): REM ASCII VALUE OF LOW BYTE
Q% = Q% - ASC("0"): Q% = Q% + 7* (Q%>9) : REM DECIMAL VALUE OF HIGH BYTE
P = P - ASCf'O"): P - P +7* (P>9) : REM DECIMAL VALUE OF LOW BYTE
POKE S + J/2 , 16 * Q% + P : REM NOW POKE IN TRUE VALUE
NEXT
END

Programming the PET ICBM -371- U: Effective 6502 programming

14 4 2 Relocating loaders. Machine-code which works correctly in any part of memory

(subject to constraints imposed by the other software and hardware) is^ re '^
able Code of this sort can be put into RAM by a straightforward set of pokes, with

a variable starting-point from which the bytes are written. This can't be done without

modifications, with most code using absolute addresses. A relocating loader P<Jkes in

code, correcting the relevant bytes. As an example of its use consider BASIC using

several routines in high RAM; a relocating loader can painlessly put (say) several

different keyboard redefinitions there, all fitting tidily into the space, ™*$™l*?«
correctly. In the same way, a loader can put in its code into machines of differing RAM

capacity. Relocating code may also be machine-independent, but this is more difficult.

Which instructions relocate? All implied mode and immediate mode instructions,

all branches, and all accumulator mode instructions relocate. For example, TSX, Rib,

CLC, and LDX #00, LDA #FF, and BEQ + 6 and ROL A can be poked m byte form any-

where in memory without affecting their disassembled equivalent in any way. The prob-

lems arise with addresses. With BASIC, zero-page instructions can usually be consid

ered to relocate, because their functions are fixed, and an instruction like LDA ($2A),Y

has to be retained wherever the code is. ROM addresses are fixed too. Addresses

which have to be varied look like this: 7000 JSR 70E4/ LDA 70B0.X/ CMP 7100/ JMP 7050

and so on, which after relocation becomes 6000 JSR 60E4/ LDA 60B0,x /etc.

Many approaches are possible to writing such code: here, I'll assume the code is

to be put into the top of RAM, and is to be loaded in decimal from BASIC. The well-

known use of negative numbers as distinguishing marks is used; machine-code versions

can't do this, and may use zero bytes instead, followed by a routine enabling a check

for real zeroes as opposed to code zeroes. Supermon 4 (q.v. - appendices) has an

We can use the following loader, which may be embellished in various ways, typ-

ically to print out initialisation addresses, special locations, and instructions. The

peeked values apply to BASIOl; others may be substituted:

100 T=PEEK(52)+256*PEEK(S3) :REM TOP OF MEMORY FOR BASIC 2 & 4

110 L=T-N :REM N=NUMBER OF BYTES OF CODE; L=L0WERED MEM.TOP

120 FOR J=L TO T-l: READ X% :REM DATA HELD IN (SAY) LINES AND FOLLOWING

130 IF X%<0 THEN Y=X%+T: X%=Y/256: Z=Y-X%*256: POKE J,Z: J=J+1 :

:REM Y IS RELOCATED VALUE CALCULATED FROM NEG.X%

140 POKE J X%: NEXT : REM COMPLETE PROCESS FOR ALL VALUES

150 POKE 52,L-INT(L/256)*256: POKE 53.L/256: CLR:REM RESET T0P-0F-MEM0RY

To convert code into data which this program can use, follow these steps:

(i) Enter the code into RAM (and preferably test it).

(ii) Print (or write out) the disassembled version. A disassembler giving decimal

values of locations is helpful.

(iii) Mark all the absolute addresses which need changing during relocation.

(iv) Replace each of them by its offset from the end of the program; i.e. count

from the end of program plus one backwards, the result being a negative number from

-1 to -30000 or so. See the example; this is easier than it might seem.

(v) Convert the bytes into data statements and enter them. Note that each new

negative value replaces two bytes as a rule.

(vi) Enter the value of N in line 110.
. . .

(vii) Test the loader: run it several times, and check that each routine is m-

depent and correctly set up.

Example. The nonsense program (right) has a

subroutine call, a table of byte values, and a

branch. The branch, because of its relative

addressing mode, relocates; so does the table,

and the single-byte, implied-mode instructions

and the immediate-mode instruction. So the

only addresses to be relocated are those circled.

Counting back from the end, we find that

027E is the 11th byte, and 0286 the third; so -11

and -3 respectively replace all occurrences of these two addresses,

ment is therefore

DATA 32,-11,96,162,2,221,-3,202,208,250,96,65,66

and the number of bytes in the program is 15, so line 110 becomes

110 L=T-15

32 126

96

162 2

221 134

202
208 250
96

65 66

2 027A
027D

<3?)027E

2 0280
0283
0284

£D 0286
0287

JSR (027E^
RTS
LDX #2
CMP (0286), X
DEX
BNE 0280

RTS
.BYTE $41, $42

The DATA state-

Programming the PET/CBM -372-

Our loader should now be capable of placing

its code into memory as the diagram (right)

shows, with adjacent versions of the routine

abutting exactly. Another temporary line of

BASIC:
145 PRINT "TOP" T "TO" L

will show the continual diminution of RAM
as the routines accumulate in the top of

RAM.
Refinements on this process include:

(i) Test for type of ROM, perhaps with a

few pokes to modify ROM addresses,
(ii) Test for size of memory, which may be
too small,

(iii) Automation of some of these processes,
including calculation of negative values and
of number of bytes in the program,
(iv) Inclusion of the memory-lowering pokes
into the initialisation routine itself. In this

way, a pre-relocated machine-code program
can be loaded as a file, and when initialised,

will set the memory-pointers so that it cannot

14.5 Pure machine-code techniques.

74: Effective 6502 programming

3BC4 JSR 3BC8

3BC7 RTS
3BC8 LDX #02

3BCA CMP 3BD0 ,

X

3BCD DEX
3BCE BNE 3BCA

3BD0 RTS
3BD1 EOR (42, X)
3BD3 JSR 3BD7
3BD6 RTS
3BD7 LDX #02
3BD9 CMP 3BDF.X
3BDC DEX
3BDD BNE 3BD9
3BDF RTS
3BE0 EOR (42, X)
3BE2 JSR 3BE6
3BE5 RTS
3BE6 LDX #02
.... and so on .

be overwritten by BASIC strings.

'Hand assembly' This is the name usually given to a hybrid technique for machine-
code programming, in which the final code is not fitted together as a solid chunk in

the manner of an assembler, but instead is distributed in RAM in a way convenient to

the programmer, in separate subroutines. For example, a disk-processing program
may start at $3000 and have 50 or so lines of program terminating with a message to

be printed on successful completion. Major subroutines, to read, write, compare, move
data, and so on, could be at $3100, $3200, $3300, and other addresses in this series.

Provided that the documentation keeps a record of the function of each subroutine,
code built up in this way is fairly easy to check (subroutines can be tested individ-
ually) and quite easy to modify, without having to reassemble the entire program.
Moreover, skeletal trial programs can be written and run, and later elaborated upon
and made user-friendly by expanding parts of the code as required. The sequence of
the parts is not changed by this process, as it may be when assembler programs are
patched. Different depths of subroutines can be represented by their locations; as a
COBOL program might have controlling modules prefixed by A-, their subsidiary
routines prefixed by C-, and their elementary commands to read or write single rec-
ords prefixed by E-, so $3000 ff may contain the highest-level control programs,
$4000 ff their subroutines, and $5000 ff the elementary subroutines. Since enormous
machine-code programs are rare , there is not often a shortage of RAM for the purpose

.

There is of course no reason why this procedure shouldn't be carried out with an ass-
embler; all that's needed is a fair sprinkling of commands like *=3000 and *=3100 . In-
evitably, JMP or JSR commands (or stack pushes with RTS or RTI) have to be used to
communicate between routines; branches cannot reach far enough. (This qualification
is removed with the 6809 chip, which not only has 'long branches' but 'branch saving
return address'. These features make 6809 code much more easily relocatable than
6502 code).

Running with SYS. LOAD assumes BASIC; RUN is expected, the CBM having no
command to run pure machine-code. If we have a machine-code program, how can we
write it so that RUN executes it? The answer is to put in a SYS call to the code. To
see how this can be done in the general case, let's suppose we have a routine starting
at $3000. RUN executes a program from its starting-point; we therefore precede the
machine-code with a BASIC program. The easiest way to do this is to insert bytes like

these

:

^
ACTUAL BYTES: 00 OC 04 00 00 9E 31 32 32 38 38 00 00 00

BASIC EQUIVALENT: * Link Line# SYS 12288j*j<f<
where jl denotes the null byte. The link address (=$040C here) points to the first of
the two end-of-program marker bytes, on the assumption that $0400 is the address of

the start of this machine-code. The link address cannot be zero. The arrow marks

Programming the PET/CBM -373- U: Effective 6502 programming

the start of BASIC, as determined by the pointers in ($28) in BASICs >1, and ($7A)

in BASIC 1. Unfortunately, the byte previous to this must be a null byte, imitating an

end-of-line, and this usually only happens with the standard loading and saving pro-

cedure where $0400 holds #0. So entry of

.0400 00 OC 04 00 00 9E 31 32i;SYS 12288 is assumed here, but obviously other

!o408 32 38 38 00 00 00 xx xxj; values, from SYS1039 up, are possible.

and
0028 01 04 xx xx xx xx xx xx ;Top of memory underlined; must > $3000, e.g.FF 39.

followed by SAVE will convert the machine-code into a pseudo-BASIC program, which

can be RUN. In this case, all the bytes from $0410 to $3000 are wasted; to prevent

this the code could be relocated down, or another loader used to put a: zero byte in

the position corresponding to $0400, boring though this may be.

It is not strictly necessary to include three null bytes after the BASIC bYb ana

END program, but it tidies LIST.

14.6 Debugging machine-code.

This list, which is naturally not exhaustive, includes many errors which experience

shows to be common in 6502 programming. Errors in the design itself are best cured

at the earliest stages; careful analysis and dry-running of code with both typical and

abnormal data should ensure that a program is fundamentally sound.

Simple errors of carelessness. These may remain undetected for a long time in mach-

code, because no ?syntax error warning ever appears. Examples include:

(i) Transcription errors. Typically 7038 for 703B.

(ii) Omission, or inclusion, of immediate-mode #, as in LDA #01/ PHA/ LDA 02/ PHA.

(iii) Use of wrong ROM addresses, for example FFE4 as output, or, with ROM

addresses not in the kernel, those for a different ROM from that in use.

(iv) Branch errors are quite likely to occur in code not written by assembler.

Addressing mode errors include

(i) Confusion of order of low and high bytes of an address.

(ii) Failure to understand the method of working of indirect addressing.

(iii) The attempt to use indexed zero-page addressing to extand above $FF.

LDA $AB,X wraps around back to zero if X exceeds #54.

(iv) Other indexing errors, for example: LDA 0102.x/ STA 0100, Y/ DEX/ DEY/

BEQ -10 loads garbage if X drops to #FF and below, which is untested,

(v) Program design may be weakened through failure to appreciate limitations of

the chip; e.g. tripling A by TAX/ ASL A/ ADC X is impossible,

(vi) Indirect jump has a bug: JMP (03FF) takes its address from 03FF and 0300.

Calculation errors involve addition, subtraction, and negation, for example:

(i) It's easy to forget that only the accumulator is holding the result.

LDA #2/ ADC 1234 adds 2, but the contents of 1234 are unchanged. To<

change 1234, STA1234 is necessary,

(ii) The carry bit may give problems: the rule is usually to clear it before add-

itions, and set it before subtractions,

(iii) A 2's complement is always 256 minus the original byte, or 65536 minus a

16-bit integer, and so on. This is EOR #FF + #1.

Errors with status flags. There is a logic behind the setting of flags, but it is not

easy to get used to it. This example: LDA AB/ CMP #07/ BEQ +1/ RTS/ STA 08

stores a zero value in 08, but this does not set the zero flag, although loading

the value from 08 does set the flag. Other problems include the negative flag

with CMP, and the fact that incrementing a value from 127 decimal to 128 makes

the value change from 'positive' to 'negative'.

Stack errors : the rule is to have the same number of stack pushes and pulls if a sub-

routine is to return in the normal way. If a subroutine stack is pulled before

being pushed, it is important to return the correct values on the stack before

RTS unless special processing is being performed.

Errors in which a program is modified include programs partially overwritten by BAS-

IC, or by cassette activity, or by BASIC 4 in cassette buffer #2, or by the pro-

gram itself. 2-byte pointers may be updated while they are still in use, so that

they temporarily point to a wrong area of memory. Often, A,X, or Y is changed by

a subroutine or interrupt, and has to be saved in RAM or on the stack.

Programming the PET/CBM -374- 74: Effective 6502 programming

14.7 IEEE-488, VIA, and PIA: interfaces to the outside world

The IEEE bus (General Purpose Interface Bus) . This standard 'bus', permitting

interchange of data between devices, is described in the IEEE document IEEE-488,

published in 1978 and itself based on a 1975 standard. Any devices, subject to

certain limitations, become plug-compatible, and able to transmit and receive ASCII
data. Why should this be a problem? In the first place, innumerable variations

are possible in the signals controlling the data flow. A standard set of commands
indicating which lines are to be active and when is needed. Secondly, if all the

devices were timed by some central clock, data could be passed without problems
of synchronization between the devices: the same order of magnitude as obtains
within RAM could apply to data transmission rates. But independent pieces of

equipment are not synchronized, and a fairly elaborate system of checking is used
to determine when data is to be sent. This process is called 'handshaking'. The
two-way capability of the bus makes for complication. IEEE equipment tends to

be costly. Moreover (this happens in many computer-related fields) large chunks
of the standard may remain unused. The IEEE standard's design parameters were
apparently based on the characteristics of equipment already in use, and this

design approach has obvious risks.

Description of the bus . The IEEE-488 bus is a cable of 16 wires. 8 wires carry data,
usually in ASCII form with bit 7 used as a parity check. The data lines transmit
one bit each, so that an 8-bit byte is sent as a unit; the result is sometimes
described 'bit parallel, byte serial'. Handshaking is carried out between each
byte. Not surprisingly, this slows the rate of transmission, which in any case will

be slow if one or more of the receiving devices processes its data at a relatively
leisurely pace. 1 megabyte per second is the maximum allowed by the design; CBM
equipment has a maximum of about 5000 bytes per second. 3 of the remaining 8

wires control the handshake. The CBM's ROM from $F000 upwards includes its

IEEE processing, in addition to tape and monitor programs. A fair proportion of

its IEEE work is concerned, as we shall see, with setting these handshaking lines

and generating error messages and ST (status flag) values if the returning signals
don't behave in the correct handshaking manner. Finally, 5 wires are concerned
with bus management. Only 2J of these are used in the PET/CBM. This is caused
by Commodore's design system, in which the computer gets priority over all other
devices on the bus. There are quite severe restrictions on cable length between
pieces of equipment: not more than 5 metres between devices, and not more than
20 metres overall, are the figures usually quoted. For this reason, VIC has a
different connector, based on the RS232, which has a much better linelength. The
RS232 (for example) can operate with two wires only. However, since interface
boxes are available, this makes no great difference, except that the price of the
total equipment package is raised. The advantage of the IEEE emerges when
electronic and scientific equipment of a technical type (i.e. not printers) requires
control by a CBM computer. Before describing the programming of this bus, we'll

look at the IEEE port as it appears on all PET/CBM machines. The meaning of
the mnemonics will (I hope) become less obscure as we proceed. The early manuals
for the computers, for example part no. 320856-3, contain hardware data on the
pin connections, their hardware addresses, handshaking and the management bus,
ST, and a much-reproduced table of IEEE commands. There's also some account
of CMD, GET#, INPUT #, and PRINT*, which of course are all BASIC'S way of
moving data on the bus.

The IEEE port. The IEEE port is in the middle of the back of the PET/CBM.
Its pins, and the corresponding IEEE connector as it appears (say) with a disk unit

,

labelled with IEEE mnemonics, are arranged like this:-
«

t-I N P3 *)< a o isooooi-i>h<ocyiz;i-"MMMHO<K8Bfl«itl|l!e)QQQWQZZi-iai<W
I 2. 3. 1 5. S. 7, S. fiJJttl&, Top \ 1211109 87654321
ABCDEFHJKLMN Bottom \ NMLKJHFEDCBA
ejNjaoflBooanOOOOWSSSSSBZZizSJZ;MMMwpSOOOOUUO
Q Q Q O >OOU9Z<!

< fe < Pl, BJ H Ha os a i-i ai < <
85 Z Q

Programming the PET/CBM -375- M: Effective 6502 programming

IEEE mnemonics and concepts . As we have seen, there are three conceptually

separate sets of wires or lines in the IEEE bus. These are called Data Lines,

Data Byte Transfer Control Lines (for handshaking!) and General Interface

Management Lines (which the controller uses). Each of the 16 lines has a mnemonic.

DATA LINES

DIOl - DI08 are 8 data lines ('Data input /output') which carry single

bytes of data and of commands.

DATA BYTE TRANSFER CONTROL BUS

DAV ('Data valid'). Tells listener that new data is on the bus.

NDAC ('Not data accepted') Tells talker data hasn't been read yet.

NRFD ('Not ready for data') Tells talker not to talk yet.

GENERAL INTERFACE MANAGEMENT BUS

ATN ('Attention') Distinguishes commands to devices from data.

EOI ('End or Identify') Indicates that the current byte is the last.

IFC ('Interface Clear') Clears all devices on switchon or reset.

REN ('Remote Enable') Gives control to other device (not used with CBM).

SRQ ('Service Request') Allows a device to request service (not on CBM).

All devices on the bus are controlled, at any given time, by a single 'controller'. The

other devices may be 'talkers' or 'listeners'. A 'talker' transmits only; some technical

measuring devices are of this type. A 'listener' receives data only; many printers

and plotters illustrate this. Another type, the 'talker /listener', as you will not be

surprised to read, can perform both activities; Commodore disk drives and modems

illustrate this. The bus may be arranged with devices in a 'star' pattern or 'daisy-

chained' together, or a combination of these; it doesn't matter to the bus. These

devices may be any mixture of talkers and listeners. Much of the time the devices

may be inactive or switched off. A 'talker' doesn't have to talk all the time.

The next important concept to grasp is the active low principle which the IEEE

uses. Unlike all the remaining operations of the CBM, on the IEEE 'true' is low,

(0), and 'false' is high (1). This applies to data and commands. In machine code,

therefore, data is EORed with #$FF before transmission. With the CBM, the output

register is $E822, so EOR #$FF /STA $E822 precedes data transmission. Another

example (see next page) is the values assigned to the IEEE locations when the CBM
is reset or powered on; each bit which is configured for output by the initialisation

system is set high, rather than the alternative convention of the low value. This

convention is determined by hardware considerations. Any one device can hold a

line in the low state by keeping the line impedance high, irrespective of other

devices' states, and this is useful when assorted devices with a range of response

times have been connected to the same bus system. The 'active low' principle is

responsible for the double negatives which tend to be a confusing part of discussion

about this bus, particularly when it concerns the control bus commands which use

lines which wait to be released by all the devices. For example, a device listening

on the bus and ready to receive data sets 'Not ready for data' false, by setting

the line high. This of course is the same as 'Ready for data'.

Finally, a vital concept without which nothing will make sense. The 'ATN' line -

read as 'Attention' - distinguishes between commands and data. When it is low,

(true), each byte sent is treated by all devices as a command, not as data. If

the command refers to a particular device, that device becomes a talker or a

listener and waits for the handshaking process to begin. Now the point is this:-

only one byte carries the information telling the devices which device is to talk,

say. How can the devices distinguish a 'talk' command from a 'listen'? In fact each

command byte is partitioned up, so that the range within which the command byte

lies determines its meaning. For example, if it is from 0-31 decimal, the command
is a special type which we've not discussed and isn't used on CBM machines. If it

is from 32-62, the command is a listen address; if from 96-126, a secondary address.

As an example, consider the Commodore disk unit; this is device #8 (unless modif-

ied). The unit is made a listener by (i) Setting ATN true (0); (ii) ORA #$20 with

the device number, 8, and so setting the relevant 'listen address' bit; (iii) Sending
#$28 as a command; (iv) setting ATN false (1). Further transmissions will be
understood as ASCII. A secondary address will often be sent too.

Programming the PET/CBM -376- 74; Effective 6502 programming

CBM IMPLEMENTATION OF THE IEEE-488 BUS*

Function : Description: Location : Bit number: Value on setup:

CONTROL LINES:

ATN in

ATN out

Attention $E821 (59425)
$E840 (59456)

7

2 1

DAV in

DAV out
Data Valid $E840 (59456)

$E823 (59427)

7

3 1

EOl in

EOl out
End or Identify $E810 (59408)

$E811 (59409)

6

3 1

NDAC in

NDAC out
Not data accepted $E840 (59456)

$E821 (59425) 3 1

NRFD in

NRFDout
Not ready for data $E840 (59456)

$E840 (59456)

6

1 1

SRQ in Service request $E823 (59427) 7

DATA LINES:

Input
Output

$E820 (59424)
$E822 (59426)

0-7
0-7 FF

PIA 1

E810
E811
E812
E813

.a

b...
a (#40) = EOl in

b (#08) = EOl out

PIA 2

E820
E821
E822
E823

iiii iiii

c... d...
oooo oooo
e. .. f...

input register

c (#80) = ATN in, d (#08) = NDAC out

output register

e (#80) = SRQ in, f (#08) = DAV out

VIA

E840

E841
to

E84F

gh.. .jkl g (#80) = DAV in, h (#40) = NRFD in, j (#04) = ATN out,

k (#02) = NRFD out, I (#01) = NDAC in

*References include:

i) IEEE Std 488-1978 describes the 'GPIB' (General Purpose Interface Bus) and

includes a full specification.
ii) Gregory Yob's three part article in Kilobaud-Microcomputing (July - Sept. '80),

'get your PET on the IEEE bus', has a lot of information in about 23 pages.

This includes hardware examples (e.g. Hewlett-Packard clock and signal gener-

ator, 'Blinkin' Lites 'machine) , BASIC routines to illustrate the workings of

the bus, explanations of IEEE activity during input/output (e.g. INPUT# and

PRINT*) and machine-code routines including some ROM locations.

iii) 'PET and the IEEE-488 Bus (GPIB)' by Fisher and Jensen (McGraw-Hill 1980)

deals mainly with old ROM PETs. The book largely consists of detailed break-

downs of the BASIC I/O commands and lists of references- including instruments

using the IEEE and a bibliography. It is hardware oriented; software examples

include flowcharts, a BASIC diagnostic program to report faults on the bus,

and a single machine-code example, a reprint of a routine to drive an

astronomical telescope.

Programming the PET/CBM -377- 74: Effective 6502 programming

Machine Code programming of CBM's version of the IEEE: Examples.

Machine
Code--

Meaning:- Machine
Code:-

Meaning:-

BIT $E810
BVC SET ST

LDA #$34
STA $E811

LDA #$3C

STA $E811

LDA $E820
EOR #$FF

LDA #$34
STA $E821

LDA #$3C

STA $E821

EOR #$FF

STA $E822

LDA #$34
STA $E823

LDA $E823
ORA #$08
STA $E823

LDA $E823
AND #$F7

STA $E823

LDA #$3C
STA $E823

LDA $E840
ORA #$04
STA $E840

LDA $E840

AND #$FB

STA $E840

Branch taken if input EOI

is high (false). 'Branch if

not end of input message'.

Set output EOI low (true)

Set output EOI high (false),

'Not end of message 1
.

Get a character from the

input register & reverse it.*

Sets ATN in low, and NDAC
out low , 'data not accepted'

.

Sets ATN in low, and NDAC
out high, 'data accepted'

Store data (reversed) in

output buffer.*

Sets SRQ in low (true) and
DAV out true, 'data valid'.

Set DAV high (false).

'Data not valid'.

Set DAV low (true).

'Data valid'.

Sets SRQ in true and DAV
out false. 'Data not valid'.

Set ATN high (false).

'Send data, not IEEE
commands'

.

Set ATN low (true).

'Send IEEE commands, not

data'

.

LDA $E840
BPL -5

L BIT $E840
BMI L

LDA $E840
AND #$40
BEQ -7

LDA $E840

ORA #$02
STA $E840

LDA #$FD 2

AND $E840
STA $E840

LDA $E840
AND #$41
CMP #$41
BEQ ERROR

LDA $E840
AND #$01
BEQ -7

BIT $E84D
BVS ERROR

Wait until DAV in is high (false)

'Data not valid'.

Wait until DAV in is low (true).

'Data valid'.

Wait until NRFD in is false, i.e.

until 'Ready for data'.

Set NRFD out high (false).

'Ready for data'.

Set NRFD out low (true).

'Not ready for data'.

Branch taken if both NRFD in

is high (false) and NDAC in is

high (false). I.e. 'Ready for

data' and 'Data accepted' are

both true.

Wait until NDAC in is high

.

'Data accepted'.

Uses a VIA timer to detect time

out. ST=1 if write, 2 if read. 3

This table is intended for use as an aid in understanding disassembled code. Each

IEEE location appears in sequence, with the handshaking and control line mnemonics

approximately in alphabetical order. Not all the possible permutations and combin-

ations are listed, but those which are occur frequently in CBM ROM. Analogous

6502 code exists within Commodore devices, to handle data transfer from the point

of view of those devices.

*The equivalent in BASIC to reverse byte X is 255-X.

2 This variation has of course the identical effect to LDA $E840/ AND #$FD.

3 In BASIC 4, time out may be ignored by poking 1020 with any value > 127.

Programming the PET /CBM

IEEE Command Croups

-378- 74: Effective 6502 programming

HIGH NYBBLE ----

1 2 3 4 5 6 7 E F
16 16 16 16

-
1 GTL LLO 1 17 1 17 1 17 1 17

- 2 2 18 2 18 2 18 2 18
- 3 3 19 3 19 3 19 3 19
LOW 4 SDC DCL 4 20 4 20 4 20 4 20

NYBBLE 5 PPC PPU 5 21 5 21 5 21 5 21
- 6 6 22 6 22 6 22 6 22
- 7 7 23 7 23 7 23 7 23
- 8 GET SPE 8 24 8 24 8 24 8 24

9 TCT SPD 9 25 9 25 9 25 9 25
A 10 26 10 26 10 26 10 26
B 11 27 11 27 11 27 11 27
C 12 28 12 28 12 28 12 28
D 13 29 13 29 13 29 13 29
E 14 30 14 30 14 30 14 30
F 15 UNL 15 UNT 15 31 15 31

ACG UCG LAG TAG SCG SCG 2 SCG 3

ACG (Addressed Command Group) includes:
GET=Group Execute Trigger
PPC=Parallel Poll Configure
TCT=Take Control

(Universal Command Group) includes:
DCL=Devices Clear
PPU=Parallel Poll Unconfigure
SPE=Serial Poll Enable

(Listen Address Group) includes UNL=Unlisten All Devices
(Talk Address Group) includes UNT=Untalk All Devices
(Secondary Command Group) holds CBM secondary addresses, except

UCG

LAG
TAG
SCG

GTL=Go To Local
SDC=Selected Device Clear

LLO=Local Lockout
SPD=Serial Poll Disable

2 Secondary address for CLOSE, Secondary address for .OPEN and SAVE.

Subdividing the command byte sets limits on the number of devices controllable by
the bus. 31 primary devices are allowed; secondary addressing was introduced
to enable extra devices to be connected, according to Fisher and Jensen, so that
31 x 31 = 961 is the absolute maximum. Commodore's use of the secondary address
as a means of controlling the primary device is therefore rather unorthodox . What
does all this imply in BASIC? Firstly, the OPEN command for devices numbered 4
or more (excluding keyboard, cassettes, and screen) is designed to prepare BASIC
for future communication with the IEEE bus. OPEN X,Y,Z, "STRING" makes three
entries in each of three tables in RAM, unless these tables are full already. PEEK
locations 593, 603, and 613 to take a look at this. If a file has been opened, these
locations will typically be 5,4, and 97. OPEN 5,4,1 will give these figures, the
first being the 'logical file number', the second the device number - here, 4, a
printer - and the third the secondary address with its high nybble set to 6, adding
96. (BASIC 1 has locations 578, 588, 598 instead). If OPEN includes a "STRING"
this is sent along the bus and processed by the receiving device: normally this is

a disk command, for instance "0: FILE, SEQ, READ" or "#" or "PROGRAM". This of
course sets up a similar set of table entries within the disk drive's own RAM. Now
when PRINT#X, "MESSAGE" is executed, the device number Y, and secondary
address Z, corresponding to X are looked up in the tables. Y has its high nybble
set to 2 by ORA #$20, corresponding to LISTEN. ATN is set low (true) and these
bytes sent as commands; when ATN is reset high, all further output is ASCII data
generated by the PRINT statement and formatted in the normal CBM way. Finally,
PRINT* X sends an UNLISTEN to the bus directed at the printer. (It will also send
UNTALK if there is an IEEE output device too; but usually the keyboard or screen
provides output). Note that OPEN and CLOSE have special secondary addresses
allocated to them , as appears in the final two columns of the table above . This is the
reason for ROM routines like this: LDA secondary address/ ORA #$F0. Again, it's

a peculiarity of Commodore that these control bytes are interpreted this way by
CBM equipment.

Programming the PET/CBM -379- 14: Effective 6502 programming

Program Examples with the IEEE bus .

[11 CMD This BASIC keyword uses identical syntax to PRINT #, and operates in a

very similar way, the only difference being that the device is not UNLISTENed.

For this reason it is used to keep open a file to disk or tape when a program is to

be LISTed as a sequential file. Generally, PRINT# is easier to use, unless a lot ot

PRINT statements have to be changed, since UNLISTEN or other IEEE command

may be issued by some other part of BASIC. CMD may be worth trying if data is

to be sent simultaneously to several destinations. In the same way that OPEN44:

CMD4-INPUT"NAME";N$ within a program prints out NAME to the printer, not the

screen, several files may be opened and printed to simultaneously; try for example

OPEN1,1,1:CMD1:OPEN3,3:CMD3:OPEN8,8,8,"0:FILE":CMD8:PRINT "HELLO"

which prints HELLO to tape #1, screen, and disk at one time.

[2] ATN. (Not arctangent!) Setting the ATN line low, sending a command, and

setting it high again may be used to direct data to a recipient device. As an

example, consider C Brannon's 'Keyprint' program to print the screen contents to

a Commodore printer (showing graphics and other Commodore features). The aim

is to tell device 4 to listen, then set ATN high, then to output characters one at

a time, e.g. with $FFD2. When the page is finished, $FFCC, the routine to UN-

LISTEN the printer, is called, and control returned to the interrupted program.

ATN out is bit 2 of $E840. Unfortunately it is not enough to use machine code to

load the IEEE output buffer with #44 - the talk command for device 4 - with its

bits reversed, then lower ATN and put it high again, since this ignores the bus'

handshaking. The easiest method is to use ROM routines, although this has the

drawback of causing the program to be untransferable between different ROMs
without a few changes. LISTEN shares the same ROM area as TALK and in fact

these routines are the very first in the F000-FFFF ROM . To cause device 4 to

become a listener, the current device location ($F1 in BASIC 1, $D4 in BASIOl)
must contain #4, then LISTEN is called. ($F0BA in BASIC<4, $F0D5 in BASIC 4).

Now ATN has to be set high. A routine which does this (i.e. sets bit 2 of $E840

high) exists at $F132 (BASIC 1), $F12D (BASIC 2), or $F148 (BASIC 4). Also

the current CMD location has to be set to #4, so that $FFD2 outputs its charact-

ers to the correct device. This location is $0264 in BASIC 1 and $B0 in BASIOl.

So with BASIC 4:

LDA #$04 ;
DEVICE NUMBER 4=PRINTER

STA $D4 ; CURRENT DEVICE

STA $B0 ; CMD LOCATION (CURRENT OUTPUT)

JSR $F0D5; 'LISTEN'

JSR $F148; PREPARE FOR DATA OUTPUT

; PRINT CHARACTERS WITH $FFD2

JSR $FFCC; SEND UNLISTEN

;
CONTINUE

In this example, a secondary address was not sent. It could easily have been;

5 bytes prior to the second subroutine, which sets ATN false, is the entry point

from which the contents of A are output to the IEEE before ATN is set false.

[3] The PET as controller. The first published account of spooling with the PET
seems to be T M Peterson's article in Compute! (Vol.3, #1 and reprinted in CCN and
Transactor). This method may not be foolproof. Jim Butterfield, by coincidence in

the same issue of the magazine, wrote that the logic is not accurate enough for

spooling to be possible. Peterson's method, for BASICs 2 and 4, is as follows :-

*The commands LISTEN, TALK, UNLISTEN and UNTALK use the imperative voice, so to

speak. To make the point clear we can consider human analogies: conversational-

ist X may say to conversationalist Y, "Listen. I want to tell you that ..." and

this use of LISTEN is similar to the IEEE's. So is: "You've got five seconds to

talk, or else..." where the recipient of this message is being sent a TALK

command. CBM equipment allows only 65 milliseconds (.065 sec), however, before a

so-called 'time out error'.

Like all analogies, this one breaks down at some points. The controller ensures

that one talker only is allowed on the IEEE bus, although there may be many

listeners. In human communication on the other hand, no such restriction holds.

Programming the PET/CBM -380- 74; Effective 6502 programming

Spooling is a technique used to overcome speed limitations of printers: large

computer installations store their output on disk, then later disgorge the whole

lot, often at night. And the printers can be used when the processor is working

but has no printing to do. In principal this can be done with IEEE devices. The
sequence is: (i) Set ATN low (true), so the devices wait for commands, (ii) Send

UNLISTEN so that all devices in LISTEN mode no longer listen, (iii) Send TALK
to device X; X is now the only talker, (iv) Send LISTEN to device Y, (v) Now,
set ATN high (false) again, having set up a listener and a talker. These two

devices will now talk and listen until the bus is used for something else. On the

PET, suppose we have a sequential file on disk, which could contain data, or a

program LISTed as a sequential file. The spooling technique goes like this:

OPEN 7,8,9, "0: SPOOL, SEQ, READ": REM FIGURES CHOSEN FOR UNAMBIGUOUSNESS

POKE 165,64+8: SYS 61668 : REM SYS 61695 IN BASIC 4. HIGH NYBBLE 4=TALK

POKE 165,96+9: SYS 61668 : REM SYS 61695 IN BASIC 4. HIGH NYBBLE 6=S.ADD.

OPEN 5,4: CMD 5,;:P0KE 176,3:POKE 174,0: REM MAKE PRINTER A LISTENER

POKE 176,3 makes the screen the output device, so another program (not using
the bus) may be run. POKE 174,0 sets the number of files to 0, so files 5 and 7

are erased. When the spooling is over, POKE 174,10: CLOSE 7 will close the
disk file. (Or you can OPEN 7,8,9: CLOSE 7).

[4] Handshaking. The charts of implementation of the IEEE on the PET show
each control line (where used) except for SRQ having an 'input' and an 'output'

connection. This means that during handshaking, values set by the PET use the

'output' location, but values being tested by the PET use the 'input' location.

So the machine code which branches to itself when testing a line always uses an
input location, while code which sets a value always uses an output line. This
distinction is of course a product of the hardware buffering methods employed.
As an example, let's consider the ROM routine which outputs a character on the

bus. This is situated immediately after the routine to send TALK and UNTALK,
which sets ATN low before dropping into the routine and thus outputting a

command. In BASIC 1 it's at $F0F1, in BASIC 2 at $F0EE, and in BASIC 4 at

$F109. For copyright reasons it cannot be reproduced here, but the logic can be
deciphered into this:-

i. Set DAV false. (I.e. puts 1 into DAV out's bit in $E823)
ii. Check if both NRFD and NDAC are false. If so, the program stops with

a ?DEVICE NOT PRESENT ERROR. (I.e. uses bits from NRFD in & NDAC
in, for the test).

iii. Put reversed data in the output register $E822.
iv.Wait until NRFD is true.
v. Set DAV true, and start the clock in the VIA.
vi.Wait until NDAC becomes false. If this doesn't happen before the timer

clocks up 65536 microseconds, the status flag byte is set - in fact, #1

is ORA'd into it, which is why ST of 1 means a time out error on write.

Note however that BASIC 4 has a patch put in which enables this time
out feature to be disabled. POKE $03FC (1020 in decimal) with any value
greater than 127 to make the device wait indefinitely until the data has
been accepted. Commodore could, but didn't, include an option allowing
the user to select his own time-out interval.

vii.DAV is set false.

viii. Finally, the output register is set null (with #FF!).

This is the three-line handshake as implemented on the CBM, using the three
lines of the data byte control bus. Hewlett-Packard will supply details of this

handshaking procedure. This, however, is approaching the hardware side of CBM,
which is not my intention. Before leaving this topic let's briefly see how to write
one's own handshaking routines for this bus. In view of the opportunities, there
seems to be a surprisingly small amount of published work on device control with
the PET/CBM. One popular set of routines, by John Cooke, has appeared in

Commodore publications, Fisher & Jensen, Gregory Yob's articles, and, without
acknowledgement, in the 'PET Revealed', and this is about all. However, provided

Programming the PET/CBM -381- U: Effective 6502 programming

the details of the handshake are known, there should be little difficulty m writing

routines which carry out the equivalent machine code. As a simple subexample,

suppose we wish Jset NRFD false, wait until DAV is true, then recover data

from the input register. We look up these facts:

i. NRFD out is bit 1 of $E840.

ii. DAV in is bit 7 of $E840.

iii.The input register is $E820.

And the corresponding machine code might be:-

LDA $K840
ORA #$01 ; FORCES BIT 1 HIGH (IE FALSE)

STA $E840 ; NOW, NRFD IS FALSE.

LABEL LDA $E840
BMI LABEL ; LOOPS UNTIL HIGH BIT (TRUE)

LDA $E820
EOR #$FF ; REVERSE DATA; NOW IN USUAL FORMAT

[5] The status byte and ST. ST (also appears in the BASIC keywords reference

section) is reserved in BASIC, so PRINT ST yields a value often zero, but, if not,

JrovWing information on a read or write transaction on the IEEE bus or with the

cassette tapes, which don't use the bus, but are programmed to look similar tor

consX ency. ST is not a normal variable held in RAM. Instead, when ST » found

to a BASIC statement, the value held in a single byte is found and converted to

ST which therefore can't (normally) exceed 255. This byte is $020C in BASIC 1,

and $96 in BASIOl. Confining ourselves to IEEE transactions only, ST has only

4 values apart from 0, which are

ST=1 Time out error on write

ST =2 Time out error on read

ST =64 End of message
ST =-128 Device not present. . .

These messaees vary in value. ST =-128 may in BASIC cause the program to crash

InywayThTtLe out errors can be useful; ST=2 shows the data hasn't been read

although this may be obvious from the data itself. ST=1 is a bit incalculable. For

Sampfe, some nirer CBM printers give this 'error' even ^nworkuig correctly.

And ST=64 can often be made redundant by the use of an end-of-file marker. In

any case, EOI may not be reliable with some devices. However, m machine code

routines to read disk files often use ST's byte location as an easy test for end-of-

file. If it is non-zero, the file is presumed to have been read completely.

[6] ROM routines for use with the IEEE in data transfer When using disk modem

or printer, the handshaking is taken care of, and best left alone. But the ROM

subroutines for processing data in machine code are of interest Providing as they

do the possibility of faster data processing than is available with BASIC. All the

kernel' ROM routines (those in common between all the CBM ROMs) operate with

the IEEE and are often quite easy to use. Important RAM locations are:

Length of message (e.g. "0:PROG" has length 6) $D1 in BASIOl, SEEAn Bl
Loe-ical file number $D2 in BASIOl, $EF in BASICl.

Secondary address $D3 in BASIOl, $F0 in BASICl.

Dev'enUer primary address) $D4 in BASIOl, $F1 in BASIC 1.

Input device number, for input $AF in BASIOl $0263 m B.l.

Output device number, for output $B0 in BASIOl, $0264 mB.l.

As an example, consider a machine-code routine to read CBM sequential files. We

can open the file from BASIC, then read with machine-code: OPEN 2,8, 3, "DATA to

read sequentially from the default device, for instance. Then LDX #02/ JSR $FFC6

sets the device for input to the CBM, and JSR $FFCF inputs a single byte from the

device. When reading is complete, JSR$FFCC closes the file. To open a file irom

machine-code requires that the parameters in the table above are set ^ that

GETCHR points to the start of the string. Then JSR $ffco calls the OPEN routine

used by BASIC. IEEE routines themselves can be called, although the resu ting

code is not transferable between BASICs. For example, in BASIC 2 if a tile is

open, LDA #08/ STA $D4/ JSR $F0B6/ LDA #$63/ STA $D3/ JSR $F128 performs two

functions, firstly setting device #8 (the disk drives) to talk - a file is presumed to

be open - and outputting the secondary address 3. Now, JSR $F18C inputs a single

character along the IEEE bus. This method is used, with secondary address 15,

Programming the PET /CBM -382- 14: Effective 6502 programming

by 'Universal Wedge' for DOS, to read characters from the error channel. Commands
may be send to the disk using the error/command channel with secondary address
15, which of course has to be OPENed with OPEN 15,8,15 or some other logical

file number early in the proceedings. This routine illustrates the method:

LDA #$08
STA $D4
LDA #$6F
STA $D3
JSR $F0D5
LDA $D3
JSR $F143

LABEL LDX #$00
INC $77
LDA ($77, X)
BEQ EXIT
JSR $F19E
JMP LABEL

EXIT JSR F1B9

DEVICE NUMBER (PRIMARY ADDRESS)
STORE IT.

SECONDARY ADDRESS OF 15 (HAS HIGH NYBBLE = 6)

STORE IT, TOO.
SEND 'LISTEN'. (THIS IS BASIC 4. BASIC 1=$F0BA, BASIC 2=$F0BA)

.

LOAD SECONDARY ADDRESS
SEND IT; ALSO SET ATTENTION LINE HIGH (FALSE). THIS IS BASIC 4;

BASIC 1=$F12C, BASIC 2=$F128.

; LOAD NEXT CHARACTER IN BUFFER FROM $0200ff

.

ZERO BYTE MARKS END OF COMMAND STRING
HANDSHAKE THE BYTE OUT. (BASIC 1=$F167, BASIC 2=$F16F)
CONTINUE LOOP, OUTPUTTING CHARACTERS.

SEND 'UNLISTEN'. (THIS IS BASIC 4. BASIC 1=$F17E, BASIC 2=$F183)

.

Other features, notes, and bugs related to the IEEE bus.

[1] Functions not implemented by CBM. A large number of IEEE functions don't
exist on the CBM, but can be programmed along the lines already discussed. It

appears from Fisher and Jensen that any function can be programmed (pp.135 ff.).
Presumably this can only be accomplished after hardware modifications should a
function require the use of one of the interface lines not currently wired for the
purpose. These lines are the IFC line, the REN line, and the SRQ line, which is

wired for input only. IFC (interface clear) is a reset line; on switchon it is set
low as a hardware process. REN (remote enable) is grounded, hence 'true', to
retain CBM control over the devices. SRQ (service request) for the same reason is

not wired for output from the CBM, which is the controller.

[2] Bugs. BASIC 1, not surprisingly, has a number. LOAD, SAVE and VERIFY
don't work properly with disks (and have tape bugs too). The hardware connect-
ions to the PIAs and VIA cause some problems because of interactions. When the
screen scrolls $E811 was poked to blank the screen; this also sent an EOI out.
This bug was carried over into BASIC 2. BASIC 4, as we've seen, has a special
location to enable the time out feature to be switched off; 65 milliseconds was in
any case an arbitrary figure. If it is off, though, the stop key is the only exit
should a device not respond. All ROMs prior to BASIC 4 have a bug in their
UNTALK/ UNLISTEN routine ($FFCC), where ATN is not set low when #$5F , the
command for UNTALK, is sent. G Huckell (Compute! Jan. '81) wrote that a device
may become wrongly enabled, or single characters lost or treated as commands,
because of this. When using $FFCC, therefore, on earlier ROMs, it is advisable to
set ATN like this: LDA $E840

AND #$FB
STA $E840; ATN NOW LOW (TRUE)
JSR $FFCC

Huckell also wrote that CBM equipment is 'immune' from this problem. Probably
only those users who are trying to connect other IEEE equipment need concern
themselves with this. Relocation of some ROM routines into RAM may be the best
way of actually writing in the patch.

-383- 74; Effective 6502 programming
Programming the PET/CBM

14.8 PIAs and VIA.

These three chips control the keyboard, cassettes, screen IEEE 1,us ^wnM?"1
•

Both are 40-pin devices with two ports, invariably called A and B. The ports are

Sdependently controlled and (apart from certain small differences) almost
:

idenjKjJ. so

each chip can be considered to be made up of two similar halves. The PIA or 6520

(-Peripheral Interface Adapter'), is memory-mapped into four by es
,

J "*"h
J™

»"

nortq- the VIA or 6522 ('Versatile Interface Adapter') occupies 16 bytes, of which

toee'are plrfs two of them alternatives of port A. In all PET/ CBMs they occupy

these locations:

PIA 1 ... E810 - E813 ... 59408 - 59411

PIA 2 ... E820 - E823 ... 59424 - 59427

VIA ... E840 - E84F ... 59456 - 59471

rCRT controller in 12-inch screen CBMs ... E880 - E881].

The peripherals are not wired in a very systematic manner, as the section on the IEEE

bus Eed Before describing the various parts of these chips and explaining their

programming, I draw the reader's attention to the following program This is written

for bIsiC 2 and is a relocatable routine which loops, displaying eight-bit byte patt-

erns on the screen, with their addresses. The range of addresses is controllable by

changing "ne marked bytes. And different ROMs can be catered for: disassemble the

route and change the four ROM addresses from BASIC 2 to BASIC02, with the help

of Chapter 15:

E775 Print A as two nybbles.

FDCA Print two spaces.

FDCD Print one space.

FDDO Print carriage return.

[FFD2 and FFE1 are kernel

routines]

.

033A A9 13 20 D2 FF A9(H)85
0342 02 A9(30)85 01 A5 02 20

034A 75 E7 A5 01 20 75_E_7 20

0352 CaTd A0 00 B1 01 85 00

035A A9"30 06 00 90 02 A9 31

0362 20 D2 FF C8 CO 08 F0 09

036A CO 04 DO EC 20 CD..FD DO

0372 E7 20 PILED E6 01 A5 01

037A C9(1S)D0 C9 20 E1 FF B0

0382 B7 00

DISPLAY BYTES FROM $E840 - $E84F.

This breaks to the monitor on Stop; put #$60 into $0383 to return to BASIC. Theiloc-p

repeatedly homes the cursor and displays the VIA's contents, so the timers for exam-

ple can be seen moving. If the loop is removed and the routine prefixed by SEI it

can be incorporated into the interrupt to give a continual display of the chip s cont

ents. Either PIA can be watched when required.

14 8 1 The PIA. This chip, though simpler than the VIA, is nevertheless consider-

abiy'complex. Let's look at its features and the names and abbreviations given to each

of them. First, we have the two ports, A and B. These are 8 bits held in a single

bvte or reqister; the individual bits are referred to as PA to PA 7 in port A, and

PB0 to PB7 in port B. Each bit can be configured for either input or output; very

often all 8 bits are configured identically. Peeking or poking, and the machine-code

equivalent, is used to take data from the registers and write it into the registers

respectively. The registers may be called I IORA or I /ORB , input /output register A or

register B. Each of the two ports has two control lines; each occupies one pin, so the

ports have 10 bits each if these lines are used. Port A has control lines CA 1 and C'.A 2

,

and port B has CB 1 and CB2 . CA1 and CB1 are usable only for input; CA2 and CB2

may be defined either for input or output. The ports therefore occupy two bytes of

the memory-map; the other two bytes, which include flags to check the status of the

control lines, are called control registers. CRA ('control register A') and CRB (cont-

rol register B') correspond, unsurprisingly, to ports A and B respectively. When the

control register is appropriately set, its port no longer receives or sends data, but is

treated instead as a data direction register, the pattern of bits being loaded into it

defining its bits as inputs (when bit = 0), or outputs (when bit=l). DDRA and DDRB

aJeTe data direction registers for ports A and B. Their locations are the same as

toose of the ports; bit 2*in the control register determines whether he^register is

currently treated as a data direction register or a port. When bit 2 is *e™>
f»*

"

assumed and the value in the direction register when bit 2 rises to 1 defines which

wts wfl be treated as input and which as output until the system is redefined
.

Th s

arrangement ifeconom?cal,
P
if a little confusing. Note that on switching on he chip's

5SS mechanism sets all registers to zero, so that a data direction is assumed in

Programming the PET/CBM -384- 74: Effective 6502 programming

which all bits are inputs. This prevents hardware connected to the system from being
turned on with the computer. PIAs have two interrupt request lines, IRQA and IRQB.
These are normally high, but may be programmed to become low when a change is det-
ected in CA1, CA2, CB1, or CB2. All these interrupts, if they occur, can be dist-
inguished by software; in the PET/CBM, only one interrupt (corresponding to the
screen refresh) is enabled, so the system of flags in the control registers is not used.
At least, this is generally true, with the exception of tape operations, which detect
and control the cassettes by means of interrupts and the control-line CA1 on PIA1
and CB1 on the VIA. Interrupts can be defined to take place upon either of two types
of transition: 'active low' means that a transition from high (1) to low (0) triggers
the interrupt, and 'active high' means the opposite - that the relevant control-line
must rise from low (0) to high (1). If a triggering transition takes place, it is called
an active transition. Transitions in the other direction are not active. Even if the
interrupt request enable is off, a flag is set in the chip whenever an appropriate
transition happens; these flags cannot be turned off in the normal way, with a poke,
but instead a peek is used! Reading the data from the register (i.e. the port) resets
the interrupt flags. The control lines are intended for use in handshaking applications
and, as we'll see, the IEEE commands described in the previous section are of this
type. Note that the control lines are not present as bits in the PIA. The programmer
can tell the chip to set one or other control-line for output, and set it low or high,
or detect changes in an input, but there is no bit in either register which directly
reveals any control-line's current status. This is a rather confusing point until it is
understood

.

Having made a stab at a verbal explanation, let's look at the same material diag-
rammatically in the hope of reinforcing whatever learning may have taken place. We'll
consider PIA 1; PIA 2 is internally identical, but has different RAM locations and,
because it is connected differently, has other functions than those of PIA 1:

RAM ADDRESS: BITS: 76543210
E810 (59408) CA1 [INPUT] + CA2 [I/O] + £

E811 (59409)

E812 (59410) CB1 [INPUT] + CB2 [I/O] +

E813 (59411)

SZ3ES
l l l l l

I

1 LI 1 1 1 '

PORT A or DDRA

CONTROL REGISTER A

PORT B or DDRB

CONTROL REGISTER B

The ports. As we've seen, these are relatively straightforward. Bit 2 of either control
register switches its own port between a data direction register when the bit is zero,
to a port when the bit is 1. Example: how do we configure port A for output of all 8
bits? First, bit 2 of CRA must be set to zero; then #FF is stored in DDRA; then bit
2 of CRA is reset to 1. This program (or the BASIC equivalent) will do the trick:

LDA E811/ AND #FB/ STA E811/ LDA #FF/ STA E810/ LDA E811/ ORA #04/ STA E811*
In the same way #00 configures port A for input on all 8 lines, #AB configures bits
2,4, and 6 for input and the rest for output.

The control registers. We can ignore bit 2, which we now know about. The only other
function of the control registers is control of the lines CA1 and CA2 (by CRA) and
control of CB1 and CB2 (by CRB). CA1 and CB1 are for input only, and have one
fewer controlling bit than CA2 and CB2, 3 bits as opposed to 4. The diagram shows
how the seven bits are divided. Bits 7 and 6, the two high bits, are interrupt flags of
control - lines 1 and 2 respectively; the BIT instruction can test both, which helps
explain the fragmented layout.

Control lines as inputs. When bit 5 of a control register is zero, control-line 2
is configured for input. This option is not available for control-line 1, which is always
an input. We can deal with these situations together, because each line is controlled in
the same way when control-line 2 is an input. Remembering that bits 6 and 7 are flags,
not controllable by direct poking of data, we have only bits 0,1,3, and 4 left. Of
these, bits and 1 control line 1, and bits 3 and 4 control line 2. Their effects are
to set the direction of active transition, and to enable or disable the interrupt re-
quest line. (The interrupt flags are always set on active transition, but IRQ need not
be). This table summarises the situation:

BIT NUMBER: 1 [CTRL-LINE1] or 4 [CTRL-LINE2] [CTRL-LINE1] or 3 [CTRL-LINE2]

BIT SET TO 0:

BIT SET TO 1:

Sets active transition negative
Sets active transition positive

Disables IRQ output
Enables IRQ output

Note: this program is an illustration only; it may be inadvisable to reconfigure PETs.

-385- 14: Effective 6502 programming
Programming the PET/CBM

Control-lines CA2 and CB2 as outputs. When bit 5 of either control register is

set high, CA2 or CB2 respectively (or both) become configured for output. The two

ports are now somewhat asymmetrical if handshaking is used. If it isn't, both ports

behave identically. Let's look at this situation first:

BIT 5=1 [CTRL-LINE 2 OUTPUT] and BIT4=1 ['MANUAL OUTPUT' WITHOUT HANDSHAKING]

Now, BIT 3 HIGH SETS CONTROL-LINE 2 HIGH;

BIT 3 LOW SETS CONTROL-LINE 2 LOW.

This is the so-called manual output, where CA2 or CB2 can be set high or low as the

programmer pleases.

Output with handshaking is the most complex option:

BIT 5=1 [CTRL-LINE 2 OUTPUT] and BIT 4=0 [OUTPUT WITH HANDSHAKING]

Now, control-line 1 is configured (as always) for input, and control- line 2 for output.

It is this which makes handshaking possible, the input bringing a signal from the

device, and the output line sending a signal. The port itself can be used either to

read or write, and CA2 handshakes on reading, CB2 on writing. That is, CA2 is used

with LDA and similar instructions, CB2 with STA-type instructions. The sequences are

these

:

BIT 3 LOW with CA2: CA2 is now controlled by two events:

(i) CAl active transition sets it high,

(ii) Read operation sets it low.

BIT 3 LOW with CB2 : CB2 is controlled by two events:

(i) CB1 active transition sets it high,

(ii) Write operation sets it low.

BIT 3 HIGH: Causes 'pulse output', CA2 or CB2 going low for one cycle only after

read or write operation. (This pulse may be too short for some uses)

Before looking at examples from the PET, the reader might like to examine this summ-

ary diagram of the PIA, which includes most of the features mentioned. If it seems

rather confusing, please don't blame me!

7 6 5 4 3 2 1

CAl active
transition

flag

l=on
0=off

CA2 active
transition

flag

l=on
0=off

CA2
direction

CA2 Control Port A CAl Control

Hand-
shake=0

on Read=0
Pulse = 1

control:
DDRA=0
I0RA=1

Active:
High=l
Low =0

IRQ on = 1

IRQ off=
l=out

Manual =1
CA2 high=l
CA2 low =0

0=in
Active:
High=l
Low =0

IRQ on = 1

IRQ off=

PORT A
or

DDRA.

CONTROL
REG-

ISTER A.

Port B and DDRB are identical, except that CRB = xxlO Oxxx implies read handshake.

Examples. We can follow the reset vector from ($FFFC) in ROM to find how the PET/

CBM initialises its PIAs. Diagrams on the next page show how the ports are connected,

and the uses of the control lines, and these may be compared with the initialisation

logic to see how each PIA works. Considering PIA 1 first, ignoring other I/O chips:

RESET . . . ALL REGISTERS NOW HOLD . .

.

LDA #0F
STA E810 ;THIS IS CURRENTLY DDRA, SO WE HAVE FOUR INPUTS AND FOUR OUTPUTS

LDA #3D
STA E813 ;DDRB IMPLICITLY LEFT WITH #0, I.E. ALL INPUTS. CONTROL REGISTER

;B ENABLES CB1 INTERRUPT WITH ACTIVE LOW, AND SETS CB2 HIGH

BIT E812 ; SEEMS TO BE INTENDED TO CLEAR INTERRUPT FLAGS IN E813

LDA #3C
STA E811 ; SWITCHES TO PORT A FROM DDRA; DISABLES INTERRUPTS; SETS CA2 HIGH

Thus, bits 4-7 in port A are for input, and bits - 3 for output; this last batch of

bits is used with port B (configured for output) when reading the keyboard during

Programming the PET/CBM -386- 14: Effective 6502 programming

the interrupt processing sequence. Note that an interrupt is enabled on a CB1 trans-

ition. This is the interrupt which drives the keyboard processing. Now let's look at

the second PIA, again ignoring the other chips' initialisation:

RESET . . . ALL REGISTERS NOW HOLD . .

.

LDX #FF
STX E822

LDA #3C
STA E821
STA E823
STX E822

;THIS IS CURRENTLY DDRB FOR THIS CHIP, SO IT'S CONFIGURED FOR
; OUTPUT ON ALL 8 BITS

;DDRA IMPLICITLY LEFT WITH INPUTS. CA2 IS SET FOR OUTPUT & HIGH
;CB2 IS SET FOR OUTPUT, AND IS SET HIGH
;PUT #FF AS OUTPUT OF PORT B, BECAUSE IEEE 'LOW IS 1 AND V.V.

PIA 2 is used only by the IEEE bus. Its programming in ROM reflects this: the input
port (A) is read and EORed with #FF to flip its bits, and conversely data is reversed
and stored in the output port (B). The output control lines CA2 and CB2 (=NDAC and
DAV out) are set alternately high and low by storing #3C and #34 into their control
registers, setting bit 3 on and off. PIA 1 has more variety: a search program (e.g.
Hunt from Supermon) can track down the forty or so occurrences of ROM calls to add-
resses E810-E813, revealing tests for input bits in port A, keyboard reading routines,
tape routines which disable the CB1 interrupt and later reenable it, and some CA2
outputs which are relics of BASIC 1.

PIA 1

E810 59408 PORT A

E811 59409 CONTROL
REGISTER

A

E812 59410 PORT B

E813 59411 CONTROL
REGISTER

B

Diag

.

sense
CA1
trans 'n

USA

CBl
trans 'n

flag

INPUTS
IEEE
EOI in

[CA2
trans 'n

flagj_

(

[CB2

trans 'n

flag]

Casse
#2

tto

CA2=out; >ut to bl ank the

[old PET^ only)screen
=E0I

Contents
Usually,

CB2=outbut
#l's motor:

sense
#1

Keyboard row (0-9)

out (CBMs)

INPUTS
of

all bit

to
1=

keyboard
set, o

ssette

, 0=of

f

-OUTI UTS

Port A
or DDRA
switch

ow
all bull one)

Port B

or DDRB
switch

CAl=cass4tte #1

read line

CBl=scre
trace li

re-
in

E820 59424 PORT A

PIA 2

E821 59425 CONTROL
REG'R A

E822 59426 PORT B

E823 59427 CONTROL
REG'R B

CA1
trans 'n

CBl
trans 'n

[CA2
transn]

-INPUTS
iAput buff ler for ttie IEEE

[CB2

transn]

CA2 line = NDAC

-OUTPUTS
Output buffler for t he IEEE

CB2 line = DAV out

bus

out
Port A/
DDRA

bus
Port B/
DDRB

CA1=IEEE

CB1=IEEE

ATN in

SRQ in

14.8.2 The VIA. This input-output chip is another 40-pin device, which includes
all the PIA's features as a subset of its own. As we shall see, the arrangement is a
little different. The PIA is a predecessor of the VIA, so if the previous section of the
chapter has been understood you will be well equipped to tackle the rather greater
complexities of the VIA. All this is something of an electronic engineer's specialism,
and is not needed in most programming unless it's essential to write or decipher I/O
routines. The usual sources of information on chips of this sort are free data sheets
from the manufacturer, and in fact many books on the subject quote from these with
little attempt at comprehensible explanation. I've tried to present all the important
aspects of the VIA in a readable form, starting with a description of the extra regis-
ters possessed by the chip, a diagram of the PET/CBM's individual implementation of
them, and finally program examples showing how each type of facility is used. The
examples are in machine-code: BASIC equivalents are easily written, usually by direct

conversion into peek and poke commands operating on decimal addresses.

Programming the PET/CBM -387- 74: Effective 6502 programming

The VIA has two ports, port A and port B, each of which has a separate data direct-

ion register. Port A can be written or read or both from two separate locations; there

are two port As. The same data appears in each; the difference is that one has a

handshake effect with CA2, the other having no such effect. Rather confusingly, port

B appears first in the RAM addresses, followed by the handshaking port A. CA1 and

CA2 are control lines for port A, CB1 and CB2 for port B, and, as with the PIA, the

CA1 and CB1 lines are always input lines, while CA2 and CB2 may be configured tor

either input or output. Note that every PIA and VIA has Its own control lines; the

similarity of the names should not (although it might) cause you to think that the

name 'CA1' say refers to a unique wire somewhere.

The VIA occupies 16 RAM addresses, 12 more than the PIA. As we ve seen,

there is an extra 8-bit port and two data direction registers to account for 3 new ad

dresses. There are also 6 registers occupied by timers, 1 by the shift-register arid

4 by the control registers, which between them include the PIA's CRA and CRB. We 11

see very shortly what these registers do and how they do it, but let's first look at

familiar parts of the chip, which resemble the PIA. The ports and data direction reg-

isters are similar (but do not need a bit to switch from one to the other), as are the

control lines. On reset, values are set zero, and the usual conventions apply with

respect to bit settings: A bit value of 1 (a) sets a line high, (b) configures a line for

output, (c) defines an active transition as positive (i.e. to 1), (d) indicates that an

active transition has occurred, or (e) enables an interrupt to happen when a line

receives an active transition. Zero bit values of course mean the opposite. As in the

PIA flags which show transitions cannot be set by pokes, but instead are set only by

hardware transitions and cleared only by peeking or poking certain related locations.

The user port (the central connector at the back of the machine) is connected

to the VIA: pin B (on the underside, second from the left) is CA1; pins B - L are

port A- and pin M is CB2. CA1 is an input line which may be used to handshake with

port a' which is the reason for its inclusion. CB2 is connected to the shift register,

and can be used to deal with serial processing. Of the other control lines, CA2 is

responsible for the graphics or lower-case switch in the character-generation, and

CB1 is used to signal input from cassette #2.

Taking the new features of this chip in sequence, we have the following:

Timers. The VIA is equipped with two 16-bit timers. These are timers 1 and 2,

or Tl and 72. Each takes up two 8-bit registers. Each is set for input on power-

on, in which mode counting takes place; when a value is loaded into either timer it is

set for output, decrementing once every clock-cycle. A maximum cycle of about l/15tn

second (from #FFFF to #0) can be timed. When a timer reaches zero an interrupt flag

is set, but an interrupt occurs only if it is enabled. Timer Tl has a special feature,

namely a latch. This is a second 16-bit register which allows a value to be stored

until it is moved to the timer proper. When Tl reaches zero, the latched value is re-

loaded and the process repeated, so the time-intervals between timing-out are variable

within a large range, though with a l/15th second maximum. In this way, Tl takes up

4 bytes and T2 two. The rule to remember is that reading the low byte of either

timer (but not the latch) clears its own interrupt flag; and writing to the high byte

clears the flag and starts the timer counting. This means that sequences of interrupts,

and one-shot interrupts can be used, and that new timer values must be loaded with

the low-byte first if exact timing is required, e.g. a lapse of #1234 microseconds

exactly. ._. ,, ~ A , -
Ports A and B can also be latched, so that on an active transition of CA1, the

value in port A is retained indefinitely (or until the next active transition on that pin)

and similarly for CB1 and port B. This is useful of course in many input applications

where it may be impracticable to continually read the value at a port.

The shift-register. This 8-bit register is connected to CB2. On command, the

shift register performs 8 shifts, having the effect either of moving out 8 bits singly to

CB2, or of inputting 8 bits from CB2 one at a time. The command is analogous to ASL,

where CB2 is equivalent to the carry flag and the shifted location (say A) corres-

ponds to the shift register; if this is repeted eight times, the byte contained in the

shift register has been output in serial form, one bit at a time. There isn't a command

quite analogous to shifting in; LSR takes in a zero bit. ,.„,.*«->.*
The shift register can be timed by T2 (see the music example in Chapter 9), and

at the same rate as the 6502, using the 'phase two clock', 42. Alternatively another

external clock may time it. This is therefore a versatile register, which - with suitable

hardware expertise - extends the user port's usefulness a great deal.

Programming the PET /CBM -388- 74: Effective 6502 programming

Control registers of the VIA.

The Auxiliary Control Register (ACR) controls the timers, the shift register, and the

latch status of ports A and B. The diagram reflects the conceptual arrangement of bits

7-0 across the page. The shift register control has three bits, and therefore eight

combinations, which explains its apparently excessive prominence. (Note: Timer 1 has
effects on bit PB7 of port B; I've ignored them here for simplicity, since they aren't

used and are unlikely to be).

ACR7 ACR6 ACR5 ACR4 ACR3 ACR2 ACR1 ACRO

E84B 59467 TIMER 1 CONTROL TIMER 2

CONTROL
SHIFT REGISTER CONTROL PORT B

LATCH
PORT A

0=PB7 0=ONE
LATCH

UNUSED SHOT 0=ONE 000=SHIFT REG. DISABLED 0=DIS- 0=DIS-
l=CONTIN- SHOT 001=SHIFT IN BY TIMER 2 ABLED ABLED

UOUS l=COUNT 010=SHIFT IN BY 02 ^EN- ^EN-
SET NO. 011=SHIFT IN, EXT. CLOCK ABLED ABLED
OF PB6 100=FREE RUN BY TIMER 2 ON CBl ON CA1
PULSES 101=SHIFT OUT BY TIMER 2 TRANSN TRANSN

110=SHIFT OUT BY 02 (IN/ (IN)
111=SHIFT OUT, EXT. CLOCK OUT)

The Peripheral Control Register (PCR) controls the operating modes of the four
control lines CA1, CA2, CBl, and CB2. CB2 and CA2 are allocated three control bits
in this register. CBl and CA1 are allocated one each. This register therefore is very
like both CRA and CRB of the PIA, but without the interrupt flags (which have been
moved to the interrupt flag register (below) and the active transition bit for CA1; the
switch between DDR and Port is omitted. The interrupt enable flags are also moved,
to the interrupt enable register. This means that CA2 and CB2 have an extra bit, and
its only effect is on the clearing of the interrupt flag, which with pattern 0x0 may be
cleared by reading or writing the port, but with 0x1 is cleared only by writing bit 1

into the correct bit of the interrupt flag register.

E84C 59468

PCR7 PCR6 PCR5 PCR4 PCR3 PCR2 PCR1 PCRO

CB2 CONTROL CBl
CONTROL

CA2 CONTROL CA1
CONTROL

Direct-
ion:

l=OUT

Hand-
shake^

on Write
=0

Active
transn:

High=l
Low =0

Direct-
ion:

l=OUT

Hand-
shake^

on Read
=0

Active
transn:

High=l
Low =0

Manual=l
CB2 hi=l
CB2 lo=0

Manual=l
CA2 hi=l
CA2 lo=0

0=IN
Active
High=l
Low =0

Clear
IFR =1

IFR/ORB=C
0=IN

Active
High=l
Low =0

Clear
IFR =1

IFR/ORB=0

The Interrupt Flag Register (IFR) and the Interrupt Enable Register (IER).
These registers are symmetrical with respect to each other and can be considered to-
gether. The first indicates whether an active transition has occurred, and, if so,
which VIA device caused it. It also signals whether an interrupt took place - if the
corresponding interrupt was not enabled by the IER, the flag, though set, won't
cause an interrupt. IER7 controls the function of the rest of IER: when 0, each bit

set to 1 clears its corresponding interrupt enable: when IER7=1, each bit set to 1 sets
its interrupt enable bit.

IFR7 IFR6 IFR5 IFR4 IFR3 IFR2 IFR1 IFR0

E84D 59469 1=IRQ
0=NO IRQ

TIMER 1

OUT
TIMER 2

OUT
CBl
TRANSN

CB2
TRANSN

SHIFT
REGISTER

CAl
TRANSN

CBl
TRANSN

IER7 IER6 IER5 IER4 IER3 IER2 IER1 . IER0

E84E 59470 1=1 ENABLES [TIMER 1

0=1 DISABLES
|

TIMER 2 CBl CB2 SHIFT RGB CAl CA2

Programming

E840 59456

E841 59457

£842 59458

E843 59459

E844 59460

E845 59461

E846 59462

E847 59463

E848 59464

E849 59465

E84A 59466

E84B 59467

E84C 59468

E84D 59469

E84E 59470

E84F 59471

the PET/CBM -389- 14: Effective 6502 programming

PORT B

PORT A*

DDRB (values

on set-up shown)

DDRA

TIMER 1 LO

TIMER 1 HI

Tl LATCH LO

Tl LATCH HI

TIMER 2 LO

TIMER 2 HI

SHIFT REG'R

DAV
in

NRFD
in

Retrace
in,

Tape#2 Tape
motor2 data out

ATN
out

NRFD
out

NDAC
in

USER PORT with CA2 handshake

USER PORT DATA DIRECTION REGISTER

(set to #FF on system power-on)

ACR
#00 on

PCR (

#0E on
IFR
#00 on
IER
#80 on
PORT

(set to

power- on)
set #0C or

power-on)
(set to

power-on)
(set to

power-on)
A*

TIMER 1

CONTROL
TIMER

2

CONTROL

CB2 CONTROL3

(USER PORT PIN M)

CB13

CNTRL

IRQ
on/Off

Tl

INT
enable
disable

Tl

T2
INT

T2

SHIFT REGISTER
CONTROL

PORT B

LATCH

CB1
INT

CB1

CA2 CONTROL3

(GRAPHICS MODE)

CB2
INT

SH-REG
INT

CB2 SH-REG

CA1
INT

CA1

PORT A
LATCH
CA1 3

CNTRL
CA2
INT

CA2

USER PORT without CA2 handshake

E84F (59471) is the preferred user port register, since CA2 controls screen graphics.

2 The motor is on when this line is low, and off when it is high.

3CA1 is connected to pin B of the user port. Pins B- L correspond to port A, which is

invariably E84E. CB2 (connected to the shift-register) also connects with pin M of the

user port; square-wave tones (see Chapter 9) use these facts. CB1 signals input from

cassette #2. CA2 controls screen graphics: it is configured for output, and, when low,

gives lower-case charcters and others. When high, the mode is upper case/ graphics.

Implementation of the VIA in the PET/CBM system

Examples of VIA programming.

A PET/CBM's VIA contents typically resemble the

diagram (right). Note that the act of peeking some

registers resets the corresponding interrupt flag if

it is set, so IFR may not be accurate. Port A is

configured for input, as it is on switching on.

Port B is configured for output in the usual way,

except that bit 4 is set for output, to enable fast-

screen printing with BASIC <4 only. Both timers

are running; Tl has been set to #FFFF. The shift

register holds #FF, in place of the usual #0, hav-

ing been used for square-wave music. It is at

present disabled: ACR is #0, its normal value. PCR
holds decimal 12, so the machine is in upper case/

graphics mode. No use is being made of CB2. IFR

shows that no IRQ has" taken place, and no flags to

denote transitions on any of the 7 lines are set, but

these would in any case have been cleared by the

program, which reads from E840 through E848. IER

shows that no transitions will generate interrupts.

7654 3210 BIT NUMBER

E840 1001 1110 PORT B

E841 1111 1111 PORT A
E842 0011 1110 DDRB

E843 0000 0000 DDRA
E844 1100 1100 Tl LOW
E845 1111 1111 Tl HIGH
E846 1111 1111 TIL LOW
E847 1111 1111 TIL HIGH
E848 0010 0101 T2 LOW
E849 1101 0000 T2 HIGH
E84A 1111 1111 SHIFT REG
E84B 0000 0000 ACR
E84C 0000 1100 PCR
E84D 0000 0000 IFR
E84E 1000 0000 IER
E84F 1111 1111 PORT A

TYPICAL VIA CONTENTS

Programming the PET /CBM -390- 74: Effective 6502 programming

Programming the ports Port B handles a great deal of IEEE character input and out-

put, in addition to some tape handling. 7 bits are therefore initialised on power-on,
and there is little reason to change them via DDRB. Bit 5 can be converted to output
mode; in BASICS < 4 this accelerates screen writing, because screen retrace is no long-
er awaited before a character is poked into screen RAM. Port A is unused by the CBM,
although some hardware (e.g. Compu /think) uses it. In principle it is easy to use: the
eight bits of port A are connected to the external device, and CA1, also on the user
port, signals data transmission by its transition from (say) low to high, which, when
detected by the PET /CBM, reads the data from the port, perhaps having latched it.

Conversely, CB 2 can be configured for output and used to signal that data is ready at

the PET/CBM's port. These hardware topics are not within the scope of this book.

Programming the timers Both timers are used by the PET /CBM (although timer l's

latch is ignored). Timer 2 is exclusively used with tape, to time the reading and writ-
ing of bits. Timer 1 is used to time out the IEEE response (before setting ST) and
also with tape, although not to such an extent as timer 2. (Both timers also contribute
to RND with argument zero, but this is rather a marginal use. It does not apply to
BASIC 1, which has the wrong addresses for the purpose). There is one more func-
tion, namely the timing of the screen-scroll delay in BASICs<4, which uses timer 1 in
this wav

:

LDA #FE ;SETS HIGH PART OF TIMER 1 TO #FE, IGNORING LOW PART, WHICH
LDY #08 ; IS SET AT #FF ALREADY . .

.

DELAY STA E845 ;... AND ALSO (i) CLEARS Tl INTERRUPT FLAG, (ii) STARTS TIMER 1

L BIT E84D ; COUNT, IN ONE-SHOT MODE. Tl INTERRUPT IS DISABLED.
BVC L ;TEST IFR FOR BIT 7 ON, I.E. Tl TIMED OUT
DEY
BNE DELAY ; PERFORM 8 LOOPS. AT EACH LOOP THE TIMER RESTARTS.

This was dropped in BASIC 4, as it affects the IEEE bus; an ordinary nested set of
loops replaced it. It illustrates these points about VIA timers:

(i) To load a value into a timer, load the low byte first, then the high byte.
When this second step occurs, both bytes are transferred from the 'timer' to the 'counter'
within the chip, and the countdown begins.

(ii) Starting the timer clears the timer's interrupt flag
(iii) Reading the low register (not performed in the example) also clears the flag.
(iv) Tl's latch enables Tl's value to be read at any time.

Note that the delay loop takes about 255*8*256 usees = I second or so. If LDA #x/
LDY #y/ JSR DELAY is used, variable pauses from 16 seconds to thousandths of a second
can be generated.

BASIC can be timed, provided the operations aren't slower than about l/15th
second: POKE 59460, 255 :P0KE59461, 255: : PRINT PEEK(59460) + PEEK(59461) - K
shows the method, where K is set to print 0. Any BASIC inserted between the colons
will be timed by the system's clock and is therefore accurate to 1 microsecond. The
value 'K' varies with spaces in the BASIC line.

Programming the shift register We've seen (Chapter 9) how the CB2 pin of the user
port can be used to generate tones. Now we can investigate the rationale for this. In
BASIC, this gives a tone: POKE 59466, X:POKE 59467,16: POKE 59464, T: POKE 59465,0
where XOO and X<>255. T controls the pitch. 59466 is the shift register. This is load-
ed with a bit pattern, and the shift register is enabled in free-running mode, each bit
shifting on T2 time-out. Finally, timer 2 is started, after loading its low byte with a
timing parameter. CBM ROM does not make use of this register.

Programming interrupts Interrupts in Tl and T2 are used in IEEE handling and tape;
CB1 interrupts are also used with tape. CBM ROM does not use interrupt signals from
CB2, the shift register, CA1, or CA2. We'll look at two examples here; (i) Single-step,
and (ii) using a timer to control the keyboard. To program the IER, note that IER7=0
means that all high bits disable the corresponding interrupts (if they are set). For ex-
ample, lda #7F/ sta E84D disables all seven interrupts. On the other hand, IER7=1
means that high bits enable interrupts, so lda #co/ sta E84D enables Tl's interrupt.
An IRQ will now be generated when Tl times out. (i) Single-step (e.g. Supermon's)
enables T2's interrupt, turns off the screen interrupt (by DEC E813), alters IRQ's vec-
tor, and loads T2 with 46 decimal. This value is calculated to time out just as the next
machine-code instruction starts. When it does, the interrupt awaits completion of the
command, then jumps to the new IRQ address, which first calls a tape routine to reset
the timers and screen interrupt to normal, before disassembling the instruction. We
can change the rate of keyboard scan, the internal clock, and the cursor flash rate in
a similar way, using Tl to generate regular interrupts, if the interrupt processing
sequence is moved to RAM and references to E813 deleted (otherwise the screen inter-
rupt also runs). The timer must either be in free-running mode, or restarted with
each interrupt.

Programming the PET/CBM -391- 15: CBM BASIC ROMs

CHAPTER 15: INDEX TO CBM BASIC ROMS AND RAM STORAGE

PET/CBM MEMORY MAP

RAM ROM

t TT
8 K
CBM

Pages 0-15:

16

CBM

32 K
CBM +

K 4

Screen RAM: 40,

80 columns

9

1 A

X 4

2 B

3

1

C

L
*

4

T 1

6502

(

r

D

5

E

6 h F

7

H E
- 8-

Spare ROM

sockets

BASIC 4

BASIC 1

and
BASIC 2

PIAs, VIA, CRT
controller (80 cols'only)

The diagram shows how the CBM's addressable memory of 64K bytes is

partitioned between RAM and ROM and hardware input /output .
Each full-sized

block corresponds to 4K (4096) bytes; the blocks are therefore 0000 - 0FFF 1000-

1FFF and so on up to F000 - FFFF. Machines with less than 32 K have RAM space

available, although increasing the RAM may not be possible or may require the same

RAM slots to take larger capacity chips, with hardware modifications (i.e. surgery

on the address lines). Spare ROM space is however indicated by spare sockets.

These of course are often occupied by 'toolkit '-type ROMs or EPROMs, stored software

such as word processors, industrial software in EPROM, and non-CBM devices ot

various types - disks, video boards.

A description of the BASIC ROMs would be incomplete without mention of the

storage areas, buffers, flags and routines which BASIC inevitably needs during its

operation. With CBM equipment, this means pages zero to three, stretching trom

the taportant zero page to the start of BASIC storage in RAM. The ROMs are very

XZto each other to many respects, of which absolute addresses of ROM routines

is the major exception. The sequence on the following pages is based on BASIC 4.

The guide (next page) showing how the working storage and ROMs are laid out

should make the location of most routines fairly easy.

Programming the PET /CBM -392- 15: CBM BASIC ROMs

PET /CBM MEMORY MAP: THE FIRST FOUR PAGES

BASIC 4 (80 COL) BASIC 2 BASIC 1

0000 _USR jump address-
String pointers
Numeral pointers
BASIC pointers

Calculation work area As BASIC 4

Input buffer for BASIC
lines, direct commands,
INPUT, GET

0080 GETCHAR routine
BASIC flags

RND/ TI/ int. vectors/ ST
BASIC pointers

Keyboard/ screen/ IEEE
Variables processing
Calculation work area

Tape parameters and flags
CHRGET routine

Window parameters Screen line table

0100
Screen and file data

ASCII conversion area"

Tape correction/ check area

T
0180

Stack As BASIC 4

0200

0280

Input buffer for BASIC lines,
direct commands, INPUT, GET.

-Tables: logical file #/
-device #/ sec. addr./ keybd.
"buffer.

Clock/ keyboard buffer/
screen/ int. vectors
Screen line table

-As BASIC 4

T
Cassette buffer #1

0300

Tables: logical file#/
-device #/ sec. addr.—
Tnpr> flngf.

Cassette buffer #1

-DOS command string buffer
and Cassette buffer #2 T~

0380

0400

Cassette buffer #2

Most of BASIC 4 is identical to BASIC 2; BASIC 2 is fairly similar to BASIC 1,

except for the input buffer's move from zero-page to $0200, with the consequent
changes in most pointers. Major differences between BASIC 4 and BASIC 2 are (i) the
cassette buffer for tape #2 is no longer used solely by tape operations, but by the
new disk commands too, and (ii) 80 column BASIC 4 replaces the table of screen line

pointers with screen and keyboard parameters. BASIC 4 (40-col) and the 80-column
version differ in ROM E000-E7FF, dealing with screen and keyboard processing.

Programming the PET/CBM -393-

BASIC1 BASIC2 (&4) BASIC4

75: CBM BASIC ROMs

PACE 0: RAM $0000-$00FF

0-2 0-2

$5A 90 3

$5B 91 4

$5C 92 5

$5D 93 6

$5E 94 7

$5F 95 8

$60 96 9

$61 97 $0A 10

$62 98 $0B 11

$63 99 $0C 12

$64 100 SOD 13

$03 3 $0E 14

$06 6 $0F 15

$07 7 $10 16

($08) 8-9 ($11) 17-18

$65 101 $13 19

($66) 102-103 ($14) 20-21

$68-$70 $16-$1E
104-112 22-30

($71) 113-114 ($1F) 31-32

($73) 115-116 ($21) 33-34

$75- $79 $23-$27
117-121 35-39

($7A) 122-123 ($28) 40-41

($7C) 124-125 ($2A) 42-43

($7E) 126-127 ($2C) 44-45

($80) 128-129 ($2E) 46-47

($82) 130-131 ($30) 48-49

($84) 132-133 ($32) 50-51

($86) 134-135 ($34) 52-53

($88) 136-137 ($36) 54-55

($8A) 138-139 ($38) 56-57

($8C) 140-141 ($3A) 58-59

($8E) 142-143 ($3C) 60-61

($90) 144-145 ($3E) 62-63

($92) 146-147 ($40) 64-65

($94) 148-149 ($42) 66-67

($96) 150-151 ($44) 68-69

($98) 152-153 ($46) 70-71

($9A) 154-155 ($48) 72-73

$9C 156 $4A 74

($9D) 157-158 ($4B) 75-76

$9F-$A2 $4D-$50
159-162 77-80

$A3-$A5 $51- $53
163-165 81-83

$A6-J&AB $54- $59

166-171 84-89

($AC) 172-173 ($5A) 90-91

($AE) 174-175 ($5C) 92-93

$B0-$B5 $5E-$63
176-181 94-99

$B6 182 $64 100

$B7 183 $65 101

$B8- JBD $66-$6B
184-189 102-10

USR jump instruction (default prints 'illegal quantity err-

or'). holds #4C=JMP; ($01)=jump address

Offset pointer when scanning for end of statement or line

Quotes marker. Is zero when not in quotes.

Input buffer pointer/ number of subscripts of an array

Default DIM flag/ array name initial/ AND, OR flag

Type of variable: #FF=string, #00=numeric

Type of numeric variable: #80=integer, #0=floating point

Flag used in DATA/ LIST/ garbage collect/ memory
Flag used for subscripts/ FN DEFinitions

Flag with INPUT=#0, GET=#40, READ=#98
ATN sign/ comparison evaluation flag

$0D 13 DS$ length in BASIC 4 only

($0E) 14-15 DS$ pointers in BASIC 4 only

Flag to suppress PRINT or PRINT* when negative

$10 16 File number of current I/O device (when
non-zero suppresses INPUT prompt etc)

Terminal width (unused - carried over from teletype)

Width of source (unused - carried over from teletype)

2-byte integer address computed for GOTO, SYS, GOSUB
Index to next string pointer

Pointer to descriptor stack for string processing

Descriptor stack of three temporary string pointers of

the form length then 2-byte pointer

Pointer e.g. for memory-move/ for string in memory
Pointer e.g. for number movements
Intermediate product area for calculation

Pointer to start of program (usually $0401 = 1025)

Pointer to start of variables/ end of program

Pointer to start of arrays/ end of variables

Pointer to start of free RAM/ end of arrays

Pointer to present lower limit of dynamic string storage

Utility string pointer to reserve space for new string

Top-of-memory pointer (e.g. $8000 on power-on with 32K)

Current linenumber/ highbyte=#FF means direct mode
Previous linenumber
Pointer to statement for CONT
Linenumber of current DATA line

Pointer to current DATA value (starts at $0400)

INPUT, READ, and GET vector to save CHRGET
Current variable name, first character first

Pointer to variable in RAM; points just after name
Holds variable name for FOR... NEXT/ WAIT parameters &c

Save Y-register/ new operator/ operator pointer etc

Comparison symbol check ; bits 0,1,2 are <,=,>

Pointer to temporary storage in RAM for FN DEF, TAN.&c
Pointer to string, length, and garbage collect constant

Jump vector for function evaluations, consisting of #4C

(=JMP) followed by arithmetic function address

Temporary pointers (e.g. in memory move) plus numeral

storage of intermediate results ('Floating point Acc'r #3')

Numeric pointer e.g. in ASCII conversion, series eval'n

Pointers e.g. in LET, search for linenumber

Floating-point accumulator #1 (most results of evaluations

are left here). Exponent, 4 mantissas, and sign bytes

Series evaluation counter of number of items in series

Overflow byte on normalizing floating-point accumulator #1

Floating-point accumulator #2 (used with FPAcc.#1 in eval-

uation of products, sums, differences, etc. EMMMMS

Programming the PET/CBM

BASIC1 BASIC2 (&4)

-394- 15: CBM BASIC ROMs

$BE 190
$BF 191

($C0) 192-193

$C2-$D91 94-217

$C8 200

$6C 108

$6D 109
($6E) 110-

$70- $87 112-

111

135

$76 118

$DA-$DE $88-$8C
218-222 136- 140

$0200- $0202 $8D-$8F
512-514 141- 143

($0219) 537-538 ($90) 144- 145

($021B) 539-540 ($92) 146- 147

none ($94) 148- 149

$020C 524 $96 150

$0203 515 $97 151

$0204 516 $98 152

($205) 517-518 ($99) 153- 154

$0209 521 $9B 155

$020A 522 $9C 156

$02OB 523 $9D 157

$020D 525 $9E 158

$020E 526 $9F, 159

$02ID 541 $A0 160

$021E 542 $A1 161

$021F 543 $A2 162

$0220 544 $A3 163

$0221 545 $A4 164

$0222 546 $A5 165

$0223 547 $A6 166

$0224 548 $A7 167
$0225 549 $A8 168
$0226 550 $A9 169
$0227 551 $AA 170

$0228 552 $AB 171

$0260 608 $AC 172

$0261 609 $AD 173

$0262 610 $AE 174

$0263 611 $AF 175

$0264 612 $B0 176

$0265 613 $B1 177

$0266 614 $B2
$B3

178
179

$E9 233 $B4 180

$0268 616 $B5
$B6

181

182

$026C 620 $B7
$B8

183
184

$026F 623 $B9 185

$0270 624 $BA 186

($0271) 625-626 ($BB) 187- 188

$0273 627 $BD 189

$0274 628 $BE 190

$0275 629 $BF 191

$0276- $0277 $C0-$C1
630-631 192- 193

$0278 632 $C2 194

$0279 633 $C3 195

BASIC 4

Sign comparison between FPAccs: #0=equal, #FF opp.
Rounding byte for floating-point accumulator #1

Cassette buffer length/ series eval'n/ VAL etc. pointer

BASIC'S CHRCET routine which loads A with the next

BASIC character (not space) and sets flags:

C clear if ASCII numeral 0-9; Z set if end-of-line or :

CHRGOT entry point loads A with current BASIC char-

acter and sets flags as CHRCET does.

RND number seed and subsequent values; always the

previous random number generated
3-byte jiffy clock arranged most significant through
least significant bytes
IRQ RAM vector, usually E685/ E62E/ E455
BRK RAM vector, usually 0000/ FD17/ D478
NMI RAM vector, usually — /C389/B3FF to print 'ready'

Status byte ST, from which ST is computed
Which key pressed? (Interpretation may vary with
keyboard decoding). #FF=no key
Shift key pressed? #0 if no, #1 if yes
Low and high bytes of 'correction clock' (slows TI)

Contents of E812 for testing Stop key etc

Tape timing constant
Flag for LOAD or VERIFY: #0=LOAD, #1=VERIFY
No. of characters currently stored in keyboard buffer
Screen reverse flag: #0=normal, #12=reversed
IEEE output flag: #FF =character awaiting output
Count of characters of line input from screen
Not used
Cursor row [also $F5/ $D8]
Cursor column [also $E2/ $C6]
IEEE byte buffer for output (#FF means no character)
Copy of keypress checked by interrupt so that a

constant keypress registers once only. #FF=no key
Cursor on /off flag: #0=on, other value = off

Countdown each interrupt for cursor flash

True character at cursor's position

Cursor in blink phase=#l; otherwise =#0

End of tape input flag

Input from screen (#3) or from keyboard (#0) flag

X-register save in tape handlimg (saves cassette #)

Total number of open files (max. 10)

Input device (default = #0, keyboard)
Output device (default = #3, screen)
Tape character parity

Byte received flag

Temporary save e.g. by DOS wedge
Tape buffer leading chr. (e.g. #5=end of tape)/ MLM
MLM flag, counter/ (B4) points to file name for SAVE

Serial bit counter

Cycle counter
Tape write countdown
Pointer (0-492 decimal) for use with tape operations

Counter for tape writing and reading
Write byte/ error flag on tape read
Write start bit/ read bit sequence errors

Pass 1 read errors/ pass 2 read errors

Cassette read flags: 0=scan/ l-15=eount/ #40=LOAD/

#80=end of tape marker
Counter of seconds before tape write/ checksum

Programming the PET/CBM

BASIC1 BASIC2 (&4)

($E0) 224- 225 ($C4) 196-197

$E2 226 $C6 198

($E3) 227- 228 ($C7) 199-200

($E5) 229- 230 ($C9) 201-202

$E7-$E8 $CB-$CC
231- 232 203-204

$E9 233 $CD 205

SEA 234 $CE 206

$EB 235 $CF 207

$EC 236 $D0 208

$ED 237 $D1 209

$EF 239 $D2 210

$F0 240 $D3 211

$F1 241 $D4 212

$F2 242 $D5 213

($F3) 243- 244 ($D6) 214-215

$F5 245 $D8 216

$F6 246 $D9 217

($F9) 249- 250 ($DA) 218-219

$FB 251 $DC 220

$FC 252 $DD 221

$FD 253 $DE 222

$FE 254 $DF 223

$0229- $0241 $E0-$F8
553- 577 224-248

-395- 15: CBM BASIC ROMs

$0207-$0208
519-

($F7) 247-

520
248

BASIC4

Pointer to screen RAM position of start of current line

Position of cursor along line

Start address for tape LOAD/ utility pointer

End address for tape LOAD
Constants for tape timing

Quote flag: #0=direct cursor, else control chrs. printed

Tape read timer flag

End of tape read
Read character error

Length of file name; 0=no name
Current file number
Current secondary address OR'd e.g. with #60

Current device number: #0=keyboard, #1-2=tape, #3=

screen, #4 typically printer, #8 typically disk drives

Right-hand of window (BASIC 4)/ length of current

line (39 or 79) (BASIC<4 or 40-col. BASIC 4)

Pointer to start of tape buffer #1 or #2

Screen line of cursor
Last key input/ buffer checksum/ temporary I/O store

Pointer to start of file name
Number of keyboard inserts outstanding

Write shift word/ read character in

Number of blocks remaining to read/ write

Serial word buffer
40 column machines: Table of 25 high bytes of the

RAM addresses of the start of screen lines. (A ROM
table holds the corresponding low bytes) . Lines which

wrap around (i.e. are double length) are flagged.

80 column machines:
$E0-$E2 224-226 Top, bottom, left margins of window

Maximum length of keyboard buffer

Repeat flag: #0=on, #40=off

Repeat countdown
New key marker
Bell timing : #0=off

Counter for two [HOME] keys
Screen input indirect vector ($E11D)

Screen output indirect vector ($E20C)

Unused
Counter to speed TI by 6/5

$F9-$FA
249-250

($FB) 251-252
($FD) 253-254

$E3
$E4
$E5
$E6
$E7
$E8
($E9)
($EB)

227
228
229
230
231

232
233-234
235-236

$ED-$F7 237-247
$F8 248

Cassette flags for #1 and #2

Pointer for MLM, start of tape address with .S

Pointer for MLM, others

PACE 1 (THE STACK): RAM $0100-$01FF

$00FF-$010F

$0100-$013E
$0140-$01FF

$00FF-$01FF

$0100-$013E
$0140-$01FF

Area for conversion of numerals into ASCII string

format for printing

Tape read error log

Stack as used by BASIC

PACE 2: RAM $0200-$02FF

$0200- $0208

$0A-$5A

$0242-$024B
$024C-$0255
$0256- $0261

$0200- $0250

$0251-$025A
$025B-$0264
$0265-$026E

MLM area: holds, in sequence, stored values of the

program counter high and low, the processor status

flags, A,X,Y, the stack pointer, and the IRQ vector.

Input buffer. Length is 80 characters maximum (plus

null byte to terminate string)

Table of up to 10 file numbers
Table of up to 10 corresponding device numbers

Table of up to 10 corresponding secondary addresses

Programming the PET/CBM -396- 15: CBM BASIC ROMs

BASIC1 BASIC2 (&4) BASIC4

$026F- Keyboard input buffer (interrupt driven);
623- length is variable in BASIC 4

Input and output buffer for cassette tape #1

$020F-$0218
527-536

$027A-$0339
634-825

$027A
($027B)
($027D)

$026F-$0278
623-632

$027A-$0339
634-825

$027A
($027B)
($027D)

Type of tape file

Start address for load
End address for load

PACE 3: RAM $0300-03FF

$033A-$03F9 $033A-$03F9 Input and output buffer for cassette tape #2
826-1017 826-1017

$033A
($033B)
($033D)

$033A 826
$033B 827
$033C 828
$033D 829
$033E 830

$033A Type of tape file

($033B) Start address for load
($033D) End address for load

DOS byte parameter in RECORD
DOS drive number
DOS drive number
DOS length/ write flag

8-bit syntax checking flag

$033F-$0340 831-832 Diskette ID
$0341 833

|
Length of DOS command string

$0342-$0352 834-850 Buffer for filename
$0353- $0380 851-896 Full DOS command string buffer

4 only:-
Repeat key countdown
Delay between repeats
Maximum size of keyboard buffer
Bell timing: #0=off
Counter to speed TI by 6/5
Repeat flag: #0=on, #40=off

$03F0-$03F9 1008-1017 Table of 80 bits to set tabs

80-column BASIC 4 onjy:-
$03EE-$03F7 1006-1015 Table of 80 bits to set tabs

($03FA) 1018-1019 USRCMD extension vector from MLM; set on power
on to print .? in monitor.

40-column BASIC
S03E9 1001

$03EA 1002
$03EB 1003
$03EC 1004
$03ED 1005
$03EE 1006

$03FC 1020 IEEE 'timeout defeat': when poked
negative, ST is no longer set for
timeout after .065 second's delay.

PACE 4: RAM $0400-$04FF

$0400
$0401

1024
1025

$0400
$0401

1024
1025

Null byte at start of BASIC
Start of BASIC storage (unless pointers changed from
$0401). Sequence is 2 byte link address; 2-byte line-
number; tokenised BASIC terminated by a null byte;
and so on, until the end is marked by three consec-
utive null bytes.

Programming the PET /CBM -397- 15: CBM BASIC ROMs

PET /CBM MEMORY MAP: GUIDE TO ROMS

VERSION OF BASIC and
ROM starting address

BASIC 1 BASIC 2 BASIC H

C000 C000 B000

D000 D000 C000

D000

E000 E000 E000

F000 F000 FOOO

APPROXIMATE CONTENTS

Keywords and operators with their addresses, and a

table of error messages. Stack handling is here and

includes routines to check space left on the stack and

to search for tokens of GOSUB and FOR. The direct

mode processing of commands and of BASIC lines, plus

the routines to clear variables and run programs, are

all in this ROM: NEW, CLR, RUN. END, STOP, and

CONT occur here, with with other system-like commands

including LIST, RESTORE, GOSUB, GOTO, RETURN,

IF, ON and LET, and the input /output commands

PRINT, GET, INPUT, CMD, READ. Also LET is part

of this ROM; it is a default keyword. It checks variable

types and evaluates expressions.

This ROM performs most of the complex processing

required by string and numeric variables. It includes

arrays ('subscripted variables'), the garbage collection

routine, and string-numeral interconversion routines

like STR$. It processes all floating point accumulators

and interconverts ASCII with numerals, integers and

so on. Most mathematical functions are calculated from

here, including PEEK, POKE, WAIT, SGN ,
ABS, INT,

SQR, EXP,RND, COS, SIN.

BASIC 4 only: processes the additional BASIC commands

used by CBM disks: DOPEN, APPEND, HEADER, and

so on. Processing for DS and DS$ is partly here, and

partly in earlier ROMs . Actually , only about a half of

this ROM processes disk commands: the rest is taken

from the previous ROM of older versions and from

EOOOff. of the older ROMs, and includes the MLM monitor

The first half of this slot (E000 - E7FF) is occupied by

ROM; the remainder by a few I/O chips. Print routines,

screen processing routines, keyboard and cursor cont-

rol and similar functions are carried out here. Note

that 40-column BASIC 4 and 80-column differ in this

part of ROM. Reset and IRQ also come here.

All the tape processing - loading, saving, writing, and

reading - is controlled by this ROM. The tape

operating system is similar in all the ROMs, apart from

corrections made to remove bugs from BASIC 1. Tape

is not an IEEE device. Also the input/ ouput for IEEE

is carried out from here; this includes OPEN, CLOSE,

VERIFY, LOAD and SAVE and also error messages.

BASIC 1 has no monitor, but it does have diagnostic

routines (which only work if the user port is specially

wired up). BASIC 2 has most of its MLM (monitor) here.

The 'kernel' jump addresses are here, in the top of

memory near the 6502's NMI, Reset, and IRQ vectors.

Programming the PET /CBM

BASIC1 BASIC2 BASIC4

-398- 75: CBM BASIC ROMs

$C000 $C000 $B000

$C046
$C074

$C092

$C190

$C046
$C074

$C092

$C192

$C2DA

$C2E1

$C2D8

$C2DF

$C357
$C3 5 9

$C37C

$C38B

$C355
$C3 5 7

$B066
$B0 94

$B0B2

$B20D

$C2AC $C2AA $B322

$B350

$B3 5 7

$C31D $C31B $B393

$C32A $C328 $B3A0

$B3CD
$B3CF

$C3 7A $B3F0

$C389 $B3FF

5 tables of addresses, keywords, and error messages.
These are (i) Addresses- 1 of principal keywords, i.e. those
which start a BASIC statement. The addresses are pushed
on the stack and RTS executed (via GETCHR) to jump to
them; hence the displacement by 1 from the true entry
point, (ii) True addresses of numeric and string functions,
(iii) Addresses - 1 of operators, with a byte to assign their
hierarchy: the table corresponds to add, subtract, multiply,
divide, power, and, or, negative, not, and comparison. The
lattermost function evaluates <, =, and >. Their hierarchy
values in hex are: 79,79,7B, 7B, 7F,50,46,7D,5A and 64.
(iv) Keywords with the final character stored with bit 7 high.
These include +,-,*,/ etc. which are converted to tokens as
well as END, FOR, NEXT,... (v) Error messages, stored
with the final byte zero as a terminator.

The keywords in each ROM are different; BASIC 2 has GO,
which is not present in BASIC1; BASIC 4 additionally has
15 disk commands (including DIRECTORY). A list of each
appears in a table in Chapter 2. The error messages
are identical, except that BASIC l's BAD DATA becomes
FILE DATA in subsequent ROMs.

Check stack for 'FOR'. Called by NEXT and RETURN. If

Z flag=0 on return from this, FOR has not been found and
?NEXT WITHOUT FOR results. Otherwise the loop variable
is checked. Also eliminates FOR when GOSUB token is

expected in the stack by RETURN.

Open up space in memory. This routine enables BASIC
lines to be merged into BASIC. After checking that there
is sufficient RAM, a memory move takes place up RAM.
In BASIC 2/4:($55)=Top of area to be moved to + 1

($57)=Top of area to be moved + 1

($5C)=Bottom of area to be moved
$1F =Temporary parameter.

In BASIC 1 the parameters are: ($A7), ($A9), ($AE) and
$71. On exit, all the pointers are changed.

Check space within stack. Tests whether twice the byte in
the accumulator will fit the stack; if not, ?OUT OF MEMORY
is printed. The bottom of the stack allows 62 bytes for
other purposes. (I.e. the whole stack is not used as a
stack; some is treated as ordinary RAM). So, to fit 10
bytes on the stack , LDA #5 then JSR to this routine tests
the space.

Check for overlap of BASIC strings and variables in RAM.
On input, A and Y hold the address high byte and low
byte. If, on comparison with the string pointer there isn't
sufficient room in RAM, the intermediate calculation is

stored and garbage is collected. If there still isn't room,
?OUT OF MEMORY ERROR is printed.

Print 'OUT OF MEMORY ERROR' to the screen - or:
Print the error message offset by X from the start of the
error message table. Then:
Restore keyboard input and screen output, reset stack and
flags, print "ERROR", and if in program mode, "IN" with
the linenumber. Then:

Prints [Return] READY,
direct command.

[Return] and await BASIC line or

Programming the PET/CBM -399- 15: CBM BASIC ROMs

BASIC 1 BASIC 2 BASIC 4

$C394 $C392 $B406 Await direct or program line from the keyboard. This calls

C468/C46F/B8F6 which puts one line into the input butter

and on [return] puts a zero terminating byte at the end of

its input. After this, the initial character is read by CHR-

GET. If this returns carry clear, the initial character was

numeric, and the following routine is branched to; otherwise

it's treated as a direct mode command, and is tokenised and

run by C48D then C6E9/C495 then C6F7/B4FB then B77C.

$C3AC $C3AB $B41F Tokenise BASIC program line. If the linenumber exists,

$C3FD $C3FD $B47 replace it; if it is new, insert the line into BASIC in kam.

Note that the length of the line is stored in $5C/$05/$05.

If the line exists, it is erased by a memory move routine at

C3EF/C3EE/B462 before dropping through to the line insert-

ion routine. All the variables are erased by CLR and BASIC

is rechained (so variable values are lost on editing). Then

the previous major routine is called again.

$C430 $C439 $B4AD Reset BASIC execution to start; clear; and chain. This is

also called by LOAD when not in program mode.

$C433 $C442 $B4B6 Rechain BASIC program in memory. This searches for

bytes marking end-of-line, then recalculates the link add-

resses. Lines longer than 255 cause this routine to hang.

BASIC 1 has a different implementation from the other

BASICS and is used by the keyboard entry routine.

SC468 $C46F $B4E2 Input keyboard line into buffer. BASIC l's input buffer

starts at $0A; subsequent BASICs start at $0200. Single

characters are input fron a 'device' which is usually the

keyboard, and stored in consecutive locations in the buffer,

until [return] is pressed. Then, a null terminating byte is

put into the end of the string and RTS is called. BASIC 4

tests whether the line exceeds 80 characters, and stops with

?string too long error if so. Earlier BASICS use a little

routine to fetch a character, based on FFCF, which appears

to suppress output if CHR$(15) is read in. This is dropped

in BASIC 4.

$C479 $C481 Single character input routine.

$C48D $C495 $B4FB Tokenise the input buffer. The buffer is processed until a

zero byte is found, each recognised keyword being con-

verted into a single byte (with bit 7 set high). ? and " are

checked. BASIC 4 uses ($1F) as a pointer to the table of

keywords; this table is now too long to be spanned by a

single register's offset. This is the routine which can be

fooled by eN, fO, nE and so on.

$C522 $C52C $B5A3 Search BASIC for a linenumber. In BASIC 4, ($11) holds

the linenumber, low byte first as usual. On exit, carry bit

clear means that the line was not found. If it exists, ($5C)

points to it. The location pointed to is the start of the link

address, i.e. one byte beyond the end-of-line marker.

BASIC 2 is identical; BASIC 1 uses ($08) and ($AE).

$C5 51 $C5 5B $B5D2 Perform NEW. This has a syntax check to disallow NEW
followed by anything other than : or zero byte. It relies on

the start-of-BASIC pointers; putting zero bytes into the

start of BASIC, and the next byte, then storing start + 2

into end of BASIC. Next GETCHR is loaded with start-of-

BASIC - 1. Then the following is executed:

$C56A $C577 $B5EE Perform CLR. Like NEW, CLR has a syntax check. Its action

essentially is to set all the variables' pointers to coincide

with the pointer to the end of BASIC, so they are effectively

erased. The stack is also reset. And I/O activity is aborted.

Programming the PET /CBM

BASIC1 BASIC2 BASIC4

-400- 15: CBM BASIC ROMs

$C59A $C5A7 $B622

$C5A8
$C5C9

$C5D5
$C6 2B

$C5B5
$C5D6

$C5E2
$C6 3A

$B630
$B651

$B65D
$B6B5

$C649 $C658 $B6DE

$C664 $C673 $B6F9

$C692

$C6B5

$C6A1

$C6C4

$B7 2 7

$B74A

$C6CF $C6D4 $B75F

$C6E9 $C6F7 $B77C

$C6F2 $C700 $B785

$C70D $C730 $B7B7

$C71C $C73F $B7C6

Reset GETCHR to start of program. Adds #FFFF to ($28)
and stores the result in ($77). (Compare this with RESTORE
to see different programming styles).

Perform LIST. Full check for parameters, including -.

List program with no parameter checks. ($11) holds the
high line number and defaults to #FFFF with LIST or LIST n-.
($5C) points to the low linenumber; #0401 is its lowest value.
List one line of BASIC, i.e. number then text.

Converts a token in A (i.e. #$80+) into keyword.

Perform FOR. This sets up a block of data on the stack.

It assigns the loop variable value, then checks the stack
for FOR and for 18 bytes of space. Its scans for the end of

the FOR statement, and pushes 18 bytes onto the stack:
(i) Pointer to following statement, (ii) Current linenumber,
(iii) Floating-point value of higher limit, (iv) Value of STEP
plus its sign byte, (v) loop variable name, (vi) FOR token.
This routine processes STEP by assuming 1 and overwriting
this with the true value if a STEP token (#A9) is found.

BASIC warm start. This is the controlling loop which runs
BASIC statements. It tests the Stop key, updates the CONT
pointer (unless in direct mode) and tests for colons or for
end-of-line null bytes between statements.
This routine exits if an end-of-program is found (so that
END isn't needed) and otherwise processes a new line, by
incrementing the CHRGET address to point to the start of
the next line.

BASIC start with CHRGET pointing to BASIC text (not link

address). The above routine drops through to here, where
GETCHR gets the next BASIC character, the start of a
statement, into A, then executes it with the following sub-
routine, and loops back to the warm start entry point where
CHRGET points to a link address.

Perform a BASIC keyword. This routine (i) Returns with
nothing done if a colon is found; (ii) Assumes 'LET' by
default if a token is not the first character found; (iii)

Checks that tokens (i.e. byte with high bit set, therefore
with value #$80 +) are within the range of the token table.
(If BASIC 4 disk commands are 'run' on BASIC 2, for
example, the tokens will be unrecognised), (iv) Lastly, the
keyword's address is pushed on the stack. These two bytes
are taken from the table at the start of BASIC; they're
found by doubling the value (token - #$80) and using this
as an offset. Note that BASIC 2 has a patch to test for GO.
It checks that GO is followed by TO, then performs GOTO.
The actual execution is performed by jumping to GETCHR,
so that the accumulator holds the next character of BASIC
and also the address of FOR or RESTORE or LET or which-
ever it may be is made the destination when RTS is reached
at the end of GETCHR.
Perform RESTORE. Sets the DATA pointer to start-of-
BASIC, as this appears in the pointers, minus 1. In BASIC4
($3E) holds ($28) - 1; in BASIC 1, ($90) becomes ($7A)- 1.

Perform STOP, END and break in program. If the carry flag
is set (for example, when $FFE1 tests the stop key and finds
it pressed) STOP is performed, if Z is also set. If carry is

clear, END is performed. Both routines save information for
CONT (pointer to BASIC, linenumber) unless in direct mode;
STOP prints BREAK IN n, while END skips this to print

only READY. The stop key performs STOP, and an end-of-

program terminating zero calls END.

Programming the PET /CBM

BASIC1 BASIC2 BASIC4

-407- 75: CBM BASIC ROMs

$C745 $C76B $B7EE

$C775 $C785 $B808

$C567 $C572 $B5E9

$C77A

$C7 8

$C7 8A

$C7 9

$B8 0D

$B813

$C79D $C7AD $B830

$C7CA $C7DA $B85D

$C7D8 $C7E8 $B8 6B
$C7DB $C7EB $B86E
$C79A $C7F0 $BFOO

$C7F0 $C800 $B883

$C7FE
$C801

$C80E
$C811

$B891
$B894

Perform CONT. This (i) Rejects CONT if it is followed by

something other than an end of statement indication, (ii)

Prints ?CAN'T CONTINUE ERROR if the highbyte of the

pointer is #0; it's set to this on a syntax error. And
(iii) The pointer into BASIC and the then-current BASIC

linenumber are restored, and the program continues.

Perform RUN. This has two branches, RUN and RUN n,

where n is a linenumber.
RUN resets CHRGET to the start of BASIC, then CLRs
variables and stack and runs.

RUN n CLRs variables and stack then calls 'GOTO'.

Perform GOSUB. This tests the stack for space to push 6

bytes; if this doesn't elicit ?OUT OF MEMORY ERROR, the

following 5 bytes are pushed on the stack: (i) Contents of

CHRGET, (ii) Current linenumber, (iii) GOSUB token (#8D).

Then it calls GOTO, which changes CHRGET according to

the location of GOSUB's linenumber, and finally warm starts

BASIC from its new position. The data on the stack is used

by RETURN.

Perform GOTO. There are three parts to this routine: the

first fetches the linenumber following GOTO, and stored it

in ($11) or ($08) in BASIC 1. Then, this linenumber is

sought in the program: to save time with long programs,

the following linenumber is compared with the sought one

and the starting point of the search depends on the result

of comparing the high bytes of these lines. Finally, the

routine to search BASIC for a linenumber looks for the line

and if it's found loads the pointer (less 1) into CHRGET.
To clarify the operation, consider this program line:

10000 GOTO 12000, which may be part of a very long pro-

gram. 10000=39*256 + 16, so the current linenumber is

stored as the 2 bytes 0A and 27. 12000=46*256 + 224, which

is stored as E0 and 2E. The highbytes are compared, and
since 2E exceeds 27 only lines after 10000 are serached.

On the other hand, 10000 GOTO 10001 searches BASIC from

the start.

Perform RETURN. This checks for GOSUB on the stack and
recovers the subroutine's details, or prints ?RETURN
WITHOUT GOSUB ERROR, (i) The syntax is checked, (ii)

The stack is searched (bypassing FOR's variable pointer

processing) , (iii) If A doesn't hold the GOSUB token (#8D)

the error message is printed, (iv) The original BASIC line-

number and pointer are reconstructed, (v) The next state-

ment is found, as an offset in Y, (vi) CHRGET 's address is

set, so the next statement will execute.

Prints 7RETURN WITHOUT GOSUB ERROR.
Prints ?UNDEF'D STATEMENT ERROR.
Prints 7SYNTAX ERROR.

Performs DATA. This routine is shared with the end of

GOSUB: it's the part which looks for and continues with

the next statement, so that DATA 1,2,3: PRINT X ignores

the DATA, but carries on at the print statement.

Search for next BASIC statement. Looks for : or null byte.

Search for next BASIC line. Looks for null byte, marking
the end of the line. In either case, on return the Y register

holds the displacement from CHRGET'S address, which is

($77) or ($C9) in BASIC 1. An interchange routine is used

to ensure that a colon within quotes is not regarded as an
end-of-statement indication.

Programming the PET ICBM

BASIC1 BASIC2 BASIC*

-402- 15: CBM BASIC ROMs

$C820 $C830 $B8B3

$C833 $C843 $B8C6

$C843 $C853 $B8D6

$C863 $C873 $B8F6

$C89D $C8AD $B930

$C8B2 $C8C2 $B94 5

$C8BC $C8CC $B94F
$C8CE $C8DE $B961
$C92B $C937 $B9BA
$C8DC $C8EF $B972
$C91C $C928 $B9AB

$C97F $C98B $BA88

Perform IF. This routine evaluates the expression following
IF, and checks that the expression is followed either by
GOTO (#89) or THEN (#A7). Assuming this to be OK, the
next step is to load the accumulator with the exponent of

floating point accumulator #1, in which the result of the
evaluation was deposited. When a result is evaluated as
zero, the exponent is set 0, and because of the importance
of this special case, it is sufficient to test this single byte
when finding if a result was 0.

At this point the routine branches : a result of means
'false'. In this case the next line is found, and an uncon-
ditional branch rejoins DATA at the point where CHRGET
is incremented by the offset to the next line. This is the
same routine used to perform REM.

If the result was non-zero, this is regarded as 'true', and
the next statement is executed using the keyword processing
routine - unless a numeral follows, when 'GOTO' is called.

Perform ON. (i) Checks variable type and evaluates it,

(ii) tests for either GOSUB or GOTO, (iii) repetitively
decrements the variable value in $12 (or $B4 in BASIC 1),

and works through the list of commas, until the value is

reduced to zero. When this finally happens the token is

recovered from the stack and the appropriate command
carried out by entry into the routine which executes BASIC
statements. (If the location never becomes zero, the next
statement is performed by default).

Fetch integer (usually linenumber) from BASIC. This uses
shifts, rotations, and adds to multiply consecutive ASCII
digits by 10, add the next, and so on until a non-numeric
character is encountered. On entry, A holds the value read
by GETCHR. If it isn't numeric, there is an immediate
return and the number is 0. Note that validation is not
complete; this is why 'GOTO lOOxxx' is syntactically OK.
To use this routine, point ($77) in GETCHR to the start of

the number. Then JSR 0070/ JSR B8F6 reads the number
into ($11) and leaves ($77) pointing at the first non-numeric
character. BASIC l's GETCHR is ($C9), and numeral ($08).

Perform LET. There are three parts to this routine:
(i) The variable (X say in X=5) is searched for in RAM,
and set up if it doesn't yet exist. (ii)'=' is checked for
(its token is #B2) and the following expression or string
evaluated, (iii) Floating-point accumulator is moved into
RAM or pointers are set to the string, depending on the
type of variable. This completes the assigning process.
These are the entry points for the assignment; see VARPTR
for an illustration of assignment.
Assigns floating-point numbers
Assigns integers
Assigns strings, except:
Assigns TI$ (e.g. TI$="123456")
Adds ASCII digit, pointed to by ($1F),Y,
contents of floating-point accumulator #1.

previous routine with TI$).

Perform PRINT#. This routine has two opcodes only; the
first calls CMD, which is why the syntax of CMD and that of

PRINT # are identical. The second jumps to the end of the
routine which performs INPUT#. The part of this routine
which it executes aborts the file used by CMD and sets

the 'current device' to zero. That is, locations #10, #0E, and
#03 in BASICs 4,2, and 1 respectively are made zero.

to the present
(Used by the

Programming the PET ICBM

BASIC1 BASIC2 BASIC4

-403- 15: CBM BASIC ROMs

$C965 $C991 $BA8E

$C999 $C9A5 $BAA2

$C99F $C9AB $BAA8

Perform CMD. CMD is identical to PRINT*, except that the

output device is left as an output device, not cancelled.

Thus, future output, even with PRINT, goes to the same

device. This is roughly what happens, at any rate. CMD
evaluates its parameter (single byte only) and stores it in

$62. ($B4 with BASIC 1). The comma is checked for if the

statement hasn't ended. The output device is set by FFC9
and PRINT performed.

Part of a loop which PRINT uses to print a string from

memory, then continue with punctuation of PRINT...

Perform PRINT. This is the main entry point to PRINT from

BASIC. The flowchart of PRINT in Chapter 5 shows what

it does. On exit the buffer is reset: $0200 holds #0, X holds

#FF, Y holds #1. (BASIC l's buffer is different - starts at

$0A. Note that BASIC lprocessing is rather different from

later BASICs. BASIC 4 is closely similar to BASIC 2, except

that the CMD file is $10, not $0E, and linefeed is not

automatic after carriage return).
Test for comma, branch if found.

Test for semi-colon, branch if found.
Test for TAB(, branch if found.
Test for SPC(, branch if found.
Print numeral (after converting to ASCII string).

Print CRLF or CR.
Print string.

Print string from memory. From this entry point, if the

accumulator A holds the low byte and Y holds the high

byte of an address, this routine prints consecutive char-

acters from that location upward until a zero terminator is

found. BASIC 4 is reported to insert zero bytes; it may be
necessary to write a routine with FFD2 on the lines of

this next routine:

$CA44 $CA39 $BB3A Print a screen format character. BASIC 1 prints cursor right;

the others print either cursor right (to screen) or space
(when some output file exists). BIT is used to separate the

alternatives

.

$BB3E Print space
$BB41 Print cursor right
$BB4 4 Print ? for error messages - also slipped in.

$C9AB $C9B8 $BAB5
$C9AF $C9BC $BAB9
$C9A3 $C9AF $BAAC
$C9A7 $C9B3 $BAB0
$C9BA $C9C7 $BAC4
$C9D8 $C9E2 $BADF
$C999 $C9A5 $BAA2

$CA27 $CA1C $BB1D

$CA3D
$CA4 4 $CA4
$CA4 7 $CA4 3

$CA77 $CA4F $BB4C

$CA9F $CA7D $BB7A

Print error messages for GET, INPUT, and READ. On entry
to this routine, a zero page flag (location $0B or, in BASIC 1,

$62) holds #0 to denote INPUT, #$40 for GET, and #$98 for

READ. The routine separates these out; READ and GET
both generate 7SYNTAX ERROR and exit to direct mode.
INPUT splits according to whether a file is open or not; if

not, ?REDO FROM START is printed and GETCHR loaded

with the previous linenumber's pointer again. If a file is

open, ?FILE DATA ERROR (or BAD DATA in BASIC 1)

terminates the program.

Perform GET and GET#. GET is based around FFE4, as

might be expected. Its additions include: (i) Testing for

direct mode, (ii) where '#' exists, inputting the file number,
checking the comma and setting the device for input, (iii)

setting the input buffer for one character only with null

bytes, (iv) GETting the character and assigning it to its

variable, and finally, where an input file was used,

restoring the default devices of screen and keyboard.
Note that A is loaded with #40 before the GET/ INPUT /READ
routine processes the single input character. Stored in $0B,

this keeps the three processes distinct when necessary.

Programming the PET ICBM

BASIC1 BASIC2 BASIC4

-404- 15: CBM BASIC ROMs

$CAC6 $CAA7 $BBA4

$CAEO $CAC1 $BBBE

$CB17 $CAFA $BBF5

$CB2 4 $CA4F $BC0 2

$CB2 9 $CBOE $BC09
$CB2A $CB10 $BCOB
$CB8 8 $CB7 2 $BC6D
$CBAO $CB8A $BC8 5

$CBCF $CBB9 $BCB4
$CBF5 $CBDF $BCDA

$CC12

$CC36

$CBFC

$CC2

$BCF7

$BD19

$CC9 2 $CC7 9 $BD7 2

Perform INPUT#. INPUT* relies heavily on INPUT; it adds
only input of the file number and a check for the presence
of a comma, plus the turning on and turning off of the

device on either side of INPUT.

Perform INPUT. If a quotation mark is found after INPUT,
by CMP #$22, the string within quotes is pointed to and
printed - usually to the screen. Direct mode INPUTs are

rejected. Now the following routine is called, which, on
carriage return, completes input of a line to the buffer,

using in fact the same subroutine as BASIC in direct mode.
There is a test for ST. If this is 3 (BASIC 4) or 2 in the

others, the command is aborted and the next BASIC state-

ment carried out. The scanning and assignment of the

parsed input buffer is carried out in the GET /INPUT /READ
routines, where INPUT is signalled by #0 in $0B. Note that

the INPUT crash, on carriage return, is deliberately

programmed in to go to END.

Print ? prompt and put input into buffer. This is the

routine which INPUT uses to get data to the buffer. All

data is transferred on carriage return, including commas
and colons, which are only distinguished as separators by
the parsing routine after this one. User-defined INPUTs
can use this routine, omitting the query if preferred, to

input and format data in other ways than CBM's.

Perform READ. GET and INPUT share this routine, but
are distinguished when necessary by the flag in $0B, which
contains #98 with READ. The object of these routines is to

scan the input buffer or DATA statements, assigning
variables to each syntactically correct chunk of data, and
signalling mismatches and other errors.
INPUT entry point,

GET entry point (preceded by LDA #$40).
Assign string to string variable,

Assign numeral to numeric variable.

Scan program for DATA statements; used by READ.
Checks whether pointer is at end of buffer, i.e. for zero

byte. If this isn't found it prints ?EXTRA IGNORED -

unless there is an active file, in which case no warning
is printed.

?EXTRA IGNORED crlf and ?REDO FROM START crlf

text messages (with null byte terminator).

Perform NEXT. NEXT carries out this sequence of oper-
ations: (i) If NEXT is alone, ($46) becomes #0000; if not,
the variable following NEXT is sought in memory, and A
returns set to the low byte of its pointer, Y to the high
byte; these are put in ($46). The stack is searched; no
FOR, or no matching FOR, gives ?NEXT WITHOUT FOR
ERROR, (ii) The current value of the loop variable is added
to the step, and the result moved up within RAM. This
requires several pointers to be set, e.g. into variable
storage in RAM. (iii) The comparison routine is called, which
sets A depending on the result, (iv) If the loop is now
finished, another routine deletes the stack entry and checks
for a comma. If one is found, NEXT is entered again, (v)
If the loop isn't finished, CHRGET and the previously
current linenumber are loaded (as they are with RETURN)
and the BASIC warm start routine continues the program.

Programming the PET/CBM

BASIC1 BASIC2 BASIC4

-405- 15: CBM BASIC ROMs

$CCA4 $CC8B $BD84

$CCA7
$CCA9

$CC8E
$CC90

$BD87
$BD89

Input and evaluate a numeric expression with check for

type mismatch. This calls a subroutine - a little further in

ROM - which evaluates any BASIC expression, whether

string or numeric. Numerals are left in floating-point

accumulator #1, and $07 is loaded with a flag: #FF for a

string expression, #0 if it was numeric. (The flag is $5E

for BASIC 1) . Checking for type mismatch is done by the

next routine:

Checks numeral was input.

Checks string was input. These routines interlock; the

carry flag determines which category of variable will cause

?TYPE MISMATCH ERROR. Note the use of BIT $38 to give

an entry point which sets carry. (SEC = #$38).

$CCB8 $CC9F $BD98 Input and evaluate any expression. This elaborate routine

(500 bytes or so excluding other subroutines) parses any

string or numeric expression, checking for syntax errors,

and on exit leaves the type of expression flag ($07, or

$5E in BASIC 1) set to #FF for a string, #0 for numeral.

If numeric, the result is left in floating point accumulator #1.

From here it can be processed further; JSR CF93 converts it

to ah ASCII string at the low end of the stack, and JSR

BB1D prints this out, for example. (These are BASIC 4 ROM
addresses). If the result is a string, on exit from this

routine A holds the length, as do $5E and $C8; and the

pointer is stored in ($60) and ($C8). BASIC l's locations are

$CC and ($CD9, and $B0 and ($B1) respectively.

Note that this routine is not an INPUT routine, but takes

a BASIC expression from RAM; before calling it, CHRGET
must point to its starting byte. It enables complex express-

ions like 24+VAL("1.23"+X$)*5*(A=NOT B) to be evaluated.

In the process, a lot of the stack and many zero-page flags

are used. All Microsoft BASICS have a routine of this type.

Parsing is by operator precedence in the case of numeric

expressions; as the expression is scanned, an operator of

greater hierarchical value is pushed on the stack, with the

evaluated result from accumulator #1. An operator lower in

the hierarchy pops the stack result into accumulator #2,

which is then combined with accumulator #1. The routine is

recursive. Unexpected ?OUT OF MEMORY ERROR messages

may appear with rather complicated expressions, because of

the intermediate results on the stack; simplifying into short

sub-expressions may cure this.

$CCC3 $CCAA $BDA3 Push accumulator onto stack and recursively run routine.

$CCD2 $CCB9 $BDB2 Test for >=< and store their combined code in $4A ($9C with

BASIC 1).

$CCF1 $CCD8 $BDD1 Process other operators

$CD3A $CD21 $BE1A Puts FPAcc. #1 on the stack and performs mathematical

operation determined by offset Y and table of addresses.

$CD72 $CD59 $BE56 Pop stack into FPAcc. #2; loads A with exponent.

$CD9D $CD8 4 $BE81

$CDBC $CDA3
$CE0 5 $CDEC
$CE0B
$CE0E
$CE11
$CE1C
$CE11

$CDF2
$CDF5
$CDF8
$CE03
$CDFA

$BEA0
$BEE9
$BEEF
$BEF2
$BEF5
$BF0
$BEF7

Evaluation routine. This looks for ASCII numeral strings,

e.g. 123, variables, pi, . - + ", NOT, FN, arithmetic

functions, e.g. SGN, ABS , and expressions in parentheses.

Pi as 5 byte floating point number.
Check parentheses and evaluate expression within them.

7SYNTAX ERROR if CHRGET doesn't point to).

?SYNTAX ERROR if CHRGET doesn't point to (.

?SYNTAX ERROR if CHRGET doesn't point to ,

.

7SYNTAX ERROR and return to READY.
?SYNTAX ERROR if CHRGET doesn't point to a byte identical

to that in A. If it does, A returns with the next character.

Programming the PET /CBM

BASIC1 BASIC2 BASIC*

-406- 15: CBM BASIC ROMs

$CE28 $CEOF $BFOC

$CE3D $CE2E $BFAD
$BFC9

$CE58 $CE43 $BFD8
$CE6 5 $CE82 SCO 40

$CE6D
$CE8A

$CE60
$CE7D

$BFF3
$C017
$C024

Evaluate a variable. This first uses the routine to search
for a variable in RAM, returning with A holding the low
byte and Y the high byte of its pointer. Strings are not
processed, except for TI$ and DS$ in BASIC 4, but all

numeric variables - integer, floating-point, Tl , ST and, in

BASIC 4, DS - are evaluated and the result is stored in

floating-point accumulator #1.

Read clock (TI$) and set up string holding result.
Read DS$ and set up string holding result.
Evaluate integer variable. Result in FPAcc.#l.
Evaluate floating-point variable, not Tl, ST, or DS. Note
that (i) BASIC 1 uses a set of patches in E19B-E1DF which
are moved to be in line with the main code in BASIC 2.

(ii) BASIC 4 has a slightly different arrangement, due to the
introduction of DS and DS$.
Evaluate Tl. Result in FPAcc.#l.
Evaluate ST. Result in FPAcc.#l.
Evaluate DS. Result in FPAcc.#l.

$CE79 $CE89 $C047 Process arithmetic functions.

$CED6
$CED9

$CEC8
$CECB

$C086
$C0 8 9

$CF06 $CEF8 $C0B6

$CF0B
$CF1E

$CEFD
$CF10

$C0BB
$C0CE

$CF71 $CF63 $C121

$CF7B $CF6D $C1 2B

Perform OR.
Perform AND. These two binary operations are written as
one routine; a flag holds #FF for OR, #0 for AND. See
Chapter 5 for the rationale. The flag is location $05, or,
in BASIC 1, $5C. Each of the two arguments is converted
from floating-point to integer form, with an error message
if the range is wrong. Intermediate results are stored in

the zero page. The result is left in FPAcc. #1.

Perform comparisons. This routine begins by testing that
the two items do in fact match in type. It separates into
two branches depending on whether numerals or strings
are to be compared.
Numeric comparison, and:-
String comparison.
Numbers are compared with another subroutine (DB2D/
DB67/CD91) after first modifying FPacc. #1 to include the
sign bit in the mantissa.
The string comparison function works like this:-
The first string's parameters are $5E=length, ($5F)=pointer;
the second string has its length put in A, and its pointers
in ($69). (BASIC 1 is different - BO and (Bl) and (BB)
are its equivalents). The X register holds one of three
values on exit: X=0 means the strings are equal,
X=l means the first is 'greater than' the second, and
X=255 means the second is 'greater than' the first.

The accumulator holds only #0 or #255 on exit; this varies
with the contents of the comparison evaluation flag.

Perform DIM. This routine calls the next routine, which
searches for a variable in memory and sets it up if it isn't
found. So for example DIM A$(44) sets up the variable
A$(44) in memory; and in the process it generates the
entire array from elements A$(0) through to A$(44). If the
statement has not ended, the routine loops repetitively,
checking for a comma, and setting up the next array.

Search for variable and set it up if not found^. The first

half of this routine validates the variable's name: the
leading character must be alphabetic, the next may be that
or numeric; a loop rejects further alphanumerics; and the
variable type flag in $07 is set to #FF if '$' is found, and
#0 otherwise; and the numeral flag in $08 becomes #80 if a
'%' is found. $0A indicates a function. A '(' causes another

-407- 15: CBM BASIC ROMsProgramming the PET /CBM

BASIC1 BASIC2 BASIC4 ROM routine, 'Find or create array', to be called. Finally,

the name is stored in ($42), with its initial character in $42.

BASIC 1, naturally, is different - it uses ($94). These are

stored with their high bits set according to the type of

variable: see Chapter 2 for the four types. So much for

the first part of this routine. The second actually looks for

the name in RAM. All the variables are stored together after

BASIC and before the arrays; moreover they each occupy a

total of 7 bytes. So a loop simply compares consecutive

$CFD7 $CFC9 $C187 variables until the sought one is found. If in fact it doesn't

exist, the ROM routine 'Create a new BASIC variable' is

branched to.

$D005 $CFF7 $C1B6

$D00F $D001 $C1C0

$D088 $D078 $C2C8

$D0 99

$D0 9D

$D13 5

$D264

$D08 9

$D08D

$D128

$D2 5 9

$C2D9

$C2DD

$D0B9 $D0AC $C2FC

$D100 $D0F3 $C343

$D14 9 $D13C $C3 8C
$D135 $D128 $C378
$D12D $D120 $C370
$D130 $D123 $C373
$D1F4 $D1E7 $C436

$D233 $D228 $C477

$C378

$C4A8

Check A holds alphabetic ASCII character. The carry flag

is set to 1 if A holds ASCII A-Z.

Create a new BASIC variable. Sets up a new simple (not

array) variable in RAM after the present variables. If any

arrays are present, they have to be moved 7 bytes up in

RAM to accommodate the variable. The array pointers need
to be changed, and BASIC 4 string-into-pointers also need

to be updated. This can take a second or two. On exit,

($5C) points to the start of the variable, i.e. the first

character of its name; ($44) points two bytes forward of

this, to the variable's value or pointers if it's a string.

All its bytes are set to zero. TI and ST, and DS with BASIC
4, are checked for and give ?SYNTAX ERROR if they've

been used on the left of an expression. The same is true of

DS$. TI$ returns with a dummy value (null string).

Allocates space for array pointers. This adds #5 to twice

the number of dimensions of an array, and in turn adds this

result to a pointer . This makes room for the housekeeping of

an array, not for the actual data.

Holds -32768. 0005 as a 5 byte floating-point numeral.

Input and evaluate expression as a positive integer. This is

not part of INPUT; it takes an expression from BASIC, such

as PEEK(123)+99, evaluates it, and, if the result is positive

and less than 32768, it is converted into a fixed point

number held in the two bytes ($61) within FPAcc. #1.

Find array element or create new array in RAM. This is

rather similar to the routine which searches for simple

variables. However, the details of the array are held on
the stack, so the more dimensions an array has, the larger

is the space used on the stack. And this routine is much
longer and more complex. A loop checks for the existence

of the subscripted variable; it has two exits, one taken when
the variable is not found, and the other taken when it is.

Array variable not found; set it up. (DIM=10).
Array variable found.
?BAD SUBSCRIPT ERROR then READY.
?ILLEGAL QUANTITY ERROR then READY.
?OUT OF MEMORY ERROR used by next routine:

Compute size of array subscript. This loops 16 times, and
returns with X and Y holding the size required, X the low

and Y the high bytes.

?REDIM'D ARRAY ERROR if the DIM flag ($06 or $5D in

BASIC 1) is non-zero.

Perform FRE. If string mode is on, temporary strings are

cleared and 'garbage collect' performed. After this, the

pointer to the lowest string minus the end-of-arrays pointer

is stored in A and Y, and put into FPAcc. #1:-

Programming the PET ICBM

BASIC1 BASIC2 BASIC4

-408- 15: CBM BASIC ROMs

$D278 $D26D $C4BC Convert 2-byte integer into floating-point. On entry,

Y holds the low byte and A the high byte of an integer

in the range 0-65535. This routine converts it into floating-

point form, leaving it in FPAcc. #1 (i.e. $5E holds the

exponent, $5F-$62 hold the mantissa, and $63 is the sign.)

$D285 $D27A $C4C9 Perform POS. Calls the previous routine, ignoring whatever
dummy variable appeared in POS(x). It loads Y with the

position of the cursor on its line (from $C6 or $05 with

BASIC 1) and the high byte A with #0, then calls the last

routine, overwriting the contents of FPAcc. #1 with the

$D287 $D27C $C4CB value of POS. Put contents of Y into FPAcc. #1

.

$D285 $D280 $C4CF

$D290 $D285 $C4D4
$D288 $C4D7

$D295 $D28D $C4DC

$D2C3 $D2BB $C50A

$D2D6 $D2CE $C51D

$D349 $D33F $C58E

Check for program mode. If the high byte of the current
linenumber is #FF, this is a code used to signal that a

command was entered in direct mode (i.e. from the keyboard
without a linenumber).
?ILLEGAL DIRECT ERROR then READY.
?TYPE MISMATCH ERROR then READY.

Perform DEF (function definition). Some of the syntax
checking is carried out by the next routine. This one tests

for direct mode and the presence of a '(', then searches
for and/or sets up its dependent variable, checks for ')=',

and pushes 5 bytes on the stack. The first byte is the first

character of the function definition, perhaps a variable's

initial character or a token for LOG or SQR. Then the
dependent variable's address and the current pointer into

BASIC are stored; when a FN is addressed, the expression
to be evaluated is calculated by temorarily restoring CHRGET
to its present value, pointing to the start of the expression.
Finally, the next statement is scanned for, and the bytes
are all popped and loaded into the function definition in RAM.

Check some of DEF FN's syntax. This (i) Checks for a FN
token (#A5), (ii) Sets the function flag, ORing the initial

of the function's name with #80, (iii) Searches for this func-
tion, setting it up if it doesn't yet exist, (iv) Checking that
the type is numeric. (String functions aren't allowed).

Evaluate FN. This routine (i) Checks FN with the last

subroutine, (ii) Evaluates the expression in parentheses,
and checks that it's numeric, leaving the answer in FPAcc#l,
without changing the value of the dependent variable, (iii)

Recovers the five values stored by DEF FN, (iv) Stores the
current variables on the stack, (v) Puts the five floating-
point bytes directly into FN's area in memory, (vi) performs
the evaluation, leaving the result in FPAcc. #1, and (vii)

Pops and replaces the FN DEF data in RAM.

Perform STR$. This apparently short routine in fact calls

a rather longer routine, which is an important one in string
handling. STR$ first checks that the argument evaluates
to a number; it converts the contents of FPAcc. #1 into a
string starting at $0100 ($0200 in BASIC 1), in the usual
Microsoft form, e.g. with numbers smaller than .01 expressed
in scientific notation, like 5E-03. It throws away a return
address (popping 2 bytes from the stack) and sets pointers
to the buffer holding the string; now, it's ready to convert
the pointers into a standard zero-page pointer (not A and
Y any more) and to measure the length parameter, which is

determined by the first null byte encountered.

Programming the PET /CBM -409- 15: CBM BASIC ROMs

BASIC1

$D359

BASIC2

$D34F

BASIC4

$C59E

$D36B $D361 $C5B0

$D3AA
$D3B0
$D3D2

$D3A4

$D3AA
$D3CE

$C5F3

$C5F9
$C61D

$D3F4 $D3F0 $C6 5B

$D404 $D400 $C66A

Allocate pointers and length to new string. Because lengths

of strings are not dimensioned, each new string has to have

its pointers and length recalculated. Thus, X$="ONE":

X$="TWO" requires two calculations solely for this purpose.

This routine requires that A on entry holds the length of the

string; on exit, $5E holds the length and ($5F) points to the

RAM area allocated for the string. The routine also transfers

a temporary address. CHR$, LEFTS, STR$ and so on all use

part of this routine. BASIC 1 uses $B0 and ($B1).

Set up string in memory. This routine is used by INPUT,

READ, STR$, and other functions to generate space for a

string in the high end of RAM, put the string there, and

set the pointers for (say) X$ to point to it. Two flags,

$03 and $04 (or $5A and $5B in BASIC 1) are used for test

locations here; they contain either quotes or, with a later

entry point, : and , respectively. The quotes of course are

redundant, except for the first, but they make the same

routine usable for different purposes. On entry to this

routine, A holds the low byte, Y the high byte, of the

pointer to the start of string- 1. The string may end with a

zero terminator, or with " , or : depending on the type of

string being processed. $5E holds the length, and ($5F) the

pointer, on exit; many other temporary pointers are used.

(BASIC 1: $B0 and ($B1)).

Sets string pointers - entry point from CHR$, '+', etc.

?FORMULA TOO COMPLEX ERROR then READY.
Allocate space for string. On entry, A holds the length of

a string; this is the amount by which the current string

pointer is decremented (using a 2's complement method).

This is ($30) in BASIOl and ($82) in BASIC 1. The same

result is put into the adjacent locations which hold a 'utility

string pointer'. If the end-of-arrays pointer overlaps the

lowered string pointer the next subroutine is called:

Garbage collects or prints ?OUT OF MEMORY and exits.

After a garbage collection, the previous routine is re-enter-

ed. A flag in $09 ($60 in BASIC 1) ensures this process

isn't endless by being set on exit form this subroutine with

bit 7 high, then tested on re-entry. So garbage collection is

done once only.

*

Garbage collection. This is a long routine which tidies the

strings in the high end of RAM, and their pointers. To

watch this in action, see Chapter 2 for programs. BASICS
prior to 4 are notorious for the slowness of their garbage

collection, if a large number of strings have been defined in

the high area of RAM (i.e. not null strings or strings whose

pointers point back within a program). In practice, this means

string arrays. (Numeric arrays don't need garbage collection).

This formula: Time in seconds=.00008*(n+ll) 2 gives an

accurate approximation for the time taken by n strings to

free memory. BASIC 4 has a shorter and far faster routine.

This operates on the pointers ($4B) and ($5C). Several

subroutines subtract A from these in the course of memory

freeing. In earlier BASICs the following routines have been

identified :

Check for most eligible string collection.

Collect a string.
$D4 9 7 $D4 97

$D4A1 $D4A1

*A bug has been reported in which BASIC 4 prints ?OUT OF MEMORY instead of garbage

collecting when three strings are concatenated.

Programming the PET/CBM

BASIC1 BASIC2 BASIC*

-470- 15: CBM BASIC ROMs

$D515 $D517 $C74F

$D530

$D552

$D53 2

$D554

$C76A

$C78C

$D55 2 $D5 54 $C78C

$D560 $D56 2 $C7 9A

$D564 $D566 $C79E

$D57B $D57D $C7B5

$D5B3 $D5B5 $C811

$D5C4 $D5C6 $C822

$D5D8
$D6 0t
$D60F

$D5DA
$D6 06
$D611

$C836
$C862
$C86D

Perform string concatenation. This routine apparently
works by adding the two strings' length s,allocating that
amount of space in memory, then putting each string into

the space side by side and finally setting up the name and
pointers for the entire new string. ($61) is assumed to

point to the first string; the second is input and evaluated
by this routine.
7STRING TOO LONG ERROR then READY.

Store string in high end of RAM. Comparatively simple
routine which uses A to hold the string length, and ($1F)
as a temporary ponter to the start of the string. It also
uses the utility pointer ($32) to transfer the data; on exit

this points to the end of the string. BASIC 1 equivalents
are ($71) and ($84). Several entry points are used:-
($6C) points to the byte just after the variable's name in

RAM. (In BASIC 1, ($BE)).
A holds length, X and Y point to the byte immediately
following the variable's name.
A holds length and ($1F) the temporary pointer.

Discard temporary string. This routine begins by loading
($1F) with a pointer to the strings parameters; on exit,
the same pointer ($1F) points to the actual string, and the
bottom-of-string pointers are moved up by the length of the
string, so that it will be overwritten by the next string to
be defined. (This is only done if the string was the very
last to be defined). BASIC 1 uses ($71).

Clean the descriptor stack. A holds the low byte, Y the
high byte of a string vector; if these match the temporary
store in ($14), Y is loaded with #0 (and the Z flag set)
and $13 and $14 are loaded with A and A- 3. The purpose
of this is mysterious to me. This is used by the previous
routine

.

Perform CHR$. All strings of the type CHR$(n) have
length 1; this routine simply inputs the parameter, ensures
that a 1-byte space is available, puts the character in it

and sets up the string details.

Perform LEFT$.
Perform RIGHT$.
Perform MID$.
Each of these routines uses the second part of LEFT$ (from
D5E6/D5E6/C843) to allocate space for the string and set it

up in memory with its pointers. The length of the new
substring and its starting point within the string, which
were earlier pushed on the stack, are later popped and
used to construct the substring. The rest of the routines,
notably MID$ which has two valid syntaxes, deal mostly with
syntax checking and with processing parameters. For
example, RIGHT $ pulls the parameters (see next routine)
including n in RIGHT$(X$,n) which is held inAand X.
The length of X$ is reduced by n before entering LEFT$'s
routine; so RIGHT $ picks a substring starting within X$.
Note that some validation takes place to guarantee that the
string doesn't reach beyond the end of its parent string.
This is done by comparing the string's length with with the
parameters and selecting whichever is less with the help of
the carry flag.

Programming the PET/CBM

BAS1C1 BASIC2 BASIC4

-477- 15: CBM BASIC ROMs

$D63 7 $D6 3B $C8 97 Pull String function parameters from stack. The diagram

illustrates the working of this subroutine, which is called

by each of the string functions. It first checks for the

existence of a right parenthesis, ')', then pops ($4E), the

pointer to the string, and its length, from the stack. On

exit, both A and X hold the length of the string; Y is set

to zero. BASIC 1 has a slightly different routine; and its

pointer address is different. It uses ($9F).

$D654 $D656 $C8B2

$D6 5A $D6 5C $C8B8

$D663 $D665 $C8C1

$D130 $D6 72 $C8CE

$D673 $D675 $C8D1

$D685 $D687 $C8E3

$D6C4 $D6C6 $C921

$D6CA $D6CC $C927

The stack before:

SPi

$4E
$4D
X & A

$52

X

and after:

SP:

$52

Perform LEN. Calls the next subroutine, from which it

returns will the string's length in Y. Then it jumps into

POS, where Y only is placed in FPAcc. #1 in floating-point.

Load length/ move into numeric mode from a string.

VAL, ASC, and LEN each call this . It checks for a string

and points to it (with 'discard a string'), loading the acc-

umulator in the process with its length. It sets the mode

flag to numeric ($07, or $5E in BASIC 1, is #0). Finally,

TAY puts the length into the Y register in addition to A.

Perform ASC. This calls the last routine - and rejects a

string of length zero - then just loads A from the temporary

pointer which it set up, i.e. ($1F). This is put into floating

point form by entry into POS. Note that only the initial

of the string is dealt with.

Jump to print error message ('illegal quantity').

Evaluate and input a 1-byte parameter (0-255). GETCHR
must point to the expression, which is evaluated and
checked for range and type and also rounded down. The
result is left in $62 and X; and A holds the character at

the end of the numeric expression. With BASIC 1, the

parameter is returned in $B4.

Functions which interact with machine code need some such

routine as this one; for example, POKE.

Perform VAL. VAL operates by treating its string as a

buffer, and scanning it with the routine which converts a

string into floating-point in FPAcc. #1. The exception is a

zero-length string, which returns VAL =0. Several para-

meters are stored and later retrieved, when the conversion

process is over.

Evaluate and input parameters for POKE and WAIT. TypicaUy

POKE 12345,6 and WAIT 23456,7 are the statements which

this routine inputs and checks; firstly, a numeric expression

is evaluated, then converted (see next routine) into a 2-byte

integer. The comma is then checked for and the next para-

meter calculated and put into X (see last-but-one routine).

WAIT 123,45,6 is checked by re-entering the routine. This

has to be left until the first 1-byte parameter has been dealt

with, of course. The larger parameter is deposited in' ($61)

and in ($11), where it is less transient. The other location,

in FPAcc. #1, is liable to be overwritten. BASIC 1 uses ($09).

Programming the PET ICBM

BASIC1 BASIC2 BASIC4

-4 72- 15: CBM BASIC ROMs

$D6DA $D6D2 $C92D

$D6E6 $D6E8 $C943

$D6F9

$D702

$D744

$D778

$D853
$D858

$D707

$D710

$D77B

$D7AF

$D8 8A
$D88F

$C95A

$C963

$D713 $D721 $C974

$D71e $D72C $C97F

$D275 $D733 $C986

$D728 $D736 $C989

$D73C $D773 $C99D

$D7 3F $D7 76 $C9A0

$C9A5

$C9D9

$D81C $D8 53 $CA7D

$CAB4
$CAB9

Convert Floating-point accumulator #1 into 2-byte integer.

This checks that the number is positive and within the range
0-65535; then calls the conversion routine in DB6D/DBA7/
CDD1; and finally stores the result in ($11), or, with
BASIC 1, ($08). This is used by AND, OR, WAIT and some
other BASIC commands where a 16 bit number is wanted.

Perform PEEK. On entry, floating-point accumulator #1

(i.e. $5E-$63) holds the address to be peeked in floating-

point form. On exit, Y holds the peeked value, and it's

reconverted to floating-point format. This is done partly by
the last routine, which puts the address into a convenient
form to access memory. Note that BASIC 1 tests the PEEK
address to reject some values and return zero. And its

floating-point accumulator occupies different memory slots,

from $B0-$B5.

Perform POKE. Gets two parameters, puts the second into

A, and stores A into RAM where the 2-byte parameter points.

Perform WAIT. Gets two parameters, and an optional third,

which otherwise is made zero. The address parameter is put
into ($11), the first byte parameter into $46, and the other,
optional, parameter into $47. Now WAIT is performed, a
loop which continues until the address, exclusive-ORed
with the third and ANDed with the second bytes, is not
zero. BASIC 2 (not 1 or 4) has Microsoft's joke here. See
WAIT in Chapter 5. Or try, say, POKE70,n:SYS 55121.

Add .5 to contents of FPAcc. #1. A (low byte) and Y (high
byte) point to . 5 in floating-point form in ROM , then the
addition routine is entered. Used when rounding.

Perform subtraction. Replaces FPAcc. #1 by FPAcc. #2 minus
FPAcc. #1. On entry at this entry point, A must hold the
low byte and Y the highbyte of a pointer to a 5-byte
floating-point constant, which will be loaded into FPAcc. #2.

On entry here, however, both floating-point accumulators
are assumed to be loaded, and their contents will be sub-
tracted as I 've indicated.

Perform addition. Replaces FPAcc. #1 by FPAcc. #1 plus
FPAcc. #2. On entry here, A must hold the low byte and
Y the high byte of a pointer to a 5-byte floating-point
value in ROM or RAM. This will be loaded into FPAcc. #2,

then added to FPAcc. #1. The result is in floating-point
form. If the value to be added is zero, the routine jumps to
simply copy FPAcc. #2 into FPAcc. #1 without any further
calculations. This entry point makes this test-it assumes
that A holds the exponent of floating-point accumulator #2's

contents, i.e. the contents of location $66 or $B8 in BASIC
1. If this is so, the test will speed up additions of zero.
Finally, this entry point adds the two numbers without any
special test.

Add two numbers which have equal exponents. (In other
cases one of the numbers is modified until both have equal
exponents
Replace FPAcc. #1 by its 2's complement. (I.e. all the bits

of the accumulator are flipped; then 1 is added).
?OVERFLOW ERROR and READY.
Multiply a byte subroutine.

Programming the PET /CBM

BASIC1 BASIC2 BASIC4

$D8 91 $D8C8 $CAF2

-473- 75: CBM BASIC ROMs

$D8BF $D8F6 $CB20

$D8FD $D934 $CB5E

$D902 $D93C $CB66

$D9 2B $D96 5 $CB8F

$D95E $D9 98 $CBC2

$D98 9 $D9C3 $CBED

$D9B4 $D9EE $CC1

8

$D9CB

$D9D0

$DA05

$DAOA

$CC2F

$CC34

$D9D9 $DA13 $CC3D

$D9E1 $DA1B $CC45

$D9E6 $DA20 $CC4A

$DA5C $DA96 $CCCO

Table of constants: L.then constants for LOG (byte of 3

which is a counter for the series calculation, then

.4342559, .5765845, .9618007, 2.88539), and \ SQR(2),

SQR (2), -.5, and loge 2.

Perform LOG to base e. See Chapter 5 on LOG for an

explanation of this function and its operation.

Perform multiplication. Multiplies the contents of FPAcc. #1

by the contents of FPAcc. #2, leaving the result in FPAcc.#l.

This first entry point assumes that pointers are set to the

second value in memory, held in 5-byte floating-point

format. These pointers are: A to the low byte, and Y to the

high byte, of the start of the value. As an illustration, note

that D8F9/D930/CB5A point to loge 2 and then drop through

into this routine, thus multiplying floating-point accumulator

#1 by loge 2. (This of course is part of the previous func-

tion). Note that the routine which loads the second floating-

point accumulator also loads A with the exponent of the first

floating-point number; in this way, if the first number is

zero, nothing more need be done.

Multiplies the two floating-point accumulators without loading

either of them afresh. The result is left in FPAcc. #1.

Multiply a byte and store the result in the product area.

(This is a temporary accumulator in locations $23- $27.

In BASIC 1, $75- $79).

Load Floating-point accumulator #2 from memory. This routine

takes the value held as a 5-byte floating-point number and

puts it into floating-point accumulator #2. In the process it

unpacks the sign byte and stores this separately. These
locations are used:
$66 (exponent), $67-6A (mantissa), and $6B (sign).

On exit from this routine, A holds the sign of the number in

floating-point accumulator #7 (not #2). Pointers: Alow, Y high.

Multiplication subroutine to check both accumulators.

This checks various conditions; if FPAcc. #2 is zero, then

FPAcc. #1 is made zero; if the exponents together are too

large or too small, ?OVERFLOW ERROR or zeroisation of the

result respectively take place.

Multiply Floating-point accumulator #1 by 10. This short

routine doesn't use a value of 10 in ROM; instead it multi-

plies accumulator #1 by 4, adds this result to itself, and
doubles the result. At each stage it tests for overflow.

Constant: 10 in 5 bytes of floating-point. (84,20,0,0,0).

Divide contents of floating-point accumulator #1 by 10.

This moves accumulator #1 into accumulator #2, then sets

pointers to 10 and performs division.

Perform division into floating-point accumulator #2. On entry,

A,Y, and X hold the low and high pointers to a 5-byte value

and the sign comparison byte, in that order. Then FPAcc. #1

is loaded- leaving FPAcc . #2 unchanged- and the result of

FPAcc. #2 / FPAcc. #1 calculated and left in FPAcc. #1.

Perform division: FPAcc. #2 / FPAcc. #1 into FPAcc. #1.

This entry point loads accumulator #2 before the division,

using the routine at D95E/D998/CBC2, so the pointers A and

Y must be arranged beforehand. The following entry points:

Divide the present accumulators without changing either of

them.
?DIVISION BY ZERO ERROR then READY.

Programming the PET/CBM

BASIC1 BASIC2 BASIC4

-474- 15: CBM BASIC ROMs

$DA7 4 $DAAE $CCD8

$DA99 $DAD3 $CCFD

$DAA2 $DADC $CD06

$DAA6 $DAEO $CDOA

$DACE $DB08 $CD32

$DADE $DB18 $CD42

$DAED $DB27 $CD51

$DAFD $DB3 7 $CD61

$DBOB $DB45 $CD6F

Load Floating-point accumulator from memory. This routine
takes a value held as a 5-byte floating-point number and
puts it into floating-point accumulator #1. In the process it

unpacks the sign byte and stores this separately. The bytes
are taken from the memory locations pointed at by A (low)
and Y (high). See, for an example, the routine starting at
D9D0/DA0A/CC34 which loads 10 into floating-point accumul-
ator #1 then divides this into FPAcc.#2. The locations used
are $5E (exponent), $5F-$62 (mantissa), and $63 (sign).
Note that zero sign bit means plus, #FF means minus.

Store Floating-point accumulator #1 into memory. This packs
the sign byte and rounds the accumulator, so that it fills the
standard 5 bytes of a numeric variable. It is stored into 5

bytes starting with the address pointed to by X (low byte)
and Y (high byte). There are four entry points: two of
these point to special zero-page locations in which TAN and
series expansions are worked out. (I.e. $59-$5D and $54-$58)..
The third entry point stores the value in the location which
($46) points to (or ($98) in BASIC 1). This is used by LET
and by the FOR-NEXT loop to store an evaluated quantity
in a variable's storage after a BASIC program.
Finally, this entry point is the one to select when the X and
Y values have to be set explicitly and don't correspond to
those cast in the silicon of ROM.

Copy accumulator #2 into accumulator #1 . This moves the sign
and five data bytes from one accumulator to the other; both
now hold the same value. The rounding byte is made zero.

pound and copy accumulator #1 into accumulator #2. Calls the
following routine, moves 6 bytes of the accumulator (more
elegantly than the last routine!), and zeroises the rounding
byte. Each of these short pieces of code therefore loses a
little information.

Round accumulator #1 . The rounding routine doubles the
rounding byte and exits without action if the result has the
carry bit clear, showing that it was less than 128. It also
exits with zero (this is always signalled by the exponent's
value being zero). However, if the carry bit is set, a single
bit is added to the floating-point value; this process can be
traced in ROM. Each byte is incremented until the result of
the increment is not zero (which of course is usual). If the
addition propagates through the accumulator, a routine is

called which adds one to the exponent and also rotates all

the bytes right. In this case, the rounding bit is lost .

Find sign of accumulator #1. On exit, these values apply:
A=0 means value is 0.

A=l means value is positive.
A=#FF means value is negative.

Perform SCN. Because BASIC function arguments are put in
floating-point accumulator #1 after evaluation, SGN calls the
previous subroutine to compute its sign. This is placed in
floating-point accumulator #1 as shown here:

$5E $5F $60 $61 $62 $63 $6D
#$88 sign

and a subroutine in the 'addition 1 routines is called to
convert 0,1, or #FF into their floating-point form, normalised
and with the sign byte set. See the next subroutines.

Programming the PET ICBM -475- 15: CBM BASIC ROMs

BAS1C1

$DBOE

BASIC2

$DB48

BASI CH

$CD72

$DB16 $DB50 $CD7A

$DB2A

$DB2D

$DB6M

$DB67

$CD8E

$CD91

$DB6D $DBA7 $CDD1

$DB9E $DBD8 $CE02

$DBBB $DBF5 $CE1F

$DBC5 $DBFF $CE2 9

Store contents of accumulator only in accumulator #1.

Example: LDA #A0 / JSR CD 72 puts the value 160 (decimal)

in floating-point form in FPAcc.#l.

Evaluates a double-byte integer and converts the result into

floating-point form (0-65535). On entry here, X must hold

#$90, $5F the high byte, and $60 the low byte, like this:

$DC3C
$DC5

$DC76
$DC8A

$CEA0
$CEB4

$DC8 5 $DCBF $CEE9

$DC9 4 $DCCE $CF7 8

$5E
#$90

$5F
sign

$60 $61 $62 $63 $6D

Note that the carry bit indicates the sign in all these

routines. If it is set, the number is treated as positive and

vice versa.

NOTE: The values #88, #90 (136, 144 decimal) are exponents

indicating the size to which the number is to be normalized.

Numerals of three or four bytes can be evaluated by an

extension of this calculation routine. See INT.

Perform ABS. See Chapter 5.

Compare Floating-point accumulator #1 with 5-byte floating-

point number. A (low byte) and Y (high byte) point to the

5-byte value in memory. On exit, the accumulator (A, not

one of the floating-point variety) indicates the relative sizes:

A=0 means the values are equal.

A=l means that accumulator #1 > memory.

A=#FF means that accumulator #1 < memory.

Convert Floating-point #1 into integer, within FPAcc.#l.

This routine is called by D6DA/D6D2/C92D which, however,

also treats the fixed-point number as an address, which it

stores in ($11), or, with BASIC 1, in ($08).

$5E $5F
HH

$60
Hl-i

$61
HI

$62
LO

$63 1

$DC9F $DCD9 $CF83

Perform INT. Acts on floating-point accumulator #1, rounding

it down to the nearest integer, but leaving the result in

floating-point form.

Used when zeroising all of accumulator #1 when the exponent

has been found to be zero.

Convert an ASCII string into a numeral in FPAcc.#l. VAL
and other routines use this to evaluate a numeral which is

in string form. GETCHR should point to this string before

entering this routine; then JSR 0070/ JSR CE29 (or what-

ever other values apply for BASICs 1 and 2) scans the

string and puts the result in floating-point accumulator #1.

E . + - and leading and other spaces are specially checked

;

the routine to multiply by 10 adds together consecutive digits

as they are encountered.

Add new ASCII numeral to the mantissa.

Add contents of A only to floating-point accumulator #1.

Example: LDA #$0F/JSR CEB4 adds 15 to the accumulator.

String conversion constants. There are three of these:

99 999 999.9, 999 999 999.75 and 1 000 000 000.

Print IN followed by linenumber. IN is a message from the

standard table. The linenumber is printed by loading A and

X with the high and low bytes respectively which are stored

in ($36), or ($B1) in BASIC 1. This is the current line-

number, which is stored by RUN as BASIC is executed.

This prints 256*A + X on the following line.

Programming the PET/CBM -416- 15: CBM BASIC ROMs

BASIC1 BASIC2 BASIC4

$DCAF $DCE9 $CF93

$DD3A

$DDE3

$DE2 4

$DE2E

$DD74

$DE1D

$DE5E

$DE68

$D01E

$D0C7

$D10 8

$D11 2

$DE67 $DEA1 $D14B

$DE7 2 $DEAC $D156

$DEAO $DEDA $D184

$DEF3 $DF2D $D1D7

$DF09 $DF43 $D1ED

Convert contents of Floating-point accumulator #1 into ASCII
string starting at $0100. On exit, A and Y hold #0 and #1,

pointing to $0100, so that the print routine CA27/CA1C/BB1D
can print the result as a string. Note that the buffer is at

the lowest end of the stack, inaccessible to BASIC. Chapter
2 has a table showing how this fomatting process works in

practice. Note the zero terminating byte, and the special-
case processing for zero. PRINT USING, in Chapter 5,

demonstrates how this routine may be adapted to get other
output formats.
Note that FPAcc.#l is changed when this routine has been
run. The tables of constants following this routine are used
in the comparison/ conversion process. The later ones deal
with TI$. And the three values tabled before this routine
are used to decide when scientific format should be used.
Convert TI$ from three bytes into the corresponding string.

String conversion and TI$ constants: .5 for SQR and round-
ing, then 15 4-byte constants, -100 000 000, 10 000 000,
-1 000 000, 100 000, -10 000, 1 000, -100, 10, -1 and
-2 160 001, 216 000 (=1 hour), -36 000, 3600 (=1 minute),
-600, 60 (=1 second).

Perform SQR. This puts FPAcc.#l into FPAcc.#2, loads
FPAcc . #1 with . 5 and performs the next routine

:

Perform power calculation M. Calculates FPAcc.#2 to the
power FPAcc . #1 . Note that FPAcc . #1 may be loaded from
memory by setting A and Y pointers and entering one
instruction earlier. FPAcc. #2 must be loaded before running
this routine. Both numbers are tested for equality with zero
and if zero is found, set the result in FPAcc. #1 to or 1

according as FPAcc. #1 or FPAcc. #2 is zero. The function is

evaluated by saving FPAcc. #1 in the zero page, then
multiplying the logarithm of FPAcc . #2 by FPAcc . #1 , and
finding the exponent of the result.

Negate contents of floating-point accumulator #1. Changes the
sign byte with EOR #FF, so becomes #FF and vice versa.
FPAcc. #1 is unchanged if it equals zero.

Table of constants: l/log
2
e and 8 constants for EXP's series

evaluation: byte of 7 then 2.149876 E-5, 1.435231 E-4,
1.342263 E-3, 9.614017 E-3, 5.550513 E-2, 2.402263 E-l,
6.931471 E-l, 1. The series in fact calculates 2\n.

Perform EXP. The value eAFPAcc.#l is computed and left in

FPAcc. #1. For notes on the method and on the series used,
see Chapter 16.

Function evaluation routine: this calls the next routine. It

evaluates more complex expressions of the type q*fn(q*x),
where fn(x) is evaluated by the series expansion formula
embodied in the next piece of code:-

Main series evaluation routine. All the mathematical functions
(LOG, SIN, COS, etc.) are evaluated by transforming the
argument into a suitable range (e.g. 0-1), calculating the
result and finally, where necessary, modifying the result-
perhaps by chenging the sign or altering the exponent.
This subroutine must be entered with the pointers ($6E), or
($C0) in BASIC 1, looking at a single byte, which will be read
as the number of values in the table. Then by a repetitive
process the tabled values are added and multiplied to FPAcc#l
so the table byte=3/5/3/l/10 (for example) finds the value of

10 + 3x + 5x 2
. See Chapter 16 for more on this subject.

Programming the PET ICBM

BASIC1 BASIC2 BASIC4

$DF3D $DF77 $D221
$DF41 $DF7B $D225

$DF45 $DF7F $D229

-477- 75: CBM BASIC ROMs

$DF4C $DF86 $D2 30

$DF63 $DF9D $D247

$DF78
$DF88

$DFB2
$DFC2

$D25C
$D26C

$DF9E
$DFA5

$DFD8
$DFDF

$D282
$D289

(=11 879 546.4)

(=3.927 677 78 E-8)
RND - multiplicative constant.

RND - additive constant.

Perform RND. The first three instructions of this function

compute the sign of accumulator #1 (and hence of the arg-

ument of RND) and branch to three sections of the routine

according to this sign - counting negative, zero and positive

as different 'signs'. All three branches meet and exit from

the routine together. Briefly, what happens is this:

Zero argument . The four bytes $5F-$62 in FPAcc.#l are each

loaded from the VIA timers; 2 of these change with every

clock cycle, so there's some justification for calling this

'random'. (BASIC 1 uses the wrong ROM addresses here,

probably because the final positioning of the chips wasn't

settled when RND was written). Then jumps to common exit.

$5E $^F $60 $61 ^62 $63 $6D

Exp. ft M4-->M h Sign Round

$DFEE $E028 $D2D2

$E01A $E054 $D2FE

$E0H8 $E08C $D32C

SE078 $E0BC $D35C

$E0B5 $E0F9 $D399

$E0C6 $E10A $D3AA

Positive argument. Multiplies the stored random number by

the first constant at the top of the page, then adds the second.

Then continues with :

Negative argument . Interchanges bytes as marked.

Common exit routine. This puts: #0 into $63 (i.e. positive),

Exponent into rounding byte, and #$80 into Exponent. The

latter forces the result into the range 0-1, the former perhaps

is intended to ensure that the exact value does not occur.

Finally, FPAcc.#l is stored into the random number work

area, ready for the next positive argument in RND.

Perform COS. Puts pi/ 2 into FPAcc.#2 and adds; then:

Perform SIN. Evaluates SIN of FPAcc.#l and leaves the

result in FPAcc.#l. The argument is in radians. See Chap-

ters 5 and 16 for more information.

Perform TAN. Evaluates TAN of FPAcc.#l, by dividing

the sine of that value by its cosine. As the argument

approaches 90° and other values (pi/ 2) the calculation will

inevitably lose precision.

Table of constants: pi/ 2, 2*pi and .25. Then there's a byte

which acts as a counter; it is 5, and the constants following

(6 of them!) are -14.38139, 42.007797, -76.70417, 81.605223,

-41.3417021, and 2*pi again. These are used by SIN.

BASIC 2 has also !TFOSORCIM in encoded form.

Perform ATN. The arctangent is left in FPAcc.#l after

evaluation; it's in radians. It is calculated with the aid of a

series with 12 terms; this is the longest series used, but it

also happens to be based on the simplest, and is optimised

for the range 0-1. (The basic series is x - x 3 /3 + x5/5 -. . .)

Counter and table of 12 constants for ATN evaluation.

These are: -6.84793912 E-4, 4.85094216 E-3, -.0161117018,

.034209638, -.0542791328, .0724571965, -.0898023954,

.110932413, -.142839808, .19999912, .333333316, and 1.

CHRCET routine and RND seed for relocation into RAM.
BASIC on reset moves both these tables into RAM, starting

at $70 (or $C2 in BASIC 1) where they are positioned con-

secutively. In fact only 4 bytes of RND are transferred, so

its value, theoretically .811635157, could presumably vary

within the range .811635137- .81165196.

Entry to ROM CHRGET where the fixed address is unimport-

ant, at SEC /SBC #30 etc. Can be used to save zero page

bytes. If the program has no spaces an earlier entry point

may be used.

Programming the PET/CBM

BASIC1 BASIC2 BASIC4

-418- 15: CBM BASIC ROMs

$E0D2 $E116 $D3B6

$E0E5 $E12F $D3C7
$E10C $E152 $D3EA

$E131
$E167

$E15A
$E174

$E174
$E196

$E19D
$E1B7

and

$D417
$D4 2A

$D4 31
$D4 4B
$DEA4

$D3F9

Test RAM and initialise BASIC. This routine is the final call

made by the system on reset, including switch on, when the

reset vector at (FFFC) is called. This first sets input /output

values before jumping to this routine. Note that there is an
alternative path on reset, used by Jim Butterield's technique
for resetting BASIC 2 and 4 machines, which enters the
monitor without disturbing BASIC. In BASIC 1 this leads to

a diagnostic program, not a monitor.
A SYS call to the appropriate address above, or an indirect

jump to (FFFC) with any ROM, erases RAM memory above
$0400 and resets all the BASIC pointers, and so is a reliable

way to return memory to the cold-start situation which obtains
when the machine is turned on. (Note that an indirect jump
is represented by opcode $6C=108 decimal. So POKE 108 and
252 and 255 into consecutive locations and SYS the first of
these to reset any ROM). See Chapter 13 for an account of
the events of Reset. Some major locations are:
Move CHRGET subroutine and RND seed to zero page.
Start of BASIC becomes $400; RAM test and exit. Note that
A holds #0 on entry. From $0400, #$55 (i.e. %01010101) is

written to RAM and read back; then #$AA (%10101010) is

written and read.* This is a standard type of chip test. When
the read-back is not equal, or $8000 has been reached, the
next routine is dropped into:

Set BASIC string and variable pointers to their start values.
Print *** COMMODORE BASIC *** (BASIC1),
COMMODORE BASIC ### (BASIC2), or
*** COMMODORE BASIC 4.0 *** (BASIC 4).

Calculate and print bytes free.

Tables holding the messages for bytes free and for Commod-
ore BASIC. The second table for BASIC 4 seems to be an
afterthought. It includes '4.0'.

Prints 44030 bytes free. (Joke?).

MACHINE-LANGUAGE MONITOR (MLM).

$FD11 $D472

$FD17 $D478

$FD56 $D4BA

'Call' entry to monitor. This prints C* followed by details
like this:

PC IRQ SR AC XR YR SP
. ; B780 E455 32 38 2C 34 FA

PC points to BASIC; IRQ and SP are taken from the stack and
are reliable. The 'registers' are garbage from the input buffer.

'Break' entry to monitor. This prints B* and pulls the stack
to determine the contents of the program counter and reg-
isters: it assumes an entry by SYS 1024 or SYS 4 from BASIC
(or any location hoding a zero byte), or by a machine-code
routine entering a BRK instruction. SYS to this address will

remove data from the stack. Note that BASIC 4 differs from
BASIC 2 in restoring normal devices on BRK, so the monitor
always prints to the screen. In order to dump monitor inform-
ation, use the call entry: OPEN 128,4: CMD 128, "MONITOR":
SYS 54386 which directs output to the printer. PRINT #128:
CLOSE 128 unlistens the printer. (These figures are for a
printer with automatic line feed on)

.

Start point: waits for command after . and executes it.

For example, . M 1000 1010 is processed from here: M is

searched in a table, analogous to the BASIC keyword table,
and its address- 1 pushed on the stack. RTS then jumps.

BASIC 1 has a less thorough test, using #$92 and #$24 (%10010010 and %00100100)

.

The intention, to test all the bits, is the same.

Programming the PET ICBM

BASIC2 BAS1C4

-479- 15: CBM BASIC ROMs

$FD70 $D4D4

$FD93 $D4F7

$FDA7 $D50B

$FDBF $D523
$FDCA $D52E
$FDCD $D531
$FDDO $D534
$FDD5 $D539

$FDEO $D544

$FE23 $D587

$FE58 $D5BC

$FE97 $D5FB

$FEB9 $D61D

$FECF $D633

$FF07 $D66B

Search table of commands. Compares 8 single byte commands

with that input. (: ; R M G X L S). If not found, jumps to

the address USRCMD, ($03FA), which is set up to point at a

routine to print ? crlf, then jumps to START. This RAM

address may be altered to include one's own monitor commands

such as those used by Extramon.

Display memory. On entry, A holds the number of bytes to

be displayed, and ($FB) holds the first address.

Read a byte and store in RAM. Reads a byte into A and

stores it in ($FB), exiting with ? if the readback doesn't

equal the byte. Increments the pointer ($FB).

Sets ($FB) ready to $0202. On exit, A holds #5.

Print two spaces.
Print one space.

Print one carriage return + line feed.

Increment temporary pointer locations ($FB).

Three tables for MLM. These are:

(i) ASCII values of commands : ; R M G X L S,

(ii) Address high then address low bytes corresponding to

the address of each command less 1,

(iii) Text storage of [Rtn] PC IRQ SR AC XR YR SP.

R (Display registers). Prints 29 characters of the text table,

followed by the program counter and IRQ as 'words' and 5

other bytes, all from the input buffer. These record the

situation as it was at BRK, i.e. SYS 1024 etc.

M (Display memory). Most of this routine is validation and

housekeeping. Sets of 8 bytes are displayed using 'Display

memory' (above) with A =#8. ($FC) holds the upper limit

beyond which memory won't be displayed, except as part of

the last 8-byte block of data.

• (Modify registers). This inputs the new program counter,

storing it in 0200 & 0201; IRQ similarly is put in 0207 & 0208.

Finally, 5 bytes are read and stored in $0202 ff. The layout

within the input buffer is this:

$0200
PC hi

$0201
PC lo

$0202
PSR

$0203
ACC'R

$0204
XR

$0205
YR

$0206
SP

$0207
IRQ hi

$0208
IRQ lo

Note that the registers are not modified by R; only the input

buffer stores these values, which are loaded by G, the 'go

run' command.

: (Modify memory). Reads the memory address into ($FB),

then reads-and-stores 8 bytes into RAM. This routine is used

by the latter routine also; in its case ($FB) points to $0202

and only 5 bytes are stored. This routine stops, printing a

query, if on readback the byte doesn't have the write value.

This happens on trying to write to ROM for instance.

G (Go, Go run). This command has two formats. G alone

fetches all the registers from $0200- $0208 and loads them, so

its destination is determined by the program counter stored

in $0200 and $0201. G ABCD overwrites the program counter

store with $ABCD, but loads the other registers just as G

does. The effect is that any routine can be called, with any

values of A,X,Y, processor stack, and IRQ.

X (Exit to BASIC). Sets the stack pointer to its entry value

and jumps to BASIC warm start (C389/B3FF) where READY

is printed and a direct commend awaited. The program and

its variables are all preserved intact The input buffer reverts

to its BASIC input buffer role.

Programming the PET/CBM -420- 15: CBM BASIC ROMs

BASIC1 BASIC2 BASIC4

$FF11 $D675 L / S (Load and Save machine-code routines). These are
mixed together because of the similarity in syntax. The main
locations used are these:
$B4=index of command in table (i.e. L=6, S=7).
$96=ST byte.
$9D=LOAD/ VERIFY select flag - Load=0, Verify=l.
$Dl=length of string (i.e. device number + name, or, in the

case of defaults to tape, name only).
$D4=device number (8=normal CBM disk, l=eassette #1, etc.).
($FB) and ($C9) store the low address and high address for

Save. (Load needs only the low address).
($DA) points the start of the string or filename.

The syntax is shown by these examples:
.L "M/C SORT", 01 : REM LOADS M/C SORT FROM TAPE #1
.S "1:OLD.033A",08,033A,0381: REM SAVES 033A-0380 ON DISK
.L : REM LOADS FIRST FILE ON TAPE #1
.S "0:RAM DUMP" , 0D , 0000 , 0100 : REM SAVE TO DEVICE #13

When the above pointers have been set, the routine at
F43E/F322/F356 performs LOAD without requesting para-
meters, and the routine F6B1/F6A4/F6E3 performs SAVE in

the same way. These routines can be called from BASIC and
represent the only feasible way of loading and saving chunks
of machine-code from BASIC.

Subroutines used by MLM. The names are Commodore's.

$E76A $D717 WROA. Ouput hex digits. Prints contents of ($FB) as 4 hex
digits, for example 4CD3.

$E775 $D722 WROB. Output single byte. Prints the contents of the
accumulator as 2 hex digits, for example F3.

$E784 $D731 WRTWO. Output two characters. X contains the first, Y the
second, character; in the monitor, these are set, by the
next routine, to be 48-57 or 65-70, i.e. ASCII 0-9 or A-F.

$E78D $D73A ASC. Convert 0-15 into ASCII character. This takes the
contents of A and converts to ASCII - see previous routine.

$E797 $D744 T2T2. Exchange contents of ($FB) with ($FD).

$E7A7 $D754 RDOA. Input full hex address. This sets the flashing cursor
and awaits input of a 16-bit value, e.g. ABD8. The result is

placed in ($FB). Carry is cleared if there are spaces only.

$E7B6 $D763 RDOB. Input one hex byte. The cursor flashes and a single
hex byte (e.g. AB) is input to the accumulator, which holds
the same value(e.g. AB!). Carry clear means nothing was
input.

$E7E0 $D78D HEXIT. Convert ASCII numeral to HEX. Accumulator values
of #30-#39 and #41-#46, which print as 0-9 and A-F, are
converted to 0-#F in the accumulator.

$E7EB $D7 98 RDOC. Input character/ await return. Flashes cursor and
inputs a single character. If this is carriage return, the
subroutine return is stopped, and the routine exits to check
the command letter or punctuation symbol presumably present
at the start of the line.

$E7F7 $D7A4 ERROPR. Print ?. Then go to input the next line.

BASIC 1, though without a machine-code monitor - unless TIM ('tiny monitor') or a
Supermon-style monitor is loaded in - nevertheless has LOAD and SAVE as BASIC commands
which are usable from BASIC or machine-code. The locations are different: There is no
index; ST is $020C; $020B is LOADAERIFY; $EE is length; $F1 is device**; low and high
addresses for SAVE are ($F7> and ($E5) ; and ($F9) points to the start of the filename.

Programming the PET/CBM -427- 15: CBM BASIC ROMs

BASIC t

DISK COMMANDS - BASIC 4 ONLY .

$D7AF Perform RECORD. This routine validates RECORD#file number, record number

[.optional byte number]. The byte parameter is tested to ensure it's within

the range 1-254; and it defaults to 1 if not explicitly mentioned. The logical

file number is tested to ensure it is not zero; and the record number can

take any 2-byte value. It may be written as an expression, but if it is, it

must be within brackets unless it starts with a number. Thus, these are

valid: REC0RD#2*2,(Q),1 and REC0RD#2, 145, 5. Commodore has introduced some

new rules for validation into its disk commands, which are not quite the same

as in BASIC itself. RECORD jumps to $DA31 to send its message to disk.

$D804 4 disk BASIC parameter checking routines. These print ?SYNTAX ERROR if

the bits set in $033E don't match a bit pattern that is looked for, and so

indicate that a wrong parameter has been entered, or a correct one omitted.

$D82E for example checks that A has bits and 2, at least, on.

$D838 Dummy disk control messages. This table holds commands corresponding to

10 instructions. The tables are used to construct full messages in the disk

command buffer. A simple example: BACKUP has 44 D2 3D Dl. 44 is ASCII

V and 3D is ASCII =. D2 and Dl are not ASCII values, but a code showing

that destination and source drives are to be substituted. The resulting

string has the same effect as D1=0 which duplicates disk onto disk 1. The

word 'BACKUP' is not used by the disk unit.

$D839 DIRECTORY or CATALOG ($ Dl)

$D83B DOPEN etc. (Dl :F1,E1,E0)

$D842 APPEND (Dl :F1,A)

$D847 HEADER (N Dl: Fl) or (N D1:F1,D0)

$D84D COLLECT (V Dl)

$D84F BACKUP (D D2=D1)
$D853 COPY (C D2: F2=D1: Fl)

$D85B CONCAT (C D2: F2=D2: F2, Dl: Fl)

$D867 RENAME (R Dl: F2=D1: Fl)

$D86F SCRATCH (S Dl: Fl)

Some of these commands have alternative forms: HEADER may have length

4 or 6 in its string, COLLECT lor 2, CONCAT 8 or 12, depending (for

example) whether HEADER'S ID is given or not. The following table shows

how the dummy values (which are detected by bit 7 being high) are under-

stood : DO = DOS disk ID (2 bytes)

Dl = source drive number
D2 = destination drive number
E0 = read or write

El = parameter length (relative files) or S (sequential files)

Fl = source file name
F2 = destination file name

$D873 Perform CATALOG or DIRECTORY. Both of these commands jump to this

address; they are identical. Ths syntax checking test that $033E has bits

1,2,3,5,6, and 7 all off; only a drive number and string are permitted. The

validation is performed by the routine $DC68; to save space I shall not

mention this with each instruction, although every disk command except

RECORD uses it. DIRECTORY works like, and closely resembles, the DOS
wedge program; it 'lists' the directory, not in RAM, but by looking for end-

of-line zero bytes, throwing away the link address, printing the 'linenumber'

which is the filelength, and printing each character of the name. Thus the

listing takes place without disturbing RAM. Nevertheless, the directory is

still stored, as in DOS 1, in program form.

$D8A3, $D8A5 Throw away 4 (later 2) bytes; then print 'linenumber'

$D905 End-of-line and possible end-of-program subroutine.

$D911 Exit if ST <>

$D91A Output a character. I.e. set device/ output/ set default devices. Enables

the directory to be output to printers etc.

Programming the PET/CBM

BASIC 4

-422- 15: CBM BASIC ROMs

$D92F

$D9«»2

$D977

$D991
$D995

$D9D2

$DA07

$DA31

$DAC5

$DA7E

$DA98

$DAA7

$DAC7

Find next available secondary address. Sets $D3 (=secondary address) to
#62 + by searching all the open files until an unused secondary address is

discovered. At each loop the trial value is incremented. This saves the user
the effort of thinking up yet another meaningless secondary eddress.

Perform DOPEN. Tests for DOPEN# filenumber, "name" and also the options
for drive number, relative record length, unit number (i.e. ON U9 or ,U9
with unit #9), and sequential read/ write. It sets up a command string and
jumps to the normal OPEN routine.

Perform APPEND. This command is not in some disk manuals. The command
string puts ,A after the file name and this automatically performs OPEN and
sets the pointers to write sequentially on ot the end of the file.

Get disk status string DS$.
Get DS$ (jump table entry) . These routines set up a string in memory
with length held in $0D and pointer to start of ($0E). The value of DS can
be tested with this machine-code

:

LDY #0
LDA (0E),Y
CMP #32
BCS ERROR ; VALUE IS NEITHER NOR 1.

Perform HEADER. This has two forms, with and without a disk ID. As well
as the usual validation, this command uses the ARE YOU SURE? prompt. On
exit, DS id checked and ?BAD DISK ERROR appears if DS > 1.

Perform DCLOSE. The syntax check permits either DCLOSE or DCLOSE# file

number [ON U8], or other device number. $DA1B closes a numbered file;

When no file number is given, all open files of the correct device number are
sought and closed by the routine at $DA1B.

Set up disk record pointers. This is called from RECORD,
byte string to the disk which contains:

It sends a five

ASCII for p Secondary address

.

Rec.no. low Rec.no. high Byte
$0353 $0354 $0355 $0356 $0357

The default value for byte is 1.

from 1-254 are accepted.
Byte is checked to ensure that only values

Perform COLLECT. COLLECT (in BASIC<4, VALIDATE corresponded to this)
has two forms: one has one parameter in the command string, the other two,
depending on whether a drive is specified or the default is used.

Perform BACKUP. This checks that two drives are specified and an optional
device number. It sets Y=#$16 and A =#$4 and enters the next routine, which
is also used by all the other disk commands except RECORD:-
Send DOS command string from buffer to disk. On entry, Y holds the offset
from D839, the table of dummy commands, and A holds the length of the
dummy command: the true length of the command, after the details have been
inserted by DBFA, naturally varies with (for example) the length of a pro-
gram's name.

Perform COPY. COPY sends a disk command string with 8 components,
irrespective of its syntax (there are several valid versions).

Perform CONCAT. Like COPY, CONCAT sends a command string with a fixed
number of variables. In the case of CONCAT this means 12 variables. These
are arranged (see D838 ff.) in a string like this:

C D2 : F2 = D2 : F2 , Dl : Fl where D and F are drive & file numbers.
Note that this string,, and the others like it, are sometimes called the 'DOS
interface' in Commodore documentation, referring to the fact that the data
which is sent to the disk has to be in one of the standard forms to be
processed corretly.

Programming the PET/CBM

BASIC H

$DAD4

-423- 15: CBM BASIC ROMs

$DAFD

$DBOD

$DB3A

$DB55

$DB66

$DB99
$DB9E

$DBD7

$DBE1

$DBFA

$DC4C
$DC57

$DC68

Put source file name into DOS command string. This routine is called within

DBFA when Fl is encountered in the dummy disk command table; it places

details, including the file's name, into the command buffer, which starts at

$0353, and it sets pointers, i.e. ($FD), to this address.

Store 2 parameters in adjacent addresses in the command string buffer.

Perform DSAVE. This uses three parameters, sharing those of DOPEN at

D83B The filename and disk drive only are sent in the command string. Note

that the filename may be preceded by •«• if save-w^h-replace is required^

then the file is saved without the necessity to avoid ?FILE EXISTS ERROR by

first scratching the file. (However, '@' is reputedly not bug-free, and is to

be avoided by the cautious user).

Perform DLOAD. DLOAD uses similar output parameters to DSAVE. The flag

in $9D is set zero for LOAD, not VERIFY. (This suggests that a disk verify

command, say DVERIFY , could be written, identical to DLOAD but storing #1

in the verify flag).

Perform RENAME. DOS interface is R D1:F2=D1:F1

Perform SCRATCH. The DOS interface is S drive no. : filename (the filename

may include * and/or ?). This combination of parameters is checked by the

parsing routine. To make erroneous deleting of files less easy, a subroutine

which prints ARE YOU SURE? (at DB9E) waits for 'yes' or 'y\ On exit, DS$

is read and - if it's been set - printed to the screen if the mode is direct.

Check command is direct mode entry. If it is, the equals flag (Z) is set.

Print 'are you sure?* and await reply. Only unshifted y or yes set the tlags:

C is returned clear if y or yes in entered. Otherwise BCS may be used to

exit or jump past the unwanted code.

Print ?BAD DISK ERROR if in direct mode. DBDC prints it in any mode.

Clear DS$ and ST. This routine leaves A,X, and Y unchanged, and sets ST

and the length of the string DS$ to zero. Both are effectively zeroised. If a

DS$ string existed already, its pointers in RAM are set to $FF28.

Expands dummy variables to fill DOS command string in buffer $0353 ff.

On entry, Y holds the offset of the start of the command string from$D839.

A holds the length of the dummy string. Example: APPEND sets Y-#9,A-#5.

This corresponds to the data indicated for $D842; q.v. Each dummy value,

for instance Dl or E0, is filled from the storage details in $033A ff.

Set file name length to value in X register; set pointer ($DA)=$0353.

Process L,S, and W flags.

Parse disk BASIC command and store parameters. It is this routine which

permits disk parameters to be entered in any order. A large loop processes

the string, looking for: # W L R D ON token U I " or (. Anything else

gives ?SYNTAX ERROR. $033E stores, bitwise, the parameters as they are

processed. So, if (say) DLOAD#3#4 is entered, which of course is wrong, the

file number flag will be set on the second look at # and this will cause the

?SYNTAX ERROR message. The 7 bits of $033E have these meanings:

MEANING OF BITS SET IN $033E

$DE49

$DE87

$DE20

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT

1: NO @ WRITE DEST. DRIVE. SOURCE DRIVE DEVICE # FILE # DEST. FILE FILE

0: @ READ NO DEST. DR. NO SOURCE DR. NO DEV.# NO LFN NO DEST. NO FILE

Get file name. On entry, ($1F) points to the start of the string. If its length

exceeds 16, or begins with '@' and exceeds 17, the routine prints ?SYNTAX
ERROR. On exit, A holds length, X and Y also hold ($1F) pointers.

Get parameter in range 0-255. The value is returned in X and in $62. The

parameter is taken from BASIC (by CHRGET) and evaluated; if it does not

begin with 0-9, it must be within parentheses; so all these expressions are

accepted if the range is right: (X+Y) and 12 and (12+VAL(J$)) and 4+X

.

Parameters such as the logical file number are input using this.

7SYNTAX ERROR; $DE27 7ILLECAL QUANTITY ERROR;

LONG ERROR; $DB27 ?BAD DISK ERROR.
$DE74 7STRING TOO

Programming the PET/CBM -424- 15: CBM BASIC ROMs
SCREEN, KEYBOARD, AND INTERRUPT PROCESSING ($E000 ff

)

.

BASIC1 BASIC2 BASIC4
$E000 JUMP TABLE FOR 80-COLUMN CBM ONLY .

$E000 JMP E04B: Bell + home cursor + initialise input/ output.
$E003 JMP E0A7: Input from keyboard buffer.
$E006 JMP E116: Input from screen or keyboard via ($E9).
$E009 JMP E202: Output a character via ($EB).
$E00C JMP E442: IRQ servicing: BRK to monitor, hardware interrupt
$E00F JMP E455: Clock, cursor, keyboard, tape servicing.
$E012 JMP E600: Exit from interrupt.
$E015 JMP E051: Clear screen within window.
$E018 JMP E07A: Set CRT controller chip to lower/ upper case.
$E01B JMP E082: Set CRT controller chip to upper case/ graphics.
$E01E JMP E088: Other CRT controller chip settings.
$E021 JMP E3C8: Screen scroll down.
$E02 4 JMP E3E8: Screen scroll up.
$E027 JMP E4BE: Finds key from keyboard decoding table.
$E02A JMP E6A7: Rings bell one chime.
$E02D JMP E036: Store accumulator A in repeat flag.
$E030 JMP E1E1: Set top left of scrolling window.
$E033 JMP E1DC: Set top right of scrolling window.
$E036 Called from E02D.

BASIC1

$E1E1

$E236
$E269
$E5DB

BASIC2 BASIC4 BASIC4
40-col. 80-col.

$E1DE $E000 $E60F

$E229 $E04B $E051
$E257 $E257 $E05F
$E25D $E07F $E06F

$E27D $E285 $E087 $E0A7

$E294 $E29A $E0BC $E0BC

$E2B7 $E2B8 $E0DA $E0DA

$E2FA $E2F4 $E116 $E116

$E349 $E33F $E167 $E16A
$E356 $E34C $E174 $E177
$E397 $E38D $E1B3
$E3A4 $E396 $E1BE
$E3C4 $E3B4 $E1DE

$E1AA
$E1C1
$E1D2

Initialise input/ output locations in VIA, PIAs, set
clock to zero, set cursor, etc.
Clear the screen (within window in 8032).
Home cursor.
Position cursor anywhere on screen - $C6 holds
horizontal, $D8 vertical, positions. (In BASIC 1,
$E2 and $F5).
Get character from keyboard buffer. On exit, the
character is in A. The number of characters in the
buffer is held in $9E ($020D in BASIC 1), and is

assumed to be at least 1.

Input from keyboard. Gets character (s) from the
keyboard buffer, echoing them to the screen and
handling the cursor position, finishing with carriage
return. If shift-Stop = Run is pressed, the keyboard
buffer is replaced by dL"*[Return]run[Return] in
BASIC 4, LOAD [Return]RUN [Return] in BASIC<4.
Input from screen or keyboard. This routine is used
by the INPUT routine whenever input is to be made
from non-tape and non-IEEE devices, i.e. CBM's
internal screen or keyboard. The X and Y registers
are preserved. When input is from screen, quotes
and reverse flags are tested for, and the cursor is
updated

.

Switch quote flag (0 to 1 or 1 to 0) if quote found.
Print screen character; update cursor.
Set 80-character line indicator.
Convert 40-column line to 80-character line.
Back to previous line (when actioning [DEL], [LEFT])
Advance cursor; next line if end of window.
Clear line to end of window.
Set window to fullest size.

Programming the PET /CBM

BASIC1 BASIC2 BASIC4 BAS1C4
40-coI. 80-col.

$E3EA $E3D8 $E202 $E202

-425- 15: CBM BASIC ROMs

Print CBM ASCII character to the screen. This

routine deals with all the cursor control and screen

editing characters. It takes care of cursor process-

ing and automatic screen scrolling. On entry, A holds

the character to be printed; note that both X and Y

registers' contents are preserved. BASIC 4, but

only the 80-column version, has an indirect jump

enabling users' routines to intercept the output; it

is via ($EB).

There is different processing for direct mode and

program mode.

$E3FF $E3EC $E216 $E224 UNSHIFTED CHARACTERS :

$E3FF
$E40A
$E41D
$E444
$E44B
$E452
$E468

$E3EC
$E3F7
$E40A
$E431
$E437
$E43E
$E454

$E216
$E221
$E234
$E25B
$E261
$E268
$E27E

$E224 Carriage return, CHR$(13)
$E22F Ordinary ASCII character,

$E242 Delete, CHR$(20)
$E26D Reverse, CHR$(18)
$E273 Home, CHR$(19)
$E287 Cursor right, CHR$(29)
$E296 Cursor down, CHR$(17)
$E2A0 Tab, CHR$(9)
$E2D4 Erase beginning of line, CHR$(22)

$E2E7 Delete line, CHR$(21)
$E595 Scroll down, CHR$(25)
$E59F Set top of window, CHR$(15)

$E5AE Text mode, CHR$(14)
$E5B7 Bell, CHR$(7)

$E48F $E47A $E2A4 $E2F4 SHIFTED CHARACTERS :

CHR${32) - CHR$(127)

$E482
$E49B
$E4AD
$E512
$E52A
$E51B
$E4E2

$E48D
$E34C
$E498
$E4FC
$E51 3

$E504
$E4CD

$E2B7
$E174
$E2C2
$E326
$E33D
$E32E
$E2F7

$E307 Shift-return, CHR$(141)

$E177 Shifted ordinary ASCII chr., CHR$(160)-CHR$(255)

$E312 Insert, CHR$(148}
$E35C Reverse off, CHR$(146)
$E377 Clear, CHR$(147)
$E364 Cursor left, CHR$(157)
$E34B Cursor up, CHR$(145)
$E380 Tab set, CHR$(137)
$E39 3 Erase to end of line, CHR$(150)

$E5C0 Insert line, CHR$(149)
$E5D6 Scroll up, CHR$(153)
$E5E2 Set bottom of window, CHR $(143)

$E5F1 Graphics mode, CHR$(142)
$E5B7 Shift-bell (=bell), CHR$(135)

$E3BD Escape and shift-escape, CHR$(27) and CHR$(155)

$E530
$E548

$E519
$E52F

$E343
$E359

$E3A3
$E3B6

$E559 $E53F $E369 $E3C8

Cursor down.
Process Return.

Scroll screen up. BASIC 1 and 2 are identical; and

BASIC 4 (40 column) almost identical to these. But

BASIC 4 (80 column) is rewritten (i) To allow the

screen to scroll up; (ii) To include a pause feature

which stops screen scroll; (iii) To prevent the IEEE

'EOI' character being sent, which all other BASICS

do when the screen scrolls (because one of the VIA

timers, E8117 E812, is used to time the delay loop

when RVS is pressed!)

Note that BASIC 4 with 40 columns still has this bug

in the IEEE. (The remedy, of course, is simply to

avoid scrolling the screen).

Programming the PET/CBM

BASIC1 BASIC2 BASIC4 BASIC4
40-col . 80-col

.

-426- 15: CBM BASIC ROMs

$E3E8
$E5C1 $E5A1 $E3C9 $E40B
$E5C8 $E5A8 $E3D0 $E412
$E5DB
$E605
$E617 $E5CC $E3E2

$E66B $E61B $E442 $E442

$E685 $E62E $E455 $E455

$E685 $E62E $E455 $E455

$E688 $E631 $E458 $E458

$E6B0 $E64D $E474 $E47A

$E6F7 $E68E $E4B5 $E4CD

Scroll screen down.
Check for [Reverse]; if pressed, .5 sec. delay.
Half-second delay.
Start new screen line (called by E269).
Action 'Insert'.

Open a space in a line with 'Insert'

MAIN INTERRUPT ENTRY POINT FROM IRQ.

Save A,X, and Y. Then test for BRK or hardware
interrupt. An indirect jump is performed according
to the result of this test.

BRK. ($92) holds the vector; on setting up BASIC
this is pointed to the Break entry-point of the
monitor. (BASIC 1: ($021B) points to $0000, giving
7ILLEGAL QUANTITY ERROR unless a BASIC USR
function is operative).
Hardware. ($90) holds the vector; on setting up
BASIC this points to the IRQ servicing routine. It

is this indirection which makes possible user inter-
ception of the 60-per-second interrupts.* In BASIC 1

the vector is in ($0219).

IRQ servicing routine. Unless the interrupt is

masked by SEI, or the vector is altered not to point
here on an interrupt, or the interrupt is programmed
not to take place, this routine is performed sixty
times each second.*

Update clock. A single JSR call updates the clock
see $FFEA). 8032 BASIC has a loop to add 1 jiffy

in every 7. This also checks for the Stop key, so
pointing ($90) to the following routine - ($0219) in
BASIC 1 - disables the Stop key (and stops the
clock).

Cursor flash. Several flags are used:
$A7: If non-zero, the cursor won't flash.

$A8: Counts to zero; then reverses the cursor.
$A9: Holds the actual character, not its reverse.
$AA : Flag = or 1 to indicate flash / not flash

.

$E4: Repeat flag (8032 only). When>127 countdown
constant = #2 so flashing is much faster.

Prepare for keyboard scan. This sets 'key image' to
'no key', 'shift key image' to off, clears the four
bits 0-3 in E810, performs I/O functions (e.g. turns
off the cassette motors) - details vary with ROM -

and loads X with #$50, (80 decimal), ready to scan
the 80 characters in the 10 by 8 decode table.
Loop which scans keyboard

.

2
Each key sets 1 bit low

in $E812, which therefore holds only #FF, #FE, #FD,
#FB, #F7, #EF, #DF, #BF, or #7F. However, it is low
only when $E810 holds the correct 'row' - a value
from 0-9. Thus 80 characters are possible, most of
which are used. In addition, the shift key may be
pressed, approximately doubling the number of
keyboard characters available. $E810 is incremented
during this loop; on exit it holds 9 in its right four
bits, and this default value is in force when $E812 is

loaded into A; this is why characters like =,<, space
in non-8032 machines, and :,9,6, etc. in 8032, are
often used in non-ASCII ways.

*12" screen CBM's interrupts occur 50 times per second.
2 A debounce routine (a small loop) is included in the keyboard scanning routine.

Programming the PET ICBM

BASIC1 BASIC2 BASICt BASICt
40-col . 80-col

.

$E714 $E6C2 $E4E9 $E504

-427- 15: CBM BASIC ROMs

$E546

$E72C $E6D6 $E4FD $E563

$E67E $E6E4 $E600 $E600
$E7AC $E6EA $E606 $E606

$E75C $E6F8

Process new key. The new 'key image', in $A6, is

compared with the previous key, in $97. If they are

the same (both may be #FF, signalling no key, or

both may hold 1-80, corresponding to a character in

the table).

Routine to erase graphics characters by unsettmg

the high bit which shift may have set

.

Put new character into the keyboard buffer. All

BASICS except the 8032 BASIC 4 delete the keyboard

buffer if more than 10 characters are now present;

this includes BASIC 4 in the 4016 and 4032. The

8032 however, preserves the current buffer, and in

addition has a variable length buffer, where the max-

imum number of stored characters is PEEK(227)+1.

Return from interrupt; recover A,X, and Y.

Poke contents of A into screen. Example: when A

contains #2, b or B depending on the ROM mode is

printed on the screen. On exit, Y holds the cursor

position on its line. Note that BASICs 1 and 2 have

a loop which awaits the retrace interrupt before

printing. This prevents 'snow' (with the old PETs)

and also slows the print. (Some other machines, e.g.

Sharp MZ-80K, share this old PET feature).

Ring bell twice.
.

Ring bell once. If $E7 holds #0, this is turned off;

otherwise, it is a delay constant. A table of 7 values

plays the chime ; these are #0E , #1E , #3E ,
#7E

,
#3E

,
#1E

,

and #0E.

KEYBOARD DECODING TABLES .

$E6 0B Table of 80 ASCII characters for BASIC 1, BASIC 2,

$E6A4
$E6A7

CONTENTS OF:

and 4016/ 4032

$E810
(59408)

$T?812 (=59410)

#$7F #$BF #$DF #$EF #$F7 #$FB #$FD #$FE #$FF

$-9 = N/A STOP < SPACE [RVS N/A

$-8 - RIGHT
SHIFT

> N/A] @ LEFT
SHIFT

N/A

$-7 + 2 N/A ? ,
n V X N/A

$-6 3 1 RTN ;
m b c z N/A

$-5 * 5 N/A k h f s N/A

$-4 6 4 N/A 1 J g d a N/A

$-3 / 8 N/A P i y r w N/A

$-2 9 7 t
o u t e q N/A

$-1 DEL DOWN N/A) \ ' $
" N/A

$-0 RIGHT HOME <—
(&

._

% # j N/A

NOTES: i. The shift keys are detected separately and are labelled 'right' and 'left'

h©r©
ii It can be seen from the table that WAIT 59410,4,4 pauses until space or

'shift-space is pressed, WAIT 59410,1,1 waits until RVS or RVSOFF is pressed,

WAIT 59410,5,255 waits for either space or reverse, and so on.

iii. The order of characters is the same as in the ROM table.

Programming the PET/CBM

BASIC1 BASIC2 BASICH BASIC4
40-col. 80-col.

$E6D1

-428- 15: CBM BASIC ROMs

Table of characters for the 8032. Note that tabled
values with the high bit set have no shifted equival-
ents; they correspond to keys like @ and] which are
marked with a single, non-alphabetic, symbol.

CONTENTS OF:

$E810
(59408)

$E812 (=59410)
#$7F #$BF #$DF #$EF #$F7 #$FB #$FD #$FE #$FF

$-9 [20] [4] STOP 9 6 3 <—

*

N/A

$-8 1* / [21] HOME m SPACE X RVS N/A

$-7 2* [16] [15] 0*
,

n V z N/A

$-6 3* RIGHT
SHIFT

[25] . * b c LEFT
SHIFT

N/A

$-5 4* [* o DOWN u t e q N/A

$-4 DEL P i * y r w TAB N/A

$-3 6* @ 1 RTN j g d a N/A

$-2 5*
; k]* h f s ESC* N/A

$-1 9* [6] T* 7* 0* 7 4 1 N/A

$-0 [5] [14] RIGHT 8* - 8 5 2 N/A

NOTES: i. * beside a character means that it has no shifted equivalent. Hence some
characters, e.g. all the numerals, appear twice,

ii. Note that the contents of E812 (=59410) when E810 holds -9 are not the
same as those for the earlier ROMs and 40-column BASIC 4. This is the
reason for the use of different sets of keys when slowing (and pausing)
screen scroll,

iii. The quantities in square brackets appear to be unused ASCII values.

$E72A
$E73C

$E7BC $E748 $E65B $E755

$E76E

$E7D4 $E761 $E674 $E721

Two tables of 18 constants each for CRT controller.
Lower case mode (switch-on) and upper case. See
Chapter 9 on this chip.
Table of 25 low bytes which mark the end of each
screen line.

Table of 25 high bytes marking the start of each
screen line. These are held in RAM in 40-column
machines to allow alterations for double-length lines.
Message table. LOAD [Return] RUN [Return] or
dL"* [Return] run [Return].

$E8:10 $E810
$E820 $E820
$E840 $E840

SYSTEM INPUT/ OUTPUT MEMORY MAP.

$E810 $E810 PIA (Peripheral interface adapter) #1.
PIA #2.$E820

$E840

$E81
$E820
$E840
$E880

VIA (Versatile interface adapter).
CRT controller. 8032 only.
All these addresses are incompletely decoded.

Programming the PET /CBM -429- 15: CBM BASIC ROMs

BASIC1 BASIC2 BASICS

sFOOO sFOOO $F000 Table of messages for file handling. These are: /too many
*

files/file open/file not open/file not found/[Rtn] searching/

for /[Rtn]press play /& record/on tape #/[Rtn]load/[Rtn]

writing/ [Rtn]verify /device not present/not input file/not

output file /[Rtn]found /[Rtn]ok[Rtn]/[Rtn]ready. [Rtn]/.

BASIC 4 has these two messages in addition: /[Rtn]are you

sure ?/[Rtn]? bad disk/.

$F0B6 $F0B6 $F0D2 Send 'Talk' on IEEE-488 bus.

$F0BA $F0BA $F0D5 Send "Listen 1

.

sFOBC $F0BC $F0D7 Send 'Untalk' or 'Unlisten'

.

'
This routine, with three entry points, handles handshaking

on the bus before falling through to the next routine, where

its prepared character is sent on the bus and causes the

device to talk or listen or otherwise respond. What happens

is as follows: the current device number (e.g. 8 for a disk)

is ORed with the value that A held on entry to this routine,

and which was pushed on the stack. There are four possible

values: A=#40 means 'Talk', A=#20 means 'Listen', and A-#3F

and #5F mean 'Unlisten' and 'Untalk'. Of these, two are set

on entering the routine at the appropriate entry points
;
while

'Unlisten' for example requires LDA#5F/ JSR F0D7. A is ORed

with the device number and placed into the IEEE buffer in

$A5; it is sent from here by the next routine. Just before

entering it, ATN (attention) is set low, i.e. true, so that the

byte is understood as a command. Consequently, after this

routine, ATN must be set high again. Note that a character

in the IEEE buffer which has not yet been sent is taken care

of by the present routine: $A0, the output flag, is non-zero

if a character is waiting in the buffer $A5, and if this situation

applies, the character will be sent before processing the IEEE

command. BASIC l's IEEE buffer is location $0222.

$F0E4 $F0E2 $F0FD Puts A into the buffer, sets ATN true, and sends the byte.

$F0F1 $F0EE $F10 9 Send one character on IEEE- 488 bus. The character which is

sent is the one previously stored in the buffer. The sequence

of events is this: (i) Sets Data Valid out false; (ii) Tests for

activity on the bus ; if none is found, ST is set to #80, to

signal a device not present error, (iii) Loads the byte from the

buffer, reverses it, because the IEEE convention is the reverse

of ASCII, and stores the result in $E822, the output register,

(iv) Loops while NRFD (not ready for data) is true; then sets

DAV (data valid) true, (v) Sets the VIA timer and loops as

$F111 $F10D $F128 long as NDAC (not data accepted) is true - i.e. while the

byte has not been accepted by the device. If the timer reaches

65 milliseconds, ST is set to #1. This is a 'Write time out' error

if it occurs. BASIC 4 has an optional override to cancel this

mechanism, (v) Data valid is set false; the output register

is loaded with #FF, the IEEE equivalent of a null byte.

$F1 2C $F1 28 $F1 43 Send one character and clear ATN. This is typically used to

send IEEE commands (such as the secondary address, #$60 +

0-15) when ATN is true and one command only is wanted. It is

used by loading A with the character, then calling this sub-

routine, which stores A in the IEEE buffer, calls the routine

immediately before this one, then sets attention high (false).

$F132 $F12D $F148 Set ATN high (false).

$F151 Optional timeout override (with Stop key test).

$F13B $F136 $F165 Flag errors into ST. ST=1 (write time out), ST=-128 (device

not present), and ST=2 (read time out) are processed here

in three routines.

$F14B $F146 $F175 Clear IEEE control lines.

Programming the PET/CBM

BASIC1 BASIC2 BASIC4

-430- 15: CBM BASIC ROMs

$E7DE $F156 $F1 85

$F15B $F164 $F193

$F167 $F16F $F19E

$F17A $F17F $F1AE

$F17E $F183 $F1B9

$F187 $F18C $F1C0

$F1CC $F1D1 $F205

$F1D6 $F1D9 $F20D
$F1DF $F1E1 $F215

$F1F5 $F1F4 $F228
$F202 $F1FF $F233

$F227 $F228 $F25C

Print message from table starting $F000. This is always called
from F579/ F56E./ F5AD which aborts files, prints Return and a

query, and follows the message with 'error' and an optional
linenumber if it's in a program. The Y offset controls the
actual message.

Send byte; then set NDAC (not data accepted) true.

Send IEEE character. If the buffer contains a character at

present, that character is output, and the contents of A put
in the buffer. Otherwise, the contents of A are put into the
buffer, and the output flag reset from #0 to #FF. In either
case, on exit flag $A0 holds #FF, and buffer $A5 holds A.
(BASIC 1: $021D and $0222 respectively).

Send 'Untalk'. BASIC 4, unlike BASIC<4, sets ATN true
before entering FOBC/F0BC/FOD7. This corrects a bug; see
Chapter 14.

Send 'Unlisten 1

. All ROMs function identically.

Get one character from the IEEE- 488 bus. The byte is return-
ed in A. This routine uses the identical timing subroutine used
to output a character; BASIC 4 again has the option of over-
riding the time out. ST=2 if this is not done and the device
fails to return a byte within 65 milliseconds. The sequence of
events is: (i) Sets NDAC (not data accepted) true, and NRFD
(not ready for data) false, (ii) Waits until DAV (data valid)
has been set true. ST is set =2 if the wait exceeds 65 millisec-
onds (but the timer can be overridden in BASIC 4, by poking
$03FC (1020 decimal) with a 'negative' number), (iii) Sets
NRFD true, (iv) Checks EOI; if found, ST is set to #40 (64
decimal) to indicate end-of-file. (v) Takes the byte, reverses
it, and saves this value on the stack, (vi) Sends NDAC false,

to indicate that the data was accepted, then waits for DAV to
become true; finally, NDAC is set true again, and the byte is

recovered from the stack and placed into A.

GET a byte. The jump table entry for GET - which gets a
character into the accumulator without assigning it to a name-
jumps here. The operation of this routine depends on the
contents of $AF ($0263 in BASIC 1) which holds the input
device number, for example 1 for cassette #1, 3 for the screen
and 8 for a disk unit. If the device number is 4 or more, then
input from the IEEE bus is assumed, and the previous routine
is used. Otherwise thereare three other possibilities.
GET from the keyboard buffer.
INPUT a byte. The jump table entry for INPUT is here. Most
of the logic is identical to GET - hence its position here amid
GET . The difference is that input from device is taken from
the screen.
GET from the screen.
GET from cassette #1 or cassette #2. This routine is in two
parts: the first reads a byte, and the next byte, so that ST
may be set to #40 (64 dec.) on end of file, simultaneously
with returning the last byte. The other routine is a subroutine
which is called by the first routine of the two. It advances the
buffer pointer and, if necessary, loads another buffer of data.
GET from an IEEE device. This calls F187/F18C/F1C0, but
only if ST=0. If the status byte holds any non-zero value,
the IEEE routine is not called; instead, the carriage return
character (#0D) is put into the accumulator. (BASIC 1 lacks
this feature. It returns the value of ST instead).

Programming the

BASIC1 BASIC2

$F230 $F232

PET/CBM

BASIC4

$F266

-431- 15: CBM BASIC ROMs

$F23D $F239
$F243 $F23F
$F247 $F243

$F26D
$F273
$F277

$F236

$F2A4 $F26E $F2A2

$F299 $F284 $F2B8

$F2AB $F28D $F2C1

$F2B8 $F299 $F2CD

$F2C8 $F2A9 $F2DD

$F2D5 $F2B6 $F2EA

$F2E1 $F2C2 $F2F6

$F307 $F2E1 $F315

$F30A $F2E4 $F318

Print one character to any device. The kernel jump table

command $FFD2 jumps to this address. Like the previous

GET/ INPUT routine, its operation depends on a single byte

which tells it which device is to receive output. This location

is the current output device number, held in $B0, or $0264 in

BASIC 1. The accumulator contains the character to be output.

So if $B0 holds 3, LDA #$93/ JSR $FFD2 clears the screen.

PRINT to screen.

PRINT to device #>3. Uses IEEE output buffer routine.

PRINT to device #<3. This writes to tape. The tape buffer is

one byte, location $B4 ($E9 in BASIC 1), from whence it is

moved to the buffer appropriate to the cassette*, and, when

this buffer is full, as measured by the pointer in $D4 ($F1 in

BASIC 1), the buffer is written to tape. Note that the line-

feed character, with ASCII value #0A (10 decimal) is trapped

by this routine and cannot be written as data to tape by

this PRINT routine.

?NOT OUTPUT FILE ERROR if 'output device' is #0 (i.e. the

keyboard).

Abort all files and I/O activity. This routine (i) Sets the

number of open files flag to zero (i.e. $AE or $0262 m BASIC

1). (ii) If the output device number exceeds 3, 'Unlisten' is

sent; and if the input device number exceeds 3, 'Untalk'.

The files are not CLOSEd, so files being written to may be

incompletely processed, and there is some risk of later corr-

uption with disk files. The routine now performs :-

Restore default input and output device numbers. This simply

puts #3 into the output file flag and #0 into the input device

number flag. ($B0 and $AF respectively - or $0263 and $0264

in BASIC 1).

Search table for logical file number. A holds the logical file

number on entering this routine. If the file number exists in

the table, the 'equals zero' Z flag is set, and X holds the

displacement from the start of the table.

Set file data from position in table. On entry, X is the offset

from the start of each table - as found by the previous rout-

ine. The logical file number, device number, and secondary

address are all taken from their respective tables and put into

$D2,$D4, and $D3 which are the current values. (In BASIC 1

these locations are $EF, $F1, and $F0.

Perform CLOSE. $FFC3 in the 'kernel' jump address table

comes here. The start of this routine fetches the parameters

used with CLOSE and stores the logical file number, device

number and secondary address in $D2-$D4. It uses the pre-

vious routines for this.

$D2-$D4 are assumed set up; X holds the position of the file

data in the three tables. Now the routine branches:

CLOSE devices #1 and #2 (i.e. cassettes). This involves

writing a zero byte on the tape, and optionally an end-of-

tape 'header' holding the marker value #5.

CLOSE devices #4 and greater (i.e. all IEEE devices).

This 'Unlistens' the device; then executes the following :-

CLOSE devices #0 and #3; and remove Xth item from all three

file tables. This is carried out by decrementing the flag

holding the number of open files; then transferring the

previous last file details into the Xth position, effectively

deleting the file records.

Programming the PET/CBM

BASIC1 BASIC2 BASIC*

-432- 15: CBM BASIC ROMs

$F339 $F30F $F343

$F33F $F315 $F349

$F362 $F322 $F356

$F366
$F36F

$F37B

$F37E

$F3 9A
$F39C

$F326
$F32F

$F352

$F355

$F378
$F37A

$F3 5A
$F363

$F37E $F348 $F37C

$F38C

$F38F

$F38E $F36D $F3A7

$F3B3
$F3B5

$F387 $F3C6

$F3A5 $F395 $F3D4

Test 'Stop 1 key. $FFE1 in the 'kernel' jump table comes here.
This calls an immediately preceding subroutine, then jumps to

the start of the BASIC STOP and END routine. If the zero

flag was set, a break occurs; otherwise, Stop wasn't pressed
and BASIC continues normally. Note that all ROMs test for

#EF in $E812; Stop is one of the few keys decoded in the
same way by BASICs 1-4. It also follows that SYS 62275 can
be used to test for Stop even if that key is otherwise disabled
by a change in the interrupt vector.

Send file message from $F000ff if in direct mode. BASIC 1 has
an apparently unreliable test for direct mode; BASIOl uses
a short subroutine. The message printed depends on the
value in Y, which is treated as an offset. (E.g. when Y=#E,
the message is FILE OPEN).

Load a BASIC program or other RAM image. This is not the
BASIC entry point; this routine is called after the parameters
have been input, and before the pointers are set after the
load. It handles the process of fetching data into memory.
(In BASIC 1 it is not fully separate from LOAD, but later
BASICs have it as a separate subroutine). The device number
as input with the parameters (e.g. LOAD "HELLO", 2 sets the
device number parameter to 2, i.e. cassette #2) determines
the course of this routine :-

7SYNTAX ERROR if device is #0 or #3.

Load from any IEEE device. A program name is assumed; its

length is stored in $D1 and ($DA) points to its start. If $D1
holds zero, this routine prints ?SYNTAX ERROR. Several
messages follow, each using a test for direct mode (see last-

but-one routine) so the screen layout is retained with a load
from within a program. The IEEE is 'Talk'ed and the secondary
address sent; now the actual loading begins:
Fetch data from device. Note that BASIC 1 always sets the
starting address to $0400. BASIOl uses the first two bytes
from the bus to set the low and high bytes respectively of
the starting address. In addition, BASIC 4 has a read time
out defeat at this point, presumably to allow for disk read time.
Print LOADING or VERIFYING if in direct mode. If the load
flag ($D4) =0, load is signalled; 1 is used for verification.

Loop which loads data into RAM or verifies data already in RAM.
Firstly, an inner loop handles the input of 1 byte; it tests for
Stop and repeatedly loops until no time out on read error is

shown in ST. Secondly, the routine branches, depending on
whether LOAD or VERIFY is being performed:
VERIFY. Compare byte with memory; set ST=#$10 (16 dec) if

the two don't match. Then continue.
LOAD. Store the byte in RAM. Then continue:
Increment load address ($FB) or ($F7) in BASIC 1. Check
bit 6 of ST (EOI) and continue with loop if this is 0.

Sets the end address when LOAD or VERIFY is finished.
I.e. transfers the incremented ($FB) contents into ($C9).
Also Untalks and clears channel.

Load from cassette. This routine is in three parts: the first
sets pointers to one of the cassette buffers (which one is in-
dicated by the device number), and prints various messages,
if the mode is direct, and also waits for the cassette key to
be pressed. The second part finds the header: this is simply
a buffer which contains the program or file name and some
other data. The third part is the actual loading / verifying
into RAM. BASIC 1, again, is more confusingly written than
later ROM revisions.

Programming the PET /CBM

BASIC1 BASIC2 BASIC4

-433- 15: CBM BASIC ROMs

$F346 $F3C2 $F401

$F34B $F3C6 $F405

$F3FF $F40A
$F408 $F414
$F415 $F421

$F422 $F42E

$F449
$F453
$F460

$F46D

$F433 $F43E $F47D

SF45C $F460 $F49F

$F462 $F466 $F4A5

$F47D $F47C $F4BB
$F482 $F483 $F4C0

$F495 $F494 $F4D3

$F4BB $F4B7 $F4F6
$F4C3 $F4BB $F4FD
$F4CA $F4C4 $F503
$F4CF $F4C9 $F508

$F433 $F4CE $F50D

Perform LOAD. $F3C2 from the 'kernel' jump table comes here.

This puts into the load7verify flag.

Entry point from VERIFY; flag is loaded with 1. (Note: this

value must be 1; it cannot simply be a non-zero quantity, as

it is used during the processing).

Now, three fairly distinct operations are carried out. First,

the parameters are fetched from BASIC and the current BASIC

pointers are saved. The routine waits until no key on the key-

board is pressed. Secondly, the previous routine is called to

LOAD or VERIFY the program. Thirdly, on return, there may

be a ?LOAD ERROR, a READY, message, or, if LOAD or

VERIFY took place from a program, BASIC is warm started,

retaining the previous variables (up to a point-see Chapter

5 on LOAD).

Print SEARCHING if in direct mode.

If length of string is non-zero print FOR and

print name string.

Print LOADING or VERIFYING if in direct mode. The actual

message depends on the LOAD / VERIFY flag.

Fetch parameters for LOAD, SAVE, or VERIFY. The para-

meters are taken from BASIC or from the input buffer, and

stored. In BASIOl they are:

$D1= length of string and ($DA) = pointer to start of string.

$D3= secondary address.
$D4= device number.
In all BASICS these default to length, secondary address,

and device #1 (cassette #1)

.

Check for comma and evaluate parameter 0-255. The result is

returned in the X register.

Send name string to IEEE-488 bus. This assumes that the

secondary address and length have been put in $D3 and $D1.

The device is sent 'Listen' and (if it responds) the string.

Print ?DEVICE NOT PRESENT ERROR.
Send name string (if it exists) and close IEEE channel.

Search for a named tape header block. This calls the routine

to find any header, i.e. the next header on tape. When a

header is found, its name (which starts at position 5 in the

buffer) is compared with the stored name at ($DA). This

process continues until end-of-tape, or until the tape runs

out, or a match is found, in which case A holds the length

of the name in the header (which may be shorter than the

name searched for).

Perform VERIFY. $FFDB in the 'kernel' jump table comes here.

Check bit 5 of ST.
Print ?VERIFY ERROR and exit.

Print OK. (not from within a program).

Fetch parameters for OPEN or CLOSE. This routine fetches

the parameters corresponding to this schema: OPEN arithmetic

expression [, arith. exp. [,arith.exp. [, string exp.]]]

.

The first of these, which is the logical file number, is com-

pulsory; the rest are optional. In BASIOl, these are the

locations which are set:

$D24ogical file number.
$Dl=length of string, ($DA) its pointer. $D1 defaults to 0.

$D4=device number. Default = 1.

$D3=secondary address. Defaults, or #FF with IEEE device.

BASIC 1 equivalents are: $EF,$EE and (($F9),$F1 and $F0.

Programming the PET/CBM

BASIC1 BASIC2 BASIC4

-434- 75: CBM BASIC ROMs

Exit from parameter-fetching subroutine if end-of-statement

.

Check the existence of a comma followed by any character
except colon or end-of-line.

Perform OPEN. $FFC0 in the 'kernel' jump table comes here.
This routine first uses the subroutine at F433/F4CE/F50D to
fetch and store the parameters. If the file number is zero,
?SYNTAX ERROR is printed. If the file already exists,
?FILE OPEN ERROR is printed. ST is made equal to zero.
If there are already 10 open files, the routine prints ?TOO
MANY FILES and exits. (BASIC 1 has a bug at this point
which causes an infinite loop - see F53B to F547).
Store the new logical file number, secondary address, and
device number to the tables at 0251- 025A, 0265- 026E, and
025B-0264.
If device number is or 3, RTS - i.e. nothing more with
screen file or keyboard file.

IEEE device: send program name or string to IEEE bus.
Cassette #1 or #2. The processing here depends on the sec-
ondary address. If it is the default value of 0, tape is read;
otherwise it is written to.

OPEN to read named file. (After WAIT: PRESS PLAY... and
SEARCHING ...).

$F579 $F56E $F5AD Print ?FILE NOT FOUND ERROR IN . . . and exit. Aborts files.

$F515 $F50E $F54D
$F51D $F516 $F555

$F52A $F521 $F560

$F531 $F526 $F5AF
$F539 $F52D $F56C

$F537 $F576

$F549 $F539 $F578

$F556 $F549 $F588

$F563 $F556 $F595
$F566 $F559 $F598

$F574 $F569 $F5A8

$F58B $F583 $F5C2
$F592 $F58A $F5C9

$F5AE $F5A6 $F5E5

$F5AE $F5DA $F61

9

$F5E3 $F5EB $F62A

$F632 $F625 $F664

$F64D $F63C $F67B

$F667 $F656 $F695
$F67D $F66C $F6AB

$F68D $F6CC

OPEN to read unnamed cassette file (i.e. the next on tape).
OPEN for write. This writes a header onto the tape; the
header type character is #4. Also the secondary address, or
#BF where this is 0, is stored for reference when CLOSEing
the file - it indicates whether an end- of-tape block is to be
written or not.

Load next tape header. This saves the load /verify flag on
the stack, reads a block, then continues to read blocks
unless the first character in the buffer is 1,4, or 5. These
signal program or RAM image header, data header, and, lastly,
when #5, an end-of-tape header. In either of the first two
cases, FOUND with 16 characters maximum of the name is

printed , if load is in direct mode . On exit , A holds #0 if an
end-of-tape header was read; otherwise, A holds #1.

Write tape header. On entry, A holds the type-of-header byte
(see previous routine's notes). Most of this routine is then
occupied with putting data into the buffer. ($D6) points to the
start of the cassette buffer, which is filled with spaces by a
short loop. The following bytes are now stored in the buffer:

TYPE FLAG
(#1,#4 OR #5)

LOW THEN HIGH
BYTES OF (FB)

LOW THEN HIGH
BYTES OF (C9)

PROGRAM NAME:

LENGTH=UP TO $D1

Sets the buffer start and end address and writes to tape.
(FB) and (C9) point to the low byte and high byte of RAM
area to be written. $C3 holds a timing value, #69, controlling
the amount of tape to which a tone is written before the header
proper is written.

Tape address subroutines. When reading a tape, this first
subroutine takes the start and end addresses from the bytes
loaded from the header. They are put into (FB) and (C9),
the start and end addresses respectively. BASIC 1: (F7) &(E5)l
Sets pointer (D6) = 027A or 033A for device #1 or #2.
Sets (FB) and (C9) from (D6) - set by the previous routine

-

to (D6) and (D6) + #$C0 (192 decimal).
Sets (FB) and (C9) to start and end of BASIC. Used in LOAD.

Programming the

BASIC1 BASIC2

$F695 $F684

PET/CBM -435- 15: CBM BASIC ROMs

BASIC4

$F6C3

$F69E $F69E $F6DD

$F6B1 $F6A4 $F6E0

$F6B5 $F6A8 $F6E7

$F6C0 $F6B3 $F6F2

$F6F6 $F703 $F742

$F70D $F71B $F75A

$F736 $F729 $F768

$F736 $F729 $F768

$F74E $F73B $F77A

Perform SYS. $FFDE from CBM's 'kernel' jumps here. The

routine evaluates any arithmetic expression, rounds it down

and loads the result into ($11), if its value is within the

acceptable range for SYS (0-65535). It performs an indirect

jump to ($11).

Perform SAVE. $FFD8 from CBM's 'kernel' jumps here. This

routine first inputs the parameters from BASIC by calling

F433/F43E/F47D. This stores the string and its pointers, the

device number, and the secondary address. Then BASIC'S

start address and end address pointers are transferred to

the SAVE start and end pointer addresses. All the parameters

are now set up for SAVEing.
This is the next entry point, which is used by the monitor

and may be part of a user routine: all that's required is

the parameters for device number, bottom and top address,

pointer to name, length of name, and secondary address to

be set, as though the previous two subroutines had been

called. Note that the topmost address is not saved; with

BASIC this doesn't matter, but machine-code dumps from RAM
may very well crash if they're truncated by a byte.

?DEVICE NOT PRESENT if device number is #0 or #3.

SAVE to IEEE device. This performs the following steps:

(i) Secondary address is made 1.

(ii) 7SYNTAX ERROR if program name has length zero.

(iii) Send name to IEEE and secondary address.

(iv) Make (C7) and (C9) the start and end addresses of the

part or RAM to be SAVEd.
(v) Send the contents of C7 and C8. On LOAD, these are

used to determine the address from which bytes will be

stored in RAM again,

(vi) Characters are sent one by one until the lower pointer

has been incremented to equal the higher pointer. Also

Stop is tested; so SAVE may be aborted by the Stop key.

(vii) The channel is cleared and the device Unlistened.

SAVE to cassette #1 or #2. This performs the following steps:

(i) Set buffer pointer to 027A or 033A depending on device #.

(ii) Print PRESS PLAY AND RECORD ON TAPE #1 or 2.

Wait for cassette keypress - hopefully of the correct keys,

(iii) In direct mode, print WRITING and name,
(iv) Write the header with type character = 1.

(v) Write the contents of RAM from the lower to the higher

address,
(vi) If the secondary address has bit 1 on, i.e. secondary

address was 2, write another header with type character
= 5 to signify an end-of-tape marker.

Update the clock / Save Stop or Reverse key. $FFEA in the

'kernel' jump table calls this routine. In addition to adding 1

to the clock (usually), this saves the contents of $E812 in a

special location, $9B or $0209 in BASIC 1. This is used as a

test for the stop key; it becomes #EF if Stop is pressed.

Some other keys are also detected; see the keyboard decode

tables at about E600 for this. Only Stop is constant between
the 8032 and other PET/CBM machines, which is why the

screen scrolling is slowed by Reverse in non-8032 machines,

and by the back arrow in the 8032.

Increment the correction clock; if it is #026F, reset to zero

Und-skip the jiffy clock increment.

Increment 4he jiffy clock. This is in $8D-$8F ($0200-$0202 in

BASIC 1) with the most significant byte first.

Programming the PET/CBM

BASIC1 BASIC2 BASIC*

$F75B $F745 $F784

-436- 15: CBM BASIC ROMs

$F788 $F76D $F7AC

$F78B $F770 $F7AF

Compare the jiffy clock's value with the constant held in the
table below. If identical, reset the jiffy clock to zero by
putting into each byte.

$F774 $F75C $F79B Reset correction clock to zero.
$F77C $F762 $F7A1 Get keyboard PIA value (with debounce) and store it: i.e.

fetches contents of $E812 and puts result in $9B or $0209.

Table of three bytes, they are #4F,#1A,#01. This is the
constant for 24 hours. 79*256 2 + 26*256 + 1 = 5 184 001,

which is 24 hours of l/60th sec + 1 extra 60th second.

Set Input device. $FFC6 of the 'kernel' jump table comes here.
On entry, the X register holds the logical file number of an
open file. This makes an IEEE device a Talker. See the
description under FFC6 in the table of common kernel routines
for details. BASIC 4 is slightly different from BASIC<4, since
it clears DS$ in addition to ST. The DOS wedge program's
source listings refer to this routine as 'Check out'; three
errors can occur, causing ?FILE NOT OPEN, ?NOT INPUT
FILE, or ?DEVICE NOT PRESENT error messages to appear.

Set Output device. $FFC9 of the 'kernel' jump table comes
here. On entry, X holds a logical file number. The IEEE
device corresponding to this file becomes a Listener, provided
no error is detected. This routine, like the previous one, can
print one of three possible errors, which are ?FILE NOT OPEN,
?NOT OUTPUT FILE, and 7DEVICE NOT PRESENT. See the
description under FFC9 in the table of CBM kernel routines
for more details. Note that this latter pair of routines,
'Check in' and 'Check out', only actually influence the peri-
pheral device when this is on the IEEE bus, i.e. with device
number greater than 3. Tape, screen, and keyboard files are
merely validated, and the current input device number or
output device number is set so that prompting messages and
so forth are not printed where this would be superfluous.
The input device number is stored in $AF or $0263, and the
output device number in $B0 or $0264 (BASIOl and BASIC 1

respectively)

.

CASSETTE TAPE OPERATING SYSTEM

$F7DC $F7BC $F7FE

$F82D $F806 $F8i»B

$F83B $F812 $F857

$F851

$F8 5E

$F828

$F835

$F86D

$F87A

$F871 $F874 $F88C

Increment tape buffer pointer. This short subroutine (i) sets
($D6) to 027A or 033A, depending on the device number in
$D4; (ii) increments either $BB or $BC, again depending on
$D4; (iii) compares the result with #C0 (192), so that if Z is

set on return from the subroutine, the pointer points to the
end of the buffer.

Test cassette keypress. If a cassette key is pressed when this
routine is entered, nothing further is done; exit immediately
takes place. Otherwise, PRESS PLAY ON TAPE #1 or 2 is

printed to the screen. Now a loop is entered; this repeatedly
tests the Stop key and the cassette. A cassette keypress
prints OK and the routine is finished; the Stop key of course
aborts the tape read.
Test cassette keys subroutine. If the Z flag is set, a key is

pressed; if not, not. So for example LABEL JSR F87A/ BNE LABEL
loops indefinitely until a key is pressed. $E810 is tested for
bit 4 (tape #1) or bit 5 (tape #2) high.

PRESS PLAY AND RECORD... This is identical to the routine
which tests the cassette for a keypress, following this with
PRESS PLAY ON TAPE ... except that an additional message,
AND RECORD, is interpolated before entering the earlier
routine

.

Programming the PET ICBM

BASIC1 BASIC2 BASIC4

$F87F $F855 $F89A

-437- 15: CBM BASIC ROMs

SF87F $F855 $F89A

$F88A $F85E $F8A3

$F890 $F864 $F8A9

Read Tape. On entry, (FB) and (C9) point to the low and

high locations in RAM into which tape data is to be loaded.

(F7) and (E5) are BASIC l's equivalents. This subroutine

can be used to read any blocks from a CBM tape.

Sets ST=0, sets load/verify flag to load, and sets (FB) and

(C9) according to device number 1 or 2 in $D4 or $F1 with

BASIC 1, to 027A-033Aor 033A-03FA. So exactly one block

will be read into one or other cassette buffer. This routine

loads a header for F5AE/F5A6/F5E5; the block can be identif-

ied as a header by its first byte, #1,#4, or #5.

This routine skips the call which sets (FB) and (C9) to point

to a cassette buffer. It loads data direct into RAM from tape.

It does not read blocks of data, but consecutive bytes written

one after another. If there is a checksum or other error the

second copy of the program on tape is likely to be able to

correct the load; the probability of an unrecoverable error

increases with program length.

Initialise for tape read. The interrupt is masked and these

locations zeroised:

$C0,$C1,$C2, $CB,$CE and $B2

$F8A8 $F8 7 3 $F8ED With cassette #1, CA1, and with cassette #2, CA2 is enabled.

$F8A3 $F882 $F8C7

$F839 $F886 $F8CB

$F8BC $F889 $F8CE
$F83B $F890 $F8D5

$FD1B $F89B $F8E0

$F8DC $F8A8 $F8ED

$F8C0 $F905

$F8F6 $F8CA $F90F

X is loaded with #0E and the tape read/write routine FD1B/

F89B/F8E0 entered. #0E corresponds to the fourth interrupt

vector from the table of tape interrupts.

Write Tape. This first entry point is used to write data files to

tape; it sets addresses (FB) and (C9) from the cassette device

number, then:
Set inter-block time counter, $C3, to 20 decimal, then:

Write consecutive bytes from RAM to tape. This entry-point

is used to write headers; however, a larger value, 105 decimal,

in the counter $C3 ensures a longer delay than obtains with a

block of data. Timer #2 in the VIA is interrupt-enabled ; this

is used to control the timing of writing onto tape. X is loaded

with #8 (corresponding to the first interrupt vector from the

table of tape interrupts) and the following is performed:

Tape read /write subroutine. This is shared by both of the

other routines on this page. It sets a new IRQ; with Read,

the vector is F95F/F931/F976 (when offset X=#0E), and with

Write FCCF/FC54/FC99 (when X=#08). This interrupt will be

made active when the interrupt mask is cleared with CLI.

$E813 is decremented; this, like POKE 59411, disables the

normal retrace interrupt; only the cassette interrupts are now
enabled. Also, several counters and flags are initialised.

Now the cassette motor is switched on. This involves setting 1

bit low; the process is the reverse of FFED/FCA6/FCEB, which

turns both motors off.

1/3 rd second delay for motor to pick up speed. (Omitted in

BASIC 1, which helps explain its greater unreliability).

Sets timer #2, clears the interrupt disable mask, and waits for

the IRQ vector to be reset to normal. It tests the Stop key

and also updates the clock when the retrace interrupt flag is

high, so the clock (and the Stop key test) are both updated

in the normal way. The processing is done during the inter-

rupts, at the addresses listed above; see locations marked *.

Programming the PET/CBM

BASIC1 BASIC2 BASIC4

-438- 15: CBM BASIC ROMs

$F913

$F91E

$FFED
$FD7C

$F8E6

$F8F0

$FCA6
$FCB4

$F92B

$F935

$F92E $F900 $F945

$F95F $F931 $F976

$FAA3 $FA5 7 $FA9C

$FAC5 $FA7 6 $FABB
$FB11 $FABB $FBOO
$FB2 3 $FACF $FB12

$FB8B $FB2B $FB7

$FBDC $FB76 $FBBB
$FBE5 $FB7F $FBC4
$FBEC $FB8 4 $FBC9

$FCOO $FB93 $FBD8

$FC21 $FBB4 $FBF9

$FCCF $FC54 $FC99

$FCFB $FC7B $FCCO

$FCEB
$FCF9

$FD90 $FCC6 $FDOB

Await IRQ's return to normal; test Stop key and action it if

it's pressed. This tests Stop with the usual routine, but mod-
ified because the tape and interrupt vector need to be aborted.
In addition the IRQ vector is examined - in fact its high byte
only, which is enough - and the 'equals zero' flag is set true
when this happens.

Set VIA timer #1 to new value, synchronized with timer #2

becoming zero. Timer #1 is set to a multiple of the contents of

$CB Or $E7 with BASIC 1, and the entry value of X. The
timing is uesd by the tape read routine.

Read bits from tape: interrupt entry when table offset = #$0E.
After a timed delay, this routine sets timer #2 to a 65 milli-

second cycle and and reads the tape. $DF builds up a byte
by rotating each bit in consecutively. When 8 bits have been
input, the 'byte received' flag in $B2 is set, and the byte
stored in RAM.
Store bytes in RAM. This stores characters from (FB) up to

(C9). It also performs the tape error checking :

Flag 'Long Block' error into ST, setting bit 2 of ST (=8 dec).
Flag 'Short Block' error into ST, setting bit 3 of ST (=4 dec).
Comparison and error-storing routine, which puts errors into
the low end of the stack ($0100 ff.) and compares, where
necessary, on the second read.
Flag 'Unrecoverable Read Error' into ST, setting bit 4 of ST
(=16 decimal)

.

Puts (FB) into (C7) - header pointer back to start of buffer.
Flag contents of A into ST byte.
Reset flags for new byte. Sets various flags to 0, and the
bit counter $B7 - 026C in BASIC 1 - to #8.

Write a tone to tape. Timer #2 is loaded with a value, and
the cassette output bit is reversed by EOR. This is used to
write a bit to tape. The timer is loaded with #0060, #00B0,
and (next routine) #0110, giving different frequencies.
Within this routine, the timer's value depends on the contents
of $DD ($FC in BASIC 1). If this is even, #60 is loaded; if

it is odd, #B0.

Write bits to tape: interrupt entry when table offset = #$0A.
This uses the previous routine to write a tone onto tape. The
actual frequencies used for bits and 1, and details of the
parity bit and inter- byte marker, are quoted in 'The PET
Revealed' on pp. 136-7.

Write a block to tape. This is called from 'Write header'. It

starts by loading the timer with #$78 and writing the corre-
sponding frequency to tape. It resets the flags and delays,
for a length of time corresponding to the counter in $C3,
which is decremented with every interrupt. Finally, the IRQ
vector is replaced by that corresponding to an offset of #0A
from the table of IRQ vectors, at FC21/FBB4/FBF9. When the
interrupt disable flag is set to 0, this routine performs writing
during interrupts; meanwhile, $DE counts the blocks remain-
ing to be written.

Turn off motor/ turn off abnormal interrupts / restore IRQ.
VIA interrupt enables are returned to normal, i.e. produced
by the retrace interrupt.
Turn off motors. (In BASIC 1 this runs into the NMI vector).
Perform checksum and increment pointer. Checksum is EOR of
all bytes and is stored in $C3 (($0279 in BASIC 1).

Check whether low address has been incremented as far as the
high address; if so, the 'equals zero' flag, Z, is set true.

Programming the PET/CBM -439- 15: CBM BASIC ROMs

BASIC1 BASIC2 BASIC4

SFD38 $FCD1 $FD1 6 Power-on Reset. (FFFC) in the 6502's hardware vectors points

to this address; this is the first software activity which occurs

on switching on the macine. It may also be called during the

course of a program; for example, SYS 64824/64721/64790 from

BASIC clears RAM and resets all major pointers (it does, how-

ever, also leave the cassette buffers and some other RAM
untouched). There is an optional branch when this routine is

called: if bit 7 of $E810 is high (this line is called the 'dia-

gnostic sense line' because of its behaviour in BASIC 1), the

monitor is called rather than BASIC. This is the reasoning

behind one of the reset switches of Jim Butterfield, which

relies on simultaneously holding $E810 high and pulling the

reset line to the 6502 low. In this way, BASIC is preserved.

BASIC 1 does not have the monitor; the branch executes a

diagnostic routine, which was dropped from later BASICs. It

required some wiring to the ports (see e.g. 'The PET Reveal-

ed' for an account of this. Note that the keyboard connector

too has to be disconnected from the main board and wired up).

The following operations are performed:

(i) Set the stack pointer to #FF (i.e. top of the stack); clear

the decimal flag, which may be set; set the interrupt disable

flag in BASIC 4 - a precaution which the other ROMs don't

take'; set the I/O registers, calling E1E1/E1D1/E000 - and, in

the 8032, tinkling the bell; this also sets the IRQ vector,

(ii) Point NMI to -/C389/B3FF, where it will simply print

READY. (BASIC 1 has no NMI vector in RAM).
Point the BRK interrupt to the B* entry point of the

monitor. (Not in BASIC 1).

Point USRCMD of the monitor to print ? when an unrec-

ognised monitor command is entered,

(hi) Clear the interrupt flag and jump to initialise BASIC or

exceptionally to C* in the monitor, if the diagnostic sense

line is high.

$FCD8 $FD1E Set vectors except BRK.
$FD3F $FCF3 $FD3E Test PIA for diagnostic sense.

$FD 9B Diagnostic routines of BASIC 1. These are activated in a wired

up PET on switchon. Like the tape routine they use interrupt

vectors rather freely; the table of interrupts in BASIC>lhas

gaps left over in it apparently because of this. Oddly, if an

error is detected, the routine goes into an infinite loop; there

are many of these in ROM. Some memory routines are usable

without hardware; for example,* the entire contents of FDDD-
FDFA (64989-65018) may be moved to RAM, with an RTS poked

at the end; this routine will perform a checksum on ROM from

C000-E7FF and F000-FFFF, the result of which should be zero,

held in $0279 (633 decimal).

$FCF8 $FD43 In BASIC 2, Monitor entry is FD11, BASIC initialisation Ell 6.

In BASIC 4, Monitor entry is D472, BASIC initialisation D3B6.

$FCFE $FD49 NMI vector. BASIOl performs indirect jump to (0094).

$FD2 8 $FD01 $FD4C Table of IRQ vectors for tape handling routines (and diagnos-

tics in BASIC 1).

$FD11 Machine-language monitor. In BASIC 4 this has been moved

to D472, so I have put its ROM details there, following the

sequence of BASIC4 rather than BASIC 2.

$FFB1 Millenial copyright statements 0978 CBM.

This suggestion was made in an IPUG newsletter.

Programming the PET/CBM

BASIC1 BASIC2 BASIC4

-440- 75: CBM BASIC ROMs

$FFCO to $FFEA

The 'Kernel': Disk routines only .

$FF93 CONCAT. Jump address: DAC7
$FF96 DOPEN D942
$FF99 DCLOSE DA07
$FF9C RECORD D7AF
$FF9F HEADER D9D2
$FFA2 COLLECT DA65
$FFA5 BACKUP DA7E
$FFA8 COPY DAA7
$FFAB APPEND D977
$FFAE DSAVE DBOD
$FFB1 DLOAD DB3A
$FFB4 CATALOG or DIRECTORY D873
$FFB7 RENAME DB55
$FFBA SCRATCH DB66
$FFBD GET DS$ (DISK STATUS) D995

Kernel jump table: see next page.

$F52A $F521 $F560 $FFC0
$F2C8 $F2A9 $F2DD $FFC3
$F78B $F770 $F7AF $FFC6
$F7DC $F7BC $F7FE $FFC9
$F27D $F272 $F2A6 $FFCC
$F1DF $F1E1 $F21 5 $FFCF
$F230 $F232 $F266 $FFD2
$F346 $F3C2 $F401 $FFD5
$F69E $F69E $F6DD $FFD8
$F4BB $F4B7 $F4F6 $FFDB
$F695 $F684 $F6C3 $FFDE
$F339 $F30F $F343 $FFE1
$F1CC $F1D1 $F205 $FFE4
$F2A4 $F26E $F2A2 $FFE7
$F736 $F729 $F768 $FFEA

(OPEN) - jump address.
(CLOSE) - jump address.
(Set input device) - jump address.
(Set output device) - jump address.
(Restore default I/O) - jump address.

(Input a byte) - jump address.
(Output a byte) - jump address.
(LOAD) - jump address.
(SAVE) - jump address.
(VERIFY) - jump address.
(SYS) - jump address.
(Test Stop key) - jump address.
(Get 1 character) - jump address.
(Abort all I/O) - jump address.
(Update clock/ store key) - jump address.

$FFED

- ($FFFA)

($FFFC)

($FFFE)

Turn cassette motor(s) off. This subroutine ends with RTS,
#$60 in hexadecimal, which 'mangles' the low byte of the NMI
vector.

NMI vector :

BASIC 1 : $CA60 enters a routine to print a character.

BASIC 2: $FCFE
BASIC 4; $FD49

Reset vector :

BASIC 1: $FD38
BASIC 2: $FCD1
BASIC 4: $FD16

IRQ vector :

BASIC 1: $E66B
BASIC 2: $E61B
BASIC 4: $E442

Programming the PET/CBM -447- 75: CBM BASIC ROMs

The 'Kernel': Routines common to all CBM BASICs.

FFCO OPEN Identical to BASIC OPEN.

FFC3 CLOSE Identical to BASIC CLOSE.

FFC6 SET INPUT DEVICE LDX #logical file number/ JSR $FFC6 prepares the

logical file number in X for input. The routine preserves A,X, and Y; file

details of device and secondary address are taken from the tables. In the

case of IEEE devices, 'TALK' is sent. This routine also checks that the file

is ready: if the file isn't open, ?file not open error results; if the file is

open to tape with non-zero secondary address, ?not input file results; and

if the high bit of ST is set, ?device not present error results. (Other IEEE

errors may be reflected in ST and DS).

FFC9 SET OUTPUT DEVICE LDX #logical file number/ JSR $FFC9 prepares the

logical file number in X for output. The routine preserves A,X, andY;
file details of device and secondary address are taken from the tables. In

the case of IEEE devices, 'LISTEN' is sent. This routine also checks that

the file is ready; if the file hasn't been opened, ?file not open error will

appear; if the file is open to the keyboard or to a cassette file with zero

secondary address, ?not output file results; and if the high bit of ST is

set, ?device not present error results. (Other IEEE errors may be reflected

in ST and DS).

FFCC RESTORE DEFAULT I/O Makes the output device 3 (i.e. screen) and the

input device (i.e. keyboard). The locations involved are $B0 and $AF

respectively ($0264 & $0263 in BASIC 1). In addition, an output device on

the IEEE is unlistened, and an input device sent the untalk command.

None of these files are closed by the routine. Note that X and Y registers

are preserved. (BASIC<4 has a bug: see Chapter 14 on the IEEE bus).

FFCF INPUT ONE CHARACTER This routine is a subset of INPUT and INPUT*,

which takes in a single character and - in the case of screen input -prints

a flashing cursor and advances the cursor on input. (Some monitor source

code calls it 'RDT'). It sets ST to zero, then, according to the input device

number ($AF or $0263) separates into keyboard/ cassettes/ screen/ or IEEE

routines. In each case on return A holds the input character. Note that the

contents of X and Y are unchanged. If STO0, IEEE devices return #0D.

FFD2 OUTPUT ONE CHARACTER This routine is called by PRINT and PRINT*;

it outputs the contents of A to any device. In the case of the screen, the

character is treated as CBM 'ASCII', so e.g. LDA #$93/ JSR $FFD2 clears

the screen, if the output device is 3. The output device (location $B0 or

$0264) determines whether cassette, screen, or IEEE output obtains. The
contents of A,X, and Y are preserved.

FFD5 LOAD Identical to BASIC LOAD.

FFD8 SAVE Identical to BASIC SAVE.

FFDB VERIFY Identical to BASIC VERIFY.

FFDE SYS Identical to BASIC SYS.

FFE1 TEST STOP KEY JSR $FFE1 (that's all!) within machine code tests the

key-image stored by the clock update routine to see whether STOP was

pressed. If so, files are aborted (effectively by FFCC) and READY appears.

If $9B ($0209 in BASIC 1) is forced to #FF, this will no longer work.

FFE4 GET ONE CHARACTER Almost identical to FFCF except that keyboard input

is taken from the keyboard buffer. So that, for example, the equivalent of

10 GET X$: IF X$="" GOTO 10 is JSR $FFE4 / BEQ-5. X and Y are retained.

FFE7 ABORT ALL I /O Sets the number of files open to zero, then in effect calls

FFCC. The files are not closed. CLR and similar routines call this.

FFEA UPDATE CLOCK AND STORE KEYPRESS increments the jiffy clock (unless

the correction clock resets) and saves the keypress which FFE1 uses.

Programming the PET/CBM -442- 16: Mathematical programming

CHAPTER 16: MATHEMATICAL PROGRAMMING

16.1 Computation

Accuracy What do these three expressions have in common?
.55 + .32 = .87

3/5 * 5 =3
.01 + .05 = .06

The answer - which applies to those machines (PET, Apple, etc.) using Microsoft
BASIC of single-precision accuracy - is that they are all false. At first sight this is a
disturbing fact, but all computers with digital storage have this problem, so there is

no need to be over -concerned. When I say that all computers have this problem, I mean
that the difficulty is inherent in these machines. A number like 1/3, for example,
which is expressible as an exact fraction, can't be stored as an expansion in decimal
or binary form without losing accuracy. Large machines, or those with 16-bit chips or
more precision in the way they store numbers, are less prone to problems of this sort
than small ones, but the basic difficulty remains. Chips which perform only calculation,
as used in the DAI for example, have internal registers which indicate when a result
has been rounded, and also the lower and upper limits of the result. To ensure that
no problems are met with in programming the CBM, we need to examine the number
storage system. Leaving aside integers, with which no loss of precision is possible,
floating-point values are stored in RAM as 5 bytes. Chapter 4 shows how numbers
are stored both as variables and in the floating-point accumulator. The accuracy is
greater in the accumulators than in variable form, because an extra byte is used to
retain values which are later rounded when the result is stored further up in RAM as
a variable's value. Such values are stored like this:

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5

EXPONENT
SIGN BIT AND
MANTISSA 1

MANTISSA 2 MANTISSA 3 MANTISSA 4

This is a very standard arrangement, in which every increase in the exponent (byte
1) doubles the value, and where the mantissas are arranged in decreasing order of
significance. A single bit holds the sign. To make this clear, let's consider some ex-
amples. The non-mathematically minded may like to skip this section (and probably the
entire chapter too), although I don't recommend this.

Firstly, the exponent . If a variable, say X, is put equal to a number (X=3, for
instance), the five bytes which store the number can be peeked from RAM, and we
can attempt to decode what we see. X=3 and X=6 give these results:

3 '
'

' '

'

'

6

The only difference between 3 and 6 as stored is in the exponent. A difference of 1
doubles/ halves the result. The exception is a zero exponent; the value is then zero.

Secondly, the sign bit . Two other specimen values give these results:

-1.5

1.5

130 64
131 64

129 192
129 64

The sign change is signalled by the high bit of Mantissa 1. This of course corresponds
with the minus flag on the 6502, which makes for easier programming. There is no
point in taking up more space than 1 bit, since a sign has only two alternative values.

Thirdly, the mantissas . Because the highest bit is used for the sign, the num-
ber's value is stored in 4 bytes less 1 bit, making 31 bits in all. The significance of
these bits is hard to explain: they span a range from 1 to 1.999999... which, when
muliplied by an exponent, itself of form 2n , takes in the entire range from about
10-38 to 1038 with accuracy of 1 part in 10 10 . The following formula will convert any
numeral stored in this way into its numeric equivalent:

(-1) | (Ml AND 128) * 2f(EXP-129) * (1 + ((Ml AND 127) + (M2+(M3+M4/256)/256)/256)/128)

Programming the PET/CBM ~M3- 16: Mathematical programming

The following examples may make the meaning of this formula less obscure. They cover

a limited range, from 3 to 8:-

3

4

5

6

7

8
_

Numbers between 4 and 7.9999.!. have the same exponent, 131. The sets of figures

here recur for the whole range of exponents, giving 8,10,12,14 next, 2,2J,3,3i pre-

viously, and so on. The exponent, minus 129, and raised to the power 2, multiplied

by the mantissa, gives the result, and we can see from the examples of 4 and 8 that

a constant 1 is added to the mantissas. The following bits are weighted, so that div-

ision of the bytes by 128,256,256, and 256 successively scales down the final bit to an

appropriately tiny value, and assigns the greatest weight to the earliest bits. The

examples are translated like this:

130 64
131

131 32

131 64

131 96

132

3 = 2 fl mult Lplled by 1 + 64/128 = 2*lJ =3

4 = 2 f2
tt 1+0 = 4*1 =4

5 = 2 f2 " 1 + 32/128 = 4*1 1/4 =5

6 = 2 f2 It 1 + 64/128 = 4*li =6

7 = 2 t2 " 1 + 96/128 = 4*1 3/4 =7

8 = 2 t3 " 1 + = 8*1 =8

To decode a number, using a pocket calculator (or a PET!) the easiest method is to

start at the lowest byte, divide by 256, add the next, divide by 256, add the next,

divide by 256, and finally add mantissa 1, less 128 if it exceeds 127, divide by 128

and add 1. The result, between 1 and 1.99999... must then be scaled up or down

according to the exponent, and assigned positive or negative sign. This is what the

formual on the previous page does. Here are some further examples, with their correct

values at the foot of the page, for those who want to test their grasp of the idea:

125 124 185 35 163

136 16 192

155 62 188 31 224

Conversely, let's see how to express a real number in floating-point form. Let's take

-13.2681 as an example. The minus sign means we must set the high bit of mantissa 1.

8 is the nearest power of 2 to 13.2681, as 2 3 =8. So the exponent is 129+3=132.

13.2681 = 8 * (1+5.2681/8) = 8 * (1+ .6585125). The value following 1 is the number

which is to be approximated by the mantissa:

.6585125 * 128 = 84.2896,

.2896 * 256 = 74.1376,

.1376 * 256 = 35.2256, and

.2256 * 256 = 57.7536.

Therefore, the nearest approximation is:

132 212 74 35 58

Section 16.9 gives machine-code routines to perform these conversions; this is useful

when finding the values stored in ROM tables and in RAM. We can put this knowledge

to work in avoiding rounding errors. Since 31 bits store the value of any number, a

numeral which does not overrun the final bit will be held exactly. Integers up to about

2 31 are held without loss of accuracy. The extreme value may be found by tests like

PRINT 2 150 000 000 = 2 150 000 001,until the answer is -1, meaning 'true', for a large

enough number, at which point the smallest bit no longer distinguishes the very last

figure. Calculations on exact integers (i.e. from about -2 31 to 2 31 are, so far as I

know, accurate, when addition, subtraction, multiplication and division are involved,

although obviously functions such as SIN or LOG will involve rounding error. This is

the reason that loops with integral values execute correctly. FOR J=l TO 100000: NEXT

executes correctly up to the last value, which is stored as though J=100000 had just

been entered. Decimals are less immediately obvious. There will be errors if the trac-

tion is not some combination of 1, 1/4, 1/8, 1/16,..., 2" 31. A loop with step-size 1.5,

or 2.75, or 7.125, or .00390625, will execute correctly; but 3.4 or 9.26 or 12.87 will

Decimal values are .1234, 144.75, and 99999999 respectively.

Programming the PET/CBM -444- 16: Mathematical programming

not, since these are stored as repeating numbers in the binary system, like 1/3 in the
decimal system. There is also a problem of the relative magnitude of the numbers con-
cerned. .00390625 (=1/256) is stored exactly; but if it is added to a huge integer,
which also is stored exactly, some precision is lost because of the difference between
exponents of the two numbers. Some of the smaller number's bits will be lost; in effect
it will be truncated.

As an example of the application of this knowledge, the program which follows,

and a specimen run, divides two decimal numbers, printing the result with no loss of
accuracy. The program run divides 123 by 19, printing 75 decimal places of the result.

Its BASIC looks more complex than is really the case: line 20 checks the input values
of numerator and denominator; lines 30 and 50 are complicated by the need to delete
spaces before numbers, a frequent irritant with PET BASIC. Line 30 prints the number
preceding the decimal point; line 40 updates the numerator, removing the equivalent of
the part just printed by line 20 or 50; and line 50 prints a single digit. The lines with
N stop the loop after N decimal places . The point is that no error is introduced by the
calculations in 30 - 50.

INDEFINITE PRECISION DIVISION:

10 INPUT -'X»Y»N"J X.. Y.N
20 IF X > 21E8 OR Y > 21E8 OR Y <> INT(Y) OR XOINT(X) THEN PRINT "ERROR"* END
30 PRINT INT(X/Y>? " CLEFT] ,

"

J

40 X = (X - INT(X/Y)*Y) * 10
50 PRINT MID*<STR*(INT(X/Y))>2)i
60 N = N-l
70 IF N>1 THEN 40

READY.

EXAMPLE
X,Y,N? 123

?? 19
?? 75
6.47363421052631578947368421052631578947368421052631578947368421052631

This decimal repeats every 18 digits (=19 - 1). This is a consequence of the fact that
19 is a prime number. The sequence of digits repeats indefinitely, and this process is

similar to that by which pseudo-random numbers are generated, in which each number
is derived from the previous, and the sequence repeats, but its cycle is large enough
for the numbers to be considered 'random'. As a more ambitious example, this decimal
repeats every 330 digits (45678 = 2*3*23*331).

X»Y,N? 12345
?? 45678
'•'? 75
0.270261394982267174569814790489951398922895047944305792722973860501773

If a calculation can be subdivided in this way, there is no risk of rounding error. But
numbers may simply be too great to be susceptible to this approach. Multiplication is a
good example; see DBL (Chapter 5) on this. Section 16.9 has a machine-code multiplic-
ation program accurate to 250 figures. Not many accountants believe their figures to
be accurate to a few parts in ten billion, and it is often unnecessary to bother with
large-figure accuracy. Small figures, paradoxically, may give trouble. I can remember
a demonstration of an incomplete records accounting system which, at the end of a long
period of input of figures, announced that the totals didn't balance. The balancing
amount was revealed to be zero. Obviously the figure was held as .00000001 or some-
thing similar, and a test for 'equality' was used which required all the bits to be
identical. The result should have been rounded to the nearest penny/ cent. Some
computers (e.g. DEC) have an 'approximate equality' function, definable by the user
so that two values are considered to be equal if they are within a certain small value
of each other. The PET equivalent is ABS (X-Y) < .0001, or whichever value is

selected. Accuracy has to be considered in any serious system involving numbers. New
ROM issues of BASIC promise to have more precise arithmetic available, using the 6502
type chip's decimal mode; details of this are not available, but presumably decisions

Programming the PET/CBM -445- 16: Mathematical programming

will have to be made on which variables should use this mode, and perhaps how many

bytes ought to be allocated. In the case of current CBM it may be worth performing

arithmetic in integers only (i.e. floating-point numbers having integer values). Some

calculations yielding non-exact values, for example percent markups, will have to be

rounded at each stage. A trial program will show whether this is necessary. With luck

it won't be. Some calculations though, which are within CBM equipment's capacity, can

come past the point where small cumulative errors Show: stocktaking ('inventory' m the

US) may show small errors between totals and subtotals.

In mathematical work, the rule should be to prefer methods which yield a result

with the smallest relative error, where there is a choice. Three examples, involving

the statistical concept of standard deviations, the solution of quadratic equations, and

series summations should illustrate this idea adequately:
_

(i) Standard deviation . This statistical concept is related to the normal distrib-

ution and to the idea of the average or 'mean'. It is a measure of variation, equal to

the average of the sum of squares of deviations of each item from the joint mean. Lets

take a simple example: two numbers only have been taken, the result of some measure-

ment and these are 1000 and 1001. We assume they are completely accurate. Their

mean is 1000.5, which we can assume is the mean of their total distribution: all we are

interested in here are computational problems. The deviations from the mean are -.5

and .5; the squares of the deviations are .25 and .25; so the average of these devia-

tions is i(.25 + .25) = .25. There is obviously no error in this result ascribable to

the computing technique used. However, by standard algebra, we can prove this

general result:
=

i
^ = «5!i . p

n n

which implies that i(1000 2 + 1001 2
) - 1000.

5

2 can be used in routine calculations to

evaluate the standard deviation. The equations are algebraically unimpeachable; but

the calculation which results falls into the trap of producing a result by subtracting

one number from a very similar number; in this case, each number is large, and it is

easy to see that rounding errors might cast doubt on the result:

s.d. 2 = 1001000.5 - 1001000.25 = . 25 ... this time

(ii) Quadratic equations . These are a common, rather boring, source of demon-

stration programs. Leaving aside the questions of imaginary solutions and repeated

solutions, the general solution of ax2 + bx + c = is:

-b ± V(b2 - 4ac)
x = 2i

From the viewpoint of rounding errors, it is best to use the form with the negative

square root, because otherwise, if a or c is a small value, the absolute values of the

two expressions in the numerator will be close, and a large relative error will result

after subtraction. The other solution can be found using the fact that, in

x 2 - px + q = 0,

both solutions add to p.

(iii) Series summations . The short BASIC program sums a well-known series,

SIN(V) = v - V3 + v5 - v7 + v9 - ...
10 INPUT "VALUE" ;V 3, 5, j, 9,
20 N=l: T=V:REM T=TERM
30 PARTIAL RESULT=PA+T This series converges for any value of V, since the

40 T = - T*v*V/(N+l)/(N+2) ratio between numer ators increases with V 2 each time,

50 PRINT SIN (V), PA whereas the denominators' ratio increases with every term

60 N = N+2: GOTO 30 without converging. If each term of the series is held

by a computer with complete accuracy, SIN (10000) will

be evaluated as accurately as, though more slowly than, SIN(.l). When this is not the

case, as the program shows with values of 50 or 100 say, the result will be more or

less swamped by the magnitude of individual early terms. The solution is to transform

the value into some number which is easier to deal with; here, because of the cyclical

nature of the sine curve, it is easy to subtract an appropriate multiple of pi from the

original value, then compute the sine of the result. This is how CBM BASIC works,

with the result that rounding errors with large arguments are greatly reduced, in fact

becoming equivalent to the rounding error involved in the subsidiary calculation.

Transformations are common in statistical work; the standard deviation illustration

above lends itself to a particularly easy type, since it can be shown that adding a

constant to every value leaves the standard deviation unchanged.

1000 and 1001. we can calculate the standard deviation of and 1

So instead of using

Programming the PET /CBM -446- 16: Mathematical programming

Solving equations: Newton's method This is one of very many methods to discover

solutions by iteration rather than analysis. Like all such methods, it is fallible - since

ingenious exceptional functions can be found which can't be solved. The principle it

uses is to improve on a guess using knowledge of a function (which may be pictured
as a graph) and its gradient. Repetition of the process gives a set of approximate
solutions: if these converge, so that consecutive trials are equal or nearly equal, a

solution is presumed to have been found. Generally, the user has to supply a starting

guess, although this could be done by the machine at the expense of computing time.

Some Hewlett-Packard calculators have a 'Solve' function, where two estimates are
asked for . The iterative relation is ^ ~~— _ . . ._ j_ /_, ^

x = x Zn /^ //• \n+l n gradient at x % ^^>^^ /jn = y/(,S\trxa)

The gradient is usually assumed to be the derivative, i.e. an analytically-found curve
giving the gradient at all points; the BASIC routine below calculates the gradient,
rather than requiring a supplied formula, so that expressions which are hard to diff-

erentiate are still solvable. Line 10 holds the function definition; line 40 calculates the
gradient, using an arbitrary value for dx which may be changed; line 50 adjusts the
best estimate so far; and line 60 stops if and when the improvement in the estimate
is negligible.

i REM ***
2 REM **** NEWTON'S METHOD FOR SOLVING SMOOTH FUNCTIONS ****
3 REM **** LINE 10 HOLDS THE FUNCTION ****
4 REM **** CAN USE EG 10 L0G< X*N) -SIN< X) » IF N IS ALLOWED FOR ****
5 REM ***
6 REMEMBER DESCARTES' SIGN RULE: NO. OF CHANGES = NO. OF POSITIVE SOLUTIONS
10 DEF FN Y(X) = LOG(X) - SIN<X)s REM DEFINE FUNCTION TO BE SOLVED = 0.

20 INPUT "GUESS"? GUESS s REM USER MUST SUPPLY GUESS
30 DX = 1/1024 s REM EXACT POWER OF 2 FOR ACCURACY.
40 GRADIENT AT GUESS = (FN Y(GUESS+DX) - FN Y(GU))/DXs REM STANDARD FORMULA
50 GUESS=GUESS - FN Y(GUESS) /GRADIENT s REM NEWTON'S FORMULA
60 IF ABS(GUESS-Gl)<lE-7 THEN PRINTs PR I NT "SOLUTIONS

"

t GUESSs ENDs REM PICK
ECISION

70 PRINT GUESS? s REM WATCH SUCCESSIVE APPROXIMATIONS.
80 Gi=GUESS s REM STORE THE CURRENT GUESS . .

.

90 GOTO 40 s REM ... AND TRY AGAIN.

EXAMPLE RUN, USING SQUARE ROOT OF 2

10 DEF FN Y(X) = X*2-2 s REM DEFINE FUNCTION TO BE SOLVED = 0.

GUESS 1

1.49975598 1.41668019 1.41421656 1.41421356
SOLUTIONS 1.41421356

Solving equations: inverse interpolation Suppose you have an elaborate formula which
calculates a single value from several inputs. Such a formula typically is easy to use
one way round, but difficult to solve the other way. For example, a mortgage calcul-
ation might give a monthly repayment figure for any rate of interest: perhaps 200 at

5%, 220 at 10%, 250 at 15%. How can the interest rate corresponding to 215 be found?
The obvious way is to converge on the value by guessing as well as possible, testing
the guess, and improving on the guess until a satisfactory approximation is found. The
process is less elegant, but easier to understand, than methods of Newton's type,
which do exactly the same job. In our example, the interest rate is obviously in the
range 5 to 10%; we could guess 7J%, try this value, and improve it in the light of the
result. Without a calculator or computer, this is tedious; with a computer, it is not a
problem. Section 16.4 has an example, involving an actuarial calculation on interest
rates, which shows the procedure to use.

Programming the PET/CBM ~^7- 16: Mathematical programming

Integration: Simpson's rule Integration is an algebraic process of aggregation, used

to compute areas, volumes, rates of flow, strengths of fields and so on. Numerical

integration techniques carry out the process without the need for intermediate analysis

Epson's rule is representative of the type of method. It^an be visualised as a means

to determine the area between a curve and its x-axis. The result it produces is based

on the supposition that the sample points which it uses are joined by a section ot a

parabola. The rule uses an odd number of values, which we can refer to as y^y^jg.

... y corresponding to x-coordinates x **,... ,x The precision improves as

more ^-coordinates are taken, up to the jJobft
3
at whidh rounding errors caused by

the large number of calculations accumulate. The formula for Simpson's rule is:-

Estimate of integral = (x step-size)/3 <y
x

+ 4y
2

+ 2y
3

+ 4y
4

+ 4y
n-i

+y
n>

Weights of 4 and 2 alternate, except for the end values. The BASIC program listed

below repeats this calculation, with finer gradations in x, until estimates agree within

a small margin. Its example run shows that the criterion is too severe for this case;

all the estimates are nearly identical. This is because the original curve is a quadratic,

which Simpson's rule solves exactly. The program assigns a step-size, S, in line JU;

this is repeatedly halved as the calculations proceed. The odd terms (weight 2) are

summed separately from the even terms (weight 4). From one step-size to the next we

need only compute the alternate, odd, values, as the diagram shows, so that at each

stage the even values become the total calculated so far. This cuts down processing

time, because each value of the function is only calculated once.

IT t

REM
REM
REM
REM
REM

REM**!
REM * SIMPSON'S RULE.

"

* INTEGRATES YOUR FUNCTION IN LINE 10.

* S0=SUM OF ODD VALUES; SE=SUM OF EVEN VALUES? S=STEP SIZE. *

* NB: CHANGE LINE 90 IF LESS/MORE PRECISION IS REQUIRED. *

* ANOTHER VERSION OF SIMPSON, WITH GRADIENT LNB-CORRELTIQN, EXISTS *

**********#***************************

10 DEF FN Y(X) = CPI3 * (100 - X*X>; REM FUNCTION TO BE INTEGRATED

20 INPUT "INTEGRATE BETWEEN X1»X2"; X1»X2

30 S = <X2-Xl)/2s SE = FNY(Xl) + FNY(X2)

40 SE = SE + SO t SO =

50 FOR J = Xl+S TO X2 STEP 2*S
60 SO = FN Y(J) + SO
70 NEXT
80 I=(2*SE +

90 IF ABS (I

100 PRINT Is

110 II = Is

4*S0 - FN Y(X1) - FN Y(X2)) * S/3
-II) < 1E-3 THEN PRINT "INTEGRAL ='

REM WATCH APPROXIMATIONS
REM STORE

Is ENDs REM CHOOSE

120 S=S/2s IF 5=0 THEN PRINT "DOESN'T CONVERGE" s END

130 GOTO 40 REM REPEAT FOR IMPROVED VALUE

THIS INTEGRAL GIVES THE VOLUME OF A SECTION OF A SPHERE;

EXAMPLE RUN
INTEGRATE BETWE:EN X 1,X2 8.745 10

47.41092
47.4109199
47.4109198
47.4109202
47.4109201

INTEGRAL = 47.4109201

Programming the PET 1CBM -448- 16: Mathematical programming

16.2 Statistics

Random numbers These are widely used in simulations of scientific and social phen-
omena, where overall behaviour of a system may be modelled as the outcome of many
individually unpredictable events. The concept is also widely used to explain statistical
distributions, using, at the introductory level, coins, dice, and cards. Before the
widespread use of computers, 'random number tables' had to be prepared; computer
power enabled pseudo-random numbers to be generated as required, which was more
efficient than storing large tables. The usual method is to derive each pseudo-random
number by a formula from the previous number. In this way a repeatable and testable
series is generated. Recurrence relations are used: the number is multiplied by a
large number, another large number is added, and the result forced into the correct
range by taking the remainder after division by yet another number. There is plenty
of scope for designing series which satisfy statistical tests for randomness. Such
series always have a period of recurrence, but this is enormously long. Badly thought
out series may have internal repetitive features of several types. Large computers
store huge integers exactly and use these in their processing; Microsoft's random
numbers work on similar, but not identical, lines. The differences are presumably an
effect of the 31-bit storage method.

'RND' is explained in Chapter 5, and also in Chapter 15 in the ROM section.
In view of the widespread confusion about this function (incidentally, it is implemented
differently in different machines; don't assume that what follows will apply to non-CBM
equipment) let me summarise its three main features:

(i) X=RND(0) or PRINT RND(O) are two expressions containing the function
RND. RND behaves like all other arithmetic functions in BASIC, and can be assigned,
printed, compared, calculated with, and so on. This should be straightforward to most
people who have experimented with BASIC.

RND(O) is a 'truly' random number.* It is generated from four. timers inside the
VIA chip, which decrement every microsecond with the clock, so that any single use of
this function generates a number between and 1 which is non-repeatable in the usual
sense. However, because the whole computer is controlled by a single set of timing
pulses, repeated uses of this function are often non-random, unless (for example) an
external event like a keypress influences the timing. For example, suppose a BASIC
program happens to loop in exactly 65 milliseconds. Then RND(O) is exactly the same
on each call

!
This is because the timer goes through a complete cycle in 65 thousand

clock cycles. Try this with the 'random walk' program in Chapter 5. Note that BASIC
1 has a mistake in its ROM: evidently the VIA was moved at the last minute, and the
addresses assumed in BASIC 1 were not updated from $9040-$904F.

(ii) RND (positive argument). The value of this function depends only on the
stored random number, i.e. usually on the previous value returned by RND. RND(l)
and RND(99999) in identical circumstances return equal values. A series of calls gener-
ates numbers from zero to one in a predictable sequence, each depending on the last.
Their period of repetition is large.

(iii) RND(-ve). This function depends on the argument; it is always the same
for a given argument. Thus, PRINT RND(-2);RND(-2);RND(-2) prints three identical
numbers. The point of this is to enable programs containing RND to be tested: if
RND(-l) say is entered at the start, rather than RND(O), all the subsequent RND(+ve)
values will repeat when the program is re-run. This is helpful during debugging.

RND (+ve) works by multiplying by 11879546.4, adding 3.92767778 x 10~8
,

interchanging two pairs of mantissas, setting the exponent to 128 (so the maximum
value is .9999...), and normalising the result. RND(-ve) skips the two calculations, but
is otherwise identical. These examples show how RND(-ve) appears in $88-8C, where
RND is stored. (BASIC 1 uses $DA-DE). Note the small values produced by integers,
a result of the interchange process:

Argument Decimal value in locat ion:
$88 $89 $8A $8B $8C

-.01 126 116 43 94 142
-.1 128 76 204 204 204
-.1234
-1

128 35
104

35
129

185 252

-2 104 130
-3.49 128 118 40 92 224
-5 104 32 131

'Random' derives etymologically from the French 'Randir', to gallop.

Programming the PET ICBM -449- 16: Mathematical Programming

The RAM workspace in which random numbers are stored is immediately after the

GETCHR routine; on switchon or reset, both are together copied from ROM into RAM

so that there is a constant 'seed' value* when the machine is switched on. Section lb. J

includes examples of random numbers used in simulations.

Permutations and combinations This statistical topic - sometimes called 'combinatorics'

-

uses the so-called 'frequency theory of probability' to construct theoretical models of

actual distributions. For example, the possible of combinations of two dice^ throws.can

be listed by hand (1, 1; 1, 2; 1,3; ... ;6,6); there are 36 of them. If we Postulate that

each combination is equally likely to occur, we can construct a model of the attribu-

tion which can be generalised into the binomial, Poisson and normal distributions. The

details are too complex to summarise here. From the point of view of computation, it is

worth knowing that factorials can be rapidly estimated:

A factorial
2 (2' =2*1=2; 31=3*2*1=6; 4! =4*3*2*1=12; ...) is a rapidly-increasing

function which turns up in many combinatorial calculations, since n! is the number of

ways in which n different objects may be put into n pigeonholes. It is in fact a special

function called the 'gamma function', but with integer arguments only. Stirling s form-

ula approximates factorials:

n , i l 139 71
n!i(n/e) V(2Kn) [1 + J^ + 288na " 5i840n 3

+ 2488320?* " ' '
J

Rather than use this series directly, we can find loge (n!) which gives results usable

up to n=10T36 without overflow. The expression in square brackets can be approxim

ated by exp (l/12n) without much loss of accuracy, giving

loge (n!)i n logen -n + £loge (27tn)+ jj^

= (n+i)(log en - 1) + 1.4189 + —
This short BASIC routine calculates the value of pCq, the number of ways in which

q objects may be selected from p:

10 DEF FN LF(X) = (X+ . 5)* (LOG(X)-l) + 1.4189 + 1/(12*X)

20 INPUT P,Q
30 PRINT EXP(FN LF(P) - FN LF (Q) - FN LF (P-Q)):REM P! /(Q! (P-Q) !

)

40 GOTO 20

The normal distribution This well-known distribution, discovered by Gauss, is usually

represented as a bell-shaped curve with two parameters, the mean and the standard

deviation (m and s, say) with equation

, x
(-(x-m) 2 /2s2

)
n(x) = exp

sVtZnT

When the mean is zero and standard deviation one, the expression simplifies to

n(x) = exp C-jx 2
)

This distribution applies to measures (height, weight, length, etc.) in which the final

result is influenced by a large number of individually small influences. It is not a very

easy function to deal with; sometimes approximations are easier, such as this sugges

tion, where -3<=x<=+3:

n(x) = .451 d-^-)
5

Normal distributions can be simulated in a number of ways. The BASIC routine which

follows uses an algorithm by Knuth3to generate a series of 'random' values with spec-

ified mean and standard deviation. The example simulates IQs as measured by one

type of pencil-and-paper test (others have different standard deviations, so that their

results vary more).

The seed in fact cannot be assumed to be exactly constant. There is a programming

mistake in the expression which moves GETCHR and the seed value; the loop is one byte

too short, so the final byte of the seed in not actually transferred. So the seed's

value depends on the contents of $8C ($DE in BASIC 1). The possible range of values is

about .811635137 to .81165196.

2 Note that 0! (not defined by the muliplicative series) is 1.

3 Donald E. Knuth, "The Art of Computer Programming'. 7 volumes.

Programming the PET ICBM -450- 16: Mathematical programming

KNUTH'S ALGORITHM FOR NORMAL DEVIATIONS

5 SIGMA=15j MEAN =100
10 VI = 2*RND(1>-1
20 V2 = 2*RND<1>-1
30 S = VI "2 + V2*2
40 IF S>= 1 THEN 10
49 REM DEVIATE IS: SIGMA * VI * SQR(-2*L0G (S) /S),
50 DEVi.ATE = SIGMA * VI * SQR< -2*L0G< S> /S) + MEAN
55 PRINT DEVIATE
60 Vl=V2s GOTO 20
READY.

104.691999
85. 4889251
117.303367
75.6151702
94.0192871
81 . 4072698
61 , 5409044
100.408391
83.8830424

Probability distributions The binomial distribution models the occurrence of independ-
ent events, giving the probability of the occurrence of n events on m occasions. If

p is the probability of the event, and q (=l-p) is the probability of its non-occurrence,
then m events occur on m occasions with probability mCn p

n
q

n '

This is simply the nth term of the expansion of (p+q)
m

. As we've seen, the expres-
sion mCn can be evaluated approximately using Stirling's formula, so that the entire
expression for the probability is easily calculable, using the logarithms of mCn, pn ,

and qn. Example: the probability of throwing 55 sixes in 340 dice throws is

340C
55

(1/6)
55

(5/6)
285

.

The Poisson distribution models events in the same way as the binomial distribution. It

is a limiting form of the binomial, as the probability of an event becomes very small
while the corresponding exposed-to-risk is large. A typical example is the number of
printing errors on a page. The distribution is a function only of the mean number of
events; the formula is

. -m n
p(n) = e m

n!

As an example, suppose there are on average 2 errors per page. (These events are
to be independent; this distribution won't model road accidents, where

there is an obvious grouping effect). What is the probability of a page having four
errors? The formula gives exp(-2)*24/4! = .09 .

The Normal distribution is important because (the result is derived from the 'Central
limit theorem') samples taken from any other finite distribution are themselves normally
distributed. Consequently many standard statistical tests and methods embody results
which are true for the normal distribution. The t-test uses observed values to estimate
ranges of values of the parent population; the chi-squared test estimates the squared
normlised deviates from the mean (i.e.

(
y-nK 2); and analysis of variance techniques
s

CANOVA') attempt to sort out the separate influences of various factors - e.g. type
of soil and type of fertiliser in crop-yield experiments - assuming a linear model. All
these methods lend themselves to sausage-machine applications, notably amongst
students in the US, where the computer packages to run them are freely available.
Not many users of these facilities understand the statistical theories underlying the

*In 1981 errors were found in statistical packages in general commercial and education-
al use. The packages date (in part) from the mid nineteen sixties.

Programming the PET ICBM -457- 16: Mathematical programming

Non-parametric tests are relatively rough and ready, intended to provide guides where

accurate measurement and calculation is too time-consuming or intrinsically difficult,

in some quality control work, for example, and when dealing with subjective estimates

or orderings. The 'sign test' is an instance: in say twenty consecutive fluctuating

readings or measurements, about half can be expected to be above average, or to have

a positive sign change from one to the next. A suitable warning-value can be decided

by estimating the probabilities of 0,1,2,... variations. The 'cumulative sum' method

which tests whether a mean value is correctly adhered to illustrates the same type ot

approach.

16.3 Simulation

Computer simulations have been attempted in a wide range of specialisations, with

results of variable value. Weather forecasting relies on a vast amount of data, process

ed in vast machines. The earth's surface, or perhaps a hemisphere or other division,

is notionally subdivided into small units, and a mathematical model employed to project

present wind speeds and pressures at discrete altitudes within each unit. The results

seem to be reasonably good, but not completely successful. More speculatively, math-

ematical models of economies have been constructed (by economists with the appropriate

temperament) and are sometimes used to provide predictions. The results are not

encouraging. Still more speculatively, 'World models' have been constructed, notably

by J.Forrester in the early 1970s. These rely on hypothetical connections between

food supply, population, resources, pollution, and so on, so that each variable in

one time-period can be estimated, then each variable in the next, and so on. (It is

assumed that 'pollution' can be measured as a single number). Less general models

have been constructed by companies, particularly large ones, trying to quantify the

results to be expected if sales suddenly increase, or interest rates fluctuate, or raw

materials change in price, or some of the other vast number of factors influencing

company performance come into play. 'Operations research', as it was called in the

1960s, dealt with some of these problems; techniques like 'linear programming and

the various types of numerical and dynamic programming algorithms date from this time.

All these techniques, except those involving heavy number-crunching, can be run on

microcomputers, provided the user is prepared to wait, and provided also that large

scale data storage is supplied where necessary. A good example of a practical system

is VisiCalc, a software package developed for microcomputers on a larger machine,

which provides for row-and-column calculations, and is in effect a high-level language

to input titles and mathematical formulas.
. .

It is extremely difficult to judge what proportion of computer simulation ettort is

simply a beguiling intellectual game. As with any model-building activity - notably m
the fields of politics, economics and religion - results deduced from a model by those

with an intellectual vested interest tend to be trusted to an excessive extent; results

which run counter to common sense are, if anything, believed even more fervently.

However, microcomputers are perhaps less likely to lead their devotees into absurd

errors than huge machines. We'll look at five examples of simple simulation; these are

too small to approach any sort of sophistication, but show the type of thing involved

in mathematical model-building. The first is a randomising routine, used for such

purposes as simulating a card-shuffle. The next simulates words by selecting letters

of the alphabet with their correct frequency. The third solves a well-known 'paradox

concerning birthdays; the fourth is a 'Monte Carlo' simulation of queue formation

('line' in the U.S.!); and the last embodies a simple biological theory of population

*Jay Forrester's books (published by M.I.T.) include 'World Dynamics' (1971) and a

lesser-known work modelling towns, which assumes a basis of U.S. suburb style real-

estate. 'Operations Research' by Ackoff and Sasieni (Wiley) covers typical O.R. methods

and solutions. 'Newer Uses of Mathematics' (ed. J.Lighthill, Penguin in U.K.) and

'Mathematical Modelling' (Andrews & McLone, Butterworths) offer a survey of methods

and 16 examples of modelling, respectively, which are interesting to the mathematical

reader, although not particularly relevant to computers. As is true of most mathemat-

ical works, little attempt is made to determine how far the constructs can be expected

to apply in real life. There are many books on econometrics and related subjects;

McGraw-Hill print a number of them. An out-of-print book by Andrew Wilson ('The Bomb

and the Computer', Barrie & Rockliff, 1968) surveys military games from the 18th cent-

ury to the present, claiming that many German errors in World War I were the result of

inappropriate Prussian wargaming; and drawing similar conclusions about computer war-

gaming in the Pentagon.

Programming the PET/CBM -452- 16: Mathematical programming

growth and decline of predator and host species.

(i) Random Shuffling . The algorithm used here is again the work of Knuth and
simply selects one item at a time, reserving it in an early part of its array, so the
remaining items have an equal chance of selection:

1 REM THE ARRAY HOLDING THE VARIABLES IS PTRS(N), WHERE N IS THE DIMENSION.
2 REM ('PTRS' STANDS FOR 'POINTERS', BUT THIS ISN'T A VALID NAME).
3 REM THE ITEMS ARE PTRS(l) TO PTRS(N), I.E. NOT PTRS(O) WHICH IS SPARE.
4 REM AFTER CALLING THE ROUTINE, PTRS(l) TO PTRS(M) ARE 'RANDOM'.
5 REM TO SHUFFLE THE WHOLE ARRAY, PUT N-l IN PLACE OF M.

10 FOR J = 1 TO M
20 J% = J + RND(1)*(N-J+1) :REM PICK RANDOM ELEMENT FROM J+l TO THE END
30 TEMP = PTR(J) :REM AND SWAP IT WITH THE JTH
40 PTR(J) = PTR(J%)
50 PTR(J%) = TEMP
60 NEXT

(ii) Word generator . The word 'Qume' was selected from a computer-generated
list of 'meaningless words'. The following program may help you to do the same! The
data statements are approximate frequencies of the alphabetic characters; they should
add to 1. (They are guesses only). Line 130 chooses A-Z and space as the options;
the list can include punctuation if required. Line 200 builds an array of cumulative
frequencies (.06, . 1, . 14, .18, .27, . . . here) which line 310 compares with random number
R from 0-1. Thus, R=.18 to R=.27 causes line 320 to print E, and in general the let-
ters occur with the correct, or at least the specified, frequencies. The result can be
made more lifelike by incorporating a 'stochastic' technique, i.e. taking account of
previous letter(s) so that q always precedes u, for example, or capitals only follow
full stop and space.

QUASI -WORDS

100 ALPHABET$= ,, ABCiiEKGHIJKLMNOPQRSTUVWXYZ , .
"

110 DATA .06n04#.04#.04#,09».02».03».02».05#.0i».005».03f .03»,05«REM A-N
120 DATA .05».02» .005* .03. .05* .07, ,02t .01* .01* . 005, . 01 » . 005. .2sREM 0-SP
130 N=27
200 DIM P<N)s FOR J=l TO Ns READ P(J)s P< J) =P(J)+P(J-l) : NEXT
300 R=RND(1)
310 FOR J=l TO N: IF R>P(J) THEN NEXT
320 PRINT MID*<AL*»J> 1) i

330 GOTO 300

(iii) Birthdays . Assuming birthdays are evenly spread throughout the year, how
large a group of people must be selected to ensure an even chance that none of the
group shares their date of birth? (I.e. ignoring the year of birth). This BASIC pro-
gram prints a table of results. Line 130 calculates the probability p for n people that
at least one pair have the same birthday, using the fact that if, say, 10 people have
been chosen already, the 11th has a 355/365 chance of also being different.

100 PRINT "NUMBER PROBABILITY ALL DATES
104 PRINT " OF THAT SOME DATES DIFFERENT
10a PRINT "PEOPLE ARE EQUAL: ONLY ONCE INs
110 FOR N = 5 TO 55 STEP 5

120 P=i; REM PROBABILITY IS 1 AT START, BUT DECREASES WITH EVERY PERSON.
130 FOR I = 1 TO N-ls P = P * <365-I)/365s NEXT
140 PRINT N" "1-P" "1/(P)
150 NEXT

(iv) Monte-Carlo Queuing Simulation . A 'Monte-Carlo' simulation generates
random figures and puts them into a model. Roulette results can be simulated like this;
a system can be tried out in this way, and can be expected to produce similar results
in practice if the wheel is random, and the 'random numbers' are random, and the
experiment is continued into 'the long run'. The example program (next page) models
a situation where customers are served at several counters. Three variables are input
at the start: the average time between customers, who are assumed to arrive evenly in

the time period considered; the average time to serve a customer; and the number of

TOT CUSTs 39
TOT CUSTs 39
TOT CUSTs 39

5 TOT CUSTs 39

CUSTOMER OUT
192 CUSTS s 9 QUEUES
193 CUSTS s 9 QUEUE;
194 CUSTS s 9 QUEUES
CUSTOMER OUT
195 CUSTSs 8 QUEUES
CUSTOMER IN
196 CUSTS; 9 QUEUE s 6 TOT CUSTs 40
CUSTOMER IN
CUSTOMER OUT
197 CUSTS; 9
198 CUSTSs

QUEUES
QUEUES

TOT CUST; 41
TOT CUST; 41

Programming the PET/CBM -153- 16: Mathematical programming

counters. All counters are presumed to be equivalent. Obviously, if the rate of service

is too slow on average the queue length (which I've taken here to be the number ol

people waiting in line) will increase without limit. But even with adequate service there

will be occasional queues. The program models consecutive intervals of time. For

instance, suppose the interval taken is one minute, and the average time between cust

omers is input as 5. The model assumes there is a one-fifth chance, as it enters its

new interval, that a customer should enter. (Line 110). Line 160 models the chance of

a customer leaving from any one of the counters in use. The program loops indefinitely

while keeping running totals of the time period, the number of customers processed,

and the number of people waiting (i.e. not being served) at any moment. This output

shows the appearance on the screen :

-

And this shows the result on stopping

the program and entering GOTO 500 to

see the summary :-

LENGTH NUMBER
151

1 21
2 4
3 7

4 17
5
6 O
7

8
9
10

QUEUING THEORY SIMULATION ASSUMING RANDOM ARRIVALS;

DIM WXUOO)j REM HOLDS DISTRIBUTION OF LENGTHS OF LINE/ QUEUE

10 PRINT "ECLR3CRVS3 QUEUE I NG SIMULATION C DOWN 3 C DOWN 1

AVERAGE TIME BETWEEN CUSTOMERS" ?C

AVERAGE TIME TO SERVERS
NUMBER OF COUNTERS" i N

IDOWN 3 TYPICAL NUMBERS WAITING;

"

100 REM ** IN ONE TIME INTERVALS ***

110 IF RNDUX1/C THEN P=P+1; TP=TP+ls PRINT

120 IF P=0 GOTO 180

140 IF N<X THEN X=N; REM X IS SMALLER OF NO, OF PEOPLE,

160 IF P>0 THEN IF RND(1X1/S THEN P =P-1: PRINT "CUSTOMER OUT"

170 NEXT
1Q Q=P-N; IF Q<0 THEN Q=0
190 W2UQ) = WX(Q) + 1

200 PRINT T; "CUSTS;"? Pi "QUEUE;"? Q? "TOT CUST; "J TP

210 T = T + 1

ooct mTfi too
500 REM ** GOTO 500 PRINTS DISTRIBUTION OF QUEUES WHEN SIMULATION STOPPED

510 PR I NT "LENGTH NUMBER
520 FOR J=0 TO 20; PRINTJJ TAB(8>? WX(J): NEXT

20 INPUT
30 INPUT
40 INPUT
50 PRINT

CUSTOMER IN'

NO. OF COUNTERS

(v) Host-parasite population simulation . Simplifying somewhat, we can assume

that the host population in a given time period increases by a natural rate of increase,

which is reduced in proportion to the predator population. And we assume that the

parasites die at some natural rate, unless there are hosts. This program displays the

results following from the model:

100 INPUT "STARTING POPULATIONS OF HOST & PARASITE"; H,P

110 INPUT "RATE OF HOST INCREASE/ PARASITE DECREASE"; RH,RP

120 INPUT "EFFECT OF PARASITE ON HOST AND OF HOST ON PARASITE"; C1.C2

130 PRINT H,P

140 DH = (RH - C1*P)*H: DP = (-RP + C2*H)*P: REM LOTKA-VOLTERRA EQUATIONS

150 H = INT(H + DH): P = INT(P + DP): IF H<0 OR P<0 THEN END

160 GOTO 130

Programming the PET/CBM -454- 16: Mathematical programming

16.4 Accounting and actuarial programs

The type of programming in this subsection is concerned not so much with detailed

record-keeping, but with techniques for solving well-defined problems of an arithmetic
nature. The first example is an illustration of an accounting problem, namely to deduce
pre-tax income from post-tax income, allowances, and reliefs. The second is an inverse
interpolation example, used to solve an actuarial problem involving compound interest.

(i) Tax Gross . Five variables are used by the program, in addition to para-
meters which are set within the program. Lines 10-70 holds the number of tax bands,
the step sizes of the bands (there are eight in the example) and the income tax rates
applying to the bands. The figures given are not current. An example of the output,
from a CBM printer, is shown. Lines 420-462 do the actual printing; the parameters
A,C,K,S, and T are those input; X (with some rounding and formatting) is the gross
amount. The point about denominators and numerators is to provide a correction where
part years apply, where time has been spent abroad. Lines 200-310 perform all the
calculations; TE is a test variable which is checked within the loop in line 250 (and in

line 205 for low values).

1 DflTfl 8 750 . 9250 > 2000 .. 3000 , 5000 .. 5000 .. i E20
20 DATA0 , . 25 , . 3 , . 4 , . 45 , . 5 , . 55 , . 6
30 REfiDNU • D I MEN < HU)

: D I MRT < NU >

40 F0RI=1T0HU
50 READBNCI^NEXT
60 F0RI=1T0NU
70 REfiBRTa>:HEXT
170 REM CONTINUE
200 TE=S*c;fl-K;'-T*C
205 I FTE<=0THENX=fi = TA=0 : GOTO320
210 ET=0
220 F0RI=iT0NU-l
230 TE=TE-BN(I>*<T-S*RT<I>>
240 BT=BT+BNa.':<
250 IFTE<=BNa + l>*a-S*RT<I + l>>THENTfl=RT<I + l>:I=NU-l
270 NEXT
300 A=TE/<T-S*Tfl>
310 X=<:X+BT+C>*T/S
320 REM END OF CALCS
420 PRINT" "NAME*
422 PRINT
425 PRINT " SALARY "A
430 PRINT " ALLOWANCES AND DEDUCTIONS : "C
433 PRINT" RELIEFS' "K
435 PRINT" DENOMINATING FACTORY'S
437 PRINT " NUMERATING FACTOR: "T
450 PRINT
455 X=X* 1 00 : GOSUB 1 000 ' X=X/' 1 00
4.S:-: Z 1 = 1 : GOSUB2000
460 PRINT" I GROSS SALARV ="X" I"

462 Z1=2 : GOSUB2000

JONES 1978/73

SALARV
ALLOWANCES AND DEDUCTIONS

RELIEFS
DENOMINATING FACTOR

NUMERATING FACTOR

10000
123
12
13
20

I GROSS SALARV = 16836.86 I

r 1

Programming the PET/CBM -155- 16: Mathematical programming

(ii) Compound interest calculations . The program on the next page has a fully

documented format which explains the workings of inverse interpolation. Its expression

is a simple one; line 500 has a present value function corresponding to the value, in

money terms, of a sum of 100 payable in a year's time at interest rate Its. At tive per

cent the formula gives 100/1.05 = 95.238. Lines 1000 to 2000 repeatedly calculate values

until either a good estimate is found - its accuracy controlled by the comparison in

line 1020 - or until it becomes clear that there is no solution. A typical output is this:

OFFER VALUE? 95
INTEREST RATE IS 5.26321411

WHEN PRESENT VALUE = 94-9999493

AT INTEREST RATE = 5.263
VALUE IS 95.0001425

AND AT INTEREST RATE = 5.264
VALUE IS 94.9992401

from which it is clear that a present value of 95 corresponds to 5.263%. This figure is

easy to check by solving the equation. The partial example which follows is less simple

to check, involving such complications as repayments several times during the year,

the deduction of income tax, and payments of capital gains tax on the difference

between the redemption amount and the offer price. The formulas are standard ones,

recognisable to people who use them; I'm not certain that all the details are correct.

Note though that the input statements and function definitions can be inserted into the

inverse interpolation program, although, because of the complexity of the expression

a subroutine rather than a function definition may have to be used in lines 1000-1040

when each value is being computed.

ioi rem #mmmmmmmmmm#MmmmMmmMMmm
102 REM # f
103 REM # VALUATION OF A FIXED-INTEREST REDEEMABLE SECURITY t

105 rem imtttiHitHMHiHttitHtiHH***************************
106 REM # ASSUMES: REDEEMABLE AMOUNT (C) #

107 REM # AFTER A NUMBER OF YEARS (N) #

108 REM # AT TRUE (NOT NOMINAL) RATE OF INTEREST, G #

109 REM # PAYABLE YEARLY P TIMES #

HO REM # PURCHASED 1/M OF A YEAR AFTER LAST PAYMENT #

HI REM # WITH INCOME TAX AT RATE T, #

112 REM # AND CAPITAL GAINS TAX AT RATE Tl #

113 REM # VALUATION RATE OF INTEREST I. #

114 rem #MmmmmmmmmmmmmmmmmmM##m
115 REM
120 DEF FN V(N) = (1+I)~(-N): REM CALCULATE V TO THE N.

130 DEF FN S1(P) = (<(l+I)TI)-l)/(P*«l+ir(l/P)-l>>: REM ACCUM. VALUE PAID PTHLY

140 DEF FN A(N) = (1 - FN V(N))/l: REM VALUE OF ANNUITY OVER N YEARS

150 INPUT " REDEEMABLE AMOUNT" ;C

160 INPUT " AFTER HOW MANY YEARS" ;N

170 INPUT " ACTUAL ANNUAL INTEREST PAYMENT" ;G ;G=G/C : REM G=ACTUAL RATE

180 INPUT "HOW MANY TIMES PAYABLE PER YEAR";P

190 INPUT "NO. OF DAYS SINCE LAST DIVIDEND" ;M : M=M/365: REM M=FRACTION OF YR

200 INPUT " RATE OF INCOME TAX";T : T=T/100: REM DECIMAL

210 INPUT " RATE OF CAPITAL GAINS TAX";T1: T1=T1/100:REM DECIMAL

220 INPUT " VALUATION RATE OF INTEREST";I : 1=1/100: REM DECIMAL

300 IF P=l THEN PV = (1+I)"M * (C*FNV(N) + G*(1-T)*C*FNA(N) - T1*(C-A)*FNV(N))

310 IFPOITHEN PV=(1+I)~M * (C*FNV(N) + G*(1-T)*FNS1(P)*C*FNA(N) - T1*(C-A)*FNV(N))

I have insufficient space to consider problems of life assurance, life table calculations,

etc. in detail. A major difficulty is the need to store large amounts of tabular data;

some life tables have been calculated in the form of smoothed formulas, usually three

or so curves which, between them, cover the entire age span. If such a formula is

considered accurate, naturally there is a great saving in storage space (though not in

computing time, probably) in calculating each value as it is needed. I have no informa-

tion on the extent of small computer use in the insurance world. Obviously the com-

panies involved use mainframes for storage of their bulk data; perhaps small machines

Programming the PET/CBM -455- j 6: Mathematical programming
have their place too.

REM
1

2 REM//// INVERSE INTERPOLATION DEMONSTRATION USING A PRESENT VALUE FUNCTION.
3 REM////

4 REM//// METHOD: REPEATED CALCULATIONS, USING A BINARY CHOP, CONVERGE TO THE
5 REM//// CORRECT VALUE, AND WHEN WITHIN AN ARBITRARILY SMALL AMOUNT OF
6 REM//// THIS VALUE, REPORT THE RATE OF INTEREST FOUND.
7 REM////

8 REM//// LINES 500 - 1040 PERFORM THE MAIN CALCULATIONS.

10 REM
500 DEF FN PV(I) = 100 / (1+ 1/100) : REM VERY SIMPLE PRESENT VALUE FUNCTION
600 INPUT "OFFER VALUE"; V
700 IL = -10: IH = 50: REM CHOOSE -10% TO 50% AS LARGEST REASONABLE RANGE TO TRY
980 REM
981 „„„„„„„„„ „

982 REM// INVERSE INTERPOLATION CALCULATION BEGINS.
983 KmttHtttittm§t§*iiittH§§*ttttm§tttmnww„„,w*»,**ww**f*w*rrr**rf
984 REM// NOTE.-l) IL AND IH ARE LOW, HIGH ESTIMATES AT EACH STAGE OF ITERATION,//
985 REM// STARTING AT -10% AND 50% TO BE SURE TO CATCH MOST VALUES. #
986 REM// 2) AS INTEREST RATE 'I' INCREASES, VALUE DECREASES; THAT'S WHY //

987 REM// THE TESTS IN LINES 1030-1040 CHANGE LIMITS THE WAY THEY DO. #
988 REM// 3) INTEREST RATES APPEAR AS NORMAL EG 12%, AND NOT 0.12//
989 REM// 4) LIMITS IN 700.ACCURACYIN 1020, DEC. PTS. IN 3010.ARE ALTERABLE.//
990 REM###
yy 1 rem
1000 IF IL = IH THEN 2000: REM OUT OF RANGE OF START VALUES - CAN'T BE FOUND
1010 BEST = (IL + IH) / 2 : REM AVGE OF LOW AND HIGH RATES IS BEST ESTIMATE
1020 IF ABS (FN PV(BEST) - V) < 1 E-4 GOTO 3000: REM CLOSE APPROXIMATION FOUND
1030 IF FN PV(BEST) < V THEN IH = BEST : GOTO 1000: REM 'BEST' TOO HIGH
1040 IF FN PV(BEST) > V THEN IL = BEST : GOTO 1000: REM 'BEST' TOO LOW
1990 REM
1991 REM###f#############f###
1992 REM// REPORT HERE IF THE INTEREST RATE IS AN EXTREME OUT-OF-RANGE VALUE #
1993 REM###
1994 REM
2000 REM NOT FOUND - RATE EITHER LESS THAN -10% OR GREATER THAN 50% .

2010 PRINT "NOT FOUND - ";

2020 IF BEST = -10 THEN PRINT "RATE IS LESS THAN -10%"
2030 IF BEST = 50 THEN PRINT "RATE EXCEEDS 50%"
2040 PRINT:PRINT
2100 GOTO 600: REM CONTINUE - INPUT NEXT VALUE
2990 REM
2991 RBf##
2992 REM// REPORT HERE WHEN VALID INTEREST RATE HAS BEEN FOUND. //

2993 REM//
jf

2994 REM// UNROUNDED RATE AND TWO VALUES (FOR 3 D.P. RATES) ARE PRINTED OUT.//////
2995REM////////«//////#//#//«//////#«^^

2996 REM
3000 PRINT "INTEREST RATE IS"; BEST
3010 PRINT" WHEN PRESENT VALUE ="; FN PV(BEST)
3020 PRINT
3030 I = INT (1000 * BEST) / 1000 : REM THIS TRUNCATES THE VALUE TO 3 DEC. PL.
3040 PRINT "AT INTEREST RATE =";I
3050 PV = FN PV(I)
3060 PRINT " VALUE IS "; PV; "[LEFT]."

3080 PV
1^

',AND AT INTEREST RATE ="
; I+ ' 001 : REM NEXT VALUE AT 3 DEC. PL.

3090 PRINT " VALUE IS "; PV; "[LEFT]."
3100 PRINT: PRINT
3110 GOTO 600: REM CONTINUE - INPUT NEXT VALUE

READY.

Programming the PET/CBM -457- 16: Mathematical programming

16.5 Trigonometry

CBM machines all have sine, cosine, tangent and arctangent as standard. These were

presumably taken over from FORTRAN by M icrosoft , rather than specially written. The

three angle functions all call the sine routine; tangent is calculated by dividing sine

by cosine, and is therefore likely to have larger rounding errors, and be slower. The

arctangent is quite useful in some analytical problems, since its range covers the whole

real number spectrum from minus to plus infinity. This is a result of the fact that the

tangent of an angle is the ratio of two unrelated sides; their ratio therefore can take

any value, unlike sine and cosine. Trigonometrical functions typically have uses in

engineering, surveying, perspective and drawing calculations. Each function relates

two sides of a right-angled triangle to an angle; see Chapter 5. Since there are 3

sides, 6 possible ratios exist, which are, using the shorthand H=hypotenuse, A-side

adjacent to the relevant angle, and 0=opposite side,

Sine=| Cosine=| Tangent=| Cosecant=^ Secant^ Cotangent^ .

Most of this will be known by readers of this subsection already. It is worth recalling

two simply-drawn examples which provide practice in these functions: the first is an

equilateral triangle with sides of length two units each, and the second a right-angled

triangle with two other angles of 45° and sides 1,1, and 1.414 (=V2) Then relation-

ships involving angles of 30°, 45°, and 60° are simple to check, e.g. tan(45)-l,

All of these functions are defined so that lines may be considered negative in

length ; this convention supplies the familiar repetitive sine curve with theoretical

foundations. Some values, 0°, 90°, 180° and so on may give trouble in evaluation it

division by zero becomes a possibility. We shall see how to program around this, and

make the calculations crashproof. A potentially confusing point about notation is also

worth clarifying: the inverse sine function, which gives the angle corresponding to a

sine value, and which is called the 'arcsine', is written as sin ^. This is easily con-

fused with the reciprocal of sin x, which is (sin x) 1
.

Crashproofinq trig functions There are three methods:

(i) Request the user to avoid values known to crash; typically 90° or may

have to be avoided.

(ii) Test the values input and disallow those which crash, printing either an

error message or a known correct value instead. Often an expression can be simplified

in some way: for example sin x/sin 2x will crash if x=0, but the expression can be

shown to equal l/2cos x, which is troublefree when x-0.
. -.e ^ *

(iii) A more thorough implementation of (ii) modifies the function itself so that

extreme values are replaced by values almost identical, and yielding the correct solu-

tions, but protected against crashing. SIN(X + (X=0)*lE-9) in place of SIN(X) sub-

stitutes SIN(lE-9) for SIN(0) if this function appears in the lower half of a fraction,

for example. A better example is provided by this crashproofed expression for arccos,

which uses the relation ARCCOS(X) = ARCTAN(X/SQR(l-X2
)) :

100 DEF FN AC(X) = ATN(X/((X=l)*lE-9 + SQR(1-X*X))) * (-l)t(N+D + [PI]*N+[PI]/2

110 DEF FN DC(X) = FN AC(X) * 180 / [PI] :REM ARCCOSINE OF X IN DEGREES

200 FOR N = TO 10: PRINT FN DC(0): NEXT

The example prints 90, 270,450, .. .1710. , 1890.

Trigonometric equations A typical textbook general equation for solution is:

a sin x + b cos x = c

By dividing through with sqr(a 2 +b 2
) and using an expansion of cos(p+q), we can

establish the general solution as

x = arccos (c/sqr (a2 +b2)) - atn(-b/a).

10 DEF FN AS(X) = (-DTN * ATN (X/SQR(1-X*X)) + [PI]*N :REM ARCSINE

20 DEF FN AC(X) = [PI]/2 - FN AS(X):REM ARCCOS DEFINED IN TERMS OF ARCSIN

100 INPUT "a.b.c in a sin x + b cos x = c"; A,B,C

110 FOR N = -5 TO 5 :REM PRINT A SPECIMEN RANGE OF SOLUTIONS

120 THETA = FN AC (C/SQR (A*A+B*B)) - ATN(-B/A)

130 THETA = THETA*180/[PI]: PRINT THETA "DEGREES": NEXT

Programming the PET ICBM

Trigonometrical functions

-458- 16: Mathematical programming

Pi=LPI)
'i REM
10 REM *** FUNCTIONS OF ANGLES IN DEGREE ***
11 REM
20 DEF FN SJUX) = SIN(X*PI /ISO) s REM CALCULATE SINE OF ANGLE IN DEGREES
30 DEF FN CO(X) = C0S(X*PI/ia0) s REM CALCULATE COSINE OF ANGLE IN DEGREES
40 DEF FN 1A(X) = TAN (X*FI/1S0> t REM CALCULATE TANGENT OF ANGLE IN DEGREE
99 REM
100 REN *** INVERSE TRIGONOMETRICAL FUNCTIONS (RADIANS) ***
101 REM
11U L'LF FN AS(X) = <-l)*N * (ATN < X/SQR(1-X*X))) + PI*N ! t REM ARCSIN
120 DEF FN AC(X) = PI/2-(-l)»N * (ATN (X/SQR(1-X*X))) + PI*N ; REM ARCCOS
130 DEF' FN AT(X) = ATN', X) + P1*N ; REM GENERAL ARCTAN
199 REM
20u REM *** INVERSE TRIGONOMETRICAL FUNCTIONS IN DEGREES ***
201 REM
210 DEF FN DS(X) = FN AS(X)*180/PI t REM ARCSINE OF X IN DEGREES
220 DEF FN DC(X) = FN AC(X)*180/PI i REM ARCCOS I NE OF X IN DEGREES
230 DEF FN DT < X > = FN AT(X)*lS0/PI ; REM ARCTANGENT OF X IN DEGREES
299 REM
301' REM *** FURTHER INVERSE TRIGONOMETRY FUNCTIONS ***
301 REM
31u REM ARC 3LC(X) = ARC C0S(1/X)
320 REM A.RC COSEC(X) = ARC SIN(1/X)
330 .

:
-:L/"! ARC (jT < X i = ARC TAN (1 / X)

16.6 Arrays and Matrices.

Definitions and rules of manipulation A 'matrix' in the mathematical sense is a two-
dimensional array of numbers. In BASIC these can be conveniently stored as A(R,C)
say, where R and C represent the dimensions of the array and mnemonically suggest
the order rows then columns, which is the usual convention. Matrices may be manip-
ulated mathematically in several conventional ways. Some BASICS (e.g. IBM's) have
their own MAT statements to facilitate this, but Microsoft BASICs normally don't,
presumably because of the comparatively small demand. There are difficulties in imple-
menting commands of this sort in any case, because of the need to reduce rounding
errors when dealing with the very largest matrices, and because of the memory re-
quirements .

The reasons why matrices can be useful aren't especially easy to understand.
The best point of entry is probably to look at simultaneous equations:

a + 10b + 100c = .03
a + 50b + 2500c = .29
a + 100b + 10000c = .98

Here we have three equations connecting three unknowns, a,b, and c. Small sets of
equations like this one can be solved quite quickly by comparing pairs of equations
and eliminating unknowns. The interpretation of these equations, in concrete terms, is
not too difficult; for example, a, b, and c may represent weights in grams, and the
three combinations of one of the first type of item, ten of the second, and one hund-
red of the third and so on plus the respective weights may have been determined
empirically. Solving the equations gives the weight of each type of item. Another
example: suppose an egg + two pieces of bacon costs 75 units, while an egg + one
piece of bacon costs 50. Assuming the costs are straghtforward calculations, these
equations represent the situation:

pe + 2pb = 75
pe + pb = 50

And of course the two prices pe and pb are 25 units each. Matrices deal with situa-
tions of this sort by separating out the block of factors from the block of variables,
and the rules of matrix addition, subtraction, and multiplication are made consistent
with this scheme. Consequently, matrices are usable whenever calculations of this sort

a .03

* b = .29

c .98
_

Programming the PET/CBM -459- 16: Mathematical programming

occur- in economics, attempts are made to construct matrices to model flows of raw

materials and made-up goods between industries; price x quantity calculations may be

made;* predictions and deductions about migration, genetics, and so on may be made.

The idea is always similar to that embodied in our simultaneous equations. We can

represent the first of them in this way:

"l 10 100

1 50 2500

1 100 10000

Which^may help to clarify the idea of matrix multiplication: the point is that the row(s)

of the first matrix are multiplied by the column (s) of the second and added to give the

corresponding elements in the third. For this reason multiplication is meaningless it in

A(R C) * B(R' C) the value C is unequal to R'. Division is not defined directly, but

is implicit in the idea of multiplication: a square matrix holding only zeros, except for

its top-left to bottom-right diagonal which holds ones, is called the 'identity matrix

and corresponds to 1; any two matrices which multiply to give this are called inverses

of each other, so each is something like the reciprocal of the other, as the name

'inverse' implies. As we shall see, matrix inversion is a standard operation required in

calculations using matrices. Adding matrices is simpler: the matrices must match both

in the number of rows and the number of columns. Each corresponding element is then

added. Subtraction is similar.

Although column vectors (there are two in the matrix equation above) are otten

used in matrix multiplication, the generalision implied in the comments on the identity

matrix and inversion enables any matrices of form A(R,C) and B(R',C) to be multip-

lied, provided C=R'. For example, these 3*2 and 2*2 matrices give a 3*2 result:-

1

4 5

2 -2

1

14
-2

Matrix inversion and simultaneous equations By way of preliminaries, let's first see

how to input and output an entire matrix, without worrying too much about format:

INPUT "NUMBER OF ROWS, COLUMNS"; R,C: DIM A(R,C)

10 FOR X = 1 TO R:

20 INPUT A(X,Y)

30 NEXT Y,X

500 FOR X = 1 TO R:

510 PRINT A(X,Y);

FOR Y = 1 TO C

:REM INPUT ONE ROW AT A TIME.

FOR Y = 1 TO C

:REM PRINT ONE ROW AT A TIME

READ A(X,Y) ALSO USABLE.

520 NEXT Y: PRINT: NEXT X :REM NEW ROW ON A NEW LINE

Lets also see how to multiply matrices; this is necessary for several purposes, includ-

ing the testing of programs:

400 REM MULTIPLY A(R,C) BY B(R',C) GIVING R(R,C) AS RESULT

410 FOR I = 1 TO CI :REM RESULT'S COLUMNS

420 FOR J = 1 TO R :REM RESULT'S ROWS

430 FOR K = 1 TO C :REM COMMON COLUMNS AND ROWS

440 R(J,I) = R(J,I) + A(J,K)*B(K,I) :REM SINGLE ELEMENT ADDS TOGETHER C PRODUCTS

450 NEXT K,J,I

Note that a matrix multiplication where the second array is a column, as in the example

at the top of this page, the outermost loop is redundant, and can be omitted when for

example the solutions of simultaneous equations are checked by substitution into the

original equations. If a row array is multiplied by a column array, the result is a

lxl array; in this case only the innermost loop is required.

The two matrices (each 4x4) are inverses of each other; when multiplied,

irrespective of the order of multiplication, the result, allowing for rounding errors, is

the 4x4 identity, consisting of Is in the leading diagonal and Os elsewhere. We can

see how the inverse may be used to solve simultaneous equations, by premultiplying

*It is important to have a clear idea of the space requirements and processing times to

expect with matrices. Although they permit exhaustive calculations to be made, often

(e.g. in economic models) most of the elements are zero, which seems rather wasteful.

One of Gerry Weinberg's stories (in 'The Psychology of Computer Programming') on this

subject recounts how an organisation's whole price structure, to be used in invoicing

etc., was to be held in an array. It turned out to be too big for the machine.

Programming the PET/CBM -460- 16: Mathematical programming

1 2 3 4 .75277 -.22847
12 4

and
. 00029949 .083408

1 -5 -7 12 -.00089847 -.00022462
555 8 .062332 .015583

-.24723 -.0054058
.00029949 -.00059898
-.00089847 .0017969
.062332 .00033693

are inverses

.

both sides of an equation involving arrays by the inverse of the (square) array which
holds the coefficients of the equations; if A is the array, so for example

a id
b

c
=

i

10

d

A *

then on premultiplying we get these results:

* A *

10 10 a

1

10
so

10
10

*
b

c

1 _d

10" a id"
1

10
and

b

c
= A"

1
*

l

10

_0 _d_ _

So the solution of these equations:

2b + 3c + 4d = 10
12b + 4c = 1

5b - 7c + 12d = 10

555c + 8d =

can be found by premultiplying the column matrix by the 4x4 inverse at the top right
of this page, giving a=4.827, b = . 08940, c=-. 01819 and d=1.262.

A great deal of work has gone into finding and improving methods of matrix
inversion to maximise speed and accuracy of different types of matrix. There is no
room here to begin to summarise this work. Instead, I shall develop a program using
a mundane algorithm for inversion, which should be usable for quite a number of
purposes.* It is not particularly elegant, but it does work. We may as well note at
this point that not all square matrices can be inverted; those corresponding to sim-
ultaneous equations which won't solve, either through inconsistency or insufficiency of
data, have no inverses. For example:

x + 2y = 10 x + y = 10
x + y = 10

an
2x +2y = 20

have non-invertible matrices. Some matrices are described as 'ill-conditioned', by which
is meant that their inverses exist, but are sensitive to small changes in the original
matrix, so the inverse tends to have large errors in its elements; the matrix

1 1/2 1/3 1/4 .

.~

1/2 1/3 1/4 1/5 .

.

1/3 1/4 1/5 1/6 .

.

provides an illustration.

The matrix inversion program (in BASIC; see next page) uses row operations to
convert the original matrix M(R,R) into the identity matrix. Identical operations are
carried out on the identity matrix. The result is that M becomes the identity matrix
and I(R,R), the duplicate matrix originally holding the identity, is transformed into
the inverse. M goes through these stages:

XXX 1 X X 1 X X 10
XXX 1 1 X 1 x 10
XXX 111

, _ 1 1

The program has four parts, excluding the input routine and any printout and/or
checking routines.

(i) Lines 100-260 constitute a large loop which carries out the first two ^stages
in the diagram above. Lines 100-170 perform divisions to convert the leading diagonal
into Is, while

Donald Alcock ('Illustrating BASIC) has a shorter program which uses Gaussian elim-
ination. CBM and other Microsoft BASICS need to add 405 IF 1+1 > N THEN GOTO 430
to this program, since Alcock has assumed standard Dartmouth BASIC loop handling.

Programming the PET/CBM -461- 16: Mathematical programming

COMPLETED MATRIX INVERSION PROGRAM

10 INPUT"DIM"JN
11 DATA l#2.3»4>0»12>4»0>-li-5>-7»12»0>0>555>8
12 DIMM<N,N)> KN.N)
13 FORY=iTONsFORX=lTON:READ M< X, Y) s NEXTX,

Y

14 FORY=lTON!FORX = lTON,-PRINTM<X»Y)J s NEXT; PRINT* NEXT
16 FORX=lTONs I(X»X>=lsNEXT

100 FOR X = 1 TO N
110 FOR Y = X TO N
120 D = M(X»Y) i IF D=0 OR D=l GOTO 170
130 FOR K = X TO N
140 M(K»Y) = M(K»Y)/D
141 NEXT K
142 FOR K = 1 TO N
150 KK.Y) = I(K»Y)/D
160 NEXT K
170 NEXT Y
ISO IF X=N GOTO 270
190 FOR Y = X+l TO N
200 IF M<X»Y)=0THEN 250
210 FORK=XTON
220 M(K»Y)=M(K»Y)-M(K.X)
22,1 NEXT K
222 FOR K = 1 TO N
230 I(K t Y)=I(K»Y)-I(K»X)
240 NEXTK
250 NEXT Y
260 NEXT X

270 FORX=lTONsIFM(X»X)=lTHEN NEXT
271 IFXON+1THENPRINT"NOT INV'sEND
272 FOR X=N TO 2 STEP -1
280 FOR Y=X-1 TO 1 STEP -1
290 D=M(X»Y)
300 FOR K = XTO N
310 M(K#Y)=M<K»Y) - M(K»X)*D
311 NEXT K
312 FOR K = 1 TO N
320 I(K»Y)=I(K»Y) - I(K»X)*D
330 NEXT K
340 NEXT Y

350 NEXT X

Depending on the structure of the original matrix, inversion takes something like 30

seconds for a 10 by 10 matrix and 4 minutes for a 20 by 20 matrix. A 32K machine
can handle matrices of about 55 square, leaving no room for anything but the inver-

sion program. With BASIC at 1 MHz this takes about three quarters of an hour.
The program can be tested by (i) Inverting a matrix with a known inverse; the

identity matrix should invert to itself, with some rounding error; (ii) Reinverting a

matrix, and checking that the result is close to the original; or (hi) Multiplying by
the original and checking that the answer is similar to the identity matrix.

Applications of the technique to simultaneous equations include the calculation of

coefficients of regression equations in statistics; many more variables can be handled

than are practicable by manual calculation. Typically this may be useful when an

algebraic curve is to be fitted to data collected by experiment. Another example is in

the solution of 'over-determined' simultaneous equations, where there are many obser-

vations of empirical material involving only a few variables. Suppose you have details

of output involving units of raw material which have been used in different combina-J-

tions: say a sheet of timber has been made into 15 items of type A, 100 of type B,

and 30 of type C; and results are available like this for 100 sheets. What is the best

estimate of the amount used per type of item? Perhaps figures are available of the

Programming the PET/CBM -462- 16: Mathematical programming

weekly output from a group producing a mix of different size items of the same type.
How can you estimate (for sensible pricing) the time taken on size 1, size 2, etc.?
One method is to premultiply both sides of the matrix expression by the transpose of
the matrix; the result provides the best least-squares estimates of the variables' values.
This simple case illustrates the method:

4 empirically
obtained equations:

2x+y=8,

x+y=7,
2x+y=9,
x+3y=6

.

Correspond to
this matrix
arrangement

:

2 1

1 1 X
8

7

2 1 y 9

1 3 6

As it stands, this is insoluble;
this:

2 12 1

1113
2 1

1 1

2 1

1 3

X

y
=

2 12 1

1113
8

7

9

6

10 8

8 12

X

y_

=
47

42_

the least-squares solution, however, is obtained like

which
simplifies to:

and this matrix expression is solvable. Estimates of the error in the result can be
calculated. This is, of course, only one of innumerable mathematical techniques which
are available. It is a relatively easy one to program. If we set NE=number of equations
and NV=number of variables, this routine calculates the square matrix S which results
from the multiplication of the transpose of M by M itself:

1000 FOR C = 1 TO NV
1010 FOR R = 1 TO NV
1020 FOR K = 1 TO NE
1030 S(R,C) = S(R,C) + M(K,R)*M(R,K)
1040 NEXT K,R,C

16.7 Number Theory .

Number theory typically deals with large integers; these are available only with
specially-written routines in Microsoft BASIC, and as the subject is not of wide inter-
est, I shall illustrate a solution only of a small-scale problem, using BASIC to assist
in the solution. The problem is: find a telephone number (of 3 digits followed by 4)
which, if the first part is subtracted from the second, and the result squared, equals
the original seven-digit number.

I.e. put x=abc, y=ghjk in form. Then we have:
(;y-x) 2 = lOOOOx + y. There are about 999*9999 combinations which could be test-

ed. (The precise number depends on whether a number like 000 counts). This will take
a long time; probably a few weeks on the computer. However, a little algebraic shuff-
ling (solving a quadratic for y) produces the more severe restriction that

40004x + 1 must be a perfect square if the equation is true.

10 FOR X=0 TO 999: REM TEST WHOLE RANGE OF PREFIX NUMBERS
20 Y=40004*X + 1

30 IF ABS (SQR(Y) - INT(SQR(Y)) < .001 THEN PRINT X
40 NEXT: END

This program isn't too long in run-time. Line 30 tests for exactness of the square root;
the range of Y 2 is about 200 to 6000, so the test should adequately screen out wrong
values. The actual form of the test isn't really important; the point is to get some
figures, which can easily be checked. In fact, only 120 prints on the screen, and the
solution is 120 1216.

16.8 Curve fitting.

Least squares methods The object of curve-fitting is to discover some fairly simple
formula to represent empirical data; the point is to get the representation into a form
which is easy to handle, rather than (say) as a graph or as a table. The techniques
are well-known

; related topics include regression and correlation , the formulas of which
are also readily available in textbooks. The least-squares formula, to be briefly ex-
plained here, is a process which calculates coefficients of a linear expression which
minimise the sum of squares of predicted and actual results. Usually some attempt is
made to determine a likely form of a function, which is then fitted to the data and
checked for significance. This process can be automated partially. There is a BASIC

Programming the PET/CBM -463- T6: Mathematical programming

program ('CURFIT') of Jim Butterfield's which fits data to several types of curve and

reports the results.

The least-squares method starts with a linear function:

y = a + bx + cx
2

+ dx
3

+ . . . + random error

Where xn can be for example x 2 or log(x) or some function of x (although this makes

error estimation more complex). For example, functions of the following types can be

represented like this, in some cases using transformations to convert some of the data

items into more usable forms:

y = a + bx straightforward linear relation,

y = a + bx + cz linear relationship with 2 variables,

y = b/x + a + ex + dx2 where x =l/x
2

and x
3
=x|

,

y = kxyz 2 where a logarithmic conversion is needed, which gives

log y = log k + log(xyz2), or y' = a + x', with only one constant to compute.

The mathematics involved in computing the best estimates of the constants is this:-

For each observation, the difference between the calculated and observed values

is error = (y - a - bx
x

- cx2
- dx

3
- ...)

So the sum of the squares of the errors, which we will minimise by our choice of a,b,

c, ..., is 21(y - a - bxj - cx2
- dx 3 - . . .)

2
.

The minimum occurs when the partial derivatives of each with respect to a,b,c, .

.

are all zero.

So — 2-(y - a - bx, - ...) 2 =0 or 5L(y - a - bxi - ...)=0,
^a "

-5- 2T(y - a - bx
1

- . . .) 2 =0 orZx x (y
- a - bxj - ...)=0,

3b x

and so on

.

.

As a concrete example, not too long, consider the linear relationship where two

variables determine the answer, of this form:

y = a + bx + cz. The procedure above gives:

a.n + bZx + c2z = 2y
alx + b£x2 + clxz = £xy
aXz + bi-xz + c2z 2 = 2.yz

With manual methods, values of x and z and the result y are tabulated, along with

the products xy, xz, and yz, and the squares x 2 and z 2
. The column totals give the

figures for insertion into the simultaneous equations, which can be solved by matrix

inversion (giving results identical to the transpose multiplication method).

Other methods Other methods of curve fitting, adapted for less well-behaved func-

tions, tend to be less easily computerised. The easiest methods assume that a formula

is exact, and calculate parameters accordingly, perhaps averaging different estimates.

For example, suppose y=max + nbx is to be fitted to data on mortality. Any four

equally-spaced sets of x and their observed y values correspond to exact values of

m,n,a, and b. The ratio of y(l)y(3) - y(2) 2 and y(2)y(4) - y(3) 2 can be shown to

be ab, and by algebraic juggling values can be extracted from the data. In practice

graphs are plotted and the results tested for adequacy of fit. Another example:

to fit data to the hypothetical underlying curve y = a + bx + cdx we can use the

ratio of y(4)-2y(3)+y(2) to y (3)-2y(2)+y(l) to estimate the value of d 5
. In examples of

this type the initial algebra is probably easier to do manually than by computer. Other

approximate methods exist, some of them dating from the days before the general

availability of computers, but there is not sufficient space here to deal with them.

Programming the PET/CBM -H6U- 16: Mathematical programming

16.9 Machine-code programming with mathematics .

The floating-point accumulators and BASIC number storage We have seen (16.1) how
numbers are stored in BASIC and in tables in ROM, in 5 bytes of form exponent +

sign bit + the rest as mantissa. Calculations are performed by Microsoft BASIC largely
in two locations, called the floating-point accumulators. The more important of the two,
'Floating-point accumulator #1', which we can call FPAcc.il, occupies $5E to $63 in the
zero-page of RAM. (In BASIC 1 the locations are $B0 to $B5). Floating-point accumu-
lator #2 occupies $66 to $6B ($B8 to $BD in BASIC 1). Each accumulator is thus six
bytes long, one byte longer than variable storage. The arrangement of bytes is very
similar in each case:

Floating-point accumulator #1 Floating-point accumulator #2
$5E $5F $60 $61 $62 $63 $66 $67 $68 $69 $6A $6B
EXP BIT+M1 M2 M3 M4 SIGN EXP BIT+M1 M2 H3 M4 SIGN

The sign byte is to some extent independent of the high bit in Ml: if they are both
set (i.e. sign byte has its high bit set, typically #FF) and the high bit of Ml is on,
the number is considered negative when it is transferred to other parts of RAM. In
addition to the bytes shown here, there is an overflow byte and a low byte used for
rounding. Most of the results of calculations are stored in FPACC.#1; the other accum-
ulator typically holds the number to be added or multiplied. Immediately below the two
accumulators are 10 bytes which store numerals from RAM; these are not used in the
same way for major calculation. These accumulators hold numbers with the maximum
precision available to BASIC. As we have already noted, some calculations are intrins-
ically less accurate than others; for instance, 7*7*7*7*7*7*7 is evaluated exactly as
40353607, because the integer is held without error; but 7T9, which uses an inter-
mediate stage in calculation of finding the logarithm of 7, emerges as 40353607.1. The
accumulators' contents can be watched by programs similar to those in Chapters 2 and
13. Is there a method to determine the value held in floating-point form? Not surpris-
ingly, the answer is yes, and the following routine is a simple way to program it. The
routine is relocatable, and the version below, for BASIC 2, starts at $033A. In this
case therefore SYS 826 runs the routine, which prints a flashing cursor and awaits
the input of four hex bytes and the 'Return' key. It prints the value of the 5-byte
number starting at that location. For example, the following four values, which apply
to BASIC 2, come from a table which BASIC uses to calculate LOG:

D8C8 1

D8CE .434255942
D8D3 .576584541
D8D8 .961800759

033A 20 B6 E7
033D A8

033E 20 B6 E7
0341 20 AE DA
0344 20 E9 DC
0347 20 1C CA
034A A9 0D

034C 20 D2 FF
034F DO E9

JSR $E7B6
TAY

JSR $E7B6
JSR $DAAE
JSR $DCE9
JSR $CA1C
LDA #$0D
JSR $FFD2
BNE $033A

;$E7B6 inputs a hexadecimal byte (e.g. A4)
; into accumulator A.
;$DAAE moves 5 bytes pointed to by A (low),

Y (high) into FPAcc.#l and unwraps
the sign byte.

;$DCE9 converts FPAcc.#l into an ASCII string.
;$CA1C prints the string.
;$FFD2 prints carriage return.

.: 033A 20 B6 E7 A8 20 B6 E7 20

. : 0342 AE DA 20 E9 DC 20 1C CA

. : 034A A9 0D 20 D2 FF DO E9

Pressing the Stop key wULterminate the loop. The routine can be used from within
the monitor, by changing USRCMD or perhaps more simply by changing some command
which is comparatively little used in a RAM monitor (e.g. Extramon) to point to this
routine's start instead. The BASIC 4 version is this:

027A 20 63 D7 A8 20 63 D7 20
0282 D8 CC 20 93 CF 20 ID BB
028A A9 0D 20 D2 FF DO E9

Programming the PET/CBM -465- 16: Mathematical programming

Hexadecimal to decimal conversion and vice versa The machine-code programs which
are presented here can be called either from BASIC or from a machine-code monitor.

Some versions of Supermon have a ready-made N command, which is normally disused,
pointing only to the start of the monitor. For example, if Supermon when loaded in a

BASIC 2 machine has a table near the end of commands (TFHD etc.) which include N,
then search a little further forward for a 2-byte address pointing to $FD55. Change
this to $0339 (1 byte before $033A) and the following routine will run:

033A 20 6F C4

033D A9 00
033F 85 77

0341 A9 02

0343 85 78

0345 20 9F CC
0348 20 D2 D6

034B 20 75 E7

034E 98

034F 20 75 E7
0352 A9 0D

0354 4C 56 FD

JSR $C46F
LDA #$00
STA $77
LDA #$02
STA $78
JSR $CC9F
JSR $D6D2
JSR $E775
TYA

JSR $E775
LDA #$0D

JMP $FD56

$C46F inputs a screen line into the buffer.

($77) is set to $0200.
$CC9F inputs and evaluates BASIC.
$D6D2 converts the contents of FPAcc.#l into

a 2-byte integer, A high, Y low.

;$E775 prints A as a hex byte (e.g. F5)

.

;$FD56 start of monitor

.: 033A 20 6F C4 A9 00 85 77 A9

.: 0342 02 85 78 20 9F CC 20 D2

.

:

034A D6 20 75 E7 98 20 75 E7

.

:

0352 A9 0D 4C 56 FD 00 00 00

This routine is designed to print one single value only, then jump to monitor; a loop
may be added, to print repeat values, or an RTS to return to BASIC. The routine
works like this:

.N 12345
3039

printing a single hex figure. This is the BASIC 4 version:

027A 20 E2 B4 A9 00 85 77 A9
0282 02 85 78 20 98 BD 20 2D
028A C9 20 22 D7 98 20 22 D7
0292 4C BA D4

The next routine performs conversions the other way, from hex to decimal. Again
we can take advantage of ROM routines which already exist, and again the routines
are relocatable, though not between different versions of BASIC. The routine includes
a loop, so that a series of conversions is possible; the stop key terminates the routine
and returns to the monitor. This can be incorporated into a monitor, like the decimal-
to-hex program. If it is, this type of keyboard transaction takes place:

.N B000 45056

.N 0200 512

.N DAAE 55982 etc.

This version works with BASIC 2; note the loop at the end, which is always taken:

033A 20 EB E7
033D 20 B6 E7
0340 A8
0341 20 B6 E7

0344 AA
0345 98

0346 20 D9 DC
0349 A9 0D

034B 20 D2 FF
034E DO ED

JSR $E7EB
JSR $E7B6
TAY
JSR $E7B6
TAX
TYA
JSR $DCD9
LDA #$0D
JSR $FFD2
BNE $033D

; INPUT CHARACTER (E.G. N FROM MONITOR)
; INPUT HEX BYTE INTO A

; PRINTS 256*A + X (DECIMAL)

; OUTPUT CHR IN ACC'R

Programming the PET/CBM -466-

BASIC 2 and BASIC 4 monitor dumps follow:

;BASIC 2

16: Mathematical programming

033A 20 EB E7 20 B6 E7 A8 20

0342 B6 E7 AA 98 20 D9 DC A9
034A 0D 20 D2 FF DO ED

027A 20 98 D7 20 63 D7 A8 20
0282 63 D7 AA 98 20 83 CF A9
028A OD 20 D2 FF DO ED

;BASIC 4

SYS 829 /SYS 637 from BASIC ignores the subroutine which inputs 'N'.

ROM routines Mathematical routines in ROM can be classified in several different
ways. We can distinguish four main types of operation, all of which are necessary to
a full BASIC:

(i) Routines which perform calculations using FPAcc.#l only, leaving the result
in FPAcc.#l. For example, adding .5, multiplying by 10, rounding, and evaluating
trigonometrical functions are all operations which may be performed by ROM routines
using only FPAcc.#l . Some of the results may be in non-standard format: INT leaves
FPAcc.#l holding 2 bytes equivalent to the floating-point value.

(ii) Routines to interchange the accumulators.
(iii) Routines to interchange floating-point accumulator (s) with RAM variables.

One set stores the accumulator's contents into a position in RAM determined by point-
ers; another set takes the RAM value, putting it into a floating-point accumulator
before carrying out calculations on it.

(iv) Binary operations, in which FPAcc.#l is combined - added, subtracted, or
whatever - either with FPAcc . #2 or other RAM contents according to pointers ; or in
which FPAcc. #2 is combined - perhaps by division or a power calculation - with a RAM
value, and the result deposited in FPAcc. #1.

The destination of most calculations is FPAcc. #1; it is often necessary to store
intermediate values, perhaps in the 10 bytes of RAM immediately below the two accum-
ulators which I have already mentioned.

ROUTINES WHICH USE ONLY FLOATING-POINT ACCUMULATOR #1.

ADDRESSES- FUNCTION-
BASIC 1 BASIC 2 BASIC 4

D6DA D6D2 C92D

D71E D72C C97F
D8BF D8F6 CB20
D81C D853 CA7D
D9B4 D9EE CC18
DAED DB27 CD 51
DAFD DB37 CD61

DB2A DB64 CD8E
DB2D DB67 CD91

DB6D DBA7 CDD1

DB9E DBD8 CE02
DBBB DBF 5 CE1F
DE67 DEA1 D14B
DEAO DEDA D184
DF45 DF7F D229

DF88

DFA5

E048

DFC2

DFDF

E08C

D26C

D289

D32C

FLOATING-TO-FIXED converts FPAcc. #1 into a 2-byte
integer in ($11) and, with the order of bytes reversed, in
($61). On exit A holds the high byte, Y the low.
ADD .5 adds J to FPAcc. #1.
LOGe converts FPAcc. #1 into its logarithm.
TWO'S COMPLEMENT replaces FPAcc. #1 with its 2's comp
MULTIPLY BY 10.

ROUND FPACC. #1 rounds using the extra byte.
FIND SIGN on exit, A=0 (if FPAcc. #1 = 0), 1 (if +ve), or
#FF (if -ve).
ABS converts FPAcc. #1 into ABS (FPAcc. #1).
COMPARE compares FPAcc. #1 with the 5-byte floating-
point value to which A (low byte) and Y (high byte) point
On exit, A=0 if the numbers are equal, 1 if FPAcc. #1 >
memory, or #FF if FPAcc. #1 < memory.
FLOATING-TO-FIXED converts FPAcc. #1 into a 2-byte
integer in $61 (high) and $62 (low). Unlike D6DA/ D6D2/
C92D, the range is not validated.
INT finds INT of FPAcc. #1, leaving it in floating-point.
ZEROISE puts nulls in FPAcc. #1 if the exponent is zero.
NEGATE changes the sign of FPAcc. #1.
EXP converts FPAcc. #1 into e (FPAcc. #1).
RND entry point (followed by branches for +ve, zero,
and -ve arguments).
FORCE RND RANGE ensures random number now stored
in FPAcc. #1 will be within the range 0-1.

SINE computes sine of FPAcc. #1, assuming the argument
is measured in radians. Note that COS leaves pi/ 2 in

FPAcc. #2, and therefore TAN does as well.

ARCTANGENT

*Zero-page addresses apply to BASICS 2 and 4; BASIC 1 has different values, listed in
Chapter 15. This list is not intended to be exhaustive.

Programming the PET/CBM -467- 16: Mathematical programming

OTHER MATHEMATICAL ROUTINES IN ROM

-ADDRESSES- FUNCTION-
BASIC 1 BASIC 2 BASIC 4

C863 C873 B8F6
C91C C928 B9AB
CCB8 CC9F BD98

CED6
CED9

D09D

CEC8
CECB

D08D

DCAF DCE9

C086
C089

C2DD

D285 D27A C4C9
D287 D27C C4CB
D654 D656 C8B2
D663 D665 C8C1
D685 D687 C8E3
D275 D733 C986

D73C D773 C99D

D8FD D934 CB5E

D95E D998 CBC2

D9D0 DAOA CC34
D9E1 DA IB CC45

DA74 DAAE CCD8
DA 99 DAD3 CCFD

DACE DB08 CD32
DADE DB18 CD42
DBC5 DBFF CE29
DC9F DCD9 CF83

CF93

DE24 DE5E D108
DE2E DE68 D112
DF09 DF43 DIED
DF9E DFD8 D282
DFEE E028 D2D2

FETCH INTEGER FROM BASIC and leave its value in ($11]

ADD ASCII DIGIT TO FPACC.#1. ($1F),Y points to it.

INPUT AND EVALUATE ANY BASIC EXPRESSION. See

Chapter 15 on this. Note that earlier entry points enable

tests for string or numeric functions to be included.

OR performed between two 2-byte integers,

AND performed between two 2-byte integers, leaving the

result in FPAcc.#l.
INPUT AND EVALUATE INTEGER EXPRESSION converts

a BASIC expression which evaluates to 0-65535 into a 2-

byte integer in $61 (high) and $62 (low).

POS puts cursor position on line into FPAcc.#l.

STORE Y REGISTER IN FPACC.#1 in floating-point form.

LEN.
ASC.
VAL. Each of these leaves the result in FPAcc.#l.
SUBTRACT replaces FPAcc.#l by FPAcc.#2- FPAcc.#l.

See Chapter 15 for two entry points, one of which loads

FPAcc.#2 from pointers, while the other uses current

contents

.

ADDITION replaces FPAcc.#l by FPAcc.#2 + FPAcc.#l.

See Chapter 15 for entry-points.
MULTIPLICATION replaces FPAcc.#l by FPAcc.#l * FP
Ace. #2. See Chapter 15 for entry-points.

LOAD FPACC.#2 loads the 5-byte value to which A (low)

and Y (high) point into FPAcc.#2.
DIVIDE BY 10. FPAcc.#2 is overwritten by FPAcc.#l.

DIVISION replaces FPAcc.#l by FPAcc.#2 / FPAcc.#l.

See Chapter 15 for entry points.

LOAD FPACC.#1 from pointers A (low) and Y (high).

STORE FPACC.#1 INTO MEMORY converts FPAcc.#l into

a 5-byte value stored in RAM. The position at which the

bytes are stored is determined by pointers; see Ch. 15.

MOVE FPACC.#2 TO FPACC.#1 overwriting FPAcc.#l.

ROUND FPACC.#1 AND MOVE RESULT TO FPACC.#2.
CONVERT ASCII STRING TO NUMERAL IN FPACC.#1.
PRINT LINENUMBER prints 256*A + X on next line.

(The value may be 0-65535).

CONVERT FPACC.#1 INTO ASCII STRING where the

string is put into a buffer starting at $0100, ready to be
printed, e.g. as a linenumber.
SQR where FPAcc.#2 holds .5

POWER converts FPAcc.#l into (FPAcc.#2) (FPAcc.H).
SERIES EVALUATION ROUTINE. See section 16.6 on this.

COS puts pi/2 into FPAcc.#2; leaves cosine in FPAcc.#l.

TAN puts pi/2 into FPAcc.#2 and leaves tangent in FPA#1.

Many ROM routines are arranged so that different entry points give different results,

according to the arrangement of pointers on entry. For example, SQR loads FPAcc.#2

with .5, then drops into the power routine, which automatically performs the square

root; differently set pointers would cause the function to evaluate some other power.

The routine at D8F9/ D930/ CB5A sets pointers and performs multiplication, having

the effect of multiplying FPAcc.#l by loge 2. These pointers are particularly important

in the four major binary calculations of addition, subtraction, multiplication and div-

ision, and in those routines which load data from BASIC and store results back into

RAM under BASIC control.

Programming the PET/CBM

MATHEMATICAL TABLES IN ROM .

ADDRESSES

-468-

BASIC 1 BASIC 2 BASIC 4

CDBC CDA3 BEAO
D099 D089 C2D9
D891 D8C8 CAF2

D9CB DA05 CC2F
DC85 DCBF CEE9
DDE3 DE1D D0C7

DE72 DEAC D156

DF3D DF77 D221

E01A E054 D2FE

E078 EOBC D35C

16: Mathematical programming

-VALUES

EOCD Elll D3B1

PI

-32768.005
1

SERIES FOR LOGe counter = byte of 3, values are
.434255942, .576584541, .961800759, 2.88539007.
FOUR OTHER VALUES: 1/SQR(2), SQR(2), -.5, and
LOGe 2 = .693147181.
10

99999999.9, 999999999.75, and 1000000000.
.5

15 constants held as 4-byte signed integers for use in
string-to-numeral conversions and TI$ calculations.
First 9 values (for strings) are -100000000,10000000,
-1000000, 100000,-10000, 1000,-100, 10, and -1.

Last 6 values (for TI$) are -2160001, 216000, -36000,
3600, -600," and 60.

TABLE FOR EXP EVALUATION has l/loge 2 followed by
series counter = byte of 7, then values:
.0000214987637, .00014352314, .00134226, .00961401,
.0555051, .2402263, .693147186, 1.

2 CONSTANTS FOR RND
11 879 546.4 is multiplied, 3.927 677 78 E-8 added.

PI/2, 2*PI, .25
TABLE FOR SIN EVALUATION has series counter = 5

followed by: -14.38139, 42.007797, -76.70417, 81.605223,
-41.3417021, and 2*PI.

TABLE FOR ATN EVALUATION has series counter = 11
followed by: -6.84793412 E-4, 4.85094216 E-3, -.0161117018
.034209638, -.0542791328, .0724571965, -.0898023954,
.110932413, -.142839808, .19999912, .333333316, and 1.

RND SEED of .811635157

Examples of the use of ROM routines to perform floating-point addition, subtraction,
multiplication, and division. As a preliminary, to show how routines can be strung
together, try the short routine which follows. It searches for a BASIC variable in
RAM, loads the value into FPAcc.#l, converts the result into an ASCII string, and
prints the ASCII string. The effect with variable XY, say, is identical to PRINT XY

.

$0302 LDA $0300; RETRIEVE VARIABLE NAME FROM 768-769
$0305 STA $42 ; AND STORE IT IN ($42)
$0307 LDA $0301
$030A STA $43
$030C JSR $CFC9; SEARCH FOR VARIABLE IN MEMORY [BASIC 2]

$030F LDA $44
$0311 LDY $45
$0313 JSR $DAAE;LOAD POINTED-TO VALUE INTO FPACC.#1
$0316 JSR $DCE9; CONVERT FPACC.#1'S CONTENTS INTO ASCII STRING IN $0100ff

.

$0319 JMP;$CA1C; PRINT THE RESULT

POKE 768,65: POKE 769,65: SYS 770 prints the current value of AA; locations 0300 and

Programming the PET /CBM -469- 16: Mathematical programming

0301 hold the ASCII values of the variable's name (the second of these being J00 if

the name has one character only). Note that some routines (e.g. DAAE) require the

pointers to be loaded before they are called, whereas other groups of routines may
have their pointers in common (e.g. DCE9 then CA1C) so there's no need to set the

pointers. The version is BASIC 2; Chapter 15's list of equivalent addresses permits

conversion to BASIC 4 or 1. Note that VARPTR (see Chapter 5), in conjunction with

this and the following routines, provides a powerful way to interact with BASIC when
performing calculations. Alternatively pure machine-code can be used, allocating

floating-point values their own 5 bytes of storage in RAM. In this way, mathematical

problems can be solved much more rapidly than BASIC permits, at the expense of the

extra effort needed.
The next example demonstrates addition and subtraction of two BASIC vari-

ables, which I've assumed have single-character names only, so the routine is kept

short. Typical results look like this:-

A=23.1245: B=12340000
POKE 768,65: POKE 769,66: SYS 770: REM ADD
12340023.1

A=15: B=3. 14159265
POKE 768,65: POKE 769,66: SYS 770: REM SUBTRACT
6.14305265

Only one subroutine needs to be called to change the operation from addition to sub-
traction. As we'll see, the routine can be converted to multiply and divide (and per-

form other calculations) too. This version is BASIC 2; conversion to either ROM 1 or

ROM 4 is no problem.

$0302 LDA $0300; FIRST VARIABLE'S NAME

$0305 STA $42
$0307 LDA #$00 ; BOTH VARIABLES HAVE #0 HERE

$0309 STA $43
$030B JSR $CFC9; SEARCH FOR VARIABLE 'A'

$030E LDA $44
$0310 LDY $45
$0312 JSR $DAAE; LOAD FPACC.#1 WITH THE VALUE OF A (OR IF NOT FOUND)

$0315 LDA $0301
$0318 STA $42
$031A JSR $CFC9; SEARCH FOR SECOND VARIABLE, E.G. 'B'

$031D LDA $44

$031F LDY $45
$0321 JSR $D773; LOAD FPACC.#2, THEN ADD RESULT TO FPACC.#1

$0324 JSR $DCE9; CONVERT FPACC.#1 INTO ASCII STRING, AND ...

$0327 JMP $CA1C; PRINT IT

D773 can be replaced by D998/ D77B which first loads FPAcc.#2, then enters the sub-
routine to add the two accumulators. In our example this makes no difference, but we
could perhaps make use of this by checking the value in FPAcc.#2 or in some other

way.
Subtraction can be demonstrated with the identical routine, except that D773

is replaced by D733, or by the equivalent D998/D736. Again, these are BASIC 2 loc-

ations, which must be converted to the correct values for your ROM.
Multiplication and division are easy to demonstrate with the same driver pro-

gram; typically, this sort of result will appear:

A=55: B=-3
POKE 768,65: POKE 769,66: SYS 770: REM MULTIPLY A WITH B

-165

A=123456: B=654321
POKE 768,65: POKE 769,66: SYS 770: REM DIVIDE B BY A

5.30003402

The BASIC 2 locations to multiply are D934 or JSR D998 then LDA 5E/ JSR D937. The

point of loading A with FPAcc.#l's exponent is to exit if the exponent is zero, because

this is a convention which shows that FPAcc.#l contains zero, and therefore ought

always to give a product of zero. Division is performed by DA IB or by D998 then

LDA 5E/ JSR DA IE. Here, the extra test looks for division by zero errors.

Programming the PET/CBM -470- 16: Mathematical programming

Example of long-precision calculation The most elegant way to implement extra pre-
cision in calculations (from BASIC) is to assign strings with the two values concerned,
and return the result in a string. There is insufficient room here to explain how this
can be done with all four main operations. This example multiplies two integers, with
no loss of precision, in machine-code. A limit of 128 digits each has been used, so the
maximum length of the result is 256. The routine is not particularly fast. It uses the
screen locations to store intermediate results, so the process can be watched running.
This diagram shows how the screen is used as three buffers; the illustration has
12345678*11246 set up. The order in which the numbers are entered affects the timing;
in the same way that 9897 is easier than n.

xll x9897

0000000012345678 ? 00011246 10000000000000000

$8200

=

3
Solu-tior\$8000 = (WW $8100 ^ rtultipliw

The first buffer is moved one step at a time to the left, and zero inserted at the right;
this value is added to the third buffer as many times as the second buffer indicates.
For example, the first loop starts by adding the contents of $8000ff six times to $8200
ff; when $8000ff has been moved one byte leftward (multiplying by 10), the result is
added four times to $8300ff, and so on. The routine works independently of ROM; it

is not relocatable - line 60 of BASIC pokes in the length of the numbers in use, and
the very first command, 'AE 83 03', is LDX $0383, which does not relocate; however,
the changes required are small. Some specimen runs of this program are shown. Add-
ition and subtraction are both easy with this type of approach. Division is more diff-
icult.

REM

1 REM **** INPUT NUMBERS AS STRINGS ****
2 REM
10 INPUT " FIRST NUMBER"; Nl$
20 INPUT "SECOND NUMBER"; N2$
30 IF LEN(N2$) < LEN(N1$) THEN N2$="0"+N2$: GOTO 30.
40 IF LEN(N1$) < LEN(N2$) THEN N1$="0"+N1$: GOTO 40
50 N = LEN(N1$)
60 POKE 899, N-l: POKE 911,2*N-1: POKE 952,2*N-1
99 REM
100 REM **** POKE IN ZEROS AND INITIALISE ****
101 REM
110 FOR L = 32768 10^2768+ 2*N-1:
120 FOR L = 33024 TO 33024 + N-l;
130 FOR L = 33280 TO 33280 +2*N-1:
199 REM
200 REM **** POKE IN VALUES ****
201 REM
210 FOR L=32768+N TO 32768 + 2*N-1:
220 FOR L=33024 TO 33024+N-l : POKE L,VAL(MID$(N2$,L-33024+l , 1)) • NEXT*
230 SYS 900
299 REM
300 REM **** PEEK AND PRINT RESULT ****
301 REM
310 FOR L = 33280 TO 33280+ 2*N-1

:

320 IF V$<>"0" THEN F=l
330 IF F=l THEN PRINTV$;
340 NEXT

POKE L,0: NEXT
POKE L,0: NEXT

POKE L,0: NEXT

POKE L, VAL(MID$(Nl$,L-32768-N+l,l)):NEXT

V$=STR$(PEEK(L)): V$=RIGHT$ (V$,l)

0384 AE 83

038C AA 18

0394 00 82

039C 0A 99

03A4 DO E7

03AC 00 A0
03B4 80 E8
03BC 00 9D

03 BD 00

A0 07 B9

C9 0A 30
00 82 88

CE 83 03
01 B9 00

C8 E0 07

00 80 F0

81 F0 1A

00 80 79

03 38 E9
10 ED CA
30 17 A2
80 9D 00

DO F4 A9
C2 60 FF

FIRST NUMBER ? 137137137137137

SECOND NUMBER ? 99999999999

13713713713576562862862863

FIRST NUMBER ? 5555555555555555555555555

SECOND NUMBER ? 7777777777777777777

43209876543209876538888884567901234567901235

Programming the PET/CBM -471- 16: Mathematical programming

The series calculation routine Mathematical functions are not evaluated by a table

lookup method, but by calculating a fixed number of terms of a series; the length of

the series depends on its speed of convergence. We shall see in this subsection how

the process works and how to write functions which can use the evaluation routine.

Firstly, let's see where it is in ROM: in fact there are two routines, one of which is

called as a subroutine of the other, and which is only once called to evaluate a series

(by EXP). Most routines call the more complex first routine. The locations are:

BASIC 1: DEF3 (main routine) & DF09 (subroutine). Pointer is ($C0).

BASIC 2: DF2D (main routine) & DF43 (subroutine). Pointer is ($6E).

BASIC 4: D1D7 (main routine) & DIED (subroutine). Pointer is ($6E).

In fact, the first routine is largely concerned with housekeeping, i.e. making sure

that the numerous values which are stored do not get overwritten. The second routine

performs all the calculations. To use it, load the pointer with the starting byte of the

series. For example, DE72/DEAC/D156, depending on ROM, holds a table of eight

floating-point values preceded by a single '7'. The single byte is a counter, which the

evaluation routine uses to count its multiplications. Slightly confusingly, it uses a total

of one more constant than appears in the byte - 8 in the present example - where the

final value is simply added to the cumulative total. Let's take a concrete example, with

BASIC 4 this time:

LDA #$56
STA $6E

LDA #$D1
STA $6F ; POINTER ($6E) NOW POINTS TO $D156, I.E. 'T THEN 8 NUMERALS

JMP $D1ED; EVALUATE SERIES AND LEAVE RESULT IN FPACC.#1

After this routine, FPAcc.#l holds

1 + .693...X + .24...X 2 + .0555...X3 + ... + . 000021...

x

7

where x = the starting value in FPAcc.#l. The coefficients are taken from the table

for EXP evaluation, several pages before this one. Note that they appear in reverse

order, because a recurrence relation like this has been used:

Result = (((. .((Value^x + Value 2)*x + Value
3) * x + Value

4) ...)+ Value
n

.

USR provides an easy way to observe the results we can get so far, because it puts

the argument into floating-point accumulator #1, jumps to our routine, then prints the

value now in FPAcc.#l if we have USR(X), say. We find, on POKEing locations 1 and 2

so that they point to the short routine above, that if X is in the range 0-1, PRINT
USR(X) is almost exactly 2X ; outside this range the approximation progressively

worsens. This is how CBM BASIC calculates functions. Of course, functions generally

aren't restricted so that their arguments appear only in a small range like 0-1; a

transformation is used with some values, and not others, to put any value into a form

in which systematic errors are minimised. For example, SIN not only takes the remain-

der after dividing by 2 pi, but also subtracts the result from t\, depending on the

sign, so that the powers of x converge more rapidly.

We can write our own series, and calculate our own functions in machine-code,

using this routine. For example, POKE 1,122: POKE 2,2 [i.e. $027A] and

$027A LDA #$00 with $0300 1 ; DECIMAL VALUE

$027C STA $6E $0301 128

$027E LDA #$03 $0302

$0280 STA $6F $0303 ;=J IN FL0ATINI

$0282 JMP $D1ED; BASIC 4 $0304
$0305
$0306
$0307

;=0 IN FLOATINi
$0308
$0309
$030A

is an easy example, PRINT USR(X) giving 0+iX = iX. For instance PRINT USR(IO)

prints 5, PRINT USR(44.7) prints 22.35. (The first byte in the table cannot be 0; if

it is, 256 terms will be evaluated, which is probably not the intention). The maximum
power of x equals the single byte at the start of the table; so if x 5 provides enough

accuracy, a single byte of 5 must start a table of 6 values, making 31 bytes in all.

Programming the PET/CBM -472- 16: Mathematical programming

It may be worthwhile writing a series routine for functions which are often used in

some specialised field; the resulting calculations will be faster than a BASIC function

definition. The point about Microsoft's method is that it does not simply employ an in-

finite series which has been truncated; instead, the maximum error within a defined

range is kept low by finding an expression of best fit according to least squares cri-

teria. Taking sine (x) as an example, this can be expressed as a series:
3

5 7x-x_ + x^-x_ + ...

37 5T 7!

but, given a defined range, we can always improve on the truncated series; thus,

if x is between and pi/ 2 only, and we want an approximation only as far as cubed
terms, this series:

l.Olx - .0424x 2 - .126x 3 is better than x - x 3 /6, having a smaller maximum
error of about . 002 as against . 08 .

A fairly routine method to calculate such series approximations is presented here; the

interested reader should read further in Chebyshev and Legendre polynomials et al.

The chief problem is that the accuracy is limited to that of the CBM, assuming that

machine does the calculations; this means it is impossible to get results precise down
to the last bit. In view of this difficulty, I have selected an easy method, rather than
one giving the best possible results. The object is to minimise the sum of squares of

differences between the function and its series approximation over some range, select-

ed in a way that enables any (valid) argument to be processed by the series. To
minimise over a range, we minimise an integral. As an illustration, we'll take a general

function f(x) and approximate it by & + bx + cx 2)over the range x = to x - 1. This
shows the method, with the minimum of arithmetic.

At each value of x, the error = a+bx+cx 2 -f(x).
So the sum of squares of errors in the range to 1 is given by:
^(a+bx+cx 2 -f(x)) 2 dx.

To minimise the entire expression we integrate the partial differentials with respect to

a,b, and c; this gives three equations, since there are three unknowns :-

\
X

(a+bx+cx2 -f (x)) dx = 0,

j Qx(a+bx+cx
2 -f (x)) dx = 0,

and
\
lx 2 (a+bx+cx 2 -f (x))dx = 0.

The expressions in x are easy to integrate; the expressions in f(x) may be integrable
analytically, or a rule such as Simpson's can be used which will probably be quick
and easy. The intermediate result is these equations:

r a t>_ c_ n l fl ., . , „
[
l
x + 2* +

3] ~ J
(X)dX = °'

and

[|c2 + |x* + ^X4]J
-

\ J
xf(x)dx = 0,

[|x3 + |x4 +
|X5]J

-
I J

x2 f(x)dx =

And these can be simplified into this final form

:

a/1 + b/2 + c/3 = So f(x)dx,

a/2 + b/3 + c/4 = J J xf (x)dx,

and a/3 + b/4 + c/5 = J J x2 f(x)dx.

These equations can be solved using our matrix inversion program, and estimates of

a,b, and c found. The matrix is not ideal from the computational point of view, but
we needn't worry too much about that. Note that the matrix has different elements if

the limits are not to 1; and the limits of the integrals of course differ too.

Let's finish with a short example: what is the best approximation to e
x

in the

form (a + bx) where x varies from to 1 only? The solution for a and b comes from:

and

Pi v 10
a + b/2 =*p e dx = e - e = e-1,

a/2+ b/3 =jj!j xe
x
dx = [xex-e

x
]J

= 1.

Which gives e - .873 + 1.690x in the required range.

Programming the PET/CBM -473- Business and education

CHAPTER 17: PROGRAMMING FOR BUSINESS AND EDUCATION

17.1 Business programming.

17.1.1 Types of systems
*lf predictions of millions of computers in the English-speaking world are true,

then the present situation is not even a drop in the ocean" (PL)

At the time of writing there are reported to be about 100,000 microcomputer systems

in the U.K., of which a substantial proportion are Commodore machines. About 2% of

users are in user groups. The general level of expertise is not very high; considering

the complexity of these machines, this is, of course, not surprising. Most CBM hard-

ware is distributed through official CBM dealers, and the presence of such dealers

helped Commodore to achieve its leading market position. Software is a rather differ-

ent matter. Most microcomputer manufacturers want to make and sell hardware, which

is in any case logically prior to software; sources of software are far more diffuse

and various, and may not come into existence for years after the introduction of a

machine, so there is no guarantee that software which is perfectly feasible technically

will actually exist. There are broadly four microcomputer markets: business, science,

education, and personal computing ('home' computing is sometimes distinguished from

'personal' computing). In the U.K., the home computing market is small, because of

the cost of the machines; or at least this was the case until Clive Sinclair introduced

his ZX-80 and -81. On the other hand, this market sector is probably much larger

than appears from the figures, because many machines bought for 'business', for tax

reasons, must effectively be used personally. Estimating the proportion of machines in

serious use is difficult; my own impression is that many microcomputers in 'education'

are very much underutilised, and that a significant proportion of business machines

fall into disuse after a fairly short time. Whether failures are principally a hardware

matter or caused by software remains a further unclear area. However, it is at least

clear that experienced hardware support and after-sales service are likely to be nec-

essary to a successful system.
As regards software, the most widely-used business systems appear to be those

which use data which is not crucial in day-to-day running of a business; mailing lists,

price lists, in-house telephone directories, address book systems, quarterly requests

for fees, illustrate the type of thing. Sales and purchase ledgers, order processing,

and payroll, although potentially almost universal, seem more resistant to micro-comp-

uterisation. From the buyer's viewpoint, systems are very hard to assess, as we shall

see, so caution is understandable. The situation is not particularly easy for the pro-

grammer and/or analyst either; a good system may be expensive to produce, perhaps

prohibitively so, and a user may not appreciate the problems which may occur with

relatively insecure systems. A package may be copied or bootlegged; a client may
request impossible things; a specification may be changed at the last moment. The
sections which follow will, I hope, cast some light on these issues, without necessarily

offering definite solutions.

17.1.2 One-off ('bespoke') systems
"It will be nice to have a machine that does exactly what I want" (Anon)

Most one-off systems rely on previous programming work; in an extreme case, only a

client's name or company need be changed throughout a set of programs. Normally,

standard routines or methods can be used. Consequently, such systems can legitimate-

ly vary enormously in price. Another source of variation is the error-trapping and

validation of the programs. This ought to be tailored to match the level of skill of the

users. If unmotivated staff are going to be expected to key in large amounts of data,

properly validated input, the use of menus, and comprehensive instructions have to be

provided, otherwise there will inevitably be errors. In any case, some form of audit

trail or record on paper must be printed in case of loss of data. If it can be arranged

automatic file backup is desirable, since the users may not understand the importance

of copies of data. Much of this is far less important in the case of programs of the

sort described in the last section, which (for example) scan an address file by name

or occupation, or perform some set inland revenue calculation. Normally, the category

into which a program falls is fairly obvious to a programmer of even moderate exper-

ience: it is usually clear whether or not a proposed system is too large or likely to

Programming the PET/CBM -H7U- Business and education

overstretch the hardware. Sometimes it is impossible to be sure, so a preliminary
trial may be needed. For example, is it possible to write a system which can plan the
routing of film cameras and other news equipment by air to several cities (say, some
capitals in Europe) in an efficient way?

When computerisation is considered, a client may not appreciate the importance
of a clear specification of a system's function; in particular, the fact that although
almost any system can in principle be programmed, a cost-effective approach may
require the drawing of more-or-less artificial boundaries. For example, mailing-lists
have 'dead wood' procedures, which remove names after (perhaps) a certain number
of non-responses, but respondents must be categorised in a common-sense way, en-
suring that Category 'A' are not removed until a larger number of mailings than
Category 'B'. The fineness of the categorisation can be decided on the basis of ex-
perience .

As an illustration of requirements which clients may request of software houses,
let's consider the following typical list (modified from an article by P Crozier in Com-
puter Weekly, Jan. '80): (1) The software should be modifiable by the unskilled lay-
man himself whenever his requirements change; (2) The system should be as foolproof
as possible. For example, it should be impossible for programs to be run in the wrong
order, and there should be no chance of data being lost through lack of backup cop-
ies. (3) The system should be simple to operate. A single rule should control the
operation of the entire system. (4) The system should be a 'fully integrated business
system'. (5) Other applications programs should work with the system, even when
they are written by other organisations or individuals. (6) Reports (i.e. printouts of
significant aspects of the data as it is currently stored) should be obtainable at any
time. (7) Help must be available - 'within one hour's drive' is the criterion suggested.
(8) Take account of ongoing costs, not just purchase price. How realistic is a list of
this sort? In the case of most microcomputers, we can immediately supplement it with
the requirement that a validation program of some sort should be available which can
verify that the stored data has not been corrupted. Hashtotal techniques provide one
method. Without this, a suspicion that the floppy disks may hold 'bad' data may be
always present. The use of passwords to access the system is also sometimes thought
to be desirable. Most of the list's desiderata are difficult to achieve, and are much
more restrictive and stringent than most mainframe systems apply. Let's look at the
eight points in turn:

(1) Software modifications. Programs which are parameterised, or which keep
current parameters on file, are easily modified by users: for example, a set of percent
increases applicable to a number of classes of items can be soft-coded so that the user
has the option of altering them. Similarly, titles, headings, and printed comments in
general may be programmed in a way enabling them to be changed. Apart from these
rather elementary examples, things are less straightforward. Programmers may not
want their programs to be accessible to the users; this depends on the commercial
relationship between the software supplier and user. There is a further problem of
determining responsibility in cases of failure of a modified system.

(2) Foolproofing

.

There is no way to make a system completely foolproof; the
attempt may even be counterproductive, if an elaborate set of checks gives the users
too much confidence in a system's ability to recover from mistakes. The single most
valuable insurance against error is a competent user to whom the backup procedure,
the operating procedures, and the function of individual programs has been explained.

(3) Simplicity. It is a mistake to assume that the shortest commands are the
most efficient, i.e. that the number of keystrokes is inversely related to efficiency.
Single-key triggering of important system functions can be disastrous. This of course
is the reason for queries like 'Are you sure?' in BASIC 4. A uniform set of data-entry
conventions is important in any system. These should incorporate the normal validation
features, but must also make provision for the correction of wrong entries, by (for
example) redisplaying the contents of a record before it is filed, and allowing any of
its fields to be called by number to be corrected. See section 17.1.4 for more on this
subject.

(4) Fully integrated system. The point here - which is probably more relevant
to packages - is that all parts of a system should ideally be developed as the result
of an overall analysis, and not assembled in a piecemeal fashion which may cause un-
expected failures if the subprograms do not fit together correctly. From the point of
view of a buyer, there is no way of knowing whether or not a system is 'integrated'
in this sense, so there seems little point in laying stress on this.

Programming the PET/CBM -475- Business and education

(5) Compatibility with other programs. Every system relies upon its files having

a structure which may well be unique to the program. It is impossible to ensure that

any system will be generally compatible with all other software. To a limited extent,

however, this is possible; a number of packaged software products are able to use

each others' files, notably in word processing packages where the file structure is

often a relatively simple dump of consecutive ASCII strings.

(6) Immediate availability of reports. This of course is correct. Easily available

reports are valuable not only because of their immediate usefulness but also as a

check on the working of a system. However, there may be some problems with reports

in which values are reset. A program to provide end-of-period summaries, which reset

totals to zero in preparation for the next period, cannot be run at any time, so it

may be necessary to separate the reporting part of a program from the resetting part.

(7) Availability of experienced help. In any serious system, this is vital. It is

not very easy to ensure continuity over time. Software people may be reluctant to

provide continual after-sales service, which might be perceived as a drain on the

resources of the company. There is a further problem that a system may change over

a period, so that there may be no software person familiar with some version of a

program, although this is usually a problem only with packages. Moreover, a company

may have so many different systems written that keeping track of them all is very

difficult. In practice, therefore, even 'experienced' help may be less useful than the

owner of a system hopes. Some software houses offer no maintenance whatsoever.

(8) Costs

.

Although it seems obvious that the costs should allow for the poss-

ibility that changes in programs will be wanted, users generally have no way of est-

imating the extent of such enhancements or their costs, which may be large. One way

around this is the fixed-price or 'turnkey' system. See section 17.1.9 for comments

on the advantages and drawbacks of such schemes.

17.1.3 Packages
"Standard software packages are unlikely to be faulty" (Dept. of Industry guide)

"Don't ever buy a system without seeing it demonstrated. The reason?

There's so much under development. The good ones are pleased to

demonstrate it. The others ... well ..." (MH)
From a programming point of view, packaged systems are not very different from one-

off systems. The main differences are (i) the target market must be fairly well under-

stood, and (ii) problems of copying and bootlegging may arise. Section 17.1.10 looks

at this second point. Very often the first is taken care of by one of the partners in

the software-producing venture: accounting, medical, legal, and games packages have

been produced with the co-operation of people with expertise in these fields. The

intention is of course to sell a relatively large number of standardised program pro-

ducts at a price lower than would be possible with a once-only program. All purchas-

ers can be offered similar service terms, and possibly regular updates to their pro-

grams should bugs be found or (for example) government rules changed. This is

however not as easy as it appears at first sight. If all users want a product which

has been thoroughly tested ('received its baptism of fire...') by other users, it is

difficult to see who is to undertake the initial testing. And as a product improves, its

qualitites make it automatically a candidate for copying. Copyproofing is not easy; it

is possible that Commodore may offer help in this, but they may not.

It might appear that purchasers have an easy time, but this is not really the

case. For reasons discussed in 17.1.5, reviews of packages are not likely to be of

much value. Users may be offered old versions of packages, and be completely un-

able to find out how up-to-date is the version being sold them. The exceptions are

widely-sold packages, such as the -Calc range of programs which started with Visi-

Calc (TM), the characteristics of which are well-known. Word-processing packages are

also widely known and understood: Wordpro (TM) and Wordcraft (TM) illustrate the

type of thing obtainable at present. A user should however still test such products,

if he is concerned to actually use them. He may find that the facilities for name and

address insertion in letters are inadequate, or that his printer is not catered for, or

that his operators cannot use it. Also, of course, at any given time there is a 'state

of the art' to which most packages conform and which may not have been pushed to

a high level of development. For example, no word processor packages so far as I am

aware offer proportional spacing, even though modern daisywheel printers are equip-

ped to handle this, on microcomputer systems. Automatic hyphenation, using a library

of prefixes and suffixes to insert breaks in words (sometimes unsuccessfully: pro-mpt)

also seems to be non-existent, although it is technically feasible.

Programming the PET/CBM -476- Business and education

17. 1 .4 Input /Output
"It can take years to key in data..." (MH)

We've seen (Chapter 4) some examples of 'input' statements which use 'GET' to give
full control over a system's input. The object of this is to avoid INPUT, which has
many features making it unsuitable for serious applications, such as rejecting commas,
not distinguishing between shift-space and unshifted space, and allowing unwanted
cursor-control movements to take place. Systems designed for use by typists may
need special validation, for example to ensure that the figure '1' is not entered as
lower-case *L'. The most thorough utility provided by Commodore is the 'Standard
User Data Entry Environment', published as assembler source-code in CPUCN, Vol. 3,
Issue 3, in an article by Paul Higginbottom . BASIC 2 and 4 versions are printed in
the same article. The routine is too long for description here, but basically is stored
in high RAM where it inputs strings into a predimensioned string array. The position
of the fields is not determined by numerical parameters; instead the screen is scanned
for delimiters, which the published version takes to be '<' and '>' to mark the start
and end positions respectively. Since it is scanned from $8000 upwards, the fields are
automatically input in consecutive order. This is the 'Data Entry Editor'; it is only a
part of the 'Environment' which Commodore say in the article that all software must
roughly conform to in order to receive 'Commodore approval'. Readers may therefore
be interested in the following brief summary of the standards:

(1) A title on the top line(s) should describe the current program. The bottom
line should be reserved for error messages or prompts ('Enter YES if data OK'), and
perhaps messages ('Please wait while search continues').

(2) 'C should continue from one screen to the next; shift-return should be the
code to accept an entire screen of information. [I do not personally believe that the
use of shift-return in this manner is sensible, because typists don't usually accept
a distinction between shifted and unshifted carriage return].

(3) [CLR] should return every field to its initial value. [HOME] should move
the cursor to the first field. [UP] and [DOWN] should permit movement between fields.
[INSERT], [DELETE], [LEFT], and [RIGHT] should allow editing of each field. This
condition is likely to prove more difficult to program than any other feature. [RET-
URN] validates its field and moves the cursor to the next field if the field was not
detectably invalid. [STOP] should provide a "help' facility (i.e. a display of instruc-
tions, or - this may be more difficult - a return to the main menu).

A screen can enter 'screen accept/reject mode' when a final [RETURN] or
cursor down leaves the last field of the screen, or when [SHIFT-RETURN] is pressed
at any time. In this mode, cursorup, [HOME] or [CLR] are to act as rejections, and
shift-return as accept. So two consecutive shift-returns at any stage accept data.
[Personally, I prefer a more meaningful 'YES' or 'NO'].

A data entry method which is used on large computers is the keying-in of
identical data by two different punchpersons, each set of data being separately stored
on file, and compared by the computer. Discrepancies can then be corrected. The
idea is that neither person keying in data bothers to correct anything. In the case of
small machines, there may not be storage space to file duplicate data, or time to enter
the data twice, so such methods are probably unsuitable.

While numeric data is standard in format, alphabetic data isn't, and it may be
worthwhile to decide on standards so that reports etc. are uniform in appearance. See
the examples below, one extracted from a list of standards, the other showing a report
incorporating them.

A [Amps]
C [Centigrade] [C apacitance]
Cd [Cadmium]
Hz [Hertz = frequency]
L [Liters]
Ni [Nickel]

NKT-940-090E 1 128 Outer Vessel B SL 2.35 300. 80
NKT-940-110B 4 103 Condenser B SL 2.20 226. 60
NKT-940-130S 2 507 Peg Stopper B SL 0.57 288. 99
NMT-410-B 3 3 N i trometer, Lunge C 38.25 114.75
0VB-201-010P 1 10 Oven.Griffin 200C D Y 73.44 734.40
0VH-700-Q 1 3 Floor Stand, Oven/

1

ncubator B L 31.50 94.50
0VH-720-C 2 14 Floor Stand, Oven/

1

ncubator B 33.00 462.00
OVH-740-L 1 14 Floor Stand, Oven/I ncubator B 34.50 483.00
OVL-240-504G 5 7 Rack B L 9.43 66.01
0VL-240-509T 6 72 Clips B L 3.43 246.96
OVL-350-210Y 1 1 Drying Cabinet, 220-240V ac F P 122.55 122.55
0VL-578-050S 1 17 Thermometer B L 3.53 60.01

Programming the PET/CBM -477- Business and education

Hardcopy of input data may be produced as the data is input, providing a

record of a series of transactions: see the example below, which records two trans-

actions only.

START OF BOOK STOCK IN ENTRY FOR 8/ 5/81

CATbLOCOE XO. BTY.IM UPDATED STOCK FIGURE / HO. TO ISSUE. HAIR OESCRIPTIOI OF ITCH COST PRICE DELt. CROSS-REF LOCH.

CKL-72I-I7IH 15 Hen Stock Level! ilssue! IS, Thermistors 35.26

CKL-72I-13IH 11 Hen Stock Level! ilsswe! 41. Injection Port Seals .60

END OF BOOK STOCK IN ENTRY FOR 8/ 5/81

17. T. 5 Testing systems
"Some of the faults [in packages] were quite incredible" (RW)

The quotation above came from a manager of a microcomputer department of a retail

chain, whose policy was to stock only thoroughly tried and tested products. They

employed external consultants to report on the good and bad points of software pack-

ages. They found plenty of each, but the relevant fact as far as this section is con-

cerned is that the process was expensive, equivalent to about a year's salary per

package. This is the reason for the fact (mentioned before) that reviews of packages,

where they exist, are very likely to be superficial, and are often little more than

quotations from handouts and press-releases on systems. It is also the reason that

many users wait until a solid base of users is established before buying a package.

From the programmer's point of view, bugs are not necessarily undesirable, since a

client's independence is undermined to some extent if errors appear in his system.

Moreover, a perfect program is a program eminently suitable for copying and piracy.

Most mainframe packages are continually modified and upgraded, often with regular

monthly update sheets circulated to registered users, although one hesitates to

describe this as deliberate policy. With the computer industry at its present state of

evolution, it is difficult to be dogmatic in this area.

17.1.6 Users and programmers
"This guy rang and said his computer wasn't working. He'd typed in

'What is my birthday?' and it hadn't told him" (LS)

The following short notes are intended to instruct, and warn, of potential hazards in

the microcomputer arena caused by people rather than machines.

(1) Salesmen. Many microcomputer salesmen don't really know much about their

machines, and perhaps can hardly be expected to. Advice from the technically comp-
etent will often be better.

(2) Typists. A computer like a CBM has a keyboard and is therefore automat-

ically categorised by many office workers as a typist's thing. There are however a

number of differences in style between typing and data input (for example, with

regard to error correction) which may make the stereotype inappropriate. In addition,

don't assume that someone can sit in front of a screen for eight hours a day; this

may be too much. Four may be better.

(3) 'Users'. A 'user' can be defined as someone with immediate responsibility

for a system. It may prove impossible to explain such concepts as disk copying, the

need for tidiness and cleanliness, or the way a system works.

(4) Departments. Inter-departmental rivalries and differences in attitude may
cause problems in any organisations other than the very smallest. Errors or omissions

which are well-known in one department may never be formally mentioned to the

people who are working with the microcomputer.

(5) Computer departments. Big organisations' computer departments may be
actively opposed to microcomputers, partly for the good reason that they may go

wrong. (This is why micros are often described as 'calculator with video display' or

in some such terms when the department's budget requests are submitted). There may

be a fear of 'distributed processing', or the managers may know nothing of micros.

It is also quite common for mainframe people to be unable to appreciate the limitations

of microcomputers, which inevitably lack most big-machine features.

Programming the PET/CBM -478- Business and education

(6) Programmers. Some readers may be interested in the general perception
of programmers and analysts within the computer industry. Computing has evolved
with little in the way of formal training and qualifications, so assessment of would-be
computer personnel is fairly difficult. One hears of people describing themselves as
'very experienced programmer' who turn out to have two weeks' experience on a
machine. The first belief is that analysts are extraverts and programmers introverts.
This is at least a clear-cut theory, something which can hardly be said of the assort-
ment of theories on programmers. I've heard it suggested that programming ability
goes with neatness in form-filling, with the capacity to use jargon, with interest in
chess and /or bridge, and with the desire to feel control over the machine. Disabled
people have been recommended as potential programmers . People who are good at I . Q

.

tests are likely to be a good bet (I imagine), since the pencil-and-paper nature of
the work and its emphasis on formal logic resembles the tests quite closely. Yet anoth-
er belief is that programming skill can be expected to correlate with fluency in
English

.

17.1.7 Documentation
"Make sure you've got paper, paper ail the way" (MH)

There is a British Standard on documentation: BS5515:1978 is the Code of practice
for Documentation of Computer-based systems. This is exhaustive, but too compre-
hensive for microcomputer systems. Instead a small subset taken from the code of
practice will probably serve most purposes, perhaps along these lines:

(1) Operator's Manual. This might include the procedures for switching on and
off, and for handling disks, loading paper, loading programs, and so on. It should
include an explanation of input conventions (e.g. as described in section 17.1.4), and
also of error messages, even if these are supposed to be self-explanatory. If there
are conventions to be followed when inputting data (as in 17.1.4) these should be
listed, and a troubleshooting section of a reasonably elementary kind will help avoid
panics caused by the printer running out of paper and problems of that sort.

(2) User Manual. This is intended to explain the system, without going to the
lengths of including program listings and other technical documents. It could include
an explanation of the file structure, a chart of the processing sequences of the pro-
grams, an explanation of the backup procedures to be adopted and the validation
techniques to check for successful running, and a hardware section listing the
suppliers with details of purchase dates, maintenance contracts, contact names, and
so on.

(3) System manual. This should provide a complete reference to the working
of a system. Typically a specification will be included, and a detailed breakdown of
the file structures used, with field types, field lengths and so on. If the system is

partly in BASIC, listings, subroutine maps by linenumber, variable tables, and
details of wedges and IRQ alterations must be listed. Memory-maps of machine-code
and annotated machine-code listings are needed. Finally, a log of updates and their
(intended) effects should be kept.

17.1.8 Security
Sufficient security can usually be got by simply locking up the machine, perhaps

taking home important disks or keeping them locked in lockable diskette cases. Backup
copies of data should be kept separately, though. Some microcomputers are portable
enough to be carried away; the PET/CBM range are on the heavy side for this. It
is not unknown for chips to be taken out, however. Some users may like to ensure
that no disks are taken into their computer room or taken out. Passwords may be
useful if several groups of users run programs on the same machines, but these are
likely to be vulnerable to competent programmers and are effective only with so-called
'naive users'. Complete duplicate systems are often feasible and may be worthwhile.

17.1.9 Contracts
A software house typically has a contract with its clients along these lines:

For a fixed price, a system specification and programs will be produced in (say)
twelve weeks, 'with no liability for variation'. After the system specification has been
agreed with the client, work goes ahead; the client is expected to supply test data,
and on delivery of the system the results produced by the system using the test data
are supplied tf the client, who is expected to check whether the results accord with
the specificati' . After an interval (perhaps four weeks) the programs are deemed to

accord with tl specification.

Programming the PET/CBM -479- Business and education

There may be penalty clauses if delivery is late; occasionally stories circulate

of freelance programmers sued for malpractice. But generally something like the

scheme above is adopted. It is in fact rather unfair on the purchaser; he may have

to wait much longer than he thought, and be asked to supply test data without any

real appreciation of how to do this - for instance, it may not occur to him to supply

data with deliberate mistakes to check that the system rejects them. Also he may be

asked to approve a specification with only a vague idea of what the resulting system

will appear like in practice. Finally, the lapse of time allowed to detect bugs may be

insufficient, some programs never being run.

1 7. 1 .10 Copying and 'piracy'

WiTcan distinguish copying, where a friend or acquaintance copies a program

for his own use, from 'piracy' or 'bootlegging', in which the copied program is not

only copied but also sold. The cassette games market is said to have been killed by

copying, some companies no longer bothering to sell them because copies quickly cause

a severe drop in sales. Cassettes can of course be copied by audio methods, so that

any software protection is simply bypassed. Disk programs are much more copyproof-

able, but the methods are not widely known. In any case, it may only be a matter of

time before programs to copy 'uncopyable' disks start to appear: this happened m
1981 to Apple, whose disk operating system is in RAM and more accessible than

CBM's to disassembly. There are other, more subtle forms of copying too. I met an

enthusiast at an exhibition who told me that he'd written a trade estimation program,

which had reappeared, in improved form, but using exactly his methodology, as a

commercial system. Beyond remarking on this problem, which is also endemic in the

recorded music field, it is hard to suggest any solutions .* One suggestion is that

users might be willing to pay for a newsletter of updates, or that an elaborate

manual for a system might be easier to spot as a copy than a disk; and that a system

might include spurious routines that perform no useful purpose, but can be looked

for in a suspected pirate copy. But even if a pirate copy is certainly identified, legal

action may hardly be worthwhile.

17.2 Programming in education.

"They work in an orderly way for hours. The attention-getting capacity

[of microcomputers] is remarkable" (DL)

1 7.2.1 Costs
Microcomputer costs have continued to drop; VIC is Commodore's low-price

machine which is intended to compete in the cheap home and education markets. The

apparent costs have dropped more rapidly than actual costs: when allowance is made

for external TVs, cassette recorders, RAM packs (more expensive than RAM chips!),

and other equipment, particularly disks and printers, much of the apparent saving of

'cheap' systems may disappear. In the U.K. it is official policy to support, or at least

lean towards, British products; education authorities for example may fund only RML
hardware and software, and perhaps Acorn machines with BBC BASIC. Something like

this may happen in the U.S.A. if Japanese hardware becomes more popular. Cost is

therefore not the only consideration, especially for schools. It has to be said that

many people in the education sector have an unrealistic attitude to hardware and

software. Letters are printed in the magazines from teachers who want to introduce

computing at a cost of £2 per head. There is a widespread belief that schools spend

vast sums on technical gadgetry: video recorders, televisions, and so on. The fact

seems to be that wages and salaries take the lion's share of the huge sums paid on

education, leaving not much for items like microcomputers. Often, parents (via parent-

teacher associations) or companies which allot part of their budget to charities can be

persuaded to part with money. Sometimes special funds for career training or for

gifted students can be tapped. The technique, so far as I know, is to (a) appoint an

*Hardware solutions are successful with most users, and are likely to remain so unless

imitations become widespread. The 'dongle' is a device fitting one of the ports. In

its simplest form it might fit over the user port (which is more likely to be free

than the IEEE port) and perhaps ground the diagnostic sense pin. This could be checked

by the program in the same way that the reset routine selects between BASIC and the

monitor (or - originally - the diagnostic routine), and, if not grounded, erase the

program. More sophisticate versions might include timers and other circuitry. ROMs,

e.g. in slot 9000-9FFF, can supplement the security of disk systems, and incorporate

an identification number, although EPROM copiers make them less than foolproof.

Programming the PET/CBM -480- Business and education

enthusiast willing to do the work, and (b) encourage this person to approach likely

sources of funds at as high a level as possible, telling them that the aim is to develop

their skills in this field or that.

17.2.2 Programs
"We found most of Blanksoft's programs were execrable" (MB)

Computer Aided Learning ('CAL'), programmed learning, and teaching machines were
first introduced in the sixties, and appear to have been a near-total failure. Present

technology at least offers the hope of greater success, but this cannot be taken for

granted. This section discusses some of the qualities which good educational software

can be expected to possess, and some of its promising applications and topics.

(1) Multiple-choice questions. Because of their ease of marking, tests of this

sort are fairly popular. The principle is simple enough: a question is posed, and a

small number, say four, alternative 'answers' offered. Only one is supposed to be
correct; the others may be deliberately chosen, perhaps empirically, to resemble the

correct answer closely, or to be the correct answer to a slightly different question.

The simplest scoring method is to give 1 mark for a correct solution, and deduct 1/3

of a mark for each incorrect question, where there are four alternative answers. This
is a so-called 'guessing correction'. The rationale is that a respondent who answers
questions at random will on average score 0, because three incorrect answers will just

cancel out a single correct guess. In this way, reckless guessers are not rewarded.
A language like Pilot (see appendices) can be used to generate programs of this sort,

although some versions of Pilot may not enable scores to be kept.

(2) Tests graded by year and subject. A general question-and-answer session,

provided as an off-the-shelf package, may be valuable. There is no need to adhere
to a strict format; there may be calculation questions, vocabulary questions, compre-
hension questions. Ideally, therefore, several different programs on (say) second-year
economics could be available, to be used by a student for self-assessment. Programs
like this are quite difficult to write, and a standardised approach is vital if any sort

of reasonable productivity is wanted.
(3) Packages explaining single concepts. Many scientific, mathematical and

linguistic concepts can be made the subject of programs. Where the screen editing
and graphics capacity is used well, the resulting program may be a valuable supple-
ment to a lesson. Examples include: i_. A program to demonstrate how histograms (bar
charts) vary as the scales on which they are plotted, and the number of bars used,
change, ii. Demonstrations of the relationships between the frequency of a sound and
its pitch, including intervals such as thirds and octaves, iii. Simulations using random
numbers. Any probability distribution can be tried; examples include the normal
distribution, elementary distributions involving coins and dice, biological population
models, and mathematical results derived from physics and chemistry, iv. Graph
plotting: the idea of co-ordinates, the use of rectangular axes, the equations of some
simpler curves. y_. Series summation and the idea of a limit'. Special cases can be
looked at: pi, e, and the golden section, vi. Concepts of calculus: differentiation can
be taught as the calculation of the limiting gradient at a point, and integration as the
addition of lengths, areas, or volumes of arbitrary smallness. vii. Mathematical eco-
nomics. Supply and demand curves and deductions from them, "fixed and variable
costs, average and marginal costs are all readily computerisable as demonstrations.
More complex simulations, such as the 'business cycle', can be illustrated too.
viii. Simple linguistic ideas. Languages generally are too complex for microcomputers
to get much purchase on, but useful programs can be written in restricted areas,
such as vocabulary and translation testing. A successful program to test knowledge
of German numbers (printing the correct German version of a written number, high-
lighting the response where it was incorrect) illustrates on sort of approach.

17.2.3 General attitudes
It is worthwhile to be aware of the two fundamentally different underlying

attitudes possessed by converts to the cause of microcomputers in education. Both
make claims which may be suspected to be excessive. The first group concerns itself
with supplementary training-courses for teachers, with organising pupils so that each
of the older pupils is allotted a certain amount of time per week, and with converting
other teachers. This group is likely to produce popular programs, since the more
subtle pitfalls require a fairly hard-headed approach to detect and avoid. Their
arguments in favour of microcomputers read like this: Microcomputers are unparalleled

Programming the PET/CBM -481- Business and education

at teaching logical thought. They provide great opportunities for students to display

their creativity. Learning about microcomputers may be the most important part of

their schooling ...

The second group has a more romantic approach, and is less concerned with

matters of cost or pupil access, or of trying to assess the benefits of computer

education. One pictures a roomful of 'disadvantaged' children, all concentrating on

their computers, and in fact playing a number game. This group's argument for micro-

computers reads: It is quite remarkable to see them working in an orderly way for

hours. With microcomputers, increased equality of education is possible. Children

who dropped out find their interest reawakened , and their confidence grows . .

.

As far as teachers who are not involved in computer studies are concerned,

microcomputers may be thrust upon them either by way of packages of the sort

previously described, or in an administrative role. Programs to help plan timetables

illustrate this latter category. A few hints show the sort of approach which may need

to be adopted when planning educational software which has to receive these peoples'

approval. In the first place, the cosmetic side of programs needs some attention.

Lively and interesting graphics make a great deal of difference in all subjects, but

perhaps particularly the more concrete subjects like biology and geography. Good

graphics effects unfortunately are not easy to achieve. Another aspect of a program's

appearance is the text: the CBM is fortunate in having lower-case, which is generally

more readable than capitals only. Attention should obviously be given to the wording:

it is not only teachers of English who object to being told 'Please get it rite' or

asked to enter 'Any > A,B,C,D'. Sometimes teachers may be worried about the mach-

ine taking over from them. For example, they may reject a system which gives the

student references on the topic under discussion. They may take the view that such

information ought not to be issued too freely.

A great deal of software has been written, and software directories and indexes

appear from time to time in the computer press. The U.K. reader interested in finding

out more should contact this address:

The Council for Educational Technology
3 Devonshire Street

London
WIN 2BA
(Tel: (0D-636-4186)

Explicitly Commodore-related information can be obtained direct from Commodore

or their dealers. MUSE (Microcomputer Users in Secondary Education) is what it says.

Other interested parties include CAL News, based at Imperial College Computer Centre,

and the Association of London Computer Clubs. I haven't listed addresses for these

organisations, many of which are rather mobile.

Programming the PET/CBM -482- Appendices: the 6502

TABLE OF OPCODES AND THEIR FUNCTIONS, BIT STRUCTURE,

Opcode Description Bit structure

N V

Flags

B D I Z C

ADC Add memory with carry to accumulator OllbbbOl N
AND Logical AND memory with accumulator OOlbbbOl N
ASL Shift memory or accumulator one bit left OOObbblO N
BCC Branch if carry bit clear 10010000

Z C
Z
Z C

BCS Branch if carry bit set
BEQ Branch if zero bit set
BIT AND with A, storing Z and bits 6 and 7
BMI Branch if N (negative) flag set

10110000
11110000
0010b100 M7M6
00110000

BNE Branch if zero bit clear
BPL Branch if N bit is not set
BRK Force break to IRQ
BVC Branch on internal overflow bit clear
BVS Branch on internal overflow bit set 01 1 1 0000
CLC Clear the carry bit 00011000
CLD Clear decimal flag (for hex arithmetic) 11011000
CLI Clear interrupt disable flag 01011000

11010000
00010000
00000000
01010000

CLV Clear internal overflow flag
CMP Compare memory to accumulator
CPX Compare memory to X register
CPY Compare memory to Y register
DEC Decrement memory location
DEX Decrement X register
DEY Decrement Y register
EOR Logical exclusive-OR memory with A
INC Increment memory location
INX Increment X register
INY Increment Y register
JMP Jump to new address
JSR Jump to new address, saving return
LDA Load accumulator from memory
LDX Load X register from memory
LDY Load Y register from memory

10111000
HObbbOl
HlObbOO
HOObbOO

N
N
N

1 lObbllO
11001010
10001000
010bbb01

N
N
N
N

111 bb1 1

11 101000
1 1001000
OlbOllOO

z

z

z

z
"FT

N
N

Z

z

z

00100000
lOlbbbOl
101bbb10
lOlbbbOO

LSR Shift memory or accumulator one bit right 01 Obbbl
NOP No operation 11101010
ORA Logical inclusive-OR memory with A OOObbbOl
PHA Push accumulator onto stack 01001000

Push processor status flags onto stack

N
N
N

PHP
PLA
PLP
ROL
ROR
RTI
RTS
SBC
SEC
SED
SEI
STA
STX
STY
TAX
TAY

Pull stack into accumulator
Pull stack into processor status flags
Rotate memory or A one bit left, inc. C
Rotate memory or A one bit right, inc. C
Return from interrupt
Return from subroutine called by JSR
Subtract memory and C-complement from A
Set the carry bit

Set the decimal flag (for BCD arithmetic)
Set the interrupt disable flag
Store accumulator into memory
Store X into memory
Store Y into memory

00001000
01101000
00101000
OOlbbblO

N
N
N

B D I

011bbb10
01000000
01100000
IllbbbOl

N
N V

N V

B D I

001 11000"
11 111000
01 111000
lOQbbbOl
lOObbllO
lOObblOO
10101010
10101000

N
N

Transfer accumulator to X register
Transfer accumulator to Y register

TSX Transfer stack pointer to X register 1 01 1 1 01 N
TXA Transfer X register to A 10001010 N
TXS Transfer X register to stack pointer 10011010
TYA Transfer Y register to A 10011000 N

Z C
Z C
Z C

Z C

Z C
Z C

z c

Programming the PET /CBM -483- Appendices: the 6502

HEXADECIMAL VALUES, TIMING AND PROCESSOR FLAGS

Ind

(lnd),Y(lnd,X)

AceRel

Immed

Implied

Zer,YZer,X

Zer

Abs,YAbs,X

Abs

6D 4

2D 4

OE 6

7D*4
3D* 4

IE 7

79*4
39*4

65 3

25 3

06 5

75 4

35 4

16 6

69 2

29 2

90 2 2

OA 2

61 6

21 6

71*5
31*5

ADC
AND
ASL
BCC

2C 4 24 3

BO 2 2

F0 2 2

30 2 2

BCS
BEQ
BIT
BMI

00 7

DO 2 2

10 2 2

50 2 2

BNE
BPL
BRK
BVC

18 2

D8 2

58 2

70 2 2 BVS
CLC
CLD
CLI

CD 4

EC 4

CC 4

DD*4 D9*4 C5 3

E4 3

C4 3

D5 4

B8 2

C9 2

E0 2

CO 2

C1 6 D1*5
CLV
CMP
CPX
CPY

CE 6

4D 4

DE 7

5D*4 59*4

C6 5

45 3

D6 6

55 4

CA 2

88 2

49 2 41 6 51 *5

DEC
DEX
DEY
EOR

EE 6

4C 3

FE 7 E6 5 F6 6

E8 2

C8 2

6C 5

1 NC
1 NX
INY
J MP

20 6

AD 4

AE 4

AC 4

BD*4

BC*4

B9*4
BE*4

A5 3

A6 3

A4 3

B5 4

B4 4

B6 4

A9 2

A2 2

A0 2

A1 6 B1*5
JSR
LDA
LDX
LDY

4E 6

0D 4

5E 7

1D*4 1 9*4

46 5

05 3

56 6

1 5 4

EA 2

48 3

09 2

4A 2

01 6 1 1 5

LSR
NOP
ORA
PHA

2E 6 3E 7 26 5 36 6

08 3

68 4

28 4

2A 2

PHP
PLA
PLP
ROL

6E 6

ED 4

7E 7

FD*4 F9*4

66 5

E5 3

76 6

F5 4

40 6

60 6

E9 2

6A 2

El 6 F1*5

ROR
RTI
RTS
SBC

8D 4 9D 5 99 5 85 3 95 4

38 2

F8 2

78 2

81 6 91 6

SEC
SED
SEI
STA

8E 4

8C 4

86 3

84 3 94 4

96 4

AA 2

A8 2

STX
STY
TAX
TAY

*

2

+1 if i

+1 if b

+1 mor
I

ndex <

ranch
e if p
J

:rosses

is tak

age cr

i

5 page
en,
ossed
i i

BA 2

8A 2

9A 2

98 2

TSX
TXA
TXS
TYA

Programming the PET ICBM -484- Appendices: Hex/Decimal

in

LU

>
z
o
u
B£
LU

Low High Low High Low High Low High

Hex Dec Dec. Hex Dec. Dec. Hex Dec. Dec. Hex Dec. Dec.

$00 $40 64 16384 $80 128 32768 $C0 192 49152

$01 1 256 $41 65 16640 $81 129 33024 $C1 193 49408

$02 2 512 $42 66 16896 $82 130 33280 $C2 194 49664

$03 3 768 $43 67 17152 $83 131 33536 $C3 195 49920

$04 4 1024 $44 68 17408 $84 132 33792 $C4 196 50176

$05 5 1280 $45 69 17664 $85 133 34048 $C5 197 50432

$06 6 1536 $46 70 17920 $86 134 34304 $C6 198 50688

$07 7 1792 $47 71 18176 $87 135 34560 $C7 199 50944

$08 8 2048 $48 72 18432 $88 136 34816 $C8 200 51200

$09 9 2304 $49 73 18688 $89 137 35072 $C9 201 51456

$0A 10 2560 $4A 74 18944 $8A 138 35328 $CA 202 51712

$0B 11 2816 $4B 75 19200 $8B 139 35584 $CB 203 51968

$0C 12 3072 $4C 76 19456 $8C 140 35840 $CC 204 52224

$0D 13 3328 $4D 77 19712 $8D 141 36096 $CD 205 52480
$0E 14 3584 $4E 78 19968 $8E 142 36352 $CE 206 52736

$0F 15 3840 $4F 79 20224 $8F 143 36608 $CF 207 52992

$10 16 4096 $50 80 20480 $90 144 36864 $D0 208 53248

$11 17 4352 $51 81 20736 $91 145 37120 $D1 209 53504

$12 18 4608 $52 82 20992 $92 146 37376 $D2 210 53760

$13 19 4864 $53 83 21248 $93 147 37632 $D3 211 54016

$14 20 5120 $54 84 21504 $94 148 37888 $D4 212 54272

$15 21 5376 $55 85 21760 $95 149 38144 $D5 213 54528

$16 22 5632 $56 86 22016 $96 150 38400 $D6 214 54784

$17 23 5888 $57 87 22272 $97 151 38656 $D7 215 55040

$18 24 6144 $58 88 22528 $98 152 38912 $D8 216 55296

$19 25 6400 $59 89 22784 $99 153 39168 $D9 217 55552

$1A 26 6656 $5A 90 23040 $9A 154 39424 $DA 218 55808

$1B 27 6912 $5B 91 23296 $9B 155 39680 $DB 219 56064

$1C 28 7168 $5C 92 23552 $9C 156 39936 $DC 220 56320

$1D 29 7424 $5D 93 23808 $9D 157 40192 $DD 221 56576

$1E 30 7680 $5E 94 24064 $9E 158 40448 $DE 222 56832

$1F 31 7936 $5F 95 24320 $9F 159 40704 $DF 223 57088

$20 32 8192 $60 96 24576 $A0 160 40960 $E0 224 57344

$21 33 8448 $61 97 24832 $A1 161 41216 $E1 225 57600

$22 34 8704 $62 98 25088 $A2 162 41472 $E2 226 57856

$23 35 8960 $63 99 25344 $A3 163 41728 $E3 227 58112

$24 36 9216 $64 100 25600 $A4 164 41984 $E4 228 58368

$25 37 9472 $65 101 25856 $A5 165 42240 $E5 229 58624

$26 38 9728 $66 102 26112 $A6 166 42496 $E6 230 58880

$27 39 9984 $67 103 26368 $A7 167 42752 $E7 231 59136

$28 40 10240 $68 104 26624 $A8 168 43008 $E8 232 59392

$29 41 10496 $69 105 26880 $A9 169 43264 $E9 233 59648

$2A 42 10752 $6A 106 27136 $AA 170 43520 $EA 234 59904

$2B 43 11008 $6B 107 27392 $AB 171 43776 $EB 235 60160

$2C 44 11264 $6C 108 27648 $AC 172 44032 $EC 236 60416

$2D 45 11520 $6D 109 27904 $AD 173 44288 $ED 237 60672

$2E 46 11776 $6E 110 28160 $AE 174 44544 $EE 238 60928

$2F 47 12032 $6F 111 28416 $AF 175 44800 $EF 239 61184

$30 48 12288 $70 112 28672 $B0 176 45056 $F0 240 61440

$31 49 12544 $71 113 28928 $B1 177 45312 $F1 241 61696

$32 50 12800 $72 114 29184 $B2 178 45568 $F2 242 61952

$33 51 13056 $73 115 29440 $B3 179 45824 $F3 243 62208

$34 52 13312 $74 116 29696 $B4 180 46080 $F4 244 62464

$35 53 13568 $75 117 29952 $B5 181 46336 $F5 245 62720

$36 54 13824 $76 118 30208 $B6 182 46592 $F6 246 62976

$37 55 14080 $77 119 30464 $B7 183 46848 $F7 247 63232

$38 56 14336 $78 120 30720 $B8 184 47104 $F8 248 63488

$39 57 14592 $79 121 30976 $B9 185 47360 $F9 249 63744

$3A 58 14848 $7A 122 31232 $BA 186 47616 $FA 250 64000

$3B 59 15104 $7B 123 31488 $BB 187 47872 $FB 251 64256

$3C 60 15360 $7C 124 31744 $BC 188 48128 $FC 252 64512

$3D 61 15616 $7D 125 32000 $BD 189 48384 $FD 253 €4768

$3E 62 15872 $7E 126 32256 $BE 190 48640 $FE 254 65024

$3F 63 16128 $7F 127 32512 $BF 191 48896 $FF 255 65280

Programming the PET/CBM -455-

OPCODE HIGH NYBBLE

Appendices: the 6502

O
Tl

O
mo

O
v
n
o
o
m
in

n m D n ID > to 00 -j en in 4= CO NJ - o

03 o ts o
•d

CO
O

f
a

ts
o

ts
< 3

SO §
C-l

co
ts
•d

ts
so

JO X
HH

m
hH
5
B

CO k!

hH

o CO co ft t~t HH so tr
1 w

o

CO

O
co
tso

o o
id

f
13
>

s>
co

>
CO

>
oo

>
o

wo
so

H
O
SO

O
SO
>

o
so
>

B B s B B B B B B B 3 B B B B B
ft ft a ft 0. ft ft ft ft ft ft ft ft ft ft ft

^^ ^ s^ ^
„ X „ X v X « X >. X - X •• X • X
«; «^> «: «! «l ^ •< s^ «! •^ k! ^^ >< s^

tr1

O
X

KJ

M

o o tr
1 f CO CO ts

IS •0 a O H «-3 i~i

X X k! K! «! k! h3

N ISI N N N ISI ISI .Cr

cd a> cd a <D (B CD

4 4

X
4 4

X
4 Hi

CO co o o r f CO CO > > W m § > o o
to ts s s o ts H H O o g o a so so

o ft •0 V > > > > o o SO so O o > >
N CO N N N tsi ISI N IS tsi N tsi tsi tsi ISI tsi en

(D CD a (I CD <D cd <D (t <t a a (D CD CD CD

4 4 4 1 1 4 4 *t Hi i

.

H 4 4 4 4 4

X X X X X X X X

hH M o D f f CO co sa SB f f SO SO > >
as S m eg o O H H o o co co g o CO co

o ft n o X X X X w w so so c-" F F tr
1

N N N ISI tSJ ISI [SI tsi ISI ISI ISI tsi ISI N N tsi en

CD 9 cd CD cd (D CD a (t> (I a a CD CD CD CD

4 4 i 4 4 4 4 j 4 4 i 4 4 4 4 4

~X X "kS "k! X X X X

CO HH o hH o H H O CO •0 o 2 CO >d O 3M
g 5 3

r > k! M w r tr1 X m tr
1 tr

1 a CO

O < «! > «! HH > hH > n •0 O t)

CO
(0

CO
ts

o ft
s s

t-1

a
CO > 5

M
O

m
o |

> O
SO

o
so

o o 13 >d > > > o O SO so o o > >
> hH > hH > hH > > hH > l-i > HH > HH to
cr
CO

s
B

cr
to

tr
to 1

tr
to

cr
to 1

cr
to i

cr
to I

cr
to 1

K! "«! "< K Hj «! "<
~«s

as u h3 h3 h3 H to r SO >
O w co > X X o co o CO

>•d X X X co > St) so f F
> > > >

o o f r co
£

Ch to

•d >d o o a
s HH

X k! •Hj «s •d 15 H
> > > > > HH > > n
cr cr cr cr cr B cr tr
to to to

X
to m a to to

co
COO

co
CO
o

g
•0

o s> o>
in CO

>
M
O
SO

mo
so 1

o
5

O
5

> > > > > > > > > > > > > > > > D
cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr

to to to <o to u to to to to m to to to to to

X X *x X X X X X

hH hH e o t-1

s
CO » SB f c- 5 so > >

5S as M H o X
o o co CO g o co co

O o O o X X SB SB sa so f c-
1

tr" C m
> > > > > > > > > > > > > > >
cr cr & cr cr cr tr tr cr cr cr cr cr tr cr

to 0) IB a 01 to to to ID IB to to to to to

"" X «i *x X *x X

o
o
n
o
o
m

z
-<

CD
CD

Programming the PET ICBM -486- Appendices: the 6502

EXAMPLES OF ADDRESSING MODES WITH THE 6502

Absolute i. CPX $12CF Compares the contents of the X-register with that of
location $12CF. Both X and $12CF are unchanged, and the N,Z,and
C flags are reset. The point is that the 'absolute address' is used.

ii. STA $8000 Stores the accumulator in location $8000.
iii.JSR WAIT Assembler notation for a subroutine call to 'WAIT',

which the assembler identifies as a 2-byte address.
Absolute, X i. LDA $FF00,X The X register is treated as an offset; its value

(0-255) is added to $FF00, and the accumulator loaded with the byte
found at this new address. Thus, if X holds #$F5, in the example
the accumulator will be loaded with the contents of $FFF5.

ii. ADC $7100,X Adds the contents of $7100, offset by X, plus the
carry bit, to A. The result remains in A. This indexed instruction
(like all such instructions) provides easy access to a range of
addresses, in association with DEX. INX. and related commands.

Absolute, Y i. LDX TABLE,Y Absolute addressing indexed by Y is exactly analog-
ous to X indexing, although fewer opcodes have this facility. In
the example, X is loaded with the byte at TABLE+Y.

ii. STA $8000, Y Stores the accumulator into a location between $8000
and $80FF, depending on the current value held in Y.

Zero page i. LDA $70 Loads A with the contents of location $70~

ii. SBC $43 Subtracts the contents of $43 from A.
iii.ROL ZPC 128 Unusual assembler version of what normally appears

as ROL $80, which rotates the contents of $80, and C, to the left.

Zero page,X i. INC $15, X Analogous to absolute addressing indexed by X,
except for the use of the single-byte address to which the offset X
is added. BUT only zero page addresses are generated: if X holds
#$0A, then $15,X refers to location $1F. However, if X holds #$F0
then $15,X is address $05, not $0105.

Zero page,Y i. LDX $AB,Y Only two instructions can use this mode. Both involve
ii. STX $10,Y the X register. The operation of register Y on the

zero page address is exactly similar to the previous example.
i. BRK A large number of instructions do not operate on external
ii. CLC RAM or ROM, but on flags, registers, and the stack, which
iii.PHA are internal to the chip. Other examples: TXS, SEI, CLD.INY.

Implied

Immediate X LDA '$ Assembler form of instruction to load A with ASCII $.

ii. LDA #$30 Loads A with hex 30. The third example is from a
iii.LDY IMM 48 decimal assembler which quotes the mode, rather than

let it be deduced by the form of the instruction. Note that immediate
mode is the only mode handling direct data values

Relative

ii.

iii

Accumulator

BEQ $0294 Branches to $0294 if the zero flag is set; the next
BCS LI example is an assembler version, branching to a label.
BVC +117 This last example shows a different convention, which
corresponds to the way the opcode is stored. Here, there's an offset
of 117 bytes forward from the next instruction.
LSR A A few commands act on the contents of A, either rotating it

ROL or shifting it. It can be considered an implied mode.
Indexed i. ORA ($00,X) Displacement X is added to the zero page address, to

indirect give a new address in the zero page. This address, and its sub-
sequent byte, together point to an absolute address which (in the
example) is ORed with A. If there is a collection of pointers in the
zero page, this is useful. When X holds zero, the mode becomes in
effect straightforward indirect addressing. Example: X holds #5,
location 5 holds #1, location 6 holds 128. LDA ($00,X) loads the
accumulator from $8001.

Indirect i. LDA ($12),Y The address in ($12), that is, having $13's contents
indexed as its high and $12's as its low byte, plus the offset within Y, is

accessed and loaded into A . This is useful when dealing with RAM
data arranged consecutively, e.g. messages and tables.

Absolute i. JMP ($0090) Only JMP=6C hex uses this mode. In the example, if

indirect $90 holds #$2E and $91 holds #$E6, JMP($0090) jumps to $E62E.

Programming the PET/CBM -487- Appendices: the 6502

6502 TIMING: QUICK REFERENCE CHART

All figures are clock cycles (one millionth of a second for CBM computers)

PROCESSOR STATUS REGISTER

Example: A processor status register (SR with CBM's monitor) of 32 hexadecimal

means that the Break flag (B) and the zero flag (Z) were set on entering the

monitor. Some of the combinations may at first sight appear impossible; how
can the negative bit (N) and the zero bit (Z) be simultaneously on? But the

BIT opcode can accomplish this; and generally PHP can be used to set flags.

7 6 5 4 3 2 1

N V 1 B D 1 Z C

High nybble

2

3 B
6 V
7 V B
A N
B N B
E NV
F NVB

Low nybble

1

2

3

4

5

6

7

C
z

ZC
1

I c
1 z
1 ZC

8

9

A
B
C
D
E
F

D
D C
D Z

D ZC
Dl
Dl C
DIZ
DIZC

Programming the PET ICBM -488- Appendices: the 6502

FURTHER ASPECTS OF THE 6502

[1] ROR. 6502s made before 1977 may not possess this command. Machine-code is
therefore sometimes written without it if there are old 6502s in the field. 'Byte' of
June '81 has an article on an Atari BASIC with ROR replaced by equivalent code.
[2] JMP. There is a bug in the 6502's processing of the indirect jump ($6C)
instruction. When the indirect address straddles a page boundary, the high byte
is taken from the address in its own page. Thus, JMP ($03FF) jumps to the new
address whose low byte is in $03FF, as it should be, but whose high byte comes
from $0300, not the correct $0400. No CBM code contains a jump of this sort.*

[3] Addressing modes. Examination of tables of opcodes shows that there are many
periodic patterns in the distribution of the codes. Given the way logic circuits work,
this is not surprising. All those opcodes which have more than one addressing mode
are dependent on bits 2,3, and 4 to determine the mode; the table following shows
the relationships. If the addressing mode doesn't exist for an opcode, then that
part of the table does not of course apply:

Opcode = xxxbbbxx Values of bbb represent:

b bb
Not post-indexed 00 (Indirect, X)

01 Zero Page
10 Immediate/ Accumulator

1 Post-indexed 00 (Indirect), Y or when followed by 00, Relative
01 Zero Page.X
10 Absolute, Y or when followed by 00, Implied
11 Absolute, X

[4] Pseudo-Opcodes. The sequential tables of opcodes and addressing modes omitted
columns corresponding to -3, -7, -B, and -F. This is for the good reason that the
manufacturers do not specify any function of the chip corresponding to these values.
There are other gaps in the table: in fact, only 151 opcodes are implemented of the
possible 256 (or more) maximum. Nevertheless, many pseudo-opcodes (for want of a
better term)appear to exist, though the makers don't encourage correspondence on
this point. IPUG (Jan '81) published an article by B Grainger on empirical work done
on the 6502, in which descriptions accompanied by 3 letter 'opcodes' account for 93
of the 105 mystery values - if they are correct. For those who are interested in
arcana of this sort, I present later the substance of his article with notes on timing
and testing pseudo-opcodes and possible applications. In the absence of theoretical
underpinning it is hard to know where to start on such an investigation; for one
thing there is no guarantee that a non-standard code will not behave in entirely
unexpected ways, corrupting registers perhaps, or executing repetitive, meaning-
less loops, like 'Halt and catch fire' on the Z80.

Jim Butterfield has pointed out that codes ending in bits -11 simultaneously execute
two commands, those ending in -01 and in -10. (Except that the timing may fail in
some circumstances, transferring only 6 bits). All codes ending -3,-7, -B, and -F
are of this type. This means that that a pseudo-opcode ending in -A, say, may
combine the functions of the two codes ending -8 and -9 next to it. Something
similar seems to happen in other cases not of this type. The X2 crash, for
instance, in which an opcode ending -2 causes the chip to loop indefinitely until
interrupted, appears to operate by virtue of the fact that all the branch commands
end with -0, and are near neighbours. And the 'SKW or skip word pseudo-opcode
which skips over the next two bytes and 'SKB' which skips one byte are each
found, respectively, in the absolute and zero page area of the opcode table,
suggesting that some of these pseudo-codes may corrupt one or two memory
locations

.

*I have heard that there is~ a bug related to one of the registers, but know
nothing else about this alleged malfunction.

Programming the PET/CBM -489- Appendices: the 6502

6502 PSEUDO-OPCODES*

Instruction^ Abs Abs,X Abs,Y Zer Zer,X Zer,Y (lnd,X) (lnd),Y Imm

ASO (ASL,ORA)^
RLA (ROL,ANDJ 11

IF IB 07 17

3F 3B 27 37
03
23

13
33

OB
2B

LSE (LSR,EOR) 4F 5F 5B 47 57 43 53 4B

RRA (ROR,ADC) 6F 7F 7B 67 77 63 73 6B

AXS (STX,STA) 8F 87 97 83

LAX (LDX,LDA) AF BF A7 B7 A3 B3

DCM (DEC, CMP) CF DF DB C7 D7 C3 D3

INS (INC, SBC) EF FF FB E7 F7 E3 F3

ALR (LSR,EOR) 4B

ARR (ROR,ADC) 6B

XAA (TXA,)
8B

OAL (TAX,LDA) AB

SAX (DEX,CMP) CB

NOP 1A, 3A, 5A, 7A, DA, FA
SKB 80, 82,C2,E2,04,14,34,44,54,64 74, D4, F4

SKW OC, 1C, 3C, 5C, 7C, DC, FC

The table shows some pseudo-opcodes. Those in bold type are more credible than

those which are not. Probably, most anomalies will occur when addressing modes

of neighbouring opcodes, or their timings, don't match. For instance, the code

BF, combining LDX Abs.Y with LDA Abs,X might be expected to give an odd

resulting addressing mode, particularly if one or both instructions crosses a page

and so takes another clock cycle to execute. The 'mnemonics' given in the table

have the following significance:

ASL then ORA the result with the accumulator

ROL then AND the result with the accumulator

LSR then EOR the result with the accumulator

ROR then ADC the result to the accumulator

Store the result of A AND X
LDA and LDX with the same data

DEC memory and CMP the result with the accumulator

INC memory then SBC the result from the accumulator

AND the accumulator with data and LSR the result

AND the accumulator with data and ROR the result

Store X AND data in the accumulator
ORA the accumulator with #$EE, AND the result with data, then TAX
SBC data from A AND X and store result in X
No operation
Skip byte (ie branch of +1)

Skip word of 2 bytes (ie branch of +2)

Many of the codes show repetitiveness, derived from regularities in the 6502, but

there are many one off possibilities too: 9B combines TXS and STA Abs.Y will the

net effect of storing 'A AND X in the stack pointer and bit of A AND X in

memory'.

Applications. These commands are not part of the chip's specification, so they

should best be avoided in machine-code routines for sale or general use. Sometimes

they are helpful in debugging machine-code, when a jump or branch has been taken

to a wrong address. Mainly, though, the potential application lies in the fact that

hidden routines - to print out identification messages, or save a program using a

special technique, for example - for the programmer's use only can be written in a

way which disassemblers will be unable to decipher easily.

ASO
RLA
LSE
RRA
AXS
LAX
DCM
INS
ALR
ARR
XAA
OAL
SAX
NOP
SKB
SKW

Most of the mnemonics and descriptions are from B Grainger's Jan.

article.

•81 IPUG

Programming the PET/CBM -490- Appendices: Supermon

SUPERMON LISTINGS

SUPERMON 1.

A version of Supermon for BASIC 1, by D A Hills, was published in CPUCN 2, #7. It

is written for the 8K version only, and is not in relocatable form.

SUPERMON 2.

For the sake of variety I have written this monitor in the form of two BASIC programs
on the theory that some people prefer BASIC to the machine-language monitor in the
CBM. The long program, run first, puts machine-code into position for relocation by
the following relocating loader:

155 POKE42,182:P0KE43,6:CLR
160 L=PEEK(52)+PEEK<53)*256
170 N=L-1466:P=3391 :F0RJ=L-1T0NSTEP-1
180 X=PEEK(P):IFX>OGOT0190
185 P=P-2:X=PEEK(P+1)+PEEK(P)*256:IFX=0GOTO190
1 86 X=X+L-65536 : X*=X/256: X=X-X?*256 : POKE J , X.% : J=J-

1

190 P0KEJ,X:P=P-1 :PRI NT'UHOME !";X;"[LEFT1 ":NEXTJ
200 X?=N/256:Y=N-X£*256:P0KE52,Y:P0KE53,X|:P0KE48,Y:POKE49,X$
210 PR I NT" [CLEAR] [DOWN] LINK TO MONITOR ~ SYS";N
220 PRINT:PRINT"SAVE WITH MLM:"
230 PR I NT". S ";CHR$(34);»SUPERMON";CHR$(34);",01";:X=N/4096:GOSUB250
240 X=L/4096:G0SUB250:END
250 PRINT",";:F0RJ=1TO4:X*=X:X=(X-X$)*16:IFX$>9THENX?=X$+7
260 PRINTCHR$(X#+48);:NEXTJ:RETURN

SUPERMON 4.

This monitor for BASIC 4 consists of a BASIC title program which also calls a machine-
code routine to relocate SUPERMON to the current top-of-memory . SUPERMON is long,
so the keying-in process is recommended only for those users who do not have access
to this public-domain program. Type the BASIC program in the usual way (note that
the spacing of the commands is not critical. Lines 170-220 do the work). Then enter
the monitor (e.g. with SYS 4) and enter the machine-code. SAVE the code before you
try it out - a single mistake may cause the program to hang up. In order to save the
machine-code with BASIC, change the end-of-program pointers to include the entire
machine-code program, with .M 002A 002A

. : 002A FO OC xx xx xx xx xx xx
Where the xx's are unchanged.

100 PRINT" SUPERM0N4!"
110 PRINT" DISSASSEMBLER D BY WOZNIAK/BAUM
120 PRINT" SINGLE STEP I BY JIM RUSSO
130 PR I NT "MOST OTHER STUFF , HAFT BY BILL SEILER
150 PRINT "TIDIED k WRAPPED BY JIM BUTTERFIELD"
1/0 L=PEEK(52)+PEEK(53)*256:SYS1536:M=PEEK(33)sN=PEEK(34)
180 P0KE52,M:F0KE53,N5P0KE48,M:P0KE49,N:N=M+N*256
210 PRINT"LINK TO MONITOR -- SYS";N
220 SYS N

0680 AD FE FF 00 85 34 AD FF
Start of SupermoM 4 0688 FF 00 85 35 AD FC FF 00

hA^ade. loa<k<-. Data LcoiXA.. owUarf] 0690 8D FA 03 AD FD FF 00 8D
I

~~ * 0698 FB 03 00 00 A2 08 DD DE
* 06A0 FF 00 DO 0E 86 B4 8A 0A

0600 A9 CB 85 IF A9 0C 85 20 06A8 AA BD E9 FF 00 48 BD E8
0608 A5 34 85 21 A5 35 85 22 06B0 FF 00 48 60 CA 10 EA 4C
0610 A0 00 20 38 06 DO 16 20 06B8 9A FA 00 A2 02 2C A2 00
0618 38 06 F0 11 85 23 20 38 06C0 00 B4 FB DO 08 B4 FC DO
0620 06 18 65 34 AA A5 23 65 06C8 02 E6 DE D6 FC D6 FB 60
0628 35 20 43 06 8A 20 43 06 06D0 20 98 D7 C9 20 F0 F9 60
0630 20 50 06 90 DB 60 EA EA 06D8 A9 00 00 3D 00 00 01 20
0638 A5 IF DO 02 C6 20 C6 IF 06E0 79 FA 00 20 6B D7 20 57
0640 Bl IF 60 48 A5 21 DO 02 06E8 D7 90 09 60 20 98 D7 20
0648 C6 22 C6 21 68 91 21 60 06F0 54 D7 B0 DE AE 06 02 9A
0650 A9 80 C5 IF A9 06 E5 20 06F8 4C A4 D7 20 31 D5 CA DO
0658 60 AA AA AA AA AA AA AA 0700 FA 60 E6 FD DO 02 E6 FE

Proqramming the PET/CBM -491- Appendices: Supermon

a8S5a5SSS^S§Sg5§S§S^S^gSS8^SSS3gSSS83S§§338#!2aR
ftS5552§ft§882S8S8S3SS8S2§8SS32S§8S5S5§58g§gSSS38
g§388JS8g8SS3SS§8§KS^^Sga5g8§33g28323g55?;g833S83
23885852SS2g583S888g332S3::SSgg235S3ggS33i5Sg8g3
g5888g38Sgg5gg8S2ggIg§3$28gt8?!8233§g5g§i^85585fi
8i23888823838§R888g?Sg8§332X^t583§8583a888gS3S8S
S8235SS3gS8g58S852aS8t8gS3SS^33 SS55528tSS8S?8Sg
u)'u>u)U>»i)u»vDU>«J«>«u)U)u>u)U(U)uBUJu)u>u)u>u)iau)uu>aj^wwrofflw»gw'o»»»w 8 888SSSMMnowMi>i5ifiinram\siiiimui(lti(J(JMH ,* k*OOi11MWuDnnfflll)PP |Jjujguj
SSogoSSroorooSSSoroSSSroorooSofflSroocooDoocooroooooCDoooocoocoo

a§SS5SSSowwwN*nioMMWooo.-(»W"n'Tio3>oa)ooiMoa>oouiorTinu)uuoMU>

ONli)lj!5aoO>tnriU)N«'flmii)NOO>-II)OJ>IilDOIl) ,i|U)MII)(ltlMor)OODOBnniJJogi

S8Moo§823n§§SoSowoSSMi>o3>oooa)3>T,oNJ>o*NoooN-co-rioooo
g2^S^8^3§888^f58SS§8SSSSS§gSS§gS§23S35Saa§38^SSN
§88851888882 8 832 3553 88838*85*228585288888 383 8333
•riNoD ,

ii
,nop|i!'ii ,iiti)oo'iini»oo ,no»oo*no ,ii**tf)in>'iiijB83Moj;oi|ioMN

3ro8NWW§iS!Swoli!oo3>3>Sciio'Tiu>r»oo3>oM-Tio3>j>iooooj>o*.oo<nomoooo

?§M-no§S8noo8SoooonaoHMNNUip(iiooj)>NB'-t)(riHO(i)U'i|o«w(B*>-

83mo5moSS5(JoSto3>tnnnaooo-ooomunfli>oo3>con .bODooooo-noonm

roorooSoSooooiiiooooaioooooooooocoooooooooooooooooCDODooiiioooooooooooo

oopc)ioiiooiiia)>- ,Timoai(i)omoooiiiM4ko|iiMOTipH-iuiotiiiooopBt)dpo())ui
o^o>o>Mi>oo^u)om^t>^^>rooom^wooo>o>^^^WN03Ngooo*ornu>83oin»oo*opiioo!n^om^Ji(ii*»(»nou)MMooH]>o(i)t«oMin(iiii|>-(i)U|ooiD>-
ll(nni-lO**OdOOB1|ftHOO ,1Wnoi«DONI0OO ,i|OO ,IIBTt|'BBgoOOOUBJi>
Sj>»wi>o*SoooMoiT|ui*oo'nciionNOunooB«ioii)o*o())Na*«(nNN(otJioiDm
T1OBOOOBO>BMMnofflPOMIBPBpHlMinB*PMM*onB2M0O0|0i5iB*M>
OllOll^UinpOHinUllBdP^mUlOOlOOpN^^^OlON^U^^NJWMUgggMniOBo>3>oou30woooNOoouDONjmomooMU)oociiTHTima)ii>*-woNoa^oiajooooootJa
o>3>oou>>-nao^^ancoo>^oMNomuowonH-CTi^a2W^ooojMooonjb

;

b
;;^onmwwonui-n3>m"no>owM"nMowooooNou)j>^oo3>Na3>om'-uioooM*.omtDm

iB-i-^udoaiNooiiiMtti'noopNpiBOiflpiiodououiod'ijojouooo -no m m
HnBnBoNaimoooBooooiop*NiiiodtNdoNoioiiio*iinNBo*oMMO(]itD(iii
Tioo^BM^doBdWoiiiH^mMWiodd"i^^noiM*»NnMoffloodo(iijia|ojn
nonoonnnnononnoononoonoonononwwwwwwwwwwwwwtdwwww
tnoonnwwppiiiu)0)0)NNtiioitJiui**u(i)MM>->'Oo ,i'tiPinidoonwB)ppiiiiiigo)NN
OCDOCDOOOOEOOOOOtDOOOOOOOOOOOOOCDOOOOCOOCDOOOOCDODOopBoaiOCOOCDOCOoroo
pOOCil«'nOB**MONpMlDOpOIOp-«>-MMOIM*N***00*t(i)*a)!3ro]1(l)*IJiD
5oouu)aouj.bBi(Jio**iBjiiBo(i)OPiptidui(i!(i)Biii>0'-oo*ooooooo(Bai(ji>-M.^0)
p*O^OOdlU*NONBOlOUIdK"paiMplD(JMMUlBOO|BOOOpMOi;BM3ldMTia

*O*ONd''IOM*NMNONOJi(n»*U)p0!N(II(10lI)MMUIllBi>*>'fM*t**OW>O*NO'r|5odO1t*BOO*NNMOtO*M())OdW*U)BB*(i)NNNOOMNUI0IUIUIt0UllJlOOIIIOIB
plBO4k ,fl'noti).fcpBIO4iOtlBO«(i)mMpUIP'*>*OMniO«NMN.fcMt0())on5WdOdB>5^oooooo*MrooSo*Stjo>!£aujcBa)Ooaedoa)moa)wwN^a)uw(dii><nuioa>cfltfloi
pUD>ooo^Ta*ooompnoui*i-«)oin>->'ppoNtoN***.mdddgtBd^2M2dpO00OOOUlWU)l»lpO(BpniJ)t(DwnoU)U)Uli-»'O*JOBI**t(l)OOOONtd»*OOW|Tl
>u-a>^*^o^uo-wi>*0)mMi>>oMi>Mo£-tflroo>uwwaoooomM^jDo^(BvD

>ooospooii!ooippMMM**Miriiiin»otoppodooooonooooiiioh)o«iNnB
l>oonoOMT|OtMMBN ,'IBI'HDMNOpO(JIN>***ONUIOOO0l*OOOomnOOMM>M^o8ooorowowaimN*M2S*wSomowSor)oou)o(»OBO*.u)U)«ou)o«)OBmoooo

Programming the PET/CBM -H92- Appendices: Supermon

BASIC 2 SUPERMON DATA LOADER.

Note: M 0028 0028 may give something like: 26 7A 03 04 03 04 03 04, where the start
address is inconsistent. For compatibility with BASIC change 26 7A to 01 04.

100 PRINT "IREVS1 SETTING UP DATA FOR SUPERMON. .
."

110 FOR J = 1767 TO 3391: READ X: POKE J+5500.X: NEXT
120 FOR J = 1767 TO 3391: POKE J, PEEK (J+5500): NEXT
130 PRINT" [DOWN) [REVS] NOW RUN SUPERMON BASIC LOADER": END
500 DATA 173,255,254,0,133,52,173,255,255,0,133,53,173,255,252,0,141,250,3,173,255
501 DATA 253,0,141,251,3,0,0,0,162,8,221,255,222,0,208,14,134,180,138,10,170,189
502 DATA 255,233,0,72,189,255,232,0,72,96,202,16,234,76,247,231,162,2,44,162,0,0
503 DATA 0,180,251,208,8,180,252,208,2,230,222,214,252,214,251,96,32,235,231,201
504 DATA 32,240,249,96,169,0,0,0,141,0,0,0,1,32,250,140,0,32,190,231,32,170,231,144
505 DATA 9,96,32,235,231,32,167,231,176,222,76,247,231,32,205,253,202,208,250,96
506 DATA 230,253,208,2,230,254,96, 162,2, 181 ,250,72, 189, 10,2, 149,250, 104, 157, 10,2
507 DATA 202,208,241,96,173,11,2,172,12,2,76,250,221,0,165,253,164,254,56,229,251
508 DATA 133,207,152,229,252,168,5,207,96,32,250,148,0,32,151,231,32,250,165,0,32
509 DATA 250, 190,0,32,250, 165,0,32,250,217, 0,32, 151, 231, 144,21, 166,222,208, 160)32
510 DATA 250,208,0,144,95,161,251,129,253,32,250,183,0,32,213,253,208,235,32,250
51

1

DATA 208,0,24, 165,207, 101 ,253, 133,253, 152, 101 ,254, 133,254,32,250, 190,0, 166,222
512 DATA 208,61,161,251,129,253,32,250,208,0,176,52,32,250,120,0,32,250,123,0,76
513 DATA 251,39,0,32,250,148,0,32,151,231,32,250,165,0,32,151,231,32,235,231,32,182
514 DATA 231 , 144,20, 133, 181 , 166,222,208, 17,32,250,217,0, 144, 12, 165, 181 , 129,251 ,32
515 DATA 213,253,208,238,76,247,231,76,86,253,32,250,148,0,32,151,231,32,250,165
516 DATA 0,32,151,231,32,235,231,162,0,0,0,32,235,231,201,39,208,20,32,235,231,157
517 DATA 16,2,232,32,207,255,201,13,240,34,224,32,208,241,240,28,142,0,0,0,1,32,190
518 DATA 231,144,198,157,16,2,232,32,207,255,201,13,240,9,32,182,231,144,182,224
519 DATA 32,208,236,134,180,32,208,253,162,0,0,0,160,0,0,0,177,251,221,16,2,208,12
520 DATA 200,232,228,180,208,243,32,106,231,32,205,253,32,213,253,166,222,208,146
521 DATA 32,250,217,0,176,221,76,86,253,32,250,148,0,141,13,2,165,252,141,14,2,169
522 DATA 4,162,0,0,0,133,184,134,185,169,147,32,210,255,169,22,133,181,32,252,16
523 DATA 0,32,252,109,0,133,251,132,252,198,181,208,242,169,145,32,210,255,76,86
524 DATA 253,160,44,32,21,254,32,106,231,32,205,253,162,0,0,0,161,251,32,252,124
525 DATA 0,72,32,252,194,0,104,32,252,216,0,162,6,224,3,208,18,164,182,240,14,165
526 DATA 255,201,232, 177,251 ,176,28,32,252, 101,0, 136,208,242,6,255, 144, 14, 189,255
527 DATA 74,0,32,253,77,0, 189,255,80,0,240,3,32,253,77,0,202,208,213,96,32,252,1 12
528 DATA 0,170,232,208,1,200,152,32,252,101,0,138,134,180,32,117,231,166,180,96,165
529 DATA 182,56,164,252,170,16,1,136,101,251,144,1,200,96,168,74,144,11,74,176,23
530 DATA 201,34,240,19,41,7,9,128,74,170,189,254,249,0,176,4,74,74,74,74,41,15,208
531 DATA 4,160,128,169,0,0,0,170,189,255,61,0,133,255,41,3,133,182,152,41,143,170
532 DATA 152,160,3,224,138,240,11,74,144,8,74,74,9,32,136,208,250,200,136,208,242
533 DATA 96,177,251,32,252,101,0,162,1,32,250,176,0,196,182,200,144,241,162,3,196
534 DATA 184,144,242,96,168,185,255,87,0,141,11,2,185,255,151,0,141,12,2,169,0,0
535 DATA 0,160,5,14,12,2,46,11,2,42,136,208,246,105,63,32,210,255,202,208,234,76
536 DATA 205,253,32,250,148,0,32,213,253,32,213,253,32,151,231,32,250,165,0,32,151
537 DATA 231,32,202,253,32,250,217,0,144,9,152,208,19,165,207,48,15,16,7,200,208
538 DATA 10, 165,207, 16,6,32, 1 17,231,76,86,253,76,247,231,32,250, 148,0, 169,3, 133, 181
539 DATA 32,235,231,32,167,253,208,248,173,13,2,133,251,173,14,2,133,252,76,251,241
540 DATA 0,197,185,240,3,32,210,255,96,169,3,162,36,133,184,134,185,32,208,253,120
541 DATA 173,255,250,0, 133, 144, 173,255,251 ,0, 133, 145, 169, 160, 141,78,232,206, 19,232
542 DATA 169,46,141,72,232,169,0,0,0,141,73,232,174,6,2,154,76,241,254,32,123,252
543 DATA 104,141,5,2,104,141,4,2,104,141,3,2,104,141,2,2,104,141,1,2,104,141,0,0
544 DATA 0,2, 186, 142,6,2,88,32,208,253,32, 191 ,253, 133, 181 ,160,0,0,0,32, 1 54, 253^32
545 DATA 205,253, 173,0,0,0,2, 133,252, 173,

1 ,2, 133,251 ,32, \b6,2^,32,252,2i,6,32, 1

546 DATA 243,201,247,240,249,32,1,243,208,3,76,86,253,201,255,240,244,76,253,96,0
547 DATA 0,0,0,32,250,148,0,32,151.231,142,17,2,162,3,32,250,140,0,72,202,208,249

IM £££ l
6
l>?d¥!,Zt ' 233 ' 63 ' ,60 . 5 » 74 . 1 1 0, 17,2, 1 10, 16,2. 136,208,246,202,208,237, 162

549 DATA 2,32,207,255,201, 13,240,30,201,32,240,245,32,254,240,0, 176) 15,32,203,231
550 DATA 164,251 , 132,252, 133,251 , 169,48, 157, 16,2,232, 1 57, 16,2,232,208,219, 142, 1

1

551 DATA 2, 162,0,0,0, 134,222, 162,0,0,0, 134, 181 , 165,222,32,252, 124,0, 166,255, 142, 12

«« ™™ ?4
1

725
,

??A
2".'51.0,32,254,213,0,189,255,87,0,32,254,213,0,162,6,224,3 208

553 DATA 18,164, 182,240, 14, 165,255,201 ,232, 169,48, 176,29,32,254,210;0, 136)208)242
554 DATA 6,255, 144, 14, 189,255,74,0,32,254,213,0, 189,255,80,0,240,3,32,254,213,0,202
555 DATA 208,213,240,6,32,254,210,0,32,254,210,0, 173, 1

1 ,2, 197, 181 ,208,89,32, 151 231
556 DATA 164,182,240,43,173,12,2,201,157,208,28,32,250,217,0,144,9,152,208,74,166
557 DATA 207,48,70, 16,7,200,208,65, 166,207, 16,61 ,202.202, 138) I64) 182,208,3 185,252
558 DATA 0,0,0, 145,251 ,136,208,248, 165,222, 145,251 ,32,252, 109,0, 133,251 , 132,252, 160
559 DATA 65,32,21,254,32,106,231,32,205,253,76,253,222,0,32,254,213,0,134,180,166

?£? R£2 !f!'??l'!SA
2
A?

4
2Ai

2 ' ,04 ' ,04 ' 230 ' 222A240 »3i76 . 254 » 48.0. 76,247,231, 232,134
561 DATA 181,166,186,96,261,48,144,3,201,71,96,56,96,64,2)69)3)208,8,64,9)48,34,69
562 DATA 51,208,8,64,9,64,2,69,51,208,8,64,9,64,2,69,179,208,8,64,9,0,0,0,34,68,51
563 DATA 208, 140,68,0,0,0, 17,34,68,51 ,208, 140,68, 154, 16,34,68,51 ,208,8,64,9, 16,34

Ift £££ 6
?5

5
i5

2
??4

8
!
64 ' 9 ' 98 '' 9 « '20,169.0,0,0,33, 129, 130,0,0,0,0,0,0,89,77, 145 146

565 DATA 134,74, 133, 157,44,41,44,35,40,36,89,0,0,0,88,36,36,0,0,0,28; 138,28,35,93
566 DATA 139,27,161,157,138,29,35,157,139,29,161,0,0,0,41,25,174,105,168,25,55,36
567 DATA 83,27,35,36,83,25,161,0,0,0,26,91,91,165,105,36,36,174,174,168,173,41,0
568 DATA 0,0, 124,0,0,0,21, 156, 109,156, 165, 105,41 ,83, 132, 19,52, 17, 165, 105,35) 160,216
569 DATA 98,90,72,38,98, 148,136,84,68,200,84, 104,68,232, 148,0,0,0, 180,8, 132^ 1 16) 180
570 DATA 40, 1 10, 1 16,244,204,74, 1 14,242, 164, 138,0,0,0, 170, 162, 162, 1 16, 1 16, 1 16, 1 14
571 DATA 68,104,178,50,178,0,0,0,34,0,0,0,26,26,38,38,114,114,136,200,196,202,38
572 DATA 72,68,68, 162,200,4,34, 16,132,45,47,51, 84,70,72,68,67,44,65, 73,78,0,0,0, 250
573 DATA 232,0,251,60,0,251,106,0,251,221,0,252,253,0,253,48,0.253,218,0,253,84,0
574 DATA 85,253,253,132,0,250,93,0,250,70,0

Programming the PET/CBM -493- Appendices: ASCII code

ASCII CODE

00 NUL - NULL CHARACTER 32 20 SPACE 64 40 @ 96 60 x

1 01 SOH - START HEADING 33 21 j 65 41 A 97 61 a

2 02 STX - START TEXT 34 22 ii 66 42 B 98 62 b

3 03 ETX - END TEXT 35 23 # 67 43 C 99 63 c

4 04 EOT - END TRANSMISSION 36 24 $ 68 44 D 100 64 d

5 05 ENQ - ENQUIRY 37 25 % 69 45 E 101 65 e

6 06 ACK - ACKNOWLEDGE 38 26 & 70 46 F 102 66 f

7 07 BEL - RING BELL 39 27 / 71 47 G 103 67 g

8 08 BS - BACKSPACE 40 28 (72 48 H 104 68 h

9 09 HT - HORIZONTAL TABULATION 41 29) 73 49 1 105 69 i

10 0A LF - LINE FEED 42 2A * 74 4A J 106 6A j

11 OB VT - VERTICAL TABULATION 43 2B + 75 4B K 107 6B k

12 OC FF - FORM FEED 44 2C /
76 4C L 108 6C 1

13 OD CR - CARRIAGE RETURN 45 2D - 77 4D M 109 6D m
14 OE SO - SHIFT OUT 46 2E , 78 4E N 110 6E n

15 OF SI - SHIFT IN 47 2F / 79 4F O 111 6F o

16 10 DLE - DATA LINK ESCAPE 48 30 80 50 P 112 70 p

17 11 DC1 - DEVICE CONTROL #1 49 31 1 81 51 Q 113 71 q

18 12 DC2 - DEVICE CONTROL #2 50 32 2 82 52 R 114 72 r

19 13 DC3 - DEVICE CONTROL #3 51 33 3 83 53 S 115 73 s

20 14 DC4 - DEVICE CONTROL #4 52 34 4 84 54 T 116 74 t

21 15 NAK - NEGATIVE ACKNOWLEDGE 53 35 5 85 55 U 117 75 u

22 16 SYN - SYNCHRONOUS IDLE 54 36 6 86 56 V 118 76 v

23 17 ETB - END TRANSMISSION BLOCK 55 37 7 87 57 w 119 77 w

24 18 CAN - CANCEL 56 38 8 88 58 X 120 78 x

25 19 EM - END MEDIUM 57 39 9 89 59 Y 121 79 y

26 1A SUB - SUBSTITUTE 58 3A 90 5A z 122 7A z

27 1B ESC - ESCAPE 59 3B ; 91 5B [123 7B {

28 1C FS - FILE SEPARATOR 60 3C < 92 5C \ 124 7C I

29 ID GS - GROUP SEPARATOR 61 3D = 93 5D] 125 7D }

30 1E RS - RECORD SEPARATOR 62 3E > 94 5E t 126 7E ~
31 IF US - UNIT SEPARATOR 63 3F ? 95 5F — 127 7F DEL

ASCII characters. The American Standard Code on Information Interchange (ASCII)

is largely followed by CBM equipment. One major difference is its use of the high bit

as a parity bit, making the number of *l's in the complete byte even,

of 'ASCII' has no parity bit.

CBM's version

Programming the PET/CBM -494- Appendices: Languages

BASIC is by far the most popular microcomputer language at present. It is impossible to
know whether this will remain true, but brief comments on currently available alternat-
ives follow. Many interesting languages have turned out to be comparative failures,

usually for reasons of commercial pressure; ALGOL, FOCAL and PL/1 illustrate the
pattern, effectively being dominated by FORTRAN, BASIC, and COBOL respectively.
Although there is no reason why the entire ROM set of a CBM couldn't be replaced by
a new language in ROM, in practice most replacements use RAM and also make use of
BASIC subroutines, which (a) reduces the maximum size of program, and (b) tends to
make the language non-transferrable between versions of BASIC.

COMAL is 24K of machine-code, which is loaded from disk into CBM RAM. Error mess-
ages are read from disk, so this language is practicably of use only with a CBM unit
with disk drives. It is a public domain program; versions for BASIC 4 and (perhaps)
BASIC 2 exist. This language was developed in Denmark, where it is reported to be
in widespread use in education. It permits long variable names (i.e. not distinguished
by the two initial characters only) and has a number of structured features, for ex-
ample an IF ELSE construction of this form : if . . THEN . . ELIF . . THEN . . ELIF .

.

THEN .. ENDIF where ELIF means ELSE IF. It also
formats its listings as the short example program nnon v> w

_

(right) illustrates. The CBM version is interpreted °°*°
next Jand is not particularly fast. Its principal purpose

is to make fairly simple programs readable: it is

therefore quite suitable for examiners who wish to mark large numbers of beginners'
programs. The name stands for 'COmmon ALgorithmic language'.

COMPILERS which turn BASIC into machine-code are now being marketed. (As an in-
troduction, see M Zimmermann's article on 'Floptran', in BYTE, Oct. '80, and a follow-
up article in July '81). BASIC 'source code' is converted into 'object code' by the
compiler, which is in RAM. The result might be stored on disk, and LIST as SYS 1037,
which when RUN executes machine-code exactly similar to the original BASIC. Speed
increases of about ten times are commonly claimed; the improvement occurs because
much of BASIC'S housekeeping, notably of variables, is eliminated. Typically, a line
or so of BASIC is converted per second when the compiler runs. The resulting code
is much more difficult to modify than BASIC, which provides some security in the case
of commercial programs. Usually the code has a standard library of routines, occupy-
ing 4K say; together with the program, which is shorter than its BASIC form by a
factor of about a half. A longish program may therefore be stored as a shorter amount
of equivalent machine-code, especially if it contains many REMs, which the compiler
ignores. There may be problems however: check up on (a) the maximum size of BAS-
IC which the program can handle; it may not be enough for your programs, (b) The
compatibility with ordinary BASIC: the compiler may not allow integers, or arrays, or
variable-length strings. It may not cope with commands using wedges, and these may
be important. It may not stop when the stop key is pressed, or print accurate error
messages.

PASCAL (named after Blaise Pascal) is an academic language, which seems to have
remained quite unpopular. Tiny Pascals (i.e. small implementations, lacking many of
the features of the full-scale language) can be bought comparatively cheaply, i.e. for
30 to 40 pounds or dollars.

PILOT is a language used for educational *retry T: what is the capital of France?
programs of the question-and-answer type A: NAME$
as the demonstration program attempts to M: Paris
illustrate. ('T' is text, 'A' inputs answer, Y: CORRECT!
"M" searches for a match, and so on). It N: NO.. . TRY AGAIN
is a relatively easy language to write (and JN: *RETRY
makes an interesting exercise). The pro-
cess of matching is usually unsophisticated, which, in view of the difficulties, is not
surprising. A reply of 'NOT PARIS' or 'London OR PARIS' would probably be judged
correct when running the sample short program. Nevertheless PILOT is easy to use,
and quick to produce results. The chief drawbacks may be (a) RAM space is likely to
be used rapidly by the verbose style of such programs, so disk or tape loading is a
useful feature of the language, (b) If interpreted, it may be slow.

PROGRAM GENERATORS at present can write BASIC of a simple file-handling sort.
Knowledge of the behaviour of files, and systems analysis, are both required, to
avoid logical errors. Screen and output formatting are not available.

Programming the PET /CBM -495- Appendices: Glossary

address memory location (from 0-65535)

addressing mode one of several ways in

which machine-code processes its data

algorithm series of unambiguous rules

ASCII American Standard Code on

Information Interchange
baud rate rate of data transmission

batch processing system where preparation

of data is separate from processing

binary expressed in two forms only

buffer RAM locations used for temporary
storage before processing

bug mistake in software

chain call one program from another

chip integrated circuit , often on silicon

clock crystal oscillator timing the MPU
cold start start of a program from scratch

with all variables zero or null

compiler program to convert a high-level

language (e.g. BASIC) into exactly

equivalent machine-code
complement reverse bits of bytes

conditional dependent on a result

crash unwanted program stop

crlf carriage return and line feed

diagnostic software or hardware which

tests an aspect of system functioning

diskette circular magnetic-coated disk in a

protective envelope for data storage

dump complete list, usually on paper, of

a system aspect, for examination

enhancements improvements to a system

EAROM, EPROM electrically alterable/

erasable-programmable read-only memory
floating-point storage system for numbers

using scientific notation, i.e. an expon-
ent system, rather than 'fixed point'

function routine which performs conver-
sions according to some formula

garbage RAM data or pointers, etc., left

from previous processing
graphics any pictorial or diagrammatic out-

put from a computer
hardcopy output by a printer on paper
hardware computer machinery
hashtotal meaningless but repeatable total

providing check on data accuracy
hexadecimal number notation with base 16,

using 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
high-level language any language needing

processing to be usable by the comput-

er, especially one with powerful in-

structions
infinite loop loop with no exit

integer whole number
interactive processing system where data

is continually updated on file

interface hardware connections between
devices

interrupt temporary program stop to pro-

cess other data
iteration solution by progressive approx-

imation with repetition

jumper wire connecting two parts of a

printed-circuit board (noun or verb).

K 1024 (or, loosely, 1000)

link join two or more programs into one

listing readable form of a program
literal defined sequence of characters, not

a variable

LSB least significant byte (i.e. of two)

MHz megahertz = million cycles per second

machine-code program in a form which the

computer can directly run
MSB most significant byte (i.e. of two)

mode type of processing a computer is

currently engaged on; e.g. edit mode

monitor (i) TV-like display hardware,

(ii) software for machine-code work
MPU micro version of central processing

unit (CPU); in the PET /CBM, its 6502

octal number notation using base 8

opcode operation code; mnemonic for each

machine-code command, e.g. LDA
package standard software
parallel data bits sent simultaneously

peripheral device attached to the comp-
ter (noun)

pointer location(s) holding address of

data, variables, RAM limits, etc

poke put a value into RAM
PROM programmable read-only memory
RAM random-access memory; may be read

from, or written to, freely

recursion technique in which a program

calls itself. See 'recursion'.

return (i) carriage return, (ii) end of a

subroutine
ROM read-only memory; can be read from,

but not written to

serial data bits sent consecutively

software programs held within hardware
string set of consecutive characters as

processed by a computer as a unit,

without (e.g.) attempting calculations

syntax rules for correct operation of a

high-level computer language
teletype (trade mark) early model of

computer printer with keyboard
terminal more-or-less remote connection to

a computer; usually keyboard & screen

token single byte coded form of keyword
translater, -or program which runs a

language by scanning it as it is stored,

without pre-processing
transparent usable without being noticed

TTL transistor-transistor logic (not chip)

validation checking that data is possibly

correct, i.e. not nonsense
VDU visual display unit

warm start restart of program, retaining

some or all previous results

wedge interposed piece of software

word unit of processing of a computer;

identical to the 8-bit byte in the CBM

Programming the PET/CBM- -496- Appendices: Addenda

ADDENDUM

The FAT- 40 (twelve inch screen, 40-column CBM) is somewhat underrepresentedin this book. Its

BASIC, sometimes called BASIC 4.41 to distinguish it from the eight inch screen's BASIC 4.40, is

similar to other BASIC 4s except for the EOOO ROM, which mainly affects keyboard and screen

facilities. The jump tables on p.424 in Chapter 15 have some different destinations, for example,

the HTAB and VTAB use SYS 57457. Also a FAT- 40 EOOOROM orEPROM in an eight inch screen

computer with BASIC 4 equips the machine with FAT-40 facilities such as repeat keys, but not of

course those associated with the CRT controller or bell.

The 8096 is an 8032 fitted with 32K extra RAM. Briefly, 32K is added to the top half of memory, from

$8000 to $FFFF. Each of the two sets of 32K in high memory is divided into two sets of 16K, so

that at any time two ofthe 16Kblocks are in use, making fourpermutations. So for example a BASIC
program might reside in low memory, with BASIC itself occupying the high end of memory. The
extra memory can be accessed by poking location $FFFO; bits 2 and 3 select the current pair of

16K blocks which are to be active. BASIC itself will be temporarily lost, so SYS commands and
machine-code have to be used, and the technique is not elementary. Machine-code is therefore

usually used, as with VisiCalc; however, since BASIC can be soft-loaded (i.e. held in RAM, not

ROM) any version of Commodore BASIC, including user-modified versions, can be run, if the

screen is confirgured to the correct column width by the CRT chip. Alternative BASIC'S are

available on disk, including some for 50 and 60Hz displays, and also including BASIC 5. The

efffect is similar, but more far-reaching, to that obtained by relocating ROM routines into RAM as

outlined in Chapter 13.

The 'Super-PET' or series 9000 has 64K extra RAM, in 16 blocks all stored in $9000 to $9FFF and
selectable by software. The machine has various hardware modifications and several languages,

all developed at Waterloo University in Canada. At the time of writing, translated versions ofBASIC,

COBOL, Fortan, Pascal and APL have been written. The computer was partly intended for

computer programming students.

Commodore have tried a number of experiments with cheaper computers, notably the VIC-20
and VIC-40, which have 23 and 40 column screen ouputs respectively. The evolution of these
products has not been free of problems. New features include the RS232 interface, the custom
video chips, high resolution graphics using RAM, and eight extra keys generating CHR$ (133) to

CHR$ (140). The Commodore 64 uses a new chip, the 6509, and is likely to be an improvement
on its predecessors.

Notes on the text Some ofthe periodicals mentioned are no longerpublished; and there
is an inevitable tendency for hardware to be improved or superseded.
Typographical errors and omissions include:

p. 7: RESTORE is abbreviated by RE shifts.

p.14: S=0: £=0 before DIM keeps the array pointers correct.

p.58: DIM sets up the variable or variables following DIM so that DIM, A,B %,CS for example sets
A, B %, and CS in that order in RAM.

p. 126: CHR$ (18), not CHR$ (8), produces a reversed program name.
p.137: The POKE location is 3, 4, or 16 depending on the version of BASIC in use.

p.250: The lines are horizontal, not vertical. The diagram omits dots produced by the special
character when values of 128 are included.

p.265: "S" or "s" homes the cursor; the character as printed clears the screen.
p.346: BASIC 4's keyboard interrupt doesn't work correctly when the decimal flag is set, so SEI/

SED/ perform processing/ CLD/ CLI may by necessary.

With direct access to Commodore disks, early versions ofdiskROM will not set the bufferpointer to
zero, so B-P may give errors because of this. Note that B-W stores the buffer pointer in byte zero
before writing the block to disk, which will wreck the chaining of disk files if it is unexpected. B-R
sets up end-of-file detection based onthe samepointer in byte zero. Forthese reasons, U2andU1
are preferred.

LOCKSMITH (p.177), renamed LOCKDISK, is a program by Jim Butterfield.

Programming the PET/CBM -497- Index

INDEX

6502 294, 307 ff, 310 ff, 482 ff

6504 792 (In CBM disk drives)

6520 383 ff ('PIA')

6522 386 ff ('VIA')

6845 270 ff ('CRT controller')

.A extended monitor assembly, 300

ABS (BASIC) 38 /Approx. equality 444,454

Accuracy see e.g. 55, 65 [3], 131 [2], 442

ACT Ltd 7 99

A-D Conversion analog to digital, 264

ADC (6502 opcode) add with carry 323

Addressing Modes, 6502, 310,320,486,488
Alcock, D. 58, 460
Algorithms 21, 128

Allason, J. 60
AND (BASIC) 16-bit operator, 39

AND (6502 opcode) 8-bit operator 324

Animation 282 /screen replacement 283

APPEND (BASIC 4 disk) 275 /see CONCAT
APPEND joins BASIC programs, 47

Apple 1, 5, 15, 52, 75, 92, 105, 120, 125, 142,

144, 156, 213, 231, 236, 254, 265, 272, 289

Arrays 33 /storage 10 /pointers 74, 48,

59, 153 /see Matrices
Arrow fast tape system, 236

ASC (BASIC) opp. of CHR$, 43

ASCII Commodore 266 /Standard 493

ASL (6502 opcode) shift left, 324

Assembler 361

Assignment Statement see LET
Assn. of London Computer Clubs 2

ATN (BASIC) arctangent, 44

ATN (IEEE Attention), 375, 379 [2]

AUTO generates linenumbers, e.g. 45

BASIC: Anomalies 36 Break/ restart see

CONT, END, STOP Machine-code see

PEEK, POKE, SYS, USR Pointers 10 I

altering, e.g. 74, 48, 59, 97, 100, 135, HIMEM
and LOMEM 92 /free RAM 67 [2]

RUN 52, 15216], 355 see CHRGET
Storage Keywords (& short forms) Chap-
ters 5 & 7 /Lines: deletion, see DEL;
machine-code to fetch and process, 6,354,

355; null byte, e.g. at start, 97 [2] I

Link pointers, 13-15, and e.g. 120, 151 [1]

; combining lines, LIST, search and re-

place &c, 14,42,88,151,369; Tokens and
linked list, 5,6, 107 Hi

Subroutines use of, e.g. 23

Syntax 11-12,32, individual commands
Chaps. 5 & 7, ambiguities e.g. 143

Timing 75, 16, 52, 65 [4]

Baum, A. 298

BCC (6502 opcode) branch if C clear, 325

BCD Binary coded decimal mode, e.g. 323

BCS (6502 opcode) branch if carry set, 325

B-E (CBM disk) block execute, 187

Bennet, M. 60

BEQ (6502 opcode) branch if zero set, 326

Best, P. 2

B-F (CBM disk) block free, 7S9

Binary chop search 30-31

Bit 294

BIT (6502 opcode) test and flag bits, 326

BMI (6502 opcode) branch if N set, 327

BNE (6502 opcode) branch if Z clear, 327

Boolean logic see e.g. NOT, AND, OR in

BASIC, AND, EOR,ORA in machine-code;
applications, e.g. files, 765 & 166

B-P (CBM disk) buffer pointer, now Ul, 759

BPL (6502 opcode) branch if N clear, 328

Brandon, E. 6 7

Brannon, C. 6 7

BRK (6502 opcode) save data, jump 328

Broomhall, H. 767, 226, 233

Bubble Sort 31, 133, 136

Buffers: IEEE character, 394 I INPUT,
392 and see BASIC Storage / Keyboard,
392 and see Keyboard / Tape 392 and
see Tape

Busdiecker, R. 47

Butler, B. 749

Butterfield, J. 2, 80, 93, 120, 176, 185, 192,

219, 222, 235, 298, 488

BVC (6502 opcode) branch if V clear, 329

B

B Break flag set on BRK, 312
.B Extramon breakpoint setting, 300
B-A (CBM Disk) block allocate, 188

BACKUP (BASIC 4 disk) 276 /=DUPLICATE
?BAD DATA ERROR see GET#, INPUT#
?BAD DISK ERROR 230

?BAD SUBSCRIPT ERROR 775 Note 2

Baker, R. 776

Barker, P. 253

BASIC BASIC 1 ('Old ROM'), BASIC 2 ('UpBVS (6502 opcode) branch if V set, 329

grade ROM'), BASIC 4 ('Disk BASIC), B-W (CBM disk) buffer write, now U2, 187

see Chapter 5, Chapter 7 /differences: Byte 294

76 and e.g. arrays, 591 crlf, 772 [1], 77)Byte magazine 759, 79S, 289, 291, 494

772/ disk, 274/ IEEE, 739/ LIST, 87 I .BYTE assembler directive 363

MLM, 2961 OPEN, 704/ PEEK, 706/ screen
editing, 275/ Shift- Stop, 25 [2] I strings,

59, FRE, LEFTS I Tape, 244

Programming the PET/CBM -498-
\ridex

C Carry flag of 6502, 312
C extended monitor branch calc'n, 300

Calculations in machine-code; using ROM,
Chap. 16 /without ROM, Chap. 11

Calculus diff'l, e.g. 63 I integral, e.g. 447
Campbell, G. 236
Carriage return CHR$(13) see Crlf; as
record separator &c. e.g. 162-3, 113 [2]

Casentry flowchart structure, 18, 102

CATALOG (BASIC 4 disk) =DIRECTORY
CBM Commodore Business Machines, passim
CCN (Commodore Club Newsletter) 2, 132,

187, 193, 194, 235, 251, 253, 278

Chamberlin, H. 289
Channel to disk, 185 /see Secondary Addr.
Channel Data Book 2

Character set Screen, 266 /screen RAM,
268 /generator ROM, 267, 272

Checkdigits, letters e.g. 22-24, 96
Chee, C. 277
Chiswell, R. 267
Chow, H. 47

CHR$ (BASIC) opp. of ASC, 46, & eg 240
CHRGET 365 and eg GOTO, GOSUB, VAL
CLC (6502 opcode) clear carry flag, 330
CLD (6502 opcode) clear decimal flag, 330
CLI (6502 opcode) clear int. disable, 330
Clock example 2741 see TI and TI$
CLOSE (BASIC) 471 and disk files, eg 27 7

CLR (BASIC) Reset variables' pointers, 48
CLV (6502 opcode) clear V flag, 330
CMD (BASIC) print, but leave file open
and listening, 49, 77 [2], 113 [1], 379 [1]

CMP (6502 opcode) compare with A , 331
COBOL formatting 7 75, 762

Codes on/off bits within bytes, 24

COLLECT (BASIC 4 disk), 279 /=VALIDATE
Colon statement separator (exc. REM, 7 79^

MLM function, 297
COMAL 'Common Algorithmic Language' 494
Combinatorics 449
Comma data separator eg. 54 [3], 69 [4], 112
Command-0 BASIC 4 EPROM, 7 75, 263
Commodore Business Machines Sources of

information, 7-2/ Hardware evolution,
computers 3 /disks 166-7 I tape 235

Compilers 50, 494
Complement NOT, 99/ 2's comp.eg. 112,295
Compu /think 90, 126, 132, 148, 152, 198-210
Compute! magazine 2,41,81, 100, 193, 230,

236, 237, 278, 282, 379
Computer publications 2, 264, 451
Computerist's Guide 2

CONCAT (BASIC 4 disk) 220 /see COPY
Concatenation of strings with '+' eg. 82
Cone, D. 193, 230
Conic sections demonstration 279
CONT (BASIC) Continue program, 50

Contracts, software 478
Conventions in this book, 7, 274, 322
Cooke, J. 380

COPY (BASIC 4 disk) 222 / See also 193
Copy protection, piracy 242, 479
COS (BASIC) cosine function, 57
Council for Educational Technology 457
CP/M 'control program for micros' 263
CPUCN 2, 80, 176, 243, 264, 265, 278, 490
CPX (6502 opcode) compare data with X,332
CPY (6502 opcode) compare data with Y,332
Creative Computing 7, 87, 121, 267, 282
Crlf Carriage return and line feed, eg.

79/27, 7 72 [1], 171, 172
Crozier, P. 474
CRT controller chip 270
CRUNCH BASIC compression, 52
Cursor RAM locations 756/ example 45

D Decimal flag of 6502, 312
.D Extended monitor disassembly, 300
D-A Conversion Digital to analog. 264, 293
DATA (BASIC) 54 /examples 24
Data Compression 22, 28, 29
Date Processing 24, 25, 132
David, D. 93
Davis, R. 794

DBL Extended precision calculation, 55
DCLOSE (BASIC 4 disk) writes BAM and
updates directory on file close, 223

Debugging BASIC 36, IEEE 382 [2] ,

machine-code 373
DEC (6502 opcode) decrement address, 333
Decimal to hex conversion 23, 295, 465, 484
DEEK double-byte PEEK, 10

DEF FN (BASIC) 9, 56
DEL deletes BASIC lines, 57
Delay loops 64, 98, 124, 147
Deleting disk files see SCRATCH
7DEVICE NOT PRESENT ERROR 90, 126, 140

Device numbers see eg. SAVE
DEX (6502 opcode) decrement X- register 333
DEY (6502 opcode) decrement Y-register 333
'Diagnostic Sense 1 Pin 222
DIM (BASIC) 55-59/default, assignment 85
Direct Mode see eg. INPUT, GET, 77 [5]

DIRECTORY (BASIC 4 disk) 277-5, 363
DISKS: Channel 15, 765 Disk Drives, 3/
DOS and ROMs, 759, 193; Hardware de-
scription, diagrams, etc. 755 ff; reliab-
ility and maintenance, 210-213
Diskettes = floppy disks, description 160ff
Formatting new diskettes, 765
7DISK FULL ERROR note 272, 222
Disk storage Capacity 767/ Directory 760
/ Header and Block Availability Map (BAM)
177-184 /Examples 180-184
Machine-code programming, 194-198
Pattern Matching with * and ?, 89

Diskmon Compu/think DOS, 198-210
Disk-o-Pro 87, 115, 120, 263
DLOAD (BASIC 4 disk) 224
Documentation 7 79, 475
DOKE double-byte POKE, 707 [2]

Programming the PET/CBM -499- Index

Dongle hardware security device, 757, 479 FIND 737

DOPEN (BASIC 4 disk) 225 Finn, K. 67

DOS l + ,2+,2.7, 759, 766, 213 /summary of Fisher & Jensen 376, 380, 382

bugs 211-212 /DOS Support 769

Double-density graphics see SET
Downey, J. & Rogers, S. 264

Dr. Dobbs Journal 7

DS, DS$ 90, 168, 170, 197, 227 /Table 228

DSAVE (BASIC 4 disk) 229

DUM disk utility maintenance, 769

Flags 6502, see processor status register

Floating-point Accumulators 442-443, 464

ROM with FPAcc#1, table, 466

ROM with FPAcc#1 & FPAcc#2, table, 467

Examples, 468 ff / USR to display, 753

/ other examples of use, 99, 115, 131

Floppy Disks 158, 160

Dummy variable see eg. FRE, POS.DEF FN FN (BASIC) signals function, eg. 10, 12, 56

DUMP 60, 137, 281-282
DUPLICATE see BACKUP
Dvorak keyboard 257

FOR.. TO.. [STEP] (BASIC) loop, 64-66
Formatting 7 75, 142, 248 ff

'FORMULA TOO COMPLEX ERROR 142

Forrester, J. 457

FORTRAN 702, 130, 162

Foster, C. 264

FRE (BASIC) measures free RAM available

to BASIC, 67 /time taken, 67 [3]

Freeman, R. 759, 198

.E EXTRAMON command, sets IRQ , 301

Education 479 ff

END (BASIC) 62

EOR (6502 opcode) 8-bit exclusive or, 334

EPROMs 263
Erase disk files see SCRATCH
Error messages 25, 32, 71

Exchange Sort 133

EXEC File 93

EXP (BASIC) ex , converse of LOG, 63

Expressions, string and numeric eg. 72, 770

Extension TV for PET/CBM 265

?EXTRA ICNORED 68, 77 /suppressed 78 n rRA c Tr vn 7fi 7n

EXTRAMON Extended monitor 301,177,298 ^c|fD ,„ JO ,PV7 , ,->

Commands ABDEFHINQTUW , 307/7

Evans, C. 2

.C MLM command, Go Run, 298, 419

Garbage collection 67 [3]

GET, GET# 68, 69 [4], 169, 352

GETCHR see BASIC/ put into RAM by
RESET, 439 /set to start by CLR, RUN

Glitch, disk 756

COSUB (BASIC) 77, 72[1] /computed, 368

GOTO (BASIC) 73 /computed, 367

Grad measurement of angle, 746

Grainger, B. 488, 489

Graphics PRINT 7 70; Reverse, 7 77 [2];

Example, 272; dumping screen to

printer, 281-282.

Machine-code : double-density , SET

,

128, 129, 280 /other, 276 ff I columns,
278 /table, grouped by type, 273

.F Extended monitor 'fill' command, 300

Factorial example, 63 I formula 449

Falkner, K. 236

False value 0, eg. IF 75

FILES: Description 20,162; opening and
closing, 766, 226 [1]; setting up, 226 [2]; Green, N. 77 7

to keyboard, screen, 77 [2], 78, 79;

use of GET#,INPUT#, PRINT*, 169 ff;

BASIC 4 syntax, table of L & W, 223

?FILE DATA ERROR 77 [2] , 78ii

?FILE NOT FOUND ERROR 90, 139, 222 [2]

?FILE TYPE MISMATCH ERROR eg. 90

File numbers, logical file #, see parameters HandYhaTfng with IEEE , 380 [4]
File number, active see INPUT, TAB(, SPC(

Hard Coding 25
File types: Direct track & sector, 766, Hardware bugs 36

185-192 Indexed sequential, 765

Inverted, 765 Program, 775 Random
Access (indexed with algorithm, + spill

procedure) 764 Relative, 763, examples
173-174 Sequential, 762, 766, examples
777- 772 User, 766

Files: Disk: Direct track & sector, 765 -

792 Program, 775 Relative, 773- 774

Sequential, 777- 772 Compu/think,
comparison table, 200

Files: Tape: Program, 237 ff

Sequential, example, headers, blocks,

239 ff

H

.H Supermon's Hunt, 300 /modified 303

Hampshire, N. 2, 732, 749, 265

Hand Assembly 372

Hardware vectors in 6502, see NMI.,

RESET, IRQ, eg. 440
Hashtotals BASIC utility example, 369

HEADER (BASIC 4 disk) 230 I two types,
230 [2] I = Disk NEW

HELP with syntax, 50 /with system, 476

Hexadecimal Notation 294-295
Hex to decimal conversion 23,295,465,484
Hierarchy of operators, e.g. 37, 99 [3]

Higginbottom, P. 476

HTAB horizontal tabulation, 74

Programming the PET/CBM -500- Index

I K

K Kilobytes, table 296, 484
Kernel CBM standard machine-code jump

table, BASIC <4 and BASIC 4, 440
Keyboard 253-261; decoding tables, 427,

128; see IRQ, WAIT 757, PIA 255,383ff,
Stop disable 254 / Keyboard buffer,
16, 257; GET (kernel = FFE4) fetches,
68, 254; Examples switching direct mode
into program mode, 28, 45, 57, 77,

157, 257, 259-260; Exists, 68 [1]
Keywords, BASIC table, 6; see BASIC

I Interrupt disable flag of 6502, 312
.1 SUPERMON single-step, 300, =.W in

EXTRAMON, 301 I Integrate memory , 302
IBM 132, 151, 158, 165
I.D. of Disk see HBADER, 230
IEEE bus: 374,375,378 /References, 3761
CBM version: Port, 3,374 /Machine-code
examples, 376, 377, 379 -382 I Handshaking
and ATN, 375, 379 [2], 380 [4] / Logical
files, device numbers, secondary address-
es, see Parameters / Examples include
GET#, 69 [31, SAVE, 727, ST, 139, 381 [5] Kilobaud-Microcomputing magazine,

IF (BASIC) next line if false, THEN or 7, 93, 159, 176, 198, 235, 262, 375
GOTO if true, 75 KIM 3, 264

7ILLECAL DIRECT ERROR eg. INPUT, 76 Knuth, D. 732, 449 450
7ILLECAL QUANTITY ERROR examples Kolbe, W. 244
include LOG, SQR with -ve argument, and Kraft, P. 2
ASC, MID$ with string of length zero

INC (6502 opcode) increment address, 335 L
INITIALISE (BASIC < 4 disk) 766, 231

INPUT (BASIC) 76 /Crashp roofing, 25, 77.

254 /Use of GET, 26-28 I Standard Data
Entry Environment, 476

.L MLM Load command,
Lake, M. 132
Languages 494

238, 298

Input buffer Position', description, watching
,

L
|?* ^502 opcode) loads accumulator, 338

it in use, 6,16,79,351 /Example, MERGE ^DX (6502 opcode) oads X-register, 338
K LDY (6502 opcode) loads Y-register, 339

Least-squares methods 462-463, 471-472
LEFT$ (BASIC) left substring, 82

93-94 I see BASIC
Input file, current eg. 77 [2] , 93
INPUT#(BASIC) 78, 774, 763, 769

INSTRING$ inserts a BASIC string, 80
INT (BASIC) rounds down, 81

Interactive System 27

LEN (BASIC) length of string, 83
Leon, R. 769
LET (BASIC) assignment, 84, 155
Levinson, F. 67INX (6502 opcode) increments X-register 335 ,

;nafaarl
'

rl,Btnn\ 7„ ,,, ,-

INY (6502 opcode) increments Y-register 336 M f $ 1?' eg
' ™ ^'^Tr*

"*
Interrupt see VIA, IRQ, and NMI

Lmk Address Pointers see BASIC

Interpolation, Inverse 446, 455, 456
IPUG (or ICPUG) 2, 93, 120, 148, 185, 226,

243, 439, 488
IRQ vector, 440, 357; generated by screen
refresh, registered by PIA location E813,

u
!

lera,s "

Lissajou figures example, 729
LIST (BASIC) 5,86; ROM differences, 87;
Printer lower-case, 257; Lists screen edit
characters, 88, 357 -358; and TRACE, 749

384-385; frequency, 76, 745, 255 /Uses
and examples: 257 ff; tunes, 2S7; graph-
ics, 277; display bytes, 35 7; keyboard,
clock and Stop key, 255, 256; new key-
board, single-key BASIC entry, 259-261;
Software uncrash, 262

Isaacson, D. 237
Iteration example, 138

Jackson, M. 20
Jiffy Clock 747, 745, 757; and see IRQ

Liverpool Software Gazette 108, 151, 193
LOAD (BASIC) 89 /Pattern matching with

* and ?, 89 I Program mode examples,
program length, string, and FN DEF bug,
use of OLD, 85, 90, 125 [5], 151

7LOAD ERROR 90
Loaders ordinary, 370; relocating, 377
Locksmith 775 - 7 76
LOC (BASIC) converse of exp, 9 7

Logical expressions 72 et al.

Logical file number 90, 127; see parameters
LOMEM & HIMEM alter BASIC RAM available

to a program 92
Lookup Tables 33

JMP (6502 opcode) jumps to new address, 336; Loops see FOR. . .NEXT, 64-66, 18 I exit

indirect jump bug, 488; other methods,
see RTI and RTS, eg. 744 [1]

de Jong, M. 26 7

JSR (6502 opcode) jump, saving return,
337; popping return address, PLA 342

Jump Tables see eg. 744 [4], 319

and nesting, 66,98/ with IF, 64
LSR (6502 opcode) shift right, 339

Programming the PET /CBM -501- Index

M

.M MLM command to display memory, 297

MACHINE-CODE: The 6502 chip. Chap. 11,

Addressing 3 10; Flags 312; Program

counter, stack 313; Hardware vectors

313; instructions 314; Tables appen dices

Programming, Debugging 373; Opcodes

Chapter 12; Program methods, 315 ff in

Chapter 11 I with BASIC, 28, 365 ff I

Disks, 194 ff I Graphics, 276 ff I Key-

board, 255 ff I Mathematics, 465 ff I

Screen, 6 introductory elementary pro-

grams, 307-309
And ROMs, BASIC operation, Chap. 5/

Index to ROM routines, Chapter 15/

Selected examples, Chapter 13 I

Conversion between ROMs, 364

Maclean, W. 80

Macro Feature of some assemblers, 364

Malmsberg, D. 278

Mask see eg. 324 [1], 340 [1]

Matrix Definitions, examples 458 ff

Maynard, M. 236

McCracken, W. 243

M-E (CBM disk) memory execute, 79 7

Mead, T. 108

Memfix shifts BASIC RAM, 14, 92

Memory Map RAM and ROM, Chapter 15

Memory Move 64, 301, 355

Menu 21, 474, 476

MERGE Interconnects BASIC programs,

Tape 93; Disk 94

Micro Magazine for 6502 and 6809,

61, 120, 128, 245, 251

Micropolis disk drives, 3, 158, 213

Microsoft Software writers, 5, 8, 9, 57, 58,

110, 125, 153, 405, 462, 464

MID$ (BASIC) takes substring, 95, 82 [2]

Midnite Software Gazette 257

Mikro Assembler chip, 362

MLM (Machine Language Monitor) 296 ff;

Operation and subroutines, 418, 420;

Extended monitors: see Monitor

MMF (Micro-Mainframe) 1, 307

MOD calculates remainders, 96

Modem 253

Modes: (i) Direct and Program, eg. 6,

152 [6], Chapters 5 and 7 for individual

keywords / (ii) Lower-case and Graph-

ics, screen modes, eg. 5, 11, 268, 272

Molloy, J. 2

Monitor for machine-code, see MLM; in

BASIC, 304 ff; Extended monitors,

298-299, and see EXTRAMON and
SUPERMON

MOS Technology part of Commodore
Semiconductor Group, 7

MPI disk drives, 198

M-R (CBM disk) memory read, 189

Mu-PET multi-user disk system, 759

MUSE (Education users), 79, 481

M-W (CBM disk) memory write, 790

N

N Flag for bit 7, 372

.N Extramon 'New Locater' command, 302

Nassi-Schneiderman chart, 79

NEW (BASIC) sets BASIC pointers to start

position, 97 /Disk NEW, see HEADER
Newman & Sproull 282

NEXT (BASIC) returns to start of previous

FOR statement, held on stack, 98

7NEXT WITHOUT FOR ERROR 66 [6]

NMI (non-maskable interrupt), 262, 313, 440

Normal Distribution 449-450
NOP (6502 opcode) no operation, 340

NOT (BASIC) unary 16-bit operator, 99

Numerals: see Accuracy, Calculations,

Floating-Point Accumulators, Rounding,
Variables/ String interconversion, see

STR$ and VAL, and table, 356

Nybble 294; interchange, eg. 364

OLD Positions pointers to correspond with

BASIC in RAM, 700 & 90 [2], 224 [2]

ON (BASIC) Casentry-like construction,

with GOTO or GOSUB, 702

Opcodes 314; Alphabetic list with full

details, Chapter 12; 482, 483, 485

OPEN (BASIC) Sets up file-table entries,

checks IEEE device, 103; file-table para-

meters, 104; disassembly, 352

Operators 7 7; priority, 37

OR (BASIC) 16-bit logical operator, 705

ORA (6502 opcode) 8-bit operator, 540

.ORG Assembler directive (origin), 363

Osborne 6 Donahue 2, 163

TOUT OF DATA ERROR and READY, 118

TOUT OF MEMORY ERROR 36 I Calcul-

ations using stack, eg. 75 / Pointers

inconsistent, eg. 48 / Stack depth full,

eg. 72 I Missing null byte, eg. 97

Oil (Database system) 184, 185

.P Printer disassembly, JO

7

Packages 475
Parameters for logical files, eg. 704 [2]

Parametric coordinates eg. 73 7

Pascal (Computer language) 494

Password 354

Pattern matching with CBM disks, 89

Pause 352
Peddle, C. 2

PEEK (BASIC) 706 /BASIC 1, 92, 153 [1]

Personal Computer World 7

Pertec disk drives 795

PET (Personal Electronic Transactor),
and CBM passim

Peterson, T. 379

PHA (6502 opcode) Push A 'on stack', 347

PHP (6502 opcode) Push PSR on stack, 347

Programming the PET/CBM -502- Index

PIA (Peripheral Interface Adaptor), 6520,
383 ff, 255

PicChip EPROM, 128
Pilot (Computer language) 494
PLA (6502 opcode) Pull stack into A, 542
Plotters 284 -288
PLP (6502 opcode) Pull stack into PSR, 342
Pointers see BASIC / Listed, 393-396
POKE (BASIC) 707; examples 92
POP Removes BASIC RETURN, 108
POS (BASIC) 109; example in AUTO
Power EPROM, 45, 93, 120, 149, 263
Power-on Reset 351 ff, 439
Practical Computing 1, 100, 132, 151

Prestel 263, 272
PRINT (BASIC) evaluation, formatting,
and output command, 7 70 ff; flowchart,
7 72; other notes, 269, 354, 403; TAB(
and SPC(, 137

PRINT# (BASIC) ouput command to single
specified file, 113; writing to file, eg.
163, 169; and CMD, INPUT#, 113-114

PRINT® see HTAB , VTAB
Printers 3, 246-253 / CBM, 247-249;
Secondary addresses, 704, 248; Special
characters, 249; wide characters, lower
case, 250 / Non-CBM, eg. 113, 251

Printout Magazine, 2, 87, 100, 121, 128,
198, 278

PRINT USINC BASIC formatter 115-117
Probability 46, 449-453
Processor Status Register PSR or SR, and
Flags (NVBDIZC) 312, Chapters 11 and
12; Table of each opcode and its effect
on flags, 482-483; Table of PSRs, 487

Program Counter (6502 feature), 313
Program Generators 494
Programs: Design, 19-20, 72 [2] , 477-480
Types: 17, 22, 473

Pseudo-opcodes 488-489

.0. Extramon command (Quick Trace),
Quadratic Equations 445
Quicksort 134

RDY 6502 pin, 262 footnote
READ (BASIC) Inputs from DATA, 118
RECORDS (BASIC 4 disk) relative file comm-
and, 183,232; Error 50, 223 [1]

Redefine keyboard programs, 259 ff
?REDO FROM START eg. GET, INPUT, 76
Regent multi-user disk system, 759
Relocating Loaders 577
REM (BASIC) comment line, 7 79; 14, 86 [1]
RENAME (BASIC 4 disk) and bugs, 233
RENUMBER Notes on BASIC utility, 720
Repeating Keys 258
Reserved Words in BASIC, see Keywords
RESET and power-on, 313, 351, 439
Reset switches 262
RESTORE (BASIC) resets DATA pntr, 727
RETURN (BASIC) jumps to end of last GO-
SUB statement on stack, 722

Return Key see Crlf
7RETURN WITHOUT GOSUB ERROR 705, 722
REVERSE Key 110,111 [2]; sets bit, 269
RIGHT$ (BASIC) takes substring, 123
RND (BASIC) 724; see Random Numbers
ROL (6502 opcode) rotate left with C, 343
ROM (Read-Only Memory) BASICs 1,2, S H,

see BASIC; ROM entry points, Chap. 5,

Chap. 7, Chap. 15; Examples, see Mach-
ine Code; also SYS 744; USR 153; in-
STRINGS 80; SORT 136; PRINT 7 7 7, 7 75;
PRINT USING 7 75; and many others

ROR (6502 opcode) rotate right with C, 343
Ross, D. 282
Rounding 29, 81, 96 [1], 115-117
RS232 Serial interface, 7 73
RTI (6502 opcode) restores registers and
address stored on interrupt, 544

RTS (6502 opcode) restores registers and
address of JSR, 344; see also JMP

RUN (BASIC) executes BASIC program from
optional starting linenumber, 75, 725;
improving speed, 52, 125, 152 [6]

Run Key = Shifted Stop key 424
Russo, J. 47

301

.S MLM Save (not last byte!) 238,298,420
r Sasso, L. 769

„ „ T „ _, ,. , .
SAVE (BASIC) RAM image save between

.R MLM command, display registers. 297, 479 pointers, 726, 756, 229; + replace 726 229
Rabbit Fast tape system, 236 SBC (6502 opcode) subtract borrowing'
Radian Measure of angle, eg. 746 carry flag, 315, 345
RAM (Random Access Memory) Calculation SCRATCH (BASIC 4 disk) = disk erase 254
on power-on, 557; Memory map 392-396; Screen: 5, 76, 7 77, 265
RAM image, see LOAD, SAVE, VERIFY, Screen RAM 6 ROM, 4, table 256- oro-
eg. 89, 156; Test, 707 iv, 439; RAM data

...
storage, 30; Pointers, see eg. LOMEM &

HIMEM, 92, and BASIC /Chips 5
Random numbers BASIC RND, sign of arg-
ument significant, 724 [1] ; conversion to
range not 0-1, 724 [2]; machine-code,

cessing locations, 64, table 2<?4; ROM
locations, usu. SE000 ff , 424 ff
Screen DUMP, 60 I Screen Editing, 4,

table 266, BASIC 4 275 / Screen Modes,
(lower case/ graphics) 111,265,267 I

Screen Scroll, 77, 86, 425; down, 426
379, 445, comments on pseudo-randomness Screen Speed, BASIC < 4 fast, 777, 590

-503-Programming the PET/CBM

Search 73, 209-210; binary chop, 30-31

SEC (6502 opcode) sets carry = 1, 346

Secondary Addresses and CBM, table 103;

IEEE, 378 ff

Security eg. 757, 478

SED (6502 opcode) sets BCD mode, 143,346

SEI (6502 opcode) sets interrupt disable

flag, prevents maskable interrupts, 346

Seiler, W. 120, 213

Semicolon see PRINT 110-112; in MLM, 297

Series summing 445 Hi, 471 -472

SET double-density graphics, 725

SCN (BASIC) computes sign as ±1 or 0,730

Sharp 73, 125, 128, 141, 243, 272

Shelley, M. 236

Shift Keys eg. WAIT, 737; distinguishing

the keys, 26 7; sets bit, 269; Sh-Stop, 424

Shugart disk drives, 3, 158, 293

Silicon Office database system, 184-185

Simons, D. 278

Simulation examples, 457 ff

Simultaneous Equations 459, 462

SIN (BASIC) Sine of angle, 73 7

Single-key Entry of BASIC 267

SORT 37, 321 Bubble, 37, 733, 736/ Ex-

change, 733/ Quicksort, 735/ Scatter,

735/ Shell-Metzner, 732, 134/ Tourna-

ment, 732/ Timing, approx., 736

Sound 1 bit, 288-292/ up to 8 bits, 293

SPC((BASIC) gives spaces, or cursor-

rights, with PRINT, 7 72, 737

SQR (BASIC) Square root function, 738

Square Root Symbol 138 [3]

ST (BASIC) Status byte, reserved vari-

able, 739 - 740, 770; 69, 90, 381 [5]

STA (6502 opcode) store accumulator, 347

Stack Hardware feature of 6502, $0100-

$01FF, 373, 349-350; see PHA, PHP, PLA

PLP, TSX, and TXS; in BASIC, stores

intermediate calculations, 72; FOR.. NEXT
98; GOSUB.. RETURN, 72, 122; Removing

stack addresses, see POP (BASIC), PLA
(machine-code); Inserting address on

stack, see RTS and RTI.

Statements BASIC, eg. 72

Status Register (SR on MLM), see Process-

or Status Register

STEP (BASIC) valid only with FOR
STOP (BASIC) Print linenumber, stop, 747

Stop Key How it works, see operation of

RUN, 725; disabling, 254 -257/ machine-

code test, kernel FFE1, 440-44 7

STR$ (BASIC) Numeral- to-sti'ing conver-

sion function, opp . to VAL, 742

Strasma, J. 2,213,251,262,299

Strings: BASIC examples, 32, 83, 123;

Storage, uncomputed strings stored by

pointer to program, and BASIC 4 has

extra pointers, 8,9,28,67,80,85; string

arrays, see DIM, FRE, Array Pointers,

and machine-code bubble sort; most

ROM routines on 409-477

Index

Structured Design 20

Strutt, A. & Hobbs, K. 264

STX (6502 opcode) store X-register, 347

STY (6502 opcode) store Y-register, 348

Subroutines Rationale, 722/ BASIC, 23 I

documentation , 23, 108 I machine-code,

327, 337 I multiple entry points, 77 [v],

326 I popping addresses, see Stack /

standard subroutines, 19

SUPA 2, 267

SUPERMON Extended monitor, 300 ff;

Loaders: BASIC 2, 490, 492; BASIC 4,

490 - 49 7

Sydenham, P. 2

Syntax 11 ff, 37 ff. Chapters 5 and 7

7SYNTAX ERROR 36 1 MERGE, 93 I REM,

7 79/ Pointers, non-zero leading byte, 725

SYS (BASIC) executes machine-code at loc-

ation specified in decimal, examples 744;

effect on monitor registers, 372-373

Systematic Errors 36

Systems Notes on types, analysis, pro-

gramming, timing, estimating storage

requirements and validation, 77-22 /

Business, 473- 475

.T Memory-move command, 307

TAB Setting with BASIC 4, 275

TAB((BASIC) gives spaces or cursor-

rights, with PRINT, 7 72, 745

TAN (BASIC) Tangent of angle, 746

Tandon disk drives, 3, 273

Tandy 92, 128, 155, 265

TAPE: Ports, 3 / ROM differences, 76,

> 429 ff I Operating error possibilities,

90 13], 126 [2], 235 I Buffers, used

with files & program headers, 69 12],

239-240, 392 I Tape blocks, files,

239- 240; 78, 139 I Machine-code

locations and programming, 241 ff I

SAVE disassembly example, 7 27

TAX (6502 opcode) transfer A to X, 348

TAY (6502 opcode) transfer A to Y, 348

Templeton, B. 93, 749, 368

.TEXT assembler directive, 363

THEN (BASIC) Valid only after IF, 75

Thomas, N. 243

Tl and Tl$ (BASIC) Reserved variables,

see Jiffy Clock, IRQ; notes, 747

TIM 'Tiny Monitor'; see MLM
Todd, M. 93, 226

.

Tokens 6; Listed by keyword individually

in Chapters 5 and 7; all have bit 7 set

Toolkit 45, 67, 700, 720, 737, 757, 263

Tournament Sort 7 32

TRACE BASIC utility 749; how it works,

359 -360
Transactor magazine, 2, 787

Trigonometry eg. 737, 457

Programming the PET/CBM -504- Index

True non-
bit set 1

AND 324.

bus, eg.
TSX (6502

to X, so

Turnbull,
TXA (6502
TXS (6502

pointer,
TYA (6502

U

zero in BASIC, eg. IF 75;

= true in machine-code, eg.

; bit set to = true in IEEE
375
opcode) transfer stack pointer
SP can be found, 349
T. 752

opcode) transfer X to A, 349
opcode) transfer X to stack
so SP can be changed, 350
opcode) transfer Y to A, 350

U Unit number, BASIC 4 parameter, eg. 223
. U Undo software uncrash, Extramon, 301
UA -UJ CBM disk jump table, 192
UNLIST BASIC utility, notes 757
Upper case/Graphics see Screen Modes
User Port position, 3 I Connected to VIA
Port A, 389-390 I Top connectors, see
CBM manual / PAO -PA7 and CB2 for
sound, 288-293; see Diagnostic sense
pin; tape loading and top connectors of
user port, 293

Users 477 ff
USR (BASIC) inputs expression after USR

into Floating-point Accumulator #1, then
jumps to location $0, 153; example, 138;
need not be JMP at $0, 753 [3]

USRCMD MLM extension vector, 298

VARPTR finds variable (not TI &c), 755
VDU visual display unit; see Screen
Vectors, hardware of 6502 440
VERIFY (BASIC) Loads and compares,
but does not store, RAM image, 139, 156

7VERIFY ERROR 756
VIA Versatile Interface Adaptor, 6522

chip, 383-390 / Display contents, 383 I
User Port, 387 I Diagram, 389 I
Programming, 390

VIC ('Video Interface Chip 1

), 1,3 76
78, 213, 235, 254, 261, 265, 267, 272

VisiCalc 263, 451, 475

W

WAIT (BASIC) tests bits at location, 757
Wedge 366 ff; DOS Support (='Universal

Wedge'), 169, 217; Also 144 [2], 152 [5]
Weinberg, C. 2, 199, 331, 459
Weizenbaum, J. 2
Wilson, A. 457
Winchester disks 158
.WORD assembler directive, 363
Wordcraft 256, 476
Wordpro 7 75, 475
Wozniak, S. 298

.X MLM command, 'Exit' to BASIC, 298
X-register 308-309
X2 Crash 262

V Internal overflow flag, 3 12, 329
VAL (BASIC) converts string, as far as

it is a valid representation of a number,
into numeral, 154

VALIDATE BASIC < 4 disk command; see
COLLECT

Validation examples, 32 ff
Variables Rules of naming, 7; longer names Zeller's Congruence for day of week, 24

with example table, 8; must begin with Zero page 313, 392 ff; temporary save,
alphabetic, 770; Storage of variables, then restore,
BASIC pointers, 10; simple 8; subscript- Zimmermann, M.
ed 9-70; floating-point, integer, string, ZX81 725, 473
and function definitions, 9-10 and e.g.
442; watching variables form, by con-
fining RAM to screen, 7 7, 92 iv

Machine-code, VARPTR uses LET; ex-
amples fetch variable value, 469;
PRINT USING inputs values, 7 77
Assignment, variables freely redefin-
able, 84; set up in RAM unless on
right, except arrays, 85

Yob, G. 2, 87, 121

Z Zero flag, set when result was 0, 312
Zaks, R. 264, 292

318; example in TRACE
297, 494

