
fj 1 OSBORNE/McG RAW- HILL

PET/CBM
PERSONAL
COMPUTER
GUIDE .

SECOND EDITION

Adam Osborne Carroll S. Donahue

PET/CBM
Personal

Computer

Adam Osborne
Carroll S. Donahue

OSBORNE/McGraw-Hill
Berkeley, California

Published by

OSBORNE/McGraw-Hill
630 Bancroft Way
Berkeley, California 94710

U.S.A.

For information on translations and book distributors outside of the U. S. A.
,
please

write OSBORNE/McGraw-Hill at the above address.

PET/CBM PERSONAL COMPUTER GUIDE
SECOND EDITION

34567890 DODO 8987654321

ISBN 0-931988-55-1

Copyright e 1980 McGraw-Hill, Inc. All rights reserved. Printed in the United States

of America. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording or otherwise without the prior written permission of the

publishers.

PHOTO CREDITS

Commodore Business Machines: pp. 2, 3, 4 (top, bottom), 40 (bottom)

Joe Mauro: p. 28

Harvey Schwartz: pp. 5, 15, 18, 20; 23, 24, 25, 26, 30, 32 (top, bottom), 35, 37, 38

COVER DESIGN : Timothy Sullivan

Contents

Preface ix

1. Introducing CBM Computers 1

CBM Models.

CBM Features 5

Rear Panel. CRT Display. Power-Up. CBM 8000 and CBM 2001/B Keyboards. PET
2001/N Keyboard. PET 2001/8K. The Cassette Tape Unit. Cassette Tapes. CBM Disk

Drive. Floppy Disks. The CBM Printer.

2. Operating the CBM Computer 49

Immediate Mode SO

Keyboard Input in Immediate Mode. Arithmetic Calculations. Cursor Movement.

Program Mode 58

Program Entry. Standard and Alternate Character Sets.

Operating the Cassette Units 64

Operating the Disk Unit 69

Loading a Program from a Diskette using BASKX 3.0. Loading a Program from Diskette

using BASIC 4.0.

Operating the CBM Printer 78

3. Screen Editing 81

Editing Text on the Current Display Line. Editing Text within Quotation Marks. Editing

Program Statements. BASIC 4.0 Screen Editing Extensions.

PET/CBM Personal Computer Guide

4. Programming the CBM Computer 91

Immediate and Programmed Modes. One Line Immediate Mode Programs. Spaces are

not Needed.

Elements of a Programming Language 96

Line Numbers. Data. Operators. BASIC Commands.

BASIC Statements 117

Remarks. Assignment Statement. Branch Statements. Looped Control Statements.

Subroutine Statements. Input and Output Statements. PEEK and POKE Statements.

END and STOP Statements.

Functions 137

Arithmetic Functions. String Functions. System Functions. User-Defined Functions.

5. Making the Most ofCBM Features 141

Hardware Features 141

Keyboard Rollover. Keyboard Buffer.

String Concatenation 145

Graphic Strings. Numeric Strings.

Input and Output Programming 149

PRINT Statement. Cursor Movement. CHR$ Function: Programming Characters in

ASCII. Data Entry (Input). Programming Displays and Printouts.

Mathematical Programming 183

Addition. Subtraction. Multiplication.

Graphics 209

Animation.

The Real Time Clock 217

Random Numbers 223

Random Number Seed. Random POKE to the Screen.

6. Peripheral Devices: Tape Cassette Drives, Diskette Drives
and the Printer 231

Storing Data on Magnetic Surfaces 232
The Concept of a File. Data Transfer to and from Cassette and Diskette.

Cassette Files 239

Programming Cassette Data Files. Cassette File Formats.

Diskette Files 270

How Diskettes Store Data. Programming Diskette Files. Opening a Diskette File.

Closing a Diskette File. Diskette Errors and Error Status.

Diskette Housekeeping Operations 282

Diskette Preparation and Initialization. Collecting a Diskette. Copying Files and
Diskettes. Renaming a File. Deleting Files.

Sequential Data Files 291

Sequential File Field Separators. Writing Numeric Data to a Sequential File. Writing
String Data to a Sequential File. Adding Data to Sequential Files. End-of-File.

Relative Data Files (BASIC 4.0) 302
Relative File Field Separators. Writing Numeric Data to Relative Files. Writing String

Data to Relative Files. Positioning to Records of Relative Files.

Using GET# with Diskette Files 308
Program Files 310

Job Queuing

Programming the Line Printer 312

Printing Data Exactly as Received. Formatted Printer Output. Special Printer Control
Characters. Page Format. Defining Your Own Characters. Printer Diagnostic Messages.

System Information 333

CBM Computer System Organization. Memory Map. BASIC Statement Storage. User

Program Area Initialization. Data Formats. Constants. Character Representation.

Assembly Language Programming. SYS. USR. Random Access Files.

CBM BASIC 359

Immediate and Program Modes. BASIC Revisions. Format Conventions.

BASIC Statements 362

Functions 394

CBM 8000 Editing Functions 405

Appendices

A.

B.

C.

D.

E.

F.

CBM Character Codes 409

CBM Error Messages 417

BASIC Bibliography 429

CBM Newsletters and References

Conversion Tables 433

Revision Level 2 ROMs 443

Index 495

431

Preface

This edition of the PET/CBM Personal Computer Guide is a major revision of the

original book published under the same title.

This book describes all models of CBM computers: the original PET 2001 which

made Commodore famous, and the more recently introduced PET 2001/N, CBM 2001/

B and the 80-column CBM 8000. Peripherals described include cassette drives, two

floppy disk units (the Model 2040 and the Model 8050) , and two printers (the Model
2022 and the Model 2023).

Also described are recent software products introduced by Commodore: BASIC
4.0, the most recent version of Commodore's BASIC programming language, and two

new versions of the disk operating system, DOS 2.1 and DOS 2.5, collectively referred

to as DOS 2.0 in product literature.

The discussion of BASIC programming has been greatly expanded. Even if you
have never programmed a computer before, this book will teach you how to write your

own BASIC programs for any CBM computer system.

This is a large book, containing a great deal of information about CBM computer
systems. Depending on your needs you may not use all of the information provided.

Perhaps you have no intention of ever becoming a programmer. Chapters 1, 2 and

3 tell you everything you need to know in order to run programs that have already been

written. You can skip the rest of the book until you become more ambitious and want to

do a little programming for yourself.

Chapters 4, 5 and 8 teach BASIC programming. Every CBM BASIC statement is

described rigorously, but concisely, in Chapter 8. Chapter 4 describes elementary

BASIC programming, while Chapter 5 covers more advanced programming techniques.

Both of these chapters rely on Chapter 8 for actual statement definitions.

x PET/CBM Personal Computer Guide

Chapter 6 explains programming techniques required by peripheral units includ-

ing cassette drives, diskette drives and printers.

Chapter 7 is for the programming expert only. This chapter covers advanced

topics such as random diskette access and assembly language programming.

Nothing teaches you programming as effectively as examples. Therefore this book

is full of short programs. Whenever you encounter a programming example, key it into

your computer and run it. You should also save it for future use (assuming that you

have cassette or diskette drives). Every programming example presented in this book

has been run on a CBM computer. That guarantees the programs are accurate as run.

But only an arrogant or foolish programmer will claim that his or her programs are truly

free of errors. The programs presented in this book may well have errors which you will

stumble on when you try to run them in novel ways. When you enter a program and try

to run it, if it does not work, do not immediately assume that the program is wrong.

Carefully check your entry and execution procedure. But remember that programming

errors may exist, and if you do find any, please tell us about them.

CBM computers all have two character sets: standard and alternate. Throughout

this book we have used the standard character set to illustrate programs and program

execution examples. If your computer is to reproduce these illustrations exactly, then

you must make sure that you are using the standard character set. Using the alternate

character set will make the program or illustration appear different.

The different versions of disk operating systems affect the way you program a

CBM computer, but these effects are largely masked by the different versions of BASIC.

Therefore we will continuously refer to different levels ofCBM BASIC, but we will only

occasionally identify a different version of disk operating system.

There have been three releases of CBM BASIC, designated by numbers 1 jc, 3 a,

and 4jc. V is a number specifying a subrelease. The most significant changes in CBM
BASIC were made with release 4.0. In this book we will generally divide BASIC into

release 4.0 and earlier releases. These are designated as follows:

1. BASIC 4.0 for any BASIC 4jc.

2. BASKX3.0 for all earlier releases of BASIC.

Acknowledgments

Portions of this book have been taken from the first edition which was co-

authored by Janice Enger. The Blanket program was written by Janice Enger, and the

manner in which this program is used to illustrate text was her idea.

Patrick L. McGuire was author of the Digital Display Clock program listed in

Chapter 5.

Jim Butterfield supplied much of the memory map information included in the

first edition, which has been included also in this second edition.

Commodore personnel, in general, and Chuck Peddle, in particular, were very

helpful, providing newly released hardware and software products, then arranging for

technical review of manuscripts.

The names PET and CBM are registered trademarks with regard to any computer

product, and are owned by Commodore Business Machines, a division of Commodore
International. Permission to use the trademark names PET and CBM has been granted

by Commodore Business Machines, and is gratefully acknowledged.

Chapter 1

Introducing CBM Computers

This book describes the following Commodore computers:

1. The PET 2001 /8K

2. The PET 2001/8N, 2001/16N and 2001/32N

3. The CBM 2001/16B and 2001/32B

4. The CBM 4000 series

5. The CBM 8000 series

In 1977, Commodore Business Machines released the first of the CBM series, the

PET 2001 (Personal Electronics Transactor). The PET 2001 is a self-contained unit with

a compact graphic keyboard and built-in tape cassette unit. The CBM 2001, which was

released next, has an expanded, full-size graphic keyboard. Although functionally the

same as the PET, the CBM 2001 and subsequent CBM models do not have a built-in

cassette tape unit; instead they depend on external peripherals to store information. The
CBM 2001/B business computer is a variation of the CBM 2001. The major physical

difference between the CBM 2001 and the CBM 2001/B lies in the keyboard; the CBM
2001 has a full-size keyboard with graphic symbols, whereas the CBM 2001/B has a

standard typewriter keyboard without graphic symbols on the keys. CBM 8016 and CBM
8032 business computers are the most recent introductions; they both have an 80-col-

umn CRT display, but are otherwise the same as the CBM 2001/B. The CBM 8032 has

twice as much memory as the CBM 8016; in other respects these two models are identi-

cal.

Commodore has also released printers and disk drives. Continual updates for

Commodore BASIC and disk operating system software are being released.

PET/CBM Personal Computer Guide

Figure 1-1. CBM 8000 Computer

Commodore's original computer was the PET, and this name became well

known. But recently introduced computers have a CBM model designation. Therefore

this book will adopt the convention of referring to the entire computer product line as

CBM computers, unless only the original PET is specifically referenced. We will refer

to both the CBM 8016 and CBM 8032 models using the general model name CBM 8000,

unless one model or the other needs specific reference.

Currently CBM computers are available with 8K, 16K, or 32K bytes of memory.

Only the original PETs had a 4K memory byte option. IK means 1024 (2 10
). One byte

holds one character of data. The 8K, 16K and 32K designations refer to the amount of

usable read/write memory. Every CBM computer has additional memory that is inac-

cessible to users. It is important to know how much usable read/write memory is availa-

ble to you. A CBM computer with more memory can run longer programs and handle

more data.

CBM MODELS

The CBM 8000 (CBM 8016 and 8032)

The CBM 8000 is shown in Figure 1-1. Its main distinguishing feature is the

enlarged 80-column Cathode Ray Tube (CRT) display, or screen. It has a full-size

typewriter keyboard, some unique screen editing keys, and a numeric keypad to the

right. The CBM 8016 has 16K bytes of read/write memory. The CBM 8032 comes with

32K bytes of read/write memory. The CBM model number correlates with the amount

of available read/write memory. To complete the business system, an external cassette

tape unit or CBM disk drive must be attached. A printer will also probably be needed.

Chapter I: Introducing CBM Computers 3

THE CBM 2001 /B

The CBM 2001/B, like the CBM 8000, is a business computer; it is shown in

Figure 1-2. The CBM 2001/B CRT display is 40 columns wide; that is half the width of

the CBM 8000 display. The CBM 2001/B has a full-size typewriter keyboard, with

screen editing keys and a numeric keypad to the right. The CBM 2001/B is available with

16K or 32K bytes of read/write memory. Like the CBM 8000, a CBM 2001/B will need

an external cassette tape unit or disk drive, and probably a printer as well.

THE PET 2001 /N

The PET 2001/N series, shown in Figure 1-3, is a modified and improved ver-

sion of the original PET computer. The CRT display is identical to the 2001/B. What

separates the PET 2001/N from the business computers are the graphic symbols dis-

played on the front of the PET 2001/N keys. The PET 2001 is available with 8K (/8N),

16K (/16N), or 32K (/32N) bytes of read/write memory. The PET 2001/N and the

CBM 2001/B have the same external device requirements (for cassette tape or disk, and

printer).

THE PET 2001 /8K

The PET 2001/8K was the first computer released by Commodore Business

Machines. All of the CBM models have evolved from the PET 2001/8K. With the same

CRT display as the CBM 2001, the PET 2001/8K can easily be differentiated from the

other CBM models by its compact, multi-colored keyboard and numeric keypad. There

are graphic symbols displayed on the top of the PET 2001/8K keys, shown in Figure

Figure 1-2. CBM 2001/B Computer

PET/CBM Personal Computer Guide

Figure 1-3. PET 2001 /N Computer

Figure 1-4. PET 2001/8K Computer

Chapter 1: Introducing CBM Computers

TV brightness

adjustment

Serial number and

electrical spec.

J4 Memory expansion

connector
/ Power switch

3-Wire AC
power cord

Figure 1 -5. Rear View of CBM

1-4. Because of the keyboard's small size, a built-in cassette tape unit is located to the

left of the keyboard. The PET 2001/8K is the only model available with a built-in

cassette unit. The price you pay for having an internal tape unit is the compact keyboard.

The PET 2001/8K has 8K bytes of read/write memory. 16K and 32K memory expansion

options are available. A 4K version is available as a special order. The PET, like all other

CBM computers, has additional read-only memory (or ROM) which is not available to

users. This ROM holds permanent programs that give the computer its model per-

sonality. Many PET computers have an "old" personality, characterized by an old set

of ROMs.
An external cassette tape unit may be connected to the PET computer. A printer

and/or disk drives may be attached to a PET 2001/8K only if it has Revision level 3

ROMs.

CBM FEATURES

REAR PANEL

All switches, connectors and interfaces are located at the back of your CBM
computer. Figure 1-5 shows a rear view of the CBM computer, with each component

labeled, followed by a description of each part. It is important to know the location and

function of each part so that you do not damage your CBM computer by using connec-

tions incorrectly.

PET/CBM Personal Computer Guide

Power Switch

The power switch is located on the left side of the back panel. It is a two-position

"rocker" switch. Pressing on the outer side of the switch turns power on; pressing on

the inner side of the switch turns power off.

As soon as you turn the power on, the CBM computer is ready for use. When you

turn the power off, you lose anything stored in the computer's read/write memory; that

includes all programs and data you entered after turning power on.

Power Cord

The 3-wire AC power cord connects the CBM computer to an electrical outlet.

The power cord will connect directly to any household three-prong electrical outlet,

without the need for intermediate transformer or adapter.

IEEE 488 Interface

The IEEE-488 interface (Jl in Figure 1-5) allows the CBM computer to communi-

cate with external peripherals. IEEE cable will connect a printer, disk drive or other

IEEE 488 device into the IEEE 488 interface.*

Parallel User Port

This interface (J2 in Figure 1-5) can be used instead of the IEEE-488 connector to

attach peripherals to a CBM computer. You need not know anything about this port. If,

by chance, you have a peripheral unit that uses this port, accompanying documentation

will tell you how to connect to it.

Cassette Interface

This interface (J3 in Figure 1-5) is designed specifically for an external cassette

tape unit. This interface is on the far right side, easily identifiable by its smaller size.

Memory Expansion Connector

Located on the back right side of the CBM (J4 in Figure 1-5), this is another con-

nector that you need to know very little about. Extra read/write memory can be added to

your CBM computer. Extra memory is attached to the Memory Expansion Connector.

TV Brightness Adjustment Knob

This knob controls the brightness of the CRT display. While facing the front of the

computer, turn the knob to the left to darken the screen; turn to the right to brighten.

Notice the change of character sharpness as you adjust the brightness.

•For detailed description of the IEEE 488 interface, refer to PET and the IEEE 488 Bus (GP1B) by E. Fisher and

C.W. Jensen, Osborne/McGraw-Hill, 1980.

Chapter 1: Introducing CBM Computers 7

CRT DISPLAY

The CRT display is similar to a black and white television screen, but it has higher

resolution, which means that you can see small images and characters with greater

clarity. Depending upon the model, either 1000 or 2000 character positions are dis-

played, in 25 rows of 40 characters, or 25 rows of 80 characters. Characters are created

by displaying appropriate dots within an 8 x 8 dot block (also called a matrix). This is

illustrated in Figure 1-6.

The various CRT displays are described separately below. If you have the CBM
8000, read the following description and then skip to the keyboard section. If you have

the CBM 200 1/B, 2001 or PET skip the section on the CBM 8000.

CBM 8000

The CBM 8000 CRT display separates the CBM 8000 from the other CBM
models. The screen is divided into 2000 equal spaces, arranged in 25 rows of 80

characters each. One character per space is displayed. Every space on the screen has a

memory byte assigned to it.

Alphabetic and numeric characters, special symbols and graphic symbols can be

displayed. The CBM 8000 normally displays lower and upper-case alphabetic characters

using a character set that is usually referred to as the alternate character set. There is

also a standard character set, which displays numerous graphic characters, but no lower

case letters.

CBM 2001/B, PET 2001 /N, PET 2001 /8K

The CRT displays on the CBM 2001/B, PET 2001/N and the PET/8K are

basically the same. The CRT is divided into 1000 spaces, arranged in 25 rows of 40

characters each. One character is displayed in each space.

All models display two types of characters: alphanumeric (alphabetic, numeric,

special character symbol) and graphic symbols. The CBM 2001/B, like the CBM 8000,

normally displays the alternate character set of lower- and upper-case alphanumerics;

graphics are part of the standard character set. The PET normally displays the standard

character set consisting of upper-case alphanumerics and graphics. Upper- and lower-

case alphanumerics are in the alternate character set.

i. 8 x 8 Dot Matri)c b. Sample letter A c. Sample Graphic

Figure 1-6. The 8 x 8 Dot Matrix

8 PET/CBM Personal Computer Guide

POWER UP

To "start up" your CBM computer follow these steps:

1

.

Plug the AC power cord, located on the console's rear panel, into a three-hole

grounded electrical outlet. Notice that the power cord has a three-prong power

plug. Do not attempt to plug the cord into a two-hole (ungrounded) outlet. Do not

attempt to remove the ground prong. If the unit is not properly grounded, you

may receive an electrical shock. Grounding adapters that convert a two-prong

outlet into a three-prong (grounded) outlet are available from your hardware

store or electrical supply house. CA UTION: Do not use a three-prong adapter

unless you ground it properly when installing it.

2. Switch power on. The power switch is located on the left side of the console's

rear panel. It is a two-position "rocker" switch. Pressing on the outer side of

the switch turns power on; pressing the inner side of the switch turns power

off.

3. Wait for READY display. About three seconds after switching power on, a

message similar to the following one is displayed on the screen:

COMMODORE BASIC

xxxxx BYTES FREE

REflDV.

M

The four lines of display have the following meanings:

COMMODORE BRSIC ### This line indicates that the BASIC language has been activated

xxxxx BVTES FREE This line shows how much memory is available to you.

3071 (or a similar number) will be displayed for a 4K PET system

71 67 (or a similar number) will be displayed for an 8K CBM system

1 5359 (or a similar number) for a 1 6K CBM system

31743 (or a similar number) for a 32K CBM system

REflDV. The CBM computer is ready to receive input from the keyboard

M The flashing cursor is displayed at the position on the screen where

the next character typed in from the keyboard will appear

If you do not get the display illustrated above after turning power on, then turn

power off, wait a few seconds, and turn power back on. The display may first be filled

with random characters for a second or so. This is normal; just ignore it. The random

character display may appear whenever the CBM is turned off and then on again within

about ten seconds.

CBM COMPUTER KEY GROUPS

The CBM computer keyboard is used to enter statements, programs and data

required by programs. The type of keyboard depends on which model CBM you have.

With a few exceptions, the same keys are present on both the compact and full size

keyboards. Some keys have different locations on the various computer models.

Keys on the CBM computer keyboard can be grouped as follows: Alphabetic

keys, numeric keys, special symbol keys, graphic keys, function keys, and cursor

control keys.

Chapter I: Introducing CBM Computers 9

Alphabetic Keys

The alphabetic keys provide the 26 letters of the alphabet, A to Z. Upper and

lower-case letters are available on all CBM models.

Numeric Keys

The numeric keys provide the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Special Symbol Keys

Special symbols and characters may represent standard punctuation marks

and commonly used symbols. For example, there is a period, a comma, " + " for addi-

tion, " — " for subtraction, etc. Characters that have widely recognized interpretations

include "$" for dollar sign, "%" for the percent sign, etc.

Some characters represent a specific operation, or have special meaning in a

BASIC statement. For details see Chapter 4.

Graphic Keys

The CBM keyboard contains 62 graphic symbols, accessed using shifted data keys.

With so many graphic characters available on the CBM computer, you can create some
rather sophisticated display drawings.

Graphic characters are listed in Table 1-1; each is given a name. Similar symbols

are grouped to make graphic options immediately obvious. Note that the square enclos-

ing the graphic symbols in Table 1-1 is not part of the symbol; the square enclosure

has been added to show the symbol's location within a grid space.

Function Keys

SHIFT. The SHIFT key is pressed simultaneously with any other key to

access the key's shifted character. All keys display different characters in shifted and

unshifted modes. The lower key symbol is accessed when unshifted. The upper key

symbol is accessed when shifted.

There are two identical SHIFT keys located on the main keyboard, one at the

lower left and one at the lower right.

SHIFT LOCK (full size keyboard only). CBM computer keyboards have a SHIFT

LOCK key located directly above the left-hand SHIFT key. Pressing the SHIFT LOCK
key until it "clicks" into place holds SHIFT down so that both hands are free to type in

shifted mode. Press the SHIFT LOCK key again to release it; both SHIFT keys return to

their unshifted position.

RETURN. The RETURN key is the equivalent of a carriage return on a

typewriter; when depressed, it causes the cursor to move to the beginning of the next

line on the screen.

A RETURN given anywhere on the last line of the screen causes all of the screen

text to move, or scroll, up one line. The top line rolls up off the screen and a blank line

rolls onto the bottom line of the screen, with the cursor left at the beginning of the blank

line.

10 PET/CBM Personal Computer Guide

Table 1-1. Graphic Chararacter Keys

Line

Horizontal

Thin

Bar

n
Top n

7

H
E

3/4 Top y

B
D

2/3 Top c
4

a
c

Middle *

H Near Middle

B
F

Q
R

D
$

2/3 Bottom

3/4 Bottom

Bottom

Thick

Bar

s
a
9

E
5

V
Line

ertic

D
%

ai

Left

a
6

T
3/4 Left Half

Block

G
2/3 Left

E

m
B

Near Middle B
//

m Middle

CD

H
2/3 right T iangl

Solid

a
Y

3/4 right
H
)

,

a Right a

Top

Bottom

Left

Right

Top

Bottom

Left

Right

Left

Bottom

Top Left

Quarter Block

Solid

fEfl fa] t°p Left-

>J I < J Top Right

j] [j 1 Bottom Left,

Bottom Right

Diagonal

Quarter Block

Open (Angle)

[g Top Left,

Top Right

Suit

Spade, Heart

""]
[

1 Diamond,

Z I IxJ Club

Top

Bottom

Left

Right

Symbol

FD ra Bottom Left, V
X

• Bottom Right

ffl

[
Cross

Corner

(W
Diagonal

Acute

LSJLi
Top Left,

Top Right N Diagonal

M Grave

(HE
Bottom Left,

Bottom Right

Grid

Rounded Full

Corner &

E Q Top Left, E
Half Left

U 1 Top Right \

H FH Bottom Left, a Half

J K Bottom Right (Bottom

Circle

Solid

Outline

Chapter 1: Introducing CBM Computers 11

Line

1

2

24
25

Before RETURN

10 ?"NOW IS THE TIME"
Z0 ?"FOR ALL GOOD PEOPLE"
30 READ K2

90 fl=E+C-D
108 IF M-l GOT0 10£

xCursor

After RETURN

Top tine scrolled off screen

20 ?"FOR ALL GOOD PEOPLE"
RERD ><2

90 fi=B+C-B
180 IF R=l GOTO 18

Cursor

Blank line scrolled in

REVERSE ON/OFF. The Reverse key allows you to reverse the black and
white parts of characters; REVERSE is like the negative of a photograph. The nor-

mal mode for this key is "off." To activate the REVERSE key, press it in unshifted

mode. The next character keys you press will be displayed in reverse field. REVERSE
ON stays in effect until you either press REVERSE OFF (the REVERSE key shifted) or

until you press the RETURN key.

HEC'!)a«REC

•r
1RVS ON

,

1 I RVS OFF

Note: Reverse field terminated by carriage return

RUN/STOP. STOP is the unshifted half of the RUN/STOP key. STOP stops any
program that is being executed by the computer and reconnects the computer with the
keyboard. If you want to test the STOP key, try entering the following one line program,
without trying to understand what it means. Key in the shaded line. When you press the
RETURN key, a vertical column of numbers will be displayed, as shown. When you
press the STOP key, the display will "freeze."

FOR 1=1 TO 100 ?I NEXT I

1

10

BREAK
REfiBV.

-Press STOP key

12 PET/CBM Personal Computer Guide

The STOP key does nothing if there is nothing to stop, i.e., the CBM computer is

not running a program.

RUN is the shifted half of the RUN/STOP key. RUN loads and executes a pro-

gram from an external peripheral (tape unit or disk drive).

Cursor Control Keys

The remaining four keys are cursor control and edit keys. They include CLEAR
SCREEN/HOME, CURSOR UP/DOWN, CURSOR LEFT/RIGHT, and INSERT/

DELETE.
HOME is an unshifted cursor control key that moves the cursor to the "home"

position at the upper left-hand corner of the screen.

Before HOME After HOME

60 QT=QT+fl
70 NEXT X
80 CLOSE

1

96 END
1000 POKE 53411,53
1010 T=TI
1020 IF (TI-TXIO GOTO 1020
1030 POKE 53411,61
1040 GT=0 8S

€0 QT=QT+R
70 NEXT X
30 CLOSE

1

30 END
1000 POKE 53411,53
1010 T=TI
1020 IF CTI-TXIO GOTO 1020
1030 POKE 53411,61
1040 QT=0

Cursor here Cursor homed

CLEAR SCREEN, obtained by pressing the CLEAR SCREEN/HOME key in

shifted mode, homes the cursor and blanks the entire display screen.

Before CLEAR SCREEN After CLEAR SCREEN

60 QT=QT+R
7S NEXT X
SO CLOSE

1

90 END
1006 POKE 53411,53
1010 T=TI
1020 IF (TI-TXie GOTO 1020
1030 POKE 53411,61
1040 C!T=0

Cursor here Cursor homed, screen blanked

Chapter 1: Introducing CBM Computers 13

CURSOR UP, obtained by pressing the CURSOR UP/DOWN key in shifted

mode, moves the cursor up one line within the same physical column of the screen.

CURSOR UP

If the cursor is on the top line of the display, CURSOR UP has no effect.

The cursor moves over characters without changing them.

CURSOR DOWN, obtained by pressing the CURSOR UP/DOWN key in

unshifted mode, moves the cursor down one column.

CURSOR DOWN

t Blank lines scrolled onto screen

when cursor is at bottom line

If the cursor is on the bottom line of the screen, CURSOR DOWN scrolls the dis-

play up one line.

CURSOR LEFT, obtained by pressing the CURSOR LEFT/RIGHT key in

shifted mode, moves the cursor left one position within the same horizontal row.

CURSOR LEFT

14 PET/CBM Personal Computer Guide

CURSOR LEFT has no effect if the cursor is in the HOME position.

CURSOR RIGHT, obtained by pressing the CURSOR LEFT/RIGHT key in

unshifted mode, moves the cursor right one character position within the same row.

CURSOR RIGHT

Blank lines scrolled onto screen when

cursor moves off bottom right

CURSOR RIGHT and CURSOR LEFT "wrap around," moving from the end of

one line to the beginning of the next, or vice versa.

If the cursor is at the end of the bottom line, CURSOR RIGHT will scroll the

screen up one line and move the cursor to the start of the bottom line.

CURSOR LEFT/RIGHT are used to type over text. When editing, the cursor

does not alter the display as it moves. This is equivalent to backspacing or spacing for-

ward on a typewriter.

The INSERT/DELETE key in unshifted mode selects DELETE. It deletes the

character to the immediate left of the cursor and moves any characters to the right of

the deleted character, headed by the cursor, one character position to the left.

NOW IS THE TIME*!:

NOW IS THE TIM»
NOW IS THE TI«

The INSERT/DELETE key in shifted mode selects INSERT. It opens a single

character space in the line at the current position. You can then insert an additional

character into the space.

NOW ISiiTHE TIME
NOW IS« THE TIME
NOW IS* THE TIME

CBM computers treat all text as a sequence of 80-character lines. You can delete

up to, but not beyond the start of an 80-character line. You can insert until current text

reaches the end of the 80-character line.

THE CBM 8000 and CBM 2001 /B KEYBOARDS

The CBM 8000 and CBM 2001/B keyboards are similar to a standard

typewriter keyboard, with a numeric keypad to the right as shown in Figure 1-7. The

keyboard may be used in two typing modes to produce two character sets.

In Alternate Mode, unshifted keys produce lower-case alphanumerics on the

CRT, and shifted keys produce capital, or upper-case alphanumerics. The alternate

character set is active on power-up.

Chapter 1: Introducing CBM Computers 15

Figure 1-7. The CBM 8000 and 2001 /B Keyboard

Standard Mode (forced by typing a system command) displays upper-case

alphanumerics when keys are pressed unshifted; shifted keys display graphic characters.

To activate the standard character set, type in:

POKE 59468,12 (RETURN)

or on the CBM 8000 only:
?CHR$(142)

This will immediately change character sets. To bring back the alternate set, type in:

or on the CBM 8000 only:
POKE 59468,14 (RETURN)

?CHR$(14)

Unless stated otherwise, we will assume that the standard character set is being

used. Also we will assume that every statement ends with a RETURN, as shown
above.

In the following key descriptions, the keyboard is illustrated by key groups, with

the particular key group shaded.

Alphabetic Keys

ennnnoEiinDOonraQEH
TAB

3 BC33BE
HQHBHHHHHHBB

Oa

[0_o
Alphabetic keys are shaded in the illustration above. In alternate mode, alphabetic

keys display lower case letters unshifted, and upper case letters if shifted. In standard

mode, alphabetic keys display upper case letters unshifted, and graphic characters if

shifted.

16 PET/CBM Personal Computer Guide

Numeric Keys

fflfflDHEH
HHHBHBHBQBHBR ±u

0BEB0B0000H0
E3BHHHHH00E2EEIBI1

00
©0
00
I - : 10

The numeric keys (shaded) occur twice, on the top row of the typewriter

keyboard, and on the numeric keypad to the right. The number keys on the top row are

accessed in unshifted mode only. The numeric keypad may be accessed in standard and

alternate mode. For touch typing, key number 5 has a small bump in the center of the

key.

Special Symbol Keys

B
TAB OSHSBBBBBE
3

PHfflrannB

BaBHBHHam
a

aB:iLiii3Bi'3iiaEiQu];i^ia

L30E
00E
0B0
LjJU

Special symbols are shaded in the illustration above. Symbols located on the top

half of the numeric keys are accessed in shifted alternate mode. Other symbol keys are

accessed in shifted or unshifted mode.

Graphic Keys

i^^gi^.iyHii^;i^gCg
SHHHB0HI3EE1ESEEE

H QBHEEE
EIHBHHHBHO]0Q[

OO

B
\[

]Q
Graphic symbols are not shown on the business keyboards, but they are available.

Select the standard mode with POKE §9468,12. Keys depressed in shifted mode then

access and display graphic symbols. The illustration above shows where graphic

characters available from the keyboard are located on a business keyboard.

Chapter 1: Introducing CBM Computers 17

Function Keys

ammnfflfflmmfflmnraHQE
TAB aasESQ JHQQ
aHHHMBHHEBHlO
HHHHBHHQHEB CLR

00 (9J

HE
00

a
a

j(
]

The CBM 8000 and 2001/B have three extra function keys not described in the

"CBM Key Groups" section; the TAB, ESCAPE (ESC), and the REPEAT keys.

TAB. This key is used to set and clear tabs, and to jump to the next tab set

column.

ESC. (CBM 8000 series only). This key has two uses: it cancels the effect of an

insert, reverse character or text entry condition; it also is used in conjunction with cer-

tain other keys to create special editing functions (described in Chapter 5).

REPEAT. This key causes repeated entry of any key that is pressed

simultaneously.

Cursor Control Keys

amfflnmnnmnmnHHQ
TAB H
£

w sREBSHrgaacj
aEHHBHQQEEEI
aBEHHHHQQBEDB

00W
00
00
[

These keys are described in the "CBM Key Groups" section.

THE PET 2001 /N KEYBOARD

The PET 2001/N keyboard has a full-size typewriter keyboard with graphic

symbols on the front of the keys (see Figure 1-8). This keyboard also has two typing

modes: standard and alternate. Standard mode is selected when you first turn power

on. To activate alternate mode, type in:

POKE 59408,14

To change back to the standard character set, type in:

POKE 59408,12

18 PET/CBM Personal Computer Guide

Figure 1-8. PET 200 1/N Keyboard

CBM 2001 Alphabetic Keys

iEQiBiQaBaBREa
OFF
RVS3
SHIFT
LOCK mm

z\

m
@

aaa
®

a
a

®
e

HSHBOSE
aHE a

®
a

m
a

aa

a
a
a
a

The alphabetic keys shaded above access upper case alphabetics in unshifted stan-

dard mode. Lower and upper case alphabetics are accessed in alternate mode.

Numeric Keys

HraHHHHQHQHQBBE
®

B
S
Sa®
®a

a
am

graB®®aQQ0[
Ei
QHS

The numeric keys are on the numeric keypad to the right of the full-size keyboard.

Numbers are accessed in unshifted mode only.

Chapter 1: Introducing CBM Computers 19

Special Symbol Keys

(@1 wilt"]if#i'f$if%13l » ¥

&

!l \ c 1 1 1—1 1 IS
i

OFF
BUS W E WJM.

as®
u

a K

p a*, l<jL>J

H
EEEaBBGiaiir^

The special symbols are located on the typewriter keyboard and on the numeric

keypad. These are only available as unshifted keys.

Graphic Keys

aBHHHHyaEJEQBaH
1
™s

1

(shift)
[LOCK j

Hirm u

a
B
K

[ol

RUN
ISTOP

a >

aQLOE

s
a
a
BB

a
a

The graphic symbols are located on the front of all non-function keys and cursor

keys. Graphics are only accessed in shifted standard mode.

Function Keys

@ HHHHQHEIHHHHQ
IsHfolw

«fj
SHIFT ll

I LOCK

a®a
H a

a
K
as
ma

aOI3HHE3HQED0

a < i >: a

a

m

aa

m
a
a
a

The CBM 2001 has Pi (tt), a function key not on the business keyboards. It is

located on the | key.

Pi Or) is a circle's circumference, divided by its diameter. When this function key

is depressed, the value 3.14159265 is accessed. To check this out, type in the shaded

line; end with a RETURN and see the display:

-'it

3. 14159265

20 PET/CBM Personal Computer Guide

n is not evaluated as 3.14159265 if it appears within quotation marks. Then it is

treated as a graphic character. To check this out, type in the shaded line again, as

follows:

REfiDV.

tt will be displayed, as shown above, when you press the RETURN key.

Cursor Control Keys

@; Hi® ^JuJ.I&iH \j.| C
|i:|

) S33H
w SHHraESSE

SHIFT
! LOCK A S D F G H J K L

i-a INST
.HOM(

:

:

:

«SP|:|CPSR 1^*1

7 8 9/
®B®H
HHSH
®GEH

Cursor control keys operate as described earlier in this chapter.

PET 2001 /8K KEYBOARD

The PET 2001 has a compact, multi-colored keyboard; like all other keyboards,

this one accesses different character sets in standard and alternate modes. Like the PET
2001/N, standard mode is selected when you turn power on. To activate the alternate

character set, type in:

POKE 59468, 14

To return to standard character, set type in:

POKE 59468, 12

Figure 1-9 illustrates the PET 2001 keyboard.

•

f
II n 9

1

'

1

£ " V (

r
r
^

~? ^R
•
a

ow E
.
„ I

T
1

Y
r

U 1

r
o

1
, P

77

r 7 a 3 /

*
A : S a ' F

I

: 6
1

H a
j

K
_l

H
e

1 l

5
I

B *

Z
*
X c

X
V

1

B
m B i -i a

H

3 +

9
+
£

I

' 3
"

•

> iHii

r -a

-
j

Figure 1-9. PET 2001 /8K Keyboard

Chapter 1: Introducing CBM Computers 21

Alphabetic Keys

am #
fallir"!
— 1

& \
fa]
l±Jm rsi

p la]
w

:.q.
E R

.0
T [1 j o f71 (71

iti s
B B

F
D
G (3

H
J

HI
k)

D
uum " 1

E
T
u
R
N

Jhi 1 x
B
C

SI

V
ID

B liJ M
a r°im

SHIFT
f OFF

RVS
[ON J

B
I e J

ffl

I

U

m
L ? J

SPACE a
1 < 1

E run)
|STOpJ

SHIFT

Letters of the alphabet are located on the silver-color keys; they access upper-case

letters in unshifted standard mode. The alternate set accesses upper-case letters when
unshifted and lower-case letters when shifted.

Numeric Keys

The numeric keys are silver-colored, on the keyboard to the right. Numbers are

displayed in unshifted mode.

Special Symbol Keys

The special symbol keys, shaded above, are light blue on the keyboard and
numeric keypad; special symbol keys are grouped together along the top, bottom an-

4

right side of the keyboard, and along the right side and bottom of the numeric keypad.

These symbols are available only in unshifted mode.

22 PET/CBM Personal Computer Guide

Graphic Keys

The graphic symbols are located on the front of all non-function and cursor con-

trol keys. Graphics are displayed in shifted standard mode only.

Function Keys

PET 2001 function keys are either red or blue. The PET is missing the SHIFT/
LOCK key, normally located above the left shift key. However, like the PET 2001/N
it has a pi M symbol located on the key. For a description of the pi key see the PET
2001/N description.

Cursor Control Keys

The four cursor control keys are the red and blue keys located on the top row of

the numeric keyboard.

Chapter 1: Introducing CBM Computers 23

Figure 1-10. PET 2001 Internal Tape Drive

THE CASSETTE TAPE UNIT

The cassette tape unit is built into the PET console but must be connected sepa-

rately to CBM models. The internal and external cassette units are basically the

same. The tape drive allows you to store programs and data on cassette tape. You can
also load stored programs and data from cassette tape into computer memory.

The computer can connect to more than one cassette tape drive, but only one of

the tape drives is the "primary" or "console" cassette tape drive. For the PET the con-

sole tape drive is the built-in tape unit (see Figure 1-10). For CBM computers the con-

sole tape drive is the tape unit connected at the Jl interface port.

The External Tape Drive

The external tape unit is shown in Figure 1-11.

A maximum of two cassette drives may be used at one time. On the PET that has

a built-in cassette drive next to the keyboard, a second cassette drive may be attached at

cassette interface J3, shown in Figures 1-5 and l-13a. On all other models, the first

cassette drive is externally connected at the J3 interface. For the 2001 models, a second
external cassette drive may be attached to a connector inside the computer as shown in

Figure l-13b. For the CBM 8000, see Figure l-13c.

Other peripherals such as the printer or disk drives may be connected to the IEEE
488 interface without affecting the operation of the cassette drives.

24 PET/CBM Personal Computer Guide

Figure 1-11. An External Tape Drive

Cassette Tape Operation

When attaching an external cassette to any connector, you can either connect the

cassette correctly, or you can break the connector. This is because the connector has an

acentric slot:

^ Slot

f¥¥¥¥lf¥¥l
The cassette drive plug has a divider that fits into the slot:

- Divider

So long as the divider slides into the slot, you can be sure that a proper connection has
been made.

The procedure to plug an external cassette drive into an outside cassette interface
(such as the J3 connector) is given below.

1. Turn the power off.

2. Hold the connecting plug at the end of the cable so that the "blue" wire is on
the right.

3. Gently push the plug onto the interface as in Figure 1-12. Do notforce the con-
nection.

4. Make sure the connection fits securely.

5. Turn on power.

To plug a cassette drive into the printed circuit board connector inside the CBM
computer, follow these steps:

1. Turn the power off and unplug the computer.

2. Move the front of the computer out from the supporting surface so that you
can see the four retaining screws on the bottom. With a screwdriver unscrew
the four retaining screws.

Chapter I: Introducing CBM Computers 25

Figure 1-12. Connecting Second External Cassette Unit to CBM Computer

5.

6.

7.

9.

10.

Lift the cover all the way up, being careful not to move it so far back that it

pulls any of the cords.

Locate the supporting rod on the inner left side of the computer (if available

on your model). Push the rod up to disengage it from its holder, then move it

forward and secure it in the back screw hole on the left side. This holds the

cover up so you have both hands free.

Locate the cassette interface on the left edge of the printed circuit board as

shown in Figure 1-1 3b.

Hold the connecting plug at the end of the cable so that the off-center slot on

the circuit board matches the off-center divider on the cassette plug.

Gently push the plug onto the connector as shown in Figure l-13b. Do not

force the connection.

Make sure the connection fits securely.

Put cover down; screw in retaining screws.

Plug the CBM computer in. Turn on power.

26 PET/CBM Personal Computer Guide

Cassette #1 : PET 2001/N,

CBM 2001. CBM 8000
Cassette #2: PET 2001/8K

Cassette #2: PET 2001/N,

CBM 2001
c. Cassette #2: CBM 8000

Figure 1-13. Plug External Cassette into Circuit Board

Operation Test

Before continuing further, you should check the mechanical operation of the

cassette unit(s). Below is a simple test to make sure that all control keys and inner

mechanical components are functioning correctly.

1

.

Turn the CBM computer on. Make sure none of the cassette keys is depressed

and that the cassette drive motor is not running.

2. Open the cassette door on the top of the unit by pressing the STOP/EJECT

key (or manually on the older models). While looking inside the unit, press

the PLAY key. You should see the tape heads move out toward the spindles.

The pinch roller should simultaneously move out, touch and rotate the

capstan in a counterclockwise direction. The inside of the unit should look

like Figure 1-14.

3. Press the STOP/EJECT key once. The tape heads should draw back out of

view and the spindles should stop rotating.

4. Press the FFWD (Fast Forward) key. The tape heads should remain hidden

and the take-up spindle on the right should move counterclockwise very fast.

5. Press the STOP/EJECT key once. The take-up spindle should stop rotating.

6. Press the REW (Rewind) key. The tape heads should remain hidden. The

supply spindle on the left should move clockwise very fast.

7. Press the STOP/EJECT key once. The supply spindle should stop rotating.

8. Very gently press the REC (Record) key. The key should remain locked and

not move. This key will not move unless the PLAY and REC keys are

simultaneously pressed with a cassette tape inserted in place.

If all the above steps worked correctly your cassette unit is ready to begin opera-

tion. If some or all of the above steps do not work, check the following: make sure that

power is on, that you did not try to press two keys simultaneously (i.e., holding down

the STOP key accidentally) and that you pressed the keys down until they clicked and

stayed in place. If the cassette unit is still not functioning correctly, contact your Com-

modore dealer.

Chapter 1: Introducing CBM Computers 27

Supply Spindlev

R/W Head
Gap Areav

Erase Headv

PLAY

(Record) (Fast Forward) STOP
REC FFWD EJECT

,Take-up Spindle

-Capstan

-Pinch Roller

* Read/Write Head

Figure 1-14. Mechanical Components on Cassette Unit

Erase Head

Head Gap
Area

Record/Play Head

Capstan

Pinch Roller

Figure 1-15. Cassette Drive Tape Head

Cleaning and Demagnetizing the Tape Head

The head area of the cassette drive can be seen by opening the cassette drive door

with power offand depressing the PLAY key. This juts the tape head mount out where it

is marginally reachable for maintenance. The tape head is shown in Figure 1-15

The tape head is the portion of the cassette unit that the magnetic tape contacts

when you record or play back. The oxide coating on the magnetic tape gradually deposits

a film on the tape head and surrounding area; this deposit must be removed periodically

by cleaning the tape head to assure reliable operation of the cassette unit. To clean the

tape head, use a cotton swab soaked with a commercially formulated tape head

cleaner (e.g., Nortronics brand). Do NOT use tri-cloroethylene, plastic solvent, or

rubber cement. Alcohol may be used occasionally, but it is not recommended for regu-

lar use. Clean both heads and also the capstan and pinch roller. Allow the area to dry

completely before closing the cover.

28 PET/CBM Personal Computer Guide

Figure 1-16. A Typical Tape Head Demagnetizer

The tape head also needs to be demagnetized periodically. The tape heads gra-

dually become magnetized through use. This affects recording fidelity and eventually

causes recording errors. To demagnetize the tape heads, you will need a tape head

demagnetizer (Figure 1-16); this is an inexpensive unit that can be purchased at most

audio equipment stores.

To demagnetize the tape heads, have the cassette drive door open and the PLAY
key depressed. To use the demagnetizer, have it at least two feet away from the cassette

drive before plugging in the demagnetizer (the cassette drive should be off). Slowly bring

the demagnetizer towards the cassette drive until it contacts the head surface; carefully

move it around on one head surface, then the other head surface, then all metal surfaces

that are directly adjacent to the heads. Slowly move the demagnetizer back at least two

feet before unplugging it.

Caution: Keep your pre-recorded cassette tapes away from the demagnetizer. The

demagnetizer is an effective tape eraser. Keep it at least five feet away from any pre-

recorded cassettes.

The more you use your cassette drives, the more often the drive will need to have

the tape heads cleaned and demagnetized. Do it at least once a month — more often if

you are experiencing load problems or tape degradation.

Cassette Tape Drive Controls

The cassette tape control keys are located at the forefront of the cassette drive.

RECORD (REC). The RECORD key lets you write from computer memory onto

the magnetic tape cassette.

REWIND (REW). The REWIND key rewinds the magnetic tape at high speed, to

its beginning. To rewind the tape, depress the REWIND key.

You will use REWIND often to rewind tape cassettes back to their beginning point

before removing them from the tape drive. You will also use REWIND any time you

want the computer to start searching for information beginning at an earlier point on

the magnetic tape.

Chapter 1: Introducing CBM Computers 29

FAST FORWARD (FFWD). FAST FORWARD winds the magnetic tape for-

ward at high speed.

Computers write onto magnetic tape, read from the tape, and search for informa-

tion on the tape all at PLAY speed, which is slower.

PLAY. The PLAY key enables the computer to search the tape for a program,

and to load the program from the tape into computer memory. You also use PLAY to

write from computer memory to tape if the RECORD key is also pressed.

STOP/EJECT. The tape STOP key disengages any of the other control keys. If

one of the other keys does not respond, press the tape STOP key and press the other

control key again.

EJECT. The EJECT key automatically opens the tape drive door so that a cassette

tape may be inserted or withdrawn. The Eject option was not available on the earliest

PET tape drives.

Loading/Unloading a Cassette Tape

Use the following procedure to insert a cassette into a tape drive (refer to Figure

1-17):

1. Press EJECT. The tape drive door will lift up automatically.

2. Holding the magnetic tape cassette as shown, push the cassette along the glide

paths on the underside of the tape drive window until the cassette clicks into

place.

3. Push down the tape drive door. This aligns the path of the exposed magnetic

tape with the tape drive head area.

To remove a cassette tape, lift up the tape drive door or push the eject key if the

drive has one. Pull the cassette tape out of the tape drive, then close the tape drive door.

CASSETTE TAPES

You will probably buy cassette tapes that have prerecorded programs on them.

You will probably also buy blank tape cassettes on which to record your own programs

or data.

The cassette tape that fits into the cassette drive and stores your information is

shown below.

30 PET/CBM Personal Computer Guide

a. Tape drive with window cover open -

empty

drive b. Correct manner to hold a tape cassette

prior to inserting into tape drive

c. Open cassette drive with tape cassette

inserted

d. Closed cassette drive with cassette inside

Figure 1-17. Inserting a Cassette Tape

Care of Cassette Tapes

Below are a few tips on taking care of your cassette tapes.

First, when you get a new cassette tape (blank or prerecorded) , balance its tension

by fast forwarding to the end of the tape and rewinding back to the beginning before

loading the first time. This is just a precautionary measure that may prevent reading

errors (also called LOAD errors).

When buying blank cassette tapes, do not buy long ones — 15 to 30 minutes are

sufficient. This not only cuts down the search time, but gives you tape that is thicker and

stronger than long-playing tapes. Select high quality, low noise, high output, ferric oxide

tapes; bargain brands are generally less satisfactory. Store the cassettes in a cool place

away from magnets and electronic equipment.

Be careful not to touch the oxide coated surface when handling tapes.

Chapter 1: Introducing CBM Computers 31

Figure 1-18. Write Protect Notches

Cassette Tape Write-Protect

You can prevent any cassette from being recorded on by "write-protecting" it.

A cassette tape has two write-protect notches, one for each side to the tape, located on
the side opposite the tape access opening (see Figure 1-18). When you buy pre-recorded
tapes, or when your own tapes have information stored on them, you can protect these
tapes from accidentally being written on by punching out the write-protect tabs. To
write-protect just one side of the tape, punch out the tab that is on the left when you
have the side you want to write-protect facing upward.

If you write-protect a tape and then decide you want to reuse it, just place a piece
of scotch tape over the write-protect opening.

CBM DISK DRIVE

Commodore has two dual-drive floppy disk units available: the CBM 8050 and
the CBM 2040. Disk drives store programs and data on diskettes. A diskette is a flexi-

ble disk, approximately the size and shape of a 45 rpm record.

The CBM 8050 and 2040 are shown in Figures 1-19 and 1-20. The CBM 2040
stores approximately 171,500 bytes of data on a diskette; it is called a "single density"
drive in computer jargon. The CBM 8050 is a "double density" drive in computer
jargon, and stores approximately 522,000 bytes of data per diskette. Disk drive
specifications are given in Tables 1-2 and 1-3.

Connecting the Disk Drive to the CBM
To connect a disk drive to your CBM computer, follow these steps:

1. Disconnect the computer's AC power cord from the electrical outlet.

Using a CBM to IEEE cable, plug the small end into the interface slot on the
upper left rear panel of the disk drive (see Figure 1-21). Secure the connector
by turning the two screws clockwise until tight.

2.

32 PET/CBM Personal Computer Guide

Figure 1-19. CBM 8050 Dual-Drive Floppy Disk Unit

Figure 1-20. Model 2040 Dual-Drive Floppy Disk Unit

4.

5.

Gently push the "flared" connector into the center interface slot (Jl in Figure

1-5) on the back of the CBM console. Make sure the connector side with

"Commodore" stamped on it is facing up. The hookup should look like

Figure 1-21.

Plug the disk drive's AC power cord into an electrical outlet.

Plug the CBM computer's AC power cord into an electrical outlet.

Having connected the disk drive to the computer, proceed to the power-on test.

Chapter 1: Introducing CBM Computers 33

Table 1-2. Model 8050 Dual-Drive Floppy Disk Specifications

Physical

:

Electrical:

Material: 1 8 gauge steel Power requirements:

Dimensions:

Height

Width

Depth

6.5"

15"

14.35"

Voltage

Frequency

Power

Drives:

100, 117, 220 or

240 VAC
50 or 60 hertz

50 watts

IC's: Shugart SA390 (2)

Controller:

6502 Microprocessor

Diskettes

Storage (each disk):

Standard mini, 5%"

6530
6522

I/O, RAM, ROM
I/O, interval timers

Total capacity

Sequential

533,248 bytes

521,208 bytes

Interface: Relative 464,312 to 517.398

6502 Microprocessor bytes, depending on

6532 (2) I/O, RAM, interval timers file size

6564 (2) ROM Sectors per track 23 to 29

Shared:

6114(8) 4 x 1 K RAM

Bytes per sector

Tracks

Blocks

256
77
2083

Table 1-3. Model 2040 Dual-Drive Floppy Disk Specifications

Physical: Electrical:

Material: 1 8 guage steel Power requirements:

Dimensions:
Voltage 1 20 VAC

Height 6.5" Frequency 60 Hertz

Width 15" Power 50 watts

Depth 14.35"

Drives:

IC's:
Shugart SA390 (2)

Controller: Diskettes Standard mini, 5'V
6504 Microprocessor

6530 I/O, RAM, ROM
6522 I/O, interval timers Storage (each disk):

Interface:

6502
6532 (2)

6332 (2)

Total capacity 1 76640 bytes

Microprocessor

I/O, RAM, interval timers

ROM

Sequential

Random
Sectors per track

Bytes per sector

170180 bytes

1 70850 bytes

17 to 21

256
Shared: Tracks 35
6114 (8) 4 x 1KRAM Blocks 690

34 PET/CBM Personal Computer Guide

Disk drive interface slot

CBM to IEEE cable \

/
j~nziL3^\ \) , ^

/^/ii_J< I
^^§T

^^^^ Dual-drive floppy disk

Model 8050 or 2040

Commodore 2001 Series \
Computer \

"Flared" connector

Figure 1-21. CBM-Roppy Disk Drive Connection

Power-On Test

l.

2.

3,

4.

Turn on power to the CBM computer. Make sure the console is working cor-

rectly.

If you have Model 2040 disk drives, open both drive doors by placing your

forefingers under the drive doors and gently pulling your fingers forward until

the doors spring open. If you have model 8050 disk drive, skip this step.

Make sure both disk drives are empty.

Turn on power to the disk drive by pressing the rocker switch on the left rear

side of the disk drive.

Model 8050: All three green indicator lights on the front panel should flash twice.

The left and right lights above the drives should go out. The center light should remain

lit.

Model 2040: All three red indicator lights on the front panel should flash on

briefly and then go out. Some disk drives may make a soft "purring" noise during

initialization.

If several indicator lights remains lit, turn off the disk drive. Wait five minutes and

power up the disk drive again. If the lights still remain lit, contact your Commodore

dealer.

Indicator Lights

Both disk drive models have three indicator lights on the front panels (see

Figure 1-22). These indicator lights are called LEDs (Light Emitting Diodes). Drive

Chapter 1: Introducing CBM Computers 35

Figure 1 -22. Dual Drive Floppy Disk LED Indicator Lights

and drive 1 have their own LEDs that turn on when that disk drive is in operation. The
center light is an error light.

The 8050 has three green LEDs. As previously stated, the lights above the disk

drives turn on when that drive is in operation, and turn off when the operation is com-
plete. The center LED turns on when the 8050 is receiving power; this light is also used

as an error indicator. When an error occurs the center LED changes to red and remains

lit until the error is corrected.

The 2040 has three red LEDs. The lights above the disk drives specify when that

drive is in operation. They glow red until the operation is complete. The LED in the

center is an error indicator only. It lights up when an error occurs and remains lit

until the error is corrected.

Loading and Unloading Diskettes

Each diskette comes in a storage envelope. Remove the diskette from the envelope

before loading it into the disk drive.

The circular diskette is held in a square protective jacket as shown in Figure 1-23.

This jacket guards the diskette from foreign substances and breakage or bending. Do not

remove the jacket. When buying diskettes for any CBM computer, buy soft-sectored

5-1/4" diskettes. If you are unsure whether your diskette is soft-sectored, here is a sim-

ple test (see Figure 1-24):

1

.

Take the diskette out of its envelope (not the jacket) and hold it by the jacket.

2. Insert two fingers inside the center hole.

3. Locate the small hole next to the center hole (see Figure 1-23).

4. Carefully rotate the diskette with your fingers until you align a small hole in

the diskette with the outer small hole in the jacket.

If you find only one hole in the diskette the diskette is soft-sectored. If you find

multiple holes, it is not soft-sectored.

36 PET/CBM Personal Computer Guide

Protective jacket.

Hard/soft-sectored hole

Write Protect Notch

When covered, diskette

contents cannot be altered

Figure 1-23. Floppy Diskette

a. Step 1 b. Step 2 c. Step 3. 4

Figure 1 -24. Test for Soft-Sectored Diskette

Model 8050 Load

1. Hold the diskette by the plastic jacket. Do not touch the exposed sections of the

diskette. The diskette should be facing up with the write-protect notch on the

left side.

2. Carefully guide the diskette into one of the slots (Figure 1-25) until you hear

a loud click. Do not push the diskette further in. If it doesn't slide in

smoothly, immediately withdraw it and try again. Do not force the diskette or

you may damage both the diskette and the disk drive.

3. With two fingers, press down firmly on the lever in the disk drive door until

the lever stays down.

Chapter 1: Introducing CBM Computers 37

Drive

Drive 1

Figure 1 -25. Inserting the Diskettes (Model 8050)

a. Step 1 b. Step 2

Figure 1-26. Removing the Diskette (Model 8050)

Model 8050 Unload

Never remove a diskette when the LED is litfor that particular drive.

1

.

The disk drive lever should already be in the down position. With two fingers,

give the lever a quick press downward and release the lever. The diskette

should pop up from inside the drive (Figure l-26a).

2. To eject the diskette, place your forefinger under the lever and gently push it

upward and forward. This will eject the diskette out of the drive (Figure 1-

26b).

3. Grab the diskette with your thumb and forefinger and gently withdraw the

diskette. Do not bend or force the diskette.

4. Insert the diskette into its envelope.

38 PET/CBM Personal Computer Guide

Figure 1 -27. Opening Disk Drive Door (Model 2040)

Model 2040 Load

1

.

Hold the diskette by the plastic jacket. Do not touch the exposed sections of the

diskette. The diskette should be facing up with the write-protect notch on the

left edge.

2. Place the forefinger of your free hand under the drive door and gently pull

your finger forward until the door springs open (Figure 1-27).

3. Carefully guide the diskette into one of the slots as illustrated in Figure 1-17

until you hear a faint click. Do not push the diskette further in. If it doesn't

slide in smoothly, immediately withdraw it and try again. Do notforce the dis-

kette or you may damage both the diskette and the disk drive.

4. Close the drive door by pressing down on the door until it shuts completely.

Model 2040 Unload

Never remove a diskette when the LED is litfor that particular drive.

1

.

Place your forefinger under the drive door and gently pull your finger forward

until the door springs open (see Figure 1-27).

2. Grab the diskette with your thumb and forefinger, and gently withdraw the

diskette. Do not bend or force the diskette.

3. Close the drive door by pressing down on the door until it shuts completely.

4. Insert the diskette into its envelope.

Chapter 1: Introducing CBM Computers 39

FLOPPY DISKS

Care of the Diskettes

You must handle diskettes with care. All of your information will be stored on

them. Once a disk is damaged, there is no way to recover data stored on it. Follow the

hints below to protect your diskettes:

1. After removing the diskette from the disk drive, return it promptly to its

storage envelope.

2. Do not remove the diskette from its plastic jacket.

3. When labeling a diskette, use the labels provided with the diskette. Do not

write on the label with a lead pencil or ball point pen; use only a felt tip pen.

4. Do not touch or try to clean the diskette surface or you will damage the dis-

kette.

5. Do not smoke when using diskettes. Tobacco ash or smoke residue on the dis-

kette surface may damage it.

6. Keep diskettes away from magnetic fields. Exposure to a magnetic field will

destroy the stored data.

7. Do not expose diskettes to heat or sunlight.

Diskette Write-Protect

You can prevent any diskette from being written on by "write-protecting" it.

Each diskette has a write-protect notch on its outer edge, as illustrated in Figure 1-15.

When the write-protect notch is covered, the diskette cannot be written on. You can

use scotch tape to write-protect a diskette, but special adhesive tapes are available, and

they are preferable. If you remove the notch cover, you can write on the diskette again.

THE CBM PRINTER

Two printers are available for the CBM computer: the CBM 2022 Tractor Feed

(Figure 1-28) and the CBM 2023 Matrix or Friction Feed (Figure 1-29). The
difference between the two models lies in their paper feed mechanisms. The Model 2022

has a tractor feed mechanism that pulls the paper through using sprocket holes on the

paper edges. The Model 2023 uses a friction feed mechanism similar to a typewriter.

Any type of paper may be used with this model.

Both models print characters using a 7 x 6 dot matrix (similar to the way charac-

ters are generated by the CRT display). Both printers print a maximum of 80 characters

per line, at a speed of one line per second (60 lines per minute) . Both printers have a rib-

bon mechanism and use purple or black nylon ribbon with stop eyelets that reverse rib-

bon direction. Table 1-4 provides printer specifications.

40 PET/CBM Personal Computer Guide

W\IP!11
Hil:', 1 ^^3^01^^ __-—^^^bbhhIh^HI*4-ilJ

-iftti!^^^1jjjgff
Figure 1-28. Model 2022 Printer

Figure 1-29. Model 2023 Printer

Connecting the Printer to Your CBM Computer

Connect your printer to the computer as follows:

1. Disconnect the computer's AC power cord from the electrical outlet.

2. For direct hookup of the printer to the CBM computer follow these steps:

a. Using a CBM to IEEE cable, plug the small end (standard IEEE connec-

tor) into the right interface slot in the back of the printer (see Figure

1-5). Secure the connector by turning the two screws clockwise until tight.

b. Gently push the "flared" connector into the center interface slot on the

back of the CBM computer console. Make sure the connector side with

"Commodore" stamped on it is facing up. The hookup is illustrated in

Figure 1-30.

Chapter 1: Introducing CBM Computers 41

Table 1-4. Model 2022 and 2023 Printer Specifications

Model 2022 Printer Specifications

Printing Method Serial Impact Dot Matrix

Print Rate 70 Ipm or 1 50 cps (Maximum)
Print Direction Unidirectional

Column Capacity 80
Character Font 6X7
Column Spacing 1/10" 10 characters per inch

Line Spacing Programmable
Character Size 0.11" high 0.10" wide
Copies 3 - including original

Ribbon Type Nylon-fibered with eyelets

Ribbon Life 2 x 1
6 characters

Ribbon Spool Type Underwood
Paper Width 1

0" computer folded paper
Forms 8.5 +0.5X2 (Sprocket margins)

Pin to pin distance: 0.5" longitudinally

9.0" laterally

5/32" diameter

Model 2023 Printer Specifications

The specifications for the Friction Feed Model 2023 are the same as for the
Tractor Feed Model 2022, except for the following items:

Line Spacing 1/6" six lines per inch

Forms Not applicable

CBM to IEEE cable-

Printer

Model 2022 or 2023

Figure 1 -30. Printer to Computer Connection

42 PET/CBM Personal Computer Guide

CBM to IEEE cable

CBM printer

Model 2022 or 2023

Figure 1-31. Multiple Hookup: Printer to Disk Unit to Computer

Multiple peripherals hookup: Because the CBM has only one IEEE interface

slot to connect the peripherals, if you use both a disk drive and printer you

must connect the printer to the disk drive and the disk drive to the CBM com-

puter. Follow these steps:

a. Using an IEEE to IEEE cable, plug one end into the right rear interface

slot of the printer. Secure the connector by turning the two screws clock-

wise until tight.

b. Plug the other end of the cable into the connector already attached to the

back of the disk drive from the CBM computer as shown in Figure 1-31.

This "daisy-chaining" passes the data from the CBM computer through

the two-cable connection to the printer. Secure the connector by turning

the two screws clockwise until tight.

c. Plug the printer's AC power cord into an electrical outlet.

d. Plug the CBM computer's AC power cord into an electrical outlet.

e. Turn the CBM computer power on. Make sure the console is working

correctly.

Chapter 1: Introducing CBM Computers 43

f. Turn on power to the printer by pressing the rocker switch on the right

back side of the printer, so that the white dot is visible. When the printer

receives power, the print head moves all the way to the right and back

again.

If the print head does not move, turn off both the CBM computer

and printer. Re-check all connections to make sure they are securely con-

nected into the correct interface slots. Turn on the power to the CBM
computer and try again. If nothing happens, contact your Commodore

dealer.

Installing the Ribbon

1. Lift up the printer cover until its inner mechanisms are exposed.

2. Hold the ribbon so that the empty reel with stop eyelet is in your right hand

and the full reel is in your left (Figure 1-32).

3. Push the right ribbon reel onto the right sprocket (position number 1 in

Figure 1-33) until it clicks firmly into place.

4. With the left reel, unroll enough ribbon to guide the ribbon through positions

2, 3 and 4. At this point, stop and make sure that the ribbon stop eyelet is situ-

ated between position 2 and the reverse gate (position 3). Continue guiding

the ribbon through positions 5 and 6. Do not twist the ribbon.

5. Unroll the ribbon past the print head, dropping the ribbon down behind the

print head and around position 7. It is very easy to accidentally twist the ribbon

at this step, so be very careful not to do so.

6. Guide the ribbon around positions 8, 9, 10, and 11.

7. Turning the ribbon reel until the ribbon is taut, push the left reel onto the left

sprocket until it clicks firmly into place (position 12). Make sure the ribbon

and reel are not loose.

8. Close the printer lid. The ribbon is now ready.

Loading Printer Paper

Each printer has a different load procedure due to its different paper feed

mechanism.

Loading Paper Into Printer Model 2022

The tractor drive accepts standard fan-folded pin feed paper of various widths.

The largest width acceptable is 10".

To load the paper follow these steps:

1. With both hands, hold the tractor feed housings (see Figure 1-34) and gently

pull them forward. This will move the tractor feed mechanism out of the way.

2. Guide the paper into the top of the printer behind the roller and along the

inner plate. Figure 1-35 shows the paper path. Push the paper in gently as it

moves down under a bottom roller and back up in front of the main roller and

sprockets.

3. With the tractor feed housings, push the tractor feed mechanism back.

4. Pull the sprocket retainers on each sprocket up to the open position.

44 PET/CBM Personal Computer Guide

Figure 1-32. Installing the Ribbon

-MM
gmr-

-Print head

-Ribbon reverse gate

-Ribbon stop eyelet

Ribbon reverse gate

Ribbon stop eyelet

Figure 1-33. Printer Ribbon Path

Chapter 1: Introducing CBM Computers 45

mi
iiiiiiji

^^B^^'^^^^^^^^MiiF^i^^8^^ Hli
gpsg^fi; wiiiiiiiiiiBaBMaaiamaM« (L ^^^B

8g „; ,

„ x
x?

;

rj Modes scaa WM
H«ip9| KpjV

mm taf
;H1

Figure 1-34. CBM 2022 Printer

Tractor Feed

Print Head

,

Paper entry

Figure 1 -35. CBM 2022 Printer Paper Path

5. Pull the paper over the sprockets until the sprocket holes in the paper fit over

the sprockets. If the sprockets do not match the paper sprocket holes, adjust

the sprockets by:

a. Lifting the lever to the side of the sprocket mechanism towards you.

b. Sliding it to fit the tractor sprocket to the paper sprocket holes.

c. Locking the lever by pushing it back to the original position.

6. When the paper sprocket holes fit snugly over the sprockets, push the

sprocket retainers down to hold the paper in place.

7. Turn the printer power on. The power switch is on the lower right back panel.

8. The paper may be advanced by either:

a. Pressing the paper feed button at the lower left front of the printer.

b. Manually rolling the paper up with the roller knobs on each side of the

tractor mechanism.

46 PET/CBM Personal Computer Guide

Figure 1-36. Loading Paper into Model 2023 Printer

Loading Paper Into Printer Model 2023

The friction feed model accepts paper up to 10" wide. No sprocket holes are

needed. Paper may be the long fan-folded type or individual sheets of paper.

To load the paper follow these steps:

1. Turn the printer power on. The power switch is on the lower right back panel.

2. Guide the paper into the paper feed (on the top inside of the printer) as far as

it will go.

3. While guiding the paper into the paper feed, press the paper feed button on

the lower left front of the printer until the top of the paper has rolled out of

the printer (see Figure 1-36).

4. To adjust or remove the paper, lift the paper release bar to loosen the friction

feed mechanism (see Figure 1-37). Remove or adjust the paper, and push the

bar back to its original position.

Print Head Test

Once the ribbon and paper have been properly installed, you should perform a

print head test to make sure that everything is working correctly. Do not perform this test

or print anything ifpaper is not loaded; you may damage the print head. To do the test

follow these steps:

1. Turn printer power off. The power switch is located on the lower right back

panel.

Chapter 1: Introducing CBM Computers 47

Paper release bar

Paper entry

Print head

Friction feed t

Paper guide

Model 2023

Figure 1-37. CBM 2023 Printer Paper Path

I "#»;;*' O*+,-./01 23456789 , 0>?aflBCDEFGHI JKl.MHGPGRSTUVUIXYZr.S3 t*- ! "**::&' < ;*+.-.
•at 23436789 ; ; <->?8RBCDEFGHI JKLMNOPQRSTUVUIXVZt \ 3 "N- !

•' *fX& ' O »+ , - . /61 23456789 , <-
>7«flBCDEFOHIJKLMNOPQRSTUVWXV2:\3-N- i "»*•/.&' 0*+, -. /0123456789 : ; <=>?8F|BCIIEF0HI JKL
MNOPORSTUVWXV2CS3T*- ! "#»>:*' 0*+, -. /8123456789 ; <=>?8hBCDEF0HIJKLNM0PQRSTUVWXVZ[
S3T«- I "**•/.*' <>*+,-. ^9123456789: . <»>?9fiBCBEFGHIJKLMN0PQRSTUVWXVZtSD 1-*-

! "»SXf O
•+ , -. /0 1 23436789 : ; <->?aRBCDEFGH I JKLMNOPQRSTUVUXYZ C S 3 -N- ! " #*X4 - O »+ - - . /0 1 2343678
9: ;<->?aflBCDEFGH I JKLMNOPQRSTUVUXYZ IS 3 T<- ! "»*•/.& <>*».-. /G123436789 ; <=>"-SRBCDEFG
HIJKLMNOPQRSTUVWXVZCS3t<- !

"**•/.&' O**, -. /0 123456789 : ; <=>?afiBCDFFGHI JKLMNOPQRSTUV
WXVZrAJ-N- l"#»X4'<>*+,-.^ei23456789:;<=>?afiBCrEFGHIJKLMNGP0RSTUVUXVZCV: t*- !

"#*
xi'<1**,-./Z 123436789: ; <->?a«BCDEFGHI JKLMN0PGRSTUVUXVZr.S3 T->- !

"#*;:£' 0*+, -./0123
436789 : ; <»>?9FIBCDEFGH I JKLMNOPQRSTUVUXYZ t S 3 t* !"»*«*' O*, - . /B 123456789 : , <*i ?8flB
CDEF0HIJKLMN0PQRSTUVUXVZCS3T*- I

"**•/.&' 0»*, -. /0123456799 , <->?a«BCDEFGHI JkLMNOPQ
RSTUVUXVZfAJ t«- !

"»*•/.*'< >*+,-. /01234567S9 : , 0>?efiBCI>EFGHI JKLMN0PQRSTUVUXVZr.N3 T*

Figure 1 -38. Print Head Test

3.

Turn printer power back on while pressing the paperfeed button (lower left front

corner). The printer should rapidly print out a repeating sequence of all

special symbols, numbers and letters available (no graphics). An example of

the test is shown in Figure 1-38.

To stop the test, turn the printer off.

If the printer malfunctioned, or the printout has defects, contact your Com-
modore dealer. Otherwise, your printer is ready for use.

Chapter 2

Operating the CBM Computer

This chapter explains how you use the keyboard to operate the computer, disk

drive unit, cassette unit, and printer.

You tell a CBM computer what to do using "statements." Statements are

instructions to the computer. The computer "executes" statements in order to do their

bidding. The CBM computer understands statements written in CBM BASIC (Begin-

ning All-purpose Symbolic Instruction Code).

When you enter a BASIC statement, the statement line can be up to 80 charac-

ters in length. Eighty characters is equal to two lines on the screen display for the CBM
graphic and business model computers, and one display line for the CBM 8000 series

computer. When entering a statement line, type in the characters and terminate the line

by pressing the RETURN key. If you type in 40 or more characters on the small-screen

CBM computer without pressing the RETURN key, the cursor automatically drops

down to the next display line, and you can continue entering tip to 80 characters. If you
continue typing past the 80th character on either the small- or the large-screen CBM
computer, the CBM computer will respond with a 7SYNTAX ERROR message when
you press the RETURN key.

You must press the RETURN key in order to terminate every BASIC state-

ment. The CBM computer uses the RETURN character as a signal that the line is com-
plete and ready to be analyzed.

BASIC statements may be entered in two ways: immediate mode or program

mode. Immediate mode statements are executed immediately: hence the name
"immediate mode." These statements are generally short, and are not stored in the

computer's memory. Statements entered in program mode are stored in computer

memory. But program mode statements are not executed until you explicitly instruct the

computer to do so.

50 PET/CBM Personal Computer Guide

IMMEDIATE MODE

When powered up, the CBM computer is in immediate mode. Immediate mode

is indicated by a flashing cursor on the screen.

Cursor"

COMMODORE BASIC

XXXXX EVTES FREE

RERDV.

The computer remains in immediate mode until you execute a BASIC program.

After the program has executed, the computer returns to immediate mode.

KEYBOARD INPUT IN IMMEDIATE MODE
The flashing cursor is displayed on the screen at the character position where

the next character input from the keyboard will appear. As each character entered

appears on the screen, the cursor advances one space to the right and waits for the next

character, as shown in Figure 2-1. Some keys move the cursor without displaying any

character. If a CURSOR key is pressed, the cursor moves one space in the direction of

the arrow on the CURSOR key and waits for further input. Pressing the RETURN key

drops the cursor down to the first position on the line below.

You can input any sequence of characters via the CBM computer keyboard, but

in immediate mode the CBM computer assumes any input to be part of a BASIC
statement and interprets the input by the rules of the CBM BASIC language. That is,

the CBM computer tries to interpret all input as BASIC statements.

Figure 2-2 illustrates valid statement input in immediate mode. After the

RETURN key is pressed, the statement is executed immediately, and results (if any) are

displayed on the line below. Non-statement entry is shown in Figure 2-3. In the first two

screens, upon pressing the RETURN key the display responds with a 7SYNTAX

ERROR message.

A ?SYNTAX ERROR message signals that the CBM computer cannot interpret

the input as a valid BASIC statement. If you are not trying to enter a statement, simply

ignore the syntax error message. An exception is shown in the third screen of Figure 2-

3. Graphic characters and cursor control characters do not generate a syntax error unless

mixed with alphabetic or numeric characters. This allows you to "draw" directly onto the

screen using graphic symbols.

Chapter 2: Operating the CBM Computer 51

Cursor waits

for input

cm

Cursor moves right,

waits for input

Press [c] key

CB»

' V
Cursor moves right,

waits for input

' CBM*

'

V
Cursor moves right,

waits for input

L. J
Press [/F] key Press [Af] key

Figure 2-1. Keyboard input in Immediate Mode

Statements in Immediate Mode

Statements entered in immediate mode do not, and cannot, begin with line

numbers. Later we will examine exactly what you can include in an immediate mode
statement. For the discussion at hand you only need to know how to input a few elemen-

tary statements, therefore we will explain how to write statements that print characters,

solve arithmetic equations, and move the cursor.

The PRINT Statement

(PRINT)
data

The PRINT statement shown above is the most frequently used in immediate

mode statements. The PRINT statement instructs the computer to display data on the

screen. Upon pressing the RETURN key, the display appears on the line below the

PRINT statement. If the word PRINT (or its abbreviation '?') is not placed before the

data item to be displayed, no display will appear on the screen.

52 PET/CBM Personal Computer Guide

?"GOOD MORNING"
GOOD MORNING \

' ?2+2 v
4 \

REflDV. \ REflDV. \
"

1

1

Press RETURN
1

Press RETURN

PRINT statement (Alphabetic) PRINT statement (Numeric)

/fl-'v
|

REflDVA.

REflDV. H
* Press RETURN

Assign variable: PRINT variable statement

Figure 2-2. Valid Immediate Mode Statement Input

Printing Strings

CBM computers can recognize simple sequences of characters that have no
"special" meaning. The word "string" is the computer jargon that describes such text.

A string is a sequence of one or more characters enclosed in double quotation

marks. Here are some examples of strings:

"HI!"

"SYNERGY"
"12345"
"10.44 IS THE AMOUNT"
"22 UNION SQUARE, SAN FRANCISCO. CA"

All data keys (alphabetic, numeric, special symbols, and graphics), as well as

the cursor control keys and the REVERSE ON/OFF key, can be included in a string.

The only keys that cannot be used within a string are RUN/STOP and RETURN.
A string may be displayed, directly or indirectly, by assigning the string to a

"string variable" and then printing the contents of the string variable.

Chapter 2: Operating the CBM Computer 53

(flBCDEFGHIJ,^

?SYNTF1X ERROR \
READY. \
m

Press RETURN

f 12345678-^.

?SYNTflX ERR0R\
READY. \
%

Press RETURN

Character string (not valid) Numeric string (not valid)

REflDV. \
'

)

Press RETURN

L. J
Graphic string

Figure 2-3. Non-statement Immediate Mode Input

To print a string directly, key in PRINT (or its abbreviation '?') followed by the
string to be printed. The string must be enclosed within quotation marks.

PRINT "string"

where:

string is a string of text

Upon pressing the RETURN key, the string is displayed on the following line. Some
examples are shown below. The shaded characters designate your input, unshaded
characters are the computer's response.

PRINT "MONDRY"
MONDfiY

REftDY.

PRINT "MAY 12. 1980"
MHY 12,1380

PRINT "12345"
12345

READY.

54 PET/CBM Personal Computer Guide

Try inputting a couple of your own PRINT statements to display strings. When
you press the RETURN key, if you get a 7SYNTAX ERROR message, you probably

misspelled PRINT. If you get a zero (0) answer instead of your string, you have forgot-

ten the set of quotation marks that precede the string. Keep trying until you can suc-

cessfully print a string in immediate mode.

A string is printed indirectly by assigning the string to a "string variable," and

then printing the contents of the variable. A string variable is an identifier, or a name,

that can represent any text string. A string variable's identifier, or name, has a letter,

optionally followed by another letter or a number. A "$" character must end the string

variable name. Here are some examples of string variable names:

A$
M1$
F6$

You need two statements to print a string indirectly. The first statement assigns

the string to a variable name as follows:

V$ = "string"

where:

V$ is the string variable name
string is a string text

A PRINT statement comes next; it displays the contents of the string variable on the

screen:

PRINT V*

w here

:

Here are a few examples:

V$ is the string variable name
assigned to a string of text

A*="TftKE THE PR06RRM AND RUN!"

RERDV.
PRINT R*
TRKE THE PROGRAM RND RUN!

RERBV.
DV*="TUESDRV"

RERDV.
PRINT DV*
TUESDRV

RERDV.
Bl*="* • • "
RERDV.
PRINT El*
* • *

RERDV.

Chapter 2: Operating the CBM Computer 55

Try telling the CBM computer to print your name indirectly, using a variable

name. Type in a string name (don't forget the dollar sign!), an equals sign, and your

name enclosed in quotation marks. Press the RETURN key, as shown below:

WM*="JIMMV OLSON -« RETURN Are y pressed

RERBV.

If you get a ?TYPE MISMATCH ERROR message, either your name is not enclosed in

quotation marks, or the string variable name is incorrect (missing a dollar sign?). Now,

type PRINT, followed by the string variable name. Press the RETURN key. Your name
should be displayed on the line below:

NM*= " JIHMV OLSON -. RETURN key pressed

REflDV.
PRINT NM* -« RETURN key pressed

JIMMV OLSON

RERBV.

If something other than your name is displayed, there is a mistake in your PRINT
statement. If a 7SYNTAX ERROR message appears, you probably misspelled the word

PRINT. If you used the wrong string variable name, you will get no display, since the

new name describes a variable that has no contents. If the dollar sign was omitted from

the string variable name, a '0' will be displayed. If any of these errors occur, go back and

try it again.

ARITHMETIC CALCULATIONS

CBM BASIC can handle arithmetic. Leaving the complicated stuff for Chapter

4, we will now look at some simple addition, subtraction, multiplication and division.

An arithmetic equation appearing in a PRINT statement instructs the computer to solve

an equation and display the result immediately.

If you put an arithmetic equation into the PRINT statement, 'PRINT' or '?' must

precede the arithmetic equation which is to be evaluated. An equals sign cannot appear

in the statement:

|™NT
|
equation

Here are some examples:

PRINT 2 + 2

PRINT 5/10
? 2.5

? (100/20) - 16.334

Upon pressing the RETURN key, the CBM computer calculates the equation and dis-

plays the answer.

Try an example: Type in PRINT or ?. Next, enter the arithmetic expression

2 + 2. Press the RETURN key. The answer should be displayed on the line below, as

shown:
PR INT 2+2 Press RETURN key
4

56 PET/CBM Personal Computer Guide

Below are some more examples you may want to try. Type in the shaded characters; the

unshaded characters are the computer's response.

PRINT 2+2
4

REflDV.
PRINT 5/-10

.5

READY.
? 2.5
2.5

REHDV.
? v.1 00/'20> + 16. 334
21.334

REflDV.
m

Arithmetic Calculations using Variables

Just as a string variable can represent a string, so a numeric variable can

represent a number. A numeric variable's name has a letter, optionally followed by

another letter or a number. Numeric variable names are not terminated by a dollar sign.

You must use two statements to print a number via a numeric variable. The

first statement assigns the number to the numeric variable as follows:

V = n

where:

V is the numeric variable name

n is a number of numeric equation

assigned to the variable

The second statement is a PRINT statement. It displays the value of the numeric

variable on the screen:

print v

where:

V is the numeric variable name assigned

to a number or numeric equation

Here are some sample statements assigning numbers to numeric variables:

A = 1

NM = 2.56

B1 = 1000/10

Notice that the numbers and equations are not enclosed within quotation marks.

Here are some examples of numeric assignment and PRINT statements:

C = 100

PRINT 'if:

100

REHDV.
Fl =1234. 78

PRINT Fl
1234.,78

REflDV.

Chapter 2: Operating the CBM Computer 57

CURSOR MOVEMENT
Cursor movement in immediate mode allows you to move the cursor and alter the

screen display instantly. When a cursor key is pressed, the cursor moves in the direc-

tion shown by the arrow on the key. The cursor keys move the cursor around the

screen, and over existing characters, without altering the display. These cursor keys

include CURSOR HOME, CURSOR UP/DOWN, and CURSOR LEFT/RIGHT.
Cursor keys that move and alter the screen display include CLEAR SCREEN and

INSERT/DELETE. CLEAR SCREEN wipes out the screen display and puts the cursor

in the first character position of the top row; this is called the "home" position.

INSERT/DELETE inserts spaces to the right of the cursor, or deletes the characters to

the left of the cursor.

Whenever a cursor key is pressed after a quotation mark (or any odd number of

quotation marks), the cursor movement is treated as part of a string. The cursor key is

treated as a string character, and a special character appears in the string to represent

that cursor movement, as shown in Table 2-1.

Table 2-1 . String Representations of Cursor Keys

Function Key String Symbol

DELETE

INSERT

Home Cursor

Clear Screen

Cursor Down

Cursor Up

Cursor Right

Cursor Left

INST
DEL

Shifted
INST
DEL

cut
SCREEN
HOME

Shifted
cm

SCREEN
HOME

CURSOR

.V.

Shifted
A

CURSOR

CURSOR

Shifted CURSOR

(Reverse shifted T)

Not programmed

SJ (Reverse S)

*

."3 (Reverse Shifted S)

M (Reverse Q)

n (Reverse Shifted Q)

II (Reverse])

II (Reverse Shifted])

58 PET/CBM Personal Computer Guide

Here are some examples of cursor movement keys appearing within character

strings:

PRINT "1--.CRSR -.-2'CRSR >3<- CRSR-.:.*-. CRSR-- >5"
12 3 4 5

RERDV.
®

PRINT "<CRSR- -<CRSR— >•< CRSR- >< CRSR— ->»*.CRSR- xCRSR— -!>"

*

t

RERDV.
m

PRINT " *-CLR SCREEN:--: CRSR i X' CRSR- > CRSR
| ->' CRSR .

*- CRSR'- CRSR j
.•# CRSR^ .- *

* CRSR I > * <CRSR
|
XCRSR

|
> < CRSR

|
> < CRSR | > • CRSR I

-"

*
*

RERDV.

PROGRAM MODE

When you enter statements in program mode, they are stored in computer
memory. Such statements must begin with a line number.

PROGRAM ENTRY

A program consists of one or more BASIC statements which, when executed in

the proper sequence, cause the computer to perform a required task.

Programs may be entered via the keyboard. Programs may also be loaded into

computer memory from an external peripheral (such as a cassette or diskette drive).

If entered from the keyboard, each statement is typed in with an initial line num-
ber. When the RETURN key is pressed at the end of the statement, the statement is

stored in memory for later use, although it remains displayed on the screen. Program
statements remain in memory until deleted, or until power is switched off. To avoid los-

ing your program, you must save it either on cassette tape or on a diskette. Once the pro-

gram has been saved on either medium, it can be loaded back into computer memory at

any time.

At this point you need not know how to "write" a BASIC program; writing

BASIC programs is the subject of Chapter 4. However, you now know enough about
your CBM computer to type in the short prewritten program called BLANKET,
shown below.

10 for 1=1 to see
20 PRINT "fl";

30 NEXT I

40 PRINT "PHEW!

"

50 END

Chapter 2: Operating the CBM Computer 59

If you don't understand BASIC or this BLANKET program don't worry about it;

you do not need to understand how or why it works. We will be using this program to

illustrate computer operations.

When you type in this program, if you make a mistake, hit the RETURN key and

then reenter the statement. If you get a 7SYNTAX ERROR message just retype the

statement. Stop after you have typed the entire program correctly.

We will now look at how you can edit a program that is in the computer's

memory.

Program LIST

The LIST statement displays the program which is currently in computer

memory. After listing a program you can examine it for errors. The format for the LIST

statement is:

/(blan k) List entire program.

I line List one line.

LIST /line, -line 2 List from line, toline 2

f -line List from start to line.

\Jine- List from line to end.

where:

line is a line number. Line,

line 2 . AM line numbers are inclusive. The line

numbers do not need to be actual line numbers

in the program. In the case of listing one non-

existent line, a blank line is printed.

If the program is longer than 23 lines, LIST will "scroll" the beginning lines of the

program up off the screen. Use the line parameters in this case to display only the

desired program lines.

Here are some examples:

LIST List entire program.

LIST 50 List line 50.

LIST 60-100 List all lines in the program between lines 60
and 100, beginning with line 60 and ending

with line 100.

LIST -140 List all lines in the program from the beginning

of the program through line 140.

LIST 20000- List all lines in the program from line 20000 to

the end of the program.

List the program you entered previously. Type LIST, press RETURN, and your

program should be displayed on the screen:

l-IST

ie for 1=1 to see
20 PRINT "fl";

30 NEXT I

40 PRINT "PHEW!

"

50 END
REHDV.

Notice that the cursor disappears while the program is being listed on the screen, to

reappear at the end of the program list at the bottom of the program, waiting in immedi-

ate mode for further input.

60 PET/CBM Personal Computer Guide

Now practice listing only a portion of the program. To display line number 10, type

in LIST and the number 10. Press the RETURN key:

LIST 10

13 for 1=1 to see

REflDV.
IS

To see line numbers 20 through 40 type in LIST 20-40:

LIST £0-48

20 PRINT "Ft";

30 NEXT I

40 PRINT "PHEW!

"

REflDV.

Practice listing the program in many different ways until you understand the LIST
statement completely.

Program RUN
The RUN statement executes the program currently stored in computer

memory. As soon as you enter the RUN statement and press the RETURN key the pro-

gram executes. The format for the RUN statement is:

, . Begin execution at the lowest-numbered line.
RUN< '

/(blank))

(line
)

Begin execution at the specified line.

Try executing the example program. Enter RUN, then press the RETURN key

Sit back and watch. The screen should rapidly fill up with 800 A's beginning on the line

directly below the RUN statement, and end with a PHEW!. Notice that while the pro-

gram is executed, the CBM computer is in program mode and the cursor disappears.

When the program has completed its execution, the computer drops out of pro-

gram mode and returns to immediate mode; a READY message is displayed and the

cursor flashes at the bottom of the program output.

RUN
AflRAARAARRflAAflRflflflRflAAflflflRflRflflRflAAAAflAflfl

RRflRflRAAfiflAAAAAflRflAARflAflfiRRAflRRAflflflflflflflR

RRRflAflfiflflfiflAAAflARAARAflAflAAAAfiflflflflflflflflAflfl

flRRRflflflfiflflflflflflflRRRRRRflflflflflRflflRRflflflflflflflRfl

RfiflflflflRflflRRflRRflRRflflflflflRRRRflflHflflflflRRHRRflfl

RRflflflflRflAAAAfiflflflAARflflAflflAfiAAflRAAfiflflRflAAA

RRRRRflRflflRflflflRRRflflflflflflflRRRRflRflRRHflflflflRflfl

AflflflflflflflARflRflfiflflRflflflflRflflflflflflflflflflflflRflflflflfl

RRRflRflflflRRflflflflflflflRflRflflRflflRflflRflflflflRflflflRflR

RflRRRflRflRflflflflflRflflflflflflRRflflRflflflRRRRflflflflRRR

flRRflnmflflFiRfl(=iFinflf)f)fiflfiflflflflflftfli=i(=iafiflflflflflflflR

flRflRflfiflAflflfiflflfiRRAflflflAflflflflflfiflflAAflAflRflflflflfl

RflAfififlflflflflRflRflRRRRflflfiflAflflAflflflRRflARAflfiRRR

flARflRRfiflflRflflflflRfiflfiflRflflRRRRRRRfiflRflARflAflflfl

flARHRflflRAARflAAAAflflflAflflflRflflflRflflfiRflflAflAAAA

RflflflfififlflflflflflflflflRflfiRflflflflflflRflflflflflflflflflflRflflR

RRfiflflflflflRflflflflflflRRRRflflflflflflflflRflRflflRRRflRflRR

AfiRfififiAfiflAHflfiflRAflflRAARRARRRflflflflflflflflAARRA

flRHRRAAAAAAAAARAAAAAAAflRARfiflfiflflfiflflflflAflflfl

RflRAfiftfiflRflflRAflflAAAflfiflRflflflRRflflflRflflflAflAflflA

PHEW

!

READY.

Chapter 2: Operating the CBM Computer 61

You can tell the computer to begin program execution at any line in the program

by specifying the line number. For instance, you can tell the computer to execute the

example program starting at line 40, as follows:

RUN 40
PHEW!

REflDV.
m

You should use caution when beginning program execution at a specified line. Often a

program will not run correctly if it is not executed from the beginning. Were you to start

the example program from line 20 or 30, the computer would respond with a syntax

error because the program cannot begin execution on those lines.

Stopping Program Execution

A program may be stopped during execution. This is called a program "break." A
break will occur if you press the STOP key while the program is executing. Following

a break, a break message is displayed identifying the line at which the break occurred:

RUM
RRfiRfififlRflRRflfifiRmRRflRflRnRflflRRRRRRflfiflRRRR

RflRfiflflflflRfiflflflflfiflflflRRflflflRflflflfiflBRfififiRRRRRR

RflRRRfiflRfiflflflBflflflflfiRflRRRflflflRfiflRRflflfiBRflRRR

RRRflfififlflfiflRRflflflRflfififlRflRRRflfiflfiRRRRflRfiRRRR

RRRflRflflfiflfiRRRRflRflflflRflRRRRRflfiRflflRflRRRflRRfl

BfiBflflflflfififlflfifiBfiflBBBfifiBBflfifiBBBflBBBBflflfiRfifl

BBBBflflfiBBBBBfl-" STOP key pressed

BREAK IN 40 -« — Break message displayed

REBDV.
m

During a program break the CBM computer returns to immediate mode allowing you to

LIST, LOAD, SAVE, and VERIFY programs, and perform any immediate mode opera-

tions using CBM BASIC statements — including changing the values of program varia-

bles — before continuing program execution.

62 PET/CBM Personal Computer Guide

Continuing a Stopped Program

The "continue" statement, CONT, resumes program execution following a

break. Execution continues at the exact point where the break occurred:

RUN
RfiRHflfifififlRRfififiRRRRRRRRRRRfiRfiRflfiRRRRflflflFIB

flflflRflflRfiflflflflfiRRflflflflRRflRRRfiRflfiRRWMWflflftfiFI

RRfiflFlRflflflRRflflRRRflflfiflflflRRflRRflftflRfiRfiRflRRRR

FiRfiflflRfiflRflflflfiflflflflRRflflflflflflRflflflRflflRRRRflRRR

RRRfiRRRRRfiflflflfiflflflRRRRfiflflflRRflfiflflRBRRflRflRfl

RRflRfiflRflfiflflRflflRRRRflRRBRflflRRflflRRflflflRRRflRR

flflRflflflflflflRflflfi -« STOP key pressed

ERERK IN 48
RERDV.
COMT-* CONT command entered
RRRflflflflRflflRflflRRflRflflflRflflflflflflRRRflRRflfiRflflflR

RflRRfiflfiflRflflfififlflflflflflflflflRflflflflflRRflRRflRRflflRfl

RRfiRfiflflflRflRRRRflflflRflRRRflflflflRflRflRflflflflflRRRfl

RRRRflRRRflRRflflRRflflRflflflRflRRflRRflflflflRfiflRBRBfl

RRRRRRRflfiRfiflflflflRflflRflflflflRRflRflRflflflRRRRflflflfl

RRRRRRRRRRRflRRRRRRRRfiRRRRRRRflflflRRflflflflRflR
RRRRflfififiRRflfiflRRRflRRRRRfiflRRRRRRfiflRflRfiflRflfl

IflflRflflflRRRRRflRRflflRfiRflRflflflRRflfiflflflflRRRflflflfl

RRRRRflfiflRRRRflflflRRflflflRRRflflflflflflflflflflflflflflflflfl

FiRRRflflflRRflflflfifififlRflflflflfiflRflflRflflflflRflflflflRRRfi

BfififlfimmBflftfiAfiflflflfifififififtflftfiflfiRBflmflfiRfififl

rtRRRflfififiRRRflfififlRflfifififiRfifiRflflflfiRflflRRRRRflRR

MRflfiflfifiRRRRRRRRRfiRflRRRRfiflRRflRflRflflflflRRflRR

RRRRRflRRRRRRRRRflflRflflRflflflflRflPHEW!

RERDV.
m

CONT cannot continue program execution if an error occurred and an error

message is displayed.

Deleting a Program from Memory

You can delete a program.

To delete program from computer memory, type in NEW and press the
RETURN key. The current program is erased from computer memory, though it does
not alter the screen display. Be careful when using the NEW statement; you may lose a

program accidentally. Test the NEW statement now to delete the example program:

LIST -• LIST the program

10 FOR 1=1 TO S00
20 PRINT "fl";

30 NEXT I

40 PRINT "PHEW!"
50 END

RERDV.
NEW -< Delete program from memory

RERDV.
LIST -* Re-US T the program

RERDV.
- No program in memory

Always erase an old program using the NEW statement before entering a new
program. Otherwise you will end up with a hodgepodge of the new and old program

statements.

Chapter 2: Operating the CBM Computer 63

STANDARD AND ALTERNATE CHARACTER SETS

Recall that every CBM computer has a "standard" and an "alternate"

character set. These character sets are summarized in Appendix A for different

models of CBM computers.

When powered up, PET models select the standard character set; CBM models
select the alternate character set. To change character sets you change the value in

memory location 59468. If 59468 is 12, the standard character set is selected. If 59468
is 14, the alternate set is selected. The following commands change location 59468:

POKE 59468. 1 2 Activate the standard

character set

POKE 59468.14 Activate the alternate

character set

Programming with the Alternate Character Set

Never use the SHIFT key to select upper-case letters within BASIC statements
when using the CBM computer alternate character set.

All CBM computers assume that the standard character set is present. When you
press a key in shifted mode the interpreter assumes that the shifted standard character

has been used.

This can cause you a lot of trouble when keying in programs using the alternate

character set.

When using a CBM computer you may be tempted to select upper-case letters,

using the SHIFT key, for the first letter of a word, or for the entire word. Consider the

following statement:

10 For 1=1 To 10 S-tep 2

Were this statement entered as illustrated in alternate character mode on a CBM com-
puter, every upper-case letter would have to be generated by pressing the SHIFT key.

Since the CBM computer assumes that the standard character set is present, this is how
the BASIC statement illustrated above would be interpreted:

10 -OR -, = 1 10 10 »TEP 2

The CBM computer would reject this statement and report a syntax error.

Within a printed text string shifted letters will not cause a syntax error.

64 PET/CBM Personal Computer Guide

OPERATING THE CASSETTE UNITS

Small CBM computer systems use cassette drives to store programs and data.

Larger CBM computer systems use diskette drives for the same purpose. We will

now give you step-by-step instructions to operate CBM computer cassette drives.

Diskette drive operations are described next.

Before attempting to operate a cassette drive, make sure that the correct cassette

tape is loaded in the drive. We are going to use drive 1, therefore load appropriate

cassettes into drive 1, as described in Chapter 1. If the tape is not positioned at the

beginning, press the REWIND button on the cassette unit; this will rewind the tape to

its beginning. When rewound, press the STOP key. Make sure all of the cassette unit

keys are in the off position (up).

The examples in this section will use the BLANKET program to illustrate the

cassette operations. Shaded portions of the examples designate your input; unshaded

portions are the computer's response.

Program SAVE

Saving a program on a cassette tape prevents it from being lost when the con-

sole's power is turned off. The SAVE statement writes the program which is cur-

rently in memory onto a cassette tape. Here is the SAVE statement format:

SAVE "program name" Save program on cassette unit # 1

SAVE "program name'M Save program on cassette unit # 1

SAVE "program name".2 Save program on cassette unit #2

To save a program on cassette unit #1, use number 1 in the SAVE command. Use

number 2 to save the program on cassette unit #2. When saving programs on cassette

unit #1, the unit number is optional; you need not specify it. But, if you are saving a

program on cassette unit #2, you must specify the unit number in the SAVE statement.

In other words, #1 is the "default" cassette unit number, or the number selected when

none is specified.

For practice, save the program BLANKET on a cassette tape. Load a

blank cassette tape into cassette unit #1. Type in the program on the keyboard. To save

the BLANKET program, enter the SAVE command and press the RETURN key. The

computer responds by displaying the message PRESS PLAY & RECORD ON
TAPE #x.

JRVE "BLANKET"

PRESS PLRV « RECORD ON TfiPE #1

i

Simultaneously press the PLAY and RECORD buttons on the cassette unit. The

cassette unit will move the tape forward as the BLANKET program is recorded onto

the tape. Be careful to press both keys: if only the PLAY key is pressed, both you and the

CBM computer will think that you are writing the program on the tape, but nothing will

be written.

Chapter 2: Operating the CBM Computer 65

Once the PLAY and RECORD keys are pressed, the CBM computer responds

with an OK and WRITING BLANKET message. When BLANKET has been suc-

cessfully recorded the READY message and the cursor will appear on the screen. The
entire screen display for a program save should look like this:

SAVE "BLANKET"

PRESS PLAV « RECORD ON TRPE #1
OK * PLA Y pressed on cassette unit # 2

WRITING BLANKET
RERDV.
M

Caution: If any of the three tape movement keys REW, FFWD, or PLAY are

depressed when the SAVE statement is executed, the CBM computer will start "writ-

ing" to the tape. Be sure to press the tape STOP key before issuing a SAVE statement;

this assures that the CBM computer will print the PRESS PLAY & RECORD ON TAPE
#x message. Remember to depress the RECORD and PLAY keys at the same time.

Following a program SAVE is a program VERIFY.

Program VERIFY

The VERIFY statement checks for recording errors in a saved program. By
simulating the processes of a program LOAD, it reads and compares the program on the

tape to the program in memory without actually loading the program into memory. If an
error is detected, the CBM computer displays a warning message. Always verify a pro-

gram after saving it.

To VERIFY a program type in:

VERIFY Verify next program encountered on tape
cassette unit #2

VERIFY "program name" Verify program on cassette unit # 1

VERIFY "program name'M Verify program on cassette unit # 7

VERIFY "program name",2 Verify program on cassette unit #2

Follow these steps to verify a program that you have just saved on cassette tape:

1

.

Rewind to the beginning of the tape, or to a point that you know precedes the

beginning (load point) of the program just saved.

2. Press the tape STOP key.

3. Type in the VERIFY statement. You do not need to specify the program
name, or cassette drive #1. You must specify cassette drive #2.

66 PET/CBM Personal Computer Guide

To verify the BLANKET program you just saved on the cassette unit, rewind the

cassette tape to the beginning of the tape. Enter the VERIFY statement and press the

RETURN key:

SAVE "BLANKET"

PRESS PLAY & RECORD ON TAPE #1
OK

WRITING BLANKET
READY. -« Rewind and position tape before

VERIFY "BLANKET" start of BLANKET program

PRESS PLAY ON TAPE #i
OK -« Press PLA Y on cassette unit # /

SEARCHING FOR BLANKET
FOUND BLANKET
VERIFYING
OK

READY.

When the PRESS PLAY ON TAPE #1 message appears on the screen, press the PLAY
key on the cassette unit. The cassette unit will search the tape for the BLANKET pro-

gram as the OK and SEARCHING FOR BLANKET comments are displayed on the

screen. When found, the FOUND BLANKET message is displayed. The VERIFYING
message appears on the screen as the BLANKET program on the tape is compared to

the BLANKET program in the CBM computer memory. If the two compare with no

errors, the screen displays an OK message, followed by a READY message and the cur-

sor. If there are problems in the recording, the message ?VERIFY ERROR will appear.

Rewind the tape and try to verify it again. If the error persists, rewind the tape back to

the load point, save the program again, and verify the program. If the error still persists,

try using another portion of the tape, or use another tape.

Program LOAD

The LOAD statement loads programs into computer memory. To load a pro-

gram off cassette unit #1, type in either of the following two statements:

LOAD "program name"

LOAD "program name'M

When loading a program off of a cassette tape, the program name is optional. If

the name is specified, the computer will load only the named program. If the program

name is omitted, the computer will load the next program found on the cassette tape.

The optional number following the program name tells the computer which

cassette unit to use. Cassette unit #1 (the built-in cassette unit on the PET 2001 or the

external cassette unit attached in the rear interface on all other models) is assigned

device number 1. The optional, second cassette unit is assigned device number 2.

If only cassette unit #1 is in use, you need not specify the device number; the

LOAD statement automatically defaults to cassette unit #1. For example, if you want to

load program BLANKET off a tape in cassette unit #1 you type in:

LOAD "BLANKET"

or: LOAD "BLANKET",!

Chapter 2: Operating the CBM Computer 67

Because cassette unit #1 is the default device, if you want to load a program off

cassette unit #2 you must specify the #2, otherwise the computer will automatically

search the tape in cassette unit #1.

The example below shows how the CBM computer responds to a LOAD state-

ment. The shaded characters designate user input; unshaded characters are computer

response:

LORD "BLANKET"

PRESS PLflV ON TAPE *l——Press PLAY on cassette unit # 1

OK

SEARCHING FOR BLANKET
FOUND BLANKET
LOADING
READV.
*

As soon as the LOAD statement is input, the computer checks to see if the PLAY
button is depressed and the tape is moving. If not, the message: PRESS PLAY ON
TAPE#x is displayed. Once the PLAY button is pressed, the tape starts moving and the

CRT responds with an OK message. The SEARCHING FOR message is displayed on

the screen as the computer searches the tape for the program. Every time it finds a pro-

gram, the word FOUND and the program name are displayed on the CRT. If the

"found" program is not the correct program, the computer continues to search the tape,

displaying the "found" program names until the correct program is found. Once found,

LOADING is displayed as the program is loaded into computer memory. When the

loading process is complete, the READY message is displayed.

After the first program has been loaded from a tape, you can for convenience

leave the PLAY key depressed if you will be loading again from the tape. However, do

not leave the PLAY key depressed if you will subsequently be saving a program. The
computer can sense that a tape control key is depressed, but it cannot distinguish bet-

ween them. A common error is to LOAD, then subsequently attempt to SAVE, with

only the PLAY key depressed.

Sometimes you may have trouble loading a program from tape into memory.
Often the CBM computer will find the program name but does not load the program cor-

rectly or does not load it at all. If this happens try to load the program again. Rewind the

tape and reload (several times if necessary) . If this does not work, there may have been

a problem when saving the program (SAVE statement) or in the cassette unit itself.

Before issuing a LOAD statement, make sure the cassette tape is rewound to a

point preceding the program you want to load. Otherwise the computer would search to

the end of the tape without finding the program. If the program to be loaded is located at

the end of the tape, and the computer searches from the beginning of the tape, the com-

puter will find and load that program, but the operation will take a long time. If you want

to save loading time, devise a scheme to locate approximately where the desired pro-

gram is on the tape, and position the tape at a point just prior to the program. Then a

LOAD statement will find the program quickly.

68 PET/CBM Personal Computer Guide

One scheme to locate information, rather than have the CBM computer search at

its PLAY speed, is to use the measuring scale on the tape cassette; the one below goes

from to 100 in units of 10, with the beginning of the tape at 30:

& SOME COMMON BASIC PROGRAMS

»,™#
OSBORNE/McGRAW-HILL

630 BANCROFT WAY. BERKELEY. CA 94710m ^

As the tape moves forward, the tape radius, measured on the scale, goes from 30

up to 100. 100 is the end of the tape. By keeping a record of information stored on a tape,

using the radius numbers, you can Fast Forward to a point just before the desired loca-

tion.

After the program is loaded into computer memory, list it on the screen using the

LIST statement, which was described earlier in this chapter.

Input the RUN statement in immediate mode to execute the program loaded off

the cassette tape.

Program LOAD & RUN
"LOAD & RUN" automatically loads and executes the next program found on

cassette tape #1. Pressing the shifted RUN/STOP key executes this operation, pro-

viding a quick way to load and run the next program stored on the cassette tape.

LOAD & RUN works only on CBM computer models with BASIC< 3.0

(releases 1.x, 2.x, and 3.x).

To LOAD & RUN a program, position the cassette tape in cassette unit #1 before

the beginning of the program to be loaded. Program names cannot be specified,

therefore LOAD & RUN is usually used with cassette tapes that hold one program only.

Press the shifted RUN key. The computer automatically loads and executes the next

program found on the cassette tape, displaying all the regular LOAD messages. Here is

an example of this method.

Lr —
PRESS PLfiV ON TAPE #!-«

OK

FOUND BLANKET
LOADING
RflRfififlfiRflfiflRRflfiflRRflfiflflflflfififlflflflflflflfiflflflflflfl-

fififlflRflRflflflRflflRflflRRflflRRflfiRflflflRRRRAflflRflflflfl

RRfiflflflRRRRRRRRRRflflRflRfiRflRflflflflflflflflRRflRflfifl

-Press shifted RUN/STOP key

-Press PLAY on cassette unit #1

-Automatic program execution

The shifted RUN key can only be pressed while the CBM computer is in immedi-

ate mode. If pressed during execution of another program, it acts like a STOP and breaks

program execution.

Chapter 2: Operating the CBM Computer 69

OPERATING THE DISK UNIT

We will now explain how you load and execute programs that were previously

stored on a diskette. We will also describe how you save new programs on a diskette.

No knowledge of BASIC programming is required to perform either of these

tasks. Chapter 6 explains all disk operations and statements in detail. For now, just enter

statements by rote.

By the end of this section you will know how to initialize both disk drives, list the

diskette directory, and load, execute and save programs on diskette.

DOS RELEASES 1.x AND 2.x

A set of programs that come with your CBM computer control all disk operations.

These programs are referred to collectively as a "Disk Operating System," or DOS.

There are currently several different releases of the CBM disk operating

system. The first release, DOS 1.x (x is a number between 1 and 9 representing a

subrelease of the DOS revision), is compatible with some CBM 2040 disk drive models

and is used with BASICO.0. Major changes came with DOS release 2.x. Disk system

statements were radically simplified, data storage and manipulation were improved, and

the bugs in release 1.x were corrected. DOS 2.x works will all releases of BASIC. DOS
1.x works with BASICO.0. DOS 1.x will also work with BASIC 4.0 but some BASIC 4.0

disk commands will produce a disk syntax error.

All CBM 8050 disk drive models use the DOS release 2.x with BASIC 4.0.

CBM 2040 model units use either DOS 1.x with BASICO.0 or 2.x with BASIC 4.0.

LOADING A PROGRAM FROM A DISKETTE USING BASICO.0

The following steps are involved when loading a program from a diskette:

1. Open a logical file and device.

2. Initialize the disk drive (s).

3. List the directory. This step is optional. It lets you check on the exact spell-

ing of the program name.

4. Load the program.

To demonstrate the steps, we will use the TEST/DEMO diskette supplied by

Commodore Business Machines with the disk unit.

Begin by inserting the TEST/DEMO diskette in drive following the diskette

loading procedure described in Chapter 1.

Opening a Logical File and Device

Before loading a program off a diskette, the communication line from the com-

puter to the disk drive must be opened and readied for data transfer. The OPEN state-

ment, input in immediate mode, opens the communication line.

To open a disk drive type in the following OPEN statement:

OPEN 1,8,15

70 PET/CBM Personal Computer Guide

Initializing the Disk Drive (BASIC < 3.0)

The next step is to initialize the disk drive. When using BASIC< 3.0 the disk

drive must be reinitialized every time a diskette is inserted in a drive, or when dis-

kettes are switched between the two drives. A disk drive must house a diskette before

it is initialized.

You initialize the disk drive with the INITIALIZE statement. "I" is the abbrevia-

tion for INITIALIZE. Either may be used.

(Initialize)
PRINT #file.# \ Y dr"

where:

file is the logical file number used in the OPEN
command

dr is the disk drive number or 1

To initialize drive containing the TEST/DEMO diskette, type in:

PRINT#1, "10"

You should see the drive LED indicator light light up while the drive motor runs

briefly. When the motor stops and the drive indicator light goes out the drive is

initialized.

To initialize drive 1, insert a diskette into drive 1 and type in:

PRIHT#1.. "II"

To initialize both drives type in:

PRINT*!. "I"

Loading the Diskette Directory (DOS 1.x)

Step 3 loads and lists the disk directory into memory. This is an optional step; you

can skip this step if you already know the name of the program you want to load.

The diskette directory serves the same function as the table of contents of a

book: it names the programs stored on the diskette.

To load the directory off the diskette in drive using BASIC<3.0, type in:

LOAD "*0",S

To load a directory off a diskette in drive 1 using BASIC< 3.0, type in:

LOAD "*1",S

If the drive number is not specified, both drives are searched and each diskette's

directory is loaded.

LORD "*",S

The following messages are displayed on the screen as the directory is loaded:

L0AD"«>",8

SEARCHING FOR *0
LOADING
READV.

Chapter 2: Operating the CBM Computer 71

When the READY message appears, type in LIST and press the RETURN key.

LIST will list the directory contents on the screen; the cursor will disappear as the direc-

tory appears on the screen. If the directory is longer than 25 lines, initial lines will scroll

off the top of the screen. To slow down the scrolling, hold down the REVERSE key or

the ~— key on the business keyboard while the directory is listing. To stop the list, press

the STOP key.

You may list the directory as often as you want by retyping the LIST statement.

Here is an example of the TEST/DEMO diskette directory for a CBM 2040 model

disk unit:

LIST

6 "DOS SUPPORT 4.0" PRO
2? "DUM 3.4" PRO
1 " DISK DATA " SEQ
15 "DIAGNOSTIC BOOT" FRO
10 "COPY DISK FILES" PRO
4 "CHECK DISK" PRO
10 "PET DISK" PRO
10 "DISK DISPLflV" PRG
i: "DISK COMM" PRO
2 "DISK COMM2" PRG
3 "DISK C0MM3" PRG
4 "DISK WRITE" PRG
4 "DISK READ" PRG
2 "DISK OVERLAYS" PRG
5 "DISK DIR" PRG
7 " PET DflTFl " SEQ
34 "RANDOM 1.00" PRG
2? "PRINTER DEMO" PRG
12 "SEQUENTIAL 1.00" PRG
4S4 BLOCKS FREE.

The top row of the directory is the "header." The header, displayed in reverse

mode, shows the diskette name and identification number. The center column of the

directory lists the program names. The quotation marks are not actually a part of the

program name. The left column shows how many "blocks" of space on the diskette are

filled by the program (a block is a unit of measure on the diskette). The number at the

bottom of the column is the total number of unused blocks on the diskette. The right-

most column signals whether the information is saved as a program (PRG) or data. Do

not worry about the left or right columns; they are of no importance at this time.

Once the directory is displayed scan the center column to find the program you

wish to load.

Program LOAD (BASIC < 3.0)

The LOAD statement, input in immediate mode, loads the specified program

from the diskette and stores it in computer memory.

To load any program from a diskette in drive 0, type in:

LOAD "0: program name ",8

The disk drive number precedes the program name; the two are separated by a colon.

Together they are enclosed within quotation marks. If the disk drive number is not

specified as or 1, the disk operating system will search both drives for the program,

providing both disk drives have previously been initialized.

To load the first program from the TEST/DEMO diskette in drive using

BASICO.0, type in:

LOAD "0:DOS SUPPORT 4.0". 8

72 PET/CBM Personal Computer Guide

Upon pressing RETURN the following messages appear on the screen, while the

drive indicator light lights up and the disk drive makes a soft humming noise:

LOAD "BEOS SUPPORT 4.0",

8

SEARCHING FOR DOS SUPPORT 4.0
LOADING
READV.
m

The disk drive number and program name are always displayed following the SEARCH-
ING FOR message. When the LED light goes out and the humming noise stops, the

READY message appears on the screen with the flashing cursor. The program is now
loaded and ready to be listed and run.

Program LIST (BASIC < 3.0)

Once a program is loaded into computer memory it may be listed on the display

screen with the LIST statement, which we have already described. LIST displays the

entire program. LIST with line parameters displays the specified portions of the pro-

gram.

Program RUN (BASIC < 3.0)

To execute the program just loaded off the diskette, type the RUN statement.

Upon pressing the RETURN key, the program is executed.

Preparing a Blank Diskette for BASIC < 3.0

A blank diskette cannot be used in the disk unit until it has been prepared, or

"formatted." Following is the procedure to format a blank diskette, or to reformat an

old diskette. Type in the statements by rote — you do not need to fully understand each

step at this point.

OPEN the disk drive as follows:

OPEN 1,8-15

To format the diskette and intialize the disk drive the NEW statement is used.

The format for the NEW statement is:

PRINT #file."
| NgW | dndiskname.id;"

where:

file is the logical file number used in the

OPEN command

dr is the disk drive number or 1

diskname is the name assigned to the entire disk

id is a unique two-character identifier.

Because your diskette is in drive 0, the disk drive number specified must be 0. Our

example diskname is YAK, and the identification number is 01. Type in the following

OPEN and NEW statements to format your diskette:

OPEN 1,8.. 15
PR I NT* 1.. "NOVAK"

Chapter 2: Operating the CBM Computer 73

Press the RETURN key. The drive indicator light illuminates as the disk drive formats

the diskette. The cursor disappears briefly, but then reappears with the READY
message before the diskette format is complete; this allows you to do other things on the

screen while the diskette is formatting. Once the operation is complete, type in:

LOAD "*0",S

$0 is the diskette directory for drive 0. $1 is the directory for drive 1. Directories display

the diskette's "table of contents" on the screen. Each directory begins with a "header"

with the diskname and identification number. When the directory is loaded, enter:

LIST

The directory will be displayed. Because the diskette is blank, only the header, shown

here, is displayed:

1-IS.T

wwns^m^^^mi^mm&mm
670 BLOCKS FREE.

REHDV.
m

Once the diskette is formatted you can store programs and data on it.

Program SAVE (BASIC <3.0)

Recording a program on a diskette with the SAVE statement is similiar to record-

ing onto a cassette tape. However, there are some differences in the syntax of the SAVE
statement. A program SAVE for a diskette looks like this:

SAVE"dr:file name",

8

where:

dr is the disk drive number, or 1

file is the name assigned to the program

The number within the quotes and preceding the program name specifies the disk drive

number, or 1. It may not be omitted. The number following the program name, num-
ber 8, tells the computer to direct the program to the disk drive. If the number 8 is omit-

ted the computer will try to save the program on the cassette unit 01.

Try saving the BLANKET program on a diskette in drive 0. Insert any formatted

diskette into drive 0, then OPEN and INITIALIZE the drive, if not already done. Enter

the BLANKET program on the keyboard. To save the program, enter the following

SAVE statement and press the RETURN key.

uPEN 1 ,

6

, 1 5 -« OPEN disk drive

PRINTH1 , " 10"- Initialize disk drive O

10 FOP 1-1 TO 860
20 PRINT "ft"

JO NEXT I Enter BLANKET program

40 PRINT "PHEW"
•50 END

SAVE "0 BLANKET" , 8—— Save BLANKET program on disk drive

RERDV.

As BLANKET is saved, the cursor will disappear from the screen and the indica-

tor light on the disk drive will light up briefly. When the program has been completely

recorded, the cursor and a READY message will appear on the screen. After saving a

program, verify it.

74 PET/CBM Personal Computer Guide

Program VERIFY (BASIC < 3.0)

Diskette and cassette programs are verified in the same way. The computer com-

pares the saved program on the diskette against the program in memory. If an error is

detected, an error message is displayed.

You should always VERIFY a program immediately after saving it.

The specifications for the VERIFY statement are identical to the SAVE state-

ment. A program VERIFY for a diskette looks like this:

VERIFY"dr:filename",8

where:

dr is the disk drive number, or 2

filename is the name of the program just saved

When the RETURN key is pressed, the verify messages (SEARCHING FOR
BLANKET, VERIFYING, and OK) are displayed on the screen. If an error message

appears instead of OK, then re-verify the program. If an error message appears again,

resave the program, then re-verify.

L.HVF " : BLANKET "
, 8- SA VE BLANKET program

READV.

VER IFV "B BLANKET "
. Z— Verify BLANKET program

SEARCHING FOR BLANKET
VER I FV I NO » Program verified

OK

READV.

Another way to VERIFY the program just saved on the diskette uses this state-

ment:

VERIFY"«",8

The asterisk (*) signals the CBM computer to verify the program just saved on the disk-

ette without having to specify the program name.

LOADING A PROGRAM FROM DISKETTE USING BASIC 4.0

There are two steps to loading a program from a diskette using BASIC 4.0:

1. List the directory.

2. Load the program.

To demonstrate these steps use any available prepared diskette or the DEMO
diskette supplied by Commodore. The examples in this section will use the programs

from the 8050 DEMO diskette.

Insert the diskette in drive following the diskette loading procedure described in

Chapter 1.

The BASIC 4.0 system automatically initializes the diskette drive before a pro-

gram is loaded. However, if you switch diskettes that have the same identification

number (the number following the diskette name on the directory header) then you

should manually initialize the drive, otherwise the computer will not know that the

diskettes have been switched. Drives are initialized when you load the directory.

Chapter 2: Operating the CBM Computer 75

Loading the Diskette Directory (BASIC 4.0)

The DIRECTORY statement loads the diskette directory and displays it on the

screen.

To load the diskette directory type in:

DIRECTORY DO Load and list the directory of disk drive

DIRECTORY D1 Load and list the directory of disk drive 1

DIRECTORY Load and list the directory of disk drives and 1

If the disk drive is not specified, both directories are loaded and listed. A directory may
not be listed or run like a regular CBM BASIC program under BASIC 4.0.

A sample diskette directory in drive appears as follows:

DIRECTORY DO

5 "UNIVERSAL WEDGE" PRG
8 "UNIT TO UNIT" PRO
3 "CHANGE 8650" PRO
11 "COPy 2040 - 8050" PRG
27 "PRINTER DEMO" PRG
12 "SEQUENTIAL" PRG
11 "PERFORMANCE TEST" PRG
5 "CHECK DISK" PRO
1? "LOGIC DIAGNOSTIC" PRG
1953 BLOCKS FREE.

READY.

Program LOAD (BASIC 4.0)

Programs are loaded from a diskette with the DLOAD statement in immediate

mode. To load a program from a diskette type in:

™«^ :;

pr09ram name" „J Load program from disk drive
DLOAD program name , DO)

DLOAD "program name",D1 Load program from disk drive

The program name is mandatory and must be enclosed within quotation marks. If

the disk drive is not specified the drive number defaults to and only drive is

searched. If a program is not found, a ?FILE NOT FOUND error results.

Try these statements on your disk system. Load the directory of the DEMO disk-

ette or your own diskette in drive 0. Type in:

DIRECTORY D0

The cursor should disappear briefly while the diskette is initialized and the directory is

loaded into memory and displayed.

Next, load the second program listed on the directory. (In the following example,

the program name may differ from your program name — don't worry about it.) Type

in:

DLOAD "UNIT TO UNIT"

The normal load messages appear on the screen as the diskette is searched and the

UNIT TO UNIT program is loaded into memory.

DLOAD "UNIT TO UNIT",D0

SEARCHING FOR UNIT TO UNIT
LOADING
READV.

76 PET/CBM Personal Computer Guide

Program LIST (BASIC 4.0)

To list the program, use the LIST statement, which we described earlier.

The LIST statement is used in the same way by BASIC 4.0 and BASIC< 3.0. The

LIST statement description given earlier applies to all DOS releases.

Program RUN (BASIC 4.0)

To execute the program, type in the RUN statement:

RUN

Program LOAD & RUN (BASIC 4.0)

The LOAD & RUN function automatically loads and executes the first program

found on disk drive 0. Pressing the shifted RUN/STOP key executes this operation, pro-

viding a quick way to load and run the first program on the drive diskette.

The disk drive LOAD & RUN works only on CBM models with BASIC 4.0

(release 4.x).

To LOAD & RUN a program, simply press the shifted RUN key. The screen dis-

plays the following messages before the program begins execution:

-Shifted RUN key pressed

SEARCHING FOR 0*
LOADING

-« Program execution begins

To perform a LOAD & RUN, the shifted RUN key can only be pressed while the CBM
computer is in immediate mode. If pressed during execution of another program, it acts

like a STOP and breaks program execution.

Preparing a Blank Diskette for BASIC 4.0

A blank diskette cannot be,used in the disk unit until it has been prepared, or

"formatted." Following is the procedure to format a blank diskette, or to reformat an

old diskette. Type in the commands by rote — you do not need to fully understand each

step at this point.

Insert a diskette in drive 0.

Diskettes are formatted with the HEADER statement:

HEADER "diskname",Dx.l22

where:

diskname is the name to be assigned to the disk

x is the disk drive number, or 1

22 is the two-character identification number

Type in the following HEADER statement to format your diskette:

HERDER "VflK", D0, 101

Our example disk name is YAK. Because the diskette is in drive 0, the disk drive num-
ber specified must be DO. If the diskette is in drive 1, then Dl is specified. The iden-

tification number we will use is 1, although any unique two-letter combination of letters

or numbers may be used.

Chapter 2: Operating the CBM Computer 77

When you press the RETURN key, the computer will respond with an ARE YOU
SURE? message. Press the 'Y' key for yes, or the 'N' key for no. Press the RETURN
key. 'N' will cause an exit from the format procedure. If 'Y' is pressed, the drive

indicator light illuminates as the disk drive formats the diskette. The cursor disappears

for a short time, reappearing with a READY message when the format operation is com-

plete.

IEHIiER "VflK". DO iCJl

ARE VOU SURE ?V -« Y key pressed for "yes"
READV.
m

Once the diskette is formatted you can write program and data files on it.

Program SAVE (BASIC 4.0)

Programs are saved on a diskette using the DSAVE statement in immediate

mode. To save a program on a diskette type in:

DSAVE "filename",Dx

where:

filename is the name of the program

x is the disk drive number or 1

The program name is mandatory and must be enclosed within quotation marks. If the

disk drive number is not specified, the program is automatically saved on the diskette in

drive 0.

Try this statement by saving the BLANKET program on a formatted diskette in

drive 0. Enter the BLANKET program on the keyboard. Then type in the following

DSAVE statement:

DSAVE "BLANKET " , D0

Upon pressing the RETURN key, the indicator light on the disk drive will light up

briefly and the cursor will disappear from the screen. Upon completion of the save, a

READY message and the cursor will return to the screen as shown:

READV.

The BLANKET program should now be verified.

Program VERIFY (BASIC 4.0)

The BASIC 4.0 and BASIC< 3.0 VERIFY statements are the same. Refer to

the VERIFY statement under BASIC< 3.0 for the description.

jg PET/CBM Personal Computer Guide

OPERATING THE CBM PRINTER

The CBM printer can be used to list program statements and to print results.

Like disk and tape units, the printer can be controlled by statements entered in

immediate mode via the keyboard, or using statements within a program. We are

going to describe immediate mode printer control. Chapter 6 explains how to control a

printer using program statements. Printer operations are identical using BASIC 4.0 or

BASIC< 3.0.

The OPEN Statement

Prior to sending data to the printer, you must open a communication line from the

computer to the printer. This is done using an OPEN statement, as follows:

OPEN x,4

where:

x is any integer from 1 to 255

Here are some examples of OPEN statements:

OPEN 1,4

OPEN 4,4

OPEN 250,4

The CMD Statement

Once the printer has been opened, output is directed to the printer using the CMD
statement. This is optional.

CMD 1

The CMD number must match the first number of the OPEN statement. If the numbers

do not match, the message ?FILE NOT OPEN ERROR will be displayed. If this occurs,

the printer will have to be reopened by retyping the OPEN and CMD statements.

Here are some examples with PRINT statements:

OPEN 1,4: CMD 4
PRINT "TISHNICK"

OPEN 2,4
CMD 2, "MV PET BITES"

OPEN 3,4
PRINT#3,

Chapter 2: Operating the CBM Computer 79

Printing to the Printer

Once the printer has been properly opened, it is ready to receive and print data.

We will use the PRINT* statement, entered in immediate mode, to print data at the

printer.

First make sure the printer is connected to the computer and powered up, with rib-

bon and paper properly installed.

Open the printer by typing in OPEN and CMD statements:

OPEN 1,4 = CMD 1

Upon pressing RETURN, the printer executes a line feed (prints one blank line). The

printer is now open and ready to print data input from the keyboard. Type in the follow-

ing PRINT statement, placing your name between the quotation marks:

PRINT "KIT CRRSON"

When you press RETURN, the cursor will disappear from the screen as your name is

printed at the printer:

RERDV.
KIT CRRSON

When printing in immediate mode, the first line printed is a READY message. The

following line is your output; in this case, your name. At the end of the output the

printer automatically executes a carriage return and another line feed. When the cursor

reappears on the screen, you can input more data.

Below are some more sample inputs and printer outputs.

Screen Display Printer Output

_»• KIT CRRSON
OPEN 1 , 4 CMD 1

PRINT "KIT CHRSON" RERDV.
PRINT "1234567890" 1234567890
PRINT "MV NRHE BACKWARDS IS TIK NOSRRC"

_

RERDV.
MV NAME BRCKWRRDS IS TIK NO RRC

Listing a Program on the Printer

To list a program on the printer, type in the OPEN and CMD statements, followed

by the LIST statement.

OPEN 1,4: CMD 1

LIST

LIST line parameters may also be used.

The example below shows the BLANKET program listed by the printer:

OPEN 1,4 CMD 1

LIST

10 FOR 1=1 TO 800
20 PRINT "R".;

30 NEXT I

40 PRINT "PHEW!"
50 END

RERDV.

80 PET/CBM Personal Computer Guide

The CLOSE Statement

You must CLOSE the printer after using it. The printer is closed with a CLOSE
statement, as follows:

CLOSE 1

The number following CLOSE must be the first number in the OPEN statement.

OPEN 1, 4 OPEN 15, 4

CLOSE 1 CLOSE 15

You must precede the CLOSE statement with a PRINT* statement to properly

close the printer. Below are examples of correct and incorrect ways to close the printer:

Right Wrong

OPEN 5. 4
PRINT#5,"HELL0 THERE"
CLOSE 5

OPEN 5, 4 OPEN 5, 4
CMD 5,"HELLO THERE" not CMD 5, "HELLO THERE"
PRINT#5:CLOSE 5 CLOSE 5

OPEN 5,4 OPEN 5,4

CMD 5,"HELLO THERE" n0 , CMD 5,"HELLO THERE"
PRINT#5,"HELLO THERE" PRINT#5,"HELL0 THERE"
CLOSE 5 PRINT#5:CLOSE 5

OPEN 5, 4 OPEN 5, 4
PRINT#5,"HELLO THERE" , PRINT#5,"HELLO THERE"
CMD5,"HELLO THERE" CMD5,"HELLO THERE"
PRINT#5:CLOSE 5 CLOSE 5

Chapter 3

Screen Editing

CBM computers display characters on the video screen as they are input via the

keyboard. Anything displayed on the screen may be edited or modified in immediate

mode.

Screen' editing is one of the most significant capabilities of your CBM computer.

You can change your input simply and efficiently using a built-in screen editor, de-

scribed in this chapter. Try all the examples provided in this chapter. If you do not

understand these editing concepts read Chapter 4, "Programming the CBM Com-
puter," and then reread this chapter. Chapter 4 will give you a fundamental understand-

ing of the BASIC language.

The screen editor allows the cursor to be moved around the screen in four direc-

tions. Characters can be inserted or deleted anywhere on the screen. Cursor keys were

described in Chapter 1 under "CBM Key Groups": The CLEAR SCREEN/HOME key

moves the cursor to the beginning of the top screen line and/or blanks the screen. The

CURSOR UP/DOWN, and CURSOR LEFT/RIGHT keys skip the cursor over text.

The INSERT/DELETE key adjusts space on the screen to insert or delete single charac-

ters.

82 PET/CBM Personal Computer Guide

EDITING TEXT ON THE CURRENT DISPLAY LINE

Often while entering text you may notice a mistake on the line currently being

entered. You can correct the mistake immediately. Backspace the cursor to the mistake

using either the CURSOR LEFT key or the DELETE key.

We will use the following statement to illustrate editing:

MY PET BVTES

BITES is misspelled; we want to change the Y to an I.

You can use the CURSOR LEFT key to backspace the cursor back to the Y

without altering the text, or you can use the DELETE key to backspace and erase

text up to the Y. The choice depends upon whether you want text to the right of the Y to

remain. If the error is many characters back, you are better off using the CURSOR
LEFT key, which backspaces the cursor, so that you will not have to retype the

remainder of the line, possibly introducing new errors.

Backspacing with the CURSOR LEFT Key

Enter the following text, leaving the cursor at the end of the text. Do not press the

RETURN key:

11V PET BYTES*

The cursor must be moved back to the Y, which must be changed to an I. BYTES then

becomes BITES. To move the cursor left, press the CURSOR LEFT key and the SHIFT

key simultaneously one time for each screen position to be moved. Stop pressing the

cursor keys when the cursor is positioned at the Y character.

On the CBM 8000 models the cursor will move automatically if the cursor key is

held down. You need not repeatedly press the cursor keys. Just hold the key down until

the cursor is positioned on the Y character.

MV PET BYTES*-.

—

Press CUROSR LEFT
MY PET BYTE*- -Press CURSOR LEFT
MY PET BYTfS-" Press CURSOR LEFT
MV PET BVgES-. Press CURSOR LEFT
MV PET BITES

To change the Y character to an I, press the I key on the keyboard. Replacing the

Y with an I, the cursor moves one position to the right. This is called "typeover,"

because the cursor types over the existing character with a new character. Typeover

changes the screen display to:

MV PET BliES -—V character typed over with I key.

You can move the cursor past the end of the text with multiple pressings of the

CURSOR RIGHT key (unshifted) to continue entering more text on the line. Or you

can simply press the RETURN key to complete the line. Experiment with both methods.

As each screen line is edited, the change (s) become permanent when you press

the RETURN key. Do not move the cursor off the line by pressing either the HOME,
CLEAR SCREEN, or CURSOR UP/DOWN key. Although the screen display shows

the modification, the change will not be registered in the computer's memory until

the RETURN key is pressed.

Chapter 3: Screen Editing 83

Backspacing with the DELETE Key

Type in the example text again, leaving the cursor at the end of the text. Do not

press the RETURN key.

MY PET BYTES*

Press the DELETE key one time for each position to be moved. Stop the cursor when

the Y character has been erased.

MY PET BYTES*-.— Press DELETE
MV PET BVTEif-. Press DELETE
MV PET BYTS-. Press DELETE
MV PET BV«-« Press DELETE
MY PET B*

The cursor should be positioned over the Y character. Press the I key to enter the I

character.

To complete the statement you must retype the remainder of the text that was

deleted. When completed, press the RETURN key to make the change permanent in

computer memory.

my pet sm
MV PET BI*-« Press I key
MV PET BITS-. Press T key
MV PET BITES-. Press E key
MV PET BITES*-. Press S key

Shifting and Deleting Text with the DELETE Key

The DELETE key can also be used to shift text one position to the left, while

simultaneously deleting the character to the cursor's left.

The example statement has been altered to include an extra character in the text,

as shown below:

MV PET BITTES.»

Type in this statement, leaving the cursor at the end of the line. Our task is to delete the

extra T in BI(T)TES. We will arbitrarily choose to delete the first T. Instead of deleting

the text back to the first T, move the cursor over the text with the CURSOR LEFT key.

Move the cursor to the second T, because DELETE deletes the character to the immedi-

ate left of the cursor, not the character under the cursor.

MV PET BITfES

With the cursor on the second T, press the DELETE key. The first T is deleted and the

text to its right is shifted one position to the left, filling its space.

MV PET BITTES-« Position of cursor before DELETE key pressed
MV PET BITES-. DELETE key pressed

Either press the CURSOR RIGHT key several times to move beyond the text before

pressing the RETURN key, or simply press the RETURN key to exit the text.

84 PET/CBM Personal Computer Guide

Shifting Text with the INSERT Key

The INSERT key opens a space in the text at the current cursor position, mov-

ing all the text beyond the cursor position one space to the right. An additional

character may be inserted into this new space.

To demonstrate the INSERT key, we will omit one character from our example

text. Type in the statement below, leaving the cursor at the end of the statement:

HV PET BTESK

The missing I may be added to the text in several different ways.

You can use the DELETE key to delete the text back to the error, then enter the

omitted character and the remainder of the line, as previously described. But if you

delete more than a couple of characters, you may make mistakes retyping the line. You

do not have to retype if you use the INSERT key.

Before using the INSERT key, move the cursor to the character position where

you want the insertion to begin. Place the cursor on the character that ultimately

becomes the first character beyond the insertion.

MV PET BTES-*—Position of cursor before INSERT key pressed

* INSERT I character here

To insert an I between the B and the T, backspace the cursor by pressing the CURSOR
LEFT key until the cursor is on top of the T character:

MV PET BTES»<—Press CURSOR LEFT
MV PET ETEl\-> Press CURSOR LEFT
MV PET BTES - Press CURSOR LEFT
MV PET BTES

Press the INSERT key once to insert one space between the B and the T. The TES text

moves one space to the right while the cursor remains stationary.

MV PET B»TES-«

—

INSERT key pressed

Type in the I character:

MV PET B I TES*— I character pressed

If you want to add text at the end of the line, press the CURSOR RIGHT key to

move the cursor beyond the S, add new text, then press RETURN. Or just press the

RETURN key to drop the cursor to a lower line if no new text is to be added.

This time we will insert an entire word into a line of text. Type in the following

new text, leaving the cursor at the end of the statement:

HOW IS THE TIMES

Suppose we want to insert the word NOT, to change the meaning of the statement.

NOW IS THE TIMES

NOT

Chapter 3: Screen Editing 85

Press CURSOR LEFT repeatedly until the cursor backspaces to the T of THE.

NOW IS THE TIMES
NOW IS THE Tlrtl
NOW IS THE TIME
NOW IS THE TjME
NOW IS THE TIME
NOW IS THElflME
NOW IS THl TIME
NOW IS T§E TIME
NOW IS IHE TIME

Press the INSERT key four times to make room for the word NOT, plus a space.

NOW IS IHE TIME-. Press INSERT key
NOW IS SSTHE TIME-. Press INSERT key
NOW IS m THE TIME-. Press INSERT key
WOW IS 8 THE TIME-. Press INSERT key
HOW IS m THE TIME

Type in the word NOT and a space:

HOW IS m THE TIME
NOW IS Nis THE TIME
NOW IS NOSi THE TIME
NOW IS NOT:»THE TIME
NOW IS NOT §HE TIME

Press the RETURN key to exit the cursor from the text.

There are a couple of rules that must be observed when using the INSERT key.

Always move the cursor to the position where you want the insertion to begin. The

character under the cursor will be moved to the right of the cursor, becoming the first

character beyond the insertion. When entering in additional characters, press as many
character keys, including spaces, as you did INSERT keys.

EDITING TEXT WITHIN QUOTATION MARKS
Editing text enclosed within quotation marks calls for different procedures,

because quotation marks signal the beginning or the end of a text string.

Recall from Chapter 2 that any text entered after an odd number of quotation

marks becomes a text string; this includes cursor keys. If you press a cursor control key

to edit the string, the cursor will not move. Instead, a symbolic representation of the

cursor key will be displayed as part of the string. Before the string can be edited, it must

be completed with a second set of quotation marks, or by pressing the RETURN key.

Once out of the string, the cursor keys function normally. The CBM 8000 ESC key

cancels the effect of an odd number of quotation marks.

The example text we will use to demonstrate editing within a string is:

PRINT "MV PET BITES"

This is a PRINT statement which will display the character string MY PET BITES on the

next line when the RETURN key is pressed.

When entering this statement we discover the I of BITES was accidentally entered

as a Y.

PRINT "MV PET BVTES"*

86 PET/CBM Personal Computer Guide

To edit the Y character without altering the rest of the text, your first inclination is to

press the CURSOR LEFT key three times and type over the Y with an I character. This

will not work. The three CURSOR LEFTs will be incorporated into the text string

instead of moving the cursor left. The incorporated CURSOR LEFTs, shown by their

symbolic representations in the string, cause cursor movement when the PRINT state-

ment is executed.

?RINT "MV PET BVTEIMI.se -CURSOR LEFT pressed three times

Table 3-1 shows the string representations of all the cursor keys. To avoid "pro-

gramming" the cursor keys in the string, type a second set of quotation marks before

you start editing.

Returning to the original statement, to avoid entering the CURSOR LEFT keys as

text, enter the remainder of the string, and the second set of quotation marks which end

the string:

PRINT "MV PET BVTEit
PRINT "MV PET BVTES*
PRINT "MV PET BVTES"* - Cursor positioned after second

set of quotation marks

Table 3-1. String Representation of Cursor Keys

Function Key String Symbol

DELETE

INSERT

Home Cursor

Clear Screen

Cursor Down

Cursor Up

Cursor Right

Cursor Left

INST
DEL

Shifted
INST
DEL

cm
SCREEN
HOME

Shifted
CLR

SCREEN
HOME

CURSOR

Shifted CURSOR

CURSOR

Shifted

(Reverse shifted T)

Not programmed

>J (Reverse S)

71 (Reverse Shifted SI

it (Reverse Q)

n (Reverse Shifted Ql

H (Reverse))

II (Reverse Shifted])

Chapter 3: Screen Editing 87

Then use the CURSOR LEFT key to move the cursor back to the Y.

PRINT "MV PET BVTES"•m-—Press CURSOR LEFT
PRINT "MV PET BYTES"<-. Press CURSOR LEFT
PRINT "MY PET BVTES"• -. Press CURSOR LEFT
PRINT
PRINT

"MV
"MY

PET
PET

BYTES'
BYTES'

> ^ P»»c« CURSOR LEFT
• * Press CURSOR LEFT

PRINT "MV PET BVTES'

Type over the Y with an I, and press the RETURN key to exit the statement. The cor-

rected string is displayed on the following line:

PRINT "MY PET BVTES "-«

—

Type I over Y
PRINT "MV PET BITES"..

—

Press RETURN
MV PET BITES-" PRINT statement displayed on screen

REFWV.

An alternative method when editing text within quotation marks is to press the

RETURN key, which removes the cursor from the current display line. This places

the cursor in the first character position of the next line. (The computer may respond in

various ways, depending on the statement. Do not concern yourself with the computer

response just yet — your task is to edit the string text.) Move the cursor up to the line

using CURSOR UP, and move the cursor left to the character to be edited.

Type in this statement:

PRINT "MV PET BVTES"

Press the RETURN key to drop the cursor down to a lower line.

PRINT "MV PET BVTES"..

—

Press RETURN key
MV PET BVTES

Ignoring the screen response, press the CURSOR UP key (shifted) repeatedly to move
the cursor up to the original statement line.

CURSOR UP key pressed r-^PR I NT "Mv PET BVTES"
CURSOR UP key pressed p^MV PET BVTES
CURSOR UP key pressed |~*"

CURSOR UP key pressed |—-gEftDV.

Press the CURSOR RIGHT key several times to move the cursor rightward to the Y
character. Type over the Y character with an I.

PRINT "MY PET BVTES"
PRINT "MV PET BITES"-"

—

Y typed over with I character

Press the RETURN key. Upon pressing the RETURN key the statement is

executed. The string is displayed with the new I character replacing the corrected I.

PRINT "MV PET BITES"-" Type I over Y
MV PET BITES-" RETURN key pressed

REfiDV.

88 PET/CBM Personal Computer Guide

Like the CURSOR LEFT key, the CURSOR RIGHT and the CURSOR UP/
DOWN become part of the string text when entered following an odd-numbered set of

quotation marks.

But the INSERT/DELETE keys respond a little differently.

The INSERT key, when entered following an odd-numbered set of quotation

marks, becomes a character in the text string. It is represented on the screen by the

INSERT symbol (CD) . But when the PRINT statement is executed and the string is

displayed, the INSERT character has no effect on the display.

The DELETE key is the only cursor key not affected by the presence of quota-

tion marks. To edit our example statement with the DELETE key, simply press the

DELETE key to delete text back to the position which must be edited.

PRINT "MV PET BVTES"Si< Press DELETE key
PRINT "MV PET BVTES»-« Press DELETE key
PRINT "MV PET BVTEJM Press DELETE key
PRINT "MV PET BVT®- Press DELETE key
PRINT "MV PET SV®- Press DELETE key
PRINT "MV PET Big

EDITING PROGRAM STATEMENTS
Do not read this section until you understand programming.

This section explains how to duplicate and edit similar BASIC statements

using line numbers.

Line Duplication

Many programs have several similar or identical statements. It is often efficient to

duplicate several statements from one original statement, rather than re-entering the

statement many times. On the CBM computer, each program statement must be

assigned a unique line number. By changing the line number of a statement you can

create a new statement without erasing the original.

Enter the following program statement:

10 PRINT "*"

Suppose we need to enter five more identical statements, just like the one above. We
could type in the statement five times, assigning each statement a unique line number.

Or we could duplicate the statement five times by changing the line number of the origi-

nal statement five times, as described below.

Enter the program statement to be duplicated. (If the program statement is

already entered, list it using the LIST command, specifying the line number.) Press the

CURSOR UP key until the cursor is positioned at the start of the line number. To
change the statement line number, type over the number 10 with a new line number:

2SKPRINT "*" Type over line number 10 with line number 20

Chapter 3: Screen Editing $9

When the new line number has been entered, press the RETURN key to create a new

statement from the original. The RETURN key must be pressed after each line number

change. If you list the program, both statements are displayed:

20 PRINT "»"

LIST

10 PRINT "*"

20 PRINT "*"

RERDV.

Editing Similar Program Statements

Editing similar program statements follows the same procedure described in dup-

licating program statements. LIST the statement to be duplicated, specifying its line

number. Move the cursor up to the program statement and type over the line number

with a new line number. Then using the CURSOR RIGHT, INSERT or DELETE keys,

move the cursor to edit the statement as needed. Press the RETURN key, and the new

statement created from the original statement is sent to memory. Do not worry if the

original statement is not displayed on the screen. It is still in memory and will be dis-

played if you LIST the program.

Ultimately we want to create a short example program that looks like this:

10 PRINT "*"

20 PRINT " *"

30 PRINT " *"

48 PRINT " *"

50 PRINT " *"

Because all five lines are similar, we will duplicate and edit the first statement four times

to avoid redundant typing of identical text.

Enter program statement 10 and press the RETURN key. To create the program

statement on 20, move the cursor up to line number 10 and type over the 10 with a 20.

Press the CURSOR LEFT key repeatedly until the cursor is positioned on top of the

asterisk (»). Press the INSERT key once to move the asterisk over one space to the

right, leaving a blank space at the current cursor position. Press the RETURN key to

send the new program statement to memory. Although line number 10 is not displayed

on the screen, it is still in computer memory, as shown by a program LIST:

2B PRINT " *"-<

—

Statement 20 created from

LIST statement 10

10 PRINT "*"

20 PRINT " *"

RERDV.
m

Statements 30, 40, and 50 are created in the same manner as statement 20 by moving

the cursor up to the statement, then editing the line number and text. After entering all

five statements, the screen should look like this:

90 PET/CBM Personal Computer Guide

Type in LIST to display the entire program:

50 PRINT - *"
LIST

10 PRINT "*"

20 PRINT " *"
30 PRINT " *"
40 PRINT " *"
50 PRINT " *"

RERDV.

As you can see, duplicating and editing similar program statements is an efficient

means of entering similar statements.

BASIC 4.0 SCREEN EDITING EXTENSIONS

BASIC 4.0 has a number of screen editing capabilities not available with earlier

releases of CBM BASIC. These added capabilities are generally used within programs;

they are not used to edit screen data in immediate mode, therefore they are described in

Chapter 5.

Chapter 4

Programming the CBM

This chapter teaches you how to start writing your own BASIC programs.

BASIC is a programming language. BASIC, like any programming language,

consists of a set of statements, which you combine to create programs. A program

defines the task you want the computer to perform.

We could teach you BASIC by forcing you first to learn BASIC statements, one by

one. But you would probably give up, since individual statements are not very meaning-

ful. A study of individual BASIC statements quickly degenerates into learning a number

of arbitrary syntax rules that tell you nothing about programming or good programming

practice. Therefore rigorous definitions of all BASIC statements have been relegated

to Chapter 8. Look up individual statements in Chapter 8 when you need to, but do

not try to read Chapter 8 before you read this chapter.

92 PET/CBM Personal Computer Guide

IMMEDIATE AND PROGRAMMED MODES

When the CBM computer is powered up it is in immediate mode. In immediate

mode you can use the CBM computer as you would a calculator; it executes BASIC
statements as soon as you press the RETURN key to signal the end of the statement

entry. Try these arithmetic examples:

74.5+6.42
10.32

Addition

REflDV.
"•500-410

90
Subtraction

REflDV.
?fr*2

S.2831S531
Multiplication

REflDV.
? 10S/3 Division

REflDV.
?S/2*4-l
11

Combination

Results are displayed immediately on the next line of the display.

In programmed mode the computer accepts and stores your entries, but does not

perform any operations until specifically instructed to do so by a RUN statement.

Programs and Statements

Each of the five immediate mode statements shown above is a miniature program.

A program provides the CBM computer with an exact and complete definition

of the task which the computer is to perform.

A program consists of one or more statements. In each of the five immediate

mode illustrations, the entire program consists of a single statement. These are trivial

cases. Most programs have tens, hundreds, or even thousands of statements.

Program Execution

A computer is said to execute a program (or RUN the program) when it per-

forms the operations which the program specifies.

An immediate mode program is executed as soon as you press the RETURN key.

In programmed mode you must issue a special RUN statement to execute a pro-

gram; we described the RUN statement in Chapter 1.

Program Lines

In programmed mode every program line has a unique line number. The CBM
computer assumes an immediate mode program if the line does not begin with a line

number.

A program line can be up to 80 characters long. On an 80-column display,

therefore, a program line corresponds to a display line. On a 40-column display a pro-

gram line is equivalent to two display lines.

Chapter 4: Programming the CBM "

If a program line is less than 80 characters long, then it is terminated when you

press the RETURN key. The CBM computer lets you continue beyond the 80th

character, but subsequently the line does not execute correctly. To be safe you should

end every line before the 80th character by pressing the RETURN key.

A line can contain more than one program statement, providing, of course, the

entire line length is less than 80 characters. This holds true in program mode and in

immediate mode.

ONE-LINE IMMEDIATE MODE PROGRAMS

In immediate mode the entire program must fit on a single line, since the

immediate mode program is executed as soon as you press the RETURN key. A
single line can contain more than one statement, therefore some interesting immedi-

ate mode programs can be created. Let us examine some possibilities.

A question mark appearing at the beginning of a BASIC statement causes the

CBM computer to display something; the question mark is an abbreviated form of the

PRINT statement. Although the illustrations of immediate mode statements shown ear-

lier all begin with a question mark, this is by no means a requirement for an immediate

mode program. Consider the following examples:

REflDV.
?fl

6. 283 18531

There are two immediate mode statements. Each becomes an independent,

immediate mode program. When you type in the first statement, A=7r»2, the result is

not displayed, since the statement does not begin with ?; but the calculation is per-

formed nevertheless. The result is displayed by the second immediate statement, ?A.

When statements are grouped together on one line, each is separated from the

next with a colon (:). Thus, the two statements:

i=i=n*2
?fl

can be condensed into one line as follows:

l=l=1T*2 : ?fl

The two statements have become a single, immediate mode program.

Since a line can have up to 80 characters, you can put a lot of program on one line,

and execute it all in immediate mode. For example, consider the following line:

FOR 1=1 TO 800:?"fi"; NEXT?"PHEW!

"

94 PET/CBM Personal Computer Guide

Ignoring the meaning of this "mini-program" for now, type it in exactly as shown,

ending with a RETURN. If you type it in successfully, you will see the letter A displayed

across the next 20 lines of a 40-column screen, followed by the message PHEW! on the

21st line:

FOR 1=1 TO 80e?"R"; NEXT?"PHEW!"
RRRflflfiflfiRflflflRRRRflflRflflflRflflflRflflflfiflFlflRRfiRfiR

RBRRfiflRRflfiRRflRRflflRflflfiflflRRfiflfififlflRRRRRfiRRfl

RfiRftfiRfiflRfiRRfiflflRRfiflRRRfiRRRflflfiflflRflflRRRRfifl

RRflflflflfiRflRRRRflRRRRRfiRRftRRflRRRRRRRRRRflflfiR

RflRRRRRRflRRflRflflfifiRRRRflRflRRflRRflRRRRRRRRRR
RRRRRRflflRRflflfiflfiflflRflRflRRRRRflflRRflRRRflflRRRR

RflRflfiflflflRRflflflfiflRflRRflRRRRflRRRRRRflflRRRRRRR

RRRRRRRRRflRRflRRRRRRRRflRRfiRRRRRRflflRRRRRRR
RRflflflRflflflflflRflflfiflRflflflRflRflflflRRRRfiflRRRflRRflR

RRRRRRRflflRflRRflflRflflflflflRflfiRflRfifiRRRflRflRRRRR

RRRRRflfiRRRRAflRflRRfiflfiftfiflflflflRfififlBRfiflfiRflRfifl

RflflRfiflflRRfiflflfiRflflfiRflfiflAfiflRflflfiftflftRRAAflflfifiR

fififlflfiRflflRRftRfiBRflflflflfiflftflflmBRfiRRflflfififlflflm

RRRRflRRRRRRRflRflflflflRflRRRRRRflRflRflfiflRRRflflfifl

RRflflfiRRnRfiflfifififlRflflflfiflfifififiRflRRRfiflflflHRfiflfifl

RRRflfiflflfiflflflRfiRRRflRflflRRRRRRflRRflRflflHfiRfiflfifl

RRRflflfifiRRRflflflflflRRRflRflRRflRflRRRfiflflflRRRRRfiR

RRRRRRRRRRRflRRflflRflRflflflRflflRRflRRflflflflflRRRflfl

PHEW!

RERDV.
B

The program line is conveniently left at the top of the screen. This is because the

program displays just enough lines to scroll the program line to the top of a 40-column

screen, but not off it.

The letter A will be displayed across 10 lines of an 80-column screen, with the pro-

gram above the top line of A's.

Re-executing in Immediate Mode

When the one-line program described above completes execution in immediate

mode, the READY message is displayed and the cursor is left at the beginning of the

bottom display line.

An important feature ofCBM BASIC is that anything displayed on the screen is

"live." You can edit any line on the screen and re-execute the edited statements, pro-

viding they are still displayed.

Use CURSOR UP or, more conveniently, press the HOME key to move the cur-

sor up to the F in FOR. Move the cursor right 15 positions to the A. Press a graphic key,

say the DIAGONAL QUARTER-BLOCK SOLID (shift of ? key). Press RETURN. The

new symbol now overwrites and replaces all the A's across the 20-row display. On com-

pletion, the cursor again rests at the beginning of the bottom line.

Chapter 4: Programming the CBM 95

FOR 1=1 TO 800:?"V'; :NEXT:?"PHEWI

"

wwwvwwwAwwwvwywwmwmvrt
WWWWWWWWWWWWWWWVWVWWrt

vwwwwwwwv
mvrtwwww

wwwvwwwmvwwwwwwwwrtvwvi
WVWVWWWWWUWWWt

rtVWWWh

PHEW!

RERDV.
8

Modifying a Program

Before trying any more characters, make one editing modification to the line to

make changing characters easier. The new line, with the display character changed to a

W, will look like this:

C*="W":FOR 1 = 1 TO S00:?C*.: : NEXT: ?" PHEW! "

To modify the current line, perform the following steps:

1. Home the cursor so it is blinking at the F in FOR (m indicates position of

cursor)

.

FOR 1 = 1 TO 800--?"S"; =NEXT:?"PHEW! "

2. Press the INSERT key seven times.

FOR 1 = 1 TO 800:? H V'; :NEXT:?"PHEW! "

3. Type in the seven characters C$=*"W":

C*="W" :f!OR 1 = 1 TO 800 :? "V .:: NEXT: ?"PHEW! "

4. CURSOR RIGHT 14 times to the first quotation mark.

C*= ,'W" --FOR 1 = 1 TO 800: ?"".",: NEXT: ?"PHEW! "

5. Type in the two characters C$

C*="W":FOR 1 = 1 TO 800 : ?C*".; ' NEXT :? "PHEW !

"

6. Remove the other quotation mark by pressing one CURSOR RIGHT:

C*= " W "
: FOR 1=1 TO 800 : ?C* "

.; : NEXT : ? " PHEW !

"

Followed by one DELETE:
C*="W":FOR 1=1 TO 800 : ?C*; : NEXT: ?"PHEW!

"

96 PET/CBM Personal Computer Guide

The changes have all been made; press RETURN to print the new character. Now

you can HOME the cursor, then move it right just four positions to change the display

character. Display any other characters you want. The graphics are especially interesting.

SPACES ARE NOT NEEDED

Are you struggling with the question of where to put spaces in the line and where

not to? Don't worry. CBM BASIC interprets a line by the elements in it. Spaces, or

blanks, are irrelevant. For example, the line:

120 FOR 1=1 TO 21

could read:

120 FOR 1=1 TO210

or:

1£0 FORI=1TO210

You can put extra spaces anywhere, except within reserved words or other BASIC

statements. GOTO may be written as either GOTO or GO TO. The only place you must

put spaces is within quotation marks, where you want spaces to be part of the text string.

Blanks in a statement improve readability of the program; use them for this purpose.

ELEMENTS OF A
PROGRAMMING LANGUAGE

Program statements must be written following a well defined set of rules.

These rules, taken together, are referred to as "syntax."

There are many different sets of rules, or syntax, that define the way in which pro-

gram statements are written. Each different set of rules applies to a different program-

ming language. CBM computers use just one programming language; it is called

BASIC. All of the syntax rules described in this book apply only to CBM BASIC.

Programming languages are as varied as spoken languages. In addition to BASIC,

other common programming languages are PASCAL, FORTRAN, COBOL, APL,

PL/M, PL-1, and FORTH. Uncommon program languages number in the hundreds.

Unfortunately, programming languages, like spoken languages, have dialects. A

BASIC program written for your CBM computer will not run on any other computer,

even if the other computer also claims to be programmable in BASIC. Dialects manifest

themselves as minor variations in the language syntax used by one computer as com-

pared to another. However, having learned how to program your CBM computer in

BASIC, you will have little trouble learning any other computer's BASIC.

Some programming language syntax rules are obvious. The addition and subtrac-

tion examples at the beginning of this chapter use obvious syntax. You do not have to

be a programmer to understand these two statements. But most syntax rules are utterly

arbitrary; they are meaningless unless you have learned the syntax. You should not try

to seek justification for syntax rules; usually there is none. For example, why use "*" to

represent multiplication? One would normally use a " x " sign for multiplication; but

the computer would have no way of differentiating between the use of the " x " sign to

represent multiplication, or to represent the letter "x". Therefore nearly all computer

Chapter 4: Programming the CBM 97

languages have opted for the asterisk (*) to represent multiplication. Division is univer-

sally represented by the '/" sign. There is no real justification for this selection; the

standard division sign (-=-) is not present on computer or typewriter keyboards, so some
other character must be selected.

BASIC statement syntax deals separately with line numbers, data, and instruc-

tions to the computer. We will describe each in turn.

LINE NUMBERS

As we have already stated, in program mode every line of a BASIC program
must have a unique line number. Moreover, the first line of the BASIC program must
have the smallest line number, while the last line of the BASIC program must have the

largest line number. In between, line numbers must be in ascending order. The CBM
computer forces this upon you: irrespective of where you enter a line on the display,

the CBM computer will move it to its proper sequential position. Consider an existing

program with the following line numbers:

120
130
140
150
160
170
180
190

If you enter a new statement with line number 165, then the new statement

initially appears below the existing program, but the CBM computer will automatically

insert this statement between line numbers 160 and 170. This may be illustrated as

follows:

Displayed line numbers Lines stored and

when you entered line 1 65 re-displayed thus

120 120
130 130
140 140
150 150
160 160
170 165
180 170
190 180

190
165

If the line number for a new statement duplicates an existing line number, then

the old statement will be replaced.

CBM BASIC allows line numbers to range between 1 and 63999. The CBM
computer interprets digits appearing at the beginning of any line as the line number. If

more than five digits appear at the beginning of the line then an error is flagged: it is

referred to as a syntax error, since you have violated the syntax rules for CBM BASIC.
All BASIC dialects require line numbers to be assigned in ascending order as de-

scribed above. However, the largest allowed line number varies from one dialect of

BASIC to the next.

Computer languages other than BASIC do not require every line to begin with a

line number, nor do they require line numbers, where present, to have any particular

order.

95 PET/CBM Personal Computer Guide

You use line numbers as addresses, identifying locations within a program. This is

an important concept, since every program will contain two types of statements:

1. Statements which create or modify data, and

2. Statements which control the sequence in which operations are performed.

The idea that operations specified by a program must be performed in some well

defined sequence is a simple enough concept. Normally program execution begins with

the first statement in the program, and continues sequentially. This may be illustrated as

follows:

Start 10~>.
^-20-^
^-•-30-^

^50-^
^-60—'
^70

80-^
etc.

But we will soon discover that most programs contain some non-sequential execution

sequences. That is when line numbers become important, because you use the line

number to identify a change in execution sequence. This may be illustrated as follows:

Start

Chapter 4: Programming the CBM 99

DATA

The statement (or statements) following a line number specify operations that

the computer is to perform, as well as data that must be used while performing these

operations. We will now describe the types of data you may encounter in a CBM
BASIC program.

There are two kinds of numbers that can be stored in CBM computers: floating

point numbers (also called real numbers) and integers.

Floating Point Numbers

Floating point is the standard number representation used by CBM computers.

All arithmetic is done using floating point numbers. A floating point number can be a

whole number, or a fractional number preceded by a decimal point. The number can

be negative (—) or positive (+). If the number has no sign it is assumed to be positive.

Here are some examples of floating point numbers that are equivalent to integers:

5
-15
65000
161

Here are examples of floating point numbers that include a decimal point:

0.5

0.0165432
-0.0000009
1.6

24.0055
-64.2

3.1416

Note that if you put commas in a number, you will get a SYNTAX ERROR
message. For example, use 65000, not 65,000.

Roundoff

Numbers always have at least eight digits of precision; they can have up to

nine, depending on the number. CBM BASIC rounds off additional significant digits.

Usually it rounds up when the next digit is five or more, and it rounds down when the

next digit is four or less, but there are some roundoff quirks.

Here are some examples:

-. 555555555.;
. 555555555

?. 5555555537 I Appears to round down on 6 or

. 555555556 / less, up on 7 or more

t_

.1111111113

.111111111

1 1 1 1 1 1 1 1 1 & I Appears to round down on 5 or

,111111112 / less, up on 6 or more

700 PET/CBM Personal Computer Guide

Scientific Notation

Large floating point numbers are represented using scientific notation. CBM

BASIC automatically converts numbers less than .01 or greater than 108 in magnitude

to scientific notation. Here are some examples:

READV.
?1 111111 114
i . iiiiiiii'E+09

REflDV.
71111111115
1. 11111112E+09

A number in scientific notation has the form:

numberE+ee

where:

number

E

+

ee

is an integer, fraction, or combination, as illustrated above. The

"number" portion contains the number's significant digits; it is

called the "coefficient." If no decimal point appears, it is

assumed to be to the right of the coefficient.

is always the letter E. It substitutes for the word "exponent."

is an optional plus sign or minus sign.

is a one-digit or two-digit exponent. The exponent specifies the

magnitude of the number, that is, the number of places to the

right (positive exponent) or to the left (negative exponent) that

the decimal point must be moved to give the true decimal point

location.

are some examples:

Scientific Notation Standard Notation

2E1 20
10.5E+4 105000
66E+2 6600
66E-2 0.66

-66E-2 -0.66

1E-10 0.0000000001
94E20 9400000000000000000000

Scientific notation is a convenient way of expressing very large or very small num-

bers. CBM BASIC prints numbers ranging between 0.01 and 999,999,999 using stan-

dard notation; but numbers outside of this range are printed using scientific notation.

Here are some examples:

3E-03

REflDV.
-•.oi

.01

REflDV.
?999999S'S'S.3

REflDV.

1E+09

Chapter 4: Programming the CBM 101

Even using scientific notation there is a limit to the size of a number that CBM
BASIC can handle. The limits are:

Largest floating point number: +1.70141 183E+38
Smallest floating point number: +2.93873588E-39

Any number of larger magnitude will give an overflow error. Here are some

examples of overflow error:

M. 70141 133E+38
"

1 ."70141 183E+38

RERDV.
?-l. 70141 183E+38
-1. 70141 ISSE+JS

RERDV.
?1. 70141 164E+38

?OVERFLOW ERROR
RERDV.
?-l. 70141 184E+38

?0VERFL0W ERROR

No Overflow error

• Overflow error

A number that is smaller than the smallest magnitude will yield a zero result. This

may be illustrated as follows:

-=i.33873583E-3?
r.?Si:7]:5K:E-::?

RERDV.
"-.?. 938735SSF-33
-2.938735S3E-39

RERDV.
-•2.93873587E-33

RERDV.
-2.33873587E-33

' These numbers are OK

These numbers are too small:

they are replaced by

Integers

An integer is a number that has no fraction or decimal point. The number can

be negative (—) or positive (+). An unsigned number is assumed to be positive.

Integer numbers must have values in the range —32767 to +32768. The following are

examples of integers:

o
i

44
32699
-15

Any integer can also be represented as a floating point number, since integers are

a subset of floating point numbers. CBM BASIC automatically converts integer num-

bers to floating point representation before using them in arithmetic.

1 02 PET/CBM Personal Computer Guide

Strings

The word "string" is used to describe data that consists of words. This is non-

numeric data; it is text.

We have already used strings as messages to be displayed on the CBM computer

screen. A string consists of one or more characters enclosed in double quotation

marks. Here are some examples of strings:

"HI!"

"SYNERGY"
"12345"
"$10.44 IS THE AMOUNT"
"22 UNION SQUARE, SAN FRANCISCO, CA"

Within a string you can include any alphabetic or numeric characters, special sym-

bols or graphic characters, cursor control characters (CLEAR SCREEN/HOME, CUR-
SOR UP/DOWN, CURSOR LEFT/RIGHT) and the REVERSE ON/OFF key. The

only keys that cannot be used within a string are RUN/STOP, RETURN, and INSERT/
DELETE.

All characters within the string are displayed as they appear. The cursor control

and REVERSE ON/OFF keys, however, normally do not print anything themselves; to

show that they are present in a string, certain reverse field symbols are used, as shown in

Table 4-1.

Strings are entered as part of a statement. Since a statement must fit within an 80-

character line, the longest string you can enter at a keyboard will have less than 80

characters; the statement needs some character positions for the line number, and

required statement syntax.

Strings of up to 255 characters can be stored in CBM computer memory. Long

strings are generated by concatenating shorter strings. We will describe how this is done

later.

Variables

Earlier, when describing immediate mode, we illustrated the two-statement pro-

gram:

i=l=fr*2

We rewrote the program using one statement:

rl=ir*2 : ?fi

In these programs, A is a variable name.

The concept of a variable is easy to understand. Consider the two statements:

100 H=E+C
200 ?M

These two statements cause the sum of two numbers to be displayed. But what are the

two numbers that get summed? They are whatever B and C represent at the time the

statements are executed. In the following example:

90 B=4.65

100 Fi=B+C
200 ?fl

B is assigned the value 4.65, while C is assigned the value 3.72. Therefore A equals 8.37.

Chapter 4: Programming the CBM 103

Table 4-1. Special String Symbols

Function

Reverse On

Reverse Off

Home Cursor

Clear Screen

Cursor Down

Cursor Up

Cursor Right

Cursor Left

Key

off

RVS
ON

Shifted
f

OFF '

RVS
ON

CLR
SCREEN
HOME

Shifted

CLR

SCREEN
HOME

A-
CURSOR

Shifted CURSOR

.
v

CURSOR

Shifted

' CZ
'

CURSOR

String Symbol*

3 (Reverse R)

m (Reverse Shifted R)

SJ (Reverse SI

71 (Reverse Shifted S)

g] (Reverse Q)

T (Reverse Shifted Q)

HI (Reverse] I

|| (Reverse Shifted] I

" The graphic symbol shown in this column may vary from one CBM computer

to the next, depending on the computer's keyboard options. But the key

description is accurate in every case.

Variable names can be used to represent string data or numeric data.

If you have studied elementary algebra, you will have no trouble understanding

the concept of variables and variable names. If you have never studied algebra, then

think of a variable name as a name which is assigned to a mail box. Anything which is

placed in the mail box becomes the value associated with the mail box name.

Variable Names

A variable name can have one, two or three characters. The following character

options are allowed:

' Third character must be $ for a string variable, or

% for an integer variable. A floating point

variable name can only have two characters.

Second character can be any unshifted letter

(A to Z) or any numeric digit (1, 2, 3, 4, 5, 6, 7, 8, 9, 0),

for any type of variable.

First character must be an unshifted letter

(A to Z) for any type of variable.

Thus the last character of the variable name tells CBM BASIC which type of

data the variable represents.

104 PET/CBM Personal Computer Guide

Note that unshifted letters of the alphabet are used for the first and second label

character. Depending on the model of CBM computer, the unshifted letter may be

upper case or lower case. But in either case it is the letter displayed when the SHIFT key

is not being depressed.

Floating point variables are the ones most frequently used in CBM BASIC. Here

are some examples of floating point variable names:

A
B

c
A1
AA
Z5

Here are some examples of integer variable names:

A%
B%
C%
A1%
MN%
X4%

Remember, floating point variables can have values that are equivalent to integers.

Here are examples of string variable names:

A$
M$
MN$
M1$
zx$
F6$

Variable names can have more than two alphanumeric characters, but only the

first two characters count. Therefore BANANA and BANDAGE are interpreted as the

same name, since both begin with BA. CBM BASIC allows variable names to have up to

255 characters. Here are some examples of variable names with more than two charac-

ters:

MAGIC$ interpreted as MA$
N1 23456789 interpreted as N1

MMM$ interpreted as MM$
ABCDEF% interpreted as AB%
CALENDAR interpreted as CA

If you use variable names with more than two characters, keep the following

points in mind:

1. Only the first two characters, plus the identifier symbol ($ or %) are signifi-

cant. Do not use extended names like LOOP1 and LOOP2; these are

interpreted as the same variable: LO.

2. CBM BASIC has a number of "reserved words," which have special meaning

within a BASIC statement. No variable name can contain a reserved word

embedded anywhere in the name. Reserved words are listed in Table 4-4.

3. Additional characters need extra memory space, which you might need for

longer programs. But the advantage of using longer variable names is that

they make programs easier to read. PARTNO, for example, is more meaning-

ful than PA as a variable name describing part numbers in an inventory pro-

gram.

Chapter 4: Programming the CBM 105

OPERATORS

The BASIC statement:

100 ?10.2+4.

tells the CBM computer to add 10.2 and 4.7, and then display the sum. The statement:

250 C=R+B

tells the CBM computer to add the two floating point numbers represented by the varia-

ble names A and B, and to assign the sum to the floating point number represented by

the variable name C.

The plus sign (+) specifies addition. Standard computer jargon refers to the plus

sign an "operator." + is an arithmetic operator, because it specifies addition, which is

an arithmetic operation.

Arithmetic operators are easy enough to understand; we all learn to add, subtract,

multiply, and divide in early childhood. But there are two other types of operators: rela-

tional operators and Boolean operators. These are also easily understood, but they take a

little more explanation, since they do not reflect day to day experiences.

Table 4-2 summarizes the BASIC operators. We will examine each group of

operators in turn, beginning with arithmetic operators.

Table 4-2. Operators

Precedence Operator Meaning

High

9 () Parentheses denote order of evaluation

- 2

E <o

is

8
7

6

6

5

5

t

/

+

Exponentiation

Unary Minus

Multiplication

Division

Addition

Subtraction

o 2
£ °
.2 %
S •

cc o

4
4
4
4
4
4

< >
<
>

< = or = <
> = or = >

Equal

Not equal

Less than

Greater than

Less than or Equal

Greater than or Equal

3 S
3

2

1

Low

NOT
AND
OR

Logical complement
Logical AND
Logical OR

106 PET/CBM Personal Computer Guide

Arithmetic Operators

An arithmetic operator specifies addition, subtraction, multiplication, division, or

exponentiation. Arithmetic operations are performed using floating point numbers.

Integers are automatically converted to floating point numbers before an arithmetic

operation is performed; the result is automatically converted back to an integer, if an

integer variable represents the result.

The data operated on by any operator is referred to as an "operand." Arithmetic

operators each require two operands, which may be numbers and/or numeric variables.

Addition (+). The plus sign specifies that the data (or operand) on the left of the

+ sign must be added to the data (or operand) on the right. For numeric quantities this

is straightforward addition. Examples:

2+2
A+B + C
X%+1
BR+10E-2

The plus sign (+) is also used to "add" strings; but rather than adding their

values, they are joined together, or concatenated, to form one longer string. The
difference between numeric addition and string concatenation can be visualized as

follows:
Addition of Numbers:

numl +num2=num3

Addition of Strings:

string 1 +string2=string1 string2

Via concatenation, strings containing up to 255 characters can be developed.

Examples:

"FOR" +"WARD" results in "FORWARD"
"Hl"+" "+"THERE" results in "HI THERE"
A$+B$ results in concatenation of

the two strings represented

by string variable labels

A$ and B$
"1" + CH$+E$ results in the character "1,"

followed by concatenation of

the two strings represented

by string variable labels

CH$ and E$

In the illustrations above, if A$ is set equal to "FOR" and B$ is set equal to

"WARD," then A$ + B$ would generate the same results as "FOR" + "WARD."

Subtraction (—) . The minus sign specifies that the data (or operand) to the right

of the minus sign is to be subtracted from the data (or operand) to the left of the minus
sign. Examples:

4-1 results in 3
100-64 results in 36
A-B results in the variable

represented by label B

being subtracted from the

variable represented by

label A
55-142 results in -87

In the example above, if A is assigned the value 100, and B is assigned the value

64, then the second and third examples are identical.

Chapter 4: Programming the CBM i07

The minus operator is also used to identify a negative number. Examples:

-5
-9E4
-B
4— 2 Note that 4—

2

is the same as 4+2

Multiplication (*). An asterisk specifies that the data (or operand) on the right of

the asterisk is multiplied by the data (or operand) on the left of the asterisk. Examples:

1 00-2 results in 200
50* results in

A-X1 results in multiplication of

two floating point numbers

represented by floating point

variables labeled A and X1

R%.14 results in an integer

represented by integer variable

label R% being multiplied by 1

4

In the examples above, if variable A is assigned the value 4.2, and variable XI is

assigned the value 9.63, then the illustrated multiplication would generate 40.446. A
and XI could hold integer values 100 and 2 to duplicate the first example; however the

two numbers would be held in the floating point format as 100.0 and 2.0, since A and XI

are floating point variables. In order to multiply 100 by 2, representing these numbers as

integers, the example would have to be A%*X1%.

Division (/). The slash specifies that the data (or operand) on the left of the slash

is to be divided by the data (or operand) on the right of the slash. Examples:

1 0/2 results in 5

6400/4 results in 1 600
A/B results in the floating point

number assigned to variable

A being divided by

the floating point number
assigned to variable B

4E2/XR results in 400 being divided

by the floating point number
represented by label XR

The third example, A/B, can duplicate the first or second example, even though

A and B represent floating point numbers. But the integer numbers would be held in

floating point form. A%/B% could exactly duplicate either of the first two examples,

however.

1 08 PET/CBM Personal Computer Guide

Exponentiation (t). The up arrow specifies that the data (or operand) on the left

of the up arrow is raised to the power specified by the data (or operand) on the right of

the up arrow. If the data (or operand) on the right is 2, the number on the left is

squared; if the data (or operand) on the right is 3, the number on the left is cubed, etc.

The exponent can be any number, variable, or expression, as long as the exponentiation

yields a number in the allowed floating point range. Examples:

2t2 results in 4
12t2 results in 1 44
1t3 results in 1

At5 results in the floating

point number assigned

to variable A being

raised to the 5th power

2t6.4 results in 84.4485064

NMt-10 results in the floating

point number assigned

to variable NM being

raised to the negative

1 0th power

14IF results in 1 4 being raised

to the power specified

by floating point variable F

Order of Evaluation

An expression may have multiple arithmetic operations, as in the following state-

ment:

A+C'10/212

When this occurs, there is a fixed sequence in which operations are processed.

First comes exponentiation (f), followed by sign evaluation, followed by multiplica-

tion and division (*/), followed by addition and subtraction (+ —). Operations of the

same hierarchy are evaluated from left to right. This order of operation can be overrid-

den by the use of parentheses. Any operation within parentheses is performed first.

Examples:

4+L2 results in 6

(4+1)-2 results in 1

100-4/2-1 results in 1 99
100-(4/2-1) results in 100
100.(4/(2-1)) results in 400

When parentheses are present, CBM BASIC evaluates the innermost set first,

then the next innermost, etc. Parentheses can be nested to any level, and may be used

freely to clarify the order of operations being performed in an expression.

Relational Operators

Relational operators represent the conditions: greater than (>), less than (<),

equal (=), not equal (<>), greater than or equal (> =), and less than or equal

(<=).

1=5-4 results in true (- 1

)

14>66 results in false (0)

15> = 15 results in true (- 1

)

AOB the result will depend

on the values assigned

to floating point variables

A and B

Chapter 4: Programming the CBM 109

CBM BASIC arbitrarily assigns a value of to a "false" condition; a value of -

1

is assigned to a "true" condition. These and - 1 values can be used in equations. For

example, in the expression (1 = 1)*4, (1 = 1) is true. True equates to — 1, therefore the

expression is the same as (— 1)*4, which results in —4. You can include any relational

operators within a CBM BASIC expression. Here are some more examples:

25+(14>66) • is the same as 25+0
(A+(1=5-4)).(15> = 15) is the same as (A-1M-1)

Relational operators can be used to compare strings. For comparison purposes,

the letters of the alphabet have the order A<B, B<C, C<D, etc. Strings are compared

one character at a time, starting with the leftmost character. Examples:

"A"<"B" results in true (- 1

)

"X"="XX" results in false (0)

C$=A$+B$ the result will depend

on the string values assigned

to the three string variables

C$, B$. and A$

When operating on strings, as for numbers, CBM BASIC generates a value of -

1

if a relational operator specifies a "true" condition; a value of is generated for a

"false" condition. Here are some examples:

("JONES" >"D0E")+37 is the same as -1+37
("AAA"<"AA").(Z9-("OTTER">"AB")) is the same as 0-(Z9-(-D)

Boolean Operators

Boolean operators give programs the ability to make logical decisions. There are

four standard Boolean operators: AND, OR, EXCLUSIVE OR, and NOT. CBM BASIC

supports three of these operators: AND, OR, and NOT.
If you do not understand Boolean operators, then a simple supermarket shopping

analogy will serve to illustrate Boolean logic.

Suppose you are shopping for breakfast cereals with two children.

The AND Boolean operator says that a cereal is selected if child A and child B

select the cereal.

The OR Boolean operator says that a cereal will be selected if either child A or

child B selects the cereal.

The NOT operator generates an opposite. If child B insists on disagreeing with

child A, then child B's decision is always the not of child A's decision.

Computers do not work with analogies; they work with numbers. Therefore Boo-

lean logic reduces all variables and results to or 1 . Table 4-3 summarizes the way in

which Boolean operators handle numbers. This table is referred to as a "truth table."

110 PET/CBM Personal Computer Guide

Boolean operators are used to control program execution logic; here are some
examples:

IF A= 1 00 AND B= 1 00 GOTO 1

If both A and B are equal to 1 00, branch to line 1

IF X < Y AND B >=44 THEN F=0
If X is less than Y, and B is greater than or equal to 44,

then set F equal to

IF A= 100 OR B=100 GOTO 20
If either A or B has a value of 100, branch to line 20.

IF X<Y OR B>=44 THEN F=0
F is set to if X is less than Y, or B is greater than 43

IF A=1 AND B=2 OR C=3 GOTO 30
Take the branch if both A=1 and B=2; also take

the branch if C=3

A single operand can be tested for "true" or "false." An operand appearing alone

has an implied "<>0" following it. Any non-zero value is considered true; a zero value

is considered false.

IF A THEN B=2
IF AOOTHEN B=2
The above two statements are equivalent

IF NOT B GOTO 1 00
Branch if B is false, i.e., equal to zero. This is

probably better written as:

IF B=0GOTO 100

All Boolean operations use integer operands. If you perform Boolean operations

using floating point numbers, then the numbers are automatically converted to integers;

therefore the floating point numbers must fall within the allowed range of integer num-
bers.

You cannot perform Boolean operations using string operands.

If you are a beginning programmer, you are unlikely to use Boolean operators

in the manner which we are about to describe. If you find you do not understand the

discussion, then skip to the next section.

Table 4-3. Boolean Truth Table

The AND operation results in a 1 only if both bits are 1

1 AND 1 = 1

AND 1 =
1 AND =
AND0 =

The OR operation results in a 1 f either bit is 1

1 OR 1 == 1

0OR 1 == 1

1 OR == 1

0OR ==

The NOT operation logically complements each bit

NOT 1 =

NOT0 = 1

Chapter 4: Programming the CBM 111

Boolean operators operate on integer operands one binary digit at a time. CBM
BASIC stores all numbers in binary format, using two's complement notation to repre-

sent negative numbers. Therefore we can illustrate an AND operation as follows:

43 AND 137 = 9

-89 16
— 10001001

-2B 1R — 001010113 16

09, fi
— 00001001

•

Here is an OR operation:

43 OR 137 = 171—

-89 16
— 10001001

-2B 16
— 00101011

AB 16
— 10101011 •

Here are two NOT operations:

NOT 43 = 212—

— 2B 16 — 00101011

I 1

D4 16 — 11010100

NOT 137 = 118—

1 «-89
16
— 10001001

i i

76, 6
— 01110110—

Boolean operations of this type are used in engineering applications.*

If operands are not integers, they are converted to integer form; the Boolean

operation is performed, and the result is returned as a or 1

.

If a Boolean operator has relational operands, then the relational operand is evalu-

ated to — 1 or before the Boolean operation is performed. Thus the operation:

A=1 OR C<2

is equivalent to:

{o
; }°R

{o
;

}

Consider this more complex operation:

IF A=B AND C<D GOTO 40

First the relational expressions are evaluated. Assume that the first expression is true

and the second one is false. In effect, the following Boolean expression is evaluated as

follows:

IF -1 AND GOTO 40

*If you wish to learn more about binary arithmetic and Boolean operations, see An Introduction to

Microcomputers: Volume — The Beginners Book by A. Osborne, Osborne/McGraw-Hill, 1977.

1 12 PET/CBM Personal Computer Guide

Performing the AND yields a result:

IF o GOTO 40

Recall that a single term has an implied "<>0" following it. The expression therefore

becomes:

if o <> GOTO 40

Thus, the branch is not taken.

In contrast, a Boolean operation performed on two variables may yield any integer

number:

IF A% AND B% GOTO 40

Assume that A%= 255 and B%= 240. The Boolean operation 255 AND 240 yields 240.

The statement, therefore, is equivalent to:

IF 240 GOTO 40

or, with the "<>0":

IF 240 <> GOTO 40

Therefore the branch will be taken.

Now compare the two assignment statements:

A = A AND 10

A = A <10

In the first example, the current value of A is logically ANDed with 10 and the

result becomes the new value of A. A must be in the integer range —32767 to +32768.
In the second example, the relational expression A< 10 is evaluated to —1 or 0, so A
must end up with a value of — 1 or 0.

ARRAYS

Arrays are used frequently, in every type of computer program. If you do not

understand arrays, then you must learn about them. The information that follows will

be very important to your programming efforts.

Conceptually, arrays are very simple. When you have two or more related data

items, instead of giving each data item a separate variable name, you give the collec-

tion of related data items a single variable name. Then you select individual items

using a position number, which in computer jargon is referred to as a subscript, an

index, or a dimension.

A grocery list, for example, may have six items from the meat and poultry depart-

ment, four fruit and vegetable items, three dairy products, etc. These three groups of

items could each be represented by a single variable name as follows:

MP$(0) = "CHOPPED SIRLOIN" FV$(0) = "ORANGES"
MP$(1) = "CHUCK STEAK" FV$(1) = "APPLES"
MP$(2) = "NEW YORK STEAK" FV$(2) = "BEANS"
MP$<3) = "CHICKEN" FV$(3) = "CARROTS"
MP$(4) = "SALAMI"
MP$(5) = "SAUSAGES" DP$(0) = "MILK"

DP$(1I = "CREAM"
DP$(2) = "COTTAGE CHEESE"

MP$ is a single variable name that identifies all meat and poultry products.

FV$ identifies fruits and vegetables, while DP$ identifies dairy products.

Chapter 4: Programming the CBM Hi

A subscript (index or dimension) follows each variable name. Thus a specific data

item is identified by a variable name and an index.

We could take the array concept one step further, specifying a single variable

name for the entire grocery list, using two indexes. The first index (or dimension)

specifies the product type and the second index (or dimension) specifies the item within

the product type. This is one way in which a single grocery list variable array with two

subscripts could replace the three arrays with single subscripts illustrated above:

GL$(0,0) = MP$(0) GL$(1,0) = FV$(0) GL$(2,0) = DP$(0)

GL$(0,1) = MP$(1) GL$(1,1) = FV$<1) GL$(2,1) = DP$(1)

GL$(0,2) = MP$(2) GL$(1,2) = FV$(2) GL$(2,2) = DP$(2)

GL$(0.3) = MP$(3) GL$(1,3) = FV$(3)

GL$(0.4) = MP$(4)

GL$(0,5) = MP$(5)

Arrays can represent integer variables, floating point variables, or string varia-

bles; however, a single array variable can only represent one data type. In other

words, a single variable cannot mix integer and floating point numbers. One or the other

can be present, but not both.

Arrays are a useful shorthand means of describing a large number of related varia-

bles. Consider, for example, a table of numbers containing ten rows of numbers, with

twenty numbers in each row. There are 200 numbers in the table. How would you like it

if you had to assign a unique name to each of the 200 numbers? It would be far simpler

to give the entire table one name, and identify individual numbers within the table by

their table location. That is precisely what an array does for you.

Arrays can have one or more dimensions. An array with a single dimension is

equivalent to a table with just one row of numbers. The dimension identifies a number

within the single row. (Engineers use the word "vector" to describe an array with a

single dimension.) An array with two dimensions yields an ordinary table with rows and

columns: one dimension identifies the row, the other dimension identifies the column.

An array with three dimensions yields a "cube" of numbers, or perhaps a stack of

tables. Four or more dimensions yield an array that is hard to visualize, but mathemati-

cally no more complex than a smaller-dimensioned array.

Let us examine arrays in detail.

A single-dimensional array element has the form:

name(i)

where:

name is the variable name for the array. Any type of

variable name may be used.

is the array index to that element, i must

start at 0.

A single-dimensional array called A, having five elements, can be visualized as

follows:

A(O)

Ad)

A(2)

A(3)

A(4)

A$(0.0)

A$(1,0)

A$(2.0)

114 PET/CBM Personal Computer Guide

The number of elements in the array is equal to the highest index number, plus 1.

This takes array elements into account.

A two-dimensional array element has the form:

name(i.j)

where:

name is the variable name of the array

i is the column index

j is the row index

A two-dimensional array called A$, having three column elements and two row

elements, might be visualized as follows:

A$(0,1)

A$(1,1)

A$(2.D

The size of the array is the product of the highest row dimension plus 1, multi-

plied by the highest column dimension plus 1. For the array above, it is 3x 2=6 ele-

ments.

Additional dimensions can be added to the array:

name (i,j,k,. . .)

Arrays of up to eleven elements (index to 10 for a single dimensioned array)

may be used routinely in CBM BASIC. Arrays containing more than eleven elements
need to be "declared" in a Dimension statement. Dimension statements are described

later in this chapter. An array (always with subscripts) and a single variable of the same
name are treated as separate items by CBM BASIC.

BASIC COMMANDS
In Chapters 2 and 3 we describe a number of commands which you enter via the

keyboard in order to control CBM computer operations. RUN is one such command.
Commands can all be executed as BASIC statements.

You are unlikely to execute commands out of BASIC statements when you first

start writing programs.

When you start writing very large programs you will run out of memory space.

Then you must break a program up into a number of smaller modules and execute them
one at a time. Each module must load the next module in turn. This is described in

Chapter 6.

Reserved Words

All of the character combinations that define a BASIC statement's operations,

and all functions, are called "reserved words." Table 4-4 lists all CBM BASIC
reserved words. You will have encountered many of these reserved words in this

chapter, but others are not described until Chapter 6.

Chapter 4: Programming the CBM 115

Table 4-4. Reserved Words

WORD

Abbreviations

WORD

Abbreviations

WORD

Abbreviations

WORD

Abbreviations

S •

E *

£ £ •
< o to

a to

CO O f

s s
s Z
E »
J S-— £ V
< o w

a a

= 1ass
CO u CO

S •
« u
E "
• S ..£ £ O
< O CO

"S ®
n o

= S-2S c
» cj to

S •

E »

< O CO

= 1J!!
CO CO

ABS aE fil DS$- ds* DS* NEW new HEW SCRATCH" sC i—

AND aN Fl.-' DSAVE- dS D* NEXT nE N~ SGN sG SI

APPEND" bP AT END eN E.,' NOT nO wr SIN si s--.

ASC aS fltf EXP eX E+ ON on ON SPC(sP S~l

ATN aT fll FN fn FN OPEN oP on SQR sQ s*
BACKUP" toR B* FOR -fO Fr OR or OR ST St ST
CHR$ cH C 1 FROM fR F- PEEK pE p~ STATUS status STATUS

CLOSE clO CLr GET sE G
_

POKE pO pr STEP s+E ST~
CLR oL CL GET* ae-t# GET* POS POS POS STOP sT SI

CMD CM C\ GOTO 30 or PRINT V STR$ s+r* STR*
COLLECT" ooL COL GOSUB SOS G0» PRINT* pR P_ SYS sV S 1

CONCAT" oonC CON- HEADER" HE H~ READ r-E R~ TABI thl T*
CONT CU cr IF i-f IF READ* read* REflD* TAN -tan TflH

COPY- cop COT INPUT input INPUT RECORD- r&C RE- THEN *H T 1

COS COS COS INPUT* iN 1/ REM rem REM Tl t-i TI

DATA dfi D* INT in* INT RENAME- reH RE/ TIME t i me TIME
DCLOSE- dC D- LEFTS leF LE- RESTORE reS RE» Tl$ -ti* TI*
DEF d£ D

- LEN Ien LEN RETURN reT REI TO •to TO
DIM dl n-, LET IE L~ RIGHTS rl R-. US uS U»
DIRECTORY- diR DI- LIST 11 L-, RND rN R,' VAL yfl V*
DLOAD- dL DL LOAD 10 Lr RUN t-U R , VERIFY wE v~
DOPEN" dO pr LOG l03 LOG SAVE sfl St WAIT wFl w*
DS" ds DS MID$ ml M-.

* These are reservec words in BASIC versio is 4.0 and higher c nly.

When executing BASIC programs, the CBM computer scans every BASIC state-

ment, seeking out any character strings that constitutes a reserved word. The only

exception is text strings enclosed in quotes. This can cause trouble if a reserved word is

embedded anywhere within a variable name. The CBM computer is not smart enough to

identify a variable name by its location in BASIC statement. Therefore you should be

very careful to keep reserved words out of your variable names; this is particularly

important with the short reserved words that can easily slip into a variable name.

Some reserved words are shown in Table 4-4 with an asterisk. These reserved

words apply only to CBM BASIC versions 4.0 and higher. Nevertheless it is a good idea

not to use these reserved words in any CBM BASIC program. You never know when

you may wish to upgrade a program so that it runs on a newer CBM computer using

BASIC 4.0.

BASIC Word Abbreviations

You learned early in this book that the BASIC statement PRINT could always be

entered from the keyboard by the abbreviation ?, the question mark character. ? is

expanded by the CBM BASIC interpreter to the full word PRINT.

Most BASIC commands, statements, and functions can be abbreviated using

the first two characters of the keyword, with the second character entered in shifted

mode. With the standard character set, the second character appears as a graphic

character. For example, the abbreviation for LIST appears as:

or

L-,

II

116 PET/CBM Personal Computer Guide

Where a two-letter abbreviation is ambiguous (does ST mean STEP or STOP?)

the two-letter abbreviation is assigned to the most frequently used keyword, and the

other word (or words) are either not abbreviated or are abbreviated by the first three

characters with the third entered in shifted mode. For STEP/STOP, STOP is abbrevi-

ated:

sT

or si

STEP is abbreviated:
stE

or st-

To abbreviate STEP, type unshifted S (capital S), unshifted T (capital T), and shifted E
(graphic 3/4 TOP LINE HORIZONTAL).

Following are a few sample input lines showing use of the two- and three-letter

abbreviations wherever possible. All the abbreviated words are expanded to the full

spelling when you list the programs.

pO 59468.. 14 (after RETURN) Abbre
10 IE 3=10
20 b=a aN 14+e;«2:>
30 dl c<5>
40 -f'O i=0 to 5
50 r-E c C i :>

60 nE
70 dR 1,6, £..4, 10,5/ 16
30 r-eS

90 eN
11 Abbreviation for LIST
IS le-t a- 10
20 b=a and 14+e.xo<2>
38 dim c<5)
40 for 1=0 to 5
50 read c C i >

60 next
70 data 1 ,6, 2,4, 10, 5, 16
30 restore
90 end
»0 59468, 12 /before RETURN) Abbn

After keying RETURN at the last POKE statement line (return to Standard Character

Set)
,
you will see the abbreviations show with graphics as the shifted characters, and the

expanded listing will display upper case letters.

A list of reserved words and their abbreviations, if any, is given in Table 4-4.

Note that the expansions from abbreviations for the two functions SPC and TAB
include the left parenthesis. This means that if you use the abbreviation for either of

these, you must not type in the left parentheses. For example:

expands to:

10 print £pc((5)

syntax error results from two
left parentheses

Chapter 4: Programming the CBM in

The correct keyin is:

10 ?sps;

This parenthesis rule applies only to the SPC and TAB functions and is a format

inconsistency you will have to watch for when abbreviating these function names. For

all other functions, you key in both parentheses. For example:

BASIC STATEMENTS

The operation performed by a statement is specified using "reserved words"

(see Table 4-4)

.

Remember, Chapter 8 provides a complete description of every statement recog-

nized by CBM BASIC. This chapter introduces you to programming concepts, stressing

the way statements are used. No statement is described in detail in this chapter. Read

the statement description given in Chapter 8 if you do not understand how any state-

ment is being used.

REMARKS

It is appropriate that any discussion of BASIC statements begins by describing

the only BASIC statement which the computer will ignore: the remark. If the first

three characters of a BASIC statement are REM, then the computer ignores the state-

ment entirely. So why include such a statement? The answer is that remarks make your

program easier to read.

If you write a short program with five or ten statements, you will probably have lit-

tle trouble remembering what the program does — unless you leave it around for six

months and then try to use it again. If you write a longer program with 100 or 200 state-

ments, then you are quite likely to forget something very important the very next time

you use the program. After you have written dozens of programs, you will stand no

chance of remembering each program in detail. The solution to this problem is to docu-

ment your program by including remarks that describe what is going on.

Good programmers use plenty of remarks in all of their programs. In all of this

chapter's program examples we will include remarks that describe what is going on,

simply to get you into the habit of doing the same thing yourself.

Remark statements have line numbers, like any other statement. A remark state-

ment's line number can be used like any other statement line number.

118 PET/CBM Personal Computer Guide

ASSIGNMENT STATEMENT

Assignment statements let you assign values to variables. You will encounter

assignment statements frequently, in every type of BASIC program. Here are some

examples of assignment statements:

30 REN INITIALIZE VARIABLE X
100 LET X=3.24

In statement 1 00, floating point variable

X is assigned the value 3.24

150 X=3.24

Equivalent to statement 1 00 above; the LET

is optional in all assignment statements

215 fi*="ALS0 RRN"

The string variable A$ is assigned

the two text words ALSO RAN

Here are three assignment statements that assign values to array variable DP$(I),

which we encountered earlier when describing arrays:

200 REM DP* CI) IS THE DAIRY PRODUCTS SHOPPING
LIST VARIABLE

210 DP*f0>="MILK"
220 DPt(l>="CREfiM"
230 DP* < 2 :> = " COTTAGE CHEESE"

Remember, we can put more than one statement on a single line; therefore the

three DP$ assignments could be placed on a single line as follows:

200 REM DP* (I) IS THE DAIRV PRODUCTS SHOPPING
LIST VARIABLE

210 DP*<0>="MILK" DP*a> = " CREAM" IlPt(2'? =

"COTTAGE CHEESE"

Recall that a colon must separate adjacent statements appearing on the same line.

Assignment statements can include any of the arithmetic or relational operators

described earlier in this chapter. Here is an example of such an assignment statement:

90 REM THIS IS A DUMB WAV TO ASSIGN A VALUE TO V
1 00 V=3. 24+7. 96/8.

5

This statement assigns the value 4.17647059 to floating point variable V; it is

equivalent to these three statements:

90 REM X AND V NEED TO BE INITIALIZED SEPARATELY
FOR LATER USE

100 X-7.96
110 V=8.5
120 V=3. 24+X/V

which could be written on one line as follows:

100 X=7.96 : V=8.5 : V=3.24+X/V

Chapter 4: Programming the CBM 119

Here are assignment statements that perform the Boolean operations given earlier

in this chapter:

90 REM THESE EXAMPLES WERE DESCRIBED EARLIER IN THE
CHAPTER

100 AK=43 AND 137
200 B";=43 OR 137

The following example shows how a string variable could have its value assigned

using string concatenation:

100 V*= "COTTAGE"
200 W*=" CHEESE"
300 DP*(2>=V*+" "+W*
400 REM DPfC2::i IS ASSIGNED THE STRING VALUE "COTTAGE CHEESE"

DATA and READ Statements

When a number of variables need data assignments, the DATA and READ
statements should be used rather than the LET statement. Consider the following

example:

5 REM INITIALIZE ALL PROGRAM VARIABLES
10 DATA 10,20, -4, 16E6
20 READ A,B,C,D

The statement on line 10 specifies four numeric data values. These four values are

assigned to four floating point variables by the statement on line 20. After statements on

lines 10 and 20 have been executed, A = 10, B= 20, C= -4 and D = 16 x 106
.

If you have one or more DATA statements in your program, then you can visual-

ize them as building a "column" of numbers. For example, a DATA statement that

contains a list of 10 numbers would build a ten-entry column. Two DATA statements

each specifying five of the ten data entries would build exactly the same column. This

may be illustrated as follows:

10 DATA 10. 20, 30, 40, 50, 60, 70, 80, 90, 100

First column entry -

• 1 00 /+ Last column entry

10 DATA 10, 20, 30, 40, 50
20 DATA 60, 70, 80, 90, 100

120 PETICBM Personal Computer Guide

The first READ statement in the program starts at the first column entry and

takes numbers sequentially, assigning them to variables named in the READ statement.

The second (and subsequent) READ statements take values from the column, starting

at the point where the previous READ statement left off. This may be illustrated as

follows:

10 DATA 10, 20. 30, 40. 50, 60, 70, 80, 90, 100

220 READ A, B, C

340 READ C, D

490 READ A, E, F, G
500 READ B

RESTORE Statement

You can at any time send the pointer back to the beginning of the numeric col-

umn by executing a RESTORE statement. Here is an example of the use of

RESTORE:

10 DATA 10, 20, 30, 40, 50, 60 70, 80, 90, 100

220 READ A,

340 READ C
350 RESTORE

490 READ A, E, F, G
500 READ B

Chapter 4: Programming the CBM ^1

DIMENSION STATEMENT

CBM BASIC normally assumes an array variable has a single dimension, with

index values of through 10. This generates an eleven-element array. If you want a

single dimension with more, or less, than eleven elements, then you must include the

array variable in a dimension statement. You must include the array in a dimension

statement if it has two or more dimensions, whatever number of elements the array

may have. The following example provides dimensions for the three single-indexed

variables MP$, FV$, and DPS. We used these variables in our earlier discussion of

arrays.

DIM MP* < 5 > .. FV* < 3 > , DP* < 2

)

The double-dimension grocery list variable would be dimensioned as follows:

DIM GL*C3,5:>

A dimension statement can provide dimensions for any number of variables, pro-

viding the statement fits within an 80-column line.

The number (or numbers) following a variable name in a DIM statement is equal

to the largest index value that can occur in that particular index position. But remember

indexes begin at 0. Therefore MPS (5) dimensions the variable MPS to have six values,

not five, since indexes 0, 1, 2, 3, 4, and 5 will be allowed. GLS (3,5), likewise, specifies a

double-dimension variable with 24 entries, since the first dimension can have values 0,

1,2, and 3, while the second dimension can have values through 5.

Once you have specified an array variable in a dimension statement, you must

subsequently reference the variable with the specified number of indexes; each index

must have a value between and the number specified in the dimension statement. If

any of these syntax rules are broken a syntax error will be reported.

BRANCH STATEMENTS

Statements within a BASIC program are normally executed in ascending order of

line numbers. This execution sequence was explained earlier in this chapter when we

described line numbers. Branch statements change this execution sequence.

GOTO Statement

GOTO is the simplest branch statement; it allows you to specify the statement

which will be executed next. Consider the following example:

2@ R=4.37
30 GOTO 100
48
50
60
?0
80
90
100
ne

The statement on line 20 is an assignment statement; it assigns a value to floating point

variable A. The next statement is a GOTO; it specifies that program execution must

122 PET/CBM Personal Computer Guide

branch to line 100. Therefore the instruction execution sequence surrounding this part

of the program will be line 20, then line 30, then line 100.

Of course, some other statement must branch back to line 40, otherwise the state-

ment on line 40 would never be executed by program logic as illustrated above.

You can branch to any line number, even if the line has nothing but a remark on

it. However, the computer ignores the remark, so the effect is the same as branching to

the next line. For example, consider the following branch:

20}fl=4.37
30'GOTO 70
40
50
60
70nREM THERE IS 1=1 REMARK, AND NOTHING ELSE ON THIS LINE

80
90

Program execution branches from line 30 to line 70; there is nothing but a remark

on line 70, therefore the computer moves on to line 80, executing statements on this

line. Therefore, even though you can branch to a remark, you might as well branch to

the next line. This may be illustrated as follows:

2&*fl=4.37
30>GOTO 80
40
50
60
70 REM THERE IS fl REMARK.. AND NOTHING ELSE ON THIS LINE

v80
98

Computed GOTO Statement

There is also a computed GOTO statement that lets program logic branch to one

of two or more different line numbers, depending on the current value of a variable.

Consider the following illustration:

4&*OH fl"; GOTO 10,70.. 150

A%=3

The statement on line 40 is a computed GOTO. When this statement is executed, pro-

gram logic will branch to statement 10 if variable A%= 1 , the branch will be to statement

70 if variable A% = 2, while A% = 3 causes a branch to statement 150. If A% has any

other value than 1, 2, or 3, an error is reported. Notice that variable A% is assigned a

Chapter 4: Programming the CBM 123

value in statement 30. The value assigned to A% depends on the current value of varia-

ble B%. The illustration does not show how variable B% is computed; however, so long

as B% has a value of 3, 4, or 5, the statement on line 40 will cause a branch to be taken.

To test the computed GOTO statment, key in the following program:

10 e;;=4
20 ?EK
30 f)X=BK-2
46 ON flKGOTO 10,70,150
70 ?BK
80 EM=5
30 GOTO 30
150 ?Eri
160 E,-;=3

170 GOTO 20

Now execute this program by typing RUN on any blank line. Do not type RUN on

any line that already is displaying something. If you do, you will get a syntax error and

the program will not be executed.

Can you account for the sequence in which digits are displayed? Try rewriting the

program so that each number is displayed once, in the sequence: 345345345...

LOOPED CONTROL STATEMENTS

FOR-NEXT Statement

GOTO and computed GOTO statements let you create any type of statement

execution sequence that your program logic may require. But suppose you want to re-

execute an instruction, (or a group of instructions) many times. For example, sup-

pose array variable A (I) has 100 elements and each element needs to be assigned a

value ranging from to 99. Writing a hundred assignment statements would be very

tedious. It is far simplier to re-execute one statement one hundred times. This can be

done using the FOR and NEXT statements as follows:

10 EIM FK9SO
20 FOP 1=0 TO 99 STEP 1

30 fKD=I
40 NEXT I

Statement (s) between FOR and NEXT are executed repeatedly. In this case a

single assignment statement appears between FOR and NEXT; therefore this single

statement is re-executed repeatedly.

In order to test the workings ofFOR-NEXT loops, we will display A (I) values cre-

ated within the loop. Key in the following program:

10 DIM flC99>
20 FOR 1=0 TO 99 STEP 1

30 FKI> = I

35 ?fl(I);
40 NEXT I

5@ REM IF VOU HAVE A GOTO STATEMENT THAT BRANCHES TO ITSELF, THE
70 REM COMPUTER EXECUTES AH ENDLESS LOOP: IN EFFECT, IT WAITS
30 GOTO 30

Now key in RUN. The program is executed. One hundred numbers are displayed, start-

ing at and ending at 99. Press the STOP key to stop program execution.

Statements between FOR and NEXT are re-executed the number of times

specified by the index variable appearing directly after FOR; in the illustration above

124 PET/CBM Personal Computer Guide

this index variable is I. I is specified as going from to 99 in increments of 1. I also

appears in the assignment statement. Therefore the first time the assignment statement

is executed, I will equal and the assignment statement will be executed as follows:

36 FK0:>=0

I is increased by the step, or increment, size, which is specified on line 20 as 1; I

therefore equals the second time the assignment statement on line 30 is executed. The

assignment statement has effectively become:

30 fl<l)=l

I continues to be incremented by the specified STEP until the maximum value of

99 is reached or exceeded.

STEP does not have to be 1; it can have any integer value. Change step to 5 on line

20 and re-execute the program. Now the assignment statement is executed just 20

times, since incrementing I by 5 nineteen times will take it to 95; the 20th increment will

take it to 100, which is more than the maximum value of 99. Keeping STEP at 5, we

could allow the assignment statement to be executed 100 times by increasing the max-

imum value of I to 500. Can you make this change? (Remember to change the dimen-

sion statement as well.)

The step size does not have to be positive. But if the step size is negative, then the

initial value of I must be larger than the final value of I. For example if the step size is

- 1, and we want to initialize 100 elements of AC (I) with values ranging from to 99,

then we would have to rewrite the statement on line 20 as follows:

10 DIM hi < 99)
20 FOR 1=99 TO STEP -1

30 flCI>=I
35 ?FKD;
40 NEXT I

SO GOTO 80

Execute this program to test the negative STEP.

The initial and final values for I, and the step size, are evaluated as integers; but

no other restrictions are placed on these three values. You can specify these three values

using floating point variables or expressions. Expressions will be evaluated to a floating

point result. Then the floating point result will be converted to an integer using the

round-off rules described earlier in this chapter.

Because round-off rules can cause problems, you are strongly urged to specify

beginning, ending and step sizes as integers. Do not use expressions since this

unnecessarily complicates the program. If you must calculate one of these values, it is

simplier and faster to do so in a separate statement.

If the step size is 1 (and this is frequently the case), you do not have to include a

step size definition. In the absence of any definition, CBM BASIC assumes a step size

of 1. Therefore we could rewrite the statement on line 20 as follows:

5IZE OF 1

10 DIM fK99 >

15 REM USE fl :STEP
20 FOR 1=0 TO 93
30 flCI>=I
35 ?flt:i);

40 NEXT I

80 GOTO 80

Also, you do not need to specify the index variable in the NEXT statement. But if

you do, it will make your program easier to read.

Chapter 4: Programming the CBM 125

Nested Loops

The FOR-NEXT structure is referred to as a "program loop" since statement

execution loops around from FOR to NEXT, and back to FOR. This loop structure is

very common; almost every BASIC program that you write will include one or more

such loops. Loops are so common that they are frequently nested. The statement

sequence occurring between FOR and NEXT can be of any length; frequently it can

run to tens or hundreds of statements. And within these tens or hundreds of state-

ments, additional loops may occur. The following illustration shows a single level of

nesting:

10 DIM f\<39>

28 FOR 1=0 TO 99
30 fKI>=I
40 REM DISPLflV ALL VALUES OF fl(I) ASSIGNED THUS FAR
50 FOR J=0 TO I

60 ?fl<J>
78 NEXT J
80 NEXT I

90 GOTO 96

Complex loop structures appear frequently, even in relatively short programs.

Here is an example, showing the FOR and NEXT statements, but none of the inter-

mediate statements:

50 FOR 1=1 TO 10
60 FOR X=25 TO 347 STEP 3

100 FOR A=9 TO STEP -1

140 NEXT fl

200 FOR E=25 TO 100 STEP 5

280 NEXT E
300 NEXT X

500 FOR V=l TO 20 STEP 2

600 FOR P=10 TO 20

650 NEXT P
700 NEXT V

1000 FOR Z=l TO 10

1090 NEXT 2
1200 NEXT I

126 PET/CBM Personal Computer Guide

The outermost loop uses index I; it contains three nested loops that use indexes X, Y,

and Z. The first loop contains two additional loops which use indexes A and B. The sec-

ond loop contains one nested loop using index P. The third loop contains no nested

loops. Each nested loop must have a different index variable name. Statement execu-

tion sequences may be illustrated as follows:

OR 1=1 TO 10

60-€OR\X=25 TO 347 STEP 3

100sFX|R flv9 TO STEF -1

146'N

200NFO(? B=25 TO 180 STEP 5

380'NEXT X

'NEKT Fl\

EXT E

'001CXT I

Loop structures are very easy to visualize and use. There is only one common
error which you must avoid: Do not terminate an outer loop before you terminate an

inner loop. For example, the following loop structure is illegal:

,50-FGR 1 = 1 TO 10

r60-EQR)X=25 TO 347 STEP 3

-i00-«E*T I

"200-fEXT X

If you do not include the index variable in the NEXT statement, then program

logic will automatically terminate loops correctly, since there is only one possible correct

loop termination each time a NEXT statement is encountered. If you do not believe

this, look again at the complex example illustrated earlier. Then work out some addi-

tional complex examples.

Every program must have the same number of FOR and NEXT statements,

since every loop must begin with a FOR statement and end with a NEXT statement.

For example, suppose there are two FOR statements, but only one NEXT statement.

The second FOR statement constitutes an inner loop which will execute correctly. But

the outer loop has no NEXT statement to terminate it and the program will execute

incorrectly. If you have too many NEXT statements a syntax error will also be gener-

ated.

Chapter 4: Programming the CBM 127

SUBROUTINE STATEMENTS

Once you start writing programs that are more than a few statements long, you
will quickly find short routines that get used repeatedly. For example, suppose you have
an array variable (such as A (I)) which is reinitialized frequently at different points in

your program. Would you simply repeat the three instructions that constitute the FOR-
NEXT loop that we described earlier? Since there are just three instructions, you may as
well do so.

But suppose you have to initialize the array and then execute ten or eleven
instructions that process array data in some fashion. If you had to use this loop many
times within one program, rewriting ten to fifteen statements each time you wished to

use the loop would take time; but more importantly it would waste a lot of computer
memory. This may be illustrated as follows:

Start of program »

Repeated routine

How about separating out the repeated statements and branching to them?
That is precisely what we will do; the group of statements is then referred to as a
"subroutine."

128 PET/CBM Personal Computer Guide

But a problem arises. Branching from your program to the subroutine is simple

enough; the subroutine has an entry line number. But at the end of the subroutine,

where do you branch back to? You could execute a GOTO statement whenever you wish

to branch to a subroutine.

Arbitrarily selected

line numbers

Start of program- 10

100 GOTO 2000
110

1 90 GOTO 2000 -

200

250 GOTO 2000
260

480 GOTO 2000
500

- _ Subroutine

""^ 2000 _,_ — start

- - - ?4 ^
s /

s I

/ 21 50
-"-— end

Return (~"
N
/

where? "~
—

' I

V

GOSUB Statement

At the end of the subroutine, where do you return to? If two GOTO statements

branch to the subroutine, there are two different places to which you will wish to return

after the subroutine has completed execution. The solution is to use special subroutine

statements. Instead of branching to the suboutine using a GOTO, use a GOSUB
statement. This statement branches in the same way as a GOTO, but in addition it

remembers the next line number. This may be illustrated as follows:

/

Subroutine

110GOS
110

JB 2000
\
\ ^- -x^

2000 n
4

/
/

— start

W Remember y\^ 11°^' 2150

R

ETURN .- end

Goto
remembered

line number

Chapter 4: Programming the CBM 129

End the subroutine with a RETURN statement. This statement causes a branch
back to the line number which the GOSUB statement remembered. The three-state-

ment loop which initializes array A (I) would appear as follows if it were converted into a

subroutine:

10 REM MAIN PROGRAM
20 REM YOU CAN DIMENSION A SUBROUTINE'S VARIABLE IN THE MAIN
30 REM PROGRAM. IT IS A GOOD IDEA TO DIMENSION ALL VARIABLES
50 REM AT THE START OF THE MAIN PROGRAM.
60 DIM B''-99>

70 GOSUB 2000
86 REM DISPLAY SOMETHING TO PROVE THE RETURN OCCURRED
90 ?" RETURNED"
100 GOTO 100
2000 REM SUBROUTINE
201B FOR 1=0 TO 99
2020 a<:i:»=i

2030 ?flfl);
2040 NEXT I

2050 RETURN

Nested Subroutines

Subroutines can be nested. That is to say, a subroutine can itself call another
subroutine, which in turn can call a third subroutine, and so on. You do not have to do
anything special in order to use nested subroutines. Simply branch to the subroutine
using a GOSUB statement and end the subroutine with a RETURN statement. CBM
BASIC will remember the correct line number for each nested return. The following

program illustrates nested subroutines:

10 REM MAIN PROGRAM
20 REM YOU CAN DIMENSION A SUBROUTINE'S VARIABLE IN THE MAIN
30 REM PROGRAM. IT IS A GOOD IDEA TO DIMENSION ALL VARIABLES
50 REM AT THE START OF THE MAIN PROGRAM.
S0 DIM A<99>
70 GOSUB 20O0
30 REM DISPLAY SOMETHING TO PROVE THE RETURN OCCURRED
90 ?" RETURNED"
100 GOTO 100
2008 REM FIRST LEVEL SUBROUTINE
2010 FOR 1=0 TO 99
2020 fl(I)=I
2030 GOSUB 3000
2040 NEXT I

2050 RETURN
300O REM NESTED SUBROTINE
3010 7AUJ
3020 RETURN

This program moves the ?A(I) statement out of the subroutine and puts it into a nested
subroutine. Nothing else changes.

Computed GOSUB Statement

GOTO and GOSUB statement logic is very similar. The only difference is that

GOSUB remembers the next line number. It will therefore not come as any surprise that

there is a computed GOSUB statement akin to the computed GOTO statement. The
computed GOSUB statement allows you to branch to one of two or more subroutines

depending on the value of an index. Consider the following statement:

90
100 ON A GOSUB 1000,50ft. 5000. 2300
110

130 PET/CBM Personal Computer Guide

When the statement on line 100 is executed, if A= 1 the subroutine beginning at

line 1000 is called. If A= 2 the subroutine beginning at line 500 is called. If A= 3 the

subroutine beginning at line 5000 is called. If A= 4 the subroutine beginning at line

2300 is called. If A has any value other than 1,2,3, or 4, an error message will be re-

ported and the program will stop executing. The computed GOSUB statement remem-

bers the next line number (in this case 110). It does not matter which of the subroutines

gets called, the called subroutine's RETURN statement will cause a branch back to the

"remembered" line number, in this case line 110.

You can nest subroutines using computed GOSUB statements, just as you can

nest subroutines using standard GOSUB statements.

IF-THEN Statement

The arithmetic and relational operators which we described earlier in this chapter

are frequently used in IF-THEN statements. This gives a BASIC program decision-

making capabilities. Following IF you enter any expression. If the expression is

"true," then the statement(s) following THEN are executed. However if the expres-

sion is "false" the statement (s) following THEN are not executed. Here are three

simple examples of IF-THEN statements:

10 IF Fl-E+5 THEN PRINT MSG1
40 IF CC*<"M" THEN IN=0
50 IF GK14 HNH MO Ml GOTO 66

The word THEN is optional; it may be omitted, as in the third example.

The statement on line 10 causes a PRINT statement to be executed if the floating

point variable A value is five more than the floating point variable B value. The PRINT

statement will not be executed otherwise.

The statement on line 40 sets floating point variable IN to if string variable CCS
is any letter of the alphabet in the range A through L.

The statement on line 50 causes program execution to branch to line 66 if floating

point variable Q is less than 14, and floating point variable M is not equal to floating

point variable Ml. Otherwise program execution will continue with the statement on the

next line.

If you do not understand the evaluation of expressions following IF, then refer to

the discussion of such expressions given at the beginning of this chapter.

INPUT AND OUTPUT STATEMENTS

From the beginning of this chapter we have been using the question mark (?) to

create displays. In fact the question mark is a shorthand version of the PRINT state-

ment.

There are a variety of BASIC statements that control the transfer of data to and

from the computer. Collectively these are referred to as input/output statements. The

simplest input/output statements control data input from the keyboard and data out-

put to the display. We are going to discuss these simple input/output statements in the

paragraphs that follow. But there are also more complex input/output statements that

control data transfer between the computer and peripheral devices such as cassette

units, diskette units, and printers. These more complex input/output statements are de-

scribed in Chapter 6.

Since we have already encountered the PRINT statement, let us discuss this state-

ment first.

Chapter 4: Programming the CBM 131

PRINT Statement

You can use the word PRINT or a question mark (?) to create a PRINT state-

ment.

Why use PRINT instead of DISPLAY or some abbreviation of the word display?

The answer is that in the early sixties, when the BASIC programming language was

being created, displays were very expensive and generally unavailable on medium- or

low-cost computers. The standard computer terminal had a keyboard and a printer.

Information was printed where today it is displayed; hence the use of the word "print"

to describe a statement which causes a display.

The PRINT statement will display text or numbers. Text must be enclosed in

quotes. For example, the following statement will display the single word "text":

10 PRINT "TEXT"
or:

10 ?"TEXT"

To display a number, you place the number, or a variable name, after PRINT.
This may be illustrated as follows:

10 h*;=i0
20 '"'5..R";

The statement at line 20 displays the number 5, and then the number 10 on the same
line.

You can display a mixture of text and/or numbers by listing the information to be

displayed after PRINT. Use commas to separate individual items. The following PRINT
statement displays the words "one," "two," "three," "four" and "five," followed by

the numeral for each number:

10 ?"OHE".. 1, "TWO", 2, "THREE", 3, "FOUR", 4, "FIVE",

5

If you separate variables with commas, as we did above, then the CBM com-
puter automatically assigns 10 character spaces for each variable displayed. Try
executing the statement illustrated above in immediate mode to prove this to yourself.

If you want the display to take out empty spaces, separate the variables with semi-
colons, as follows:

18 PRINT " ONE " , 1 , " TWO " .: 2 .; " THREE " .: 3 ; " FOUR " ; 4 .: " F I VE " .: 5

Enter this statement in immediate mode and display it to understand how the semicolon

works.

A PRINT statement automatically inserts a carriage return at the end of the

display, unless you suppress it. You can suppress the carriage return by putting a

comma or a semicolon after the last variable. A comma occurring after the last variable

will continue the display at the next 10-character space boundary. To illustrate this,

enter the following three-statement program and run it by typing in RUN:

10 PRINT "ONE", 1," TWO",

2

20 PR INT " THREE " , 3 ,
" FOUR " ,

4

30 GOTO 30

Now add a comma to the end of the statement on line 10 and again execute the

program by typing RUN. You will see the two lines of display occur on a single line.

Remember to type RUN on a blank line or you will get a syntax error.

132 PET/CBM Personal Computer Guide

Now replace the comma at the end of line 10 with a semicolon and again run the

program. The display occurs on a single line, but the space between the numeral "2"

and the word "three" has been removed. By changing other commas to semicolons you

can selectively remove additional spaces.

We have been illustrating the numerals by inserting them directly into the PRINT

statement. You can, if you wish, display the contents of variables instead. The following

program reproduces the first PRINT statement, but uses variable A%(I) to create digits.

Try entering this program and running it:

10 FOR 1=1 TO 5

28 flK<D = I

30 NEXT
48 PRINT "ONE" ; FTC< 1 > , "TWO" ; RZ<2> ; "THREE" ;fl«3); "FOUR" ; H,-. (.

4

> i

"FIVE";m;;<:5::'

50 GOTO 50

We can put the displayed words into a string array and move the PRINT statement into

the FOR-NEXT loop by changing the program as follows:

10 DATA "ONE" , "TWO" , "THREE" , "FOUR" > "FIVE"
20 FOR 1=1 TO 5
30 fi;:a:'=i

40 read n*<:i:>

50 print N$<i>;flxa;>;
60 NEXT
70 GOTO 70

The program shown above is not well written. A%(I) can be eliminated, and N$ need

not be an array variable. Can you rewrite the program using N$ and removing A$(I)

entirely?

PRINT Formatting Functions

We use the word "formatting" to describe the process of arranging information

on a display (or a printout) so that the information is easier to understand, or more

pleasing to the eye. Given the PRINT statement and nothing else, formatting could

become a complex and painful chore. For example, suppose you want to display a head-

ing in the middle of the line at the top of the display. Does that mean displaying space

codes until you reach the first heading character position? Not only would that be

tedious and error prone, it would also waste a lot ofmemory, since each space code must

be converted into an appropriate computer instruction. Fortunately, CBM BASIC pro-

vides three PRINT formatting aides: the SPC, TAB, and POS functions.

SPC Function

SPC is a space over function. You include SPC as one of the terms in a PRINT

statement; after the letters SPC you must include (in parentheses) the number of

character positions that you wish to space over. For example, we could display a heading

beginning at the left-most character position of the display as follows:

10 ?" HEADING"

But to center the heading on a 40-column screen display you would first space over 16

character positions as follows:

10 7SPCO 6); "HEADING"

Notice the semicolon after the SPC function. A comma after SPC will start displaying

text at the next 10-character boundary following the number of spaces specified by SPC.

Chapter 4: Programming the CBM 133

Any time you include the SPC function in a PRINT statement you simply cause

the next printed or displayed character to be moved over by the number of positions

specified after SPC; no other PRINT statement syntax is changed.

TAB Function

TAB is a tabbing function similiar to typewriter tabbing.

Suppose you want to print or display information in columns. You must first

calculate the character position of the line where each column is to begin. This may be

illustrated as follows:

COLUMN NUMBER

1

16 32 48
JONES, P. J 431-25-6277 1420.00 258.74
BURKE. P. L 447-71-7614 2025.00 467.64
ROBINSON, L. W 231-80-8421 2150.00 477.04

etc. etc. etc. etc.

In the illustration above, columns begin at character positions 0, 16, 32 and 48.

(Obviously the computer has an 80-column display or is printing on 80-column paper.)

Now instead of computing space codes as you go from line to line, following each col-

umn entry you simply insert a TAB function in the PRINT statement.

Consider one line of the display illustrated above; counting character positions,

we could display the line without tab stops, as follows:

10 ?"J0NES,P.J 431-25-6277 1420.00 258.74"

Instead of inserting space codes, we could use the space function and shorten the state-

ment as follows:

10 ? " JONES , P.J "
.: SPC C 1 7 :> ; "43 1 -25-6277 " ; SPC < 5 > ;

" 1 420 . 00 "
; SPC (. 9 > ;

"253 . 74 "

But tabbing is easier because you tab to a known column number instead of counting

spaces:

10 ?"J0HES,P. J";TflB(16>; "431-25-6277" ;TftB(32)J "1420.00";TflBC48); "253.74"

Note that the entries in the third and fourth columns are numbers which we have

entered as text. Try rewriting the PRINT statement to display these as numbers. The
numbers no longer align as they did when they were displayed as characters (in Chapter

5 we discuss the quirks associated with display formatting). In this case, numbers leave a

space for a negative sign, and they do not display zeros occurring after the decimal point.

That is why there are differences.

POS Function

POS is the last of the PRINT formatting functions. POS returns the current cursor

position. The position is returned as a number, equal to the column number where the

cursor is blinking. You always include a dummy argument of after POS, written as

POS(O).

The following statement demonstrates the capability of POS:

10 ?" CURSOR POSITION IS";POS<0>

j34 PET/CBM Personal Computer Guide

Execute this statement in immediate mode. The display will appear as follows:

"
"CURSOR POSITION IS" ; POS c e :>

CURSOR POSITION IS 18

The cursor was at character position 18 after displaying "CURSOR POSITION IS." If

you add some spaces after "IS," and before the closing quotes, you will change the

number 18 to some larger number.

INPUT Statement

When an INPUT statement is executed, the computer waits for input from the

keyboard; until the computer gets the input it requires, nothing else will happen.

An input statement begins with the word INPUT, which is followed by a list of

variable names. Entered data is assigned to the named variables. The variable name type

determines the form in which data must be entered. A string variable name (ending with

a $) can be satisfied only by text input; any number of text characters can be entered for

a string variable. To demonstrate string input, key in the following short program and

run it:

10 INPUT Fit

20 ?P,t

30 00T0 10

Upon executing an INPUT statement, the computer displays a question mark, then

waits for your entry. The program illustrated above displays any text which you enter, as

you enter it; but the text is displayed again because of the PRINT statement on the next

line. The first display occurs when the INPUT statement on line 10 is executed. The sec-

ond display is in response to the PRINT statement on line 20.

You input integer or floating point numeric data by listing the appropriate variable

names following INPUT. Separate individual entries with commas. The comma has no

punctuation significance in an INPUT statement. The following example inputs a text

word, an integer number and a floating point number, then displays these three inputs.

Enter the program and run it:

10 INPUT fi*,fi,R'.'

30 GOTO 1

You must enter a text word followed by a comma, then an integer number

followed by a comma, then a floating point number followed by a carriage return. Any

departure from this input sequence will cause an error; following an error the computer

displays two question marks. You will have to re-enter the data in the correct format. If

the computer then displays a question mark with the message "re-do from start," enter

the correct data again.

Now rewrite the PRINT statement so that A$, A and A% are in an order that

differs from the INPUT statement. Rerun the program.

As we discussed earlier, any integers can be represented using a floating point

number. Therefore you can input an integer value for a floating point variable. But you

cannot input a floating point value for an integer variable. You cannot enter text for an

integer or a floating point number, but you can enter a number for a text variable; the

number will be interpreted as characters rather than a numeric value. Try these varia-

tions to satisfy yourself that you understand the data entry options.

Chapter 4: Programming the CBM 135

The INPUT statement is very fussy; its syntax is too demanding for any normal

human operator. Just imagine the office worker who knows nothing about program-

ming; on encountering the types of error message which can occur if one comma hap-

pens to be out of place, s/he will give up in despair. You are therefore likely to spend a

lot of time writing "idiot-proof data entry programs; these are programs which are

designed to watch out for every type of mistake that an operator can make when enter-

ing data. An idiot-proof program will cope with errors in a way that the operator can

understand. Chapter 5 describes data entry programming in detail.

One simple trick worth noting, however, is the INPUT statement's ability to dis-

play data. Therefore you can precede each item of data entry with a short message telling

the operator what to do. The message appears in the INPUT statement as text between

quotes. A semicolon must occur after the text to be displayed, and before the first input

variable name. Here is an example:

10 INPUT "ENTER THE NUMBER 1",'N

20 IF HOI THEN GOTO 50
30 ?"0K"
40 GOTO 40
50 ?"N0, DUMMV,

"

60 GOTO 10

This program prints a message, then waits for a single data entry. This certainly beats

sticking a bunch of variables into a single INPUT statement, with only your memory
reminding you what to enter next.

GET Statement

The GET statement inputs a single character. No carriage return is needed.

The single character input can be any character that the CBM computer recognizes, or it

may be a numeric value between and 9. Entry will be interpreted as a character if a

string variable name follows GET. Type in the following program and run it:

10 GET fit

20 ?fl*

30 GOTO 10

When you run this program, everything will race off the top of the display. Each time

you press a key, it too will race off the top of the screen. That is because GET does not

wait for a character entry, it assumes the entry is there. We can make GET wait for a

specific character by testing for the character as follows:

10 GET fit

20 IF fl*0"X" THEN GOTO 10
30 ?fl*

40 GOTO 10

This program waits for the letter X to be entered. Nothing else will do.

GET can also be programmed to wait for any keyboard entry. This program logic

uses the fact that the GET statement string variable is assigned a null character code

until a character is input at the keyboard. The null code is 00 which cannot be entered

from the keyboard, but can be specified within a program, using two adjacent quotation

marks "". Here is the necessary program logic:

10 GET fl*

20 IF fi*="" THEN GOTO 10
30 ?fl*

40 GOTO 10

136
PET/CBM Personal Computer Guide

If the GET statement specifies an integer or floating point variable, then the

input is interpreted as a numeric digit. The integer of floating point variable appearing in

a GET statement is assigned a value of until it receives data input. But you can enter

at the keyboard. Therefore program logic has no way of knowing whether the repre-

sents a valid entry, or a lack of any entry. This can present problems to programming

logic that checks for an entry, as shown above. GET statements therefore usually

receive string characters.

Programs use the GET statement most frequently when generating dialogue with

an operator. For example, a program may wait for an operator to prove that he or she is

there by entering a specific character (e.g. 'Y' for 'yes'). Here is appropriate program

logic:

in PRINT "OPERATOR! ARE VOU THERE? TVPE V FOR VES"

20 GET Fi*

:-:R IF fi*0"V" THEN GOTO 20
40 PRINT "OK.. LET'S GET OH WITH IT"

Notice that this sequence never displays the character entered at the keyboard. Try

rewriting the program so that any character entered for the GET statement is displayed.

PEEK AND POKE STATEMENTS

PEEK and POKE are two CBM BASIC statements that rightfully belong in

Chapter 7; however we will mention them here since we have already encountered the

POKE statement in the course of operating the CBM computer. We used it to access the

computer's alternate character set.

CBM computers can have up to 65,536 individually addressable locations, each of

which can store a number ranging between and 255. (This strange upper bound is in

fact 28— 1.) All programs and data are converted into sequences of numbers which are

stored in this fashion.

A PEEK statement lets you read the number stored in any CBM computer

memory location. Consider the following PEEK statement:

10 a-;=PEEK>;200>

This statement assigns the content of memory location 200 to variable A%. The PEEK

argument may be a number, as shown, an integer variable name, or an integer expres-

sion, but it must evaluate to the address of a memory location.

The POKE statement writes data into a memory location. For example the

statement:

20 POKE 3006, OK

takes the content of variable A% and stores it in memory location 8000. Each POKE

argument may be a number, a variable or an expression with a value between and 255.

A floating point value is converted to an integer.

You can PEEK into read/write memory or read-only memory. But you can only

POKE into read/write memory. This is self-evident; read-only memory, as its name

implies, can have its contents read, but cannot be written into.

Chapter 4: Programming the CBM 137

END AND STOP STATEMENTS

The END and STOP statements halt program execution. You can continue

execution by typing CONT at the keyboard. You do not have to include END or STOP
statements in your program; however these statements do make for tidy programming.

In many of the programming examples given in this chapter we use a GOTO state-

ment that branches to itself in order to stop program execution. For example the state-

ment:

59 GOTO 50

will execute endlessly since the GOTO statement selects itself for the execution. We
could replace this statement with a STOP statement. When a STOP statement is

executed, the following message will appear:

BREAK IN XXffi
REfiDV

Then execution stops. XXXX is the line number of the STOP statement. If you have

more than one STOP statement in your program, use XXXX to identify which state-

ment was executed.

FUNCTIONS

Another element of CBM BASIC is the function, which in some ways looks like a

variable, but in other ways acts more like a BASIC statement.

Perhaps the simplest way of understanding what a function is is to look at an
example in an assignment statement:

10 fl=SQR<B)

The variable A has been set equal to the square root of the variable B. SQR specifies the

square root function. Here is a string function:

20 C*=l_EFT*(D*,2>

In this example the string variable C$ is set equal to the first two characters of string

variable D$.

Functions can substitute for variables or constants anywhere in a BASIC state-

ment, except to the left of an equal sign. In other words, you can say that A = SQR(B),
but you cannot say that SQR(A)=B.

We have already used four functions. SPC, TAB, and POS are system functions

used with the PRINT statements to format displays. Also, PEEK is a function.

The discussion which follows shows you how to use functions. An incomplete

summary of the available CBM BASIC functions is presented here but complete

descriptions of all functions are given in Chapter 8.

You specify a function using appropriate letters (such as SQR for square root),

followed by arguments enclosed in parentheses. In the case of A= SQR(B), SQR
requires a single argument, which in this case is the variable B. For C$= LEFT$(D$,2),

LEFTS specifies the function; the two arguments D$ and 2 are enclosed in brackets.

138 PET/CBM Personal Computer Guide

Generally stated, any function will have one of these two formats:

function (argil

function (arg1,arg2)

- Single argument for a function

that has just one argument

. Two arguments for a function

that needs two arguments

• Letters that specify the function

A few functions need three arguments.

Each function argument can be a constant, a variable, or an expression.

A function appearing in a BASIC statement is evaluated before any operators.

Each and every function in a BASIC statement is reduced to a single numeric or string

value before any other parts of the BASIC statement are evaluated. For example in the

following statement:

1 B=24 . ?* < SQR < C :> +5) -S I N C . 2+D >

SQR and SIN functions are evaluated first. Suppose SQR(C)=6.72 and

SIN(0.2 + D) =0.625. The statement on line 10 will first be reduced to:

IS B=24 . 7* < 6 . ?2+5 ') -9 . 625

Then this simpler statement is evaluated.

ARITHMETIC FUNCTIONS

Here is a list of the arithmetic functions that you can use with CBM BASIC:

INT Converts a floating point argument to its integer equivalent by trun-

cation.

SGN Returns the sign of an argument: +1 for a positive argument, - 1 for

a negative argument, for argument.

ABS Returns the absolute value of an argument. A positive argument does
not change; a negative argument is converted to its positive

equivalent.

SQR Computes the square root of the argument.

EXP Raises the natural logarithm base e to the power of the argument
(e
ar9).

LOG Returns the natural logarithm of the argument.

RND Generates a random number. There are some rules regarding use of

RND; they are described in Chapter 5.

SIN Returns the trigonometric sine of the argument, which is treated as a

radian quantity.

COS Returns the trigonometric cosine of the argument, which is treated

as a radian quantity.

TAN Returns the trigonometric tangent of the argument, which is treated

as a radian quantity.

ATN Returns the trigonometric arctangent of the argument, which is

treated as a radian quantity.

You should start using functions as soon as possible, but do not bother with func-

tions you do not already understand. For example, if you do not understand trigonome-

try, you are unlikely to use SIN, COS and TAN functions in your programs.

Chapter 4: Programming the CBM]jg

Here is an example that uses an arithmetic function:

10 fi=2.?43
20 B=INKR::'+7
30 ?B
40 STOP

When you execute this program, the result displayed is 9, since the integer value of A is

2. As an exercise, change the statement on line 10 to an INPUT. Change line 40 to

GOTO 10. Now you can enter a variety of values for A and watch the integer function at

work.

Here is a more complex example using arithmetic functions:

10 INPUT R,B
20 IF LOG<flX0 THEN R=l,'fl

30 ?sqr<fd*exp<:b)
40 GOTO 10

If you understand logarithms, then as an exercise change the statement on line 20, re-

placing the LOG function with arithmetic functions that perform the same operation.

The argument of a function can be an expression; the expression may contain
functions. For example, change line 30 to the following statement and rerun the pro-
gram:

30 ?SQR < fl*EXP <. B > +3 >

Now experiment with arithmetic functions by creating immediate PRINT statements that
make complex use of arithmetic functions.

STRING FUNCTIONS

String functions allow you to manipulate string data in a variety of ways. You may
not need to use arithmetic functions that you do not understand, but you must make the
effort to learn every string function.

Here is a list of the string functions that you can use with CBM BASIC:

STR$ Converts a number to its equivalent string of text characters.

VAL Converts a string of text characters to their equivalent number (if

such a conversion is possible).

CHRS Converts an 8-bit binary code to its equivalent ASCII character.

ASC Converts an ASCII character to its 8-bit binary equivalent.

LEN Returns the number of characters contained in a text string.

LEFT$ Extracts the left part of a text string. Function arguments identify the
string and its left part.

RIGHTS Extracts the right part of a text string. Function arguments identify

the string and its right part.

MID$ Extracts the middle section of a text string. Function arguments iden-

tify the string and the required mid part.

String functions let you determine the length of a string, extract portions of a
string, and convert between numeric, ASCII, and string characters. These functions

take one, two, or three arguments. Here are some examples:

STRtCH)

LEN C "ABC":)

LENCFIS+B*;'

LEFTIST*, 1)

140 PET/CBM Personal Computer Guide

SYSTEM FUNCTIONS

In the interest of completeness, CBM BASIC system functions are listed below.

They perform operations which you are unlikely to need until you are an experienced

programmer. Perhaps the only system function you are likely to use fairly soon is the

time of day function. If you print many variations of a report (or any other material) in a

single day, it is often a good idea to print the time of day at the top of the report. Then

you can tell the sequence in which these reports were generated.

Here is a list of system functions available with CBM BASIC:

PEEK Fetches the contents of a memory byte.

Tl$, T1 Fetches system time, as maintained by a program clock.

FRE Returns available free space — the number of unused read/write

memory bytes.

SYS Transfers to subsystem.

USR Transfers to user assembly language program.

USER-DEFINED FUNCTIONS

In addition to the many functions which are a standard part of CBM BASIC, you

can define your own arithmetic functions, providing they are not very complicated.

User-defined string functions are not allowed. Here is an example of a short program

that uses a DEF FN statement:

10 DEFFNP<X>=100*X
20 INPUT fl

30 ?M,FNPCfl:J
40 GOTO 20

Following the DEF FN entry you can have any valid floating point variable name.

In this case we have entered P, therefore the function name becomes FNP. If the varia-.

ble name was AB, then the function name would be FNAB.

In a DEF FN statement, a single variable name must follow the function name,

and must be enclosed in parentheses. This variable name is local to the function defini-

tion; its value is known only inside the DEF FN statement. You can use the same varia-

ble name outside the function, but it refers to a different variable value which is known

to the program at large. The local variable receives its value when the function can, and

usually does, appear in the expression on the right side of the DEF FN statement equals

sign. Other variable names can appear there too. When the function is used via the FN

statement, the expression is evaluated using the newly assigned value of the local varia-

ble and the latest values of any of the variables. The resulting value is used where the

FN statement appeared.

Chapter 5

Making the Most of
CBM Features

This chapter describes CBM computer hardware characteristics and programming
techniques.

HARDWARE FEATURES

KEYBOARD ROLLOVER

If you press two or more keys simultaneously, or if you press a second key before
the first character is displayed, a keystroke will be ignored — unless your keyboard has
"rollover." Rollover "remembers" a keystroke until it is displayed. Fortunately, CBM
computer keyboards have rollover.

Rollover remembers incoming keystrokes while a preceding keystroke is being
processed. The "remembered" keystrokes are stored in a buffer until they are pro-

cessed. Without this buffer, rapidly incoming keystrokes would be lost. For example, if

keystroke #2 occurs before keystroke #1 has been processed, the CBM computer stores

keystroke #2 in the buffer until keystroke #1 has been processed. Then keystroke #2 is

taken from the buffer and processed in turn.

Rollover is a very useful feature of the CBM computer keyboard; it allows you to

type in data very fast without the loss of occasional keystrokes.

142 PET/CBM Personal Computer Guide

KEYBOARD BUFFER

All CBM computers have a 10-character buffer that holds characters when

keys are pressed at the keyboard.

To illustrate, load and run the final version of the BLANKET program, listed in

Figure 5-1. Press a key. While the first display is generated, press up to ten more keys,

then sit back and relax. Each of the ten keyed-in characters will be fetched from the

buffer in turn and displayed by the BLANKET program.

Let us look at this process in more detail.

Whenever you press a key, it goes into the first storage location in the 10-

character keyboard buffer. If you press the A key, this is what happens:

Keyboard
Buffer

1
A

2

3

4

5

6

7

8

9

10

The CBM computer keeps track of the number of characters in the buffer and the loca-

tion of the next character to be displayed. Each time the GET statement fetches another

character, a buffer pointer is incremented to select the next buffer location.

If you press additional keys while the A is being displayed, the additional charac-

ters are stored in the keyboard buffer beginning at the next available location. Suppose

you type in A, and while A is being displayed you type in B, C, D, and E. These charac-

ters are all stored in the keyboard buffer:

Keyboard
Buffer

1 A

2 B

3 C

4 D

5 E

6

7

8

9

10

Chapter 5: Making the Most ofCBM Features 143

10 REM ******* B L fl N K E T *******
20 REM CONTINUOUS-LI HE DISPLHV OF OME
30 REM CHARACTER ENTERED FROM THE
40 REM KEVBOARD
50 REM *******************************
90 PRINT "HIT fl REV OR <R> TO END";
100 GET C*:IF C*="" GOTO 100
105 IF C*=CHR*C13> GOTO 170
110 PRINT"."]".: REM CLEAR SCREEN
120 FOR 1=1 TO 920 REM 920/40=23 LINES
130 PRINT C*;
140 NEXT
150 PR I NT "PHEW!

"

160 GOTO 90
170 END

Figure 5-1. Program BLANKET

If you let the BLANKET program continue to run, it will successively display all

the letters stored in the keyboard buffer. After A is finished, the program fetches B and
displays it across 20 lines, then it fetches C and displays it, etc.

If you type in more than ten characters, then for any model with the exception of

the 8000 series, the buffer pointer wraps around, returning to buffer position 1. For
example, if you type in the first 11 letters of the alphabet (A-K), the first ten letters are

stored in the ten buffer locations, then the letter K is stored in the first buffer location,

overlaying the A:

-K overlays the A

Keyboard
Buffer

1 K

2 B

3 C

4 D

5 E

6 F

7 G

8 H

9 I

10 J

When the program finishes displaying the A, it returns to fetch another character.

But the CBM computer has already fetched the character in location 1 , so it considers

the buffer empty. Keying in exactly eleven characters, or multiples of eleven characters,

produces no additional automatic displays in program BLANKET.

144
PET/CBM Personal Computer Guide

Typing in 12 to 20 characters displays the first character, and then a string of

characters beginning with character 12. For example, type in A. While A is being dis-

played type in B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, and T.

1 st ten

characters

2nd ten

characters

—
1 A K

2 B L 4 Next character

3 C M
displayed after

4 D N

5 E

6 F P

7 G Q

8 H R

9 I
S

10 J T

The order of display is: A, L, M, N, O, P, Q, R, S, T.

This logic holds true for additional multiple characters. Type in A, and while A is

being displayed type in the rest of the alphabet. (You will have to be quick to do this.)

1 st ten

characters

2nd ten

characters

last ten

characters

—
1 A

2 B

3 C

4 D

5 E

6 F

7 G

8 H

9 1

10 J

w

(Q)

(R)

(S)

(T)

-Next character

displayed after A

-Last character

displayed

A negating effect occurs every 1 1 characters. For instance, type in A and B, and let

A display completely. Then, while B is displaying, type in C, D, E, F, G, H, I, J, K, and

L. The additional ten characters are cancelled out, just as the additional ten characters B

through K were when entered while A was being displayed.

The CBM 8000 discards input characters which other models wrap around

within the input buffer.

Chapter 5: Making the Most ofCBM Features 145

Emptying the Buffer Before a GET
The keyboard buffer is a mild surprise, usually a pleasant one. For program

BLANKET you can save up the characters you want displayed rather than keying them
in one at a time in response to the HIT A KEY message. But the keyboard buffer can
also come as a rude shock. Accidentally pressing a key may cause a program to fetch
an unwanted character from the keyboard buffer. To avoid this, you can program a
loop to empty the keyboard buffer before fetching an intended response character as
follows:

95 FOR I=1TO10GET C* : NEXT I: REM EMPTV KVBD BFR
100 GET C* IF C*="" GOTO 100

The statements on line 95 empty the keyboard buffer by getting all ten possible buffer
characters.

Edit program BLANKET by adding line 95 as shown above. Now press any com-
bination of keys while a character is being displayed. Any stored characters are fetched
and discarded by the GET loop, so you will not have any automatic continuous display.

STRING CONCATENATION

Within strings the CBM computer will accept alphabetic, graphic, and numeric
characters, or combinations of these. While handling strings, it may be useful to create a
single string by linking shorter strings end to end in a chain-like fashion:

|
String 1 [^

\
|

String 2 | ^\
N

j
String 3 f ^N

String 4

1

String! ! String 2 String 3

Suppose, for example, we want to create one large string, Z$, containing the
alphabet A through Z. To do this we can link together the last character of A$, shown
below, to the first character of J$, and the last character of J$ to the first character of S$,
as follows:

A$ J$ s$

[Al^C|D|E|F|GlHllP|JliC]r^0imTRl7 IS|T|u|v|WlxfYlzl

Z$ [A|B|C|D|E|F|G|H|I|J|K|L|M|NIQIP|Q|R|S|T|U|V|W|X|Y|Z|

The arithmetic operator " + " adds the contents of numeric variables, but when
used with strings the " + " concatenates the strings. Table 5-1 summarizes the effect of
the " + " operator on strings and numbers.

146 PET/CBM Personal Computer Guide

Table 5-1 . Addition (+) Operations

Sign Type
Example
Statemenl

Operation Result

+ numbers P = 2 + 3 2 + 3 P = 5

+ numeric variables

Q=T + S 12345
Q = 23456T =1 234 5 +11111

S =1 1 1 1 1 23456

+ alphabetic strings

R$ = A$ + F$

A$ = A B C 3E |A|B|C|D|E|. |F|G|H|I|J| R$=lAlBlC|D|E|F|G|H|l|J|

F$= FGH J

+ numeric strings

Q$ = T$ + 5*

T$ = 1 2 3 '15 |1|2[3|4|5|. -|1|1|1H|11 Q$=|1|2|3|4|5|1|1|1|1|1|

S$ = 1 1 1 1 1

A word of caution: strings cannot be separated or broken apart in the same

fashion as they are concatenated; they cannot be "subtracted" the way they are

"added." For instance, to create string X$ containing the contents of J$ and S$ from

our original strings A$, J$, S$, and Z$, it would be incorrect to type:

y,$=Zi-B't — Incorrect

Try it yourself. Enter the values of A$, J$, S$, and X$=Z$- A$ into the CBM computer

as shown below. The computer will respond with a ?TYPE MISMATCH ERROR IN

LINE 50.

10 fi*="HBCIiEFGHI"
20 J*="JKLI*JOPOR"
30 ;#="STUVWXV2"
40 Z*=Fl* + -'*+S*

50 X*=2*-ftS
(50 PPIHT X*

Incorrect attempt to get J through Z string

RUN

?TYPE MISMATCH ERROR IN LINE 50

The only valid arithmetic operator for strings is the addition sign (+). The other

arithmetic operators (-,*,/) will not work, although the Boolean operators (<, >, =)

may be used for string comparison.

The correct method of extracting part of a larger string is to use string func-

tions. With the LEFT$, MID$, and RIGHTS functions it is possible to extract any

desired portion of a string. In our example, the letters J through Z can be extracted as

follows:

50 X*=RIGHT*<Z*, 17!>

X$ = RIGHT$(|AjBJClp|E|FlG|H|l|J|K|L|M|N|0|P|Q|R|S|T|U|VlW|X|Y|Z| ,17)

X$ = |J1K1UM|N|0|P|QIRIS|T|U|V|W|X|Y|Z|

or the string may be built by concatenating J$ and S$:

50 X*=J*+S*

X$ = fjlKlLlMlNlO|P|Qig+rSlTlU|V|WlX|Yg]

X$=lJlKlLlM|N|Q|P|QlRlS|T|U|V|W|XlYlZl

Chapter 5: Making the Most ofCBM Features 147

Printer/Screen Concatenation

If you want to concatenate strings for screen or printer output only, use the

PRINT statement with semicolon separators (;) between the strings:

PRINT fl*,J*,S*

flECDEFGH I JKLMNOPQRSTUVWXVZ

The screen result (A through Z) is not retained anywhere in CBM computer
memory.

GRAPHIC STRINGS

Graphic strings are concatenated in the same way as alphabetic strings. This is a

useful way of creating pictures and diagrams.

NUMERIC STRINGS

A numeric string is a string whose contents can be evaluated as a number.
Numeric strings may be created in two different ways, each yielding slightly different

results.

When numeric variables are assigned to numeric strings using the STR$ func-
tion, the sign value preceding the number (blank if positive, "-"

if negative) is

transferred along with the number. This is shown in the short program below:

10 f\t-= 12345
28 T*=STR*.fiB>
30 FRINT"fiB=" fit-

43 PRIHT"T*=" . T*

RUN

FlE= 12345
T*= 12345

however, if a number is entered enclosed within quotation marks, or if the number is

entered as a string with an INPUT, GET or READ statement, then the numeric string

is treated like any other alphabetic or graphic string. No blank for a positive sign value
is inserted before the number. This is demonstrated in the following program:

10 KB= 12345
20 T*=" 12345"
30 FRIHT ,, FlB= ,,

J |=lB

40 PRINT"T*=",T*

RUH

AB= 12345-« Space inserted

T*=12345-« No space inserted

148 PET/CBM Personal Computer Guide

Let us now concatenate two numeric strings, T$ and Q$, to make a new numeric

string W$. W$ is to contain the ten digits 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Here is one

possibility:

10 T= 12345
20 0=^7390
;:£. T* =3TR*<T.'

to g*=str*':q>
50 Wf =T*+0* •" : ' ite new string W$
60 PRIHT"W*=".-W*

Why the blanks before the 1 and 6? T$ and Q$ were originally positive numeric

variables T and Q; when T and Q were converted from numbers into strings, the blank

sign position was transferred along with the number.

T bf 1 2345^ Q \\i6 7 8 9

T$ |tf|1|2|3|4|5l Q$ |b(|6|7|8|9l0l

Therefore, when T$ and Q$ are concatenated, the new string W$ contains a first-digit

blank, and an embedded blank before the first digit of Q$.

TSi

|K|1|2|3|4|5|

Q$ = W$
3|7l8|9|0| |K|1l2|3l4|5|tf[6|7|8|9|0|

To get rid of the embedded blanks go back to the separate strings T$ and Q$. Look

again at the contents of T$ and Q$ above. The only values we want in W$ are the num-
bers to the right of the sign value in both T$ and Q$. With the LEFTS, MID$, and

RIGHTS commands you can select any character or group of characters from within a

given string. We want all the characters to the right of the first character, the first

character being the sign value (either blank or "-"). T$ = RIGHT(T$,LEN(T$)-1)
does the trick:

Before:

T$ |tf|1|2|3|4|5|

After:

T$ |1|2T3|4|5|

Since the first digit needed is in the second position of the string, we tell the CBM
computer to use only the values starting in position #2. We can concatenate T$ and Q$
and drop the leading blanks all in one statement:

W$=RIGHT$(T$.LEN(T$)-1)+RIGHT$(Q$,LEN(Q$)-1)

Drop leading blank

of T$
Drop leading blank

of Q$

Concatenate

T$ and Q$

Chapter 5: Making the Most ofCBM Features 149

Our example program, amended to eliminate the sign digits, appears as follows:

10 T= 12345

T=|K1 2345|

26 Q=6?S9e

Q =|M67890|

so t*=stf*-:t>

T$= |tf|1|2|3|4|5|

40 Q*=STP*'.C(.'

Q$ = |tf|6|7|8|9ld|

50 W*=RIGHT*'.T*.LEHiT*,.-l '+FIGHT* .LENyG* .1- .)

W$ = RIGHT$(T$,6-1) +RIGHT$(Q$,6-1)
W$ = RIGHT$(T$.5) +RIGHT$(Q$.5)

W$ = T$ |1|2|3|4|5| +Q$ |6|7|8|9|0|

W$ = |1|2|3|4[5|6|7|8|9|0|

e".0 PRINT ,,
^J4 = ,,

. W*

RUN

W*= 1234567390

In the example above, note that line 50 does not check for negative numbers. If

both numbers are negative, then the leading character ofT$ should not be dropped; this

allows the negative sign to appear in front of the entire number W$. If the two strings

have different signs, they should not be concatenated.

INPUT AND OUTPUT PROGRAMMING

The beginning programmer quickly discovers that the input and output sections of

a program are its trickiest parts.

Nearly every program uses data which must be entered at the keyboard. Will a few
INPUT statements suffice? In most cases the answer is no. What if the operator acciden-

tally presses the wrong key? Or worse, what if the operator discovers that he or she input

the wrong data — after entering two or three additional data items? A usable program
must assume that the operator is human, and will likely make every conceivable

human error.

Results, likewise, cannot simply be displayed, or printed, by executing a bunch of

PRINT statements. A human being will have to read this output. Unless the output is

carefully designed, it will be very difficult to read; as a consequence information could

be misread, or entirely overlooked.

Fortunately CBM BASIC has many capabilities that make it easy to program
input and output correctly. We will describe some of these capabilities before looking

specifically at good input and output programming practices.

PET/CBM Personal Computer Guide

PRINT STATEMENT

Semicolon Punctuation

Normally a PRINT statement ends its display with a RETURN. This causes the

next PRINT statement to begin displaying in the first character position of the next line.

Thus the following immediate mode program displays a column of 20 characters in the

first character position of 20 rows:

C*="W" FOR 1 = 1 TO 20 •? C* NEXT •?"PHEW"
W
W
W
W
w
w
w
w
w
w
w
w
w
N
W
N
W
W
W
W
PHEW

!

REHBV.

A semicolon (;) appearing after any variable in the PRINT statement causes

the next display to begin immediately at the next available character position. A

semicolon following the last (or only) variable in the PRINT statement parameter list

suppresses the RETURN. Therefore the following program will display 800 characters

across 20 rows of a 40-column display.

Chapter 5: Making the Most ofCBM Features 151

C*="W"FOR 1=1 TO 800 ? C*;:NEXT ?"PHEW!

"

JWWWW
WW
ww
ww
WW
ww
WW
WIJWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
ww
ww
WHWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
ww
ww
WWWWWWWWWWWWWWWWWWWWWWWWWWWWMWWWWWWWWWWW
wwuwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
ww
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
ww
IJWWIJWWWWI'JWMWWWWWWWWWUWWWUWWUWWWWWWWWWWWW
ww
PHEW

!

REfiDV.

m

The FOR-NEXT loop index 1 is used as a counter to indicate the number of W's

to be displayed, in this case 800. On the first PRINT, a new line is begun and the

character W is displayed. The semicolon prevents a RETURN to the next line, so the

cursor remains at the character position following the first W. The second W is then dis-

played and the cursor is left in the next character position. This sequence continues up

to the end of the first line, then the cursor moves to the beginning of the next line. This

sequence continues for 20 lines (of a 40-column display)

.

Why does PHEW! print on a new line? It doesn't really; it appears to start a new

line because the last character is displayed in the last position of the previous line.

Change 800 to 780 and PHEW! is displayed at the end of the line of characters. This may

be illustrated as follows:

C*="-"FOR 1=1 TO 780:?C*; NEXT ?"PHEW!"

PHEW

!

REfiDV.

152 PET/CBM Personal Computer Guide

The semicolon concatenates string data, displaying items right next to each other,

with no spaces in between. Numeric data is also displayed in a continuous line format,

but with a single space between negative numbers and two spaces between positive

numbers (since the + sign is not displayed).

To illustrate this, change the string variable to a single-digit numeric variable.

Three character positions are needed to display each number, so change the ending

index to 800/3= 267. The number 5 is displayed as follows:

C=+5 FOP 1 = 1 TO 2*7 -C NEXT- »" PHEW!

-

_„.„
s
_. g _.„ .._. 55 5 55

PHEW!

RERDV.
m

Note the single space between the last number displayed and the word PHEW!

This is because numbers are displayed using the following format:

Character position: 1 2 3 ... x x+1

± n n ... n

-Space

- (x- 1) digit number

- Blank if positive

- if negative

which for a single digit becomes:

Character position: 1 2 3

ML -Space

- Single digit number

-Blank if positive

- if negative

Chapter 5: Making the Most ofCBM Features 153

Multiple-digit numbers will scroll the display off the screen unless the TO index is

adjusted. If C is changed to 2001, a 6-digit display field is needed; you should adjust the

TO index from 267 to 800/6=134:

C=2001 FOR I-l TO 134 ?C . HEXT -"'PHEW!"
2001 2001 2001 2001 2001 2001 200

1 2001 2001 2001 2001 2601 2001 2
001 2001 2001 2001 2001 2601 2001
2001 2001 2001 2001 2001 2001 200

1 2001 2001 2001 2001 2001 2001 2
001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 200

1 2001 2001 2001 2001 2001 2001 2
001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 200

1 2001 2001 2001 2001 2001 2001 2
001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 200

1 2001 2001 2001 2001 2001 2001 2
001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 200

1 2001 2001 2001 2001 2001 2001 2
001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 200

1 2001 2001 2001 2001 2001 2001 2
001 PHEW!

RERDV.
m

Numbers are broken across the end of lines. This is because the semicolon (;) generates

a continuous display and nothing but an end of line can cause a return.

Comma Punctuation

Commas appearing after a variable, or at the end of a PRINT statement, treat

the display as though it were tabbed at ten-character intervals. For a 40-column dis-

play this may be illustrated as follows:

l u 21 31

' Leftmost position=1

In the display program change the semicolon in the PRINT statement to a comma.
This causes numbers to be displayed in four columns on a 40-column display. At four

numbers per line, the TO index will be 4*20=80. When you run this program, note that

the first position in each field is reserved for the sign.

154 PET/CBM Personal Computer Guide

C=2001FOR 1=1 TO 80:?C,

2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001

PHEW!

REfiDV.

2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001

NEXT ?"PHEW! "

2001 2001
2001 2001
2001 2001
2001 2001
2001 2001
2001 2001
2001 2001
2001 2001
2001 2001
2001 2001
2001 2001
2001 2001
2001 2001
2001 2001
2001 2001
2001 2001
200 1 2001
2001 2001
2001 2001
2001 2001

Using commas between PRINT statement variables is a convenient way to tab.

Now change the value of C from 2001 to 44. Change the TO index from 134 to

200. Press RETURN and (surprise!) you will get the display shown below.

C=44 'FOR
442

1 = 1

44
TO 290: yc, NEXT
440 442 44 440

?"PHEW!' 1

440 442 44 440
442 44 440 442 44 440 442 44 440 442
44 440 442 44 440 442 44 440 442 44
440 442 44 440 442 44 440 442 44 440
442 44 440 442 44 440 442 44 440 442
44 440 442 44 440 442 44 440 442 44
440 442 44 440 442 44 440 442 44 440
442 44 440 442 44 440 442 44 440 442
44 440 442 44 440 442 44 440 442 44
440 442 44 440 442 44 440 442 44 440
442 44 440 442 44 440 442 44 440 442
44 440 442 44 440 442 44 440 442 44
440 442 44 440 442 44 440 442 44 440
442 44 440 442 44 440 442 44 440 442
44 440 442 44 440 442 44 440 442 44
440 442 44 440 442 44 440 442 44 440
442 44 440 442 44 440 442 44 440 442
44 440 442 44 440 442 44 440 442 44
440 442 44 440 442 44 440 442 44 440
442 44 440 442 44 440 442 44 440 442

PHEW

!

!HEW!i

RERDY.

Some of the digits from the previous 2001 display were not blanked out. CBM BASIC
uses a skip (cursor right) character, not blanks, between fields. When you display

over existing data, characters between fields — or characters in tabbed format — are

not erased. Also note that there is a remaining "HEW!"; CBM BASIC displays the

"PHEW!" but leaves the remaining positions of the line just as they were; it does not

Chapter 5: Making the Most ofCBM Features 155

blank the rest of the line. This can be a great advantage when you are adding to data

already on the screen, and you should bear this capability in mind. For the display

program line, however, it is leaving extraneous characters in the display.

To remove extraneous characters from the display, you can have the program

clear the screen before beginning a new display. To do this, insert a PRINT CLEAR
SCREEN statement ahead of the FOR-NEXT loop:

C=44 :?"n" FOR 1 = 1 TO 200 •• ?C*; •• NEXT: ?"PHEW!"
Clear Screen (shift of CLR/HOME key)

Now when you press RETURN, you will see the screen blank and the numbers
displayed on the second line.

To begin displaying on the first line, insert a semicolon after the PRINT CLEAR
SCREEN statement.

C*="fl" :?:>";: FOR I = '1T0S40:?C*.; NEXT?"PHEW!"

With the extra line of forty characters, the program can display 840 characters without

scrolling any off the top.

Commas also work when printing strings. As an example, enter the following

immediate mode program to display twenty lines of tabbed character data:

ft*="HUP! " E*="TWO! " C*=" THREE! " 11*= "FOUR' "

FOR 1=1 TO 20 : ?fl* , B* , C* , D* NEXT :

?
"PHEW !

"

CURSOR MOVEMENT
In Chapter 3 we discussed the screen editing capabilities provided by the cursor

control keys: CLEAR SCREEN/HOME, CURSOR UP/DOWN, CURSOR LEFT/
RIGHT, INSERT/DELETE, and RETURN.

The CLEAR SCREEN/HOME, CURSOR UP/DOWN, CURSOR LEFT/
RIGHT, and REVERSE keys can be included within PRINT statement strings. The
INSERT/DELETE key and the RETURN key cannot be used within a PRINT state-

ment.

Cursor control keys are interpreted as characters within a string until the PRINT
statement is executed. Consider the PRINT statement:

100 PR I NT "#«*"

I Qu otation set #2: change program mode to immediate mode

Programmed representation of cursor right

Quotation set #1 : change immediate mode to program mode

When this PRINT statement is executed, you can see the cursor has moved right by the

placement of the asterisks:

SUN

* *

To practice simple programmed cursor movement, type in the following program:

10 PRINT"<CLEAR SCREEN>":

20 PRINT"<CURSOR|>* <CURSORl >* <CURSORl>* <REVERSExCURSORI >*

<CURSORJ>* <CURSORJ>*"
30 PRINT" < CURSOR J>< CURSOR JXCURSOR 1>< CURSOR 1

>";

156 PET/CBM Personal Computer Guide

The program should look like this on your screen:

10 PR I NT" 3"

J

20 PR I NT " .«*.«*»* STti."»r>: " .;

30 PRIHT"jS«SW"
40 END

Upon execution, the output should appear as follows:

* :a

* 13

*

This may or may not have been what you expected. If you expected the character

sequence:

20 print "wmm
to display the asterisks in a vertical line:

*

*

or if you expected the character sequence:

20 print " :r»n*r»"

to display three asterisks back up over the original three:

you forgot about the automatic right movement of the cursor following every
keystroke. The programmed cursor control causes the CBM computer to move the cur-

sor directly up or directly down, but the asterisks will be displayed in a diagonal line due
to the cursor's automatic advance. Each time a character is displayed, the cursor is auto-

matically advanced one space to the right. This prevents the last character from being
overwritten. The following diagram shows the cursor movement of the previous pro-

gram:

V
\

Automatic cursor advance

To display a vertical line you must compensate for the advance by moving the cur-

sor back one space to the left before moving it up one space or down one space. For
example, the following program statement displays a vertical descending line of three

asterisks followed by a vertical line of three ascending, adjacent asterisks:

20 PRINT "<CURSOR|> *<CURSOR-><CURSORl>*<CURSOR-><CURSOFU>*
<REVERSE>*<CURSOR->< CURSOR T>*<CURSOR-XCURSOR!>*";

This will be displayed as follows:

20 PR I NT " ;«*.«*:e* tm>"t*"» "
;

Chapter 5: Making the Most ofCBM Features 157

If you attempt to program the INSERT/DELETE and the RETURN keys, you will

encounter some surprising results.

The INSERT key is programmable. When you press the INSERT key between a

set of quotes, a reverse capital T displays. Of course the CBM will not appear to insert a

space if the entire line the cursor is on is blank.

The DELETE key remains in immediate mode. Trying to program the DELETE
key in a PRINT statement will merely erase the previous character, unless the DELETE
key occurs within a sequence of inserted characters. The DELETE key is programmable

following an insert, but do not use it in this fashion. It will simply get you into trouble.

There are simpler ways of achieving the same objective in a program.

The RETURN character in a PRINT statement will immediately move the cursor

out of the statement and to the next line.

CHR$ FUNCTION: PROGRAMMING CHARACTERS IN ASCII

If you cannot press a key to include a character within a text string, you can

still select the character by using its ASCII value.

The CHR$ function translates an ASCII code number into its character equiva-

lent. The format of the CHR$ function is:

PRINT CHR$(xx)

1 ASCII number from to 255 of

desired character or control

To obtain the correct ASCII code for the desired character, refer to Appendix A.

Scan the columns until you find the desired character or cursor control, then note the

corresponding ASCII code number. Insert this number between the two parentheses of

the CHR$ function. For example, to create the symbol "$" from its ASCII code, find

the ASCII code for "$." "$" has two ASCII values: 36 and 100. Which value should

you use? Either number works just as well. But for good programming technique, once

you select one number over the other, use that number consistently throughout the pro-

gram. We will use 36 and insert it into the CHR$ function as follows:

PRINT CHR*<36?

Try displaying this character in immediate mode:

PRINT CHR*<36>

Now, try displaying ASCII code 100:

PRINT CHPf'lQO'

The result is the same. Experiment in immediate mode using any ASCII code from to

255.

You can use the CHR$ function in a PRINT statement as follows:

10 PRINT CHR*<36J;CHR*<42);CHR*<166)

RUIt

158 PET/CBM Personal Computer Guide

The CHR$ function lets you include otherwise unavailable characters such as

RETURN, INSERT/DELETE, and the quote character (") among a PRINT state-

ment's parameters. You may also use the CHR$ function to do comparison checking

for cursor controls such as RETURN and INSERT/DELETE. Suppose a program

must check characters input at the keyboard, looking for a RETURN key. You could

check for a RETURN (which has an ASCII code of 13) as follows:

18 GET X$:IF ;«;$OCHR*<i3> ~HEH 19

This test would be impossible if you tried to put RETURN between quotation marks:

2S IF X$Q" | RETURN |
"THEH 10

1

Impossible

This is impossible because when you depress the RETURN key following a set of

quotes, it automatically moves the cursor to the next line:

29 IF XfO"^-« Press RETURN key

> ~* '

Cursor Controls (CBM 8000)

The screen editor release 4.1, available on the CBM 8000, has two new key func-

tions and some new edit/control capabilities. The key functions are provided by the TAB
and ESCAPE keys. The edit/control capabilities include a programmable bell, line insert

and delete, screen erase, graphic/text switching, and scrolling within a programmable

screen window.

The TAB Key and Tabbing Function. The TAB key operates much like a

typewriter TAB key. The tabbing capabilities of the TAB key are equivalent to the

TAB function. Up to 80 TABs may be set per line. To set a TAB in immediate mode,

move the cursor to the desired screen column, then press the TAB and SHIFT keys

simultaneously. When all tabs have been set, press the RETURN key:

-Press shifted TAB key

You can program the TAB SET using a PRINT statement. The text string to be

printed must move the cursor to the required column, then execute a TAB SET. The

TAB SET character is generated by pressing the shifted TAB key. This may be illus-

trated as follows:

PR I NT " >•»»••»• n t»»»»i»»lD

L -TAB SET

-CURSOR RIGHT

A reverse upper-case I is displayed for the TAB SET.

The TAB SET is represented by ASCII value 137, therefore TAB SET can be pro-

grammed using the CHR$ function:

PR I NT " »iMU .; CHR$O 37 J

Chapter 5: Making the Most ofCBM Features 159

The TAB key advances the cursor to the next tabbed column on the screen. To
tab the cursor in immediate mode, simply press the TAB key. If TAB is pressed beyond
the last tab position on the screen, the cursor jumps to the end of the display line.

When included in a PRINT statement, the tab will occur at the point where the

TAB character is encountered. Here is an immediate mode example:

PRINT" WCJPET BITES"

MV PET BITES
-Programmed TAB

TAB CLEAR clears a TAB SET position. In immediate mode move the cursor

to the column whose tab set is to be cleared, then press the TAB and SHIFT keys

simultaneously. Following the last TAB CLEAR, press the RETURN key.

TAB CLEAR and TAB SET are both generated by the shifted TAB key. Therefore

if you try to clear a tab in a column where none was set, you will set a tab instead.

Tabs are cleared in program mode using a PRINT statement that moves the cur-

sor to the required column, then executes a TAB CLEAR character:

- R I NT "i»»M*»BH»»»»B "

on -TAB CLEAR

—CURSOR RIGHT

TAB CLEAR, like TAB SET, is displayed as a reverse upper-case I character.

TAB CLEAR can be programmed using the CHR$ function as follows:

PRINT"t»MH" ; CHR* < 13?:)

CHRSU37) represents the TAB SET and TAB CLEAR characters.

Escape. The ESCAPE key on the CBM 200 1/B business keyboard generates an
ASCII code, but has no editing capabilities. On the CBM 8000 keyboard the ESCAPE
key has two functions: pressed in immediate mode it cancels an insert, reverse, or
text entry condition. ESCAPE also allows certain character strings to be interpreted
as screen editing control functions.

ESCAPE can be included in a PRINT statement by using the CHR$ function.

Enter:

PRINT CHR$<27:>

Control Functions (CBM 8000)

Control functions summarized below are available only on the CBM 8000 com-
puters with the 80-column screen. These functions are defined in detail in Chapter 8.

Some examples of their use are given later in this chapter.

All of these control functions are desgined to improve displays and data entry;
although they can be used in immediate mode, they should not be used to edit pro-

grams. Many of these functions modify the display without simultaneously changing
memory content.

To use one of these functions, its character must appear in a PRINT state-

ment's parameter list. The function character can be specified within a text string

using a control character, or it may be specified outside of a text string using a CHR$
function. The control character is generated by pressing the ESCAPE key, then the
REVERSE key, then the appropriate unshifted letter key.

j60 PET/CBM Personal Computer Guide

Bell. The Bell function works only on a CBM 8000 computer that is equipped with

a bell. The bell will ring automatically on power-up, and whenever the cursor moves

through column 75. If the screen window has been narrowed (using the scrolling win-

dow function) the bell will sound as the cursor passes through the fifth column from the

right edge of the window. The bell is also sounded by a Control-g character, or a

CHR$(7) function in a PRINT statement.

Delete Line and Insert Line. These functions delete or insert a display line. The

Delete Line function deletes the line on which the cursor is located; all lower lines on

the display are scrolled up one line position. The Insert Line function inserts a line at the

cursor screen location, scrolling all lower lines down; the bottom line is scrolled off the

screen. Neither the Delete nor the Insert Line function modifies computer memory;

only the display changes. The Delete Line function is generated by a Control-u character

or the CHR$(21) function in a PRINT statement parameter list. The Insert Line func-

tion is generated by a Control-M character or a CHR$(149) function in the PRINT

statement parameter list.

Erase Begin and Erase End. These functions erase part of the line on which the

cursor is currently positioned. The Erase Begin function erases all text to the left of the

cursor; the Erase End function erases all text to the right of the cursor. Neither function

moves remaining text. Neither function modifies memory. The Erase Begin function is

generated by a Control-V character or a CHR$(150) function occurring in a PRINT

statement parameter list. The Erase End function is generated by a Control-v character

or a CHR$(22) function appearing in a PRINT statement parameter list.

Graphic or Text. The Graphic function selects graphic characters from the stan-

dard character set, while text characters select upper- and lower-case letters. Also,

spaces between graphic characters are eliminated in order to improve the quality of

graphics. The graphic function is selected by a Control-N character or a CHR$(142)

function appearing in a PRINT statement parameter list.

The Text function is the inverse of the Graphic function. The Text function

selects the alternate character set for graphic characters, while text characters continue

to select upper- and lower-case letters. The Text function is selected by a Control-n

character or the CHR$(14) function appearing in a PRINT statement parameter list.

Screen Window Functions. There are four functions which allow a window to be

defined in the CBM 8000 display, with text scrolled up or down within the defined win-

dow. The Set Top function takes the current cursor location as the top left-hand corner

of the display window; the Set Bottom function takes the current cursor location as

representing the bottom right-hand corner of the window. This window can be canceled

at any time by pressing the HOME key twice, or by executing a PRINT statement with

two contiguous HOME characters in its parameter list. Set Top is selected by the

CHR$(15) function and Set Bottom is set by the CHR$(143) function; these CHR$

functions should appear in a PRINT statement parameter list following cursor move

characters that correctly position the cursor to define the top left and right bottom cor-

ners of the window.

The Scroll Up function moves text up one line within a window defined by the Set

Top and the Set Bottom functions. A blank line is inserted at the bottom of the window.

The Scroll Down function, likewise, moves text down one line within the window,

inserting a blank line at the top of the window. Scroll Up is selected by a Control-q

character or the CHR$(25) function. Scroll Down is selected by a Control-Q or the

CHR$(153) function. The control character or CHR$ function must appear in a PRINT

statement parameter list.

Chapter 5: Making the Most ofCBM Features 161

POKE to the Screen

You can use a POKE statement to display any character anywhere on the screen.

Simply POKE the character value into the correct screen location in memory.
The CBM computer screen is like a grid of 1000 (or 2000) squares, organized as

25 rows and 40 (or 80 columns). A 40-column display may be illustrated as follows:

Columns

Rows

961

40

1000

One character may be displayed in each square. Every screen location is assigned an
address and space in memory. Memory screen space begins at address 32768 for square

1 (row 1, column 1) and ends at address 33767 for square 1000 (row 25, column 40), or

at address 34767 for square 2000 (row 25, column 80). Memory address 32768 is screen

location (1,1), address 32769 is screen location (1,2), etc. Figure 5-2 shows the correla-

tion between screen locations and their corresponding memory spaces and addresses.

To find the screen address in memory for any screen location, use the following

equations:

40 Column Screen 80 Column Screen

32768 + (column-1)+ (40-(row-1)) 32768+(column-1)+ (80.(row-1»

Enter the column and row numbers of any screen position into the equation to find its

memory address. To demonstrate, enter the values 5 and 3 to find the memory address
for the screen location at column 5, row 3:

=32768+(COL-1) + (40-(ROW-D)
=32768+15-1 1+ 140-1))

=32768+4+(40-2)
=32768+4+80
=32852

, / Columns M-_

A

:: ~~::~:~ :__ _ 2E

The memory address for screen location (5,3) is 32852.

162 PET/CBM Personal Computer Guide

This equation makes it possible to POKE characters to the screen without

knowing any more than the column and row number of the location to be POKEd.
Recall the format of the POKE statement:

POKE A,X

where:

is the screen address.

is the character or variable to be POKEd into A.

Replace A with the screen equation and the computer will calculate the screen address

for you:

POKE 32768+(COL-) + (40-ROW-1),X

POKE A ,X

For instance, if COL (C) and ROW (R) is input as 5,3, and X is input as ® , then a

spade will be POKEd at screen location (3,5), address 32852.

Try entering and executing this program:

10 INPUT CR..X
20 POKE 32768+ < C- 1 > + < 40* ';'P- 1 ? > ..

=32768 + (COL-1)+ (40-(ROW-1)),X
= 32768+(5-1)+ (40-(ROW-1)),X
= 32768+4+(40-2),X
=32768+4+80,X
=32852,X

1

1 5
(1 1

o .13 ± 1

X is entered as a number in the range to 255. The ASCII character correspond-

ing to the entered number will be displayed.

Variables may be used in POKE statements, but the variable must evaluate to a

number within the allowed limits:

POKE 32768+A.X

where: A is a number between and 999
inclusive (32768 +999 = 33767) for

a 40 'column screen

POKE A, X

where: A is a number between 32768 and 33767 inclusive for

a 40 column screen

Chapter 5: Making the Most ofCBM Features 163

Using a variable to represent the screen address is wise when POKEing to a

repeating sequence of screen spaces. For example, the program below POKEs the value

of X ten spaces apart across the screen:

10 Fi=32768
20 POKE R.X
30 R=fi+16
40 IF A033767 GOTO 20

DATA ENTRY (INPUT)

Data entry should be programmed in functional units.

A mailing list program, for example, requires names and addresses to be entered

as data. You should treat each name and address as a single functional unit. In other

words, your program should ask for the name and address, allowing the operator to

enter all of this information and then change any part of it; when the operator is satisfied

that the name and address are correct, the program should process the entire name and

address as a single functional unit. Then the program should ask for the next name and

address.

It is bad programming practice to break up data input into its smallest parts. In the

case of a mailing list program it would be bad programming practice to ask for the name,

process this data as soon as it has been entered, then ask for each line of the address,

treating each piece of the name and address as a separate and distinct functional unit.

The goal of any data entry program should be to make it easy for an operator to

spot errors and to give the operator as many chances as possible to fix errors.

Suppose a program requires a long list of short, identical data items to be input.

Such a list may consist of names, social security numbers, or perhaps dates. It is a good

idea to write a program which accepts such input in blocks. For example, if names must

be entered, the program might allow the operator to enter as many names as will fit in

one vertical column, so that any entry can be corrected while it is still being displayed.

The program would accept and process names as they scroll off the top of the screen.

The alternative would be to write an input program that accepts and processes one name
at a time. But this program would reduce an operator's chances of spotting and correct-

ing mistakes.

There is one set of circumstances when entering data in blocks is not the best way

to go, and this set of circumstances is a surprising one: it occurs when a very large

amount of data must be entered by keyboard operators. For example, suppose a

keyboard operator must enter hundreds of names and addresses a day. Experience has

shown that the highest volume of accurate data entry can be achieved by having the

keyboard operator ignore all errors on first entry. The data entry program should not

allow for the correction of any errors, even if the errors are detected as data is being

entered. Operators should be trained to ignore errors and carry on entering data as fast

as possible. Such data should be entered twice, preferably by different operators. The

data entry should be compared. The chances of both operators making the same error

are so small that you can count on all errors being flagged as differences between the two

sets of data entry. A subsequent program should allow incorrect data to be corrected.

164 PET/CBM Personal Computer Guide

Interactive Data Input

To demonstrate the value of good, interactive data input we will begin with a very

simple example. Starting with an early version of program BLANKET we will discuss,

step by step, the changes that improve data entry, thereby making the program easier to

use.

Start with the program listed below; we will finish with the program as it appears in

Figure 5-1.

100 C*="fi"

110 PRINT "3"

120 FOR 1=1 TO 840
130 PRINT C*;
140 NEXT
150 PRINT "PHEW!"

The program above will display 800 A's followed by the exclamation PHEW!
Suppose we want to display X's instead of A's.

First eliminate the assignment statement in the program. To delete a program state-

ment, type the line number followed immediately by a RETURN.

LIST tee

100 c*="fl"

REflDV.
1 00 « Type line number, then key RETURN.

LIST

110 PRINT "."J".;

120 FOR 1=1 TO 840
130 PRINT C*;
140 NEXT
150 PRINT "PHEW!

"

REflDV .

m

Line 100 is no longer in the program. Type in the statement C$="X" in immediate

mode, then run the program.

Before RETURN After RETURN
C*="X" PHEW!

RERDV. REflDV.
RUN* m

The screen blanks and the word PHEW! is printed, but the X's are not printed.

Obviously the value of C$ is not being transmitted to the program.

RUN clears all variables to and all strings to null before beginning execution of a

program. So C$ was set to null, and a null character was printed in the program loop (a

"null" is "nothing": it does not print nor does it move the cursor).

Is there a way to transmit the value of C$, entered in immediate mode, to the pro-

gram? Instead of using RUN, which initializes variables, use GOTO 110 (110 being the

line number of the first line of the program) . This does not change any variable values.

Before RETURN

C*="X"

REflDV.
GOTO 110

Chapter 5: Making the Most ofCBM Features 165

After RETURN

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
PHEW

!

REflllV.

m

Now the procedure for running the program is as follows:

1. In immediate mode enter the assignment C$= "y" where y is any display

character.

2. Enter the immediate statement GOTO 110.

There are only two steps in running the program, but the procedure is awkward.

You must type in a line (the assignment statement), and if you enter RUN instead of

GOTO, you must start all over. But the program could fetch the display character

while it is running, using the GET statement. Type in the following line:

100 GET C* IF C*="" GOTO 100

List the program and make sure you entered the line correctly. Then run the program.

The screen blanks and the cursor disappears. Press any data key. The character you
enter is displayed 800 times. Run the program again. Press any data key. The display

appears with the new character.

Here is the new procedure for running program BLANKET:

1. Enter the RUN command.

2. Press any key.

This is a real improvement over the original program. However, it is a little dis-

concerting to have the screen completely blank out while it waits for you to press a key.

Add a prompt line to the beginning of the program, asking for key to be pressed. Type in

the line:

90 ?"HIT fl KEV"

List the program and check the new line for errors.

166 PET/CBM Personal Computer Guide

Now the program gives operating instructions. Run the program several times to

display different characters and note how much easier the program is to use.

There is one important modification left to make. If you want to run the program

more than once, go back to the beginning of the program instead of ending it. Then you

won't have to type in RUN to reexecute the program. Add the following line:

160 GOTO 90

Again, list the program and check the new line. It should look like this:

LIST

90 PRINT "HIT ft KEV"
100 GET C* : IF C*="" GOTO 100
110 PRINT "3";

120 FOR 1=1 TO 840
130 PRINT C*J
140 NEXT
150 PRINT "PHEW!

"

160 GOTO 90
REflDV.
m

Now it is even easier to use the program. Enter RUN and follow directions.

Of course, you have to use the STOP key to exit from the program. This can be

eliminated by programming one particular key to terminate program execution. For

example, the RETURN key could be programmed to terminate execution.

Let us see how this is done.

All data keys and cursor control keys can be checked as string characters. For

example, the following statements check for a 'Y' character:

100 GET CJ-IF C*="" GOTO 100
105 IF C*="V" GOTO 200

RETURN presents a special problem. You cannot reference RETURN as a string literal:

R
E
T
U
R
N

Cannot do

This is because any time RETURN is pressed, CBM BASIC stores the program line in

memory and goes to the beginning of the next line. You can, however, use the CHR$

function to check for a RETURN key entry. CHR$ allows you to assign an ASCII code

value to a string variable and treat it as a string. The ASCII code value for a RETURN is

13.

Before programming to check for a carriage return, consider what must be done if

there is one. The last line of the program branches back to the beginning of the program.

To terminate program execution, you need to branch beyond the last line. Add the

following line:

170 END

Now add the check for RETURN for program termination at line 105:

105 IF C*=CHR*<:i3> GOTO 170

Note that we could have written, in place of line 170 and line 105:

105 IF C$=CHR* < 1 3 > THEN END- Option

Chapter 5: Making the Most ofCBM Features 167

If you choose this option, it is generally good programming practice to have the

program termination point at the physical end of the program. It is more difficult to find

termination points embedded in the program.

Without the READY message being printed each time, there are two additional

lines available on the screen. This allows 80 more characters (at 40 characters per line)

to be printed. Change the number of characters on line 120 from 840 to 840+80=920.
Line 120 will read:

120 FOR 1=1 TO 320

When you run the program, you will find that it is scrolling up one line, leaving a

blank line at the bottom of the screen. This is because CBM BASIC executes a

RETURN after displaying HIT A KEY; it does this to select a new line in preparation for

the next display. We can demonstrate this by making the cursor blink.

Normally you cannot see the cursor because its blinking is inhibited before a pro-

gram is run. However, you can make the cursor blink by adding the following statement

to the beginning of the program:

88 POKE 548, 0— Enable cursor

This is a system location that is discussed further in Chapter 7. Run the program
with this line added and you will see the cursor blinking at the bottom line.

PHEW !

HIT H REV

This program does not really need the cursor, so delete line 80.

To prevent the blank line at the bottom of the screen, add a semicolon to the

PRINT statement in line 90. We should also add a prompt that RETURN is used to exit

from the program. To incorporate these changes, line 90 should now be edited as

follows:

90 ?"HIT H KEV OR <R> TO END",

As a final task, you might read over the program and add remarks. Comment on
how the number 920 was devised; you can optionally put the remark on the same line,

using a colon to separate statements:

120 FOR 1 = 1 TO 920 :REM 929/40=23 LINES

Add a reminder that the screen is cleared; optionally align the remarks:

110 PR I NT" .I"; :REM CLEAR SCREEN

Finally, add a few lines at the beginning of the program to describe it. The final program

BLANKET is shown in Figure 5-1. Save it on tape or diskette.

Prompting Messages

Any program that requires data entry should prompt the operator by asking

questions. Questions are usually displayed on a single line and demand a simple

response such as "yes," "no," a word, or a number. For example the following

message might be displayed:

DO VOU WRNT TO MfiKE flHV CHANGES?

]68 PET/CBM Personal Computer Guide

An operator must respond to this message by entering the word YES or the word

NO. Frequently just the letter Y or N suffices. Another common example may give the

operator a number of options. The message:

WHICH ENTRV DO VOU WISH TO CHANGE''

may allow the operator to enter a number which identifies an entry.

Programs that control this type of dialogue should be written as stand-alone

subroutines which do not depend on knowledge of the calling program. This has three

implications:

1. You cannot assume that the row on which the message will be displayed is

blank. If the row is not blank, then the message will overwrite whatever was

previously there; but worse, the remainder of the line, beyond the message,

will be interpreted as part of the response. This is ugly from the operator's

viewpoint, but it can also be troublesome. Depending on how your program is

written, remaining characters beyond the message may be interpreted as part

of the data input.

2. The subroutine must receive parameters from the calling program. For exam-

ple, if a message asks the operator to enter a number, then the calling pro-

gram should pass the minimum and maximum allowed numbers to the

subroutine as parameters.

3. The subroutine must return the operator's response to the calling program.

This variable may be a character (e.g., Y or N), it may be a word (e.g., yes or

no), or it might be a number.

Subroutine logic cannot deduce on which screen row the message is to appear. It is

therefore fair to demand that the calling program position the cursor on the correct row.

You can clear the selected row and position the cursor at column of the row using the

following statements:

2000 REM CLEAR THE ROW ON WHICH THE CURSOR IS CURRENTLY POSITIONED
2610 PRINTCHR*(!3>; "7,"; : REM MOVE CURSOR TO COLUMN
2S20 FOR 1 = 1 TO 39 : PRINT" "

.:
: NEXT

2830 PRINTCHR*U3>;".T'.:
2040 STOP

For an 80-column screen the statements on line 2020 should write 79 blanks,

rather than 39 blanks as illustrated.

Enter this program into your computer; position the cursor on a blank line be-

tween two lines of text, then type RUN <CR> to execute the program. If all the text

scrolls off the top of the screen then you forgot the semicolon that must terminate the

PRINT statement on line 2020.

Frequently the statements illustrated above will be called as a subroutine, in

which case a RETURN statement must occur on line 2040.

Alternatively you can use the CBM 8000 Erase Begin and Erase End functions:

2000 REM CLEAR THE ROW OH WHICH THE CURSOR IS CURRENTLY POSITIONED
2010 PRINTCHR*a50;' ; CHR*<22:> CHR*< 13> . ".T
203O STOP

The routine collapses to a single statement. Calling this single statement as a subroutine

would be pointless.

Chapter 5: Making the Most ofCBM Features 169

Now look at the subroutine needed to ask a question that requires a reply ofY for

yes, or N for no. We will use a PRINT statement to ask the question, followed by a GET
to receive a one-character response. Clear the row on which the question is to be asked

by calling the clear row subroutine. Here is the program and the called subroutine:

2009 REM CLERR THE ROW ON WHICH THE CURSOR IS CURRENT!.V POSITIONED
£010 P(5IHTCHR$(13>; ""!".;

: REM MOVE CURSOR TO COLUMN
2020 FOR I=: TO 39: PRINT" " ;

: NEXT
2036 PRINTCHR*':i3).: ""!";

2040 RETURN
3000 REM ASK A QUESTION AND RETURN A RESPONSE OF V OR N IN VN$
3010 GOSUB 2000
3020 PRINT"H0 VOU WANT TO MAKE ANY CHANGES? "

.:

3030 GET VN*:JF VNSO"N" AND YM$0"Y" THEN 3038
3040 PRINTVNS;
3850 RETURN

You can use the program illustrated above to ask any question that requires a

"yes" or "no" response. The message to be displayed, whatever it may be, must occur

in the PRINT statement on line 3020.

Next consider dialogue which allows an operator to enter a number. We will

assume that the subroutine receives the smallest number in integer variable LO% and
the largest number in integer variable HI%. The subroutine will return the entered num-
ber in NM%. Here is the necessary program:

2000 REM CLEAR THE ROW OH WHICH THE CURSOR IS CURRENTLY POSITIONED
2010 PRINTCHR*(13>;"T'; REM MOVE CURSOR TO COLUMN
2020 FOR 1=1 TO 39: PR I NT" ";:NEXT
2030 PR INTCHR* < 1 3 > ;

" .T"

;

2040 RETURN
3000 REM ASK FOR A NUMERIC SELECTION
3001 REM RETURN SELECTION IN NMX
3002 REM NMK MUST BE LESS THEN HI,-.' AND MORE THAN LO";
3003 REM CALLING PROGRAM MUST SET HIK AND LO.

-
-;

3010 GOSUB 2000
3020 PRINT"WHICH DO VOU WANT TO CHANGE'' ":

3030 GET NM*IF NM*="" THEN 3030
3040 NMK=VflL<NM*>
3050 IF NMXCLO": OR HMK>HIK THEN ?OS0
3060 PRINTHM*,
3070 RETURN

Write a short program that sets values for HI% and LO%, then goes to subroutine 3000.

Add the subroutine illustrated above and run it. A CBM 8000 version of this program
will replace the GOSUB statement on line 3010 with the PRINT statement on line 2010
of the previous program.

Can you change the subroutine so that it accepts two-digit inputs? Try to write this

modified program for yourself. If you cannot do it, then wait until the next section,

where you will find the necessary subroutine in the program which controls input of a

date.

There is another simple modification you can make to both of the dialogues we
have described; the message printed on line 3020 in both programs could be supplied by
the calling program via a string variable. This would make the subroutines more general

purpose. Can you rewrite the programs to accept a message provided by the calling pro-

gram?

1 70 PET/CBM Personal Computer Guide

Entering a Valid Date

Most programs at some point need relatively simple data input: more than a sim-

ple yes or no, but less than a full screen display. Consider a date.

You must take more care with such simple data entry than might at first appear

necessary. In all probability the date will be just one item in a data entry sequence. By

carefully designing data entry for each small item, you can avoid having to restart a long

data entry sequence whenever the operator makes an error in a single entry.

We will assume that the date is to be entered as follows:

M--D D--Y Y

t Year

Separator

Day of the month

Separator

Month

Depending on your personal preferences, the dash separating two digit entries

might be a slash, or any other visually pleasing character. In Europe the day of the

month precedes the month.

Program data entry so that it is pleasing to the operator's eye. The operator should

be able to see immediately where data is to be entered, what type of data is required, and

how far the data entry process has proceeded. A good way of showing where data is to be

entered is to reverse the data entry field. For example, the program that asks for a date

to be entered might create the following reverse field display:

-Cursor flashing at entry

character position

m-m-m
t_L Data must be entered into these

character positions

You can create such a display very simply using the following PRINT statement:

10 PRINT "<ClearXCursor|XCursorJ>";TAB(20);"<Reverse>bb
< Reverse off> - < Reverse> BB< Reverse off > - < Reverse >
BB<Reverseoff>";CHR$(13);"<Cursort>";TAB(20);

V> represents a space code.

The PRINT statement above includes cursor controls that position the date entry

beginning at column 21 on row 3. Also, the PRINT statement clears the screen so that

residual garbage display does not surround the request for a date. After displaying the

date entry field, the PRINT statement moves the cursor back to the first character posi-

tion of the first entry field by executing a carriage return, CURSOR UP and tab.

Try using an INPUT statement to receive entry of the month. This could be done

as follows:

28 INPUT M*;

Enter statements on lines 10 and 20, as illustrated above, and execute them. The

INPUT statement will not work. Apart from the fact that a question mark displaces the

first reverse field character, the INPUT statement picks up the rest of the line following

the question mark. Unless you overwrite the entire data entry display — and that

Chapter 5: Making the Most ofCBM Features 1 71

requires entering a very large number - you will get a RE-DO FROM START message
each time you press the RETURN key.

This is an occasion to use the GET statement:

10 ~R:NT"r3IS";TH3-:20} : "S 5-3 ¥-3 "
.: CHR* >; 1 3 ;:> ;

"-]" ; -515:20 '

:

20 GtT C* : IF C*="" -HEN 20
30 -RINTCS; :

IMf=C*
^0 GET CS:JF C$=""

-
HEN 4@

These statements accept a two-digit input. The input is displayed in the first reverse field

of the date. The two-digit input needs no carriage return or other terminating character;

the program automatically terminates the data entry after two characters have been
entered.

Three two-digit entries are needed: one each for the month, the day, and the year.

Rather than repeating statements on lines 20 through 50, we will put these statements
into a subroutine and branch to it three times, as follows:

10 PRINT"^«IS";TRJ(:20) :
"3 «-S S-S "

; CHR$C 13) .;

"~"
; -R3C20} .

20 GuSUB 10@0 : MMi=TC$: PRINTTBE^S)
30 GOSUE !006 : IiIi$=TC$: PRT-,-r-|H5:26)
40 G0SU3 1 000 : VVi=~C$
56 STOP
I860 REM TUG CHhRfiCTER INPUT SUBROUTINE
101 a GE~ C£ : IF C$="" ~->Es 1018
1020 PRINTCiN

1640 PRTN-TCClN
1850 TCS=CS+CC5

If you have a CBM 8000 computer, try rewriting the program above to use the
TAB SET and TAB functions provided by the Editor release 4.1.

A CBM 8000 version of this program is much simpler because you can use the
CBM 8000 Erase End function, as follows:

'hP£'. 22,' .r-p.* . : : "T"
;7

_
ij TP>:E '-'iv ChK-otS" "

The variables MM$, DD$, and YY$ hold the month, day, and year entries, respectively.

Each entry is held as a two-character string. As described earlier in this chapter, you
should empty the ten-character input buffer before accepting the first input, otherwise
any prior characters in the input buffer will be read by the first GET statement in the
two-character input subroutine. You only need to empty the buffer once, before the first

GET statement.

There are two ways in which we can help the operator recover from errors while
entering a date.

1. The program can automatically test for valid month, day, and year entries.

2. The operator can be given a means of restarting the data entry.

The program can check that the month lies between 01 and 12. The program will

not bother with leap year, but otherwise it will check for the maximum number of days
in the specified month. Any year from 00 through 99 will be allowed. Any invalid entry
will cause the entire date entry sequence to restart.

Lnjtj :'E.
V n-ii. h iXIE'S".

005 v-F£..h ;":,:! yfifru VE !

:0l0 ;.r.
j

. .""".-pr» :
cjfi ' . i

Ul'i;'
''"-'!" '' !

ju voi.
1

.,h:

>0i"0 :."'£
"'

"t - T I'r
:

t"- J ..

:i.j4U z-z " '-"'t'-^

050 yr£T;_jP'*

; 72 PET/CBM Personal Computer Guide

If the operator presses the RETURN key, then the entire date entry sequence

restarts.

Our final date entry program now appears as follows:

5 REM ROUTINE TO ACCEPT PiND VERIFV h DhTE
10 PRINT'TaieT .;ThB<28); " a *~ s 5~ s B".iCHK$(:3:> .:

""" ;~'HB<20) ..

50 GOSUB 1086 : REM GET MONTH
60 IF CS=CHR?<13) OR CCf=CHRJ< 13) "HEN 10

88 REM CHECK -OR VRL1ZI MONTH
98 :S=VRLC"C$)

110 REM OET NUMBER OF TJHVS IN MONTH

150 GOSUB 1 880 : REM GET DPV
160 IF C*=CHR*< 13) OR CC$=CHR$i: 13) HEN 10

1 76 HT*=DT$+ " - " +TC$ PR I NT _ TPB C 26)

130 REM CHECK FOR VPLID TjFfV

200 IF VHL < TC*) < 1 OR VBL<TCS)>rjM TJtN 10
218 GOSUB 1000 : REM GET VERR
228 DT$=HT$+"-"+TC$
230 IF CS=CHR$C13) OR CC$=CHR*C 13) "HEN 18

2^0 REM CHECK FOR VRLIO VERR
260 IF vFiL(TC*)<8 OR VhL<~C$)>99 THEN 18

278 STOP
1880 REM TWO CHARACTER INPUT SUBROUTINE
1085 FOR 1=1 TO 18 : GET C* : NEXT : REM C^EPR OUT INPUT BUF-ER
1010 GET C$-IF C*="" THEN 1810
1815 IF CS=CHR$C13j THEN 1858

1 820 PR I NTC$

;

1038 GE~ CC$: IF CC$="" THEN 1036
1035 IF CCt=CHR$'; 13) THEN 1858
1836 IF CC$<"8" OR CC$>"9" THEN 1818
1848 -RINTCCJ.;
1858 TC$=C$+CC$
I860 RETURN

Notice that the date is built up in eight-character string DT$, as month, day, and

year are entered.

These three checks are made on data as it is entered:

1. Is the character a RETURN?
2. If the character is not a RETURN, is it a valid digit?

3. Is the two-character combination a valid month for the first entry, a valid day

for the second entry, or a valid year for the third entry?

The carriage return has been selected as an abort (restart) character. By replacing

CHR$(13) on lines 60, 160, 230 and 1035 you can select any other abort character.

When the operator presses the selected abort key the entire date entry sequence restarts.

We must check for the abort character in the two-character input subroutine (at line

1035) since we want to abort after the first or second digit has been entered. The main

program also checks for an abort character in order to branch back to the statement on

line 10 and restart the entire date entry sequence. You could branch out of the two-

character input subroutine directly to the statement on line 10 in the calling program,

thereby eliminating the abort character test in the calling program. But this is a bad prac-

tice and we strongly discourage it. Every subroutine should be treated as a logical

module, with specified entry point(s) and standard subroutine returns. Branching bet-

ween the subroutine and the calling program is likely to be a source of programming

errors. If you branch out of the subroutine and back to the calling program without

Chapter 5: Making the Most ofCBM Features 1 73

going through the return, you are laying yourself open to all kinds of subtle errors that

you will not even understand until you are a very experienced programmer.

Program logic that tests for non-digit characters can reside entirely in the two-

character input subroutine. We have chosen to ignore non-digit characters. Statements

on lines 1016 and 1036 test for non-digit characters by performing comparisons between

the ASCII value for the input character and the ASCII values for the allowed numeric

digits.

Logic to check for valid month, day, and year must exist within the calling pro-

gram since each of these two-character values have different allowed limits.

The statement on line 100 tests for a valid month.

Statements on lines 120, 130, and 140 compute the maximum allowed day for the

detected month. The statement on line 200 checks for a valid day. The check for a valid

year on line 260 is very simple.

Note that we generate an integer representation of the month on line 90, but we
do not bother to generate integer representations of the day or the year. This is because

the day and year are not used very often, but the month is used on lines 90 through 140.

We will save both memory and execution time by using an integer representation of the

month.

It takes more time to write a good data entry program that displays information in

a pleasing manner and checks for valid data input, allowing the operator to restart at any

time. Is the time worth spending? By all means yes. You will write a program once; an

operator may have to run the program hundreds or thousands of times. Therefore you

spend extra programming time once, in order to save operators hundreds or thousands

of delays.

Forms Data Input

The best way of handling multi-item data entry is to display a form, and then

fill in the form as data is entered. Consider a name and address. First display a form as

follows:

ENTER NAME HMD ADDRESS
il -ifiHE

:

•S STREET:
B CUV-'
S! STATE : S ZIP

Notice that each entry has been assigned a number. The form displays the number
in a reverse field.

The operator enters data sequentially, starting with item 1 and ending with item 5.

The operator can then change any specific data entry.

The following program will clear the screen and display the initial form:

:y -E"-' -AME AtO hTiIiPES'E. I'ATA E-JTRV
10 '•£• I'lSP.rV ~'-E Iih~h £r;TS:V :-np-i

;fi -•-:

I

-.'"'Zti E'-~E- --RME ANIi ADDRESS"
--0 -EI'-'T" SIS nh!'"E

"

=io -vl';~" N2B STREET "

EO RR>'T" $::m r,;-y >•

70 =-K;'i T " 34» STfiTE " .-AE^e.' "S5" ZI C'"

"

PET/CBM Personal Computer Guide
1/4

As each data item is entered, create a reverse field to identify the character field

where data will appear as it is entered. Then as each character is entered display it The

CURSOR LEFT key is used to restart data entry into the current field. Ihe Kbl ukin

key ends data entry into the current field. The following instruction sequence provides

us with necessary program logic:

80 REN GET £0 CHARACTER NAME
y@ LNX=20
100 PRINT"SMM" ;ThE<:i0)..

110 GOSUB 8000 : NHS=CU$
120 REM GET 20 CHARACTER S > RtbT

130 PRINTCHR*<13 :TmBC0);
140 GOSUB 8000 : S"RS=CC$_
150 REM GET 20 CHHRHUTtR CI TV
160 PRINTCHRSaSlMTABClO);
1 70 GOSUB 8000-CIf=CC*
180 REM GET 18 CHhRRCTEk 3 -

hM>

180 PRINTCHR*(13> : TAB (10) .:

200 GOSUB 8000 : S !
f=CCS

210 REM GET 5 CHARACTER ZIP CODE

230 PRINTTABf.34);
j40 GOSUB 3000 EI~=CCS
2S0 STOP ..._..-- Jhi -.,-. t--.c
ROOO -.£'. £.-.TER S"='::-0 I'A~" .-'. -> >-.i-v -- - -• - '->-_---;

,_ _, _

~s.fr. I; REM --E CURSOR '-US' BE I" --£ "
i
= ST_3-AF AH T-. " ;OS._.U.- Or , -ic ^clJ

«;h REM T^E RETURN -EV :::*_;_ EM' BA ; M E i
'
-V lr..ij_ ;€__.- ;

z. 1.1

SOSO *EM The - EV i-lL... ."EsThR: X-f, EN"-:',' .j,m -^ -^^
Sft4M REM no '-'RlIji'V C->t:Cr.S SEE :'NjL i> ; 'NV E'- T :----B_JriTH _

3050 REM Tri£ £.;TE^EB S
t F.V-G I':. RET:>-:.fl In i—M'-O VH* I .-JLL ECS

xnRO --•;==-ris.•: REM OE .' -,E_B '-"•'-- C-arfi . ^ ^' ;_;;
.

.mm

8070 RRImT"S". REM REVERSE E'RV REJ
3030 -OR 1 = 1 "0 '._:'.; PRINT" ". ::£'

3O30 PRI'.T"g",;>Rf IS
"""

.
"h.-km-.t:. ' :

3100 REM ENTER BA'A AN3 I IS :'LAV =•: -'<• 1--EJ

81 10 LLS="" M>0
8120 POR 1 = 1 TO LN";

a: 30 GET r:$:IF C*="" "HEM 3138 _ _ _.,

3140 IF CS="*-" THEN PRINTCHR*(13> .; "T; "3(SU.j; uU ,
U btMo

8150 IF CS=CHRS<13> THEN 8200
Rlhfi PR INTO*.: CCJ=CCS+CS
3170 NEXT _ _ _, .,, , T
3130 REM PILL THE REST OF CCS UIiH BLH-Kb hkj Dibn-nr 1,

3280 IF j;-i=LNK "HEN 8300
3218 FOR l=jy. TO LNM
3220 CCS=CCS+" "

S3O0 PRTNTCHRSUS); """
: TAB(ST^) ; CCS.-

3310 RETURN

Key in the entire program (statement 10 to statement 8310) and run it. Remem-

ber, if you still have statements 10 through 70 keyed into your computer you do not

need to reenter these statements.

If your program does not run correctly, check your entry carefully. In particular,

check for semicolons in PRINT statements.

When you run the program each of the five fields in turn will be highlighted by a

reverse field. As you enter characters they will be displayed in the field. When you press

the RETURN key the entire reverse field is replaced by the data you entered. Try press-

ing the CURSOR LEFT key to restart data entry.

Carefully read through the data entry subroutine, beginning at line 8060 and end-

ing at line 8310. Before going any further you should clearly understand this program

l081C
'

Note how easy it is for an operator to see what he or she is entering, and how sim-

ple it is to restart any entry to correct errors.

Chapter 5: Making the Most ofCBM Features 1 75

After the complete name and address has been entered, the program should ask

the operator if he or she wishes to make any changes; then the program should ask

which field needs to be changed. Subroutines to ask both of these questions were given

earlier in this chapter. We are going to use modified versions of these subroutines,

where the calling program provides the question to be asked of the operator. Here is the

complete program with added statements beginning at line 250:

10 REM NAME AND ADDRESS DRTfl ENTRV
28 REM DISPLAY THE DATA ENTRV FORM
38 PR I NT "39 ENTER NAME AND ADDRESS"
40 PRINT" Sim NAME:"
58 PRINT" SGB STREET:"
60 PRINT" :GB CI TV:"
70 PR I NT " *» STATE :", TAB (28 > ; " SJ5B ZIP:"
30 REM GET 20 CHARACTER NAME
98 LN?:=28
188 PRINT"««B".;TABa0:),
116 GOSUE 8090 • Nfl*=CC*
128 REM GET 20 CHARACTER STREET
1 38 PR I NTCHR* < 1

3

')
; TAB < 1 >

;

148 GOSUB 8000:SR*=CC*
150 REM GET 20 CHARACTER CITV
1 68 PR I NTCHR* < 1 3 > .: TRB(IB) ;

170 GOSUB 8000:CI*=CC*
188 REM GET 18 CHARACTER STATE
185 LN7i=18
196 PRINTCHR*(13);TflB<10);
200 gosub 8000:st*=cc*
210 rem get 5 character zip code
220 ln;:=5
230 PRINTTfiBOt);
240 GOSUB 8000:ZI*=CC*
258 REM ASK IF ANY CHANGES ARE TO BE MADE
260 QU*="D0 VOU WANT TO MAKE ANY CHANGES? "

278 PRINT"MSSM««SS":
280 GOSUB 3060
290 jf yn*="n" then stop
300 rem ask which field is to be changed
310 qu*="enter change field number u to 5> :

"

320 lo;:=i :hi;;=5
330 GOSUB 3500
340 ON NM?: GOTO 400,456,500,550,600
400 REM CHANGE NAME
410 PRINT"«WS"; TABOO); :LNK=20
420 GOSUB 8000:NA*=CC*
430 GOTC 260
450 REM CHANGE STREET
460 PRINT"MMIflM";TABa0X; :LN2=20
470 GOSUB 8000:SR*=CC*
480 GOTO 260
500 REM CHANGE CITV
510 PRINT".MSBISW",TAB<:10); :|_NX=20
520 GOSUB 8000:CI*=CC*
530 GOTO 260
550 REM CHANGE STATE
560 PR INT " SMHBfiS" .: TAB < 1 ; ; : LNX= 1

8

570 GOSUB 8000:ST*=CC*
580 GOTO 260
600 REM CHANGE ZIP
610 PR I NT "MMHSKS" ; TAB < 34 > ; : LNK=5
620 GOSUB 8000:ZI*=CC*
630 GOTO 260
2000 REM CLEAR THE ROW ON WHICH THE CURSOR IS CURRENTLY POSITIONED
2010 PRINTCHR*a3>;"n".; :REM MOVE CURSOR TO COLUMN
2028 FOR 1=1 TO 33 : PRINT" ";:NEXT
2030 PR I NTCHR* < 1 3 >

;
"T

,

2040 RETURN
3000 REM ASK A QUESTION AND RETURN A RESPONSE OF V OR N IN VN*
3010 GOSUE 2000
3020 PRINTQU*;
3030 GET VN*IF VN*0"N" AND VN*0"V" THEN 3030
3040 PRINTVH*;

; 7b PET/CBM Personal Computer Guide

3050 RETURN
3508 REM ASK FOR A NUMERIC SELECTION
3510 REM RETURN SELECTION IN NMX
3529 REM NMK MUST BE LESS THAN MX AND MORE THAN LOX
3530 REM CALLING PROGRAM MUST SET H IX, LOX AND QU$,THE QUESTION ASKED
3546 GOSUB 2000
3550 PRINTQU*;
3560 GET NM*:IF NM*="" THEN 3566
3570 HMX=VflLCNM*>
3586 IF NMX-aOX OR NMX>HIX THEN 3560
3598 PRINTNM*.:
3600 RETURN
8000 REM ENTER STRING DATA INTO A FIELD WITH LNX CHARACTERS
3610 REM THE CURSOR MUST BE IN THE FIRST CHARACTER POSITION OF THE FIELD
8020 REM THE RETURN KEY NILL END DATA ENTRY INTO THE FIELD
S030 REM THE «- KEY WILL RESTART DATA ENTRY INTO THE FIELD
SR4A-REM NO VALIDITY CHECKS ARE MADE ON ANY ENTERED DATA
8050 REM THE ENTERED STRING IS RETURNED IN STRING VARIABLE CC$
8860 STX=POSCX>:REM GET FIELD FIRST CHARACTER POSITION
8076 PRINT" 3" ;: REM REVERSE ENTRY FIELD
8080 FOR 1=1 TO LNX: PR I NT" ";:NEXT
8890 PRINT""" .: CHR*C 13) ;

"1"
; TflBCSTX) .:

8100 REM ENTER DATA AND DISPLAY AS ENTERED
8118 CCS="" : JX=8
8120 FOR 1 = 1 TO LNX
8125 JX=JX+1
3138 GET C* : IF C$="" THEN 8138
8140 IF C$="<-" THEN PR I NTCHR* < 1 3 ;< ; "D" ; TAB<STX;' ; : GOTO 8070
8150 IF C*=CHR*<13> THEN 8288
8160 PRINTC*; CC*=CC*+C$
8170 NEXT
8190 REM FILL THE REST OF CC* WITH BLANKS AND DISPLAY IT

3200 IF JX=LNH THEN 3308
3218 FOR I=JX TO LNX
8228 CC$=U-S+" '"

3230 NEXT
8380 PRIHTCHR$<;i3X: ".T J TABCSTX) ; CC*;
3318 RETURN

Enter the entire name and address program and run it. If it does not work, check

for program errors. Here are some tips when looking for errors:

1. If the display scrolls off the top of the screen, you forgot to terminate the

PRINT statement with a semicolon in the subroutine that clears a line.

2. If a reverse field is displayed in the wrong place, you have the wrong number

of CURSOR DOWN shifts in a PRINT statement, or you have tabbed to the

wrong column, or you have forgotten to separate two items in a PRINT state-

ment with a semicolon.

3. If no message appears at the bottom of the display, make sure that the label

you used in the main program to create the display is exactly the same as the

label referenced in the subroutine which asks a question.

You should study the name and address program carefully and understand the

data entry aids which have been included. They are:

1. By reversing the field into which data must be entered, you clearly indicate to

the operator what data is expected, and how many characters are available.

2. When an operator enters a change field number, the reverse field display

again quickly tells the operator whether the correct selection was made.

3. An operator does not have to fill in all the characters of a field; when the

operator presses the RETURN key the balance of the field is filled with blank

characters.

4. At any time the operator can restart entry into a field by pressing the CUR-

SOR LEFT key.

Chapter 5: Making the Most ofCBM Features 1 77

5. When questions are asked, only meaningful character responses are recog-

nized: Y or N for "yes" and "no," or a number between 1 and 5 to select a

field. It is very bad programming practice to recognize any key other than a

meaningful one. For example to recognize Y for "yes" and any other

character for "no" could be disastrous, since accidentally tapping a key could
take the operator out of the current data entry prematurely. Conversely,

recognizing N for "no" and any other character for "yes" would cause the

operator to unnecessarily reenter data into some field, just because the opera-

tor accidentally touched the wrong key.

Here are some data entry precautions which we have not taken but could add:

1

.

Check the ZIP code for any non-digit entry. Similar codes outside the USA do
allow alphanumeric entries, however.

2. Many cautious programmers will ask the question ARE YOU SURE? when
an operator types "no" in response to the question DO YOU WANT TO
MAKE ANY CHANGES? This gives the operator a second chance in the

event that he or she accidentally touched the wrong key.

3. We might add an additional key which aborts a current data entry and restores

the prior value. For example, if the operator presses the wrong number to

select a field which must be changed, the current program forces the operator

to re-enter the field. We could easily add another key which aborts the current

data entry and retains the previous entry.

Try modifying the name and address entry program yourself to add the additional

safety features described above. Also, if you have a CBM 8000 computer, try using its

TAB SET capabilities instead of the TAB functions.

PROGRAMMING DISPLAYS AND PRINTOUTS

When you power up a CBM computer, output is directly to the display. You
must execute appropriate statements to send the output to the printer or any other
device capable of receiving output.

There are a number of differences in the programming techniques required to
create a screen display as compared to a hard copy printout. For example, the printer
may be wider than the display, in which case output which will fit on a printed line will

run over the display line. But there are also significant differences in programming logic

which you must use to format a printout as compared to a screen display. This is because
cursor control keys can be used to move the cursor around the screen display, but they
cannot be used to move a print head around a piece of paper.

There are also many similarities in the programming techniques used to create

printouts and displays. The discussion that follows applies to displays only. If you are
planning to write programs that generate output at a printer you should read the dis-

cussion of display outputs given in this chapter, and then proceed to the discussion of
printer programming given in Chapter 6.

Programming display output is much simpler than programming data input, since

there is no operator interaction to worry about. You must make sure that the display is

easy to read, and that is all. Here are a few rules to follow:

1. Avoid crowding too much information into a very small space.

; 78 PET/CBM Personal Computer Guide

2. If numbers or character strings are listed in columns, align the data so that the

eye can quickly run down the column.

3. Use reverse fields on displays to highlight key information, top heading, and/

or side headings. Do not reverse fields on printouts; the printer generates

very illegible reverse fields.

Below are some common mistakes which you should be aware of, and therefore

avoid, when programming displays:

1. Remember to follow individual items in a PRINT statement with a semi-

colon (;) unless you specifically want the spacing provided by commas (,).

This is the most common source of errors in output programming.

2. You will save a lot of programming time if you first get a piece of graph paper,

section off rows and columns, then draw the display before attempting to pro-

gram it. This will allow you to compute rows and columns accurately. The

alternative is to use trial and error, which in the end will take a lot more time

than drawing the display first.

3. Watch for array subscripts which do not divide evenly into columns. For

example, suppose you have 25 items in array N$(I) which you are printing in

3 columns. You might be tempted to generate the display as follows:

100 FOR 1=1 TO 25 STEP 3
200 REM PROCESS COLUMN 1

300 REM PROCESS COLUMN 2

400 REM PROCESS COLUMN 3

500 NEXT I

But on the final pass of the FOR-NEXT loop, indexes 26 and 27 will be com-

puted, although they do not exist. You can easily check for the end of an array

in a FOR-NEXT loop as follows:

100 FOR I=LO TO HI STEP ST

350 1=1+1
360 IF I>HI THEN

500 NEXT

An important warning applies to data which you read from a disk file (using tech-

niques which we will describe in Chapter 6) . CBM computers have a nasty habit of

adding blank characters onto the end of string variables which are read from a disk

file. For example, if you write names to a disk file, knowing in advance that no name

has more than 20 characters, you might assume that when you read these names back

from the disk file, each name will still have 20 characters or less. That is not necessarily

the case. Some variable number of additional blank characters may get tacked onto the

end of the string variable. This can distort your display or printout by extending a field

Chapter 5: Making the Most ofCBM Features 179

beyond the column to which you will next tab. You can avoid this problem by using the
LEFT$ function. Therefore a PRINT statement such as:

100 PRINT THEC5>;N*a>:TfiIu:30:).;N*a+i;'

would have to be rewritten as follows:

100 PRINT TRBC5>.;LEFT*CN$a:),29);TP,E<:30);LEFT*<H$a+l)..20:J

If a list of variables has unknown string lengths, and you want to convert all

variables to some fixed length, then you must add blank characters to the end of short
strings, and truncate long strings. This is easily done by the following subroutine:

10 REM STRING VARIABLE N$ IS TO BE 20 CHARACTERS LONG
20 REM li- LESS THAN 20 CHARACTERS, ADU TRAILING BLANKS
30 REM IF MORE i'HAN 20 CHARACTERS, TRUNCATE EXCESS CHARACTERS
4y LM=LEh<:N*;' -REM L"-:=NUMEER OF CHARACTERS IN NM
;,£l B*=" "REM B$ IS fi DUMMV 20 BLANK CHARACTER VHP I ABLE
6tf IF L"i>20 THEN N*=LEi-T*'::N$, 20): RETURN REM N* IS TRI INCASED
7S IF l;:=20 THEN RETURN : REM H$ HAS CORRECT LENGTH
SO N*=N*+LEFT*CB*,20-LM:) :REM N* TS SHORT, htjt, B^ftHKS
90 RETURN

When dealing with large quantities of data, a very common technique is to
create a "window" in which to enter the data. In order to provide a simple demon-
stration, we will create a double-dimensioned 14 x 50-integer array variable. Each
integer in the array will contain a four-digit number which identifies the array coordi-
nates as follows:

For example:

X%(I,J) = OIOJ

X%(3,2) = 0302
X%(19,8) = 1008
X%<1 1.12) = 1112
etc.

We can create this integer array very simply, as follows:

10 TJIM K?:C14,50;'
20 FOR 1=1 TO 14
30 FOR J=l TO 50
40 XX< I, J:> = I*lfifi+.T

50 NEXT
SO NEXT

Now we will display some portion of this array. We will use the top two rows and
columns 1 through 10 to create header displays as follows:

c r i \ i i r r Tj-R-ww
1

XX represents a number in the range 1 through 1

4

YY represents a number in the range 1 through 50

180 PET/CBM Personal Computer Guide

Here are the necessary program statements to create reverse field row and column

headers as illustrated above:

1000 REM CREATE ROW AND COLUMN HERDERS
2010 PRIHTTflB(9J.;
1 020 FOR 1=1 : 3

1 630 PR I NT " a COLUMNS" i

1040 NEXT
1050 PRINT CHR*<13:< JTRBO);
I860 FOR I=CK TO CH+2
1078 S;i=7:IF K10 THEN S£=8
1 880 PR I HTSPC (SK > :

" 3"
.; STR$ (I 5 ; ""

;

1S90 NEXT
1895 printchr*03);
1110 for i=r?; to r;-;+9

1120 SK=1 : IF K10 THEN S":=2
1138 c'RiNTTHE<:2:);"SRnw";SPC<:s-i>.iSTR$a:).; ""
1140 NEXT
1150 RETURN

We deliberately create a window that is smaller than the entire screen so that we

can better illustrate the concept of a window on data. There is nothing to stop you creat-

ing a window that occupies your entire display, however there will be occasions when

you want a small window so that concurrent data can appear on the screen.

The STR$ function creates a display that is one character longer than the integer

number. This extra character represents the sign. We could remove the sign, but we

choose instead to display this extra character in reverse field. But we must account for its

presence when counting character positions in order to set the tab on line 1130.

We will now add instructions that ask the operator to enter two numbers repre-

senting the smallest column and row of the array. The array element with this column

and row number will appear in the top left-hand display position. The display will be

filled with adjacent column and row elements, up to the end of the display. Add these

lines to your program:

5 REM WINDOW ON A TABLE DISPLAY PROGRAM
ie dim x;:a4,50>
28 FOR 1=1 TO 14
30 FOR J=l TO 50
40 »:a,j:)=i*i00+j
58 NEXT
60 NEXT
64 PRINT":]";
65 PR I HT " J3SI«KnS!ICBiaBS»fICDI»I«9l]"

;

70 INPUT "ENTER COLUMN <1 TO 12>:";C?i
80 IF CK<1 OR CX>12 THEN PRINT".-?'; :GOTO 70
90 INPUT "ENTER ROW <1 TO 41>:";RZ
108 IF RKO OR R5i>41 THEN PRINT"n"; :GOTO 90
105 PRINT"3"; :GOSUE 1000
110 PRINT"aMS";
120 FOR I=R'i TO R-/.+9

138 PRINT TAB<9>;
148 FOR J=C"i TO C2+2
150 X*=STR*(XK<J,I)>
155 PRINTSPCa0-LEN<X*));X$.:
160 NEXT
165 PRINTCHR*a3>;
170 NEXT
188 PRINT"SSSCONTINUE? ENTER V OR N "J

196 GET C*: IF C*0"V" AND C*<>"N" THEN 198
200 IF C*="V" THEN 65
210 STOP

Run the program. If you entered it correctly, the first thing you will notice is that

the computer stops and appears to do nothing for a while; it is executing the nested

FOR-NEXT statements occurring on lines 20 through 60. It takes 10 or 15 seconds to fill

array X% with numbers.

Chapter 5: Making the Most ofCBM Features 181

The PRINT statement on line 64 clears the screen so that any prior garbage is

eliminated before INPUT statements on lines 70 and 90 ask you to enter the beginning

row and column numbers. We do not put this clear command into the PRINT statement

on line 65, since the program returns to line 65 in order to ask for new column and row
numbers, at which time we do not want to erase the prior display.

Note that column numbers from 1 through 12 are allowed; there are three col-

umns, therefore any column number up to 12 will stay within the limit of 14 columns.

Row numbers from 1 to 41 are allowed, likewise, since ten columns are displayed, which
means that the highest ten column numbers would be 41 through 50.

The integer value from array X% is converted into an ASCII string on line 1 50

before being printed on line 155. This conversion has been made to simplify display for-

matting. It is easy to compute the number of spaces between columns, as shown by the

PRINT statement on line 155. It is not so easy to align numbers correctly when display-

ing integers. To prove this for yourself, remove line 150 and change line 155 as follows:

155 PRINT SPC'.5>;X-/.<J,I>;

Numbers will align providing you do not display any four-digit numbers, in which case

the display will overflow a 40-character screen. If you display three-digit numbers the

rows are all shifted over one column to the right. You could correct this discrepancy by
increasing the tab on line 130 from 9 to 10. Try it. When you next run the program it will

overflow the 40-column display line and give you a lot of extra carriage returns.

Notice that the statements which ask for input on lines 70, 90, and 180 are all

followed by program steps that disallow all invalid inputs. Even in this simple demon-
stration program we take the time to program safe input.

A useful refinement to a program that displays a window on an array is to provide

the operator with a means of moving the window up or down, left or right. This is easily

done. Using available symbols on a CBM standard keyboard, we will use the spade sign

() to move up one row, which means that the beginning row number is decreased by 1.

We will use the heart sign (») to move down one row, which means that the beginning

row number is increased by 1. We will use the less than sign (<) to move the table one
column to the left (decrease the beginning column number by 1), and use the greater

than sign (>) to move the table one column to the right (increase the beginning column
number by 1). To accomplish this task we must replace statements on lines 180 through
210 with the following statements:

180 PRINT"MI!HCONTINUE? ENTER *,*,<,>,V OR N ";

196 GET C*: IF C*="" THEN 190
200 REM IF C$=ATN THEN DECREASE ROW BV 1

210 IF C$="*" THEN RX=R?i-l:PRINTCHR*(13y:"M"; :D0T0 100
220 REM IF C*=C0PV THEN INCREASE ROW EV 1

230 IF «="•" THEN R/i=RX+l :pRINTCHR*< 13) ;"»";: GOTO 108
240 REM IF C*=< THEN DECREASE COLUMN BV 1

250 IF C$="<" THEN CX=CX- 1
= GOTO 300

260 REM IF C*=> THEN INCREASE COLUMN BV 1

270 IF C*=">" THEN CX=CK+1 ^GOTO 300
280 REM IF «=V, ENTER NEW ROW AND COLUMN IF C$=N,STOP
290 IF C*="V" THEN 65
295 IF C*="N" THEN STOP
296 GOTO 190: REM REJECT ANV OTHER C* INPUT
300 IF C'/Xl OR C/D12 THEN PRINTCHR*<13>; :OOTO 70
310 GOTO 105

. , PET/CBM Personal Computer Guide
lo2

Notice how straightforward the logic is, even though we are still checking for

operator errors. Any entry other than one of the six allowed characters is rejected. If

changing the row or column number puts it out of the allowed range, then program logic

simply asks for new row and column numbers. (The CBM 8000 window and scrolling

functions are not very useful in this example since we want to scroll left and right, as

well as up and down.) „,,.„• * „r
An untidy aspect of the program shown above is the fact that, following an out ol

range row number, only a new row is allowed to be entered; this results from the GOTO

100 on lines 210 and 230. Following an out of range column number the GOIO /u on

line 300 allows new column and row numbers to be entered (since in the main body ot

the program, column number entry precedes row number entry). Can you rewrite the

program to get rid of this small untidiness (select whether only the row or column will be

reentered, or if both the row and column will be reentered when either is out of range)?

Another undesirable feature of the display program is the time taken to fill the

array X% This has nothing to do with the display itself, but in many programs such

delays are likely to occur. An operator may well assume that the computer is not work-

ing properly. Whenever such periods of inactivity are encountered it is a good idea to

display a prominent message telling the operator that the computer is working, and to

please wait. This is easily done. You simply precede the computation statements with an

appropriate PRINT statement. In our case the following PRINT statement could be

iicgH •

15 PRINT "PLEASE WAIT WHILE I FILL THE ARRAY WITH DATA"

Our program takes great care to terminate the display on the 39th column of the

display rather than the 40th and last column. When using a CBM computer with a 40-

columii display, it is not wise to run displays out to the 40th column. You will run

afoul of the wrap around logic whereby lines that are more than 40 characters long

automatically continue on the next line. You are best off not tangling with the display

formatting nightmare that can result from carriage returns generated as part of line con-

tinuation interacting with your own formatting carriage returns.

40-Column Screen Wrap Around Logic. The following paragraphs explain how

40-column wrap around logic works.

When the cursor is on any 40-character screen line, the CBM computer assumes

that it is a 39-character line until a character has been displayed in the 40th character

position; then the CBM computer assumes it is in the first half of a 79-character line. If a

character has been displayed in the 40th column of the preceding line (i.e., the cursor

has moved to the next line) , then the CBM computer assumes it is in the second half of

a 79-character line.

When a program encounters a carriage return, it executes a carriage return to trie

next logical line. When the CBM thinks it is in the first half of a 79-character line (a

character has been displayed at the 40th character position) and it executes a carriage

return it moves the cursor to the next logical line, which is two display lines below.

If you POKE into the 40th character position of a 40-character display then the

computer does not assume a 79-character line. This can be done using the statement:

POKE 32767 + <L-1).40.ASC(CH$)

where:

L is the line number

CH$ is the POKEd character

If you have a 40-column display, then as an exercise it is worth modifying the

complete table display program so that it does go out to the 40th column. To do this you

Chapter 5: Making the Most ofCBM Features 183

must change the TABs on line 30 and line 1010 from 9 to 10; the TAB on line 1050 must

change from 13 to 14, the TAB on line 1130 goes from 2 to 3. Now try running the pro-

gram; the columns ofnumbers line up, but you have too many carriage returns and they

force the top of the display to scroll off the screen. Now try eliminating the extra carriage

returns and generating the correct display. This is a very difficult programming task.

MATHEMATICAL PROGRAMMING

CBM computers can add, subtract, multiply, and divide with full accuracy using

number's that have up to nine digits. Numbers with more digits have to be rounded off

to nine digits. Thus 123456789.12 is rounded to 123456789. Although this limit poses

no problem in many applications, business and scientific applications can require more

digits of accuracy. The CBM cannot keep track of dollars and cents (to the nearest cent)

for amounts over $9,999,999.99, for example.

Two programming methods can overcome the CBM computer's numeric

accuracy limitations. The first method uses numeric strings. The second method uses

multiple integer math, where a large number is separated into smaller segments, and

each segment is handled separately.

ADDITION

Numeric string and multiple integer techniques can both be used to add integer

numbers that have more than nine digits. The augend is the first number in the equa-

tion. The addend is the second number. The addend is added to the augend.

Addition using Numeric Strings

The steps involved are:

1. Input the augend and addend as two positive numeric strings.

2. Right justify the strings.

3. Add the corresponding digits of the strings separately, including carry.

4. Concatenate the answer into a one-string result.

5. Print the answer string.

Let us examine each step in turn:

Step 1: Input the augend and addend as positive numeric strings using an

INPUT statement.
Screen Display Representation of Memory Contents

10 PRINT "r»**RDDITI ON***" : PRINT A$ |1|2|3|4|5|6|7|8|9|0|1|2|3|4|5T6|

20 INPUT fi*,B* B$
|
5 |7| 9 |4|3| 6 |

7 |2|

RUN

RDDITION

? 1 234567S9S 1 23456
??57943572

184 PET/CBM Personal Computer Guide

A$ is the augend and B$ is the addend. The INPUT statement allows either to

exceed the 9-digit numeric length limit. For simplicity we will allow only positive integer

numbers to be input. Once you are familiar with the basic concepts of the addition pro-

gram, you should experiment and alter the program to accommodate negative and frac-

tional numbers.

Step 2: Right justify the strings. Before performing arithmetic operations, the

numbers should be right-justified, because in BASIC alphabetic and numeric strings are

automatically left-justified. If the contents of numeric strings are added without first

being right-justified, the answer will be incorrect, as shown below:

Left Justified - Incorrect Right Justified - Correct

1 234567890 1 23456 1 234567890 1 23456
+57943572 + 57943572

70289250901 23456 1 234565948067028

The following statements right-justify the shorter of the two numeric strings A$
and B$. The shorter string is filled with leading zeros until it equals the length of the

longer string. X is assigned the length of A$. Y is assigned the length of B$:

30 BLflNK*="
40 X=LEN<fi*;> :V=LEN<B*>
58 IF X<V THEN f=l*=LEFT* < BLANK*, V-XJ+fl*
60 IF V<X THEN B*=LEFT* < BLANK*, X-V'J+B*

BLANKS on line 30 is a buffer string that is used to fill the shorter numeric string with

blanks. BLANKS has 16 blank spaces, since we are going to simplify our problem by

imposing a 16-digit limit on the size of numbers.

Statements on lines 50 and 60 use the LEN function to compare X (the length of

A$) to Y (the length of B$), and subtract the length of the smaller string from the length

of the larger string. In our example B$ is shorter than A$, so the length of B$ is

subtracted from the length of A$.

60 IF V<X THEN B*=LEFT* ; BLANK*, X-V>+B*

Length of smaller string subtracted

from length of largeY string

If the length of A$ is 16 digits and the length of B$ is eight digits, the difference is

eight digits:

A$ n|2|3|4|5l6|7|8|9|0|H2|3|4|5l6l X = 16 I X-Y=8
B$ |5|7|9|4|3|5|7|2] Y= 8 16-8=8

The number of blanks concatenated onto the front of B$ is the difference between

the two lengths. Since the difference is eight, eight blanks are taken from BLANKS to

fill the shorter string. Blanks are added to the front of the shorter string B$ with the

following statement:

LEFT* <BLANK* <X-V > +B*

Chapter 5: Making the Most ofCBM Features 185

The procedure is as follows:

B$=LEFT$(BLANK$.X-Y) +B$

B$=LEFT$(BLANK$.16-8) +B$

B$=LEFT$(BLANK$.8) +B$

=LEFT$(BWMM bf\<iWHiH .8) +B$

«M +| 5|7|9|4|3|5|7 |2l

B$= |K|tf|tf|li(|li(|tl|tfltl|5|7|9|4l3|5|7|2|

A$= |1|2|3|4|5|6|7|819|0|1|2|31415|6| B$ Hfcl|B|fc(ia|tlitt|tfM5
|

7|9l4|3|5l7|2]

16 digits 16 digits

Step 3: Add the corresponding digits of the strings. At first glance, you might

assume that A$ and B$ can now be added using the following statement:

This is incorrect. When a plus sign is used with strings they are not added, but are con-

catenated:

C$=A$+B$

C$= ll|2|3|4l5|6|7|8|9|0|l|2|3|4|5|6| + jbf|bl|tl|bf|bf|bf|bf|bf|5|7[9|4|3|5|7i2l

C$= [i|2T3|4|5|6|7|8|9|0|l|2|3|4|5|6|K|t(lBltf|a|tf|B|tf|5|7l9|4|3l5|7|2|

We want to add the digits in the strings, not concatenate the strings. To add the

contents of numeric strings, each digit must be extracted separately from the string,

converted into a numeric digit, then added to one digit from the other string. This is

done using the two string functions VAL and MID$.

1020 FOR I=LEN<fl*> TO 1 STEP-1
1 030 fl=VOL < M I D* < f\t , 1 , 1 > >

1 050 E=VflU < M I P* < B* , 1 , 1 >

>

1100 NEXT I

A is the digit extracted from A$. B is the digit extracted from B$. I is a counter

initialized to the length of the INPUT strings (either A$ or B$ may be used). With each
FOR-NEXT loop iteration, the value of I is decremented by 1. As I decrements, it allows

the string contents to be extracted one by one, right to left, using the MID$ function:

1 MID$(B$.I,1)

16 fel fcffef bit! tfblbf57 943 5 7i2=

15 «BtfKKbltfkf57943572
14 v <i a tf u n a a 5 1 9 4 3 5 1 2

13 US <i bf 6f K U \i ti 5 7 9 4 3 5 7 2

12 liS if bf bf bf b(bf tf 5 7 9 4 3 5 7 2

11 bfbfbfbfbfbfbfbf57943572

10 bfbfbfbfbfbfbfbf5i943572

9 bfbfbfbfbfblbfbf17943572
8 bfbfBbft*bftllB57943572

7 bfbfbfbfBbf8bf57943572

6 bfbfbfbfbflbftf57943572

5 bi«bf«f bfbfb(57943572

4 bfbfbftfbfbfl!fbf57943572

3 bfbfii«Bbfbf6f57943572
2 bfKb!bfb!bfblbl57943572

1 3lbfbfbftifbfbftii57943572

186 PET/CBM Personal Computer Guide

The VAL function converts each extracted string literal into a numeric value:

When 1=16,
B=VAL(MID$(B$.16.D)

B=VAL($ |aMMMt4»M5l7|9|4|3)5|7|2|)

When 1 = 15,

B=VAL(MID$(B$.15.D) .

After both numeric string digits have been converted into an integer, they are

added and the sum is returned in C$. Here are the necessary program steps:

1000 N=l

1010 B=0

1020 FOR I=LENCR*> TO 1 STEP -1

1 030 fl=VflL <.'MI D* < fl* , 1 , 1 >
.'>

1 040 fl=fi+D : D=0

1 050 E='v'HL < M I D* C E* , 1 , 1 > >

1060 C=fi+B

1070 IF C>=10 THEN D=l

1080 IF H=l RND 1=1 THEN N=2

1 090 C*=R I GHT* < STR* < C > , H > +C*

1100 NEXT I

Initialize string pointer N.

Initialize carry value.

Initialize decrement counter I

Extract digits separately. Convert

to non-string numeric.

Add tens value from carry (D) to A.

Extract digits separately. Convert

to non-string numeric.

Add extracted digits of A$ and B$.

Carry tens value into D if = 10.

Link sums into string answer.

Variable D is initialized to zero at line 1010; D is then used as a carry value in lines

1040, 1070, and 1080. During addition, if the value of C is greater than or equal to 10, a

tens value is carried over to the next left position. The tens value carried over is stored in

D:

1 2 3
+1

4
+,

5
+1

6
,1
7

+18901 2

+ 5 7 9 43572
123 5 1 4 7 32584

If C is greater than or equal to 10, the carry variable D is incremented to 1 at line

1070; otherwise it remains 0:

1070 IF C>=10 THEN D=l

A g
+b m

-15> = 10 — DlSTlc nn

A m
+ B @

-3<10 — D§0] (no change)

D will be either or 1 , but never greater than 1 , because the maximum possible

sum of any two single-digit numbers is 18, thus the maximum tens value that can be

carried over is 1

.

Chapter 5: Making the Most ofCBM Features 187

To prevent losing the carry in D, line 1040 resets the value of A to A + D on the

next loop iteration:

1040 fl=R+D:T=0

If this statement were omitted, the carry would never be carried out, and the value of A
would be incorrect. When D is added to A, D is reset to in preparation for the next

loop iteration.

Step 4: Link the individual sums (C) and convert the total sum into a string.

Just as the augend and addend were entered as strings to avoid the 9-digit length limit

the sums must be converted back into a string to avoid the length limit.

Line 1090 links the individual sums of C and converts the final answer back into

string form.

The STR$(C) function converts C into a string. The RIGHTS function extracts

the rightmost N characters from STR$(C). N is set to 1 at line 1000 to indicate that we
want only the rightmost character to be extracted; the leftmost character of C is

unnecessary because it is the sign value ("b" if positive and " — " if negative) and

would be concatenated between each number of C$ if we did not exclude it.

1000 N=l

Ngm

1060 C=fl+E

CW = A[bf§ + flffl

1090 C*=RieHT*<STR*<C> , N!>+C*

C$=RIGHT$(STR$(C). 1)+C$

C$=RIGHT$(@8],1)+C$

C$=@ + C$

Even if C is a two-digit number, only the rightmost digit is concatenated onto C$. The
tens value has already been assigned to D and will be added during the next loop itera-

tion.

N is set to 2 to include the last carry only if D = 1 and I = 1 (signaling a carry on the

last loop iteration). This is important, because if both conditions are true the loop will

not iterate again to add D's carry into A in line 1040, thereby losing the last carry value

in D. By setting N to 2 on the last loop iteration, both digits ofC are included in C$, and
the last carry over is not lost.

1070 IF C>=10 THEN D=l

Cg[2]>=10 Dgi]

1080 IF D=l AND 1=1 THEN N=2

Dg3 igi] Ng2]

1 090 C*=R I GHT* < SIRS C C : , H > +C*

C$=RIGHT$(g]l]2],2)+C$

C$= [TT2l+C$

C$= |1|2|X|X|X|X|X|X|X|

The entire FOR-NEXT loop routine at lines 1020 through 1100 does as follows:

1 . It extracts individual digits from a numeric string and assigns numeric values

to them (statements 1030, 1050).

188 PET/CBM Personal Computer Guide

2. The digits from both strings are added together one digit at a time (statement

1060) and checked for a carry value (statement 1070). The carry is added to A
in the next column (line 1040).

3. The individual sums are then linked and converted back into a numeric string

(line 1090).

Step 5: Display the answer string. To complete this addition routine, the input

and length test statements are inserted at the beginning of the FOR-NEXT loop (state-

ments 10 to 1010). PRINT and CLEAR statements are added (statements 1110 to

1130). The final program now reads as follows:

10 PRIHT"."»**flDriTITOH***" PRINT
20 INPUT fl*,B*
30 BLHNK*="
40 X=LEN(fl*> : V=LEH<B*:>
50 IF X<V THEN fl*=LEFT* < BLANK*, V-X:>+fl*
60 IF VCX THEN B*=LEFT*<BLFlNK*,X-V::'+B:*
1000 N=l
1010 D=6
1020 FOR I=LENtFI*> TO 1 STEP-1
1030 fl=VAL<MID*<fl*;
1040 fl=fl+D 11=0

1050 B=VflL<MID*<B*,
1060 C=fl+B
1078 IF C>=10 THEN D=l
1080 IF D=l BND 1=1 THEN N=2
1090 C*=RIGHT*<STR*<C>,N>+C*
1100 NEXT I

1110 PRINT:PRINT"ANSWER= " ; C*
1120 C*="": PRINT: GOTO 2
1130 END

Clear screen

Input numeric strings

}" ght justify strings

TO 1 <

1 , 1 > >

.i,i;o
> Addition loop

Print C$
Clear C$

Two sample runs of the program give the following output:

***fiDDITION*##

912345
??579

flNSWER= 1 2924

? 1 2345678901 23456
??57943572

flNSWER= 123456794306702S

This addition routine overcomes the 9-digit numeric length limit. Try modifying
this program to receive inputs as dollars and cents, and to display results in the same for-

mat.

Multiple Integer Addition

Another way to overcome the 9-digit length limit during addition is to use multi-

ple integer addition.

Multiple integer math reorganizes a large number into smaller segments. Each
segment is handled independently. The individual answers are joined together into

one final answer, as follows:

Chapter 5: Making the Most ofCBM Features 189

Input numbers XXXXlXXXX
xxx'xixxxTi

High[_

/ A
xxxx

xxxx

Calculation

bl XXXX }-iLow
'

I XXXX I

Calculation

High answer I XXXX I I XXXX I Low answer

Answer I XXXXXXXX I

The steps involved in multiple integer addition are as follows:

1. Input the augend and addend as two positive numeric strings.

2. Divide the number into two equal high and low parts.

3. Separately calculate the sums of the high-order and low-order parts.

4. Concatenate the sums into one answer string.

5. Display the answer string.

Step 1: Input the augend and addend as two positive numeric strings:

10 PRIHT"r»**MULTIPLE INTEGER film I T I OH***

"

: PR I NT
20 INPUT fi*,B*

RUN

MULTIPLE INTEGER ADDITION

? 1 234567890 1 23456
??57943572

A$ is the augend and B$ is the addend. The numbers are input as numeric strings

because: 1) the numeric length limit is avoided, and 2) string functions can be used to

divide the numbers into smaller segments.

Step 2: Determine the maximum length of numeric input, and the number of

segments into which the numeric input must be divided. For example, if the maximum

length of numeric input is 16 digits, numbers must be divided into two segments, with a

maximum of eight digits per segment.

To keep our sample program simple, the maximum input length is assumed to be

16 digits. Input is divided into high and low segments of eight digits each.

XXXXXXXXXXXXXXXX

high [XXXXXXXXJ
D3

|xxxxxxxx|

8 digits . 8 digits

»!-«

1 90 PET/CBM Personal Computer Guide

First we must determine which input string is longer. The lengths of A$ and B$

are assigned to variables X and Y respectively.

1 00@ X=LEH <:. fl* > V=LEN >', E* >

Next, the lengths are compared. IfX>Y (length of A$ is larger than length of B$)

then variable F, the divider variable, is set to one-half of X. But if X<Y, then F is set to

one-half of Y.
1002 IF X>V THEN F=X,'2 : GOTO 1006
1004 F=V/2

Here is another method of assigning a value to F:

1002 F=V/2:IF X>V THEN F=.V2

In this example, A$ = "1234567890123456" and B$= "57943572." Let us run

this through:
1000 X=LEN<fl*> v=lehce*:j

X = 16 Y =8
1002 IF X>V THEN F=X.-'2 : GOTO 1086

16>8 true statement, therefore

F = 16/2
F = 8
program continues at line 1006

Once the value of F is set, the program continues at line 1006. The statement on

line 1006 looks for a fractional value of F. If F is larger than its integer value, then F is

assigned its integer value, plus 1. This rounds F up to the nearest integer. For example,

if the value of F is 7.5, the statement on line 1006 rounds it up to 8:

1006 IF F>INT(F> THEN F=INT<:F.-' + l

If 7.5>7 then F = 7+1
F=8

To obtain the high (H) and low (L) parts of the sum of A$ and B$, use the follow-

ing statements:
1000 X=LEN<B*> :V-LENCB*>
1002 IF X>V THEN F=X/2 = GOTO 1006
1004 F-V/2
1006 IF F>INT<F> THEN F=INT<F>+1
1010 IF X<=F THEN f)H=0 : RL=VHLCfl*) : GOTO 1040
1020 RH=VflL<LEFT*<fi*,X-F>)
1030 flL=VfiL<RIGHT*<FI*,F>>
1048 IF V<=F THEN BH=0 = BL=VflL<B*> : GOTO 1070
1 050 BH=VflL <LEFT* <B* , Y-F > >

1060 BL=VfiL<RIGHT*<B*,F))

Statements 1010 and 1040 compare the string lengths with the divider F, which in this

case is 8. If the string is shorter than eight, AH (or BH) is assigned a zero value, leaving

only AL (or BL) equal to A$ or B$. If the string is longer than eight, it must be divided

into high and low segments. AH or BH, the high segments, are assigned the value of the

leftmost LEN(X or Y), minus eight digits, at 1020 and 1050.

1 020 FfH=VflL CLEFT* < Ft* , X-F > >

AH=VAL(LEFT$(A$.16-8))

AH=VAL(LEFT$([iT2|3l4|5l6|7|8|9|0|1|2|3|4|5|6| ,8»

AH=VAL(|l|2|3|4|5l6|7|8l)

AH =B1 2345678

To obtain AL, the rightmost eight digits are extracted from AS:

1 030 flL=VHL C R I GHT* C fl* , F > .">

AL=VAL(RIGHT$(]1 1 2 J3j4
|

5|8| 7]8|9|0| 1 1 2 [3|4| 5| 6

1

.8))

AL=VAL(|9|0|1|2|3|4|5|6|)

AL= 6(90123456

Chapter 5: Making the Most ofCBM Features 191

The same procedure is used to extract BH and BL. Notice that the VAL function

converts the strings into numbers.

Step 3: Once the large strings are divided into segments small enough for the

CBM computer to handle, addition can begin. With multiple integer addition, you add

corresponding groups of numbers. AH and BH are added. AL and BL are added. When
a number is handled as a group of digits and not as a numeric string, the addition of each

number does not have to be done digit by digit as with the numeric string method. The

CBM computer can add numbers, whereas it is unable to add numeric strings.

AH [b(1 2345678] AL lte(90123456|

+ BH |tJQO0O00O0| +BL
1
1(57943572|

CH 1^123456781 CL
|
Ml 48067028]

First, the low segments AL and BL are added using the following statement:

1070 CL*=STR*<fiL+BL>

The sum of AL and BL is converted into a numeric string when assigned to CL$.

It is not necessary that the sum be in string form, but it is much simpler to test for carry-

over using the LEN function.

Line 1075 truncates the leading blank from the front of CL$. Remember that

when a number is converted into a string the leading blank is included. We do not want

this leading blank as part of CL$ when we concatenate the high and low segments

together; therefore we truncate it with the MID$ function.

Line 1080 tests the length of sum CL$ against the segment length F. If the length

of CL$ is greater than F, the leftmost digit is carried over and added to the sum CH$.

(The value of D is equal to either or 1.)

CHS is obtained by adding AH, BH, and the carry D.

1670 CL*=STR*CflL+BL:>

CL$=STR$(ftJ901 23456| + |t(57943572|)

CL$=STR$(|ti148067028|)

CL$= |bi|1|4|8|0|6|7]0f2]8]

1075 CL*=MIH*';CL*..2,LEH<:CL*>-1>

CL$=MID$(|a|l|4|8l0|6|7|0|2l8l.2.10-1)

CL$=MID$([gTfT4T8|0l6|7|0|2|8| .2.9)

CL$= |1|4|8|0|6|7|Q|2l8l

1080 IF LEN<CL*.>>F THEN D = l

LEN(CL$)=9 ;F=8

9>8^D= 1

1 096 CH*=STR* < FiH+BH+rO

CH$=STR$(fti1 23456781 + |lz(00000000| + @)

CH$=STR$(|b(1 23456791)

CH$=|til1|2|3|4|5|6|7|9l

1 695 CH*=M I D* i CH* , 2 .. LEN C CH*) - 1 >

CH$=MID$([g[f|2|3|4|5|6|7|9| .2.10-1>

CH$=MID$(lgjf[2|3|4|5|6|7l9| ,2,9)

CH$= |1|2|3|4|5|6|7|9l

192 PET/CBM Personal Computer Guide

Step 4: Next we concatenate the two sums into one answer by linking CH$ to the

front of CL$. The preceding space and carry are truncated from CL$ by selecting the

rightmost eight digits from that string.

1100 C*=CH*+RIGHT*<CL*,F>

C$=CH$[M2l3|4|5|6|7|9| + RIGHT$(CL$ |H(|1|4|8|0|6|7|0|2|8| .8)

C$=IK|1|2|3|4|5|6|7|9| + |4|8I016|7|0|2|8|

C$= ltfhl2l3|4l5|6|7|9|4|810|6|7|0|2|8|

Step 5: Print the answer C$.

1110 PRINT : PRINT"ftNSWER=" ; C* : PRINT

The program is now complete. This Multiple Integer Addition program accepts

two positive integer numbers that can be up to 16 digits long. The numbers are

divided into high and low segments of eight digits each. The high and low segments

are added and the two sums are concatenated into a single string answer with a max-

imum length of 17 digits. This Multiple Integer Addition program allows you eight more

digits than the CBM computer's maximum.

Below is the listing of the complete program with a sample run.

10 PR I NT " r***MULT IPLE I NTEGER ADD I T ITON*** "
: PR INT

20 INPUT R*,B*
1000 X=LEN<fl*:> V=LEN<B*>
1002 IF SOY THEN F=X/2 = GOTO 1006
1004 F=Y/2
1006 IF F>INT<F> THEN F=INTCF>+1
1010 IF X<=F THEN fiH=0:RL=VflLCR*> : GOTO 1040

1020 hh»val<:l.eft*<h*.x-f:o
1030 FlL=VfiL<RIGHT#<R*,F5>
1040 IF V<=F THEN EH=0 : EL=VflLCB*> : GOTO 1070

1058 bh=vrl<left*<b*,v-f;o
1060 bl=vrl<right*<b*,f:>>
1070 cl*=str*<rl+bl:>
1075 cl*=mid*ccl*>2,len<cl*>-1^
1080 IF LEN<CL*>>F THEN D=l
1090 CH*=STR*<RH+BH+B>
1095 CH*=HID*<CH*,2-LEN<:CH*>-1>
1100 C*=CH*+CL*
1110 PRINT : PRIHT nRNSWER=" ; C* : PRINT
1 1 20 RH=0 = RL=0 : BH=0 : BL=0 11=0 CH»= " " : CL*= " " : C*= GOTO 20

1130 END

•••MULTIPLE INTEGER ADDITION***

? 1234967890 123496
??97943972

RNSMER- 1234967948067028

Try modifying this program to receive inputs and display results as dollars and

cents.

SUBTRACTION

As with addition, you can subtract numbers with more than nine digits by using

numeric strings, or by using multiple integer math.

Subtraction using Numeric Strings

This subtraction program contains many sections of the "Addition using Numeric

Strings" program. The steps involved are as follows:

Chapter 5: Making the Most ofCBM Features 1 93

1

.

Input the minuend and subtrahend as two positive numeric strings.

2. Right justify the strings.

3. Determine the larger numeric string.

4. Subtract corresponding digits of the strings separately, with borrowed carries.

5. Concatenate the answer into a one-string result.

6. Eliminate leading zeros in the answer string.

7. Print the answer string.

Step 1: The first step is to input the minuend and subtrahend as two positive

numeric strings using an INPUT statement:

10 PRIHT"***SLIBTRflCTION***" PRINT
28 INPUT fl*,B*

RUN

SUBTRflCT ION

7123456789012 A$fT[2l3

??57943572 B$ |5[7l9

;

4
|

5|6|7|8|9|0|l(2l

4|3|5|7|2|

A$ is the minuend (the first or top number entered, from which another number is

subtracted). B$ is the subtrahend (the number subtracted from the minuend).

Step 2: Align the minuend and subtrahend by right-justifying both numeric
strings. This is the same as was presented in step 2 of the "Addition using Numeric
Strings" program.

30 BLfiNK*="
40 X=LENCfl*> : V=LEN<B*>
50 IF X<V THEN fl*=LEFT* < BLANK*, V-X>+fl*
60 IF VO: THEN B*=LEFT*<BLANK* ,.X-Y>+B*

Step 3: For subtraction, we must determine which numeric string has a larger

value. Although the input strings may be equal in length, their values can be quite

different.

The values of A$ and B$ are compared using the VAL function in statements 65

and 70:

65 IF VflL<fl*>=VflL<B*> THEN C*="0":GOTO 1150
70 IF Vf\L<H$:>>VftHBS-y GOTO 108O

We are going to subtract B$ from A$.

If A$ is larger than B$, we have a simple subtraction problem, and the program
drops to line 1000. If B$ is larger than A$, we are subtracting a larger number from a

smaller number, the program prepares for a negative answer.

If the subtrahend is larger than the minuend (B$ is larger than A$), the answer
will be negative. To subtract two numbers that yield a negative answer, we switch the

contents of A$ and B$ so that the value of A$ is larger than B$. Subtract B$ from A$,
and the difference is C$. To make C$ negative, a negative sign, " — ", is concatenated

onto the front of C$: C$= "-" + C$.

Let us subtract 5 from 3, for example. This presents a subtraction problem where

VAL(B$)>VAL(A$), or the subtrahend is larger than the minuend.

; 94 PET/CBM Personal Computer Guide

A$ [3]

B$ H
Switch A$ and B$

A$[5] B$|3] — A$[|] B$[3]

Subtract: VAL(A$)-VAL(B$)=C$

A$[5| - B$[3] — C$(2]

Convert to negative

C$ = "-" + C$
"- + c$ \2\ - c$ E3

Answer:

C$ E3

The variables are switched at line 80.

30 X*=fl* : fi*=B* : E*=X*

Program Statement Memory

X$ A$ B$

: 3 5

X$=A$ 3 3 5

A$=B$ 3 5 5

B$=X$ 3 5 3

X$ acts as a storage string. Without X$, the original contents of A$ would be writ-

ten over and the contents of B$ would be written back into itself:

Program Statement Memory
A$ B$

• 3 5

A$=B$ 5 5 Incorrect

B$=A$ 5 5

Later in the program we will need to know if the variables have been switched. We
therefore set a marker to signal that A$ and B$ have been switched. Use variable S for

this: S remains if the variables have not been switched. If the variables are switched,

set S= l. Line 90 sets S = l if the values of A$ and B$ have been switched.

30 S=l

Remember that after the strings are properly switched, a value of 1 is assigned to S

to signal that the numbers have been switched and a negative answer is needed. The
negative answer is obtained by concatenating a negative sign to the front of the answer

before it is printed. This occurs at statement 1140.

1140 IF S=l THEN C*="-"+C$

Step 4: Whether the final answer is negative or positive, the value of A$ is now
larger than B$. We can now perform simple subtraction at lines 1000 and 1080. The

routine is taken directly from lines 1020 to 1 100, step 3 of the "Addition using Numeric

Strings" program, because the digits are extracted from the strings in the same manner.

However, at line 1050, the carry variable D is now used as a "borrow" variable. If

(A-B)<0, then a tens digit must be borrowed from the adjacent left column, increasing

the value of A by 10. D is set to —1 because a "1" is being borrowed, thereby decreas-

ing the value of the adjacent left column. The result is C:

1000 REM**SUBTRHCTION ROUTINE**
1010 FOR I=LEN<II=I#> TO 1 STEP-1
1 020 fl=VflL <

M

I D* < B* , I , 1 ?

>

1030 fi=fi+B :

D-0
1 040 E=VfiL < M I D* < B* , I .. 1 ; >

1050 IF (fl-BXB THEN H=-l Fl=fl+10

1060 C=fl-E

Chapter 5: Making the Most ofCBM Features 1 95

+9

-10^+10^+10

«£ $9 7 8

,+je^+io

2

5 7 9 4 3 5 7 2

C 123398845440
Step 5: Concatenate the answer into a one-string result. This function is taken

directly from line 1090 of the "Addition using Numeric Strings" program, except that N
is not used since there will never be a final carry. In our subtraction program, concatena-

tion of the individual answers into one result occurs at line 1070.

1078 C*=RIGHT*c:STR*>;C>, 1 >+CS

Step 6: Subtraction can generate leading zeros in the answer. We eliminate these

leading zeros before printing the answer. The FOR-NEXT loop in lines 1090 to 1120

checks and eliminates all leading zeros, using the VAL function and variable L as a

counter.
1090 FOR 1 = 1 TO LEN<C*:>
1 1 00 I F VfiL C f ,

I

Xlt < C* , I .• 1 J > =0 THEN L=L +

1

1110 IF VRU CLEFT* CO*, I»06 THEN I=LEN>;C*::'

1120 NEXT I

The FOR-NEXT loop, which iterates from 1 to the length of the answer C$,

searches for leading zeros or blanks by extracting each digit from C$ and comparing it to

zero. It compares digits from left to right. If it identifies a zero or blank, counter variable

L is incremented by 1 (statement 1100). As soon as the first non-zero or non-blank

character is encountered, loop counter L is set to the length of the string so the program

may drop out of the loop immediately.

Once we have determined the number of leading zeros in the answer, we separate

the leading zeros from the remainder of the answer C$. At line 1 130, the RIGHTS func-

tion takes the LEN(C$) -L rightmost digits and stores them in the answer variable C$.

C$=l0|0h|2l315|7l LEN(C$) = 7

I MID$(C$.I.D

1 00 12357 =0 L=1
2 00 12357 =0 L=2
3 0012357 <>0 l

= LEN(C$)

7 I
= 7 droD out of loop

1 1 30 C*=R I GHT* C C* , LEN (C* > -L >

C$=RIGHT$ (|0|0|1|2|3|5|7l.7-2)

C$=RIGHT$ (|0|0|1|2|3|5|7l ,5)

C$= [T[2|3l5l7]

Step 7: Print the answer string C$. But before we print C$, we check to see if the

answer is to be negative by testing variable S at line 1140. If S= l, that means that origi-

nally A$<B$, and the final answer is to be negative, so a negative sign is added to C$. If

S=0, the answer is positive, so nothing is added. Line 1150 prints C$:

1140 IF S=l THEN C*="-"+C*
1150 PRINT- PR I NT " flHSWER=

"

i C$ PR I NT

The last lines, 1160 through 1180, clear all strings and variables to zero or null,

and return the program to the beginning for the next input numbers. The total program

is listed below.

1 PR I NT " rW#*SUBTRfiCT I ON*** " PR I NT Clear screen

,20 INPUT fi$, B$ Input numeric strings

30 BLFlNK*=" "

)
48 X=LENCFl*> : V=LEN<:B*::' (Right justify strings (fromjlines

50 IF K-CV THEN rl*=LEFT*>:'BLHNK*, V-X>+H* < 20-60 of the additionj program)

60 IF V<X THEN BS=LEFT*C BLANK*, X-V>+SS I

Subtraction loop (based on

lines 1020-1100 of the addition

I% PET/CBM Personal Computer Guide

65 IF VflLCFlt^'v'flLCE*::' THEN C*="0"-GOTO 1150

70 IF VHL<H*>:>=VflL<:B*> GOTO 1008
SB XJ=fl* Fl*=B* B*=X* } If A$<B$. switch strings

30 S=l
1008 REM**SUBTRfiCTION ROUTINE**
1810 FOR I=LEN';Fl*::' TO 1 STEF'-l

1028 fl=vflLaiiD*cfl*, i, i;o

1030 fl=fl+ri : d=o
1040 E=VflLCMin* l::B*,I,l>::' .

.

1850 IF CH-BX0 THEN D=-l fi=fi+18
(program,

I860 C=fl-B
1070 C*=RIGHT*t:STR$';C;', 1>+CS
1 080 .NEXT I

1890 FOR 1 = 1 TO LENCC*::' *
, _,.

1188 IF VflL.::riID*<C*.. I,lX)=e THEN L=L+1 I Truncate leading zeros

1110 IF VRL<LEFT*O;:*,i:J.VO0 THEN I=LEN<C*>) and Dlan,tS

1128 NEXT I

1 1 38 C*=R I GHT* < C* , LEH < C* ;• -L ;

1140 IF S=l THEN C*="-"+C*
J. 1 50 PR I NT FR I NT " flNSWER= "

.: C* PR I NT Print answer

1 1 60 C*= "
" H*= "

" B*= "
" X*= "

"

i .

1 1 65 fi=8 : E=0 C=@ D=0 3=8 X=8 : V=0 \
Clear s,rm 9s and vanableS

1 1 70 30T028
1 1 30 END
SUBTRFICT ION
?1234567890 12
??57943572
fiNSWER= 12339S845448

The string subtraction program illustrated above has one problem: it generates a

zero result if the subtrahend and minuend have the same number of digits, and in addi-

tion are identical in their nine most significant digits. For example, try subtracting

123456789000 from 123456789012. The answer is reported inaccurately as 0. This error

results from the statements on line 65. The VAL function computes a 9-digit value for

strings A$ and B$. If these two numeric strings are identical in their nine most signifi-

cant digits, then the equivalence test on line 65 will be true whatever values the two

numeric strings may have in lower significant digits. Can you correct this problem by

separately testing the upper and lower halves of the numeric strings?

Multiple Integer Subtraction

Recall from the previous discussion of multiple integer addition that the multiple

integer method divides a large number into smaller segments, calculates the segments

separately, and joins the answers into one string. This method evades the 9-digit length

limit.

Multiple Integer Subtraction has these steps:

1. Input the minuend and subtrahend as two positive numeric strings.

2. Determine which string has the larger value.

3. Divide the numbers into high and low parts.

4. Calculate the difference for the low-order and high-order halves.

5. Concatenate the differences into a one-string answer.

6. Truncate leading zeros.

7. Print the answer string.

Step 1: Input the minuend and the subtrahend as two positive numeric strings:

Chapter 5: Making the Most ofCBM Features 197

10 PRINT":***MULTIPLE INTEGER SUBTRACTION***" : PRINT
20 INPUT R«,B$

RUN

MULTIPLE INTEGER SUBTRACTION

71234567S9012
??5?943572

A$, the minuend, and B$, the subtrahend, are entered as strings to avoid the 9-

digit length limit.

Like multiple integer addition, A$ and B$ are divided into smaller segments. The

maximum input length is arbitrarily set at 16 digits, so that we can divide the largest

possible string into equal segments of eight digits each.

Step 2: Determine which input string has the larger value. If A$ is equal to B$

then the program drops down to line 1 190 to print a zero answer. If B$ is larger than A$
the difference is negative and extra steps are needed.

If the answer is to be negative, the contents of the two strings are switched to put

the larger value in A$ and the smaller value in B$. They are then subtracted, and a nega-

tive sign ("— ") is concatenated onto the front of the difference (C$) as was demon-

strated in line 70 of "Numeric String Subtraction." Line 30 is used here to direct the

program past the switching routine if switching is not needed.

30 IF VfiLCfl#>>VflL<B*> THEN 1000
40 X*=fl* : fl*=B* B*=X*
50 S=l

If the value of B$ is larger than the value of A$, the contents of A$ and B$ are

switched at lines 40 to 50. This ensures that the smaller number is subtracted from the

larger one. A marker is set to indicate that the variables have been switched.

For a detailed explanation of this routine, refer to step 3 of "Numeric String

Subtraction."

Step 3: Divide AS and B$ into two smaller segments, high and low.

1000 X=LENCfl*> :V=LEN<B*>
1002 IF X>V THEN F=X/2 : GOTO 1006
1004 F=V/2
1006 IF F>INT<F> THEN F=INT<F>+1
1010 IF X<=F THEN BH=0flL=VflL<fl*>GOTO 1040
1020 flH=VflL<:LEFT*<fl* J X-F)>
1030 flL=VflL<RIGHT*<H*,F)J
1040 IF V<«F THEN BH=0 • BL=VfiLCB*> ^GOTO 1070
1 050 BH=VflL <LEFT* < B* , V-F > >

1060 BL=VflL<RIGHT*<B*,F;>>

Statements on lines 1010 and 1040 compare the string lengths with the divider

point F. F is determined at lines 1002 and 1006. These lines are identical to lines 1002

and 1006 of the "Multiple Integer Addition" program. If the string is shorter than F,

AH (or BH) is assigned a zero value, leaving AL (or BL) with the entire string as its

value. If the string is longer than F it must be divided into high and low segments. AH is

assigned the leftmost LEN(AH), minus F digits.

AL |t!789012 l

A$|1|2|3|4|5|6|7|8|910|1|2|

B$ |5|719|4|3|5|7|2|

AH|bJ1 234561

BH|WM«B57| BL |bS943572|

1 98 PET/CBM Personal Computer Guide

Lines 1000 through 1060 are also similar to lines 1000 through 1060 of the

"Multiple Integer Addition" program, which divides A$ and B$ into AH, AL, BH, and

BL. Refer to step 2 of "Multiple Integer Addition" for further explanation.

Step 4: Calculate differences for the high-order and low-order segments. BL is

subtracted from AL, and BH is subtracted from AH:

AH [ti(1 23456| Al_ jtzl789012|

-BH(SSSS|57] -BL|K943572
]

Before the segments are subtracted, the minuend and subtrahend must be com-

pared. If the value of BL is larger than AL the difference is negative. This creates

problems because a negative CL cannot be concatenated onto CH:

CH |bixxxxxx| CL |-xxxxxx|= C |blxxxxxx-xxxxxxl Incorrect

Therefore, we must borrow from AH to increase the value of AL so that the difference

will be positive. Lines 1070 to 1090 borrow from AH and increase AL before BL is

subtracted from AL:
1070 IF ffl_>=BL THEN 1100
1080 BL=fiL+10TF
1090 FlH=flH-l

If AL is larger than BL we bypass 1080 and 1090 and jump directly to the subtrac-

tion. But if BL is larger than AL we must borrow a one million value from AH to

increase the value of AL:
-1 +1000000

AH |xxxxxjx]

-BHIxxxxxxl

ALj |xxxxxx|

-BL |xxxxxx|

CL jxxxxxx|CH |xxxxxx]

A ten is added to the leftmost digit of AL. The easiest way to add the ten in the

correct position is to raise ten to the Fth power.

AL=AL+10tF

In our sample program, AL is smaller than BL, as tested in line 1070.

AL |t(789012| <BL |B943572]

Therefore we must borrow 1000000 (10|F=10| 6 =1000000) from AH to

increase the value of AL:

1080 ML=flL+10TF

AL=AL+10t6

AL=AL+1000000

AL=|789012[+ 1000000

AL= |1 78901 2]

After AL is been increased, AH must be decremented by 1 , since we borrowed

from it.

1090 FfH=l=(H-l

AH= |bf!23456l -[Fl|

AH=1«1 23455|

Once AH, AL, BH, and BL have been set up properly, segments are subtracted.

CL$ is the difference between AL and BL, and CH$ is the difference between AH and

BH.

Chapter 5: Making the Most ofCBM Features 199

Statements on lines 1100 through 1102 compute CL$:

i .1 08 CL*=STR* < I NT ; flU-BL ':> ?

CL$=STR$(fe(1 789012-6(943572)

CL$=STR$(fe(845340)

CL$= b!345540

Using the MID$ function at line 1101, the leftmost character (a blank representing a

positive sign value) is truncated:

1191 CL*=M I D* •:: CLt , 2 , LEH i CLf > - 1)

CL$=MID$([g]8[4|5|4|4|0| 2,6)

CL$= |8|4|5|4|4|0|

At 1102, if the length of CL$ is shorter than F, zeros from ZEROS are concate-

nated onto the front of CL$. An assignment statement assigns a string of 0s to variable

ZEROS on line 15. In this case, the length of CLS is equal to F, therefore no leading

zeros are needed.
1 5 ZERO*= " 0000090000000080

"

i 1 82 CL*=LEFT* < ZERO* , F-LEN < CL* ; > +CL*

CL$=LEFT$ (ZERO$,6-6)+CL$

CL$=LEFT$ (ZERO$.0)+CL$

At line 1110, CHS is assigned the string integer value of AH — BH:
.1110 CH*=STR*aHTCflH-BH::0

CH$=STR$(b(1 23455-6(57)

CH$=STR$(bf1 23398)

CH$= |fel|1|2|3|3|9|5|

Using the MID$ function, the leftmost blank character is truncated:

1111 CH*=M ID* C CH* .. 2 , LEN < CHS > - 1 .':

CH$=MID$([5IT|2|3|3|9|8| .2,6)

CH$= |1|2|313|9|8|

The subtraction routine looks like this:

1070 IF P)L>=EL GOTO 1100

789012 > =943572 False statement

Program continues at next line

1088 flL=HL+10TF

AL=789012+1000000

AL=1789012

1&30 f)H=fiH-l

AH= 123456-1

AHb!123455

1100 CL*=STR*CINTCflL-EL>?

CL$=STR$(fe!1 78901 2-K943572)

Cl$=STR$(fc(845540)

CL$=|8|4|5|5|4|0|

1101 CL*=MID*CCL*..2.. LEN<CL*>-1>

CL$=MID$(|5l8l4[5|5|4|0| .2.7-1)

CL$=MID$(|tfl8|4|5|5|4|0| .2.6)

CL$=I8|4|5|5|4|0|

200 PET/CBM Personal Computer Guide

1 102 CL*=LEFT*<.ZERO*.. F-LENCCL*;' >+CL*

CL$=LEFT$(ZERO$.6-6)+CL$

CLS=LEFT$(ZERO$.0)+|8l4|5l5|4l0l

CL$=1814|5|5|410|

1110 CH*=STR* < I NT (HH-EH > >

CH$=STR$(bf123455-llS57)

CH$=STR$(bf1 23398)

CH$=ltfl1|2|3|3|9|8l

1 1 1 1 CH*=M I D* C CH* , 2 , LEU < CH* ':> -
1 >

CH$=MID$(|b(|1|2|3|3|9|81 .2,7-1)

CH$=MID$(|tf|1|2|3|3|9|8l .2.6)

CH$=| 1|2|3|3|9|8|

Step 5: Concatenate the answer strings, CHS and CL$, together by numeric

string concatenation. They are concatenated in statement 1120:

1 120 C*=CH*+CL*

C$=CH$
| |

+ CL$H

C$= l ~l

Only the rightmost "F" numbers from CL$ are concatenated onto CHS to avoid

concatenating any leading blanks in CLS (see the "Subtraction using Numeric Strings"

section for further discussion).

Step 6: Truncate leading zeros in C$ before C$ is printed. Leading zeros are

subtracted in the same way for Multiple Integer Subtraction as for Numeric String

Subtraction (see step 5 of "Subtraction using Numeric Strings"). Lines 1130 through

1170 truncate leading zeros just prior to printing C$:

1130 FOR 1=1 TO LEN'X*>
1140 IF VftL<MlD*<Cf,l,l)>=& THEN L=L+1
1 1 50 IF VHL < LEFT* i C* > I J ':> <>0 THEN I =LEN < C*

>

1 1 60 NEXT I

1 1 70 C*=R I GHT* C C* . LEN < C* > -L >

1180 IF S=l THEN C*="-"+C*

If AS and B$ had been switched, S would have been set to 1, signaling a negative

answer, and thus a negative sign would be concatenated onto the front of C$ at 1180.

Step 7: Print the answer and clear out variable strings before allowing another

problem to be input.

1 1 90 PR I NT PR I NT "RNSUER= "
i C* : PR I NT

1 2B0 fl*=
"

" E*= "
" C*= "

"

: CH*= "

"

CL*= "

"

1 205 f=lH=0 : flL=@ : BH=0 : EL=S F=0 : S=0 : X=0 V=0
1210 GOTO 20
1223 END

The finished program appears as follows:

10 PRINT":»**MULTIPLE INTEGER SUBTRACTION***" : PRINT
1 5 ZERO*= " 0006800000000000

"

20 INPUT fl*,B*

25 IF VflL<fi*>=VRL<B*> THEN C*="0" : GOTO 1190

30 IF VFIL<:R*>>VflL<B*> GOTO 1000

40 X*=R* : R*=B* : B*=X*
50 S=l
1 000 X=LEN (fi* >

: V=LEH < B* >

1002 IF X>V THEN F=X/2 : GOTO 1006
1004 F=V/2

Chapter 5: Making the Most ofCBM Features 201

lees if f>int>;f> THEN F=IHTCF>+1
1010 IF X<=F THEN flH=0:flL=VHL<fl*> GOTO 1040
1020 flH=VflL<LEFT*<R*, X-F> >

1930 flL= ,

v
,flL';RI6HT*',H*, F> J

1049 IF V<=F THEN B=0 : BL=VfiL>:.B*::' : GOTO 1070
1 050 EH=VflL <LEFT* C B* , V-F > ;

1060 bl=vhl<:right*<:b*.. f:> >

1070 IF fll_>=BL GOTO 1100
1080 flL=HL+10tF
1030 HH=F)H-1
1 100 cl*=str*c iht>;hl-el:j >

1101 CL*=MID*0::L*, 2, LENCCL* ::'-l >

1 1 02 CL*=LEFT* < ZERO* , F-LEN < CL* .':< .") +CL*
1110 CH*=STR* i INT < fiH-BH > >

1 1 1 1 CH*=M I D* C CH* , 2 .. LEN C CH* > - 1 J

1120 C*=CH*+CL*
1130 FOR 1 = 1 TO LENCC*')
1148 IF VflLCMID*(:C*, I.. 1 >.")=0 THEN L=L+1
1 1 58 I F VflL <:.' LEFT* C C* , I > .':O0 THEN I =LEH <.' C*)

1160 NEXT I

1 1 70 C*=R I GHT* :.' C* , LEN < C* ; -L .)

11S0 IF 3=1 THEN C*="-"+C*
1190 PRINT:PRINT"flNSWER= "

.; C* : PRINT
1200 fl*=" " E*=" " C*=" " CH*="

"

CL*="

"

1 205 flH=0 ML=0 : EH=0 •' BL=0 F=0 : 3=0 : X=B V=0
1210 GOTO 20
1220 END

MULTIPLE INTEGER SUBTRACTION

7123456789012
??57943572

flNSWER= 123393845440

? 1 234567896 123456
??57943572

FINSWER= 1234567S32 1 79884

79999999999999999
771234567890

FlNSWER= 9999998765432109

You now know two methods of subtraction. The first method used numeric
strings. The second uses multiple integer math. By comparing their outputs, you can see

that both methods work equally well at getting around the 9-digit length limit.

MULTIPLICATION

A 9-digit length limit may be easily exceeded by multiplication because a product

may be very large, even when the multiplier and multiplicand are small. This numeric
length limit prohibits products longer than nine digits from being displayed without

exponential notation. You can get around this limitation by writing a program that dis-

plays products with more than nine digits of precision. Displaying products exceeding

nine digits without exponential notation is most easily done using Multiple Integer

Multiplication. The following program and discussion will enable you to display pro-

ducts up to 16 digits in length without exponential notation.

202 PET/CBM Personal Computer Guide

Multiple Integer Multiplication

Using virtually the same steps as Multiple Integer Addition and Subtraction,

Multiple Integer Multiplication separates the multiplicand and multiplier into smaller

segments, multiplies all segments, and adds the multiple products together into one

final product, which can have from one to 16 digits.

The steps for Multiple Integer Multiplication are as follows:

1. Input the multiplicand and the multiplier as two positive numeric strings.

2. Divide the strings into high and low segments.

3. Multiply the corresponding segments.

4. Add the segment products to create one product string. Truncate any leading

zeros.

5. Print the product string.

Step 1: Input the multiplicand and the multiplier as two positive numeric

strings, where A$ is the multiplicand and B$ is the multiplier. As with the other math

programs, the numbers are input as strings to avoid the 9-digit length limit.

This program limits the length of the product to 16 digits. Since the maximum

product length equals the sum of the lengths of the multiplicand and multiplier, the sum

ofthe lengths ofthe input numbers cannot exceed 16. Changing the program to accept larger

numbers requires several alterations which will not be discussed; you should be able to

make such changes yourself. For this program:

(length of A$)+ (length of B$)<16

Examples: 12 + 4 <16
2 + 3 <16
8 + 8 <16

The example program will multiply two input numbers with equal lengths of eight

digits: 99999999 and 99999999, to give us a 16-digit product.

99999999— 8 digits

X99999999— + 8 digits

9999999800000001*- 16 digits

Input the multiplier and multiplicand as two positive numeric strings, A$ and B$:

10 PRINT "."»**MULTIPLE INTEGER MULT I PL I CAT I ON*** ": PRINT
28 INPUT A*,B*
RUN
MULTIPLE INTEGER MULTIPLICATION
799999999
7799999999

Step 2: Separate both input strings into two segments: high (H) for the leftmost

digits and low (L) for the rightmost digits. The dividing point, variable F, specifies

where to divide A$ and B$ into segments. The value of F is set at lines 1002 and 1006

(for explanation refer to "Multiple Integer Addition").

1060 X=LEN'CR*:> :V=LEN<B*0

X=8 Y=8

1002 IF X>V THEN F=X/2 : GOTO 1008
1604 F=V/2

F=8/2
F=4

1066 IF F>INT<F>THEN F=INT<F>+1

Chapter 5: Making the Most ofCBM Features 203

Once F is set, the program divides the numbers into high and low segments. This

routine was presented in the "Multiple Integer Addition" program. Lines 1010 through

1060 divide the two strings into high and low segments.

1010 IF XOF THEN AH=0 : FIL=VHL<fl*> GOTO 1040
1020 FlH=VflL';LEFT*'C(=l*,X-F>>
1030 flL=VRLi;RIGHT*CB*,F.)>
1040 IF V<=F THEN EH=0 : BL=VfiL < B* >

: GOTO 1070
1050 bh=vfil<:left*<b*..v-f:>;>
1060 bl=vfil < r i ght* < b* , f > >

The routine above divides A$ into AH and AL (four digits) and B$ into BH and

BL (four digits)

:

A$ |9l9j9|9|9|9|9l9| B$|9|9[9|9|9|9|9l9l

/ \ / \
AH |9|919]9| AL |9|9|9|9| BH |9|9|9|9j SL |9]9j9|9|

Step 3: Multiply AH, AL, BH, and BL into four product strings: Pl$, P2$, P3$,

and P4$. The rules of algebraic multiplication multiply each variable as if it were a single

number. A$ and B$ are multiplied as follows:

x [bh1 [blI

Think of A$ and B$ as two sets of 4-digit numbers (H and L) joined in the middle, and
not as eight individual digits: A$ is not eight 9s, but two sets of four 9s each. Thus AL
and BL are multiplied as:

|al| |9999|

x BM 9999

Multiplying A$ and B$ is a four-step process. To begin, multiply BL by AL:

(ah] [alL

[bhI [bTK

and then multiply BL by AH:
[ah) [AL]

f5HMBLl

Next, move over to BH and multiply BH by AL:

and finally multiply BH by AH:

Here is the four-step process:

|ah] [ATk gH] |al]]ah] [al] -{ah] [al]

x[bh] [blT x[bh1 Tbl] x[bh[[blI x]1h1 Fbl]

i
p1$

i i p1$ i i
p1$ i i

p1$
i

i
p2$

i i

p2$
i i

p2$
i

!
P3$

1
I

P3$
|

I
P4$

|

204 PET/CBM Personal Computer Guide

Let's look step by step at how the multiplication works, using the values of AH,

AL, BH, and BL from our example:

AH |b(9999l ALlbS9999|

BH |b<9999| BL |fel9999|

The first multiplication is BL times AL:

|AH] |K9999

x |h) [59999

89991
89991
89991

89991

99980001

The second multiplication is BL times AH, as shown in the diagram below:

AH [9999]^ |~^L~1

x |
BH | BL f9999]

99980001
999800010000

Notice that P2 is not directly beneath PI, but four spaces to the left (recall the

rules for lining up the products of 2-digit multiplication problems). To continue in the

same manner, the third multiplication should be as follows:

HaFTI AL [99991

BH |9999| |
BL

|

-

999800010000

The fourth and final multiplication should be as follows:

AH
1 9999K I

A L

BH I9999K i
BL

I

9998000100000000

Remember that only the values of the four segments are multiplied; this means

that the actual multiplication done by AL x BH, etc. yields the same number,

99980001, for all four products. In the program the products are aligned by converting

the products into strings and concatenating the necessary number of zeros onto the

end of the strings. This aligns the strings correctly. Statements on lines 1070 through

1100 perform this alignment:

1070 Pl*=STR*<BL*fii->
1080 P2*=STR*<BL#fiH>+F*
1090 P3*=STR#<BH*RL)+F*
1100 P4*=STR*<BH*f=IH>+F*+F*

Without alignment the answers would be computed incorrectly as follows:

Incorrect

P1 |99980001

1

P2
1 99980001

1

P3 1
99980001

1

P4
1 99980001

1

I I

Chapter 5: Making the Most ofCBM Features 205

instead of:

9998000

U

99980001 0000

|99980001| 0000 Correct

99980001 00000000

The number of zeros to be concatenated onto the end of the product strings is

assigned to F$. F$ contains F zeros. F equals the number of digits in each half of the

multiplier and multiplicand.

40 2ERO*="0000000000000000"
106S F*=LEFT*>;ZERO*,F^

F$=LEFT$(ZERO$.4)

f$= !5TbTololoiolololol6~!o1

F$="0000"

When Pl$, P2$, P3$, and P4$ are computed (lines 1070 through 1100), the correct

number of zeros are simultaneously concatenated to the end of the string to align the

products correctly. The products are now aligned and ready to be added:

AH 1tJ|9j9j9|9| AL |tf|9|919|91

x BH M9|9l9|9| BL ltt|9|9|9|9l

1999800011 PI

199980001 0000] P2

|999800010600l P3

9998000100000000 P4

i If multiplicand or

f
multiplier = then

>Set divider point. F

F$ F$

At the end of step 3, the program looks like this:

20 INPUT H*,B* Input values for A$. B$

30 IF VflLCfl*>=0 OR VflLCE*>=0 THEN
C*="0"GOTCi 1130

40 ZERO*="0000000000000000" ' answer (C$) =
1000 X=LEN<fi*):V=LEN<B*>
1002 IF X>V THEN F=X/2 : GOTO 1006
1004 F=V/2
1006 IF F>INT<F>THEN F=INT<F>+1
1008 F*=LEFT*<ZERO*,F)
1010 IF X<=F THEN FlH=0:flL=VflL<Fl*> -GOTO 1040 1

1820 flH=VfiL< LEFT* < 1=1*, X-F.>;> I Divide A$ and I

1030 ftL=VHL(RIGHT*';fl*,F>> \ into parts:

1040 IF V<=F THEN BH=0 = BL=VHL<B*> : GOTO 1070 1 high and low

1850 bh=vrl<left*<:b*,v-f>:)
1060 bl=vfiL';right*<b*,f>:)
1070 Pl*=STR*<BL*fiL>

)
1080 P2*=STR*<BL*AH>+F* I Multiply A$ and B$

1090 P3*=STR*<BH*flL>+F* (
and align products

1100 P4*=STR*<BH*flH>+F*+F* /

Step 4: Add the four products together. This is the most complicated part of the

"Multiple Integer Multiplication" program because parameters are passed back and

forth from the main program to an addition subroutine. We will use a portion of the

206 PET/CBM Personal Computer Guide

"Addition using Numeric Strings" program as a subroutine to add the products

together. Below is the portion of the addition program we will be using as a subroutine:

2006 REM**flDD PRODUCTS**
2010 BLHNK*="
2020 X=LEN<.fi*:> : V=LEN<B*>
2030 IF X<V THEN A*=LEFT*'CBLRNK*, V-X>+H*
2040 IF X>V THEN B*=LEFT*< BLANK*, X-VJ+B*
2050 D=0N=1 C*=""
2060 FOR I=LEN<A*> TO 1 STEP-1
2070 A=VRL < M I D* < A* , 1 , 1

>

>

2080 A=A+D = D=0
2090 B=VAL < M I D* < B* ,

1

, 1 >

>

2100 C=H+B
2110 IF C>=10 THEN D=l
2120 IF B=l FIND 1 = 1 THEN N=2
2130 C*»RIGHT*<STR*<O.N>+C*
2140 NEXT I

At line 1 1 10 the contents of Pl$ and P2$ are passed to the parameters A$ and B$,

which are used in the addition subroutine (lines 2000 and 2140).

1110 fl*=Pl*:B*=F2*
A$ |9|9|9|8|0|0|0Tll

B$ |9|9|918|0|0|0|1|0|0|0|0|

Notice that the contents of A$ and B$ are not the same as those input at line 20. The

same variable names are used to allow program compatibility between all four math pro-

grams. Only two parameters are passed at a time because the addition subroutine adds

only two numbers at a time.

Once the values for PI $ and P2$ are passed to AS and B$ the addition subroutine

is called:
1 1 20 GOSUB 2000

A$ and B$ are right-justified and equated in length for addition by adding blanks from

BLANKS to the shorter string (if there is one) in lines 2010 to 2040:

2010 BLRNK*="
2020 X=LEN<A*> =V=LEN<B*>
2630 IF X<V THEN fl*=LEFT*<BLfiHK*, V-X>+fl*
2040 IF X>V THEN B*=LEFT*<BLRNK*.. X-V>+B*

Statements 2050 to 2140 add the corresponding digits of A$ and B$ and convert

the sum C into the numeric string C$. (A full explanation of this process is given in the

"Addition using Numeric Strings" section.)

2050 D=0:N=1 C*=""
2060 FOR I==LEN<fl*:> TO 1 STEP-1
2070 R=VflL<MID*<fl*, l,i;0
2880 fl=R+DD=0
2098 B=VflL<MID*<B*. I , 1 >

>

2100 C=fl+B
2110 IF O=10THEN D=l
2120 IF D=l AND 1=1 THEN N=2
2130 C*=RIGHT*<STR*<C>-N>+C*
2140 NEXT I

The sum, C$, is passed through a FOR-NEXT loop to truncate any leading blanks

or zeros at lines 3000 to 3060. This truncation routine is from "Subtraction using

Numeric Strings."

3000 REM***TRUNCRTE LERD ZEROS***
3001 L=0
3010 FOR 1=1 TO LEN<C*>
3020 IF VRLCMID*<C*, I,1>>=0 THEN L=L+1
3030 IF VRL<LEFT*<C*, I) ><>0 THEN I=LEN<C*>
3040 NEXT I

3050 C*=RIGHT*<:C*,LEN<C*>-L>
3060 RETURN

Chapter 5: Making the Most ofCBM Features 207

C$, the sum of Pl$ and P2$, is returned to the main program and converted to

Ml$:
1130 M1*=C*

The contents of C$ must be transferred to Ml$ because C$ must be cleared before the

addition subroutine is called again at line 1150 to add P3$ and P4$.

To add P3$ and P4$ together, the values of P3$ and P4$ are passed to the

parameters A$ and B$ before calling the addition subroutine 2000:

1 1 32 fl*=P3* •• B*=P4* GOSUB 2080

A$ |9|9|9|8|0|0|0|0l0|0|0|0|

B$ |9|9|9|8|0l0|0|l[0|0l0|0l0|0[0|0l

The addition subroutine adds the corresponding digits of P3$ and P4$, truncates any

leading zeros, and returns sum C$ to the main program, where C$ is converted to M2$:
1135 M2*=C*

The addition subroutine is called a third time to add Ml$ and M2$ together to get

the final answer, C$.

1140 H*=M1*:B*=M2*

A$ |9|9[9|8|9l9|9|9|0|0|0|1|

B$ [9|9l9|8|9|9|9|9|0|0|011|0|0[0l0l

1150 GOSUB 2000

Step 5: After the third return from the addition subroutine, C$ equals the sum of

all four products. Step 5 prints the answer. The GOTO 20 allows another multiplication

problem to be solved.

1 1 90 PR I HT : PR I NT " flHSWER= " ; C* : PR I NT : GOTO 20
1200 END

The flow of the program looks like this:

/ 10 PRINT" ***MULTIPLE INTEGER MULTIPLICATION***"

Stepl

Step 2

Step 3

Input multiplier and multiplicand,

initialize variables

Calculate F, divide the multiplier, multiplicand

into high and low segments

Multiply segments into four products

into four products P1$; P2$; P3$; P4$

10 Pass P1$ + P2$ to parameters A$, B$

1120 GOSUB 2000 2000-2140 addition subroutine;

add P1$ + P2$ — C$
3000-3060 truncate leading zeros

1 1 30 Pass contents of C$ —M 1 $

1 140 Pass P3$ + P4$ to parameters A$. B$

1 150 GOSUB 2000 * 2000-2140 addition subroutine;
Step 4-^ add P3 $ + P4$ — c$

<- 3000-3060 truncate leading zeros

1 1 60 Pass contents of C$ —M2$
1 170 Pass M1$ + M2$ to parameters A$. B$
1180 GOSUB 2000 *- 2000-2140 addition subroutine;

add M1$ + M2$ — C$
-« 3000-3060 truncate leading zeros

f
11

Step 5 i
12

90 Prints C$
200 END

2QB
Chapter 5: Making the Most ofCBM Features

Here is the multiplication program listing and sample run:

18 PRINT"»**MULTIPLE INTEGER MULTIPLICATION***" : PRINT

20 INPUT R*,B* ^

30 IF VRL<fl*>-0 OR VAL<B*>=0 THEN C*="0" GOTO 1190

40 ZERO*="0000000800000000"
1000 X=LEN<A*> V=LEN<B*>
1002 IF X>V THEN F=X/2 : GOTO 1008

1004 F=W2
1006 IF F>INT<F>THEN F=INT<F>+1
1008 F*=LEFT*<ZERG*,F>
1010 IF X<=F THEN flH=0:flL=VflL<fl*) GOTO 1040

1020 AH=VAL<LEFT*<:A*,X-F>>
1030 AL=VAL<RIGHT*<fi*,F:>:>
1040 if v<=f then bh=0 : bl=val<b*> : goto 1070

1050 bh=vfili;left*';b*,v-f>>
1060 bl=val<right*<b*,f:>:>
1070 p1*=str*<bl*fil>
1080 p2*=str*<bl*ah:>+f*
1090 p3*=str*<bh*al>+f*
1 1 00 p4*=str* <bh*ah)+f*+f*
1110 A*=P1* : B*=P2*
1120 GOSUB 2000
1130 M1*=C*
1132 A*=P3* = B*=P4* : GOSUB 2000
1135 M2*=C*
1140 A*=M1*B*=M2*
1150 GOSUB 2000
1190 PRINTPRINT"ANSWER=".;C*FRINT:GOTO 20

1200 END
2000 REM**RDD PRODUCTS**
2010 BLANK*="
2020 X=LEN<.A*> : V=LENCB*>
2030 IF X<V THEN A*=LEFT* < BLANK*, V-X>+A*
2040 IF X>V THEN B*=LEFT* i BLANK*, X-VJ+B*
2050 D=0N=1 :C*=""
2060 FOR I=LENCA*> TO 1 STEP-1
2070 R=VAL < M I D* < A* .• 1 , 1 > >

2080 H=R+D : D=0
2098 B=VAL i M I D* : B* , 1 , 1 > >

2100 C=A+B
2110 IF C>=10 THEN D=l
2120 IF D=l AND 1=1 THEN N=2
2 1 30 C*=R IGHT* < STR* < C > , N > +C*
2140 NEXT I

3060 REM***TRUNCATE LEAD ZEROS***
3001 L=0
3010 FOR 1=1 TO LENCC*>
3820 IF VflL<MID*<C*,I,l>>=0 THEN L=L+1

3036 IF VALCLEFT*':C*,I>:><:>0 THEN I=LEN<X*>
3040 NEXT I

3050 C*=R I GHT* < C* , LEN C C* J> -L

>

3960 RETURN

*** MULTIPLE INTEGER MULTIPLICATION***

799999999
7799999999

AHSWER= 9999999800000001

Chapter 5: Making the Most ofCBM Features 209

GRAPHICS

Computer graphics is a unique subject. Whole books are devoted to this subject.

Of necessity, the discussion that follows is brief.

The standard graphic character set includes 64 graphic symbols. Select

graphics by issuing a POKE 59468,12 if you are using the alternate character set, which

has very few graphic characters. If you have a CBM 8000 computer, select graphics

using the Graphic editing function, as follows:

100 print chr$(142):rem select graphics

The graphic characters are all located in the upper-case positions on the keys, so

they must be entered in shifted mode.

Many graphic characters are referenced and illustrated on the following pages.

Refer to Table 1-1 or Appendix A for easy reference to graphic character keys, names,

and symbols.

GRAPHICS IN IMMEDIATE MODE
Sketching in immediate mode requires no line numbers, no PRINT state-

ments, and no quotation marks. In immediate mode the cursor may be moved freely

up, down, right, or left to any spot on the screen without pressing the RETURN key

after each directional change. Below is an example of a square drawn in immediate

mode. Starting with the cursor in home position, the square was drawn left to right, top

to bottom, right to left, and bottom to top, in one continuous movement. No line num-
bers, program statements, or carriage returns were needed.

7 spaces

7 spaces

We will use the square shown above as the basic graphic design to illustrate ele-

mentary graphics. Though simple in its design, sketching this square uses all CBM com-
puter graphic drawing techniques.

Draw a Square

There are nine steps to drawing a 7 x 7 square. They are:

Step 1: HOME the cursor. The top left corner of the HOME position space

becomes the top left corner of the square (Figure 5-3a).

Step 2: Type the upper left corner of the square. This is done by using the TOP
LEFT CORNER (Figure 5-3b).

Step 3: Draw the top line of the square. Because we will use a CORNER key for

the top right corner, type five TOP LINE HORIZONTAL D characters in this step

(Figure 5-3c).

210 PET/CBM Personal Computer Guide

a. HOME cursor b. Upper left corner c. Top side

d. Upper right corner e. Right side f . Bottom right corner

g. Bottom side h. Bottom left corner i.Left side

:M Denotes position of cursor at the completion of the step

Figure 5-3. Draw the Square

Step 4: Type the upper right corner of the square using the TOP RIGHT COR-

NER character (Figure 5-3d).

Step 5: Draw the vertical right side of the square. To allow space for the corner

key, type five RIGHT LINE VERTICAL .

We all know what this part of the square should look like, but does your screen

look like this instead?

I 1 I I I I I

If so, this happened because the cursor is automatically moved one space to the right

after'any character is displayed. To enter characters vertically, the cursor must be reposi-

tioned both vertically and horizontally to compensate for the automatic cursor move-

ment to the right.

To print the vertical line of the square, then, repeat the sequence of CURSOR

DOWN, CURSOR LEFT, and RIGHT LINE VERTICAL. Do this five times, and you

should have printed the right side of the square (Figure 5-3e).

Step 6: Type the bottom right corner of the square using the BOTTOM RIGHT

CORNER character O . Before you type this, look to see where your cursor is; if you

haven't already done so, use CURSOR DOWN and CURSOR LEFT to position the cur-

sor at the corner of the square; then press the corner key (Figure 5-3f).

Step 7: Draw the bottom line. Because we are using CORNER keys, we need just

five BOTTOM LINE HORIZONTAL characters ID (Figure 5-3g).

Chapter 5: Making the Most ofCBM Features 211

One method is to enter the line from right to left. After each character entry on

the bottom line, two CURSOR LEFT movements will be needed to correctly position

the cursor for the next entry.

Ir

1 st entry here 2nd entry here

A second, and possibly more natural, method of drawing the bottom line is from

left to right. To do this, position the cursor to the leftmost space of the bottom line (one

space to the right of the left edge of the screen); this can be done using six CURSOR
LEFTs. You can then easily enter five BOTTOM LINE HORIZONTALS to create the

bottom line of the square.

I r

Step 8: Type the bottom left corner. Depending on which method you used to

enter the bottom line, you will need to use CURSOR LEFT two times (method 1) or six

times (method 2) to position the cursor at the bottom left corner, then use the BOT-
TOM LEFT CORNER character D to complete this step (Figure 5-3h).

Step 9: Complete the square by drawing the left vertical side. You should be

able to type five LEFT LINE VERTICAL characters to complete the square (Figure

5-3i). You will need to position the cursor before each entry, using CURSOR LEFT and

CURSOR UP.

PROGRAMMING GRAPHICS

Any graphics sketched directly onto the screen will be lost when you execute a

NEW statement or turn the power off, unless you first convert the graphics into a pro-

gram. You can convert any design sketched onto the screen into a program simply by

making each line on the screen a string which is to be printed as part of a program.

After you have sketched the square, move the cursor to the HOME position. Do
not press the CLEAR or RETURN key. If you press CLEAR you will lose your picture

forever. If you press RETURN, "READY" will be written through the middle of the

square as shown below:

1

R E A D Y

Or, if you had made your square so large that the horizontal lines of the square were

printed on the top and bottom rows of the screen, and the cursor was positioned on the

bottom line, a RETURN would cause the display to scroll up one line in order to write

the READY message on the next line, losing the top of the picture.

212 PET/CBM Personal Computer Guide

Before RETURN After RETURN

m
For this reason, pictures larger than 39 characters wide or 24 characters long should

never be drawn in immediate mode.

Once the cursor is homed, the next step is to move each line of the picture to the

right in order to insert line numbers, question marks (shorthand for PRINT) and

quotes. This converts each line from immediate mode to program mode so it may be

saved on a cassette tape or diskette.

When the cursor has been homed, it should be at the upper left corner of the

square (Figure 5 -4a). Press INSERT five times so that the top line of the square is

shifted five spaces to the right (Figure 5-4b). Now there is enough room to type a line

number (100), ?, and opening string quotes (Figure 5-4c). Then press RETURN
(Figure 5-4d). The top line of the square is now a programmed statement. Continue

doing this for each line, incrementing each line number by 100 until the entire square

has been converted into program statements (Figure 5-4e,f).

Be sure to number the lines in sequential order to avoid distorting the picture.

Also, you do not need to move the cursor past the graphics to insert a second set of

quotation marks at the end of each line. After the first set of quotes is typed, merely

press RETURN. Your final program listing should appear as follows:

100 PR I NT "T
200 PR I NT"

I

300 PR INT "I

40© PR I NT "I

500 PR I NT"

I

600 PR I NT "I

700 PR I NT "L

Instead of creating graphics in immediate mode and converting them to a pro-

gram, you can skip immediate mode completely. To draw the picture in program mode,

each line of the picture is entered as part of a PRINT statement.

100 ?"l I

200 ?"l I

380 ?"l I

The space directly to the right of the quotation marks becomes column number 1 on th :

screen. If you do not program with this in mind, your picture may end up shifted to the

left-hand side of the screen.

If you PRINT a string that has exactly 40 characters, you must include a sec-

ond set of quotes, and a semicolon at the end of the line. If you do not include the semi-

colon, an extra line will be displayed since the cursor automatically positions to the next

line after a display in column 40.

Chapter 5: Making the Most ofCBM Features 213

a. HOME cursor b. INSERT five spaces

c. Complete program statement

1 ?"J1

d. Key RETURN

1 oo ?T

e. Insert five spaces

1 ?"|

—

f. Complete program statement; key RETURN

100?
20 0?

M Denotes position of cursor at the completion of the step

Figure 5-4. Make Program Statement from Graphics

A hint before moving to the next aspect of graphics: it is advisable to draw your

picture or diagram on a piece of paper before drawing it on the screen. Map out on a

piece of graph paper an area 40 squares wide by 25 squares long, using one square on

paper for each space on the screen. Be sure to include space for the line numbers if you

are going to convert the picture to program mode. Once everything is ready, type the

program from the paper onto the screen.

ANIMATION

Any graph, number, design, word or picture may be programmed to move side-

ways, up, down, or diagonally, flash on and off, or display more slowly. These

changes may be programmed in almost any combination.

To demonstrate animation, we will begin by animating the small square pro-

grammed in the previous section. Instead of seeing the square appear instantaneously

on the screen, animation will allow a viewer to watch each element of the square

slowly appear on the screen.

The program to animate the square looks very different from the previous pro-

gram because the line segments are programmed as BASIC statements, rather than as

picture segments. There is no large square within quotation marks; the square is broken

down into individual graphic characters.

214
PET/CBM Personal Computer Guide

Time Delay

The animation program slowly moves the cursor so that the square appears to be

drawn on the screen. The display begins at the top left corner of the screen and proceeds

clockwise, as follows:

The first step, as always, is to clear the screen. This also puts the cursor in the

home position.

5 PR I NT" 3";

The second step is to type the left corner. However, do not draw the whole top line

as you did in the previous program, just the corner.

10 PRINT'T";

In order to see each element of the square being displayed, it is necessary to

slow down statement execution. This can be done by using a time delay loop. This

statement represents one way of creating a time delay:

100 FOR J=l TO 100: NEXT J RETURN

The FOR-NEXT loop increases the time that separates display of adjacent characters. It

forces the computer to count from 1 to 10 each time the statement is executed as a

subroutine. The TO index for J can be increased or decreased to lengthen or shorten the

delay. The larger the TO index, the longer the time separating the display of each

chiirsctcr

For our animation program, then, we must include this time delay loop after dis-

playing each element. Since the programmed time delay loop remains the same for each

element, we call it as a subroutine. Therefore, after displaying the upper left corner of

the square, call the time delay loop as subroutine 100.

Programming Character Placement

The third phase is to print the top line of the square. Instead of programming

PRINT " - " we will use a FOR-NEXT loop:

15 FOR 1=1 TO 5 PRINT"
-";

: GOSUB 100 NEXT I

Statement 15 uses a FOR-NEXT loop so that the subroutine time delay can be called

between each printing of
" - ". If the computer is to sketch the square slowly, the time

delay must be called after each character is displayed. It would be useless to program:

15 PRINT" ";: GOSUB 100- Incorrect

because the whole line would be printed instantaneously without any time delay.

To complete the top line, type the upper right corner. Again, include the time

delay subroutine call:

20 PRINT"")" J
: GOSUB 100

So far, the program looks like this:

5 PRINT\T';
10 PRINT'T"; : GOSUB 100
15 FOR 1=1 TO 5

: PRINT"
-
" ; : GOSUB 100:NEXT I

20 PRINT""!"; : GOSUB 100
30 END
100 FOR 1=1 TO 100: NEXT J: RETURN

Chapter 5: Making the Most ofCBM Features 215

Run the program. You should see the following display grow progressively,

from r to I i .

Hopefully, this is what you saw. If not, go back and find out what went wrong. Did

you forget the semicolons after each PRINT statement?

End all PRINT statements in this program with a semicolon (;). The semicolon

concatenates graphic strings together when printed. This allows the " f~ " and the top

line
"' '"

to be concatenated together on the same line. Without the semicolons,

the CBM computer performs a carriage return after each statement, and the top line will

look like this:

r

The other three sides are drawn using a similar sequence. Line 20 begins the next

sequence, to create the right side vertical line. Note the use of cursor control inside the

FOR-NEXT loops to compensate for the automatic right cursor movement.

Here are the PRINT statements that must appear within FOR-NEXT loops to

generate the right side, bottom and left side of the square:

PRINKRIGHT LINE VERT. XCURSOR L. >
PRINT" W" right side <CURSOR DOWN >

PRINT<BOTTOM LINE HOR IZ. XCURSOR L >
PRINT" _lil" bottom <CURSORL. >

PRINKLEFT LINE VERT. XCURSOR L. >
PRINT"I in" leftside <CURSORUP>

The complete program listing looks like this:

5 PR I NT "n"

J

10 PR I NT "T", GOSUE 100
15 FOR 1 = 1 TO 5 PR I NT"

-
".; GOSUE 100 NEXT I

20 PRINT"
-
!", GOSUE 100

£5 FOR 1 = 1 TO 5 PRINT" IM" ; : GOSUE 1 00 : NEXT I

30 PR I NT "J"; GOSUE 196
35 FOR 1 = 1 TO 5PRINT"_MI".; GOSUE 100; NEXT I

40 PR I NT "L", GOSUE 100
45 FOR I = 1T0 5: PRINT"! in" .;: GOSUE 100: NEXT I

50 END
100 FOR J=l TO 10: NEXT J RETURN

Now try a trial run. Does your square look like this?

1 1

1

REfiBV. 1

1 1

1 1

1 1

If this design appears instead of a perfect square, some of the cursor controls were left

out. The computer did exactly what it was programmed to do, so where is the problem?

Take a closer look at the program. We included cursor controls within the FOR-NEXT
loops for all four sides of the square. Now look at the screen. The problem is not with the

sides; therefore the problem must be in the corners. Look at statements 20, 30, and 40.

216 PET/CBM Personal Computer Guide

We forgot the cursor controls after each corner position. Make the proper changes, and

the program should look like this:

5 PRINT":!";
10 PRINT'T"; : GOSUB 188
15 FOR 1=1 TO 5: PRINT"

-";: GOSUB 100:NEXT I

20 PRINT"~1M"; :GOSUB 108
25 FOR 1=1 TO SPRINT" IM"; GOSUB 100:NEXT
30 PRINT" _MI"; = GOSUB 100
35 FOR 1=1 TO 5:PRINT"_lil"; : GOSUB 100:NEXT
40 PRINT"Un"; = GOSUB 100
45 FOR 1=1 TO 5: PRINT"! in"; : GOSUB 100: NEXT
50 END
100 FOR 1=1 TO 100: NEXT J: RETURN

Now try another trial run. Your picture should look like this:

r 1
REFIDV. I

I

You should have been able to watch the computer slowly sketch the square on the

screen in a clockwise direction. Remember, you may change the print speed by changing

the TO index value for variable J in the time delay loop.

One last problem: how to avoid destroying the square with the READY message.

When the square has been drawn, the cursor is on line 2; when the program ends,

the READY message is displayed on the next line, which happens to be within the

square. Therefore, before ending the program, you must compensate for this by moving

the cursor below the square; the READY message will be written underneath the square

and not across it. This is done by printing several CURSOR DOWNs before the END
statement.

50 PR I NT " SKKWftWM" : END

This will move the cursor down below the square and the square will not be destroyed:

REFiDV.

Enlarging the Square

Let's take the small square we just animated and enlarge it so that it forms a boun-

dary one space from the perimeter of a 40-column screen:

If the screen is 40 spaces wide by 25 spaces long, the rectangle's sides should be 38

spaces wide by 23 spaces long:

401-2 (1 space for each side) = 38
25I-2 (1 space for each side) = 23

Chapter 5: Making the Most ofCBM Features 21

7

With just a few changes to the animated small square program we can draw a

larger rectangle that forms a screen boundary. FOR-NEXT loops were used in the pre-

vious animation program to print a string of graphics for each side. To enlarge the

square, change the value of the TO index to 36 for the horizontal sides and 21 for the

vertical sides, leaving spaces for the corners.

• Horizontal sides

Vertical sides

15 FOR 1 = 1 TO 36 '-i II— II

25 FOR 1 = 1 TO 21 ?" IW";
35 FOR 1 = 1 TO 36 ?"_MI";
45 FOR 1 = 1 TO 21 ?"l in";

Make these changes in your program and try a trial RUN.
That was simple. But, because you have created a boundary around the edge of

the screen, the last statement of the program (to move the cursor out of the square) is

unwanted. Instead, delete line 50 and program the cursor to move inside of the box and

print something; you do not want a boundary surrounding an empty screen. Be sure not

to program the cursor to go beneath the square, because the screen will scroll up, and

you will lose the top of the square. Program something to be printed inside the box, type

RUN and watch it go!

THE REAL TIME CLOCK

Another CBM computer feature is the real time clock. The CBM computer clock

keeps real time in a 24-hour cycle by hours, minutes, and seconds. The reserved string

variable TIMES or TI$ keeps track of the time.

Setting the Clock

To set the clock, use the following format:

TIME$ = "hhmmss"

where: hh is the hour between and 23
mm is the minutes between and 59
ss is the seconds between and 59

For hh, enter the hour of the day from 00 (12 AM) to 23 (11 PM). The CBM computer

is on a 24-hour cycle so that you can distinguish between AM and PM, unlike 12-hour

clocks. The hours from 00 to 11 designate AM, and the hours from 12 to 23 designate

PM, returning to 00 at midnight. At midnight, when one 24-hour cycle ends and

another begins, hh, mm, and ss are all equal to zero.

When initializing TIMES to the actual time, type in a time a few seconds in the

future. When that actual time is reached, press the RETURN key to set the clock.

TIME*=" 120150"

Accessing the Clock

To retrieve the time, type the following in immediate or program mode:

?TIME*

and the computer will display the time in hhmmss:

?TIME*
120200

218 PET/CBM Personal Computer Guide

The CBM computer clock keeps time until it is turned off. The clock needs to be

reset when the computer is powered up again.

Real Time Clock Operation

The CBM computer actually keeps track of time in "jiffies." A "jiffy" is 1/60

of a second. TIME, or TI, is a reserved numeric variable which is automatically incre-

mented every 1/60 of a second. TIME is initialized to zero on start-up, and is reset back

to zero after 51,839,999 jiffies. TIMES is a string variable that is generted from TIME.

When TIME$ is called, the computer displays time in hours, minutes, and seconds

(hhmmss), but in fact converts jiffy time to real time. Notice that TIMES and TI$ are

not the string representations ofTIME and TI; they are numbers representing real time,

calculated from jiffy time (TIME, TI). The conversion is done as follows. Each second is

divided into 60 jiffies. One minute is composed of 60 seconds. One hour is made up of

60 minutes. Therefore one second is 60 jiffies, one minute is 3600 jiffies, and one hour

is 216,000 jiffies, as illustrated below:

Second/60 = Jiffy

Minute/60 = Second/60 = Jiffy

Jiffy = 1

= 60 X Jiffy

= 60 Jiffies

Minute = 60 x Second
= 60 x (60 Jiffies)

= 3600 Jiffies

Hour = 60 x Minute
= 60 x (3600 Jiffies)

= 216.000 Jiffies

Hour/60 = Minute/60 = Second/60 = Jiffy

The following statements convert jiffy time (J) into real time, shown as hours

(H), minutes (M), and seconds (S). A complete program follows the statement descrip-

tions.

10 J=TI
20 H=IHT<J/216000:>

30 IF H08 THEN J=J-H*21600

40 M= I NT'; J/3600.)

50 IF MO>0 THEN J=J-M*3600

66 S=INT<jV60>

Calculate hours.

Integer function takes only whole

number.

If any hours, subtract number of

jiffies in one hour by H to leave

remaining jiffies.

Calculate minutes.

Integer function takes only whole

number.

If any minutes, subtract number of

jiffies in minutes by 7 to leave

remaining jiffies.

Calculate seconds. Integer function

takes only whole number.

5 PRINT "^REflL TIME" : PRINT : PRINT

:

10 J=TI
15 T#=TIME*
20 H=INT<JV21600>
30 IF HOO THEN J=J-H*21600

Chapter 5: Making the Most ofCBM Features 219

40 M= I NT': J/3600 >

58 IF MO0 THEN J=J-M*3600
SB S=IHT';j/60>
70 H*=R I GHT* < STR* < H > , 2 .')

30 M*=R I GHT* < STR* < M > , 2 .':

90 S*=R I GHT* < STR* < S : .• 2 :

1 00 PR I NT " H : M : S - "; H* ;""; M* ;""; S* ,
" T I ME* "

; T*
1 1 PR I NT " .««««" .: : GOTO 1

In the program above, statements 70 through 90 convert the numeric answers into

proper string form for tidy printing. Statement 100 prints both the real time calculated

from the program, and TIMES, the real time calculated automatically by the computer.

Notice that the result is the same in both cases.

To get an idea of jiffy speed and the conversion from the jiffy to the standard

clock, type in the following program; it displays the running time of both TIMES and

TIME (TI):

5 REM **RUNNING CLOCKS**
10 PRINT "."REAL TIME ": PRINT PRINT "JIFFV TIME: "

20 FOR 1=1 TO 235359
30 PRINT"a";TFlE<:i3>.;TIME*
40 FOR J=l TO 60 STEP 2
50 PRINT"fi»»I".:TflB';i2>;TI

60 NEXT J
70 NEXT I

The FOR-NEXT loop for TIME in line 40 increments by STEP 2 (every two

jiffies) for two reasons:

1. Displaying 60 jiffies a second is too fast to read.

2. Displaying each jiffy takes longer than incrementing the jiffy. This delays the

loop, so the TIMES display is slower than it should be. By incrementing and

printing every other jiffy we can minimize this delay problem. Run this pro-

gram and you will see that jiffies increment to 60 within each second. Run this

program without STEP 2 in line 40 and see the time delay when printing

TIMES.
Real time: 006704
Jiffy time: 25500

Keeping time in jiffies is useful for timing program speed. This lets you test the

efficiency of a program. Consider this short program:

10 PRINT'TJMfKEYBORRD TEST**" PRINT
20 FOR 1=32 TO 127
30 PRINT CHR*<I);
40 NEXT I

50 FOR J=161 TO 255
60 PRINT CHR*<J>;
70 NEXT J
80 PR I NT : PR I NT PR INT"**END TEST**

"

We can compute execution time for this program as follows:

1

.

TI (or TIMES) is assigned to a variable constant at the start of the time test.

2. TI (or TIMES) is reassigned to a different variable constant at the end of the

time test.

3. Subtract the first TI variable from the second. This will give you the amount

of jiffy time it took to process the program that lies in between.

220 PET/CBM Personal Computer Guide

The listing below shows the three added steps:

Step 1 10 PRINT".~**KEVBOFlRD TEST**" : PRINT
15 R=TI
20 FOR 1=32 TO 12?
30 PRINT chr*<i:>;
40 NEXT I

50 FOR J=161 TO 255
60 PRINT CHR*<J>;
70 NEXT J
75 E=TI

Step 2 80 PRINTPRINTPRINT"**ENB TEST**"
Step3 100 PRIHTPRINT"TI = ";B-FI

At line 15, variable A is set to the current value of TI.

15 fl=TI

A = Tl [b001762|

A |fe001762|

Then, as the program is processed, TI increments 60 times every second. At line 75, B is

set to the current value of TI.

75 E=TI

B=Tl p6001953|

B= |J6001953|

Line 100 subtracts the first value of TI (A) from the second (B).

1 00 PR INT: PR I NT " T I = "
.; E-fl

B|ft001953|

- A16001762I

191

The example shows that it took 191 jiffies to print the keyboard characters on the screen.

Dividing jiffy time (191 jiffies) by 60 (the number of jiffies in a second):

191/60=3.1833

shows it took 3.1833 seconds (191 jiffies) to process the program. Below is a sample run

of the program.

KEVBOFIRD TEST

! "#*fi&' < >*+,-. /&123456789 = ; <=>?8flBCDEFG
H I JKLMNOPQRSTUVWXVZ C S 3 ** !

" **'/.& ' O *+ , - .

/

01 23456789 : ;<=>?! -~J * \»T H-iS-r-^-HI I I
'

„_b *J"V-*|-""~-l K ^LV^r~»^»l sXO* »-HS lir"*

I m~-> m l«r I r . H_ H-HI I I—--k « W

END TEST

TI = 191

Digital Display Clock

The following program is a fun program. It is a variation of the CBM digital clock

using enlarged numbers through 9, created with the graphic characters. The program

prints out only the hour and minutes due to the size of the screen. The program is long,

as you can see, but it is made up almost entirely of PRINT statements to print the num-

bers. After keying in the program, watch it run.

Chapter 5: Making the Most ofCBM Features 221

100 PRINT" .TMMWBaMW"

;

118 S=INT<TIME/60>
120 t1=IHT<S/60>
130 H=INT<M/60)
148 M=M-H*60
150 T=H
160 GOSUB500
170 PRINflUWa MM HttttW MM n 1 1 1 1 1

1

180 T=M
190 GOSUB500
£•00 PRINT'Tlil";
210 DOTO110
500 U=T-10*INT<T/10>
510 T=INT<T/10>
520 D=T+1
530 GOSUB600
540 D=U+1
550 GOSLIB600
568 RETURN
600 ON D GOSUB 1000,116

1700, 1800, 1908

610 RETURN

. 1200, 1300, 1400, 1500, 1600,

1 000 PRINT" sr -« i

1001 PRINT"sr Dd"

;

1002 print" a r -*a SMUHHM"

,

1003 PRINT"S a SHllllliMn
;

1004 PR I NT "3 a a SIIBUIHM" ;

1005 PRINT"

a

a Mnmiin" .;

1006 print" a a SMHHHM"

;

1 007 PR 1 NT "a ^ sr gummi' 1

,

1 003 PR I NT "^a
PRINT" ^a

HIHBO" ;

1 009 IIIIIIIIIJ";
1 1 RETURN
1 1 00 PRINT" sr m |

1101 PRINT" %

1102 PRINT" a
1 1 03 PRINT" a
1 104 PRINT" a |

1105 PRINT" a
1 1 06 PRINT" a
1107 PRINT" a
1 1 08 print" a

print" a1 1 09 : 1 1 1 1 1 1 1 ir

,

1110 RETURN
1200 PRINT" sr

PR I NT "ST
PR I NT "a W

"«
1

1201
1 202 ^a SMMHUM"
1 203 PRINT"

a

sr aiiunini' .;

1 204 PRINT" sr enHIIIHIM" ;

1 205 PRINT" sr r
1206 PRINT" $r S^
1 207 PRINT" 3T

PRINT" ST
PR I NT "a

1 208
1209 : 1 1 1 1 1 1 1 1 1"

,

1210 RETURN
1300 PRINT" sr -« iinnum"

;

1301 PRlNT u ar IIMIIHIH"

;

1302 PR I NT "a w ^a aiiiiuiui" ;

1303 PRINT" sr a
1304 PRINT"

PRINT"
a
a

w\
1305
1 306 PRINT" *a
1 307 PR I NT "a *e sr

222 PET/CBM Personal Computer Guide

1308 pRiNT'^a *««" J

1309 print" ^a w : 1 1 1 1 1 1 1 1)"

;

1310 RETURN
1400 PRINT" ST B INIIIIIIM";
1401 PRINT" aT 9 IllllUUt)":
1402 print" sr aw

;

1403 PRINT" ar B IIHHHM";
1404 pRiNT M sr wrs a ihmhim";
1405 PRINT" a w a a !««".;
1406 PRINT" S ailllHIU";
1407 PRINT" S) BMBMMWW";
1403 print" a a iiiiiiiiw ;

1409 PRINT" S) B : 1 1 1 1 1 1 1 1 1" :

1410 RETURN

150S pr i nt "a annuMM";
1501 PRINT" a BO";
1502 PRINT" a a imuuni";
1503 PRINT" a ^ IIIIIIIIN";
1504 PR I NT "a 1BHHHMM" J

1505 print" ^a aiiuuin)";
1506 PRINT" a SIIIIIIIM";
1587 PR I NT "a ^ ST ailllllllN 1

1503 PR I NT •"*« aHIHIIIW"

;

1509 print" ^a ar : 1 1 1 1 1 1 1 ii"

,

1510 RETURN
1600 PRINT" sr "« »)";
1601 PRINT" ST "«[«" ;

1602 print" a ar ia aniiiiiu";
1603 PR I NT "a 8 M";
1604 print" a ^ iimmni";
1605 PR I NT "S ^CW"

;

1606 pr i nt n a sr ^a »«" j

1607 pr i nt "a ^ sr smmiu";
1608 PR I NT '"W BTIMMMW"
1609 print" ia w : 1 1 1 1 1 1 1 1 1" .;

1610 RETURN
1700 PRINT" a aUWHMMHr ;

1701 PR I NT "a SIIHIIIH";
1702 PRINT" ST ilHIIIHII";
1783 print" ar ailllllllR) <

1764 PRINT" ST W I1MMMM",
1705 PRINT" ST W IIIIIIIIM";
1766 PRINT" a fir ![«".;
1707 PRINT" a a IIUHMM"

;

1708 PRINT" a B !!»" ;

1709 print" a a : 1 1 1 1 1 1 1 1 1"

;

1710 RETURN
i860 print" sr -ymkt;
1801 PR I NT "ar VIIIHIIPr;
1802 PRINT" a BT 13 aillllllRI";
1803 print" a -<e ar amMiHW";
1804 pRiNT'"*a mnrnMrnmrnmufH" i

1805 PRINT'TT ^IIIIIIIIM";
1806 print" a er ia «(«",
1807 pr i nt "a ia ar aniiiiiu";
1808 pRiNT"^a anauHHna"

;

1809 PRINT" ^a ar : 1 1 1 1 1 1 1 1 1"

;

1810 RETURN
1900 PRINT" ST ^1 •IS" .,

1901 PRINT" ar ^lUUHDa 11

;

1902 PR I NT "3 BT ^a 9M1M111IM" ,

1903 pr i nt "a "<e ar aimiiiDii";
1904 PR I NT "^a BKiMilKM" ;

Chapter 5: Making the Most ofCBM Features 223

1905 PRINT" "*a

1386 PRINT"
1387 PR I NT "S "<

1908 PR I NT" ^3
1303 PRINT" ^3
1310 RETURN

aimiiiM 1

,

3 siiniiiM"

,

ST MHHHM"
nillllllt«" .:

w : 1 1 1 1 1 1 1 1
1"

RANDOM NUMBERS

Random numbers are generated by the CBM computer using an algorithm that

depends on a starting number, or seed. The same seed always generates the same
sequence of random numbers.

RANDOM NUMBER SEED

Every CBM computer has a constant initial seed number which it generates when
power is first turned on. This initial seed number will probably differ from one CBM
computer to the next, but for any single CBM computer the same seed is generated

whenever power is turned on. Therefore, for any single CBM computer, the same initial

sequence of random numbers will be generated each time the computer is powered up.

The display below shows the first five numbers of a typical sequence, as it might appear

when the RANDOM function RND(arg) is executed after power-up:

COMMODORE BASIC

716? BVTES FREE

READY.

FOR 1 = 1 TO 5 ? RND < 1 > NEXT
RUN

. 880969862

. 355265655

.659512252

.803285178

.546991144
READY.

CBM computer random function logic is best visualized as accessing a large

number of fixed random number sequences. These random number sequences will

vary from one CBM computer to the next, but they will always be the same for any given

CBM computer.

Each random number sequence is identified by a seed, which is a negative num-
ber. This may be illustrated as follows:

Four random
number seeds

First five random

numbers in each list I

(. 592222864
1.217948608
< .0371848992

867675019
805311997

. 529448248

.217131897

. 125471939

. 869597673

. 805998629

.619245849

.217986376

. 12554828

. 867369876

.808165423

First five random
numbers in

each list

Every negative number seeds a different random number list. There are

innumerable negative numbers, therefore there are innumerable lists of random num-
bers which can be accessed by any CBM computer.

224
PET/CBM Personal Computer Guide

You select any random number sequence by executing any BASIC statement that

includes the RND function with a negative argument. You can use a simple assignment

statement such as:

20 X=RNIK-2>

Executing a BASIC statement that includes an RND function with a negative

argument has the effect of resetting a pointer to the first random number in that nega-

tive argument's random number list. For example, on one particular CBM computer,

executing the assignment statement on line 20 above will reset the random function

pointer to the number .271819872, the first number in the list seeded by -2. This reset

will occur every time the RND(-2) function is encountered. The CBM computer that

was used to generate this particular example selects the number .271819872, but

another CBM computer will have a totally different fixed random number sequence

initialized by the (-2) seed. If you have three CBM computers, each will have a

different random number sequence initialized by the (-2) seed; however, each CBM
computer will initialize to the same random number sequence on encountering an

RND(-2) function.

Random Number Sequences

Having initialized the random number generator to the first number in a partic-

ular list, you access sequential random numbers in the list by executing any BASIC

statement that includes an RND function with a positive argument. Here, for exam-

ple, is a program that will display the first six numbers of five random number

sequences, seeded by the negative functions -1 through -5:

36 FOR I=-l TO -5 STEP -1

35 X=RNB< IMPRINT I

40 FOR J=l TO 5
50 PRINT RND<1?
60 NEXT J
70 NEXT I

100 STOP

The random function on line 35 occurs in the outer FOR-NEXT loop; it resets the ran-

dom function generator pointer to the first element of five different sequences for the

five negative values of I: -1,-2, -3, -4, and -5. The inner FOR-NEXT loop (lines

40, 50, and 60) displays the first six elements in each of these five random number

sequences.

-l
. 592222864
.217940608
.0371848992
.867675019
.805311997

-2
. 529448248
.217131897
. 125471999
. 869597673
. 805998629

Chapter 5: Making the Most ofCBM Features 225

-3
.619245849
.217986376
. 12554828
. 867369876
.868165423

-4

.618863331

.215972203

.126128101

.369521353

.367814458
-5

.529738186

.216918235

. 123416903

. 868422708

.717787951

To demonstrate the existence of a fixed number sequence in each random list,

stop the generation of numbers for a list and then restart it. Look at the following

modification of the random number generator program:

30 FOR I=-l TO -5 STEP -1

35 X=RND<I):PRINTI
40 FOR J=l TO 3
50 PRINT RNB<1>
60 NEXT J
70 FOR K=10 TO 11
75 PRINT RNDC1)
80 NEXT K
90 NEXT I

100 STOP

This program again references the first six elements in five random number lists, but it

does so in two separate FOR-NEXT loops. Nevertheless, when you execute this pro-

gram you will get exactly the same display as the earlier program. In other words, it does

not matter where or how a random function with a positive argument is executed, it will

always access the next element of the fixed random number list identified by the most
recent negative seed. Moreover, any time this negative seed is encountered in a subse-

quent random function, the list pointer immediately returns to the first element of the

sequence. For example, add this statement to the program shown above:

65 X=RND<I>

Now when you execute the program, you will access the first three numbers in each list,

then the first two numbers in each list will be re-accessed.

Now experiment by keying in the programs illustrated above. Vary both the nega-

tive seed numbers specified by the I index in the outer FOR-NEXT loop, and the num-
ber of elements selected by J and K in the inner FOR-NEXT loops. Experiment in this

fashion until you are completely satisfied that you understand the manner in which ran-

dom numbers are generated.

Printing Random Numbers

In order to better compare random numbers, you should print results rather than

displaying them (assuming you have a printer). Although printer programming is de-

226
PET/CBM Personal Computer Guide

scribed in Chapter 6, necessary additional statements are shown below in order to select

a printer.
10 OPEN 4,4
20 CMD 4
:"-i0 FOR I=-l TO -5 STEP -1

35 X=RNDa>:PRINTI
40 FOR J=l TO 5

50 PRINT RND<1>
60 NEXT J
70 NEXT I

80 PRINT#4
90 CLOSE 4
100 STOP

Statements on lines 10 and 20 select the printer; statements on lines 80 and 90 deselect

it. Make sure the printer power is turned on, and that it is connected correctly to your

CBM computer; then use variations of the program illustrated above to experiment with

random numbers. The hard copy printed with each experiment will make it easier for

you to compare the numbers generated by different variations of your program.

If you execute a statement that contains an RND function with a argument,

then the random number generated depends on the system clock. But there are

similarities in random number patterns generated by sequences of RND functions with

a argument. To prove this to yourself, change the argument of the RND function on

line 50 from 1 to and reexecute the random number generator program a few times.

You will see that no two sequences of numbers are identical, but they certainly are quite

close.

Random Seeds

To generate a totally different random number you need to have some way of

generating a totally random seed. This can be done using the current jiffy count, TI:

10 X=RND<-TI>: REM STRRT SEED

Now you will get a different random sequence started each time statement 10 is

executed.

A more nearly pure random seed can be obtained by using RND (-RND(O)),

but only if your CBM computer has the new BASIC ROMs. For example:

10 X=RHIK-RNIK0>>

Here again you will get a different random sequence started each time statement 10 is

executed.

In the programs that follow, -TI is used, as it is compatible with both the old and

new ROMs. If you have the new ROMs, you can use -RND(0) in place of -TI.

Generating Random Dice Throws

Random numbers are initially generated in the range through 1. You will have

to convert the random number to whatever range you require. Suppose numbers must

range from 1 to 6 (as in one die number of a dice game). You will need to multiply the

random number by 6:

6«RND(1)

This gives a floating point number in a range just greater than but just less than 6

(0<nj<6). Add 1 to get a number in the range l<n<7:

6-RND01 + 1

Chapter 5: Making the Most ofCBM Features 227

Then convert the number to an integer, which discards any fractional part of a number,

returning the number in the range 1 to 6 but in integer form:

INT(6-RND(1)+ 1)

or:

A%=6-RND(1)+1

The general cases for converting the RND fraction to whole number ranges are

shown below. Note that the INT function will only handle numbers in the integer range

±32767.

INT((n+1)-RND(1» Range to n

INT(rcRND(1)+1) Range 1 to n

INT((n-m+l)-RND(1)+m Range m to n

Now experiment with a variety of different random number ranges by modifying the

statement (s) illustrated above.

The program below shows — TI being used to generate a random seed. This pro-

gram calculates numbers in the range m to n; in this program, the values ofm and n are

set in line 10 for a given program run. Note that these values can be negative. In the

following example, the display is an unending sequence of random numbers between
— 50 and +50. (Press the STOP key to end the program.) A different sequence of num-
bers will be printed each time the program runs, since — Tl provides a random seed.

Note that the X value returned from RND(— TI) is displayed instead of the TI value.

19 M=-50'N-50
20 X=RNDC-TI>: PRINT X
30 FOR 1=1 TO 8
40 Oi=<N-M+l>*RND<l>+M
50 PRINT CV.. NEXT I

60 PRINT GOTO 30
RUN
8.27633085E-06
-14 9 -34 -35 -47 -44 28 31
29 -8 -36 -28 -42 -23 15 14
7 --13 3-8 3 41 19 -43
35 12 24 -7 -7 -21 -47 1

-32 -49 7 -49 28 -22 -17 -24
-12 7 27 1 11 9 -13 35
48 49 1 34 -46 -29 -43 29

-IS 5 -30 2 8 -28 -13 -23
48 -15 -12 -45 26 44 -25 2
-9 4 27 58 33 -16 -43 -15
20 20 17 43 -18 -48 -38 24

-16 43 -50 36 -38 5 11 25
-30 6 -25 -47 32 10 42 -21
-47 -38 -28 -8 16 -20 42 -4
-34 36-17 27-8 -49 -6 -35
-19 19 -35 48 -42 36 -25 2
-43 37 47 38 -20 -25 32 -50
-5 --35 -35 17 -41 36 -19 4
33 -20 45 -7 48 -4 -33 -10
1 27 -39 -14 -38 -6 4 13

-5 17 2 49 -40 -5 32
-50 32 -24 -37 -38 22 -13-27
-24 -30 35 10 6 16 -53 49
-49 50 43 38 -21 47 -43 23
32 -35 -18 -5 27 -46 -14 23
-49 -45 27 7 -35 1 46 -25
-8 20 -8 -12 -46 -31 -17 -IS
-47 47 -49 13 47 17 40 -13
-40 48 -41 -33 5 -14 -46 45
-29 -37 22 17 42 33 -31 49
8 --4 36 37 11 IS 29 25

--1 2 -16 32 -29 -31 33
-9 --41 -4 47 12 -22 9 -48
-40 32 15 32 -50 3 -9 19

228 PET/CBM Personal Computer Guide

To illustrate different number ranges, change the values ofM and N in line 10 of

the above program. For example, make M = 1 and N= 6; this will generate and unend-

ing sequence of random numbers between 1 and 6.

Random Selection of Playing Cards

A quick scan of the display above shows that numbers repeat within the first 100

generated. That is, every 101 numbers will not pick a number in the range -50 to +50

with every number present and no duplications. This is fine in, say, a dice game where

you take the rolls as they come. For other random number uses, however, you may

need to develop random numbers in a certain range where every number is accounted

for, and there are no duplications. An example is dealing from a deck of cards. You

need to pick a card, and when that card has been picked it cannot be picked again during

the same deal.

The program below shows one way to program shuffling a deck of cards on the

CBM computer. This program fills a 52-element table D% with the numbers 1 through

52 in a random sequence. (Element D%(0) is not used.) The cards can be pegged to the

random numbers in any way, such as:

A=1. 2=2,3=3 Q=12, K=13
Spades=0, Hearts=13, Diamonds=26, Clubs=42

With this scheme the Ace of Spades= 1+0=1, the Queen of Spades=12+ 0=12, the

Three of Hearts = 3 + 13 = 16, etc.

In the shuffle program, a 52-element flag table FL keeps track of whether a card

has been picked or not. PRINT statements are inserted to display the seed value,

followed by the numbers, in a continuous-line format. Note that exactly 52 numbers are

displayed and that no number is repeated. Each program run will produce a new random

sequence.
10 DIM FLOS^DK*:52?
20 X=RND<-TI>: PRINT X
30 FOR 1=1 TO 52
40 C?i=52*RND<l> + 1

50 IF FUC7OO0 GOTO 40
60 W/.(.I)=Cy.FL<C

m
/.'> = l

70 PRINT C
m
/.i

80 NEXT I

RUN
1.1S586613E-05
48 40 13 37 50 43 46 31 49 44

23 38 25 11 9 35 32 30 24 41

26 5 6 1 45 10 21 14 42 20 15

34 18 52 47 7 16 8 19 33 36 4

17 3 22 27 29 28 39 2 51 12

RUN
1.01154728E-06
14 35 52 50 26 48 27 36 34 25

18 20 41 33 39 7 46 24 23 28 1

9 3 12 43 2 31 44 4 1 32 37 3
40 22 45 48 42 49 16 11 6 10

29 9 51 17 8 15 38 5 21 13

But this program runs more slowly as it nears the 52nd number. It is especially

slow on the last card. This is because the program has to fetch more and more random

numbers to find one that has not already been picked. A simple routine such as this has

much room for improvement, of course. It can be speeded up just by findng the last

number in the program from the table rather than waiting until it is selected randomly.

Chapter 5: Making the Most ofCBM Features 229

RANDOM POKE TO THE SCREEN

The following program is a modification of program BLANKET. Instead of dis-

playing a character in continuous-line format, this program fills the screen by randomly

POKEing the character into the 1000 positions of the screen.

Here is the first version.

IS REM ******* BLANKET *******
29 REM RANDOM DISPLfilV OF ONE
30 REM CHARACTER ENTERED FROM THE
40 REM KEYBOARD
50 REM *******************************
98 PRINT "HIT A KEV OR <R> TO END",
100 GET C*:IF C*="" GOTO 100
105 IF C*=CHR*03:» GOTO 170
110 PR I NT "."J"; REM CLEAR SCREEN
120 X=RND<-TI> REM START NEW SEED
125 C=<ASC<:C*:>AND128>/2 OR <ASC < C* >AND63 :>

127 A=1000*RND CI)+32768
130 POKE A,C REM DISPLAY CHAR
140 GET D*IF D*="" GOTO 127
150 C*=D*
160 GOTO 105
170 END

The program is the standard BLANKET program through line 110, where a new
character is input and the screen is cleared. The statement on line 120 stores a new seed

in preparation for a random display sequence on the screen. The statement on line 125

converts C$ to its equivalent POKE number. The statement on line 127 calculates a ran-

dom screen address in the range 32768 to 33767; using the RND range formula with

m= 32768 and n= 33767 as follows:

(n-m+1)»RND(1)+m Range formula

(33767-32768+ 1)-RND(1 1+32768 as used in line 1 27
= 1000«RND(1)+32768

Neither the INT function nor an integer variable (which would have been A%)
can be used, because the screen addresses begin just beyond the maximum integer

value of 32767. Fortunately the POKE function, which is where the screen addresses

will be used, simply discards any fractional portion of a real number address presented to

it. (For other applications when you are dealing with random numbers outside the

integer range, you will have to check that the floating point equivalent provides the

intended range.)

The first version of the program above randomly fills the screen with the keyed-in

character. It does this by simply POKEing to random screen locations. It may POKE
many times to the same location when other locations are not yet filled, and it continues

to POKE, even after the screen is filled, until a new character is keyed in.

When the program is run, about half the screen positions quickly fill with the

character. Then character placement slows down more and more until at the end, when
the screen is almost filled, and remaining positions are filled very slowly. It takes about

three minutes to completely fill the screen with this version of the program.

The program is operating at the same speed throughout, but it does not get much
work done towards the end, because many of the positions that it POKEs to are already

filled. The program appears to slow down because displaying a character over the same

character has no visible effect.

The program can be speeded up a good deal by eliminating the superfluous

POKEs to screen positions that are already filled. A new version of program BLANKET
does this.

- , PET/CBM Personal Computer Guide

Rather than calculating a number in the same range all the time and discarding, or

in this case re-POKEing, the duplicate numbers, the new program decreases the range

of numbers generated to correspond with the number of items left to operate on. It does

this by keeping track in a table of the screen positions remaining to be filled, and

generating a random number within the range of table indexes yet to be POKEd to. The

POKE address itself is retrieved from the contents at the table index.

f=l REM RANDOM VERSION 2

10 REM ******* BLANKET *******
20 REM RANDOM DISPLAV OF ONE
3B REM CHARACTER ENTERED FROM THE

46 REM KEVEOARD
50 REM *******************************
70 DIM T<999>
80 gosub 200 rem initialize table
90 print"hit a kiev or <r> to end";

100 get c*:if c*="" goto 100
105 if c*=chr*<13> goto 170

110 pr i nt "3" j- rem clear screen
120 x=rnd<-ti> ; rem start new seed

125 c=<:asc<:c*:)Andi2s:)/2 or casci:c*>hnd63>

126 for h=999 to step -1

127 a;;=cn+i:j*rnd<i::' : rem pick an elem
12R fl=T<AK>+32?6S : REM FORM POKE ADDR
12"=, TP=T<AK^TCH:iJ=T<N>:T<:N>=TP:REM SWAP ELEMENTS

130 POKE A,C : REM DISPLAV CHAR
140 NEXT N
160 GOTO 100
170 END
133 REM **SUBR TO INITIALIZE TABLE**
200 FOR 1=0 TO 999:T<I)=I

:
NEXT

210 RETURN

In this program, the table holds the 1000 screen position indicators; it is dimen-

sioned on line 70.

At line 80 an initialization subroutine is called that places the numbers through

999 into corresponding elements of Table T. T(0) will contain 0, T(l) will contain

1,. . .T(999) will contain 999. The elements do not have to be filled with consecutive

numbers since they are to be picked randomly, but this is the easiest way to program the

fill loop. In fact, the table will be in order only the first time the program is run after

loading. Lines 90 through 125 hold exactly the same program statements as in the ear-

lier version.

Lines 126 through 140 hold a FOR-NEXT loop that fills the 1000 screen locations

with the keyed-in character. The statement on line 127 picks a random table index A%

from the remaining unfilled range of to N. The expression (N + 1)*RND(1) performs

this task. The statement on line 128 forms the POKE address A as the sum of the T table

element whose index was picked on line 127, plus the beginning screen memory address

of 32768. The statement on line 129 exchanges the chosen table element T(A%) with

the highest active table element T(N) via a temporary location TP. The statement on

line 130 displays the character at the random screen location. The NEXT N at line 140

decrements the pointer N so that the used screen address just swapped into T(N) is not

picked again during the current program run.

Chapter 6 ^^^^^_^^

Peripheral Devices:
Tape Cassette Drives,

Diskette Drives and Printers

A computer system contains more than a keyboard, a screen, and the computer

itself. To avoid keying in a program every time you want to run it, you will store the

program on a floppy disk or magnetic tape cassette. As described in Chapter 2, you can

then load the program into memory and run it, thus avoiding repeated key entry.

You will also store data on magnetic tape cassettes or floppy disks. Consider a

mailing list program. This program will be stored on a cassette or floppy disk. A mailing

list program is used to create a list of names and addresses. The list of names and

addresses is also stored on cassette or floppy disk. Later the names and addresses are

read off the cassette or floppy disk in order to print mailing labels. But that requires a

printer.

Most computer systems include a line printer. Line printers are used to print

output, such as mailing labels. Also, a line printer is indispensable if you want to write

programs. The most efficient way of changing or correcting a program is to print a listing

of the program as it currently exists, mark intended changes to this printed listing, then

enter the changes that you have written down.

In this chapter we are going to describe CBM BASIC program logic needed to

handle cassette drives, floppy disk drives, and printers.

CBM computers have an IEEE 488 bus connector. This is an industry standard

bus which is used by the floppy disk drives and the printer. The IEEE 488 bus is also

used by instruments and sundry electronics in industrial applications. Although we de-

scribe floppy disk drives and printers, this book does not describe the IEEE 488 bus

itself, or programming required by any instruments connected to it.*

* To learn about the IEEE bus, see PET and the IEEE 488 Bus (GPIB) by Eugene Fisher and C. W. Jensen,

Osborne/McGraw-HM, 1980.

232 PET/CBM Personal Computer Guide

STORING DATA ON MAGNETIC SURFACES

THE CONCEPT OF A FILE

Information is stored as "files" on cassettes or diskettes.

In order to understand the concept of a "file," think of a bookshelf. The cassette

or diskette is the bookshelf; each book on the shelf is equivalent to a file.

To a computer user, a "file" is a very simple concept. When you "open" a file, all

information stored within the file becomes accessible. The information remains accessi-

ble until you "close" the file. This is much like taking a book down off the bookshelf

and opening it up. But unlike the book, writing to a file is as easy as reading from it.

When the computer writes a program or data to a cassette or diskette, it creates a new

file, or it adds to an old file.

A file can have any size, limited only by the capacity of the cassette or diskette.

You can create a new file and put nothing in it, in which case the file is empty. This is

equivalent to having a book with covers, but no content. A file must fit on a single tape

cassette or floppy disk, therefore the maximum size of a file depends on the storage

capacity of the cassette or floppy disk.

You can have up to 256 files per diskette; there is no limit per cassette. Of course,

ifmany files are stored on a single diskette or cassette, the individual files will have to be

very short.

The amount of memory in your CBM computer has no impact on the size of a data

file. A data file may be much larger than available computer memory. Having "opened"

a data file, you can read one character from it, or as much information as will fit in the

available computer memory. When writing to a data file, information that you output

from computer memory can be, and usually is, added to data already stored on the

cassette or floppy disk.

Program Files

There are two types of files : program files and data files. A program file, as its

name would imply, contains program statements.

You create a program file whenever you SAVE a program on diskette or cassette.

You read a program file when you LOAD a program into memory. These operations

were described in Chaper 2.

Every file can have a name assigned to it; the name which you assign to a program

file will become the name of the program. CBM computers recognize file names of up

to 128 characters, but only the first 16 characters are displayed. Disk file names

must have 16 or fewer characters. Therefore, it is a good idea to restrict all file names

to 16 characters or less.

The amount of memory in your CBM computer does affect the maximum size of

a program file. This is because you create a single program file when you SAVE a pro-

gram on cassette or diskette. When you load a program into memory, you load the entire

contents of a program file. You cannot load part of a program file into memory.

Therefore the maximum size of the program file must be less than the program memory

capacity of your CBM computer. If you have a very long program, and it will not fit in

the available computer memory, you can break it up into a number of files, each of

which will fit in the available memory space. When each section of the program com-

pletes execution, you simply load the next section into memory and run it; in this

Chapter 6: Peripheral Devices 233

fashion you get to execute the entire program. Later in this chapter we will describe the

programming steps needed to execute large programs in this fashion.

An advantage of program files is that you do not need to know anything about

their internal organization. When you save a program on diskette or cassette, it becomes

a file which you can subsequently load back into memory. You must be able to identify

the program file (via its file name or its location) in order to load the file back into

memory, but that is all.

Data Files

A data file, as its name would imply, contains information which gets

interpreted as data, in contrast to program statements. Data files are created, written,

and read by programs.

Records and Fields

Data files are divided into "records," which in turn are subdivided into

"fields."

A single field contains information which can be represented by a single variable

name. Therefore a single field can contain an integer number, a floating point number,

or a single string variable.

A record contains one or more fields. Records usually represent units of repeated

information within the file, but this does not have to be the case.

Consider a mailing list. The entire mailing list will become a single data file. Each

name and address within the mailing list will become one record within the file. If names

and addresses are entered using the program described in Chapter 5, then each record

will contain five fields: the name, the street, the city, the state, and the zip code. This file

organization is illustrated in Figure 6-1.

A file may contain one or more records. Each record may contain one or more

fields. The number of records in a file and the maximum length of a record varies with

the type of file, as described later in this chapter. However, for all practical purposes

the size of a file is limited only by the capacity of the diskette.

No restrictions are placed on the length of tape cassette records. A record can

have any length that will fit on the tape cassette.

DATA TRANSFER TO AND FROM CASSETTE AND DISKETTE

A novice accessing tape or diskette data files is frequently mislead into thinking

that something is wrong. One would instinctively expect the tape or disk unit to move in

response to every statement that reads from the unit, or writes to it. A cassette drive

should move the cassette; a disk drive should activate the diskette. Sometimes you will

see such activity; at other times you will see no activity. This is because a small amount

of memory acts as a data buffer connecting the computer with the cassette or disk

drive.

When the computer reads from one of these drives, enough data is read to fill the

buffer. You will see no further drive activity until a program accesses data that is not

currently in the buffer.

234
PET/CBM Personal Computer Guide

Record n - 1

Record n

Record n + 1

Record n + 2

Part of a

Mailing list file

Name (n - 1)

Street (n - 1

)

City (n - 1)

State (n - 1

)

ZIP (n- 1)

Name (n)

Street (n)

City (n)

State (n)

ZIP (n)

Name (n + 1)

Street (n + 1

)

City (n + 1

)

State (n + 1

)

ZIP (n + 1)

Name (n + 21

Street (n + 2)

City (n + 2)

State (n + 2)

ZIP (n + 2)

Name (n + 3)

Street (n + 3)

Field 1

Field 2

Field 3

Field 4

Field 5

Field 1

Field 2

Field 3

Field 4

Field 5

Field 1

Field 2

Field 3

Field 4

Field 5

Field 1

Field 2

Field 3

Field 4

Field 5

Field 1

Field 2

Figure 6-1. Conceptual Illustration of Four Records

in a Mailing List File

Chapter 6: Peripheral Devices 235

Data being written to a cassette or disk drive is first written to the data buffer. As

soon as the data buffer is full, all the contents of the buffer are output to the cassette or

diskette, at which time you will see some activity. You will see no further activity until

the buffer is again filled.

The cassette drive buffer is located in CBM computer memory. It is 192 bytes long

and holds 191 bytes of data. The diskette drive buffer is located in the diskette unit itself,

not in CBM computer memory. Each diskette drive buffer is 256 bytes long and holds

254 bytes of data. The diskette and cassette buffers are relatively large. In consequence,

drives are inactive for much of the time while the computer is accessing drive buffers to

read or write data.

Logical Files and Physical Units

We use the term "input/output programming" to describe program logic that

transfers data between the computer and external physical units. Disk drives,

cassette drives and printers are all external physical units.

In order to perform any input/output operation, program logic must identify the

external physical unit being accessed; that will come as no surprise to you. But what

about the computer end of the data transfer? This end cannot simply be specified as

"the computer." Think of the problem in programming terms; programs identify data

as variables or constants within BASIC statements. Therefore, the computer end of the

data transfer must be specified in similar program logic terms. This concept is easy to

understand if you think of the CBM computer keyboard and display as external

physical units (which in fact they are). When an INPUT statement is executed, data

which you input at the keyboard gets assigned to variable (s) whose name(s) are

specified as INPUT statement parameter (s). For example, when the statement:

10 INPUT A

is executed, some number which an operator enters at the keyboard is assigned to float-

ing point variable A. The PRINT statement, likewise, will output variables (s) or con-

stant (s) to the display. Thus the PRINT statement:

20 PRINT A

takes the value assigned to floating point variable A and outputs this value to the dis-

play.

Thus the INPUT and PRINT statements have specified the computer end of the

data transfer using a variable name, in this instance floating point variable A. When an

INPUT statement is executed, the external physical unit is assumed to be the keyboard.

When a PRINT statement is executed, the external physical unit is assumed to be the

display.

Input/output programming becomes more complex when data is transferred to

or from cassette drives, disk drives, printers, and external physical units other than

the keyboard and display. For these more complex input/output operations you must

first open a "channel" between the program and the selected physical unit. After per-

forming required input/output operations you must close the channel. CBM BASIC
identifies individual channels using a channel number which can range between

and 255.

236
PET/CBM Personal Computer Guide

You OPEN a channel using the CBM BASIC OPEN statement; statement

parameters identify the physical unit being accessed, and the nature of the access, as

illustrated in Figure 6-2. Until the channel is closed, any input or output statement need

only specify the channel number in order to fully describe the nature of the input or out-

put operation.

Every physical unit has its own, unique physical unit number. This number is

used as a parameter when opening a channel in order to identify the physical unit to be

accessed. Channel numbers have no equivalent permanent assignments. Channel

numbers are therefore frequently referred to as "logical file" numbers, or "logical

unit" numbers.

The name "logical file" describes a channel very accurately, since a channel es-

tablishes a link between a program and a data file.

Logical file numbers are a programming concept. As illustrated in Figure 6-2, you

initiate any input or output operation using an OPEN statement. One of the OPEN state-

ment parameters is a channel, or logical file number; other OPEN statement parameters

identify the physical unit, the data file being accessed, and the way in which the access is

to occur. After the input or output operation has gone to completion, you execute a

CLOSE statement which closes down the channel. The CLOSE statement requires just

one parameter: a channel or logical file number. This logical file number links the

CLOSE statement to an OPEN statement. In between the OPEN and CLOSE state-

ments, all input and output statements use a channel or logical file number to identify

the device being accessed, and the way in which the device is being accessed.

100 OPEN N,< [Additional parameters identify physical unit

to be accessed and nature of the access]

; N = logical file number. May be any value between and 255

220 INPUT#N [parameters]

INPUT. GET and PRINT statements

specify the physical unit being

accessed, and nature of

240 GET#N [parameters] ^ the access, via channel, or logical file

number N. N ties the statement to

an OPEN, which describes the

input/output link, as shown above.

310 PRINT#N [parameters]

500 CLOSE N End of input/output link established by OPEN

Figure 6-2. Conceptual Illustration of Logical Field Number

as Used in a BASIC Program

Chapter 6: Peripheral Devices 237

The logical file number relates OPEN, CLOSE, INPUT, GET, and PRINT
statements with each other.

Once you have used a logical file number in an OPEN statement, you cannot

reuse the same logical file number to establish a different input or output channel until

the logical file is closed. If you do, CBM BASIC will give you a syntax error. But other-

wise no restrictions are placed on the way you assign logical file numbers within your

program.

Device numbers identify the physical unit being accessed by the computer. The

device number appears as a parameter in the OPEN statement. Every physical unit

which can communicate with a CBM computer has a permanently assigned device num-

ber. Upon encountering a device number in an OPEN statement, the CBM computer

activates appropriate electronic logic to establish communications with the specific

physical unit identified by the device number. Table 6-1 summarizes device number

assignments recognized by a CBM computer. 256 device numbers are available, rang-

ing between and 255. However, as shown in Table 6-1, only device numbers through

30 are currently in use.

Table 6-1. Device Numbers with Secondary Addresses used by CBM Computers

Device
Device
Number

Secondary
Address

Operation Performed

Keyboard None

Cassette

Drive #•
1

(Default)
1

2

Open for read

Open for write

Open for write, but add End of Table mark (EOT) on closeCassette

Drive #2
2

Video

Display
3 None

Line

Printer

Models

2022
and

2023

4

1

2

3

4
5

6

Print data exactly as received

Print data using previously defined format

Received format to be used in subsequent formatted printout

Receive lines per page specification

Enable printer diagnostic message
Create a special character

Set spacing between lines (Model 2022 only)

Disk

Drives

(all models)

8 1

2-14

15

Load a program file to the computer

Save a program file from the computer

Unassigned

Open command/status channel

Other

devices

connected

to IEEE 488
Bus

5,6,7

and

9 through

31

Device numbers and secondary addresses are selected and

assigned by the manufacturer of the device connecting

to the IEEE 488 Bus.

32|to|255

unavailable

at this

time

' This is the cassette drive mounted

238
PET/CBM Personal Computer Guide

-Identify this operation using

4 as a common logical unit

number

- Select cassette drive 1

- This secondary address opens

cassette drive 1 for a write operation,

to be terminated with an end

of tape mark on the close.

-This is the name of the data file

on the cassette which is to be

accessed.

100 OPEN 4, 1,2, "MAILLIST"

200 PRINT#4, NM$: REM OUTPUT NAME
210 PRINT#4, SR$: REM OUTPUT STREET ADDRESS

220 PRINT #4, Cl$: REM OUTPUT CITY

230 PRINT#4, ST$: REM OUTPUT STATE
240 PRINT#4, ZP$: REM OUTPUT ZIP CODE
300 CLOSE 4: REM WRITE END OF TAPE

Figure 6-3. Use of Parameters by Input/Output Statements

In addition to having a device number, most physical units respond to a variety

of secondary addresses. Secondary addresses are best visualized as "commands" from

the computer telling the physical unit what operations it is to perform. Secondary

addresses are summarized in Table 6-1 for the physical units that are commonly con-

nected to a CBM computer. You should not bother studying secondary addresses at this

time; later when we describe input and output programming in detail, the function of

secondary addresses will become obvious through their frequent use.

Figure 6-3 fully illustrates the use of parameters in input/output statements.

The five PRINT* statements occurring on lines 200 through 240 write the five

parts of a name and address to a file named MAILLIST, located on a cassette in cassette

drive 1. On encountering each PRINT* statement, the computer knows what to do,

because it checks the logical file number appearing after*. In Figure 6-3 this logical file

number is 4, therefore an OPEN statement specifying logical file number 4 describes the

nature of the operation; this OPEN statement occurs on line 100. If the computer could

not find an OPEN statement with the required logical unit number, it would not attempt

to perform the input or output operation, since it would not know what to do. In Figure

6-3 there is an OPEN statement with logical file number 4. This OPEN statement

specifies physical unit number 1, therefore cassette drive 1 is selected. The secondary

address is 2, therefore (on this occasion) it will be possible to write to the cassette in

drive 1, but it will not be possible to read from it. Moreover, when this operation is

closed, an end of tape mark will be written to the cassette, preventing any further data

from being added to it. The OPEN statement specifies that the data file to be accessed

has the name MAILLIST.
On line 300 there is a CLOSE statement. This CLOSE statement specifies logical

file number 4, therefore everything which the OPEN statement initiated on line 100 will

be terminated by the CLOSE statement on line 300. Furthermore, since the OPEN

statement on line 100 specified secondary address number 2, the CLOSE statement on

line 300, when executed, will cause an end of tape mark to be written to the cassette.

Chapter 6: Peripheral Devices 239

Thus, logical file number 4, occurring in statements on lines 200 through 300,

links these statements with the OPEN statement on line 100. Additional parameters

appearing in the OPEN statement on line 100 describe the operation for all of the other

statements appearing on lines 200 through 300.

Physical Unit Status

Line printers can receive output from a computer. You cannot input data to a

computer from a line printer. Yet there is nothing to stop you from executing an INPUT
statement that references the logical file number which an OPEN statement used to

initialize printer output.

Although a cassette drive can receive data from the computer, or transmit data to

it, the secondary address used in the OPEN statement which initializes the cassette drive

will specify either a cassette read or a cassette write operation. Nevertheless, you could

erroneously execute a statement which attempts to access the cassette drive in the

wrong direction.

When you execute a PRINT, GET, or INPUT statement attempting to do some-

thing which the physical unit either is incapable of handling or has not been pro-

grammed to handle, the physical unit will register an error status. A physical unit

will not attempt to perform an operation that was not allowed by the OPEN state-

ment, even if it could perform the operation. For example, if you OPEN a cassette drive

for write operations only, then an INPUT or GET statement accessing the cassette unit

will not execute; an error status will be generated, and that is all.

Physical units return status information following every input or output opera-

tion, whether it executes successfully or unsuccessfully. An 8-bit status is returned.

To access status, simply reference the variable ST. For example, the statement:

10X=ST

assigns the current status value, whatever it may be, to variable X.

Table 6-2 summarizes the way statuses are generated by all of the devices com-

monly attached to a CBM computer. You should refer to Table 6-2 later when writing

programs that access various physical units.

Do not use status to check for keyboard or display operations, even though the

keyboard and display have external device numbers.

Standard status returned by the IEEE 488 bus is shown on Table 6-2 for complete-

ness, but interfacing to this bus is not described in this book.

CASSETTE FILE HANDLING

We are now going to describe the program steps needed to handle cassette files.

We will describe how data files are created, read, and modified under program control.

Some of the file handling BASIC statements we are about to use have not yet been

introduced in this book. Remember that all CBM BASIC statements are described com-

pletely in Chapter 8. If you have difficulty following any discussion in this chapter

because you do not understand the BASIC statement being used, then you should go to

Chapter 8, read the complete description of the statement which is giving you trouble,

return to this chapter and continue.

240 PET/CBM Personal Computer Guide

00ON
§7
2

I"
DC

o <o

so a

O 0C

ON
o w
S "

S •O 0C

.O

O
c

tN

O

aH

o <o
o «-

2 "O (0

I-

5 & =

E ? "° _ =

O lJ c
a> o c

o -a
o 2
o "

2 *

5 goO TJ
O n

o "

o "
o •o

° s
o «

M< E

JS2I:

o ^ ® "

CD -^ ffl -Q X
_ -Q .C ,_ o
o S-o " -
.£ CD O « £

a
O

CD

>

o •#

CO (0 t-

CO*

O CM

> s#

> *-
9 o

to o jo

e E
> _

.17

09
00

Chapter 6: Peripheral Devices 241

You can program the CBM computer to write data onto a cassette, or to read

data off the cassette, but you cannot program physical cassette movement. It is impor-

tant that you understand the way cassette drives operate; otherwise, you may attempt to

perform operations which the cassette drives cannot handle.

Files are stored sequentially on cassette tape. A header precedes the first file,

and an end-of-tape mark follows the last file. Each file ends with an end-of-file

mark.

The header is written automatically at the beginning of cassette tape when you

first write to it. At this time, you may notice cassette activity which you did not expect,

but otherwise the existence of the header is of no concern to you.

The computer can find files while the tape is moving forward at PLAY speed,

but not at FAST FORWARD speed. An end-of-file mark identifies the end of one file.

The computer can also sense an end of tape mark. A status of 64 is returned by an end-

of-file mark. A status of — 128 is returned by an end of tape mark.

The computer cannot rewind a tape nor can it detect anything on the cassette

while the cassette is being rewound.

You must start cassette movement manually by pressing appropriate keys on

the cassette drive when instructed to do so by the CBM computer. Do not depress any

cassette drive keys before being instructed to do so via a displayed message. Subse-

quently, the computer will automatically stop the cassette drive at the proper time, and

providing you leave appropriate keys depressed (which you should do), the computer

will automatically restart the cassette drive as needed by subsequent cassette accesses.

Let us examine the impact on cassette operations of these cassette drive

capabilities.

When writing data to a cassette drive, the cassette must be correctly positioned

when writing begins. This is the responsibility of the CBM computer operator. Previous

data on the tape under the write head will be overwritten. If the transparent tape leader

is under the write head, the tape drive will start writing nevertheless, but nothing will be

recorded. The safest policy is to start writing on a blank cassette, or a cassette that con-

tains data you no longer need, and position the cassette at the beginning of its mag-
netic surface; you can then write records and files one after another until you reach the

end of the cassette. The cassette drive will make sure that sufficient space is left between

the end of one record or file and the beginning of the next. You do not have to, and

should not, space forward on the cassette tape after writing one record or file, and before

beginning the next. You cannot back up a cassette and re-record a record or file, since

your chances of precisely rewinding the tape to the correct position are not very good.

Even a small error will cause the drive to write files which you subsequently cannot read

back.

When reading prerecorded data files, you must make sure that the tape is

rewound to a point preceding the first file that you wish to read. The CBM computer

can find any named data file while playing the tape forward, but it cannot automatically

rewind the tape to find a file occurring earlier on the tape.

Never attempt to rewrite a small portion of a file that was previously recorded

on tape; the operation is simply too risky. For example, suppose you have ten names

and addresses stored on a tape cassette and you wish to change the fifth name and

address. In theory, you could read the first four names and addresses, which would

leave the tape positioned at the beginning of the fifth name and address. Then you could

write a new fifth name and address over the old one. In practice, this seldom works. The

cassette drives are not very precise, and there is a strong probability that you will start

- ., PET/CBM Personal Computer Guide

writing the new name and address a little too soon or a little too late. Then a small piece

of the old name and address will be left in front of the new one, or after it, but in either

case you will not be able to read the new data.

To update cassette data files you must use two cassette drives. Read the old data

off the cassette on one drive, and write the new updated data to the cassette in the other

drive. You should use this procedure even if you want to change one data item among

hundreds.

CBM BASIC has no statements that simply move a cassette or position it in

any fashion.

PROGRAMMING CASSETTE DATA FILES

Three program steps are needed in order to access a cassette data file:

1. OPEN the data file.

2. INPUT from the data file, or PRINT to it.

3. CLOSE the data file.

OPEN a Cassette Data File

You must use an OPEN statement to open a data file. You will get a syntax error if

you attempt to access an unopened data file. When opening a cassette data file, you can

use any one of these OPEN statement formats:

0PEN Open logical file N. Select the first file encountered on cassette drive

1 and allow a read operation.

OPEN N,D Open logical file N. Select the first file encountered on device D and

allow a read operation. D must be 1 for cassette drive 1 ,
or 2 for

cassette drive 2.

OPEN N.D.S Open logical file N. Select the first file encountered on device D and

allow the operation specified by secondary address S (see Table

6-1). D must be 1 for cassette drive 1 , or 2 for cassette drive 2.

OPEN N.D.S,FILENAME Open logical file N. Select the file named FILENAME on device D and

allow the operation specified by secondary address S (see Table

6-1). D must be 1 for cassette drive 1 , or 2 for cassette drive 2.

You can use the OPEN statement with a variety of other parameter combinations. N is

the only parameter which must be present. D, if absent, is assumed to be 1. S, if absent,

is assumed to be 0. If FILENAME is absent, the first file encountered is accessed.

When the OPEN statement is executed to open a tape cassette unit for a read,

the CBM computer will display the following message if no tape control keys are

pressed:

PRESS PLflV ON TAPE #1

OK-« A tape control key is depressed; tape begins moving.

Chapter 6: Peripheral Devices 243

The CBM computer then reads the tape header. In immediate mode the messages

continue as follows (bracketed items are shown only if a filename was specified by the

OPEN statement):

SEARCHING [FOR filename] Lists the first 1 6 characters of all files found, if any, between begin-

FOUND filename a ning tape position and requested file location

FOUND filename b

FOUND filename c

FOUND filename d Format for named file

FOUND Format for unnamed file

FOUND [filename] Found file

READY. File is opened for read

In program mode this block of messages is not displayed.

When the OPEN statement is executed to open a tape cassette unit for a write,
the CBM computer displays the following message if no tape control keys are pressed:

PRESS PLflV & RECORD OH TAPE #1
OK -" A tape control key is depressed; tape begins moving

The CBM computer writes the tape header; tape movement then stops. Here are

some sample OPEN statements:

OPEN 1 Open logical file 1 . No physical unit is specified, so select cassette

1 , the default physical unit. No secondary address is specified,

so select a read operation (the default secondary address is 0).

Since no filename is specified, read from the first cassette file

encountered

OPEN 1,1 Same as above, since the second parameter has the default value.

OPEN 1,1,0 Same as above, since the second and third parameters have default

values

OPEN 1,1,0,"DAT" Same as above, but the file named DAT is accessed. The second and
third parameters have default values

OPEN 3,1 .2 Open logical file 3 for cassette # 1 . Write a new file and an End of

Tape mark. The new file is unnamed

OPEN 3,1,2,"PENTAGRAM" Same as above, but give the new file the name PENTAGRAM

CLOSE a Cassette Data File

Since file opening and closing are conceptually related, for the sake of clarity we
are going to describe how to CLOSE a file before describing file access program logic.

But remember, CLOSE must be the last statement in the file access sequence. You can-

not access a file once you have CLOSEd it.

To CLOSE a file you execute the statement:

CLOSE N

where N is the logical file number appearing as the first parameter in the OPEN state-

ment.

When you CLOSE a cassette file after reading from it, all further read accesses are

inhibited. No harm is done if you forget to CLOSE a file after reading from it, but you
are indulging in sloppy programming practices.

244 PET/CBM Personal Computer Guide

You mustCLOSE a file after writing to it. Recall that data written to the cassette

file is stored in a memory buffer. Whenever the buffer is filled, buffer contents is auto-

matically written to the cassette. Any residual, partial buffer contents is written to the

cassette when you close the file. If the file is not closed for any reason, then this residual,

partial buffer contents will not be written out, and that can cause problems. Also, when

you close a file after writing to it, an end-of-file mark is written on the tape cassette. The

computer needs this end-of-file mark to separate one file from the next. Without the

end-of-file mark, the computer would start reading the next file as though it were part of

the previous file, and that would certainly cause errors.

When you close a cassette file after opening it with secondary address 2, an end-

of-tape mark is written on the cassette. The end-of-tape mark tells the CBM computer

that there is no more data on the cassette tape. If there is no end-of-tape mark, on the

subsequent read the CBM computer would keep searching beyond recorded data files,

and any previously recorded garbage will be interpreted as valid data, and that will

generate read errors.

You do not have to execute CLOSE statements in order to close cassette data files.

The END statement closes cassette files logically but not physically. If you write to a

file, you must close it with a CLOSE statement to avoid losing data.

So why bother individually closing files that you don't write to? There are two

reasons:

1. It makes you think through all file operations in a logical fashion, and that

reduces programming errors.

2. A maximum of two cassette files can be open at one time.

Few programs need more than ten cassette files open at one time. However, if you

do not bother to close files after accessing them, your program can finish up with a lot of

open files that are no longer being used. That can cause problems, particularly in large

programs which are written in small modules. If each module leaves a few files open,

then ten open files can quickly accumulate, in which case the eleventh OPEN statement

will cause an execution error. This is the worst kind of error to debug, since it will occur

in a program which previously might have executed without error for a long time.

It takes very little program space, or execution time to CLOSE files individually

after accessing them. And by doing so, you can avoid future execution errors.

CLOSE may be executed in either immediate or program mode. After writing to a

file, if no tape control key is depressed when a CLOSE is issued, the CBM computer dis-

plays the following message:

PRESS PLflV & RECORD ON TAPE #l-«— Press cassette keys

r\K" Tape begins moving to write tape buffer

No tape control keys need to be down for a CLOSE after a READ access.

Here are some examples of CLOSE statements:

10 CLOSE 1 Close logical file 1

100 CLOSE 14 Close logical file 14

210A=14 Same as above

220 CLOSE A Same as above

Chapter 6: Peripheral Devices 245

Accessing Cassette Data Files

Having OPENed a cassette data file you can either read from it or write to it. The
secondary address specified in the OPEN statement determines the allowed access.

Accesses can continue until the file is CLOSEd. But remember, whether you read from

a cassette data file or write to it, you must do so sequentially. The first cassette record

written or read will always be the first record of the file. If you wish to read the tenth

record of a file, you must first read records one through nine. Conversely, you cannot

write the tenth record of a file without first writing records one through nine.

You must make sure that the proper tape cassette is loaded in every drive that is to

be accessed by an executing program.

If you have just one cassette drive, the safest procedure is to mount the program

tape in this drive, load the selected program into memory, remove the program tape and
replace it with a data tape before executing the program. If you have two cassette drives,

then make sure that data tape(s) are loaded in the correct drive (s). You may or may not

have to remove the program tape after loading a program into memory, depending on

which drive (s) the program needs for data tapes.

No cassette drive keys should be depressed prior to the first cassette access. The
CBM computer will display a message telling you which keys to depress.

Remember, it is the operator's responsibility to make sure that a cassette tape is

correctly positioned. The cassette drive will start writing immediately, wherever the tape

happens to be positioned. When reading from tape, the drive will search forward for a

data file, but it cannot find a file that has been recorded earlier on the tape.

You write data to cassette tape using the PRINT* statement:

PRINT #f,data

where:

f is the logical file number. It must match f in

the OPEN and CLOSE statements and must have a

value ranging between 1 and 255.

data is the data to be written.

PRINT* cannot be typed as ?*. PRINT* must be completely spelled out.

PRINT* transfers data to a cassette buffer in computer memory. When the

cassette buffer reaches its maximum capacity of 191 data bytes, the data is written to

tape as a "block." A block may contain a partial record, a single record, or several data

records.

Either numbers or strings may be written to tape using the PRINT* statement.

Writing Numbers to Cassette Tape

When numbers are written to cassette tape, every number must be followed by a

carriage return character.

We will write a program called NUM.PRINT* to write the numbers 1 through 10

on cassette tape.

First, the program displays a message stating its purpose, and providing load

instructions:

NUM. PRINT*

10 PRINT"."** CREATE NUMERIC DATA TAPE " PRINT
20 PRINT"** MOUNT TAPE J PRESS <RETURN> WHEN READY **":PRINT
30 GET A*: IF A*="" THEN 30

246 PET/CBM Personal Computer Guide

Line 20 instructs the user to insert a cassette tape in the cassette unit, rewind to the

beginning of the tape, and press RETURN when ready. Statements on line 30 wait for

any key to be pressed. If no keystroke is entered, the computer waits. This wait loop

gives the user time to mount and rewind the cassette tape.

The wait loop created on line 30 is undesirable since it can be terminated by press-

ing any key. The operator's elbow brushing a key can end the wait loop, despite the

instruction to press the RETURN key, which would lead an operator to the logical con-

clusion that no other key will do. A better wait loop is created by:

3@ GET fl*:IF fl*OCHR*(13) THEN 30

Once the RETURN key is pressed, the program drops down to the next line where

an OPEN statement opens a cassette data file:

40 PRINT"** OPENING DflTfi FILE ": OPEN 1 , 1 , 2 ," NUMBERS "

This OPEN statement opens logical file #1, selects physical unit #1 (the cassette tape

unit) with secondary address 2 (OPEN for write and EOT mark at close of file). The data

file is named NUMBERS.
Next, we set up a FOR-NEXT loop to display the numbers 1 through 20 on the

screen, and to write these numbers on cassette tape:

50 FOR N=l to 10
60 PRINT N-« Display N on screen

70 PR INT# 1 , N -" Write N to data file * 1 (NUMBERS)

38 NEXT N

PRINT N creates a screen display. PRINT#1,N writes to tape. Remember, PRINT*

cannot be typed in as ?#. PRINT must be spelled out completely, with the number sign,

file number, comma, and variable following respectively.

Incorrect Correct

?#1,N PRINT#1..N
PRINT N
PRINT #1,N
PRINT#1N
PRINT1,N

Any of the above incorrect entries will result in a syntax error, except PRINT N,

which will display N on the screen.

If everything works correctly, lines 50 through 80 display numbers on the screen

and write them to tape:

PET Screen Representation of Data Tape

1

4
5

10

Chapter 6: Peripheral Devices 247

The PRINT* statement writes a carriage return character on cassette tape

wherever a PRINT statement would display a carriage return. Thus the PRINT* state-

ment on line 70 writes a carriage return after outputting N, just as the PRINT statement

on line 60 causes a carriage return after displaying N. To ensure that you write numbers

correctly to cassette, use PRINT* statement parameter syntax which, with PRINT
statement (s), would display a single, vertical column of numbers.

After all data is written to the tape, the file is closed. You must CLOSE the file to

be certain that all data is written to cassette tape.

90 PRINT"** CLOSING DATA FILE "CLOSE1
108 END

Be sure that the same logical file number is used in the OPEN and CLOSE statements.

OPEN 1,1,2,"NUMBERS"

CLOSE 1

Here is the complete listing for NUM.PRINT*:

10 PRINT":** CREATE NUMERIC DATA TAPE " PRINT
20 PRINT"** MOUNT TAPE; PRESS <RETURN> WHEN READV " PRINT
30 GET A$IF A*="" THEN 30
40 PRINT"** OPENING DATA FILE ": OPEN1 , 1 ,

2, "NUMBERS"
50 FOR N=l TO 10
60 PRINT N
70 PRINT#1.. N
SO NEXT N
30 FRINT"** CLOSING DATA FILE " : CLOSE1
100 END

Here is a run of the program:

CREATE NUMERIC DATA TAPE

MOUNT TAPE; PRESS <RETURN WHEN READV**

OPENING DATA FILE

PRESS PLAV & RECORD ON TAPE #1

OK

10
CLOSING DATA FILE

248 PET/CBM Personal Computer Guide

Writing Strings to Cassette Tape

Unlike numbers, when you write string variables to cassette tape, you can sepa-

rate variables using a comma or a carriage return. But the effect of these two separa-

tors differs. When string variables are subsequently read off the cassette tape, each

INPUT* statement will read all string variables up to the next carriage return separator.

Therefore you can use commas only to separate string variables that will always be read

back as a group, via a single INPUT* statement. You must use a carriage return follow-

ing the last string variable to appear in an INPUT* statement.

Special programming techniques are required in order to separate string varia-

bles using commas. Moreover, the mixed use of commas and carriage returns as sepa-

rators can become a source of great confusion, even to experienced BASIC program-

mers. Therefore make sure that you study examples carefully before attempting to write

programs for yourself.

We will modify NUM.PRINT* to write the words "ONE" through "TEN" as

strings. The new program is called WORD.PRINT*. The words can be supplied using

either INPUT or READ/DATA statements. Our sample program uses READ/DATA
statements. The READ statement is inserted in the FOR-NEXT loop at line 60. A
DATA statement is added to the end of the program. The final program is listed below,

followed by a sample run of the program.

WORD. PRINT#

10 PR INT"."^CREATE WORD DATA FILE**" : PRINT
20 PR INT"MOUNT DATA TAPE; PRESS <RETURN> WHEN READV^"
30 GET ft*: IF A*="" THEN 30
40 PR INT"OPENING DATA FILE^" : OPEN1 ,1,2, "NUMWORD" •' PRINT
50 FOR N=l TO 10
60 READ N*
70 PRINT N*
30 PRINT#1,N*
90 NEXT N
100 PR I NT"CLOSING DATA FILE^" = CLOSE

1

110 DATA ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN. EIGHT, NINE. TEN
120 END

CREATE WORD DATA FILE^

MOUNT TAPE; PRESS <RETURN> WHEN READV^

OPENING DATA FILE^

PRESS PLAY & RECORD ON TAPE #1
OK-

ONE
TWO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT
NINE
TEN
CLOSING DATA FILE^

Chapter 6: Peripheral Devices ^49

As each string variable is written to cassette tape , this program terminates the

string variable with a carriage return.

Let us now look at the use of commas to separate string variables that are writ-

ten to cassette tape. Commas must be inserted; they are not taken from the PRINT

statement parameter list. For example, when the statement:

18 PRIHT#1,F*,M*..L*

is executed, contents of the three string variables F$, M$ and L$ will be concatenated

into a single string variable which will be written to cassette tape as follows:

F$ M$ L$ I
A comma can be inserted between fields using one of these two methods:

1. Enclose the separator within quotes:

PRINT#1,F*;", ":.m;",":-Lt

2. Use the CHR$() function:

PRINT#1 , Ff ; CHR*C44) ; N*.: CHR*<44) , L*

Item Item

Separator Separator

CHR$(44) is the CHR$ function representation of the comma character.

Here is the illustration of F$, M$ and L$ written to cassette tape with commas

separating F$-M$ and M$-L$:

F$ M$ L$ <CR>

The program below, called NAMES.PRINT*, forces separators to keep F$, M$,

L$ name strings (first, middle, last) from running together:

NAMES. PRINT#

16 PRINT".">^CREATE NAME DflTFl FILE**" : PR I NT
28 PR I NT"MOUNT DATA TAPE; PRESS •CRETURN> WHEN READV^"
30 GET A* IF A*="" THEN 30
40 PR I NT"OPENING DATA FILE^" : OPEN1 , 1 ,Z, "NAME" : PRINT
50 FOR J=l TO 4
60 INPUT F*,M*,L*
70 PRINT F*,M*,L*
80 PRINT#1 , F*; CHR*<:44:) i M*;CHR*<44> .; L*
90 NEXT J
100 PR I NT"CLOSING DATA FILE^" CL0SE1
110 END

The rule to follow when writing to cassette tape is that characters written to

cassette tape will be the same characters that a PRINT statement would display on

the screen. A carriage return is written to cassette tape where it would force a carriage

return on the display. To create a comma separating two cassette variables, you will

require the same PRINT* statement parameter list needed to display a comma between

two string fields on the screen.

The next sample program shows how mailing list data is written to tape. A new

program MAIL.PRINT* writes a mailing list named MAIL onto a cassette tape. MAIL
is read by another program called MAIL.INPUT*.

250 PET/CBM Personal Computer Guide

In this sample program we want to demonstrate program steps needed to write

cassette records. We do not want to demonstrate good data entry program design. The

mailing list data entry program described in Chapter 5 illustrated good data entry pro-

gram design. The mailing list program we are now about to describe has very simple

(and inadequate) data entry logic, but it is short and easy to follow, allowing the discus-

sion to focus on cassette handling.

Each name and address is written to cassette tape as one record with these five

fields: 1) record number 2) name 3) street address 4) city 5) state and ZIP code. This

may be illustrated as follows:

RECORD #6 Field 1

WIDGETS SUPPLV CO. Field 2

555 BOGUS AVE. Field 3

GERTIE Field 4

TENNESSEE 38901 Field 5

One record

Of course, this is not how the data will appear on cassette tape. The data on the

tape may be illustrated conceptually as follows:

I <CR>RECORD #6 <CR> WIDGETS SUPPLY CO. <CR>

Field 1 Field 2

555 BOGUS AVE. <CR> GERTIE <CR> TENNESSEE 38901 <CR>

Field 3 Field 5

Below is a program listing of MAIL.PRINT*. Type MAIL.PRINT* into your

computer and save it on a cassette tape. Then list the program. (This listing assumes the

standard keyboard characters.)

20 PRINT"* *"

38 PRINT"* MfilLIHG LIST ENTRY *"

40 PRINT"* *"

68 PR INT" :«l»* MOUNT TAPE: <RETURN> WHEN READY" **"

70 GET P$: IF 8*="" ;HEN GOTO 78
30 PRINT"*)** OPENING MAIL FILE **" : 0PEN 1 , 1 ..2.. "?1AT

35 1=0
30 1=1+1
189 PRINT"™ ** BAILING LIST t

110 PRINT" .

120 PRINT" (IF NO MORE ENTRIES
138 PRINT":afiS": INPUT " 1 J NAME " .; NMS
148 IF NM$="ENIi" THEN CLOSE IMPRINT ""-".;"*#. LND OF
150 INPUT "2;' ADHR LINE 1".:A1$

166 INPUT "3:j ODER LINE 2".:A2*
170 INPUT "4> RUHR LINE 3", A3*
188 INPUT "SISMfi ENTER FIELD # TO CHANGE C0=SAVE) ";>

390 IF X=8 THEN 220
200 IF X>=1 AND >K=4 THEN GOSUE 23m
210 GOTO 180
220 PRINT* 1,1
230 PRINT#1,NM*
240 PRINT#l,fll*

' I
TEM"; I; " **"

MS"
•7ER ";CHR$<34>. I Jii".:CHR$<

JGRflM **"

Chapter 6: Peripheral Devices 25/

258 PRINT#i,fi2*
260 PRINT#l,fi3*
27ft fil'lTl'l 9H
280 PRINT "MSB" : 0N !"

290 INPUT "1) NRN.E

300 PRINT: INPUT "2>

316 PR I NT "MS": INPUT

RuTTi 2'90 3yn , :-: 1 tf ., yiio
"

.: NMS : RETURN
fiBDR LINE l",fii* : RETURN
"3) fiDDR LINE 2": H2* RETURN

32S PR I NT "SMS" : INPUT "4) RDDR LINE 3" ; A3* : RETURN

The first five lines (10 to 50) display a brief description of the program function.

The next segment instructs the user to mount the data tape (lines 60 and 70).

The statement on line 80 OPENs the data file:

SB PRINT"*** OPENING MAIL FILE **" : OPEN 1 , 1 , 2.. "MAIL"

MAIL is opened as logical file #1 on the cassette unit, with an EOT (End of Tape)

mark to be written at the CLOSE of the file. The message "OPENING MAIL FILE" is

displayed on the screen prior to the actual OPEN command. The operator is given this

message since it takes a few seconds to open the file.

Now the tape is ready to accept data. Before data is written to the tape it should be

displayed on the screen so the data may be checked for mistakes.

Statements on lines 130 through 170 input data from the keyboard and display the

data on the screen.

Variable "I" on line 90 is the incrementing record counter; it is displayed at line

100. Statements on lines 130 to 170 accept variables NM$ (name) and Al$, A2$, and

A3$ (addresses) as separate fields. The end of each field is signaled by a carriage return.

After all four fields have been entered, the statement on line 180 instructs the operator

to either change a field or save the record. If a field is incorrect, the operator types the

field number (1-4) and the program jumps to a field correction routine at line 280.

Using the field number input (variable X), the cursor is placed at the specified

field, allowing the operator to change the selected field. The program returns to line 180

so the operator can specify another field change. When all the fields are correct, the

operator inputs and the program continues at lines 220 through 270. Statements on

these lines write the record to the cassette data file as follows:

$ 6 <CR> WIDGET SUPPLY CO. <CR> 555 BOGUS AVE. <CR> GERTIE ^

Be sure the logical file number referenced by the PRINT* statement is the same one

specified in the OPEN statement.

After the record is saved, the program returns to line 90 to prepare for input of

another record. The operator types "END" for NM$ when there are no more records to

enter. The statements on line 140 close the data file and write an EOT mark (specified in

the OPEN command) when NM$= "END".
Notice that the tape does not move after each record is saved. As described ear-

lier, the CBM computer stores all cassette data in a buffer. When the buffer is full, the

entire buffer contents is written as a block to the tape. A block may contain a partial

record, a single record, or several records. The CBM computer leaves interblock gaps

between each block of data as follows:

1 Block Gap Block Gap 7

252 PET/CBM Personal Computer Guide

Here is a sample program run:

BREAK IN 60
REflDV

Reading Data from Cassette Tape

These are the three program steps needed to read data from cassette tape:

1. OPEN the data file

2. Read the data file

3. CLOSE the data file

A data file must be opened for a read with the file name it was assigned when
written. A different logical file number may be assigned. The secondary address code

must be for the READ option.

Write Program Read Program

OPEN 1,1,2,"DATA" OPEN 1,1,0,"DATA"

physical device no J

file name

Two statements read data from cassette tape: INPUT* and GET*. To read

numeric and string fields from a data file use the INPUT* statement. The GET* state-

ment reads one character at a time.

CLOSE the file after data has been read. CLOSE the same logical file that you

OPENed.

OPEN 1.1,0,"DATA"

CLOSE 1

A good way to CLOSE a file that is being read is to test for an end-of-file (EOF)
via the status word (ST). When a data file is written, an EOF mark is written at the end

of the file. When an EOF mark is read, the file status equals 64 and the file may be

closed. You may test for an EOF mark and close the file using this one statement:

IF ST=64 THEN CLOSE 1

When ST equals 64, the file is CLOSEd.
Previously we wrote the program NUM.PRINT* to write the numbers 1 through

10 in a cassette data file named NUMBERS. Now we will write a program called

NUM.INPUT* to read the ten numbers from the NUMBERS data file, and display

them on the screen.

The INPUT* statement is used to read numbers and strings from cassette tape.

INPUT* reads one field at a time.

Chapter 6: Peripheral Devices 253

The first few statements ofNUM.INPUT* instruct the user to load the data tape.

These statements are identical to the first three statements ofNUM.PRINT*. At line 30

there is a wait loop which gives the operator time to mount the data tape. After mount-

ing the tape, key RETURN; the program continues at the next line.

10 PRINT"."** READ NUMERIC DFITfl TOPE "PRINT
20 PRINT"** MOUNT TAPE i PRESS <RETURN> WHEN REflBV **":PRINT
30 GET ft*: IF fl*="" THEN 36

Before any data can be read, the data file must be opened. Statements on line 40 open

file #1, physical device #1, with secondary address (OPEN for read) and filename

NUMBERS.

40 PRINT"** OPENING DflTR FILE **":OPEN 1 , 1 , 0.. "NUMBERS" •' PR I NT

Next, a FOR-NEXT loop reads the first ten data items from the tape and displays

them on the screen:

50 FOR 1=1 TO 10
60 INPUT#l,N-«
70 PRINT H-
30 NEXT I

- Read N from tape

- Print N on screen

The INPUT#1 statement on line 60 reads one number per execution. The FOR-
NEXT loop ensures the correct number of executions. Program execution may be

illustrated as follows:

Program

FOR N=1 TO 10

INPUT #1,N
PRINT N
NEXT N

Screen

After the data is read, the file must be closed.

30 PRINT"** CLOSING DflTPl FILE ": CLOSE

1

100 END

254 PET/CBM Personal Computer Guide

A complete listing of NUM.INPUT* is given below, followed by a sample run of

the program.

NUM.INPUT*

10 PRINT".T** READ NUMERIC DATA FILE ": PRINT
20 PRINT"** MOUNT TAPE .PRESS <RETURN> WHEN READY" : PRINT
30 GET ft*: IF A*="" THEN 30
40 PRINT"** OPENING DATA FILE "'OPEN 1 , 1 .. 0, "NUMBERS" : PRINT
50 FOR 1=1 TO 19
60 INPUT#1..N
70 PRINT N
80 NEXT I

90 PRINT"** CLOSING DATA FILE ": CLOSE 1

100 END

READ NUMERIC DATA TAPE

MOUNT TAPE; PRESS <RETURN> WHEN READY

OPENING DATA FILE

PRESS FLAY ON TAPE #1
OK

id

9
10
CLOSING DATA FILE

The INPUT* statement also reads fields that contain string variables. The pro-

gram WORD.PRINT* wrote ten string variables to cassette tape. The data file created

was named NUMWORD. NUMWORD looks like this:

<CR>ONE<CR>TWO<CR> <CR>NINE<CR>TEN<CR>

To read fields from NUMWORD, use INPUT* with a string variable parameter.

With only slight modification, you can change the READ NUMERIC DATA TAPE
program to read NUMWORD. The changes occur at line 40 (name the data file), and

line 60 (INPUT variable) . The complete changed listing appears below, followed by a

sample run of the program.

10 PRINT".">* READ NUMWORD DATA FILE *": PRINT
20 PRINT"** MOUNT TAPE; PRESS <RETURN> WHEN READY" FRINT
30 GET A*: IF A*="" THEN 30
40 PRINT"** OPENING DATA FILE **":OPEN 1 , 1 .. 0, "NUMWORD" : PRINT
50 FOR 1=1 TO 10
60 INPUT#1,N*
70 PRINT N*
SO NEXT I

90 PRINT"** CLOSING DATA FILE ++" CLOSE

1

100 END

Chapter 6: Peripheral Devices 255

READ NUMWORD DATA FILE

MOUNT TAPE; PRESS <RETURN> WHEN RERDV

OPENING DATA FILE

PRESS PLAV ON TAPE #1
OK

ONE
TWO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT
NINE
TEN

CLOSING DATA FILE

Returning to the NAMES.PRINT* program, recall that the names in data file

NAME are written as three separate string fields: F$, M$, L$. Each string field has a

comma separating it from the next string field. The data tape looks like this:

^ HEADLY, GEORGE, JOYCE < CR > CAROL, A. , SMITH <CR > ^

If commas do not separate the fields, they will be read as a single string variable, and the

three fields will be displayed on the screen as follows:

HEADLVGEORGEJOVCE
CflROLfl. SMITH

A program to read data from the NAME file is listed below. The INPUT* state-

ment on line 60 will read all fields up to the next carriage return separator. Fields lying

between carriage returns are separated by commas. Since three fields lie between car-

riage returns, separated by commas, three string variable names appear in the INPUT*
statement parameter list. The PRINT statement on line 70 displays the three string

variables on a single line, with a space inserted between adjacent strings.

10 PRINT":** READ NAME DATA FILE ": PRINT
20 PRINT"** MOUNT TAPE, PRESS <RETURN> WHEN RERDV ": PRINT
38 GET A*: IF A*="" THEN 30
40 PRINT"** OPENING DATA FILE "•OPEN 1 , 1 , 0.- "NAME" : PRINT
50 FOR J=l TO 4
60 INPUT#1,F*,M*,L*
70 PRINT F*.:" ";Mtj" " i L*
88 NEXT J
90 PRINT"** CLOSING DATA FILE **":CLOSEl
100 END

READ NAME DATA FILE

MOUNT TAPE; PRESS <RETURN> WHEN RERDV

OPENING DATA FILE

PRESS PLAV ON TAPE #1
OK

One record

256 PET/CBM Personal Computer Guide

ARNOLD J. SIMPSON
BETTV S. CLARK
HEf=lDLV GEORGE JOVCE
CAROL ANNE SMITH

CLOSING DATA FILE

The next program demonstrates how to read mailing list data which was written to

data file MAIL by program MAIL.PRINT*. Each record contains five fields: record

number, customer name, street, city, state and ZIP code. Below is an example of a

MAIL file record:

RECORD #6 * Field 1

WIDGETS SUPPLV CO. Field 2

555 BOGUS AVE. Field 3

GERTIE Field 4

TENNESSEE 38901 Field 5

Below is a program listing of MAIL.INPUT*. Type in MAIL.INPUT* and save it

on a cassette tape. Then LIST the program to follow the step-by-step discussion.

MAIL. INPUT*

10 PR I NT "rat***************************

"

26 PRINT"* *"

30 PRINT"* READ MAIL FILE W/ INPUT# *"

40 PRINT"* *"

S0 PRINT"****************************" : PRINT : PRINT

60 PRINT"** PRESS <RETURN> WHEN TAPE IS LOADED **»"

70 GET A*: IF A*="" THEN 70

80 PR I NT " ** OPEN I NG MA I L FILE ** " OPEN 1,1, , " MA I
L

"

90 PRINT":«** READING MAIL FILE **"

100 IF ST=64 THEN 3399
110 INPUT#1,I*
120 IHFUT#1,NM*
130 INPUT#1,A1*
146 INPUT#1,A2*
150 INPUT#1,A3*
160 PR I NT "D** RECORD #".:I*," **"

1 70 PR I NT "SMHMBNAME :
" : TAB < 3 > .; NM*

1 80 PR I NT "ADDR :
"

.: TAEO); A 1 *

1 90 PR I NTTAE < 9 J ; A2*
200 PR I NTTAB <

9

> i A3*
210 PRINT"MKMM"
"•20 INPUT "ENTER "V' TO READ NEXT RECORD" ; A* : IF Af="V" GOTO 100

5,999 PRINT"S»* END OF MAIL FILE—PROGRAM TERMINATED" : CLOSE1 : END

Statements on the first five lines display a brief program description. Statements

on lines 60 and 70 instruct the user to mount the data tape; the program is then ready to

begin reading customer addresses. First the data file must be OPENed. MAIL is

OPENed as logical file #1 on the cassette unit #1. The secondary address must be for

READ.

80 PRINT"** OPENING MAIL FILE **"
: OPEH1 , 1 0, "MAIL"

Chapter 6: Peripheral Devices 257

The statement on line 100 uses the status word (ST) to check for an end-of-file

mark. If ST=64 (indicating an end-of-file mark is found), then the file is closed at line

9999. ST should be checked before data is read so that you do not attempt to read data

when there is no more.

Statements on lines 1 10 to 150 read data using INPUT*. Each field was written to

tape separated by a carriage return, so each field is read with an individual INPUT*. The

variable or string names used to read data may differ from names used when the data

was written. For instance, data may be written to the tape as X$ and read back from the

tape as A$. The computer will not know the difference because data variable names are

neither saved nor passed from one program to another.

^ 6 <CR> WIDGETS SUPPLY CO <CH> 555 BOGUS AVE <CR> GERTIE: <CK> TENNESSEE 3KtJQ 1 "^

INPUT #1, I

INPUT #1, NM$ 1

INPUT #1. A1$
INPUT #1. A2$
INPUT #1, A3$

Data is stored in the input buffer (memory) when read. Nothing is displayed on

the screen unless the display is programmed. This is done by statements on lines 160

to 200, where tabs and leaders were inserted. Line 210 moves the cursor down four

lines.

PRINT":** RECORD
PRINT"SWWD!WNflME '

PRINT"flDDR ".:TfiB<

PRINTTfiB<9:).;fi2*
PRINTTRB'CSOjflS*
PRINT'

#"; I*.: " **"
;TflE(3);NMt

160
170
180
130
200
210

The screen output looks like this:

RECORD #6

NAME: WIDGETS SUPPLV CO.
flDDR: 555 BOGUS AVE.

GERTIE
TENNESSEE 3S9GU

After all four fields have been displayed, the operator is asked whether the next

record is desired:

20 INPUT "ENTER TO READ NEXT RECORD", fit IF fi*="V" GOTO 100

If the user wants the next record, the program goes to line 100 and repeats program

execution until the status word (ST) signals an EOF. If the user does not wish to con-

tinue, or if an EOF is encountered, the file is closed and the program ends.

Figure 6-4 provides a flowchart of the MAIL.INPUT* program. A sample run of

the program follows:

258 PET/CBM Personal Computer Guide

C Start J

Mount

data tape

I

c End J

Figure 6-4. MAIL. INPUT*

* *

* READ MAIL FILE W/ INPUT#
* *

** PRESS <RETURN> WHEN TAPE IS LOADED **

** OPENING MAIL FILE **

PRESS PLflV ON TAPE #1
OK

Chapter 6: Peripheral Devices 259

** READING MAIL FILE *t

** RECORD # 1 **

NAME: ACME MANUFACTURING CO.
ADDR: 1235 MAIN ST.

DOWNTOWN
IL 62501

ENTER -V TO READ NEXT RECORD

** RECORD # 2 **

NAME: BENJAMIN FRANKLIN
ADDR: 12 LIBERTY TOWER

PHILADELPHIA
PA 16524

ENTER -V' TO READ NEXT RECORD

** RECORD # 3 »*

NAME: NEIL ARMSTRONG
ADDR: 59? SEA OF TRANQUILITY AVE.

EARTHVIEW
LUNAR 000000

ENTER V TO READ NEXT RECORD

** RECORD # 4 **

NAME: MAMMOTH DISTRIBUTION CO.
ADDR: INDUSTRIAL PARK

CITY OF INDUSTRY
CA 92425

ENTER 'V' TO READ NEXT RECORD

** RECORD # 5 **

NAME

:

HENRY MUSCATEL
ADDR : 819 OAK ST.

NAPA
CA 95303

ENTER 'V TO READ NEXT RECORD

** RECORD # 6 **

NAME- WIDGET SUPPLY CO.
ADDR: 555 BOGUS

GERTIE
TENNESSEE 3S901

ENTER 'V TO READ NEXT RECORD
** END OF MAIL FILE—PROGRAM TERMINATED **

26q PET/CBM Personal Computer Guide

When you run MAIL.INPUT*, do not panic if the computer appears to stop for a

few seconds. Look at the cassette drive and you will see the cassette tape moving. What

is happening is that the computer is reading the next 191 bytes of data into the input

buffer before continuing with the program. Once the buffer is full the computer will

come to life again.

Note that statements on line 220 do not represent good programming practice.

This program logic will cause another name and address to be read and displayed if the

operator depresses the Y key. But if the operator depresses any other key, or acciden-

tally bumps the keyboard, the program will shut down. A well-written program will res-

pond to just two keys, perhaps "Y" for "yes" and "N" for "no". The prompt message

will tell the operator to depress one of these two keys. Any other key input should be

ignored. Can you rewrite the statements on line 220 to operate in this fashion?

Another method of reading data files uses the GET* statement:

GET#f,var

where:

f is the logical file number (1-255. matching the file

number in the OPEN and CLOSE statements),

var is the variable name of the data to be read.

GET* reads one character at a time from the data file. It is similar to GET, which

accepts one character at a time from the keyboard.

GET* reads characters, file delimiters and anything else on the tape. This is

especially useful when you want to read everything that is written on a bad data tape to

find the cause of any problem. GET* allows individual characters to be compared with

specific values as a means of character identification.

Two sample programs will demonstrate how to read and display an entire file,

including all file delimiters, and how to display the MAIL data file separated into

records.

The following program, MAIL.GET*1, reads data file MAIL one character at a

time and displays the contents of MAIL on the screen:

MAIL.GET#1

10 PR I NT "a****************************

"

20 PRINT"* *"

30 PRINT"* READ MAIL FILE W GET# *"

40 PRINT"* *"

50 PR INT "**************************** ": PR I NT : PR I NT
60 PRINT"** PRESS <RETURN> WHEN TAPE IS LORDED **"

76 GET P.*: IF A*="" THEN 70
80 PRINT"*)** OPENING MAIL FILE **" : PRINT : OPEN1 , 1 , Q, "MOIL"

S>0 PRINT"*** MFIIL FILE **"

100 IF ST=64 THEN 9999
110 GET#1,X*
120 IF X*=CHR*<13> THEN X*="®"
130 PRINT X*;
140 GOTO 100
9999 PRINT"*WM** END OF MAIL FILE—PROGRAM TERMINATED**"

: CLOSE 1 'END

Chapter 6: Peripheral Devices 261

Statements on lines 10 through 90 are similar to the beginning lines of

MAIL.INPUT*. These statements introduce the program, give instructions for mount-

ing the data tape, and then open the data file.

Statements on lines 100 through 140 read data from file MAIL and display data on

the screen.

The statement on line 100 checks for an end-of-file (EOF) status. If an EOF is not

encountered, the next character is read by the GET* statement on line 110. #1 is the

file number and X$ is the variable name assigned to the data strings. This statement will

read the next character in the file.

The statement on line 120 compares the current value of X$ to a carriage return

(CHR$(13)). If the value of X$ is CHR$(13), then the value of X$ is changed to a

FULL GRID B. This change avoids printing a carriage return, which would push the

cursor to the next line; with the FULL GRID substituting for a carriage return, the

whole file appears as one continuous line, as a good conceptual representation of the

data tape. An example of this is shown in the sample run.

Make sure that a semicolon follows the variable in the PRINT statement on line

130, otherwise characters will be displayed vertically down the first column of the

screen.

After each character is read from tape and displayed on the screen, the program

returns to check status and GET* another character. This process repeats until ST=64

(the end-of-file). When the end-of-file is encountered at line 100, the job of

MAIL.GET*1 is complete. At line 9999 the program closes the data file and ends.

Here is a sample run of MAIL.GET*1, using MAIL as the data file.

* *
* READ MAIL FILE W/ GET# *
* *

** PRESS <RETURN> WHEN TAPE IS LOADED **

** OPENING MAIL FILE **

PRESS PLflV ON TAPE #1
OK

** MAIL FILE **

1 8ACME MANUFACTURING CO. 81235 MAIN ST.

8DOWNTOWN8IL 6250 IS* 2 8BENJAMIN FRANKL
IN812 LIBERTV TOWER8PHILADELPHIA 16524
8 3 KNEIL ARMSTR0NG859? SEA OF TRANQUIL

I

TV8EARTHVIEW8LUNAR 000008 4 8MAMM0TH D
ISTRIBUTION C0.8INDUSTRIAL PARK8CITV OF
JNlMJSTRVaCfl 32425S 5 3HENRY MUSCATELS
19 OAK ST.8NAPA8CA 953038 6 8WIDGET SU
PPLV CO. 8555 BOGUS AVE. 8GERTIE8TENNESSEE

389018

** END OF MAIL FILE—PROGRAM TERMINATED**

262 PET/CBM Personal Computer Guide

Next program MAIL.GET#2 reads MAIL and displays data on the screen,

divided into records. Here is a program listing of MAIL.GET#2:

i fi PR INT" ,"»*************************
"

20 PRINT"* *"

38 PRINT"* READ MAIL rILE W GET* *"

46 PRINT"* *"

Rfi PRINT"**************************" : PRINT : F'K'INT

65 PRINT"** PRESS ::RETURN> WHEN TAPE 13 LUfilO **" ; PRINT :

79 GET fl$'IF A*="" THEN 78
88 PRINT"** OPENING MAIL FILE **" PRINT : OPEN 1 , 1 ,

y, "MAIL 1

98 PRINT: PRINT".")** MAIL FILt **" : PRINT:
95 F=8 : R=0
188 IF ST=S4 THEN 9999
118 GET#1,X*
120 IF Kf=CHR*a3? THEN F=F+1
130 PRINT S$;
148 IF F>=5 THEN GOSUB 160
l.^O GOTO 188
160 PRINT
178 R=R+1
ISO IF P">2 THEN PRINT "PRESS "V FOR NEKT StT OF RECORDS" ; INPU

!

A$

185 IF A$="V" THEN R=8
190 F=@: PRINT: RETURN
9999 PR I NT" Mfi«#* END OF MAIL FILE—PROGRAM TERMINATED**" : CLUSE1 : END

Type in MAIL.GET#2. SAVE and VERIFY the program on a cassette tape. Then

LIST it.

Statements on the first ten lines (10 through 100) of MAIL.GET#2 are identical

to MAIL.GET#1. This part of the program informs the user of the program's functions

and procedures, and opens the MAIL data file in preparation for reading the data.

The difference between MAIL.GET#2 and MAIL.GET#1 is at line 120. If

X$= CHR$(13), instead of changing the value of X$ from a carriage return to FULL

GRIDS , variable F (a carriage return counter) is incremented by +1. When

MAIL.PRINT* wrote to the data file, a carriage return marked the end of each field.

There are five fields in each record. MAIL.GET#2 counts fields. The conditional state-

ment on line 140 calls a subroutine if five records have been read.

The statement on line 160 inserts a blank line between records. On line 170, varia-

ble R serves as a record counter. Statements on line 180 test to see if more than two

name and address records have been read. When three records have been read, the

screen is full, and the operator is asked if a new set of records is desired. If yes, the

record counter R and field counter F are initialized to zero before returning to read the

next set of records at line 100. This continues until the user inputs something other than

a Y character or ST= 64; at that time the file is closed and the program ends. Figure 6-5

illustrates program logic.

Although GET* is similar to INPUT* in some ways, it is more difficult to format

the printout when using GET* if titles and indentation or spacing are desired. Just as X$

is compared with CHR$(13), so other field delimiters or characters would have to be

conditionally tested in order to create a formatted display.

Following is a sample run of MAIL.GET#2 reading MAIL.

Chapter 6: Peripheral Devices -^i

* *
* READ MAIL FILE U/ GET# *
* *
•MM******************
** PRESS <RETURN> WHEN TAPE IS LORDED **

** OPENING MAIL FILE **
PRESS PLAY ON TAPE #1
OK

** MRIL FILE **

1

RCME MANUFACTURING CO.
1235 MAIN ST.
DOWNTOWN
IL 62501

2
BENJAMIN FRANKLIN
12 LIBERTY TOWER
PHILADELPHIA
PR 16524

NEIL ARMSTRONG
597 SEfl OF TRANQUILITY
ERRTHVIEW
LUNAR 00080

PRESS 'V FOR NEXT SET OF RECGRDS7V
4

MAMMOTH DISTRIBUTION CO.
INDUSTRIAL PARK
CITY OF INDUSTRY
CR 92425

5
HENRY MUSCATEL
SI 9 OAK ST,
NRPR
CR 95303

WIDGET SUPPLY CO.
555 BOGUS AVE.
GERTIE
TENNESSEE 38901

PRESS 'Y' FOR NEXT SET OF RECORDS ?Y

** END OF MAIL FILE—PROGRAM TERMINATED**

264 PET/CBM Personal Computer Guide

line 100)

GET*
1 character

from data tape

(line 110)

No ^^CharacterS
carriage return

? ^Iline 1 20)

(line 120)

Print character

on screen

line 1 30)

(line 140)

Mline 160)

Increment

record counter R

R = R + 1

[line 1 70)

Close

data

file

(line 9999)

C End)

(line 1 85)

Initialize

record counter R

R =

Initialize

CR counter F:

F =

(line 190)

Figure 6-5. Format Printing using GET#

Chapter 6: Peripheral Devices 26->

CASSETTE FILE FORMATS

The description of data files given at the beginning of this chapter is a conceptually

accurate description of the way data is structured by computer systems in general. Data

files are subdivided into records and fields. You can maintain this classical organization

using appropriate CBM BASIC program logic, and we recommend that you do so. But

the actual organization of CBM cassette data files has little to do with fields and

records — as should be clear by now.

Every numeric field must be followed by a carriage return character (CHR$(13)).

Therefore, a file consisting of numeric fields only could be looked upon as a sequence of

numbers separated by carriage return characters. This may be illustrated as follows:

N<CR>N<CR>N<CR>N<CR>N<CR>

Nothing within the numeric file partitions fields into records, or distinguishes one

record from another. It is entirely up to your program logic to keep track of records as

repeating field sequences — if indeed such repeating field sequences exist.

String variables can optionally be divided into fields and records. You can use

commas (CHR$(44)) to separate fields within a record, while a carriage return

(CHR$(13)) follows the last field of the record. Thus, a file containing string variables

only, with five fields per record, might be illustrated as follows:

<CR>S<,>S<,>S<,>S<,>S<CR>S<,>S<,>S<,>S<CR>

If you use comma and carriage return separators to divide string files into fields

and records as illustrated above, then all the fields of each record must be read by a

single INPUT* statement.

You are not required to use comma and carriage return separators with string

variables. You will likely be better off separating all string variable fields using car-

riage returns. As for numeric data, rely on program logic to group fields into records.

Program logic needed to organize files into records and fields is usually self-evi-

dent; take the example of a mailing list. It takes no training as a programmer to see that

each name and address becomes a record, while parts of the name and address must be

treated as individual fields. There are a number of ways in which the parts of a name and

address could be divided into fields; each option would probably do as well as any other.

File organization is likely to be dictated on the needs of your program rather than the

structure of CBM cassette data files. Programming difficulties, if any, will surround the

PRINT* and INPUT* statement syntax.

Now we will take a simple program and, by looking at variations, identify syntax

that is and is not allowed.

Key in the following program:

. IS OPEN 1,1,1
20 FOR 1=1 TO 1@
30 PR INT#1, 1+100
49 NEXT
50 CLOSE 1

60 STOP
70 OPEN 1

30 FOR 1=1 TO 18
90 IHPUT#1,J
100 PRINT J
110 NEXT
120 CLOSE 1

132 STOP

2<j6
PET/CBM Personal Computer Guide

The OPEN statement on line 10 opens logical file 1, selecting cassette drive 1 for a

write operation. The FOR-NEXT loop on lines 20, 30, and 40 writes ten numbers to

cassette tape. Numbers are followed by carriage return characters because the

PRINT* statement on line 30 forces a carriage return on each execution, just as an

identical PRINT statement would cause a screen carriage return after displaying each

number. The logical file is closed on line 50. Thus the ten numbers can be visualized on

cassette tape as follows:

Statements on lines 70 through 120 read and display the ten numbers that were

written to cassette tape by statements on lines 20 through 50.

Let us execute this program and see what happens.

Get a blank cassette tape; wind the tape forward until magnetic surface appears in

front of the read gap, then mount the tape in cassette drive 1 . Make sure that no cassette

drive keys are depressed.

LIST the program to make sure that it is in memory and correctly entered. Now

type RUN. The following message will be displayed:

PRESS PLRV AND RECORD ON TAPE #1

Depress these two keys on cassette drive 1. The CBM computer will respond by

displaying OK:

PRESS PLAV AND RECORD ON TAPE #1

OK

The tape cassette will wind forward while the ten numbers 101 through 110 are

written on tape cassette. After these ten numbers have been written, the drive stops

moving and the following message is displayed:

BREAK IN 60
REAHV

The cursor flashes below the message. The STOP statement on line 60 caused the

break. Now depress the STOP key on drive 1 to raise the PLAY and RECORD keys.

Press the REWIND key to fully rewind the tape cassette, then press the STOP key again

to raise the REWIND key. Now execute the second half of the program by typing:

GOTO 76

The message PRESS PLAY ON TAPE 1 will be displayed. Press the PLAY key on

cassette drive 1. The computer will respond by displaying OK:

PRESS PLAV ON TAPE 1

OK

Chapter 6: Peripheral Devices ^67

Nothing will happen for a while; the tape drive will move forward until the ten

numbers previously written are located. Then these ten number will be displayed in a

vertical column on the screen as follows:

101
102
103
104
105
106
107
108
109
110
BREAK IN 130
REflDV

The ten numbers are displayed in a vertical column because the PRINT statement on

line 100 causes one number to be displayed per execution.

The final message is caused by execution of the STOP statement on line 130.

BREAK IN 130
REflDV

If you forget to rewind the tape cassette before typing GOTO 70, then the drive

will search the cassette endlessly looking for data which occurred earlier on the tape.

You must now stop the tape cassette and stop program execution. Rewind the tape

cassette, but before you restart program execution, you will have to close file 1 in

immediate mode by typing:

CLOSE 1

Then restart with:

GOTO 70

Now list the program again; end the PRINT statement on line 100 with a semi-

colon :

100 PRINT J,

Rewind the tape cassette; then type GOTO 70.

Once again the message PRESS PLAY ON TAPE #1 will be displayed. When you

press the PLAY key, OK will follow. After a short pause the ten numbers read off the

tape cassette will be displayed on a single line as follows:

101 102 103 104 105 106 107 108 109 110
BREAK IN 130
REflDV

As an experiment we will now change statements on lines 80 through 110 so that

the ten numbers are input using a single INPUT statement, as follows:

10 OPEN 1,1,1
20 FOR 1=1 TO 10
36 PR INTtl, 1+100
40 NEXT
50 CLOSE 1

68 STOP
70 OPEN 1

80 INPUT#1 , N< 1) , N<2) , N03) , N<4) , N<5) , N(6> , N<7> , NC8) , NO), NU0)
90 FOR 1=1 TO 10
100 PRINT Ha):
118 NEXT
120 CLOSE 1

130 STOP

268
PET/CBM Personal Computer Guide

Again rewind the cassette and execute the second part of the program by typing

GOTO 70.

Once again you will be told to PRESS PLAY ON TAPE #1, and when you do so,

ten numbers will be read from the tape cassette and displayed on a single line, as illus-

trated previously. Thus it makes no difference whether you read the ten numbers from

tape cassette by executing one INPUT* statement with ten variables in its parameter

list, or by executing one INPUT* statement, with one variable, ten times.

Experimenting further with field separation punctuation, modify the first part

of the program, where data is written to the tape cassette as follows:

>) ; C*; M<3)

;

C$; M<4) ; C*; M<5)
') .: C*; M<8) .: C*; MO) ; C*; M<10)

10 OPEN 1.. 11,1

20 FOR 1=1 TO 10
30 PRINTttl..1+100
40 NEXT
45 C*=CHR*<59>
46 PR I NTS 1., Md.).;«.;;m<,
47 PRINT#1.,MC6).;C*.:M<
58 CLOSE 1

60 STOP
70 OPEN 1

80 FOR 1=1 TO 10
90 IHPUT#1 ,J
100 PRINT .J

110 NEXT
120 CLOSE 1

130 STOP

CHR$(59) represents a semicolon. Rewind the tape cassette, advance the tape until

magnetic surface appears below the read gap and mount the tape in the tape drive. With

all keys up type RUN. When instructed to do so, press the PLAY and RECORD keys.

The data will record successfully and the following message will appear.

BREAK IN 60
REflDV

Rewind the cassette tape and type GOTO 70.

When instructed to do so, press the PLAY key on tape drive 1. Data is not read

successfully; an error message is displayed.

FILE DATA ERROR IN 90
REflDV

You cannot use any punctuation other than carriage returns to separate numeric data

fields. You can use commas or carriage returns to separate string fields. To prove this

change the program as follows:

5 HATH ONE , TWO , THREE , FOUR , F I VE , S I X , SEVEN , E I OHT , N I HE , TEH

10 OPEN 1.. 1, 1

20 FOR 1=1 TO 10
30 READ m<A>
40 NEXT
45 C*=CHR*<44)
46 PRiNT#l,M*<l);C*;Mt<2);C*;M*(3);«;M*<4);C*;M*<.5)
47 PR I HT# 1 , M* < 6) ; C* . M* < 7) ; C* ; M* <: 8) ; C* :m •:. 9) ; C* ; M* (. 1)

50 CLOSE 1

68 STOP
70 OPEN 1

80 FOR 1=1 TO 10
90 INPUT#1,J*
100 PRINT J*
110 NEXT
120 CLOSE 1

130 STOP

Chapter 6: Peripheral Devices 269

Rewind the data cassette, advance the tape until magnetic surface appears below

the read gap, mount the tape in drive 1 and type RUN. When instructed to do so,

depress the PLAY and RECORD keys of tape 1 . Data will record successfully on the

cassette. When the message:

BREAK IN 60
READY

appears, rewind the cassette tape and type GOTO 70.

Press the PLAY key when told to do so. You will see the string variables 1 and 6

displayed, followed by the error message:

STRING TOO LONG ERROR IN 90
READY

What went wrong? The problem is in the INPUT* statement on line 90. An
INPUT* statement will read all string fields up to the first carriage return. Therefore

M$(l) through M$(5) is input on the first execution of the line 90 INPUT* statement;

however, only M$(l) has its value assigned to J$ since the comma is interpreted as a

field separator, not a record terminator. The second time the line 90 INPUT* statement

is executed, M$(6) through M$(10) is input, since these are the fields lying between
two carriage returns. Once again only M$(6) is assigned to J$, since the comma is

interpreted as a field terminator. The third time the line 90 INPUT* statement is

executed there is no data left to read and a file error is reported. This explains the

observed display. In order to resolve the problem we must execute INPUT* state-

ments with the same number of variables as there were in the PRINT* statement.

Consider the following program:

5 DATA ONE, TWO, THREE. FOUR FI 1

'.•'E,SIX , 9£',/'EN, EIOHT..NINE,!
10 OPEN 1,1,1
20 FOR 1=1 TO 10
30 READ mil)
40 NEXT
45 C*=CHRS<44>
46 PRINT#l,M*a:).;C$;M*<2>; C$, may : C$

.

;M*<4>;C*; m*<5:>
47 PRINT#1,M*<6:>,C*,M*':"?); c*.; misy ;C*.;H$(9),C*.; f!t(I8)
50 CLOSE 1

60 STOP
70 OPEN 1 .

SO INPUT#1 N*a:>,N$<'2).M*< :T>

,

H$C4) , N*<'.5:>

90 input#i m<6':>,m(T:i,H$<:. g). HfO'y , N* (:io>
100 FOR 1=1 TO 10
105 print N$a:;;" ".;

110 NEXT
120 CLOSE 1

130 STOP

If you repeat the execution steps for the two halves of this program, accurately

manipulating the cassette tape as described for previous executions, then when the sec-

ond half of the program is executed, you will obtain the display:

ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE TEN
BREAK IN 130
READY

There are a few more experiments worth trying on your own.

Can a single INPUT* statement read a number of string variables separated by
carriage returns? To check this out, change line 45 in the final program so that C$ is

assigned the value CHR$(13). Then re-execute the program.

How about mixing numeric and string fields in a single data file? To check this

out, create the ten string variables M$(I) as shown in the final program illustration, but

2
- PET/CBM Personal Computer Guide

in addition, create ten numeric variables M(I) by adding the following statement on line

35:
35 M<:i:>=i+i@s

Now try various combinations of PRINT* character sequences on lines 46 and

47, and see what it takes to read these sequences back correctly with INPUT* state-

ments on lines 80 and 90.

DISKETTE FILES

Program files and data files may be recorded on diskettes. Program files store

BASIC programs. Data files store numeric and string data.

There are three types of diskette data files:

1. Sequential files, which store data in a very compact way, but have restricted

file access capabilities.

2. Relative files, which require more diskette surface than sequential files to

store the same amount of data, but allow data to be accessed and manipulated

more efficiently.

3. Random files, which rely on your program logic for their structure.

Program files, sequential data files and relative data files are described in this

chapter. Random data files are described in Chapter 7.

A Comparison of Diskette and Cassette File Handling

Diskette file handling differs markedly from cassette file handling for these

two reasons:

1. Data can be accessed off a diskette very quickly, as compared to cassette file

access times.

2. There is no "beginning" or "end" to a diskette surface, as there is to a

cassette tape. A diskette drive can access any point on the diskette surface

with equal ease. In contrast, cassette tape has a beginning and an end.

Cassette and diskette file handling differ markedly because they use totally

different data storage formatting and access methods. Mechanical speed has very little to

do with it; the speed at which a diskette is rotated is comparable to the speed at which

cassette tape is moved.

Cassette tape stores data on a continuous track down the length of the tape; the

cassette drive moves the tape past stationary read and write heads in order to access any

part of the tape.

In contrast, diskettes store data on a large^number of concentric circular tracks.

The diskette drive read and write heads are on a moving arm that can position over any

track. The diskette is rotated to bring the required section of the selected track under the

read or write head.

In order to use diskettes you do not have to understand how information is stored

on the diskette surface, but some knowledge will help you program diskette files more

efficiently. Therefore we will begin our discussion of diskette files by describing the way

data is recorded on the diskette surface.

Chapter 6: Peripheral Devices *'*

HOW DISKETTES STORE DATA

Diskettes store data on a number of concentric tracks. Tracks are divided into

sectors.

In order to imagine a single track, draw a circle to represent the diskette, then

draw a smaller concentric circle to represent one track on the diskette surface. This may

be illustrated as follows:

Edge of diskette

.Center of diskette

.One track on the diskette surface

Different diskette drives write different numbers of tracks on the surface of a dis-

kette. Some drives write on both surfaces of the diskette; other drives write on one sur-

face only. The CBM 2040 and 8050 diskette drives write on one surface of the dis-

kette; as summarized in Table 6-3, the 2040 drive writes 35 tracks, whereas the 8050

drive writes 77 tracks.

The diskette drive does not write data across the entire length of a track. To do so

would make diskette surface addressing very difficult. If data were recorded over the full

length of the track, no two tracks would hold the same amount of information, since no

two tracks have the same length. To resolve this problem, tracks are divided into sec-

tors. Every sector holds exactly the same amount of information. In the case of the 2040

and 8050 drives, 256 characters (bytes) of data are stored on each sector. Figure 6-6

illustrates this organization.

Most diskette drives write the same number of sectors on every track, even

though the track closest to the edge of the diskette is much longer than the track closest

to the diskette center. The 2040 and 8050 diskette drives take advantage of the longer

tracks closer to the edge of the diskette by writing more sectors on longer tracks. Table

6-3 identifies the number of sectors written on various tracks. Track numbers begin at

for the outermost track. The innermost track has the highest track number.

If you manually rotate a CBM diskette in its cardboard jacket, you will notice a

single circular hole appear in the small circular window close to the center of the

cardboard jacket. A diskette with a single hole is said to be soft-sectored. In contrast,

there are hard-sectored disks which have as many holes as there are sectors. CBM disk-

ette drives can use either kind of diskette; soft-sectored diskettes are most commonly

used.

Diskette Directory and Block Availability Map (BAM)

Two tracks of every diskette are used to index the diskette.

The Directory track contains the name you assign to the diskette, together with

the names of all files, and their starting sector addresses.

The Block Availability Map identifies sectors which have, or have not, been allo-

cated to files.

272
PET/CBM Personal Computer Guide

Sectors,

Figure 6-6. A Diskette's Recorded Surface

Files stored on cassette tape do not need a directory at the beginning of the tape. If

ten files are stored on a cassette tape, and a particular access specifies the sixth file,

having a directory at the beginning of the tape would not help the drive locate the sixth

file any sooner. Since cassette files can have any length, there is no way of translating a

cassette file number into a cassette tape position. You can take your chances winding the

cassette tape forward to some position that precedes the file you want, thereby reducing

cassette search time. Otherwise the cassette drive must read past the first five files in

order to locate the beginning of the sixth file.

A diskette drive, in contrast, can go directly to the beginning of any file on the

diskette surface, since every diskette sector is equally accessible. To make this possible,

every diskette has a directory which lists the names and beginning sector addresses for

all files stored on the diskette. The directory also records the file type and its current

size. When a diskette data file is opened, the drive first reads the diskette directory, from

which it obtains the sector address where the opened file begins. The drive can then go

directly to the beginning of the opened file.

But what about the records of a diskette data file?

Chapter 6: Peripheral Devices 273

Table 6-3. Diskette Drive Specifications

Characteristics 2040 Drive 8050 Drive

Total Capacity 176,640 bytes 534,272 bytes

Usable Capacity —
Sequential Files

170,180 bytes 527,812 bytes

Usable Capacity —
Relative Files

182,880 bytes

Tracks 35 77

Sectors per track Tracks Sectors Tracks Sectors

0-16
17-23
24-29
30-34

21

20(or 1 9")

18

17

0-38
39-52
54-65
66-76

29
27
25
23

Bytes per sector 256 256

Total blocks (sectors) 690 2087

Block Availability

Map (RAM) track
17 38

Directory track 18 39

•Model 2

Relative Data Files

All records in a relative file have the same length. It is easy to compute sector

addresses for individual records of a relative file. Suppose the relative file records fit

exactly two per sector. (This is unlikely to happen by chance, but it makes our illustra-

tion easy to follow.) The tenth record of this relative file will then be found on the fifth

sector allocated to the file. Relative data files are available with CBM BASIC versions

4.0 and higher, using DOS 2.0 and higher.

Sequential Data Files

The records of a sequential file can have different lengths. We cannot compute

the sector on which a particular sequential file record is to be found, since the lengths of

individual sequential file records are unknown. The diskette drive can go directly to the

beginning of a sequential file, since the beginning sector address is held in the diskette

directory, but having gotten to the sequential file, it must access records sequentially, as

a cassette drive would. For example, there is no way of reaching a sequential file's tenth

record without first reading records 1 through 9. Figure 6-7 conceptually illustrates the

distribution of ten records across sectors for relative and sequential files.

All versions of CBM BASIC support sequential data files.

214 PET/CBM Personal Computer Guide

Sector No.:

Record No.:

Sector No.:

Record No.:

N
t r

\

2

A Relative File

N + 1 N + 2

7

N + 3 N + 4 etc.

etc.

N

1 2 3 4 5

A Sequential File

N + 1 N + 2

6 7

N + 3

8 9

N + 4

1 3 4 5 6 8 9

Figure 6-7. Record/Sector Correlation for Relative and Sequential Access Files

Relative versus Sequential Data Files

If sequential file records must be read sequentially, much of the diskette's random

access capability is lost, so why bother with sequential files? The answer is that sequen-

tial files store information more densely than relative files. Therefore, sequential

files make better use of the diskette surface. To illustrate this point, consider the

following two names and addresses:

Cornelius J. Winkleberger

257631 Avenue of the Americas

Billinghampton

California 92804

Joe R. Smith

5 NSt.
York

Iowa 50307

Suppose these two names and addresses are part of a mailing list data file. Each

name and address will become one record within the data file. A relative data file must

assign the same diskette space to every name and address. To avoid abbreviations the

assigned diskette space must be sufficient to accommodate the longest name and

address. Therefore, all shorter names and addresses will leave some space unused; and

unused record space is wasted record space.

But a sequential file assigns each name and address the space it needs, however

short or long this particular name and address may be. No diskette space is unused, and

therefore none is wasted.

No restrictions are placed on the way you access or modify relative files. Since

relative files have fixed length records that can be addressed individually, you can access

a single record to read it or to change it. For example, you could rewrite the 10th name

and address in a relative data file containing 20 names and addresses, leaving all other

records unaltered. You can add records to a relative data file so long as the diskette has

available space. You can delete any relative file record.

On the other hand you must handle sequential files much as you would handle

cassette files. Records must be read sequentially, beginning with the first record of the

file. You can append new records to the end of a sequential data file, but you cannot

write new records into the middle of a sequential data file. Instead, you must rewrite the

entire sequential file as a new file, modifying records in transit, as needed. The trade-off

is that sequential files make better use of the diskette surface, but they are harder to

process.

Chapter 6: Peripheral Devices 275

Sector Addressing

The sectors assigned to any diskette data file are unlikely to be physically

sequential on the diskette surface. For example, when you add records to an existing

data file, the new records may run into the beginning of the next file; therefore the file

will have to be continued wherever unused sectors are available on the diskette surface.

The file contracts when you erase records. Vacated sectors must be made available to

other files. Therefore diskette drive logic assumes that sectors assigned to any data

file will be scattered all over the surface of the diskette. This presents no problem

when dealing with sequential files. So long as each sector points to the next sector, the

drive can work its way across the diskette, sector by sector, reading the sequential file.

But for relative files the problem is more complex, since drive logic must be able to

compute addresses of individual records. Therefore a record's displacement from the

beginning of the file must be converted into a sector displacement. Looking again at a

file that has two records per sector, a request to access the 10th record becomes a

request to access the 5th sector of the relative file. Since sectors are not sequential on the

diskette surface, the relative file must maintain a sector index. This may be illustrated

conceptually as follows:

Sequential Actual track and sector

sector number address

Record on which record

number begins Track no. Sector no.

1 1 11 4
2 1

3 2 11 5

4 2

5 3 11 6

6 3

7 4 13 9
8 4
9 5

10 5 13 10
11 6 9 3

Thus record number 6 is on the third sector assigned to the file. This sector is the sixth

sector on track 1 1

.

The term "side sector" is used to describe the relative file sector index. Cur-

rently, the 8050 diskette drive cannot use the entire diskette capacity for relative files

because it runs out of space for side sectors. That is why Table 6-3 shows relative

files using just 180,000 of the 8050 diskette's half million bytes. Future versions of

the 8050 diskette drive will remove this restriction.

PROGRAMMING DISKETTE FILES

Different program logic is required by program files, sequential data files and rela-

tive data files. Moreover, program statements allow you to perform a variety of very

necessary diskette "housekeeping" operations.

2?6
PET/CBM Personal Computer Guide

Diskette File Names

Diskette file names follow normal CBM BASIC label rules. Normally file names

have 16 characters or less. Some file names are restricted to a maximum of 16 charac-

ters, but it is a good idea to observe this limit, even where it is not enforced.

DOS statements identify files via the file name. You can specify the complete file

name, or you can provide the first few characters of the file name, followed by an

asterisk (*) in which case the first file name encountered with matching leading charac-

ters will be selected. Here are some examples:

The first file whose name
begins with PAR will be selected

Specified filename: PAR*
Selected filenames: PARITY

PARITY.SEC
PARITY.N12
PARTITION

etc.

Specified filename: *

Selected filenames: Any and all, i

precede the • . There the first

file encountered is selected.

You can also search for file names by comparing some characters, but not others.

Characters that are not to be compared are specified using question marks (?). Here is

an example:

Specified filename: N??,SEQ

Selected filenames : NUM.SEQ \

NXY.SEQ / The first file whose name

NAB.SEQ > is N??,SEQ, where ? can be any i
character,

NRA.SEQ I is selected

etc. /

Instructions that specify file names can use question marks and asterisks together.

Here is an example:

Specified filename: NUM??«
Selected filenames: Any filename with five

or more characters, the

first three being NUM.
The first encountered

filename is selected.

Versions of the Disk Operating System

CBM BASIC disk handling statements rely on a group of programs referred to col-

lectively as a disk operating system (or DOS). There is very little you need to know

about the disk operating system in order to use it, just as you need to know little or

nothing about the BASIC interpreter in order to write BASIC programs. But you should

be aware of the fact that many CBM disk operating system versions have been

released. The version is identified by a number following DOS. Currently, versions

2.1 through 2.5 are in use. These are the DOS versions we are going to describe.

Chapter 6: Peripheral Devices 277

Versions of CBM BASIC

Recall that several versions ofCBM BASIC are in general use. BASIC 3.0 and ear-

lier versions were shipped with all CBM computers until March of 1980. Since then,

BASIC 4.0 has been shipped on the 8000 series.

BASIC versions 1.0, 2.0 and 3.0 are very similar. As stated in the preface, we refer

to these three versions of BASIC collectively as BASICO.O. Version 4.0 is referred to as

BASIC 4.0.

BASICO.O supports sequential and random files. BASIC 4.0 supports

sequential, relative or random files.

BASIC 4.0 recognizes all statements from lower numbered versions of BASIC.

It also has some additional disk handling statements not present in lower BASIC ver-

sions. Therefore, if your CBM computer has BASIC 4.0, you can use any disk handling

BASIC statements. The converse is not true. For example, if your CBM computer has

BASIC 1.0, you cannot use any BASIC 4.0 statements.

BASIC 4.0 does not allow the second cassette drive to be used if disk drives are

present.

BASIC 4.0 disk statements assume that disk drives are the default physical

unit; if no physical unit is specified, physical unit 8 is assumed. In contrast, BASIC<3.0

statements assume cassette drive 1 (physical unit 1) if no physical unit is specified.

Although BASIC 4.0 will execute all BASICO.O statements, there are some

file errond status incompatibilities that result when you use BASICO.O file han-

dling statements with BASIC 4.0. For example, BASICO.O does not support relative

files; however, if you open a file using BASICO.O statements and you do not specify

the file type, BASIC 4.0 will open a relative file. Also, if you execute a file operation

using BASICO.O statements and the file operation is illegal under BASICO.O, but

legal under BASIC 4.0, then the error indicator will turn red at the diskette drive, the

disk operation is not executed, but BASIC 4.0 will report an OK disk operation status.

OPENING A DISKETTE FILE

Twelve memory buffers in each diskette unit are used to access files on dis-

kettes held in drives and/or 1. As soon as you access any diskette file, two of these

buffers are used to support overhead operations. That leaves ten buffers in each disk-

ette unit (two drives) via which the data files themselves can be accessed.

Two buffers are needed for each open sequential file. Three buffers are needed

for each open relative file. Therefore BASICO.O can have up to five sequential files

open simultaneously on each diskette unit (but see below) . The number of files which

can be held open simultaneously by BASIC 4.0 depends on the combination of

sequential and random files being accessed. For each diskette unit, the following

combinations are allowed:

Relative and 5 Sequential files

1 Relative and 3 Sequential files

2 Relative and 2 Sequential files

3 Relative and Sequential files

You can increase the total number of files that can be open at one time by adding

more diskette units, but only up to a point. Each open file requires a unique secondary

address, and only 13 secondary addresses are available for data files.

2 7g
PET/CBM Personal Computer Guide

Secondary Addresses (BASICO.O)

BASICO.O uses 16 secondary addresses: through 15. Every BASICO.O

OPEN statement must specify a secondary address. BASIC 4.0 automatically

assigns secondary addresses.

BASICO.O secondary addresses are used as follows:

1. Address is used to load programs from diskette into CBM computer

memory.

2. Address 1 is used to save programs from computer memory on a diskette pro-

gram file.

3. Secondary addresses 2 through 14 are used to access data files. You can select

any one of these secondary addresses, providing it is not being used by

another OPEN data file.

4. Secondary address 15 opens a special "command channel" which is used to

access diskette status and to perform any of the special diskette operations de-

scribed later in this chapter, under "Diskette Housekeeping Operations."

The Command Channel (BASICO.O)

The command channel needs special mention since it is very important.

BASIC 4.0 automatically opens a command channel when any diskette file is

opened. You do not have to execute any statement in order to open the command chan-

nel using BASIC 4.0.

Using BASlCO.O you should always OPEN the command channel before per-

forming any diskette operation; you should leave the command channel open until you

have completed all diskette operations. Use the command channel with BASICO.O to

interrogate diskette status, and to perform special diskette operations.

Opening Diskette Data Files (BASIC 4.0)

With BASIC 4.0 you OPEN diskette data files using the DOPEN* statement.

(You can also use the OPEN statement since BASIC 4.0 includes all BASICO.O state-

ments.)

The DOPEN* statement must specify a logical file number and a file name. The

diskette drive is assumed to be DO unless you include the parameter Dl to specify drive

1.

If you specify a record length using the LX parameter, then a relative file is

assumed. You can read from a relative file, or write to it; no parameter specifies a read

or write operation.

If no record length is included in the DOPEN* parameter list, then a sequential

file is assumed. For a sequential file you must add the parameter W if the file is to be

opened for a write operation; a read operation is assumed as the default case.

770
Chapter 6: Peripheral Devices

The physical unit number is assumed to be 8 unless you add an ON UZ parameter.

Here are some examples of BASIC 4.0 DOPEN* statements:

10 nOPEH#l , "MAIL" Open logical file 1 to access a sequential file named MAIL for a read

operation. The diskette is in drive

58 B0PEN# 1 , " Mfi I
L

" , D 1 , W Open logical file 1 to access a sequential file named MAIL for a write

operation. The diskette is in drive 1

.

230 IiOPEN#5.. "DflTFiLIST"..Ii8 ON U5 Open logical file 5 to access a sequential file named DATALIST for a

read operation. The diskette is in drive of a diskette unit being

accessed as physical unit 5.

1 00 D0PEN#2 , " Mfi I L " .. L 1 00 Open logical file 2 in order to access a relative file named MAIL. The

diskette is in drive 0. If the relative file is new, then its records

will each have 100 characters (bytes). If the file already exists,

then it must have been assigned 1 00 characters (bytes) when it

was first opened. Read and write accesses are both allowed.

25 EQPEN#3 ,
" SAMPLE " .• L20 .. D

1

Open logical file 3 to access a relative file named SAMPLE for a read

or write operation. The diskette is in drive 1 . If the file is being

opened for the first time, then its records will have 20 characters

(bytes) each. If the file already exists, then it must have been

assigned 20-character (byte) records when it was first opened.

File names can be specified using a string variable instead of a string. For exam-

ple, the last example could be replaced by:

20 S*=" SAMPLE" _
25 UOPEN#3,(Sf.L20,Bl .£-

Opening Sequential Diskette Data File {BASICO.O)

Using BASICO.O you open diskette files using the OPEN statement. The

OPEN statements below duplicate those DOPEN* statements shown opening sequen-

tial files above. Remember, BASIC< 3.0 cannot open or handle relative files. Secondary

addresses have been selected arbitrarily for the OPEN statements below.

10 OPEN 1,8,2 "MfiIL,SEQ"
50 OPEN 1,3,7 "l:MflIL,SEQ, WRITE"
230 OPEN 5, 5, 3 "0:DflTflLIST,SEQ"

The string portion of the OPEN statement parameter list can be created using a

string variable. For example, the OPEN statement on line 10 could be replaced by these

two statements:

5 M*="MflIL,SEQ"
10 OPEN 1,3,2,M*

Here is a more complex example that replaces the OPEN statement on line 50:

45 M*="MflIL,SEQ"
50 OPEN 1 , 8, 7, " 1

' "+ m + ", WRITE"

File Opening Errors

These are the conditions that can cause errors when you open a data file:

1. You will get a FILE NOT FOUND error if you OPEN a new sequential data

file for a read operation. The sequential file must exist, since a new file will be

empty when created, and you cannot read data out of an empty file.

280 PET/CBM Personal Computer Guide

2. If you open an old file but specify the wrong file type, then you will get a FILE

TYPE MISMATCH error. This occurs if you open an old relative file as a

sequential file, or if you open an old sequential file as a relative file, or if you

open a program file as any type of data file.

3. You cannot open an old sequential file for a write access. If you do, you will

get a FILE EXISTS error. You can only write into new sequential data files.

Misspelling a file name in an OPEN statement is an error that can cause you a

lot of trouble without generating a warning. The disk operating system will simply

assume that the misspelled file is a new file. If opening the new file would otherwise

be valid, no error is reported.

CLOSING A DISKETTE FILE

To close any diskette data file you execute the BASIC 4.0 statement:

DCLOSE#N

or the BASICO.O statement:

CLOSE N

where N is the logical file number appearing as the first parameter in the OPEN or

DOPEN* statement.

You must CLOSE a file after writing to it, otherwise some data written to the

file may be lost.

You do not have to CLOSE a file after reading from it, but to do so is good pro-

gramming practice.

All open files are automatically closed by the computer when you execute an END
statement. (This assumes that the diskette drives are still turned on.) Nevertheless it is

good programming practice to close files individually using CLOSE statements rather

than using the END statement to close all files. This subject was discussed in detail ear-

lier in this chapter for cassette data files. The discussion on closing cassette data files

applies also to diskette data files.

DISKETTE ERRORS AND ERROR STATUS

There is a red warning light which acts as an error indicator on all CBM dis-

kette drives. This error indicator lights up red when a diskette operation is not suc-

cessful. No other diskette operation can be performed until this error indicator has

been cleared. To clear the error indicator, stop program execution by pressing the

STOP key, then read diskette error status.

It is a good idea to read status after every diskette operation, and to include status

checking as a routine part of all diskette handling program logic.

Recall that you cannot write to a diskette if its write-protect slot is covered. The

diskette is said to be write-protected. If you try to copy a file to a diskette that is write-

protected, then the CBM computer will hang up. The computer will endlessly try to

write, but the diskette will not send back an error status. This situation manifests itself

when the computer seems to be doing nothing, but you cannot stop program execution

by pressing the STOP key. When this happens, you must remove the diskette from its

disk drive, turn power off at the CBM computer, then turn power on again.

2ftl
Chapter 6: Peripheral Devices

Clearing Diskette Error Status (BASIC 4.0)

Using BASIC 4.0 you can clear diskette errors in immediate mode, or in pro-

gram mode.

To clear error status in immediate mode, execute an immediate mode PRINT

statement to display numeric variable DS or string variable DS$.

Numeric variable DS returns status as a decimal number which should be

interpreted using Table 6-2.

DS$ displays four parameters as follows:

?DS*
MN ERROR MESSAGE TT SS

- Sector accessed

- Track accessed

- Type of error

- Error number

Diskette error messages are given in Appendix B.

A program written using BASIC 4.0 should test diskette status by referencing

variable DS as follows:

20 IF DS O THEN PRINT "ERROR";

Following any diskette error this statement will clear the error status, stop pro-

gram execution and display the message:

ERROR
BREAK IN XXXX.

XXXX is the line number on which the STOP statement is located. A more informative

variation displays DS$ to give the operator some idea what happened. Here are the

necessary statements:

20 IF DS O THEN PRINT DSJ^STOP

Following any diskette error, this statement will clear the error status, stop execu-

tion and display the message:

NN ERROR MESSAGE TT SS
BREAK IN XXXX
READY
M

NN is the error number; see Appendix B for a summary of error numbers and what they

mean. When the error occurred the sector being accessed is identified by TT (track) and

SS (sector).

Diskette Errors (BASICO.0)

Using BASICO.0 you cannot access variables DS or DS$. To examine error

status, you must OPEN a logical file specifying physical unit 8 with secondary

address 15. You must then input four string variables and display them. In program

mode this may be illustrated as follows:

10 OPEN 1,8, 15
29 INPUT#1,A*,B*,C*,D*
30 PRINT A$,B*,C*,D*
40 CLOSE 1

2S2 PET/CBM Personal Computer Guide

The INPUT#1 statement will not execute in immediate mode.

A$, B$, C$ and D$ are the error message number (A$), the error message (B$),

the track number (C$) and the sector number (D$) as illustrated above for DS$ using

BASIC 4.0. A$, B$, C$ and D$ are arbitrarily selected string variable names. On lines 20

and 30 above you could use any four string variable names instead of A$, B$, C$ and

D$.

When writing programs using BASIC<3.0 you should OPEN a logical file with

physical unit address 8 and secondary address 15 before beginning any diskette access.

Then test error status following every diskette operation by inputting the error message

number. If this number is 0, the disk operation was successful. Here is necessary pro-

gram logic:

10 OPEN 15.. 8, 15

1 50 Disk operation statement here

160 REM TEST DISKETTE STATUS
178 INPUT#15,fl*,B*,C*,D*
180 IF VflL(fl*K>0 THEN PRINT fl*, B$, C*, B$:ST

If a program contains numerous disk operations, then the statements shown on

lines 170 and 180 above will reappear frequently. You may be tempted to put these

statements into a subroutine. You can do so, but it will be more difficult to tell where the

disk error occurred, since the STOP statement will always report a break on the same

subroutine line. In contrast, if statements on 170 and 180 are repeated wherever they

are needed, then by looking at the line where the break occurred, you can tell which

STOP statement caused the break, and therefore which disk access caused the error.

DISKETTE HOUSEKEEPING OPERATIONS

In addition to reading and writing data files, file handling BASIC statements allow

you to perform these operations:

1. Prepare a new diskette.

2. Erase an old diskette and prepare it for reuse.

3. Display a diskette's directory to see what files are stored on the diskette, and

how much unused diskette space remains.

4. Check the diskette for sectors that have been allocated to a file but are still

unused. Make these sectors generally available again, thereby increasing

available diskette space (BASIC 4.0 only).

5. Copy a file.

6. Copy an entire diskette.

7. Rename a file (BASIC 4.0 only).

8. Delete a file from a diskette, or replace file contents.

Every BASIC<3.0 file or disk operation must begin with an OPEN statement.

You can then read, write or perform one of the housekeeping operations described

above. The operation must end with a CLOSE statement.

Chapter 6: Peripheral Devices 2°3

Using BASIC 4.0 you must OPEN a data file before reading from it or writing

to it, and you must then CLOSE the data file. However the housekeeping operations

described above are executed by special statements that do not need to be preceded by

an OPEN, or followed by a CLOSE.
We will describe all of these housekeeping operations before looking at file han-

dling program logic.

Although housekeeping operations are frequently performed in immediate mode,

they can be executed in program mode.

BASIC statements used to perform housekeeping operations are described fully in

Chapter 8. If you have trouble following any discussion because you do not understand a

BASIC statement, read the BASIC statement description given in Chapter 8, then

return and continue.

DISKETTE PREPARATION AND INITIALIZATION

You cannot take an unused diskette, load it into a disk drive and write data on

it. First the diskette surface must be prepared. Sectors must be marked off on tracks,

then the directory and block availability map must be written. The diskette is also

assigned a name. You can prepare a used disk; this erases all prior data and readies

the diskette for reuse.

You will usually prepare a diskette in immediate mode.

Diskette Preparation (BASIC 4.0)

Using BASIC 4.0 you prepare a new diskette using the HEADER statement, as

follows:

HEADER "DISK NAME", DX, IYY

"DISK NAME" can be any string name with up to 16 characters. YY is a number

which you must assign to the diskette. X is the drive number holding the diskette; it

must be or 1.

It takes approximately two minutes to prepare a diskette. If for any reason the

diskette cannot be prepared, the following message is displayed:

?BAD DISK

This message will be displayed for any of these reasons:

1

.

You forgot to load a diskette into the selected drive.

2. You specified the wrong drive in the HEADER statement parameter list.

3

.

You forgot to specify a diskette number in the HEADER statement parameter

list.

4. The diskette is write-protected (the write-protect notch is covered).

5. The diskette has a defective magnetic surface.

When preparing a used diskette you only need specify the drive number in the

HEADER statement parameter list. If you specify a disk name, then it will replace the

old disk name; if you do not, then the old disk name will be retained. If you specify a

disk number, then it will replace the old disk number; if you do not, the old disk number

will be retained. But you cannot specify a new disk number unless you also specify a new

disk name. You will get a syntax error if you try it.

284 PET/CBM Personal Computer Guide

Recall that BASIC 4.0 assumes that the diskette drive is physical unit number 8. If

for any reason you are initializing a diskette using a disk drive with a different physical

unit number, then you must add this information to the HEADER statement parameter

list using: ON UZ or, UZ, where Z is the physical unit number.

It takes just a few seconds to prepare a used diskette.

Below are some examples of immediate mode HEADER statements. Subse-

quent dialogue is not shown.

HEADER "SAMPLE ",,D0, 101 A diskette is prepared on drive 0. The diskette is given the name
SAMPLE and the number 01

.

HERDER D0 An old diskette is prepared on drive 0. The old name and diskette

number are preserved.

HEADER "NEW".. Dl An old diskette is prepared on drive 1 . The diskette is given the new
name NEW, but it retains its old diskette number.

HEADER "SAMPLE " , D0 , 105 , ON U7 A diskette is prepared in drive of a diskette drive with physical unit

number 7. The diskette is given the name SAMPLE and the num-
ber 05.

HEADER Dl , 101 The HEADER statement will not execute because a new diskette

$ SVNTAX ERROR number has been specified without a new disk name.

Diskette Preparation (BASICO.O)

To prepare a diskette using BASICO.O you must OPEN the diskette command
channel, then execute a PRINT* statement using the logical file specified in the OPEN
statement parameter list. The PRINT* statement must have the following character

string enclosed in quotes:

"NEWX:DISKNAME,YY"

NEW may be replaced by N. X is the drive number; it must be or 1. DISK-
NAME is the name which will be assigned to the diskette; it can be any valid 16

character string. YY is the diskette number.

The OPEN statement which opens the diskette command channel can specify any

logical file number, but it must specify physical unit number 8 and secondary address 15.

Here are some examples of BASIC< 3.0 diskette initialization statements:

OPEN 1 .. 3 .< 1

5

A diskette is initialized in drive 0. It is given the name SAMPLE and
?RINT#1 , "N0: SAMPLE, 01 " the number 01.

OPEN 3,815 A diskette is initialized in drive 1 with the name NEW and the number
PR I NT#3 ,

" NEW 1
: NEW ,01" 01.

BASICO.O diskette preparation does not always work on a CBM computer
that has BASIC 4.0. Sometimes the disk drive continues to spin the diskette after

initialization has been completed.

BASICO.O allows you to prepare an old diskette, in which case everything pre-

viously stored on the diskette is erased, and the surface is prepared for reuse. You do

not have to specify a diskette number in the PRINT* parameter list when preparing an

old diskette; the old diskette number will be used if no new number is specified.

285
Chapter 6: Peripheral Devices

Diskette Initialization (BASICO.O)

When using BASICO.O, you must initialize a diskette that has data stored on

it before opening a file. To initialize the diskette you OPEN the command channel and

execute a PRINT* statement with the letter "I" or the word "INITIALIZE", plus the

drive number appearing as a string variable in the PRINT* statement parameter list.

The drive number can be omitted, in which case diskettes in both drives will be

initialized.

Diskettes are usually initialized in program mode.

When a diskette is initialized, no data on the diskette surface is changed.

Here are some examples of BASICO.O diskette initialization statements:

10 OPEN 1.. &'. 15 Initialize a diskette in drive 0.

20 PRINT#1,"I0"

5 npEH -:
. S , X 5 Initialize two diskettes in drives and 1

.

10~PRINT#I'< "INITIALIZE"

You do not have to initialize a diskette that you have just prepared. Preparation

also initializes the diskette.

DISPLAYING THE DISKETTE DIRECTORY

Displaying the Diskette Directory (BASIC 4.0)

Before accessing any diskette, it is advisable to display the diskette directory.

Using BASIC 4.0 this is done using the DIRECTORY statement. The DIRECTORY

statement is usually executed in immediate mode. Here are some examples of the direc-

tory statement:

D I RECTOR

V

Display directories for diskettes in drives and 1

.

DIRECTORY III Display directory for diskette in drive 1.

D I RECTORY IU OH US This statement also displays the directory for the diskette in drive 1

since the physical unit 8 is the default physical unit.

DIRECTORY DO Display the directory for the diskette in drive 0.

The word CATALOG can be used instead of DIRECTORY.

The directory is displayed as follows:

"Diskette name "NNXX

BBBB "Filename" Type

BBBB "Filename" Type

etc.

YYYY BLOCKS FREE

The diskette name and number appears at the top of the display in a reverse field.

NN is the diskette number. XX is the DOS version number. Below a list of file names is

displayed. These are the files recorded on the diskette. To the left of the file name is the

number of blocks (sectors) assigned to the file. To the right of the file name is the file

type: REL for a relative file, SEQ for a sequential file, or PRG for a program file. Finally,

the number of unused blocks (sectors) is displayed. (There are also user files which are

described in Chapter 7.)

2§g PET/CBM Personal Computer Guide

There must be a diskette in every drive specified by the DIRECTORY state-

ment. A very common error is to type DIRECTORY when you want to display the

DIRECTORY for a diskette in drive 0. If there is no diskette in drive 1, then the error

indicator will turn red and no directories will be displayed. Remember, you must clear

the error indicator by reading diskette status (type ?DS$<CR». You cannot use the

diskette drive again until the error indicator has been cleared. You will also get an error

indication if you specify the wrong drive in the DIRECTORY statement. For example, if

there is a diskette in drive 1 but you enter the immediate statement:

DIRECTORY DO

then you will get an error indication, but no directory.

Displaying the Diskette Directory (BASICO.O)

Using BASICO.O you display the directory using a LOAD statement as follows:

LOAD "$X",Y

X is the drive number (0 or 1) and Y is the physical unit number (usually 8). The

dialogue that follows is standard program-loading dialogue. After the program is loaded,

you list it in order to display the directory. The following example displays the directory

for a diskette in drive 0.

LOfiB "td", 8
SEARCHING FOR $0
LOADING
REflDV
LIST

COLLECTING A DISKETTE

BASIC 4.0 has a COLLECT statement which you can use to "houseclean" a

diskette.

The COLLECT statement identifies sectors that have been assigned to data files

but are unused. These sectors are made available again, and the diskette directory is

modified appropriately.

The COLLECT statement is usually executed in immediate mode, as follows:

COLLECT Collect diskettes on both drives.

COLLECT US Collect the diskette in drive 0.

Some versions of BASIC 4.0 have a problem with the SCRATCH statement

that prevents files from being scratched if they were improperly closed. If your CBM
computer has this problem you can overcome it by executing a COLLECT statement

before the SCRATCH. The improperly closed file will then be deleted by the SCRATCH
statement.

Chapter 6: Peripheral Devices 287

COPYING FILES AND DISKETTES

You should make backup copies of every file that you wish to keep perma-

nently. At least one copy of the file should be on a different diskette. Keeping a copy of

the file on the same diskette will not help if the entire diskette is erased by accident.

CBM BASIC statements allows you to copy an individual file or backup an entire

diskette.

Copying Files (BASIC 4.0)

The BASIC 4.0 COPY statement lets you copy a single file or an entire dis-

kette. But the COPY statement will only address one physical unit, therefore copies

must be made on the same diskette, or using the two drives in a single diskette unit.

If a file name is specified in the COPY statement parameter list, then a single file is

copied. If no file name is specified, then all files on the diskette are copied. Here are

some immediate mode examples:

COPY D0 TO Bl Copy all files on the diskette in drive to the diskette

in drive 1.

COPY DO, "TESTDflTfl" T0D1, "TESTDflTfl" Copy file "TESTDATA" from the diskette in drive to

the diskette in drive 1. Keep the filename.

COPY HI, "TESTDflTfl" TO B0, "NEWTEST" Copy file "TESTDATA" from the diskette in drive I to

the diskette in drive 0. Rename the file "NEWTEST."

Copying Files (BASICO.O)

In order to copy files using BASIC<3.0, use the PRINT* statement with the

following string parameter:

"COPYM:NEWNAME=N:OLDNAME"

Instead of COPY you can have the letter C. N is the drive number holding the (old)

source file diskette; OLDNAME represents the name of the source file. M is the drive

number holding the (new) destination file diskette; NEWNAME represents the name
which will be assigned to the new destination file.

Here are some examples:

OPEN 15, 8, 15 Copy a file named "MAILDATA" from the diskette in

PR I NT# 1 5 , " COPY 1
:
Mfl I LDflTfl=0 : Mfl I LDflTFi

"

drive to the diskette in drive I. Keep the filename.

CLOSE 15

OPEN 15.. 8, 15 Copy file "TESTDATA" from the diskette in drive 1 to

?RINT#15, "C0: HEUTEST=1 : TESTDflTfl" the diskette in drive 0. Rename the file "NEWTEST."
CLOSE 15

Concatenating Files (BASICO.O)

In the course of copying files, the BASICO.O PRINT* statement allows two,

three, or four source files to be concatenated into a single destination file. The follow-

ing immediate mode example concatenates data files DATA1 and DATA2, taken from

the diskette in drive 0, and writes them to the diskette in drive 1, assigning the name
DATAX to the concatenated data file:

OPEN 15,8,15
PRINT#15, "CI -DflTflX=l 'DRTfil , 1 :DflTfl2"

CLOSE 15

2gg PET/CBM Personal Computer Guide

Concatenated source files do not have to come from the same diskette, as shown

above. DATAX could be concatenated from data files residing on the same diskette

and/or the other diskette.

File Copying Errors

A copy operation cannot specify a destination file name that already exists. If it

does, the COPY operation will not occur. The error light of the diskette drive will turn

red; when you fetch error status, a FILE EXISTS error will be reported.

When copying all files from one diskette to another using the BASIC 4.0 COPY
statement, if a source file name is found to exist on the destination diskette, then the

COPY operation stops immediately. The error indicator at the diskette drive turns red.

No files get copied if their names appear on the source diskette directory after the dupli-

cated file name.

Duplicating a Diskette

You can copy all files from one diskette to another; you can also backup a dis-

kette by making a duplicate of it. The two are not the same. The backup operation cre-

ates a destination diskette which is an exact duplicate of the source, with the same dis-

kette name and number as well as the same files. In contrast, if you copy all files from a

source diskette to the destination diskette, the destination diskette name does not

change, nor do any files which were previously on the destination diskette. Thus the

destination diskette will have a different name, and although it will have all of the source

diskette files, it may also have additional files which the source diskette did not have.

Backup a Diskette (BASIC 4.0)

Use the BASIC 4.0 BACKUP statement to duplicate a diskette. You can copy

from drive to drive 1 or from drive 1 to drive of any valid physical unit. Here are

some examples of the BACKUP statement executed in immediate mode:

BACKUP B@ TO Dl Make a copy of the diskette in drive on the diskette in drive 1.

EFiCKUP IH TO D0 ON U5 Make a copy of the diskette in drive 1 on the diskette in drive 0.

The disk unit is addressed as physical unit 5.

The BACKUP statement lets you copy onto a diskette that has not been pre-

pared. If necessary the destination diskette is prepared before the BACKUP operation

begins.

Duplicating a Diskette (BASICO.O)

Use the PRINT* statement to copy a diskette using BASICO.O. You can copy

from drive 1 to drive 0, or from drive to drive 1. You cannot copy from a drive in one

physical unit to a drive in another physical unit. The PRINT* statement must have the

following string variable in its parameter list:

"DUPLICATEN=M"

Instead of DUPLICATE you can use D. N is the destination drive number; M is the

source drive number.

Chapter 6: Peripheral Devices 289

Here is an immediate mode example:

OPEN 15.. 8, 15 Make a copy of the diskette in drive on the diskette in drive 1

='RIHT#15, "1)1=0"

CLOSE 15

RENAMING A FILE

You can rename any program or data file. Most frequently program files are

renamed in the normal course of writing and correcting programs.

Renaming a File (BASIC 4.0)

Use the BASIC 4.0 RENAME statement to rename a single file. Here is an

immediate mode example:

RENAME D0, "SEQ.NUM.B4" TO "SEQNUM"

Rename a File (BASICO.O)

To rename a single file using BASICO.O use the PRINT* statement with the

following string variable in its parameter list:

"RENAMEX:NEWNAME=OLDNAME"

Instead of RENAME you can have R. X is the drive number holding the diskette on

which the file being renamed is stored. NEWNAME is the new file name; it replaces

OLDNAME, the old file name.

Here is an immediate mode example:

OPEN 15.3,15 The file on drive O named "SEQ. NUM. B4" is

?R INT# 1 5 , " R0
" SEQNUM=SEQ . NUM. E4 "

renamed "SEQNUM"
CLOSE 15

DELETING FILES

You can delete any file from a diskette. When you delete a file in immediate mode
the CBM computer will always display the prompt message ARE YOUR SURE? You
must respond by typing "YES", and then a carriage return, otherwise the file will not be

deleted. If you delete a file in program mode, no prompt message is displayed.

Scratch a File (BASIC 4.0)

Using BASIC 4.0 you delete a file using the SCRATCH statement. Here is an

immediate mode example:

SCRATCH DS, "REL.NUM.B4" Delete file RELNUM. B4 on drive DO

Here is the program mode version of the immediate mode example given above:

240 BCLOSE
256 SCRATCH H0, "REL. NUM.B4"

Some versions of BASIC 4.0 have a problem with the SCRATCH statement; it

will not delete files that were not properly closed. You can solve this problem by col-

lecting the diskette, and then scratching the file.

290 PET/CBM Personal Computer Guide

Scratch a File (BASICO.O)

Using BASICO.O you can scratch one or more files using a single PRINT*
statement. The PRINT* statement must have the following string variable in its

parameter list:

"SCRATCHXiFILENAME"

Instead of SCRATCH you can use S. X is the drive number holding the diskette with the

file being scratched. FILENAME is the name of the file being scratched. For a single file

this may be illustrated as follows in immediate mode:

OPEN 15.8.15 Delete file REL NUM. B4 on drive

PR I NT# 1 5 , " S0 : REL . NUM . B4 "

CLOSE 15

To delete two or more files you simply add the drive number and file name to the

parameter string. For example, you can modify the statements illustrated above and

delete two files as follows:

OPEN 15.. 8.. 15 Delete file REL. NUM. B4 on drive and file

PRINT#15, "SB : REL. NUM. B4, 1 : REL. HUM. B<3" RELNUM.BO on drive 1

CLOSE 15

If you place an asterisk after one or more letters of a file name, then any file

whose name has the letters preceding the asterisk will be deleted. Consider the

following example:

OPEN 15,3, 15
PRINT#15, "SO : HUM*"
CLOSE 15

Any file on drive whose name begins with the three letters NUM will be deleted.

If you replace a character in a file name with a question mark, then the name of

the file to be scratched can have any character in that position.

For example the following statements delete a file whose name begins with NUM,
ends with .SEQ, and has four characters in between.

OPEN 15,8,15
PR I NT# 1 5 , " S0 : NUM???? . SEQ

"

CLOSE 15

Replace a File (BASICO.O)

Although BASICO.O does not allow you to write into an old file, it does allow

the contents of an old file to be replaced. The old file should be opened for a write

operation with an @ sign appearing as the first character in the parameter list string

variable. For example, the MAIL file opened on line 50 below could be an old file:

58 OPEN 1 , 8, 7, "81 : MRIL, SEQ, WRITE"

Chapter 6: Peripheral Devices 291

SEQUENTIAL DATA FILES

BASIC 4.0 and BASICO.O both support sequential data files.

A sequential data file is opened either for a read access or for a write access,

never for both. When a new sequential file is opened, the process of opening the file also

creates it. The new sequential file must be opened for a write operation; it cannot be

opened for a read operation. An existing sequential file must be opened for a read opera-

tion; it cannot be opened for a write operation.

SEQUENTIAL FILE FIELD SEPARATORS

Numeric variables in a sequential data file must be terminated by carriage return

characters. String variables may be terminated by comma characters or by carriage

return characters.

We recommend that you use carriage return characters to separate all fields in

sequential data files. Using comma characters to separate string variables offers no

identifiable advantage and can cause unnecessary programming problems.

If all fields are terminated with a carriage return, then rules for writing to sequen-

tial data files are very simple: use the PRINT* statement with a parameter list which in

a PRINT statement would display variables on the screen as a single vertical column.

The data is read back using INPUT* or GET* statements. Using BASIC 4.0 with DOS
2.0, PRINT* statements automatically add a carriage return character at the end of a

line if the logical file nurriber is 128 or higher. No terminating carriage return character

is output if the file number is 127 or less.

WRITING NUMERIC DATA TO A SEQUENTIAL FILE

Beginning with a very simple example, we will write a program that opens a

sequential file, then writes ten records to the file, with ten numbers in each record, as

follows:

Record 1 1 2 3 4 5 6 7 8 9 10

Record 2 101 102 103 104 105 106 107 108 109 110

Record 3 201 202 203 204 205 206 207 208 209 210
Record 4 301 302 303 304 305 306 307 308 309 310
Record 5 401 402 403 404 405 406 407 408 409 410
etc.

The program will read the records back and display them. Listings for BASIC 4.0

and BASICO.O versions of this program are given below. The programs are named

SEQ.NUM.B4 and SEQ.NUM.B3.

BASIC 4.0 Version

.5 ;:>." ->'Goi;,
ri,"' "SLO.N

Li' JJC-i .-:." ET.'Tifi'h"

c:u -• -_-- s

;

« --.EX

2g2
PET/CBM Personal Computer Guide

no bclose#i _ -..- -,, --
2@6 REM HOW READ BhuK -iL- LUr- i _N

: _ An_j MlS-'-hV _:

210 DOPEN#l, "TESTDATA"
215 IF DSOO THEN PRIN; DS* : STOP
220 FOR R=l TO 10
230 :'RINT "RECORD",?;
240 REM INPUT CONTENTS OF NhXT RLL-ORD AND DISPLAY i ,

250 Flip F=l TO 10

260 INFUT#1,N_
265 IF DSO0 !HbN PRIN! DS* - S .

OP

270 PRINTN.i

290 ='RINT

300 HEX" R
310 3Cl0SE#1
320 SCRATCH DO.. "TESTBh i R"

330 STOP

BASIC< 3.0 Version

19 REM PROORAM "SEQ. NUM. BC3"
20 OPEN 15,8, 15: REM COMMAND CHANNEL
21 TNpUT#15,M*,Ef,C$,IiS
22 IF VMLCH*K>0 THEN PRINT A* , B* , C* , L$

23 PRINT#15, "10"
24 npEN 1 .8,2, "0 : TESTDATA<3,SEQ,W" :£EM DATA FiLt
30 I KIPUT# 1 5 , A* , B* , C* , D*
31 IF VHUASK>0 THEN PRINT A*,B*,C$,D$
46 REM WRITE TEN RECORDS
50 FOR R=l TO 10
60 REM WRITE TEN FIELDS PER RECORD
70 FOR F=l TO 10
86 PR I HT# 1 , < R- 1 : * 1 00+F
35 I NPUT# 1 5 , A* , B* , C* , D*
86 IF VAL<A*K>0 THEN PRINT A*,B*,C*,B*
90 NEXT F
100 NEXT R
110 CLOSE 1

120 CLOSE 15
200 REM NOW READ BACK FILE CONTENTS AND DISPLAV IT

210 OPEN 15,8, 15: REM COMMAND CHANNEL
211 INPUT# 1 5 , A* , B* , C* , D*
212 IF VAL<A*K>0 THEN PRINT fi*,B*,C*,B*
213 OPEN 1,8,2, "0:TESTDATA<:3, SEQ" : REM DATA FILE

215 I NPUT# 1 5 , fl* , B* , C* , D*
216 IF VALCA*)O0 THEN PRINT A*,B*,C*,D*
220 FOR R=l TO 10
230 PRINT "RECORD" J R;

240 REM INPUT CONTENTS OF NEXT RECORD AND DISPLAY IT

250 FOR F=l TO 10
260 IHPUT#1,N
265 I NPUT# 15 , A* , B* , C* , D*
266 IF VALCA*K>0 THEN PRINT A*,B*,C*,D*
270 PRINTNJ
280 NEXT F
290 PRINT
300 NEXT R
310 CLOSE 1

320 SCRATCH DO, "TESTSATAC3"
330 CLOSE 15
340 STOP

Key in the version of the program that will work on your CBM computer, check it

carefully for errors, save the program, then run it. You should get the display shown

below when you run the program.

Chapter 6: Peripheral Devices ^J

RECORD 1 i i: >; 4 5 6 7 8 9 18

RECORD 2 101 102 103 104 105 1 06 107 108 109 110

RECORD 3 201 202 203 204 205 206 207 208 209 210

RECORD 4 301 382 303 304 305 306 307 308 309 3 1

RECORD 5 401 402 403 404 405 406 407 408 409 410

RECORD 6 501 502 503 504 505 506 507 508 509 510
RECORD 7 601 602 603 604 605 606 607 60S 60S 61

W

RECORD ;3 701 702 703 704 705 706 707 708 709 710

RECORD Q 801 802 803 804 805 806 807 808 809 810

RECORD 10 901 90SI 903 904 905i 906 907 908 909 91i

Let us examine program logic.

Statements on lines 10 through 120 create the sequential data file and write ten

records into it. Statements on lines 200 through 320 read the contents of the sequential

data file, record by record, and display data as it is read.

Look at how files have been opened and closed.

In the BASIC 4.0 version sequential data file TESTDATA is opened for a write

operation by the DOPEN* statement on line 20. Logical file number 1 is used by the

DOPEN* statement. The file is closed on line 110 before being reopened for a read

operation by the DOPEN* statement on line 210. Logical file number 1 is used again by

the DOPEN* statement on line 210; reusing the same logical file number for the same

data file is not necessary. Logical file 1 is closed finally on line 310.

The BASICO.O version of the program opens its sequential data file

TESTDATA<3 for a write operation using the OPEN statement on line 24. Logical file

number 1 is used with secondary address 2. The file is closed on line 110 before being

reopened for a write operation by the OPEN statement on line 213. TESTDATA<3 is

finally closed on line 310. The BASICO.O program also opens the command channel

via the OPEN statement on line 20 using logical file number 15, which is optional, and

secondary address 15, which is necessary. It is common practice to use logical file *15

for the command channel in BASIC<3 programs since the secondary address associates

this number with the command channel. The command channel is closed on line 120, it

is reopened on line 210, and closed finally on line 330. The command channel does not

have to be closed and reopened. Lines 120 and 210 could be eliminated. But closing and

reopening the command channel establishes the two halves of the program as separate

modules which can be executed independently.

Notice that the BASIC<3.0 program initializes the diskette on line 23. Strictly

speaking, the diskette should be re-initialized after the command channel is reopened

on line 210 if the two halves of the program are to be treated as separate modules.

The BASIC 4.0 and BASIC<3.0 programs both scratch the data file at the end of

the program (on line 320). If the data file were not scratched you would not be able to

re-execute the program. Try eliminating statement 320 and running the program twice.

On the second execution you will get a FILE ALREADY EXISTS error when the data

file is opened for a write operation (on line 20 in the BASIC 4.0 version and on line 24 in

the BASICO.O).
You should scratch temporary data files at the end of a program if the data held

in the file does not need to be saved. If the temporary data file is not scratched it can-

not be reused when the program is re-executed.

Next look at the diskette status logic in the two programs; this logic is missing

from most programs written by programmers who are in a hurry. (BASIC 4.0 and

BASICO.O statements needed to test diskette status were described earlier in this

chapter.)

2<)4 PET/CBM Personal Computer Guide

The BASIC 4.0 program tests diskette status on lines 30, 85, 215, and 265. In each

case the status string variable DS$ is displayed to identify a problem when status is not 0.

Program execution is then stopped.

The BASICO.O program executes the same logic by inputting status via string

variables A$, B$, C$, and D$. If the numeric value of A$ is not zero, then the four

variables are displayed. The disk status testing statements can be found on lines 21 and

22, 30 and 31, 85 and 86, 210 and 211, 215 and 216, 265 and 266.

The BASIC 4.0 and BASIC<3.0 programs contain identical statements to write

records to the sequential data file, to read records back, and to display data.

Records are written to the sequential data file by statements on lines 50 through

100. The outer FOR-NEXT loop, indexed by R, counts records; the inner FOR-NEXT
loop, indexed by F, counts fields within records. The PRINT* statement on line 80

writes each field to the sequential data file. Since there is only one variable in the

PRINT* statement parameter list, a carriage return is forced; you do not have to force

one. Remember, if the PRINT* statement rewritten as PRINT statements would dis-

play fields in a single vertical column, then the fields will be written correctly to the dis-

kette data file.

Statements on lines 220 through 300 read data back from the sequential file and

display the data. The outer FOR-NEXT loop indexed by R reads records; the PRINT
statement on line 230 starts each record display with the record number. The inner

FOR-NEXT loop indexed for F read fields one at a time using the INPUT* statement

on line 260. Fields for a single record are displayed on one line by the PRINT statement

on line 270. The PRINT statement on line 290 forces a carriage return after each record

has been displayed.

Although we have described the sequential data file as consisting of ten records

with ten fields in each record, on the diskette surface the sequential file consists of

100 fields separated by carriage return characters. If you were to look at the data as

stored on the diskette surface, you would find nothing to identify the end of one record

or the beginning of the next. Program logic must keep track of records and fields.

To demonstrate the lack of any real file structure on the diskette, change the sec-

ond half of the program so that it assumes 12 records, with 8 fields per record. State-

ments on lines 220 and 250 must change as follows:

220 FOF = 1 TO i '?

250 FOR: c-= 1 TO 8

ges in your program, then run it;. The following displi

RECORD i * "-' 3 4 5 6 7 g
RECORD £ 9 It3 10][10;2 10J! 104 105 16t

RECORD 3 107 103 1 09 110 201 202 203 204
RECORD 4 205 206 207 208 209 210 301 302
RECORD 5 303 304 305 306 307 308 309 3 1

RECORD 6 401 402 403 404 405 4Q6 407 408
RECORD 7 409 410 501 502 563 504 505 506
RECORD 3 507 508 509 510 601 602 603 604
RECORD j 605 606 607 6tt8 6d9 6 1 701 702
RECORD 10 703 704 705 706 707 70S 709 710
RECORD 11 801 802 803 804 805 806" 807 60S
RECORIi 12 809 810 901 902 903 904 905 9fd€-

Each record begins reading fields wherever the previous record left off. No
attention was paid to the field/record organization used when the file was written.

295
Chapter 6: Peripheral Devices

When a single PRINT* statement writes two or more numeric variables to a

data file, you must force carriage return characters using the CHR$ function. Sup-

pose on line 80 we output R, F and the computed expression. The PRINT* statement

would have to be rewritten as follows:

80 PR I HT# 1 .. R , CHR* C 1 3 > , F , CHR* C 1 3 > , < R- 1) * 1 00+F

Usually the carriage return character is assigned to a string variable and the string

variable is used in the PRINT* statement as follows:

15 C$=CHR*U3>

80 PR I NT# 1 , R .. C* . F , C* . < R- 1 > * 1 08+F

There are now 30 numbers in each record, not 10. Therefore 30 numbers must be

read and displayed for each record in the second half of the program. A simple (but

inelegant) way of displaying 30 numbers would be to change the FOR statement on line

250, increasing the upper index of F from 10 to 30, as follows:

250 FOR F=l TO 30

Make these changes, then run the program to assure yourself that three numbers

were written out each time the PRINT* statement on line 80 was executed.

WRITING STRING DATA TO A SEQUENTIAL FILE

String variables can be separated using comma characters or carriage return

characters. However, the use of comma character separators serves no useful purpose

when string variables are stored in sequential files. Therefore we will end all sequential

file text variables using carriage return characters.

There is no difference between program logic needed to write string variables or

numeric variables to a sequential file.

We will write a simple mailing list program to illustrate string variables being

stored in a sequential data file. Listings for BASIC 4.0 and BASICX3.0 versions of this

program are given below, followed by an illustration of program execution.

BASIC 4.0 Version

10 REM PROGRAM "SEQ.MfllL.±S4"

2B REM MAILING LIST PROGRAM TO ILLUSTRATE DISKETTE FILE STRING HANDLING
30 DATA " NAME: "," STREET: "," CIT't': "," STATE: "," ZIP: "

40 D0PEN#1 , "SEQ. MAILIiflTA" , W
50 IF DSO0 THEN PRINT US* : STOP
60 PRINTM ENTER NAME AND ADDRESS: MS"
70 FOR 1=1 TO 5
80 READ F*
90 PRINTF*: : INPUT AD* CI}
100 NEXT I

110 RESTORE
128 PRINT"ENTER V TO REUURD.. N TO RE-ENTER^.: n

130 0ET Vf-1F V*-::>"
,

t'" AND V$0"N" I HEN 138

135 PRINTV*
140 IF V*="N" THEN 60
150 REM WRITE NAME AND ADDRESS TO SEQUENTIAL FILE
160 FOR 1 = 1 TO 5

170 PRINT#l,AD*a;'
180 NEXT I

190 PR I NT "ENTER V FOR ANOTHER NAME AND ADDRESS, N TO END":

200 GET V*IF V*0"V" AND V$0"N" i HEN 200
205 PRINTV*
210 IF V$="V" THEN 60
220 DCL0SE#1

2% PET/CBM Personal Computer Guide

300 REM DISPLAY NAMES AND ADDRESSES ONE AT fi TIME
3 1 DOPEN# 1

,
"SEQ . MA I LDATA

"

330 IF DSO0 THEN PRINT DS*:STOP
340 REM CLEAR SCREEN AND DISPLAY NAME AND ADDRESS
350 PRINT"3«W"
36@ RESTORE
370 FOR 1=1 TO 5
380 READ F*-' PR I NT F*;
390 INPUT#1,AD*
400 IF DSO0 THEN PRINT DS$: STOP
410 PRINT AD$
420 NEXT I

43?' PRINT"ENTER Y FOR ANOTHER NAME AND ADDRESS.. N TO EMU";
440 OET Y*:IF V*0"Y" AND Y$0"H" THEN 440
450 IF Y*="V" THEN 350
460 DCLOSE#l
470 SCRATCH DO, "SEQ. MfilLDATA"
480 STOP

BASICO.O Version

10 REM PROGRAM "SEQ. MAIL. BC3"
20 REM MAILING LIST PROGRAM TO ILLUSTRATE DISKETTE FILE STRING HANDLING
30 DATA " NAME: "

.,
" STREET: ".." CITY: "," STATE: »," zip: "

40 OPEN 15,8, 15: REM COMMAND CHANNEL
41 IHPUT# 1 5 , A* , E* , C* , D*
42 IF VflL(fit)Oe THEN PRINT A*,B*,C*,B*
43 PRINT* 15, "10"

44 OPEN 1,8,2,"0:MAILDATA<3,SEQ,W"
50 INPUT#15,A*,B*,C*,D$
51 IF VAL^AJI'OO THEN PRINT A$,B*,C*,D*
66 PR I NT"^ ENTER NAME AND ADDRESS :)fl«"

70 FOR 1=1 TO 5
80 READ F*
90 PRINTF*; : INPUT AD*a>
100 NEXT I

110 RESTORE
120 PRINT"ENTER V TO RECORD, N TO RE-ENTER";
136 GET Y*:IF V*0"V" AND Y*<>"N" THEN 130
135 PRINTV*
140 IF Y*="N" THEN 60
150 REM NRITE NAME AND ADDRESS TO SEQUENTIAL FILE
160 FOR 1=1 TO 5
170 PRINT#1,AD*<I>
180 NEXT I

190 PR I NT "ENTER V FOR ANOTHER NAME AND ADDRESS, N TO END";
200 GET Y*:IF V*0"V" AND Y*0"N" THEN 200
205 PR I NTV*
210 IF Y*="Y" THEN 60
220 CLOSE 1

300 REM DISPLAV NAMES AND ADDRESSES ONE AT A TIME
310 OPEN 1,8,2, "0:MAILDATA<3, SEQ"
320 INPUT#15,A*,B*,C*,D*
321 IF VAL<:A*K>0 THEN PRINT A*,B*,C*,D*
330 IF DSO0 THEN PRINT DS*:STOP
340 REM CLEAR SCREEN AND DISPLAY NAME AND ADDRESS
350 PRINT"™i«"
360 RESTORE
370 FOR 1=1 TO 5
380 READ F*: PRINT F*;

390 INPUT#1,AD*
400 INPUT#15, A*, B*, «, D*
401 IF VALCA*K>0 THEN PRINT A*,B*,C*,D*
410 PRINT AD*
420 NEXT I

430 PR I NT "ENTER Y FOR ANOTHER NAME AND ADDRESS, N TO END";
440 GET Y* : IF Y*C"Y" AND Y*0"N" THEN 440
450 IF Y*=»Y" THEN 350
460 CLOSE 1

470 SCRATCH D0, "SEQ. MAILDATA"
480 STOP

Chapter 6: Peripheral Devices 2W

ENTER NAME AND ADDRESS:

NAME JO BLOW
STREET 125 5TH. AVE

CI TV NEW VORK
STATE NV

ZIP 10010
ENTER V TO RECORD, N TO RE-ENTERV
ENTER V FOR ANOTHER NAME AND ADDRESS N TO ENDV
ENTER NAME AND ADDRESS

:

NAME: FRED SMITH
STREET 23 ROVAL RD.

CITV BERKELEV
STATE CA

SIP 94798
ENTER V TO RECORD, N TO RE-ENTERV
ENTER V FOR ANOTHER NAME AND ADDRESS N TO ENDN

NAME: jo BLOW
STREET 125 5TH. AVE

CI TV NEW VORK
STATE NV
ZIP 10010

ENTER V FOR ANOTHER NAME AND ADDRESS N TO END

NAME: FRED SMITH
STREET 23 ROVAL RD.
CITV BERKELEV
STATE CA
ZIP 94708

Let us examine program logic.

Statements on lines 40 through 220 input names and addresses from the

keyboard, then output the names and addresses to a sequential data file. Statements on

lines 300 through 460 read names and addresses from the sequential data file and dis-

play them.

The sequential data file is named SEQ.MAILDATA in the BASIC 4.0 program.

This sequential file is opened on line 40 for a write operation; it is closed on line 220.

The file is reopened on line 310 for a read operation, and finally closed on line 460. In

the BASICX3.0 version of the program the sequential data file is named
MAILDATA<3. The file is opened on line 44 for a write operation; it is closed on line

220. The file is reopened on line 310 for a read operation, and finally closed on line 460.

Both programs scratch the sequential data file on line 470 so that the program can

be rerun. A real mailing list program would not scratch the file; mailing lists need to be

preserved. Instead, additional names and addresses would be appended to the file.

Appending data to sequential files is described next.

File status is tested in the BASIC 4.0 version of the program by statements on line

50, 330, and 400. In the BASIC<3.0 version file status is tested on lines 41 and 42, 50

and 51, 320 and 321, and 400 and 401. File status statement logic was described earlier

in this chapter.

Notice that SEQ.MAIL.B<3 opens a command channel at the beginning of the

program on line 40. The STOP statement on line 480 is allowed to close the command
channel; this is not good programming practice, but it will work.

Identical statements are used by the BASIC 4.0 and BASICO.O versions of the

mailing list program to read data from the keyboard, write data to the sequential file,

read data from the sequential file, and display data on the screen.

298 PET/CBM Personal Computer Guide

Statements on lines 60 through 140 input names and addresses from the

keyboard. Names and addresses are input as five fields by the FOR-NEXT loop on lines

70 through 100. Notice that the operator's prompt message is identified by string varia-

ble F$ which is read from the DATA statement on line 30. The five fields of the name

and address are input to string array AD$(I). The RESTORE statement on line 110

restores the data pointer to select the first string variable of the DATA statement.

Statements on lines 120 through 140 are standard operator dialogue which allow

the operator to re-enter the entire name and address, or record it. This type of dialogue

was described frequently in Chapter 5. Note that very primitive error recovery logic is

provided since our goal is to demonstrate file handling; we are not trying to illustrate

good data entry programming practice.

The name and address is written to the sequential data file by the FOR-NEXT
loop on lines 160 through 180. Since one string variable is output each time the PRINT*
statement on line 170 is executed, a carriage return is forced. We could replace state-

ments on lines 160 through 180 with these two statements:

160 C*=CHR*a3:>
1 73 ?rint#i , flu*a : , c*, fiB*<2;' , c$, m$ <.3> , c$, flrj*<4:> , c*, rd* <5:>

The following INPUT* statement can be used optionally to read the data back:

200 ihput#i , HH$a > .. rams:)

,

hd$<3) , m$<A:> , rams?

Statements on lines 190 through 210 allow the operator to enter another name
and address, or proceed to the display portion of the program.

The FOR-NEXT loop on lines 370 through 420 reads the five fields of each name
and address from the sequential data file, then displays the name and address. Once

again the DATA statement on line 30 is used to provide labels for each field that is dis-

played. On line 380 the READ statement takes the next string value from the DATA
statement on line 30 and assigns it to F$; the PRINT statement then displays this string

variable as a label. The INPUT* statement on line 390 reads the corresponding field

from the sequential data file and the PRINT statement on line 410 displays it.

Operator dialogue on lines 430 through 450 allow the operator to display the next

name and address, or terminate program execution.

Note that we have provided no protection against the operator asking for another

name and address to be displayed when the end of file has been reached. We could solve

this problem by adding the following statements on a new line 405:

485 IF DS=64 THEN PRINT "END OF FILE"" 1=5: GOTO 420

Mixed Sequential Data Files

No special program logic is needed in order to write numeric and string varia-

bles to the same sequential data file. However your program logic must keep track of

field types. If a statement attempts to read a field from a sequential data file using a

variable name of the wrong type, then an error will be reported.

Here is an example of a statement that writes two numeric variables and three

string variables to a sequential data file:

10 IiOPEN#l,"DRTfi",W
29 C*=CHR*a3)
30 PR I NT# 1 , ?% , C* , X , C* , Q* , C* , V , C* , R*

Chapter 6: Peripheral Devices ^"9

These five variables would be read back correctly by the following INPUT* state-

ment:

100 iHPUT#i,R*a:),H*<2:),fl*(:3:),xa::

The following INPUT* statement would not execute correctly since the variable

types in its parameter list do not correspond with the variable types recorded in the

sequential data file:

100 iHPUT#i,fl*(iJ,Fi*';£>..fi*!:3:)

There are now 30 numbers in each record, not 10. Therefore 30 numbers must be

read and displayed for each record in the second half of the program. A simple (but

inelegant) way of displaying 30 numbers would be to change the FOR statement on line

250, increasing the upper index of F from 10 to 30, as follows:

250 FOR F=l TO 30

Make these changes, then run the program to assure yourself that three numbers

were written out each time the PRINT* statement on line 80 was executed.

ADDING DATA TO SEQUENTIAL FILES

BASIC 4.0 allows you to add data to an existing sequential file using the

APPEND* and CONCAT statements. The APPEND statement will write fields to the

end of the existing file; the CONCAT statement will concatenate two files.

Appending Data To Sequential Files (BASIC 4.0)

To illustrate the APPEND* statement, we will modify program
"SEQ.NUM.B4". The modified program, named "SEQ.NUMAPPEND", is listed

below, with changed statements shaded.

10 REM PROGRAM "SEQ.NUMAPPEND"
20 BOPENtH "TESTDATA",W
30 IF DSC>0 THEN PRINT US* : STOP
35 FOR J=l TO 3
48 REM WRITE TEN RECORDS
50 FOR R=l TO 10
60 REM WRITE TEN FIELDS PER RECORD
70 FOR F=l TO 10
30 PR INT# 1 , <R- 1 > * 1 00+F*J
85 IF DSO0 THEN PRINT DS$ STOP
90 NEXT F
100 NEXT R
110 DCLOSE#l
£00 REM NOW READ BACK FILE CONTENTS AND DISPLAY IT
210 D0PEN#1.. "TESTDATR"
215 IF DSOO THEN PRINT DS* : STOP
226 FOR R=l TO 10*,T

230 PRINT " RECORD ",:R:

240 REM INPUT CONTENTS OF NEXT RECORD AND DISPLAV IT

250 FOR F=l TO 10
260 IHPUT#1,N
265 IF DSOO THEN PRINT DS$: STOP
270 PPINTN:
230 NEXT F

290 PRINT
300 NEXT P
310 DOLOSE*

1

315 APPEHD#l,"TESTDATfi"
316 NEXT J

320 SCRATCH DO, "TESTDHTA"
33S STOP

300 PET/CBM Personal Computer Guide

"SEQ.NUMAPPEND" is equivalent to three executions of "SEQ.NUM.B4". On

the first execution 100 numeric fields are written to "TESTDATA". On each re-execu-

tion 100 fields are added to sequential data file TESTDATA. Therefore after the second

execution "TESTDATA" will hold 200 numbers, and after the third execution

"TESTDATA" will hold 300 numbers.

The three executions are enabled by a FOR-NEXT loop which uses the index J.

The FOR statement is on line 35. The NEXT statement is on line 316.

In order to identify appended numbers, the field counter F is multiplied by the

execution counter J on line 80. On line 220 the upper bound for the record counter R

becomes 10 * J, since the number of records will increase by 10 on each re-execution.

You cannot APPEND to a file that does not exist. Therefore you cannot simply

replace the DOPEN* statement on line 20 with an APPEND* statement, and open

"TESTDATA" within the FOR-NEXT loop indexed by J. Tne DOPEN* statement on

line 20 creates sequential file "TESTDATA" and opens it for a write operation. Ten

records are written to "TESTDATA" on the first execution of statements 40 through

315; these ten records are read from the file and displayed. At the end of the first execu-

tion the APPEND* statement on line 315 reopens TESTDATA for the second execu-

tion of statements on lines 40 through 315. Ten additional records are added to

TESTDATA. Similarly on the third execution of statements on lines 40 through 315,

ten more records are added to TESTDATA, bring the total to 30 records.

Now run the program. On the first execution you will see exactly the same display

that program SEQ.NUM.B4 created. There will be a pause, then on the second execu-

tion 20 records will be displayed; you will be able to identify the second set often records

by the fact that the last digit of each number has been doubled. After another short

pause you will see 30 records displayed when the program is executed a third time. You

will be able to differentiate the first, second, and third set often records by the last digit

of each number, which is doubled for the second set of ten records, and tripled for the

third set often records.

Concatenating Sequential Data Files (BASIC 4.0)

BASIC 4.0 with DOS 2.0 allows you to concatenate files using the CONCAT
statement. Program CONCATEST, listed below, provides a simple demonstration of

file concatenation.

5 REM PROGRAM "COHCRTEST", DEMONSTRATES CONCAT STATEMENT
10 DOPEN* 1. "DATAl'MJ
2@ D0PEN#2, "DATA2",W
30 FOR 1 = 1 Tu 20
40 PRIHTttl, I

53 PRINT#2, 1 + 10

60 NEXT I

80 DOLOSE
90 DOPEN*!.. "DATfll"
100 D0PEN#2.. "DATA2"
110 PR INT"y
120 FOR 1=1 TO 20
130 I NPUTttl, SPRINT X;

140 NEXT
145 PRINT
158 FOR 1=1 TO 20
160 INPUT#2,Jv PRINT X;

170 NEXT
175 PRINT
180 DOLOSE
190 CONCAT "DATR2" TO "DflTfll"

Chapter 6: Peripheral Devices

200 Dopemi:. "DRTfll

"

210 FOR 1=1 TO 40
220 INF'UT#1. SPRINT
236 HEHT
235 PRINT
240 DCLOSE
258 STOP

This very simple program writes 20 numbers into sequential data files DATA1

and DATA2, then concatenates DATA2 to DATA1. Contents of DATA1 and DATA2
are displayed separately, then the contents of DATA1 are displayed after concatenation.

The two sequential data files DATA1 and DATA2 are opened on lines 10 and 20.

The FOR-NEXT loop on lines 30 through 60 writes 20 numeric fields to each of the two

files. Numbers one through 20 are written to DATA1. Numbers 11 through 31 are writ-

ten to DATA2 so that the two numeric sequences can be distinguished, one from the

other.

The two data files are closed by the single DCLOSE statement on line 80 so that

they can be reopened for read accesses by the DOPEN* statements on lines 90 and 100.

Two FOR-NEXT loops on lines 120 through 140 and 150 through 170 display the con-

tents of DATA1 and DATA2 respectively. The PRINT statements on lines 145 and 175

force carriage returns.

DATA1 and DATA2 are both closed on line 180. DATA2 is concatenated to

DATA1 by the CONCAT statement on line 190. DATA1 is then opened so that its con-

tents can be displayed by the FOR-NEXT loop on lines 210 through 230. DATA1 is

closed on line 240.

Note that CONCATEST does not scratch DATA1 and DATA2 at the end of the

program. Before re-executing the program you must SCRATCH files DATA1 and

DATA2 in immediate mode, or you must SCRATCH statements to the end of the pro-

gram as follows:

245 SCRATCH "DATA1" : SCRATCH "DflTA2"

It is easy to misuse the CONCAT statement and get into a lot of trouble.

The two concatenated files must both contain data, and must both be closed

when the CONCAT statement is executed.

If you concatenate data to an empty file, the computer will "hang up." You

must turn power off at the computer, then turn power on again and restart whatever you

were doing.

If you attempt to concatenate files that are open, or improperly closed, the com-

puter may start appending a file to the diskette directory. If this happens, you will see

diskette activity continue for a very long time after the CONCAT statement has been

executed. It is possible to stop the diskette operation by pressing the STOP key at the

keyboard. If you display the directory you will see a lot of garbage appear after the valid

file names. In order to remove this garbage execute the COLLECT statement in

immediate mode.

302 PET/CBM Personal Computer Guide

Appending Data to Sequential Files (BASIC<3.0)

In order to append data to an existing sequential file using BASKX3.0, you

need two sequential files, which we will arbitrarily name DATA1 and DATA2. Suppose

DATA1 contains data. In order to add data to DATA1 you must create a new file

DATA2 using these steps:

1. If DATA2 exists scratch it.

2. OPEN DATA2 for a write access.

3. OPEN DATA1 for a read access.

4. Read records sequentially from DATA1 and write them sequentially to

DATA2.

5. On detecting the end of the DATA1 file, start writing new records to DATA2.

6. Close DATA1.

7. Scratch DATA1.

8. Rename DATA2, giving it the new name DATA1.

The next time you wish to update the file, repeat the steps described above,

switching DATA1 with DATA2.

END OF FILE

You can test for an end of file by looking for a value of 64 in ST. The following

statement will stop program execution on detecting an end-of-file:

200 IF ST=64 THEN PRINT "END OF FILE": STOP

RELATIVE DATA FILES (BASIC 4.0)

Only BASIC 4.0 supports relative data files.

An open relative file can be read from or written to. However, you cannot read

from an empty relative file; until you have written into the file, you cannot read from it.

RELATIVE FILE FIELD SEPARATORS

Comma and carriage return characters have different meanings as field separators

in relative files; the record length specified in a relative file DOPEN* statement iden-

tifies the number of characters (bytes) separating carriage return characters. If all

fields are separated using carriage return characters, then the relative file record length

becomes a field length. Remember, BASIC 4.0 PRINT* statements do not transmit an

automatic carriage return character at the end of a line if the file number is 127 or less.

Relative File Record Length

All numeric fields must be terminated with carriage return characters,

therefore if a relative file holds numeric data, the record length specified for the rela-

tive file is also the field length. The number appearing after the L parameter in the

relative file DOPEN* statement identifies the number of characters (bytes) that will be

set aside for every numeric field in the file.

Chapter 6: Peripheral Devices 303

Since string variables can be terminated by comma characters or carriage

return characters, you can place a number of string variables within a single relative

file record. A name and address, for example, could have the following five fields:

<CR>Name<,>Street<,>City<,>State<,>ZIP<CR>Name<,>Street<,>

Field 1 Field 2 Field 3 Field 4 Field 5

One relative file record

with five string variables

The record length specified for the relative file in its DOPEN* statement now

applies to all five fields of the name and address record. This is useful since it accommo-

dates records that have one or two very long fields. This may be illustrated as follows:

Number of Characters

Name Street City State ZIP

Field 1 Field 2 Field 3 Field 4 Field 5 Total

Address 1 9 14 16 2 5 46

Address 2 13 12 8 2 5 40

Address 3 12 11 12 2 5 42

Address 4 17 8 11 2 5 43

Address 5 10 12 13 2 5 42

etc.

If all five fields are stored in a single record, a record length of 50 characters

(bytes) would probably be adequate.

If every string variable field ended with a carriage return, then the record length

specified in the DOPEN* statement would apply to each field of the name and address.

Every field would have to be long enough to accomodate the longest expected entry in

any one of the five fields. To be safe we would probably select a 20-character (byte) field

length. Now every field, including state and ZIP, will be allocated 20 characters. The

total allocation for the name and address becomes 100 characters (bytes), since there

are five fields with 20 characters per field. Therefore each name and address requires

twice as much disk space as it would need if data were stored five fields per record.

Reading Relative File Records

INPUT* and GET* statements can be used to read fields from a relative file.

If commas are used to separate string variables, and INPUT* statements are

used to read data from the relative file, then each INPUT* statement must read all

of the variables occurring between two carriage return characters. We will illustrate

this with programming examples on the following pages.

If a relative file has numeric and string variables, selecting a record length

becomes more complicated. You can select a record length that allows a number of

string variables separated by commas to be stored in each record, but numeric fields will

still have to be stored one per long record. And that can prove very costly in terms of

wasted diskette space. There are two solutions to this problem:

1. Select a record length based on the numeric variables. Store string variables

one field per record, breaking up any long strings into smaller pieces.

2. Convert numeric variables into strings using the STR$ function, then store a

number of numeric strings in each record.

304 PET/CBM Personal Computer Guide

WRITING NUMERIC DATA TO RELATIVE FILES

To explore numeric relative files we will modify program SEQ.NUM.B4, creating

REL.NUM.B4, which is listed below.

:o dope:-.*;, 're^'Fta" ._k>
30 IF DSO0 THEN PRINT DS* : S TOP
46 REM NRITE TEH RECORDS
50 FOR R=l TO 10
SS REM WRITE TEH FIELDS PER RECORD
70 FOR F=l TO 10

SO PRINT#l,CR-i:>*100+F
35 IF DSO0 THEN PRINT DSS : STOP
90 NEXT F
100 NEXT R

110 DCLOSE#l
200 REM MOW READ BACK FILE CON ! EMTS RNH DiSPLfiV li

2 1 DOPEN# T ,
" RELUflTfi " , L 1

115 IF DS ""EN F-'I ' Z<IX E"C' C

220 FOR R=; TO 10
230 PRINT "RECORD" ;R.:

240 REM INPUT CONTENTS OF NEXT RLUURU FiNj DISPLflV li

250 FOR F=l TO 10
268 INPUT#1,N
2F5 IF DP-:'; 'HEN PRINT DS* : STOP
270 -pin-:;;

2S0 HE:;. -

j.jf, ps?;|..-

300 -.£::T P

310 dolose*;
330 SCRPTCr 30.. "RELDflTfl"

Load program SEQ.NUM.B4 into memory, then create program REL.NUM.B4

by making appropriate changes to statements on lines 10, 20, and 210. Run program

REL.NUM.B4. If it executes correctly you will get the same display that program

SEQ.NUM.B4 generated. Save program REL.NUM.B4 when it has executed correctly.

Record Length

Note the short record length of ten characters (bytes) specified by the

REL.NUM.B4 program's DOPEN* statements. Since numeric data is written to

relative file RELDATA, one field is written per record. This is because record length is

always interpreted as the number of characters (bytes) separating carriage return charac-

ters; and every numeric variable must be terminated with a carriage return. Therefore

just one numeric variable can be stored per record. Ten characters (bytes) is enough

space for one numeric field.

There is no need to close relative file RELDATA on line 110 and then reopen it

on line 210. We do so in order to separate the program into two modules, and examine

how the two halves of the program interact.

Next change the record length in the DOPEN* statement on line 210 from L10 to

L8. Now re-execute the program. The program will not execute; the following message

will appear:

50 ..RECORD NOT PRESENT. 06,00
BREFiK IN 215
SEflDV

The wrong record length in the DOPEN# statement on line 210 has caused the

problem. BASIC 4.0 does not allow a relative file to be reopened with the wrong

record length.

Chapter 6: Peripheral Devices
*05

WRITING STRING DATA TO RELATIVE FILES

When writing string variables to relative files you can end each variable with a

comma or a carriage return character. If you end each field with a carriage return

character, there will be one string variable field per record. You can include a number

of string variables within a single record by using a comma character to separate

fields within the record. The last field of the record must end with a carriage return

character.

For our first example of writing string variables to a relative file, we will modify

the sequential mailing list program SEQ.MAIL.B4. The modified program generates a

relative file with the five fields of each name and address stored as a single record. This

new program (named REL.MAIL.B4) is listed below; statements that differ from

SEQ.MAIL.B4 are shaded.

10 REM PROGRAM "REL.MFlIL.B4"
2R REM MAILING LIST PROGRAM TO ILLUSTRATE DISKETTE FILE STRING HANDLING

25 REM FOR RELATIVE FILES
30 DATA " NWtE: "" STREET ".. " CITY: "..

" STATE: ••

,
•• ^\f:

49 DOPEN# 1 ,
" REL . MR I LDRTA "

, L50
50 IF DSCO THEN PRINT DS* :

STOP
60 PR I NT "3 ENTER NAME AND ADDRESS : MS"
70 FOR 1=1 TO 5
80 READ F*
93 PRINTF*; INPUT AD* CI)

106 NEXT I

110 RESTORE
120 PR I NT "ENTER V TO RECORD.. N TO RE-ENTER";
1 3ft GET V*:IF V*0"V" AND V*0"M" THEN 138
135 PR I NTV*
140 IF Y*="N" THEN 60
"50 -'EM NPI7E NAME AND ADDRESS TO SEQUENTIAL FILE
160 C71*=CHR*C44>
179 *f?inT#: . Rii*<: i ;,

; cm:.fait(.2> : cm, rb*03>; cm*;rb*<4> ; cm*;AD*<5>
171 IF D3<::>0 THEN PRINT DS* :

STOP
sil -R;>J7"EHTEP V FOR RHOTHEP NAME AND ADDRESS, N TO END".:

y^.ij GET V* IF V*:;: "Y" AND V*0"N" THEN 200
205 PR I MTV*
2:0 IF V*="V" Then 60
220 DC LOSE*

1

224 IF H3O0 THEN PRINT DS* STOP
'-:00 RE" DISPLAY NAMES AND ADDRESSES ONE AT A TIME
3 1 DOPEN# 1

,
"REL . MR I LDATA " , L50

::<"! IF DSC-0 THEN PRINT DS* :
STOP

:40 REM CLEAR SCREEN AND DISPLAY NAME AND ADDRESS
350 PRINT'TMfi"
":6m RESTOPE
,¥S I NPUT# 1 , AD* < 1 > , AD* (. 2) , AD* (. 3 > , AD* (4) , AD* '-. 5 >

166 IF DSOO THEN PRINT DS* :
STOP

~:~0 FOR I-; TO 5

3S0 READ F* PRINT F*,
410 FRINT AD*' I

>

420 NEXT I

4:-!0 PR I NT "ENTER V FOR ANOTHER NAME AND ADDRESS, H TO END";
440 GET V*:IF V*0"V" AND V*<>"N" THEN 440
450 IF V*="Y" THEN 350
460 DCL0SE#1
470 SCRATCH DO. "REL.MAILDATA"
480 STOP

Load program SEQ.MAIL.B4 from diskette, change statements on the shaded

lines, then run the program. If you have entered the program correctly, it will execute

exactly as described for SEQ.MAIL.B4. When program REL.MAIL.B4 is free of errors,

save it.

306 PET/CBM Personal Computer Guide

Let us examine the changed statements in program REL.MAIL.B4.

The DOPEN* statements on lines 40 and 310 have been changed to specify a

relative file with a 50-character record length and the name REL.MAIL.DATA.

Data is input from the keyboard and displayed on the screen as described for

SEQ.MAIL.B4, but statements that write each name and address to the data file are

completely different. The PRINT* statement on line 170 outputs a single record. CMS
has been assigned the numeric value of the comma character (CHR$(44)) by the

assignment statement on line 160. Note the semicolons separating each variable in the

PRINT* statement parameter list. The combination of semicolons separating

parameters in the PRINT* statement and CMS occurring between each field of the

name and address will cause a relative file record to be created as follows:

170PRINT#1,AD$(1);CM$;AD$(2);CM$;AD$(3);CM$;AD$(4);CM$;AD$(5)

JO BLOW ,1 25 5TH AVE. , NEW YORK. NY .10010

This illustration assumes that AD$(l)="JO BLOW", AD$(2)="125 5TH AVE.",

AD$(3) = "NEW YORK", AD$(4) = "NY" and AD$(5) ="10010".

Note the statements on line 171, which test for diskette status after each record

is written to the relative file. Strictly speaking, program SEQ.MAIL.B4 should have

had statements to test status at this point; for SEQ.MAIL.B4 it would have represented

good programming practice. But it is vitally important after writing a record to a rela-

tive file, since you must check for record overflow. Without the status testing state-

ments on line 171, any name and address that did not fit into the allowed record length

would be stored inaccurately; if your eye were fast you might notice the error indicator

on the diskette drive flash red while the long record is written to the relative file. Other-

wise you would have no idea that an overflow had occurred until a program read data

back from the file, and found one or more fields of the record missing.

To demonstrate the need for the status testing logic on line 171, eliminate this

line, then change the semicolons on line 170 to commas. Now re-execute the program.

If you watch carefully you will see the error indicator at the diskette drive flash red when

records are written to the diskette. When names and addresses are subsequently dis-

played, the first two or three fields of each name and address will be present; remaining

fields will be absent.

What happened?

The commas in the parameter list of the PRINT* statement on line 170 have the

same effect on display fields and relative file fields; each new field is written or displayed

beginning at the next 10th character boundary. The PRINT* statement on line 170 has

9 variables in its parameter list (you must count the four CMS variables) . Therefore the

record will require at least 90 characters. More characters will be needed if any of the

five name and address fields has more than ten characters. You can see the effect of

commas by adding the following statement to program REL.MAIL.B4:

PRINT RI>*< 1 ':>

, Cm > BB$<.2> , CM*.. fiDSCS;' , Cm, fiH$(4) , Cm, fi&f <5:>

Each record will be displayed exactly as it will be written to file REL.MAIL.DATA. You

can then count characters for yourself, and see where the name and address gets trun-

cated by a 50 character record length.

Chapter 6: Peripheral Devices
'"'

Statements that read the name and address back from the relative data file are

shown on lines 365 and 366. Statements that read names and addresses back for pro-

gram SEQ.MAIL.B4 have been removed; hence the absence of lines 390 and 400.

An INPUT* statement reads one record from a diskette file. This is true for all

INPUT* statements, reading from any type of diskette file. In other words, each

INPUT* statement reads data from one carriage return character to the next. In pro-

gram REL.MAIL.B4 there are five fields between each pair of carriage return charac-

ters, therefore the INPUT* statement on line 365 will read five fields each time the

statement is executed. This is true whatever number of variables there may be in the

INPUT* statement parameter list.

The INPUT* statement on line 365 has five string variables in its parameter list.

If any variable in the parameter list were not a string variable, you would get a syntax

error and the program would stop executing.

If there were less than five string variables in the parameter list, some variables at

the end of the relative file records would not be read. You can demonstrate this for your-

self by removing ADS (4) and AD$(5) from the INPUT* statement on line 365. When

you re-execute the program, names and addresses read from the relative file will have

their first three fields displayed correctly, with nothing in the last two fields.

Next add an additional variable to the INPUT* statement on line 365 by append-

ing ,AD$(6) to the end of the INPUT* statement. When you execute the program, you

will find that the presence of this additional variable in the INPUT* statement has no

effect. Unlike sequential files, the additional variable has no data assigned to it, since the

record has run out of fields.

POSITIONING TO RECORDS OF RELATIVE FILE

The RECORD* statement allows you to position to any character (byte) of any

record in a relative file. To demonstrate the use of the RECORD* statement, add the

following line to program REL.NUM.B4:

23 RECORD#l,<a0-R)*10+l)

You will see ten records displayed, with 901 through 910 in the first record and 1

through 10 in the last record. This is the exact inverse of the record display given by

REL.NUM.B4.
The record positioning factor is derived as follows:

Add 1 since field numbers

begin with 1

.

Number of fields per record

Record number, starts at .

9 (last) when R = 1 and

ends at (first) when
R = 10.

Whether a relative record contains numeric or string data has no effect on the way

the RECORD* statement works. Prove this to yourself by adding RECORD* state-

ments to the REL.MAIL.B4 program to select names and addresses in any sequence.

x

308 PET/CBM Personal Computer Guide

Changing Records in a Relative File

Having positioned to any record in a relative file, you can write a single record.

No special programming techniques are required. The same PRINT* statement that

creates a record can be used to overwrite a record, once you have positioned to the

record.

USING GET* WITH DISKETTE FILES

The GET* statement reads one character from a diskette data file, just as the

GET statement reads one character from the keyboard buffer. The character read by

the GET* statement is taken from the 256 byte diskette buffer. Characters are taken

sequentially, beginning with the first character in the buffer. Blanks, punctuation

characters and anything occupying a character position will be read.

When using the GET* statement to read from sequential files, you must read

characters sequentially, beginning with the first character of the file. However, when

reading from relative files you can use the RECORD* statement to select any character

in any record; the GET* statement will then start reading at the selected character.

Avoid using GET* to read numeric data from disk files. Remember, GET*
returns for a null numeric character. Therefore you cannot distinguish between a true

digit and a null character.

We will demonstrate use of the GET* statement by modifying programs

SEQ.MAIL.B4 and REL.MAIL.B4, substituting a GET* statement for the INPUT*

statement that reads back name and address fields. Changes apply also to

SEQ.MAIL.BO.

Using GET# with Sequential Files

First we will modify program SEQ.MAIL.B4 substituting GET* for the INPUT*
statement on line 390. The GET* statement follows standard GET statement logic

(which you should understand by now) . Here is the new line 390:

390 GET#l,Fffi*:IF fiB*="" THEN 390

The PRINT statement on line 410 will now print just, one character; we must

therefore add a semicolon to the end of the PRINT statement in order to suppress a car-

riage return.

We must test for a carriage return by adding this extra statement on a new line

415:

415 IF HD*OCHR*<13) THEN 390

The IF statement on line 415 branches back to the GET* statement until a car-

riage return is detected. Then the FOR-NEXT loop is allowed to iterate once more.

Since carriage return characters mark the end of each word, the carriage return is dis-

played by the PRINT statement on line 410 before the IF statement on line 415 causes

program logic to move on to the next word.

Load program SEQ.MAIL.B4 into memory. Make the changes described and run

the program. Execution should be identical.

Chapter 6: Peripheral Devices -*09

In order to experiment with the GET* statement, try modifying your program to

detect and change specific characters. For example, you could display a graphics

character wherever a carriage return is detected.

Using GET# with Relative Files

Program REL.MAIL.GET*, listed below, shows program REL.MAIL.B4 modified to

use the GET* statement; in addition, some characters have been modified so that we

can examine the organization of relative file records.

I Pi REM PROGRAM "REL. MAIL. GET#"
20 REM MAILING LIST PROGRAM TO ILLUSTRATE DISKETTE FILE STRING HANDLING
25 REM FOR RELATIVE FILES
30 DATA " NAME- "," STREET: "," CI TV: "," STATE' "," ZIP: »

40 D0PEH# 1 ..
"REL . MA I LDATA "

, L50
50 IF BSO0 THEN PRINT DS*:STOP
60 PR I NT "II ENTER NAME AND ADDRESSES"
70 FOR 1=1 id 5
80 READ F*
90 PRINTF*; : INPUT flD*<I>
100 NEXT I

110 RESTORE
120 PRINT"ENTER V TO RECORD, N TO RE-ENTER".:
130 GET V*IF V*<>"V" AND V*0"N" i HEN 130
135 PR INTV*
lie if v*="N" Then m
150 REM WRITE NAME AND ADDRESS TO SEQUENTIAL FILE
160 CM*=CHR*f44>
1 70 PR I NT# 1 , AD* < 1) ; CM* ; AD* < 2 > : CM* ; AD* < 3 > CM* ; AD* <. 4) ; CM* .; AD* < 5 >

171 IF BSO0 THEN PRINT DS*:STOP
190 PR I NT "ENTER V FOR ANOTHER NAME AND ADDRESS, N TO END";

200 GET V*'IF V*0"V" AND V*0"N" THEN 206
205 PR INTV*
210 IF 't'*="V" THEN 69
220 DCLGSE#1
224 IF HSO-0 THEN PRINT DS*:STOP
300 REM DISPLAV NAMES AND ADDRESSES ONE AT A TIME
3 1 9 DOPEHt 1

,
"REL . MA I LDATA " , L50

338 IF DSO-0 THEN PRINT DS* : STOP
340 REM CLEAR SCREEN AND DISPLAV NAME AND ADDRESS
350 PRINT'THM"
360 RESTORE
378 FOR 1=1 TO 5
380 READ F*: PRINT F*;
398 GET#1,AD*:IF AD*="" THEN 390
395 IF DSO0 THEN PRINT DS* : STOP
408 IF AD*=CHR*';32:) THEN AD*="*"
405 IF AD*=CHR*';44:> THEN PRINT AD* .: : AD*=CHR* < 1 3

>

410 PRINT AD*.:

415 IF AD*OCHR*<:i3:) THEN 390
420 NEXT I

430 PRINT"ENTER V FOR ANOTHER NAME AND ADDRESS, N TO END":
440 GET V*:IF V*-0"V" AND V*0"N" THEN 448
450 IF V*="V" THEN 350
460 DCLOSE#l
478 SCRATCH D8, "REL. MA I LDATA"
488 STOP

Since the GET* statement reads characters one at a time, we do not need to worry

about the different punctuation separating fields and records. The GET* statement will

read punctuation like any other character, and carry on reading. Therefore the INPUT*
and status test instructions on lines 365 and 366 of program REL.MAIL.B4 have been

removed. A standard GET* statement has been added on line 390; status for this file

access is tested by the IF statement on line 395.

In order to detect space codes, on line 400 space code characters are replaced by

the more visible • character.

jJO PET/CBM Personal Computer Guide

Line 405 checks for a comma. Commas are displayed, then replaced with a car-

riage return character.

On line 410 a semicolon has been added to the end of the PRINT statement since

this statement will now display just one character. On line 415 logic branches back for

the next character, unless the carriage return has been detected, at which point the next

field is input. Remember, on line 405 commas have been converted to carriage returns,

therefore on line 415 commas and carriage returns will both cause an advance to the

next field.

Enter program REL.MAIL.B4 and make the modifications shown. Now run the

program. You will find that REL.MAIL.GET* and REL.MAIL.B4 create identical dis-

plays, apart from asterisks appearing instead of blanks. Notice that no asterisks appear

after the zip code. Therefore a carriage return character must appear directly after the

zip code, with unused disk space separating this record from the beginning of the

next.

Using the GET# and RECORD* Statements With Relative Files

The RECORD* statement will position to any character in any record of a rela-

tive file. To demonstrate the character positioning ability of the RECORD* state-

ment add the following line to program REL.MAIL.GET*:

365 RECORD* 1,2..5

The second half of program REL.MAIL.GET* will now start displaying names

and addresses at the fifth character of the second record. Re-execute the program (mak-

ing sure that you enter at least two names and addresses). You will find that the second

name and address is displayed, beginning at its fifth character.

PROGRAM FILES

CBM computers handle program and data files in totally different ways. Each

has its own set of file handling statements.

Loading and Saving Program Files

Program files are loaded into memory using the LOAD (for BASICO.0) or the

DLOAD (for BASIC 4.0) statements.

Program files are written to diskette using the SAVE (for BASICO.0) or the

DSAVE (for BASIC 4.0) statements.

Loading and saving programs is described first in Chapter 2.

Accessing Program Files as Data Files

You can OPEN and CLOSE program files as you would data files, and you can

execute GET*, INPUT*, and PRINT* statements accessing program files as

though they were data files. But until you have an intimate understanding of CBM
computer system software, you will get results that are highly unpredictable;

311
Chapter 6: Peripheral Devices

moreover you will achieve nothing that could not be done more easily using standard

program file statements and screen editing capabilities.

When using BASICX3.0, remember that secondary address is used to LOAD

program files into memory, while secondary address 1 is used to SAVE program files on

diskette. By specifying these secondary addresses in OPEN statements you get to access

program files as though they were data.

Backup Program Files

It is imperative that you always have one or more copies of every program file.

Wherever possible, at least one copy of the program file should be held on a different

diskette. Having two copies of the same program file on one diskette serves no purpose

if by some mischance the entire diskette is erased.

Use the BASIC 4.0 COPY statement to copy a single file. Use the COPY or the

BACKUP statement to copy an entire diskette.

With BASICO.O you must copy files and diskettes using a variation of the

PRINT* statement, as described earlier in this chapter.

Program File Update Sequence

Programs constantly change as you make corrections or improvements. The safest

way of changing a program is to keep a copy of the present version, and the two most

recent versions, generally referred to as the "father" and "grandfather." When you

change a program follow these steps:

1. LOAD the present "current" version into memory and make appropriate

changes.

2. SCRATCH the current grandfather program.

3. RENAME the father program as the grandfather.

4. RENAME the current program as the father.

5. SAVE the new version as the new current program.

JOB QUEUING

Programmed use of the LOAD command allows you to execute very long pro-

grams and to perform various types of job queuing.

Suppose you have an application whose program will not fit in available

memory. Try resolving the problem by splitting the program into two pieces. The two

pieces must be completely independent, except for data which one piece can transmit to

the other via an external data file. This may be illustrated as follows:

Program

Part A
Program

Part B

(Data A

312 PET/CBM Personal Computer Guide

For this scheme to work, the original program must be divisible into two or more

independent steps.

Let us call the two parts of the program Part A and Part B. The entire program is

loaded, using the following steps:

1. Load Part A into memory via an immediate mode LOAD command.

2. Execute Part A via an immediate mode RUN command.

3. When Part A finishes, it loads part B.

4. Part B executes automatically.

Here is a BASIC 4.0 statement which will transfer from Part A to Part B:

68030 DLOflD D0,"PART E"

Part A must terminate execution by writing out a data file that contains all of the

data needed by Part B. Part B must begin execution by loading the data file which Part A
wrote out.

PROGRAMMING THE LINE PRINTER

Up to this point we have made very little use of the CBM computer system's line

printer. All we have done is list programs; and that takes no programming effort. But

most programs generate results in the form of printed reports. The format of a report is

very important; reports get used if they are easy to read. A badly formatted report is dis-

carded. Fortunately it is easy to program CBM line printers to generate well formatted

reports.

Two printers are available with CBM computer systems: the Model 2022 and the

Model 2023. Both printers contain their own internal microprocessors, which is why
well formatted printouts are so easy to generate.

The Model 2022 and 2023 printers both print the PET keyboard character set,

not the CBM keyboard character set.

Chapter 6: Peripheral Devices 313

Printers are accessed by opening a logical file specifying physical unit *4, and

a secondary address whose value must range between and 7. If no secondary address

is specified, then is assumed. As summarized in Table 6-4, secondary addresses pro-

vide these printer options:

1

.

Print data exactly as received.

2. Print output to a previously specified format.

3. Define the number of lines to be printed per page.

4. Specify the space separating printed lines (Model 2022 Printer only)

.

5. Print characters that are not part of the standard character set.

6. Enable special diagnostic messages to be printed.

Additional formatting can be specified using the special control characters

summarized in Table 6-5.

PRINTING DATA EXACTLY AS RECEIVED

To print data exactly as received you must open a logical file specifying physi-

cal unit #4 and no secondary address, or a secondary address of 0. Then print data

using PRINT* and/or CMD statements.

Printing with the PRINT# Statement

The PRINT* statement outputs data to the printer just as it would to a cassette

or diskette file. For example, to print the word "MESSAGE", enter the following pro-

gram and run it:

1@ OPEN 2,4
20 PRINT#2, "MESSAGE"
30 CLOSE 2
40 STOP

Each time you run this program the single word "MESSAGE" is printed; then the

following display appears:

BREAK IN 46
READV

This display is generated by the STOP statement on line 40.

You cannot use BASIC 4.0 DOPEN* and DCLOSE* statements to access the

line printer. These statements will only work with diskette files.

Printing with the CMD Statement

Instead of using the PRINT* statement you can transmit data to the printer using

the CMD statement. But the CMD statement must be followed by at least one

PRINT* statement before the printer logical file is closed. To demonstrate the use of

the CMD statement, enter and run the following program:

10 OPEN 2,4
26 CMD 2, "MESSAGE"
25 PRINT#£
30 CLOSE 2
40 STOP

314 PET/CBM Personal Computer Guide

TI
9
co o
3 o

+* p
T)

to <
o f
o co

-a

o o
u a>

c/>

0) o
c

e

CO

I-

CO ID ID O
E

©

c « > V
c
©
Xi

©D
Ou

11°
O </>

*-

"°
a> 2

5
j
D
5

CD

O
C JO

©
u
2
re
xz

X
© * s

re

xz

<a
©
01

.2

(0
>

to

©
CJ
COa
to

o
©

= .c ©

E £ °

if

(A

©
re

re

re

©
CD
CO

a
CD
c

as l-

• I
S a

c
©
xz
CJ

CO
to

©

o

Q.
©

Jfc
® c ™ : "C CJ c ° ©

(A

ID
CA

CA
3

0. >• « c
<• "5 5 »

D

Z
Zi

c
©

.0

D©
©
O
C
to

CO

re

>.
A
a
©

«
CC
X
O

a
©
>

T3

E t

Q. ©

.2 *©

re

cr
rea
cU

X
as

E
3

c u
CA © CD

C
©

©
- O

c ©

«
£
E
o
u

CC
X

O
>•

V
° "2
© ©

> o

S- S
t ef-o
U) a) <D a)

© O <n C

©©
©

"O

a
.©

©
(A

©

c
re

©
re

©
O©
a
>.
n

C

CO

3
O

— (0

CA
J2

©
£ in
® ,^-

© 3 ©

CO

3a

o
> -J

-a
—

o g

« =

- 2
t/i CO

C 10 •< Lc ~ ° Q.
re © 2
5 © 2

© g*
XZ -^ CA CO
«-• £ © •=

c
re

c
D
©

©
O)

©
CC

©

re

re

©

_i

CA

©

c

<A

c

.2
'0

©a
(A

c

1
C
3
©

©

re 2?u OC
i X
©
a.

&1
01 S in

*©

c

CO
_c

c
©
3
cr
©
<o
£2
3 5
to O

•2 1

5 1

il

II
O Q
m SZ
g O
Q. o

P CD °— © c c
» g-E

°
OC V 3 tt

5|s|
5
D
TJ

©

u
"D

.©

V
CA

ti C© O

iS ™
<A
re ^
i: ©

COa

E

CA

©
CJ
ra

CO

©
E
©
c
re
JC
c

CO

re

CO

CA
«

ĉ
3 CJ

c ^^

a *-

2w

n
>- O)

©

©
«
CO
to
O

Q.

©
CJ
CO

CO

XZ
CJ

©
(0

©

to -g
~
c ^
3 O
(0 ©
01 S-
CO w

c «

(0 CD

_© 5;

*- « a> cd

- % «>
a) .2 .>

£ £ w «
2 3 3

"3

©
X
©

©
>©

_c

S 0!

a a

si

c

75

©
©

CO

CO
xz

"©

3
CJ
©
X
©

©aa
D

a a

i= Z
© g
.1 =

3i< |

^ +- = ta

©
c
Q.

c
Q.

r

1 s

c 3

re

©

O

©

1 >
a g

5'S
<=

'w —
0-

c
c

a

>

©
CJ

.E a
CD S
10

.s

©1 »
re © c c © © c c

>l re -C X re ^ £ COwj H LU H CO CO LU 0_ O 1- H CL

>. (O
LU >

c O oc
UJ < LL.

u_
"O CO
a
o
.a>
©

1

CC

+
1- LU LU

Z
DC
3

CO
>
oc QC

LU LU LU LU CC
CO
oc

+
1—

co u_ z z 1- LL. CO 5 z z z LL.

* CC X LU LL. CC O Xo CO z z CC O CJ X z Z z CO O

O O) LO <D ^
9 en CD . . CO 00 p^ 0) ^t CM ^ ^t *t •*

O
o

CM CO

» » w » <A » » » «» « » w *& «»
o CC tr QC X CC CC QC CC CC CC oc oc CC CCX X X X X X X X X X X X X Xu u CJ CJ

c -0
o

(A
c © ©

E *£u 3 CJ

c
3
LL

»
c

c
re

X2

?.?
CO CA

©
c
re
.c

0
©
©
li_

©

©
CC

©
CO
TO

c
O
©
(A

©
>

«
CA
CO

© c

re

re

CJ

©

©
CJ
c
re
XI
c
©

I ©
£ -

re
c

E ^

©
CO
re
CJ

©a

©
JO

©
>

c

c

ot
C V * r- c re © re 3 c CO ? Q. © C3
LU i«= _l .£ LU .3 CJ OC -J o_ a 3 5 3 oc a.

Ajbssodon |Buo|jdo

Chapter 6: Peripheral Devices
315

0>

s-S
o c
03 O

| 8

*- E

E^
i. •
o

**

.~

a. 01

in 01

to A3

o w
â
1-

~^

3 in oW
a
DC O ^

CO ^" ^
CM M CM

in

O ^
in

q i^
r^ p cm

^ co in
in o cm^ ^ in

UJ
Q 1 1

a
©
c

COi
<* <t

CM <N CM

°5 r
CO "t
CM CM

CM cm r^

?«• +
*t ro r~
CM CM <^

CQ CD CD
< < <

£

<
I

|

(A
«
15. "to O) 0)

o
V

©
©
co

Ol
O) Ol

01 Ol
Ol 01 01

oi « ai

1 1

Ol Ol 1

Ol Ol Ol
< <
< <
< <
< <
< < <
< < <

A A
z z

E
09

X
UJ

E

u.

oi o> oi
0> O) O)
ai O) o)

01

isi N N
N N N
N N NN

°>!2 Ol *ft 01
01 « 01»« 01
CO CO c/>

oi </> O)
Ol «» Ol
Ol <» Ol» 0» O)

o o
CO CO
> >
rr oc

V V

CD CO
CD <D CO CO CD in *. in _.
in io in in ID r^ °H !-- ^ UJ UJ

5 r* r* r- r* r* ^ CO jo

'

1

•* " £

i

a a
(0

O CO ^ ^
CM CM CN

m * * CO ^
CM CM

o u o
CD CD 00
< < <

V

1 CD

CD O
.C CO

c
<P CD

£ E
©
.C

O

o to CO ,_

to ai
o

•c 'B Ol

CO

E

V
to

o o

2 —
2 =
0) 'o

1.1
o o_ ©

C
o

©
c
gi

"co

CO

CO

<D .2.

c £
O (0

O O ^
*t CO O

^ CD

s t>
c 2
« "i

» °

"1

"D co

CD Z O

1 ' 1

° O — c
5 SC =
° _ • 5
£-S oi oi

2
-a -g 5

>T3
CD CD
> *:

o =

1 s
c S
co Q.

5 g

fi-o

1 E

CO

W O
"5 o a
>- "a :t
!t c
o co +r
© +- .£ai£ ow ® a

© ~°
.

o o »

&££
co « a

(A

©
.0

E
3
z

a
2

03 CD :

8 JT3 Z

r (0 i-

ill
0. J3 O

O i

+ §—
' c

c «-

CO ^

03 T3 c

^ ^ CO

15 £ ™

z P £

< 2 5 -d

CD .£ E = "O
« i; - ^ CD
_J « CO CO '<*=

S.s
© Cfl

CO o3 a

11
CD a)

t— CO

>-

Ol Ol
CD CD

cB
c c c +- ,_

c
CD ^^ T3 D (A 3

E w

CD CD

c
CD CD o

£
3
E _ CO |

CD

(Jo

CO
o

sz £ CO CO
I 2

. CJ

CO J2
CO

CO

% -6 1 JO
CD « fc CO

CD i-
o

CD o"5 ^ 2 XJ CO TD U
"5

©a
CO

f s

= CO

61
-ri C

O
a.

15

E

CO

(0

.Q

e-5
3 +-
C (0

TJ E

Ol

c »
01 t
c o
Ol 1*-

CD

O)
C
E c

COa«
CD

O

X
CD
c
CD

l e i 1
01

a
E «5 « '"

to
> «C o

CO ~0 c

< s < S z < c < » < a O ^ CL

A
z

u o
o
o ci N • {A CO 1 < :Q CO

>a QC

V

<Q V sp|9!d
Auv

S > spieij :MjaujnN BuiJiS

316 PET/CBM Personal Computer Guide

When you run this program the word "MESSAGE" will be printed followed by

two carriage returns. The PRINT* statement on line 25 generates the second carriage

return.

Printing With CMD and PRINT Statements

After a CMD statement has been executed, PRINT statements will output data

to the printer rather than the display until the next PRINT* statement is executed.

To demonstrate this, change the printer program as shown below and run it:

18 OPEN 2 ..4

20 CMD 2
21 PRINT "MESSAGE
21 PRINT*2
26 PRINT "MESSAGE
30 CLOSE 2
40 STOP

When you run this program, the printer will execute a carriage return, then it will

print the word "MESSAGE" followed by two carriage returns, then the word

"MESSAGE" is displayed. The CMD statement on line 20 generates the first carriage

return; the PRINT statement on line 21 causes the word "MESSAGE" to be printed by

a carriage return. The PRINT* statement on line 25 generates the additional carriage

return. The PRINT statement on line 26 displays the word "MESSAGE".
Now remove the PRINT statement on line 21. When you run the program again,

the printer will execute two carriage returns, but the word "MESSAGE" is displayed; it

is not printed.

A Comparison of CMD and PRINT* Statements

To understand what happened we must examine the slight difference between the

effect of a CMD statement, as compared to a PRINT* statement.

Visualize the printer as a substitute for the display. A single output channel goes

from the CBM computer either to the display, or to the printer. When an OPEN state-

ment is executed specifying physical unit 4, the CBM computer is told that a printer is

present, but the single output channel still selects the display.

When a PRINT* statement is executed subsequently, the output channel is

deflected from the display to the printer; data in the PRINT* statement parameter list is

transmitted to the printer, then the output channel selects the display again.

When a CMD statement is executed, the output channel is deflected from the dis-

play to the printer, data in the CMD statement parameter list is transmitted to the

printer, but the output channel is left selecting the printer; the display no longer has an

output channel.

When a PRINT statement is executed after a CMD statement, data is printed, not

displayed, because the CMD statement has deflected the output channel from the dis-

play to the printer. But as soon as a PRINT* statement is executed, the output channel

is deflected back to the display at the end of the PRINT* statement's execution. A
PRINT statement executed after the PRINT* statement will again cause data to be dis-

played.

The printer must be closed, like any other logical file. When the CLOSE state-

ment is executed, the CBM computer is told that the printer is no longer present.

317
Chapter 6: Peripheral Devices

If the output channel is left selecting the printer rather than the display when the

printer is closed, then subsequent PRINT statements will continue to select the printer.

To demonstrate this, enter and run the following program:

10 OPEN 2,4
28 CMD 2
36 CLOSE 2
35 PRINT "MESSAGE"
48 STOP

When you run this program you will see the following printout:

MESSAGE
BREAK IN 46
READY

The BREAK and READY lines which were previously displayed are now printed

since the output channel was left selecting the printer.

FORMATTED PRINTER OUTPUT

CBM computer system printers will automatically format output for you.

First you must specify the printer format. You do this by transmitting an

appropriate text string to the printer, using secondary address 2. Text string charac-

ters used to specify printer format are summarized in Table 6-5.

Data which is to be printed using the specified format must be output via sec-

ondary address 1. Data output in this fashion is printed using the most recently

transmitted format specification. If no format has been specified, then data output using

secondary address 1 is printed as transmitted - as it would be if output via secondary

address 0.

To program formatted printer output, OPEN two logical files: one file selects

physical unit 4 with secondary address 2; the other file selects physical unit 4 with

secondary address 1. Then transmit format specifications and data using the

appropriate logical file numbers.

Printing Formatted Numeric Data

We will begin by examining how the printer can format numeric data.

Character positions for each numeric field are specified using the digit 9, the

letter Z, and optionally, a decimal point.

The decimal point, if included, will be printed wherever it appears in the numeric

field. Numbers are aligned on the decimal point.

The digit 9 and the letter Z both specify numeric character positions. However the

letter Z forces all zeros to be printed, whereas the digit 9 prints blanks for leading zeros.

Here are some examples:

Format

Number Specification Result

123.456) i 123.45

6457 > 999999.99 < 6457.00

-128.1 J \ 128.10

123.456) (00123.4

6457 > ZZZZZ.9 < 00123.4

-128 if \ 00128.1

318 PET/CBM Personal Computer Guide

A number can be printed with a preceding sign, or a trailing sign.

The letter S appearing at the beginning of the number field specification will

cause a + or — sign to be printed at the beginning of the numeric field.

A minus sign (—) appearing as the last character of the numeric field specifica-

tion will cause negative numbers to be represented by a trailing minus sign; no trail-

ing plus sign is printed.

When a number is to be treated as a $ value then the $ sign can directly precede

the number, or it can be aligned at the beginning of the allotted number field. The

sign can precede the $ sign, it can follow the number, or the number can be unsigned.

For the simplest specification, add a $ character at the beginning of the numeric

field format. This will cause a $ to be printed in the first (leftmost) character position of

the numeric field. If the $ amount is to be printed with a + or — sign preceding the

number, then the format must begin with S$; this will cause a + or — sign, and then a $

character, to be printed in the first two character positions of the numeric field.

You can also print $ amounts with leading zeros suppressed and a $ character

appearing in front of the first numeric digit. For this specification specify all digit posi-

tions preceding the decimal point using $ characters; add one more $ character to specify

the $ sign. Once again you have the option of putting an S at the beginning of the format

in which case a + or — sign will precede the $ character.

Here are some examples of formats that include a sign and/or $ specification:

Number
Format

Specification

123.456
\

6457 >

-128.1 J

S9999

123.456
)

6457 >

-128.1
'

S$9999.99

123.456 \

6457 >

-128.1)

S$9999.99

123.456
)

6457 >

-128.1)

$$$$$.99-

123.456
)

6457 >

-128.1 J

$$$$$.99-

Printed

Result

{123
6457
-128

!

$0123.45
$6457.00

-$0128.10

{$123.45
$6457.00
-128.10

{$123.45
$6457.00
$ 128.10-

l $0123.45
' $6457.00

($0128.10-

Later we will describe how you can substitute any other character or symbol for

the $ sign if you are programming in a country that does not use $'s.

In order to demonstrate formatted numeric printout, key in program

NUM.FORM.PRINT as listed below. This program reads eight miscellaneous numbers

from the DATA statement on line 30, then prints them using the format specified by the

PRINT* statement on line 100. When you run^the program, a single column of num-
bers will be printed, as shown below the listing.

10 REM PROGRAM "HUM. FORM. PRINT"
20 REM DEMONSTRATE FORMATTED NUMERIC PRINTOUT
30 DATA 1 . 75.. -12300 , 0. 74682; 12.. -456. 832.. 23456. 78.. -100. 738
70 OPEN 1,4.. l: REM OUTPUT DATA VIA LOGICAL FILE 1

80 OPEN 2.. 4, 2: REM OUTPUT DATA FORMATS VIA LOGICAL FILE 2
90 REM OUTPUT DATA FORMAT
1 00 PR I HT#2 ..

" 999999 . 99 "

110 FOR 1=1 TO 8

. 4789:

Chapter 6: Peripheral Devices 319

120 REhIll H
130 PRIHT#1
140 ne;<!T 1

15a CLCiSE 1

155 CLC)SE 2

166 STOP

-.c

12;300

.

00

12. 00
456., S3

23456., 73
100..

7'3

******,!#*

Notice that numbers have been aligned on the decimal point. The eighth number will

not fit within the specified numeric field. Asterisks are printed in all digit positions

when a number is too large for the specified format.

Now change the PRINT* statement on line 100, substituting Z's for the 9's pre-

ceding the decimal point; re-run the program. Numbers are printed as follows:

00000 1 . 75
1 2300 . 00

000000 . 74
0000 1 2 . 00
000456.83
023456.78
000100. 79

Notice that the Z's cause leading zeros to be printed. The eighth number still overflows

the numeric field and is printed as asterisks. Add one more numeric digit position pre-

ceding the decimal point and the eighth number will be printed. Try it and see it for

yourself.

You cannot mix Z's and 9's in the pre-decimal point field specification. If you

do the printer will stop interpreting the field specification at the character change. For

example, change the PRINT* statement on line 100 as follows:

100 PRIHT#2, "ZZZZ999.99"

Now run the program. Numbers will be printed as though the field specification

were "ZZZZ". Now try changing the PRINT* statement on line 100 as follows:

100 PRINT#2, "9999ZZZ.99"

When you run the program, numbers are printed as though the specification were

"9999".

Numbers have been printed unsigned. In order to print a leading sign, change

the PRINT* statement on line 100 as follows:

100 PRIHT#2, "S9999999.39"

Now run the program. Numbers are printed with a leading sign and suppressed

leading zeros as follows:

1.
r-cr

12300. 00
74

, 00

23456.. 78
10L1,,

79
4789326., 00

320 PET/CBM Personal Computer Guide

To print a trailing sign, change the PRINT* statement on line 100 as follows:

100 PRINT#2.. "9999999.99-"

Now run the program. A minus sign appears after negative numbers; positive

numbers have no sign printed.

Notice that all numbers are truncated after the specified digit has been printed.

The printer does not round up.

Now we will convert numbers to $ amounts by adding a $ sign to the front of the

numeric specification. We will also print a leading sign; the PRINT* statement on

line 100 must now change as follows:

100 PRINT#2.. "S$9999999.99"

When you re-run the program you will get the following printout:

+$ \ , 75
-$ 1 2300

.

, 00
+$,74
+s 1 2., 00
-s 456., 83
+$ 23456., 78
-i 1 00

.

1
79

+$4;'89326., 00

Note that S must precede the $ sign. If a $ precedes the S, unformatted numbers

will be printed.

It is common in financial reports to identify negative $ amounts with a trailing

minus sign. You can generate such a printout by removing the S and replacing it with a

trailing minus sign. Change line 100 as follows:

1 90 PR I NT#2 ,

"

$9999999 .
99-"

Now re-run the program; you will get the following printout:

* 1., 75
$ 12300.,

00-

* ,74
* 12.,00
* 456.,

83-

* 23456., 78
$ 100.,79-

$4789326.,00

In any printout of $ amounts, the $ sign can be printed directly in front of the

first numeric digit; this requires all character positions preceding the decimal point

to be filled with $ signs. Change 100 as follows:

1 00 PR I NT#2,"$$$$$$$. 99-

"

Now re-run the program; you will get the following printout:

$1.75
$12300.00-

$.74
$12.00

$456.83-
$23456. 78

$100.79-

What went wrong? The eighth number was printed as asterisks. The problem is

that the new line 100 has seven $ characters preceding the decimal point; it needs 8. You

need one $ for each character position preceding the decimal point, plus an additional

$ to select the $ character printout.

Chapter 6: Peripheral Devices 321

So far we have printed formatted numeric data in a single column. To print multi-

column data, provide a separate numeric format specification for each column using

blank spaces to separate numeric specifications. To illustrate multi-column printing con-

sider the following 3-column output:

2 character numeric field

3 blank characters

1 1 character numeric field

6 blank characters

1 3 character numeric field

Column 3. Use format

XXXXXX.XXXXXX to

print column 2

amount divided by 3

Column 2. Use format

$XXXXXXX.XX to

print a $ amount

Column 1 . Use format

XX to print the

line number

The PRINT* statement on line 100 must change as follows to specify the 3 col-

umn format illustrated above:

106 PRINT#2, "99 *$****$$. 99- 999993. 999999"

We will change the PRINT* statement on line 130 to print line number I, N, and

N/3. Here is the new line 130:

130 PRINT#l,I,N,N/3

When you run the program the following printout will be generated:

$1 75 533333
* 12300 00- 4 1 tM 000600

$ [•'4 243940
$12 00 *t 000000

$456 S3- i-j.^ 277333
$23456 7'"' 73 1

3

926670
$100 79- 33 599333

7893^16 00 ****** ******

Each column of numbers has been printed according to the specification provided for

that column in the formatting PRINT* statement. The number of spaces separating

printed columns is equal to the number of spaces separating the column formats in

the PRINT* statement on line 100.

Printing Formatted Strings

To print formatted strings you use the letter A to identify each string character

position. Use space codes to separate fields, if necessary. The entire format is specified

as a single string variable appearing in the parameter list of a PRINT* statement. As de-

scribed earlier, this PRINT* statement must specify a logical file number which was

opened to physical unit 4 with secondary address 2.

322 PET/CBM Personal Computer Guide

String variables which are to be printed using the specified format are output using

another PRINT* statement whose logical file number was opened specifying physical

unit 4 and secondary address 1 . String variables in the PRINT* statement parameter

list must be separated by CHR$(29) characters, which may be generated using the

CURSOR RIGHT key within a string. Strings are left-justified within the specified

field; trailing character positions (if any) are filled with blanks. Leading space codes

are truncated.

Here are two PRINT* statements that print formatted strings:

1 00 PR I NT#X ,
" ARfifiRfififlfiA RAfiRfifiAAAAAR

"

1 1 PR INT#V , M*CHR* i29 ; N*

X represents any valid logical file number that has been opened specifying physi-

cal unit 4 with secondary address 2. Y represents any logical file number that has been

opened specifying physical unit 4 with secondary address 1

.

The PRINT*X statement specifies 10-character and 12-character string fields sep-

arated by five blank spaces.

The PRINT*Y statement specifies two string variables, MS and N$, separated by

the required separator CHR$(29). Notice that commas have not been used to separate

elements of the PRINT*Y statement parameter list. You can use commas if you

wish; the following alternate PRINT*Y statement is valid:

PR I NT#V

,

m

,

CHR* (29 > , N*

You can replace M$ and N$ with actual string elements, with or without commas
separating the string elements from the CHR$(29) separators. This may be illustrated as

follows:

PR I HT#V ,
"ONE " CHR* <29 > " TWO

"

To illustrate formatted string printing, we will modify program
NUM.FORM.PRINT to generate STR.FORM.PRINT. The program and sample

run are listed below.

16 REM PROGRAM "STR. FORM. PRINT"
20 REM DEMONSTRATE FORMATTED STRING PRINTOUT
30 DATA "MARV PtRKINS","35 WEST ST. ".. "BERKELEY" , "CALIFORNIA" , "34705"
35 DATA "345-67-8910".. "SPONSOR".. "AKC"
70 OPEN 1.. 4,1: REM OUTPUT DATA VIA LOGICAL FILE 1

SO OPEN 2,4..2:REM OUTPUT DATA FORMATS VIA LOGICAL FILE 2
90 REM OUTPUT DATA FORMAT
100 PRIHT#2.. "AAARARARAA AAAAAAAAAAAA"
105 SP*=CHR*i::29:>
110 r-OR 1 = 1 TO 4

120 READ M*,H*
130 PRIHT#1,M*,SP*,H$
140 NEXT I

150 CLOSE 1

155 CLOSE 2
160 STOP

MARV PERK

I

35 WEST ST.
BERKELEY CALIFORNIA
94705 345-67-8910
SPONSOR flXC

The PRINT*X statement appears on line 100 specifying logical file 2, which is

opened on line 80. The PRINT*Y statement appears on line 130 specifying logical file 1

,

which is opened on line 70. Instead of using CHR$(29) in the PRINT*1 statement on

line 130, we use SP$, which is equated to CHR$(29) on line 105.

323
Chapter 6: Peripheral Devices

The eight numeric data items which appeared in a single DATA statement in the

NUM.FORM.PRINT program now occupy two DATA statements on lines 30 and 35.

Eight string variables are specifed; they consist of an arbitrary address followed by a

social security number and two code words, shown on line 35 as "SPONSOR" and

"AXC".
Note that the first field (containing the name MARY PERKINS) has been trun-

cated after the I of PERKINS. You must add three more A's to the first field specifica-

tion in order to accommodate the entire name. Notice also that all fields are left justified.

In order to insert leading space codes you cannot use a normal space bar character;

you must use CHR$(160), the upper case space bar character. We can demonstrate

this by adding leading blank characters to one string variable; we will choose AXC.

Change the data statement on line 35 as follows:

35 DATA "345-67-89 10 ".."SPONSOR"," AXC"

' Press space bar twice

Now rerun the program. The printout does not change. The two blank characters

preceding AXC were ignored. Now retype the modified data statement, holding the shift

key down while you enter the two spaces in front of AXC. This time when you run the

program AXC will be shifted two character positions to the right in the printout.

Using string concatenation you can shift string variables to the right within a

string field. This is illustrated by the modification of program STR.FORM.PRINT

shown below, followed by a sample run.

10 REM PROGRAM "STR.FORM.PRINT"
26 REM DEMONSTRATE FORMATTED STRING PRINTOUT
30 DATA "MARY PERKINS", "35 WEST ST. ", "BERKELEY", "CALIFORNIA", "94705"

35 DATA "345-67-8910", "SPONSOR", "AXC"
70 OPEN 1,4, l: REM OUTPUT DATA VIA LOGICAL FILE 1

S0 OPEN 2, 4, 2- REM OUTPUT DATA FORMATS VIA LOGICAL FILE 2
90 REM OUTPUT DATA FORMAT
100 PRINT#2, "AAAAAAAAAA AAAAAAAAAAAA"
105 SP*=CHR*<29>
106 BL*=" "

: REM 12 UPPER CASE SPACE CODES ^
110 FOR 1=1 TO 4
120 READ M*,N*
125 IF LEN';M*X10 THEN M*=LEFT*<BL*,<10-LEN<M*)>;>+M*
126 IF LEH<:N*K12 THEN N*=LEFT*<BL*, i 12-LEN<N*> > >+N*
130 PRINT#1,M*SP*N*
140 NEXT I

150 CLOSE 1

155 CLOSE 2
160 STOP

MARY PERK

I

BERKELEY
94705

35 WEST ST.
CALIFORNIA
345-67-8910

SPONSOR AXC

In order to right-justify string fields, statements on lines 125 and 126 check for

string variables that are shorter than the specified field width. Lengths for shorter varia-

bles are increased to the field width by adding leading upper-case space characters. Lead-

ing upper-case space characters are taken from string variable BL$, which is defined on

line 106. The number of upper-case space characters is computed as the difference be-

tween the field width and the length of the string variable. This number of characters is

taken from BL$ using the LEFTS function.

324 PET/CBM Personal Computer Guide

We will now modify program STR.FORM.PRINT to print data using a reasonable

format. For example, the five name and address fields might be printed in a single verti-

cal column (with no truncated characters), while the three additional fields are printed

on a single line below the name and address. Program STR.FORM.PRINT1, listed

below, generates the required printout. A sample run is shown after the listing.

10 REM PROGRAM "STR. FORM, PRINT!

"

2@ REM DEMONSTRATE FORMATTED STRING PRINTOUT
30 DATA "MARV PERKINS", "35 WEST ST. ", "EERKELEV" , "CALIFORNIA" , "94705"
35 DATA " 345-67-89 1 "

,

" SPONSOR "
,
" AXC

"

78 OPEN 1,4,1: REM OUTPUT DATA VIA LOGICAL FILE 1

30 OPEN 2, 4, 2- REM OUTPUT DATA FORMATS VIA LOGICAL rILE 2
90 REM OUTPUT DATA FORMA I

105 SP*=CHRS£29J
110 FUR 1=1 iO 8
1 20 READ M$ C I >

146 NEXT I

150 PRINT#2, "AAAAAAAAAAAAAA"
160 FOR 1=1 TU 5
170 ='RINT#!,M*<I)
130 NEXT I

198 PRINT#2, "AAAAAAAAAAA AAAAAAA AAA"
200 PRINT#1 , M*C6>SP*M*(7:)SP*MS<8;'
210 CLOSE 1

230 STOP

MARV PERKINS
35 NEST ST.

CALIFORNIA
94705
345-67-8910 SFONSOR AXC

All eight string variables have been read into the string array M$(I) by the FOR-
NEXT loop on lines 110 through 140, before any string data is printed out. Five fields

are then printed in a single vertical column by the FOR-NEXT loop on lines 160

through 180, using the format specified by the PRINT* statement on line 150. A new
format is then specified by the PRINT* statement on line 190; this new format is used

to print out the last three string variables using the PRINT* statement on line 200.

Printing Mixed Formatted Data

You can mix numeric and string data in formatted printer output. A simple

demonstration of such output is given by program STR.FORM.PRINT2, which is listed

below together with a sample printout.

10 REM PROGRAM "STR. FORM. PRINT2"
26 REM DEMONSTRATE FORMATTED STRING PRINTOUT
30 DATA "MARV PERKINS", "35 WEST ST. ", "EERKELEV", "CALIFORNIA" , "94705"
35 DATA "345-67-8910", "SPONSOR", "AXC"
70 OPEN 1,4,1: REM OUTPUT DATA VIA LOGICAL FILE 1

80 OPEN 2, 4, 2: REM OUTPUT DATA FORMATS VIA LOGICAL FILE 2
90 REM OUTPUT DATA FORMAT
105 .SP*=CHR*<:29>
110 FOR 1=1 TO S

120 read m$<:i:;

150 PRIHT#2,"99 AAAAAAAAAAAAAA"
'60 FOP 1=1 TO 5
170 PRINT* 1,1, Pi* (I)
ISO NEXT I

190 PPINT#2, "99 AARAAAAAAMH AAAAAAA AAA"
2@0 PRINT#1,I,M*<:6)SP*M*<7::'SP*M*:(:8;'

31C
Chapter 6: Peripheral Devices

210 CLOSE :

220 CLOSE 2
230 STOP

1 r-IRRV PERKINS
2 35 WEST ST.

3 BERKELEV
4 CALIFORNIA
5 94705
6 345-67-8910 SPONSOR

This program is a minor variation of STR.FORM.PRINT1. A line number

numeric followed by three blank spaces has been added to the two PRINT* statements

on lines 150 and 190. The data output PRINT* statements on lines 170 and 200 each

print the FOR-NEXT loop index.

A second program, PRINTDATE, is more interesting. It accepts the month, day

and year entered at the keyboard as three separate numeric variables. Each date is

printed with a dash separating month from day and day from year. Program PRINT-

DATE is listed below together with a sample printout for three dates.

10 REM PROGRAM "PRINTDATE"
20 OPEN 1,4,1: REM OUTPUT DATA VIA LOGICAL FILE 1

30 OPEN 2, 4, 2: REM OUTPUT DATA FORMAT VIA LOGICAL FILE 2

40 PR I NT"MB"
50 INPUT "ENTER MONTH:"; It

60 INPUT "ENTER DAV ";D
70 INPUT "ENTER VEAR :";V
80 PRINT#2, "flAAAA 99A99A99"
90 SP*=CHR*<23>
1 08 PR I NT# 1 ,

"DATE :
" SP* , M . " - " SP* , D ,

" - "SP* , V

110 PR I NT "ANOTHER DATE? ENTER V FOR VES OR N FOR NO";
120 GET VN*:IF VN*="" THEN 120
130 IF VN*="N" THEN PR I NTVN* : STOP
140 IF VN*0"V" THEN 120
150 GOTO 40

HATE: 6-12-80
DATE: 12-25-81
HATE: 1- 1-70

Program PRINTDATE makes no validity checks on the numbers entered for

month, day and year since we want to focus attention on printer formatting rather than

good data entry programming practice. But the usefulness of formatted printout is

obvious from the example below.

Including Literals in Formatted Printout

The printer format specification can include literal characters. A literal

character is printed exactly as it appears in the printer format specification; it does

not specify format for data occurring in a subsequent PRINT* statement. A literal

character must be preceded by the REVERSE ON (RVS) character. The character

coming directly after the REVERSE ON is printed normally. In consequence you cannot

print reverse field literal characters.

Program PRINTDATEL1 makes very simple use of literals. A literal dash sepa-

rates month from day and day from year, replacing the string used by program PRINT-

DATE. To create program PRINTDATEL1, load program PRINTDATE from the pre-

vious section, then change the PRINT* statements on lines 80 and 100 as shown below.

PRINTDATEL1 and PRINTDATE generate the same display and printout.

226 PET/CBM Personal Computer Guide

10 REM PROGRAM "PRINTDATEL1

"

20 OPEN 1,4, l: REM OUTPUT BATH VIA LOuICAL FILE_1
30 OPEN 2,4,2 : REM OUTPUT IfiTA FORMA"5" VIA LOOICHL FILE 2

40 PR I NT "IMS"
56 INPUT "ENTER MONTH :";

M

60 INPUT "ENTER DAV " .: D
70 INPUT "ENTER YEAR :

" .: V
SO PRINT#2, "fiAAAA 39S-99S-99"
90 Sp*=r:HP$''29;>

100 PR I NT* 1,
,, DATE:"SPf,M,H,V

110 PRINT"ANOTHER HATE? ENTER V FOP VES OR N FOR NO":
20 GET VN*:IF VN$="" THEN 120
130 IF VN*="N" THEN PR I NTVH* : STOP
140 IF VH*0"V" THEN 120
150 GOTO 40

You can create forms, while printing output, by making appropriate use of

literals in printer format statements. However, literals and text must come from the

same character set. Moreover, the printers recognize the PET character sets. When
using CBM computers, therefore, it is very difficult to generate forms using literals.

But a program written on a 2001 computer can be run on a CBM computer in order to

generate forms.

SPECIAL PRINTER CONTROL CHARACTERS

There are a number of special printer control characters which modify printer

output when inserted in data. Printer control characters are summarized in Table 6-4.

Printer control characters are inserted in the data stream transmitted to the

printer via secondary address or 1. Printer control characters are not transmitted as

part of the format specified using secondary address 2.

You can use printer control characters with formatted or unformatted prin-

touts.

The first two entries in Table 6-4, CHR$(29) and CHR$(160), must be used with

formatted printouts (as previously described); they are ignored in unformatted prin-

touts.

Codes listed as optional in Table 6-4 can be used with formatted or unformatted

printouts; their effect is the same in either case.

Enhanced Character Printout

CBM printers normally generate characters using a dot matrix that is seven dots

high and six dots wide. If you include a CHR$(1) character within a data output

PRINT* statements parameter list, all characters following the CHR$(1) are printed

double-width: using a dot matrix that is seven dots high and 12 dots wide. More than

one CHR$(1) character can appear in a single parameter list. Each CHR$(1) character

takes the previous character width and doubles it. Following two CHR$(1) characters,

therefore, 7 by 24 dot matrices will be used to print characters. After a third CHR$(1)

character, 7 by 48 dot matrices would be used.

In order to demonstrate enchanced printout, load program STR.FORM.PRINT1

and add the following line:

125 M*<I)=CHR*<i>+M*<I)

327
Chapter 6: Peripheral Devices

When you run this modified program, the first printed column (including name,

address and social security number) is printed using double-width characters. The word

SPONSOR uses quadruple-width characters, while the letters AXC are printed using

characters that are eight times normal width. Here is a sample printout:

BERKELEY
ChL I FORN I

H

94f'iilSi345-67-891 © -=- F="OH -=• »— F5 *~* :==- *

—

z

What happened?

Line 125 added an enchancement character to the beginning of each string varia-

ble. Therefore the first string variable on any line is printed double-width, the second

string variable is printed quadruple-width and the third variable is printed using charac-

ters that are eight times standard width.

You do not have to concatenate CHR$(1) characters to strings. You can insert

CHR$(1) into the PRINT* statement parameter list, but you must not use commas

to separate CHR$(1). For example, reload program STR.FORM.PRINT1, and replace

line 200 with these two lines:

195 E*=CHR*<1)
200 PR INT# 1 , E*M* < 6 >3P*E*M* < 7)SP*E*M* (8

)

When you run this program, the name and address are printed using standard

character widths. The social security number is printed using double-character widths,

the word SPONSOR is printed using quadruple-character width, while AXC is printed

using characters that are eight times normal width. Here is a sample printout:

MfiRV PERKINS
35 WEST ST.
BERKELEY
CALIFORNIA
94705345-67-8910 -=- f=" C" l-l =SO F? •— ^--—~-

You can print enhanced numeric variables. The numeric variable is included in

the PRINT* statement parameter list, but it must have commas separating it from

other variables. To demonstrate enhanced numeric printout we will again start with

program STR.FORM.PRINT1. Modify lines 190 through 200 as follows:

1W PRIHT#2, "fiflHHfifififiAfiA 99999 MMMfifiAfl"

195 t*=CHR*a>
196 H= 12345
208 PRINT#1 , E*I"I*<6>SP*, N, E$M*<7>

The final line printer format has been changed by the PRINT* statement on line

190; two string fields are printed with a numeric field appering between them. The

PRINT* statement on line 200 specifies M$(6) and M$(7) as the two string fields, with

the new numeric variable N between them. N is equated to 12345 on line 196. In the

parameter list of the PRINT* statement on line 200 notice that the numeric variable N

is separated using commas, but commas are not used to separate string variables.

328 PET/CBM Personal Computer Guide

These syntax rules are very specific and must be observed in order to generate success-

ful mixed, enhanced numeric and string printout. Here is a sample of the printout

generated by STR.FORM.PRINT1 with lines 190 through 200 modified as listed above:

f'1ARV PERKINS
35 WEST ST.
EERKELEV
CALIFORNIA
94705345-67-39 19 12345 === F="OM :=:O F5

You can cancel character enhancement using the CHR$(129) character. Subse-

quent characters revert to standard size until another CHR$(1) character is encoun-
tered.

Printing Reverse Field Characters

Reverse field characters can be included in a PRINT* statement parameter list

using the RVS ON and RVS OFF keys. However, you should not print more than five

consecutive lines of reverse field characters; if you do, the printhead will wear out very

quickly.

Printing Control Characters

To print a quote character you must use CHR$(34).
If you print a single CHR$(34), or any odd number of quote characters in this

fashion, then the printer will subsequently display all control characters via their

graphic representation.

The only time you are likely to do this is when you are listing programs which
include control characters that would not normally be printed.

PAGE FORMAT

Number of Lines per Page

Unless otherwise instructed, CBM printers pay no attention to page length. To
enable paging, transmit the CHR$(147) character to the printer as data. The printer

then assumes a 66-line page; it prints 60 lines, skips six lines, prints another 60 lines,

and so on. Below is the listing for a simple program that turns paging on, then prints a

line number followed by the character string ABCDEFG. If you enter and run this pro-

gram, you will see paged printing in action.

1@ REM PROGRAM "PAGING" TESTS PAGING OPTIONS
20 OPEN 1,4: REM OPEN UNFORMATTED PRINTOUT
30 REM SELECT PAGING
40 PRINT#l,CHR*a47>
56 FOR 1=1 TO 100
60 PR I NT# 1 , 1 , "ABCDEFG "

70 NEXT I

80 CLOSE 1

90 STOP

329
Chapter 6: Peripheral Devices

You can change the number of lines printed per page once paging has been

enabled. To do this, you output the selected number of lines as numeric data to a logical

file which must be opened specifying physical unit 4 with secondary address 3. The

printer then assumes that the page length equals the number of lines specified, plus six.

The specified number of lines are printed on each page, with six skipped lines between

each page. Program PAGINL25, listed below, prints 25 lines per page.

10 REM PROGRAM "PAGINGL25" TESTS PAGING OPTIONS
om npFN 1.4: REM OPEN UNFORMATTED PRINTOUT
2S OPEN 3, 4, 3: REM OPEN FILE TO SELECT NUMBER OF LINES PER PAGE

30 REM SELECT PAGING
40 PRINT#l,CHR$a47:>
45 PRINT#3,25:REM SELECT 25 LINES PER PAGE
SO FOR 1=1 TO 100
fifl FRINT#1, I, "ABCDEFG"
70 NEXT I

80 CLOSE 1

S!=i CLOSE 3
90 STOP

The PRINT* statement on line 45 specifies 25 lines per page. Logical file 3 is

opened on line 25.

You can change the number of printed lines per page by outputting a new value to

secondary address 3. The new value goes into effect at the beginning of the next page;

the current page is printed using the old number of lines per page.

Add the following line to program PAGINGL25:

55 IF 1=23 THEN PRINT#3.. 10

Run the program twice. The first time a 25-line page is printed, followed by a number of

ten-line pages. But on the second execution something strange happens; a ten-line page

is printed, followed by a 25-line page, and then a number of ten-line pages. The printer

remembered the previously specified number of lines per page and used it for the first

page of the new run.

Top of Form

While paging is in effect, if you print a CHR$(19) character, the printer will

skip remaining lines on the current page, and position itself at the first print line of

the next page. Printing continues from this new position. This is referred to as a top of

form. If a page does not print to the last line (and this is the rule rather than the excep-

tion), you should end the page by printing a top of form; this will advance the printer to

the next page. You do not have to count remaining lines and skip over them.

Space Between Lines (Model 2022)

The model 2022 printer allows you to change the space between printed lines.

Printers divide each vertical inch into 144 steps. Normally each line is allotted 24 steps.

Thus six lines are printed per vertical inch. The model 2022 line printer allows you to

change the number of lines that will be printed per vertical inch. To do this, you must

open a logical file specifying physical unit 4 with secondary address 6. Then output a

CHR$ function to this logical file number, specifying the new number of steps per line

as the CHR$ function's argument.

330 PET/CBM Personal Computer Guide

Suppose you want to print eight lines per inch; the number of steps per inch then

becomes 144/8, which equals 18. Here are the statements needed to make this change:

10 OPEN 6,4,6
28 PRINT#6,CHR*a8>

If you have a model 2022 printer, load program PAGINGL25, insert these two lines,

then run the program. Lines will be printed with no space in between them; the vertical

width of characters does not change when you increase the number of lines per inch.

Steps are removed (or inserted) between lines. By specifying appropriate steps per line

you can print lines that overlap, or have a lot of space between them.

DEFINING YOUR OWN CHARACTERS
CBM printers allow you to define, or draw, your own printer characters.

All printer characters are generated using a 7 x 6 dot matrix. To create your own
character draw 7x6 dot matrix as follows:

64
32
lb
8
4
2
1

• •_ _

32 32
16

8 8 8 8

4 4 4 4

2

1 1 1 1 1- 1

Each row in the dot matrix is represented by a number, ranging from 1 to 64. The
top row has the value of 64, while the bottom row has the value 1. (Each row value is

double the previous row value.)

Now generate your character by drawing dots in the 7x6 matrix. Here is an

English pound character: 64 64

64
32
16
8
4
2 l I I » I I ~l 1 1 13 63 77 77 33MA

CHR$(1)CHR$(1 3)CHR$(63)CHR$(77)CHR$(33)

You must now convert the character into 6 numbers. Each number corresponds

to 1 column of the 7x6 matrix and identifies the dots in that column. The first of the 6

numbers represents the left-most column and the last of the 6 numbers represents the

right-most column.
To compute the number for any column, write down row values corresponding to

each existing dot, then sum the row values, as illustrated above.

Next the six numbers must be converted into a six-character string; each

character of the string is a CHR$ function, where the column total becomes the CHR$
function argument. Thus the English pound character becomes a six-character string

where the first character has the value CHR$(1), the second character has the value

CHR$(13), the third character has the value CHR$(63), the fourth and fifth characters

both have the values CHR$(77), and the sixth character has the value CHR$(33). This

string is output to the printer using a PRINT* statement that specifies a logical file

opened with physical unit 4 and secondary address 5. The printer stores the special

character; it does not print it. Subsequently any PRINT* statement that prints data

specifies the special character using the function CHR$(254).

Chapter 6: Peripheral Devices 331

The steps needed to print a special character are illustrated by program

POUNDCHAR listed below. This program, when executed, will print a column of ten

English pound signs.

16 REM PROGRAM "F'UUHBCHfiR"
20 REM DEMONSTRATE SPECIAL PRINTER CHARACTER GENERATION
30 DATA 1, 13,63.. 77, 77, 33
35 EP*=""
40 OPEN 1,4: REM ijptN PRINTER
50 OPEN 5, 4, 5 REM OPEN SPECIAL CHARACTER GENERATION FILE
60 FOR 1=1 TO 6

7@ REA3 EP
SO EP*=EF*+CHR*<FP>
90 NEXT I

35 PRINT#5,£P*
100 FOR 1=1 TO 18
HO PRIHT#1,CHR$C254>
120 NEXT I

130 CLOSE 1

140 CLOSE 5
156 STOP

Let us examine how the pound sign is created and printed.

The data statement on line 30 specifies the number and location of dots in the

character matrix, as illustrated previously.

The FOR-NEXT loop on lines 60 through 90 generate the six-character string

representing the pound sign and assign this string to string variable EP$. Each number
from the data statement is read into numeric variable EP by the READ statement on

line 70; this numeric value is converted into a character, and a character is concatenated

to EPS on line 80. The assembled string is output to logical file 5 on line 95. Logical file 5

was opened on line 50 specifying physical unit 4 and secondary address 5. After the

PRINT* statement on line 95 has been executed, the printer holds one special

character, which it recognizes and prints on encountering a CHR$(254) function in the

data string received from a PRINT* statement. This occurs each time the PRINT*
statement on line 110 is executed.

Note that the CBM printer can only recognize one special character at any time.

You can change the special character by creating a new 6 character string and outputting

this string to the printer via secondary address 5. Although this technique is quite

straightforward, it does not readily lend itself to the indiscriminate use of the many
special characters.

Using Special Characters to Print Non-Dollar Monetary Data

The $ sign is not much use when printing financial data outside of the USA and
Canada. Some other character must be substituted for the $ sign. This is easily done
using formatted printout in conjunction with special character generation.

Program POUNDVAL, listed below, uses the English pound character which we
just generated to print English financial data with a trailing sign. Two sample printouts

are shown at the end of the listing.

10 REM PROGRAM "POUNDVAL"
2@ REM PRINT fl NUMERIC VALUE AS BRITISH POUNDS
38 REM CREATE THE POUND SIGN
40 DATA 1 , 1 3 , 63 ,77,77, 33
50 OPEN 5,4,5
60 EP*=""
70 FOR 1=1 TO 6
80 READ EP
90 ep*=ep*+chr*c:ep::>
100 NEXT I

110 PRINT#5,EPf

332 PET/CBM Personal Computer Guide

120 OPEN 1,4,1 'REM USE FORMATTED PRINTOUT
130 OPEN 2,4,2
140 REM OUTPUT ENGLISH POUND PRINT FORMAT
150 PRINT#2, "AAAAAA 0999999. 99-"
160 INPUT "ENTER AMOUNT: ",N
1 70 PR I NT# 1 ,

" VfiLUE= "CHR* C 29 > CHR* (254 >CHP* <29) . N
ISO CLOSE 1

190 CLOSE 2
200 CLOSE 5
210 STOP

VALUE= £ 1234.56
'v'ALUE= £ 1234.56-

The pound sign is created by statements on lines 40 through 110. These state-

ments have been taken from program POUNDCHAR.
The OPEN statement on lines 120 and 130 open logical files 1 and 2 for formatted

printout. The format is output by the PRINT* statement on line 150; a six-character

string field if specified, followed by three blank spaces and then a numeric field with pre-

ceding single character string field. The numeric field has two places after the decimal
point and a trailing sign

The INPUT statement on line 160 lets you enter a number which is assigned to

numeric variable N. N is printed by the PRINT* statement on line 170.

Let us examine this PRINT* statement parameter list.

The string "VALUE= " is printed in the first 6 character string fields. This
character is followed by the mandatory string separator CHR$(29). Three spaces are

printed as required by the printer format. Next comes a single character string field. The
character is CHR$(254); it is followed by the mandatory CHR$(29) string field termina-
tor. CHR$(254) selects the special character. The pound sign is therefore printed in

front of the numeric field. Numeric variable N is printed in the numeric field.

PRINTER DIAGNOSTIC MESSAGES

If you are having problems with printer output, enable a logical file selecting
physical unit 4 with secondary address 4. This will cause the printer to output
detailed diagnostic messages when it encounters identifiable errors in printout
specifications. You do not have to execute any statements in order to generate error
diagnostics; they are output automatically.

Programs in their final form will not normally use printer diagnostic messages.
These diagnostic messages are used while you are writing a program, in order to find
errors.

You can create a sample diagnostic message by loading program
STR.FORM.PRINT1 into memory. Change one of the A format specifications on line

190 to some illegal character such as Q. Then add the following line:

85 OPEN 4,4,4

When you run the program an error message similar to the one shown below will

be generated.

MRRV PERKINS
35 WEST ST.
BERKELEV
CALIFORNIA
94705
345-6
AAAAAQRRRAA AAAAAAA AAA

t

*****BAD FORMAT*****
PONSOR flXC

Chapter 7

System Information

CBM COMPUTER SYSTEM ORGANIZATION

The CBM computer uses a 6502 microprocessor. The display screen, cassette

tape unit, keyboard diskette drives and printer are physical devices that have been

described in Chapter 2. The three external I/O ports are interfaced through the 2K
block of memory-mapped I/O. The organization of the CBM computer system is shown

in Figure 7-1. On 4K/8K PETs, the cassette tape unit connects directly to the I/O block,

and the Cassette Tape Interface is available for connecting a second cassette unit. On
16K/32K PETs the cassette tape unit is connected through the Cassette Tape Interface;

additional tape units, if any are desired, must be interfaced through the IEEE 488 port.

Such tape units would operate under different protocol than standard tape units. The six

ROM, RAM, and I/O blocks are allocated from the total 65K bytes of available memory

(IK = 1024).

Memory allocation by 4K blocks is shown in Table 7-1. Each portion of the

memory is described in more detail in the following text.

334 PET/CBM Personal Computer Guide

Display

Screen

14KR0M
(BASIC

and OS)

8K" RAM
(Storage and

User Pgm)

4K
Video RAM

—\ r

6502
Micro-

processor

Expansion ' Expansion
1 ROM ' RAM
' 12K ' ' 24K-

J

Cassette

Tape Unit

2K
I/O

t
Cassette

Tape
Interface

Diskette

Drives

IEEE 488
Interface

1
'

Parallel

User Port

Line

Printer

Keyboard

' Varies from 4K RAM with 28K Expansion RAM to 32K RAM with no Expansion RAM

Figure 7-1. PET Block Diagram

Table 7-1. Memory Allocation by 4K Blocks

Start Address
Block

Type
Decimal Hexadecimal

RAM 0000 Working storage, start of text

1 RAM 4096 1000 Text and variable storage (8K only)

2 — 8192 2000 \
3 — 12288 3000 J

4 - 16384 4000 I
Expansion RAM

5 — 20480 5000 /
6 _ 24576 6000 1

7 _ 28672 7000 /
8 RAM 32768 8000 Screen Memory (and I/O — BASIC 4.0 only)

9 ROM 36864 9000
)

10 ROM 40960 A000 V Expansion ROM
11 ROM 45056 B000) Start of BASIC 4.0

12 ROM 49152 COOO BASIC (principally statement interpreter)

13 ROM 53248 D000 BASIC (principally math package)

14 ROM 57344 E000 Screen Editor (2K)

I/O 59392 E800 I/O Memory (2K)

15 ROM 61440 F000 Operating System (OS)

Chapter 7: System Information 335

Addresses 0-8191: 8K RAM (Storage and User Program)

The first block of RAM is allocated to working storage, the stack, tape buffers,

and storage of user programs. The amount of active RAM may be 4K (addresses 0-

4095), 8K (addresses 0-8191), 16K (addresses 0-16384), or 32K (addresses 0-32767).

The first IK allocation (to 1024) is fixed; the larger the memory size, the more space is

available in the user program area.

256

BASIC
Working

Storage

Tape Read

Working

Storage

BASIC
Stack

512

634

826

1024

OS
Working

Storage

Tape Buffer

#1

Tape Buffer

#2

Text

Variables

and Arrays

Strings

Available for user if no

console tape I/O

Available for user if no

second cassette

User program area

(4K) 4095
(8K) 8191

(16K) 16383
(32K) 32767

Locations through 255 are used by the BASIC interpreter as working storage

locations. This area is detailed in Appendix F.

Locations 256 through 511 are used mainly by the BASIC Stack. A portion of the

area beginning at location 256 and proceeding upward is used by the Tape Read routine

for error correction and by BASIC as an expansion buffer. The stack begins at location

511 and proceeds downward. Storage is allocated dynamically as needed. An OUT OF

MEMORY error occurs if the stack pointer reaches the end of available space in this

area.

336 PET/CBM Personal Computer Guide

Locations 512 through 633 are used by the "Operating System" (OS) as working

storage locations. This area is detailed in Appendix F.

Locations 634 through 825 form a 192-byte tape buffer for the console tape

cassette. Locations 826 through 1023 form a second 192-byte tape buffer for the

optional second cassette unit. User-written assembly language programs can be stored in

tape buffers if there are no tape cassettes, or no second cassette in the system.

Locations 1024 through the end of available RAM are used to store user programs

and variables. Programs begin at location 1024 and are stored upward toward the end of

memory. Variable storage begins after the end of the program. Array storage begins at

the end of variable storage. Strings are stored beginning at the end ofmemory and work-

ing downward. An OUT OF MEMORY error occurs if an upgoing pointer meets the

downgoing pointer.

Addresses 8192-32767: Expansion RAM 24K

Memory addresses 8192 through 32767 are allocated for expansion of RAM to

32K.
8192

12288

16384

20480

24576

28672

32767

Expansion

RAM

Expansion

RAM

Expansion

RAM

Expansion

RAM

Expansion

RAM

Expansion

RAM

4K

32K of RAM address space is allocated between active RAM and expansion

RAM, as follows:

Active RAM Expansion RAM

4K (0-4095)

8K (0-8191)

16K (0-1638)

28K (4096-32767)
24K (8191-32767)

Chapter 7: System Information 337

Addresses 32768-36863: 4K Video RAM
The first thousand locations of this block, from addresses 32768 through 33767,

are allocated to screen memory. A POKE to any of these locations displays the character

in the appropriate screen position.

TV RAM for

80-column display

Used for I/O

by BASIC 4.0

32768

33792

34816

35840

36863

TV RAM

TV RAM or

Images of

TV RAM

Images of

TV RAM

Images of

TV RAM

TV RAM for

40-column display

Addresses 36864-49151: Expansion ROM 12K

Memory addresses 36864 through 49151 are allocated for optional expansion of

ROM to 26K.

36864

40960

45056

49151

Expansion

ROM

Expansion

ROM

Expansion

ROM

4K

BASIC 4.0 uses

this expansion ROM

Addresses 49152-65535: 14K ROM and 2K I/O

Locations 49152 (45056 for BASIC 4.0) through 59391 and locations 61440

through 65535 hold the BASIC interpreter and OS diagnostics. Memory-mapped I/O

locations are from 59392 through 61439.

45056 or 491 52

BASIC lOKor 14K

59392

61440
I/O 2K

OS 4K

65535

Location 65535 is the end of CBM memory.

338 PET/CBM Personal Computer Guide

MEMORY MAP

Detailed memory maps used by different versions of CBM BASIC are shown in

Appendix F. Table F-l describes the Revision Level 2 ROMs used in the original PET

computers. Table F-2 shows the Revision Level 3 ROMs used in BASIC<3.0. Table

F-3 shows the most recent memory map for BASIC 4.0.

Tables F-l and F-2 show the memory address in decimal and hexadecimal. You

should use the decimal value as the PEEK or POKE address. Tables F-l and F-2 also

show sample decimal and hexadecimal equivalent values in memory locations.

With the exception of pointers, these sample values are typical of what you might

see if you PEEKed at the location; these are all byte values, in the range to 255

(0-FF
16

). A pointer is a two-byte address, in the range to 65535 (0FFFF
16),

that is

stored in the CBM in low-byte, high-byte order. All two-byte locations in the table con-

tain values stored in low-high order. Consider the first such location in the table:

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

1-2 0001-0002 826 033A User address jump vector

If you PEEKed at these locations, the 16-bit address would be presented in two parts,

first the low-order byte:

?PEEK<1>
58

and then the high-order byte:

?PEEK<2>

To convert the two values to the appropriate address, you can convert them sepa-

rately to hexadecimal and then convert the hexadecimal address to decimal:

Low

58 1n=3A 1

High

m=03,

Address

033A 16=826 10

Note carefully that the sample value 033A means that the first memory byte =3A
and the second (higher) memory byte = 03.

Or you can multiply the high-order byte by 256 and add it to the low-order byte.

The following is a PEEK statement that will do this for you:

?PEEK(1)+PEEK(2)
826

Conversely, to convert a 16-bit memory address into two separate bytes for

POKEing (in low-byte, high-byte order), you can convert the decimal value to hex-

adecimal and then convert the separated byte digit pairs to decimal, e.g., to convert the

address 59409:

High Low

59409 10=E811 16 — E8, =232, and 11, = 17,

Chapter 7: System Information 339

Or you can convert using decimal arithmetic by first dividing the address value by 256

and discarding any fractional remainder:

High

59409/256 = 232.06641 =232

Then subtract the high value multiplied by 256 from the original value (59409 in this

case) to get the remainder, which is the low-order byte value:

232-256=59392

Low

59409 - 59392= 17

(Of course, if you do the division by longhand, the remainder is directly available.)

For a block of byte locations, only the first byte value is shown in the table.

The column labeled DESCRIPTION in Table F-l gives a short description of the

location's use. There are multiple uses for some locations, in which case the primary one

is indicated. While not exhaustive, the table illustrates the overall makeup of the CBM
memory.

Table F-3 compares the BASIC 4.0 memory map with the BASIC 3.0 revision

shown in Table F-2. The DESCRIPTION column provides the location description as

currently used by Commodore; the label column shows the assembly language label cur-

rently assigned to the location by Commodore. The BASIC 4.0 column gives the hex-

adecimal address of each location, while the BASIC 3.0 column gives the equivalent

BASIC 3.0 hexadecimal address. To find any BASIC 4.0 location, first find the hex-

adecimal address given in Table F-2. Find this hexadecimal address in the BASIC 3.0

column of Table F-3 and the comparable BASIC 4.0 hexadecimal address is in the adja-

cent column.

With the exception of the first two entries in Table F-3 which actually represent

memory address 0000, all subsequent 0000 addresses identify entries which do not exist

in one version of BASIC or the other. For example, if you see an address in the BASIC
3.0 column with 0000 in the BASIC 4.0 column, then BASIC 4.0 has no equivalent loca-

tion in its memory map. Conversely, a 0000 address in the BASIC 3.0 column identifies

a new entry in the BASIC 4.0 memory map for which there is no BASIC 3.0 equivalent.

CBM BASIC INTERPRETER

The CBM BASIC interpreter executes a user program by decoding each source

line. Source lines are stored in memory in a compacted form. When you enter a line

from the keyboard, the Line Editor has control, allowing you to edit the line until you

press the RETURN key. Program lines are stored in memory in ascending line number
order. When the RETURN key is pressed, the BASIC interpreter searches memory for

the same line number. If there is one, it replaces the current line with the new line. If

there isn't one, it searches for the next higher line number. The BASIC interpreter then

inserts the new line into memory and moves the reset of the program up.

Program lines are stored at the beginning of the user program area of memory,

which starts at memory location 1024. Variables are stored in memory above the pro-

gram lines, and arrays are stored above the variables. All three areas begin at lower

addresses and build upwards to higher addresses. Strings are stored beginning at the top

of memory and work downwards. The BASIC interpreter builds all four areas, moving

them as necessary and adjusting pointers for insertions and deletions. Eight pairs of

340 PET/CBM Personal Computer Guide

Pointer Address

Start of program

(40, 41) Start of text

(62,63) Data statement pointer

(42, 43) Start of variables

(44, 45) End of variables

(46, 47) End of arrays

(48, 49) End of strings

Typical Values

(50, 51) Top of memory

Variables

Arrays

*

Strings

1946

2072

2231

8172 (8K system)

8191 (8K system)

Figure 7-2. Principal Pointers In User Program Area

memory locations contain pointers to the division points in the user program area of

memory. These are shown in Figure 7-2. (They are also listed in Appendix F tables)

.

The formats in which BASIC statements, variables, arrays, and strings are stored

in their respective areas are discussed next.

BASIC STATEMENT STORAGE

BASIC statements are stored in the format shown in Figure 7-3.

Memory location 1024 always contains a zero byte.

The next two bytes contain a pointer to the beginning of the first BASIC state-

ment. The pointer, like all other addresses, is stored in low-byte, high-byte order. The

pointer is a link to the memory address of the next link. A link address of zero denotes

the end of the text; i.e., there are no more links and no more statements. BASIC state-

ments are stored in order of ascending line numbers, even though there are links to the

next statements. Links are used to quickly search through line numbers.

Following the link address is the line number of the statement, stored in low-

byte, high-byte order. Line numbers go from 1 (stored as 1 and 0) to 63999 (stored as

255 and 249).

Chapter 7: System Information 341

After the line number, the BASIC statement text begins. Keywords consist of

reserved words (listed in Table 4-4) and operators (listed in Table 4-2). Reserved words

and logical operator keywords are stored in a compressed format. A one-byte token is

used to represent a keyword. All keywords are encoded such that the high-order bit is

set to 1 . Other elements of the BASIC text are represented by their stored ASCII code;

these elements include constants, variable and array names, and special symbols other

than operators. All are coded just as they appear in the original BASIC statement. Table

A-l shows the byte codes for all values from to 255 that may appear in the compressed

BASIC text. Codes are interpreted according to this table except after an odd number of

double quotation marks enclosing a character string; within a character string the stan-

dard ASCII codes prevail, as shown in Table A-4.

Note that the left parenthesis is stored as part of the one-byte token for the func-

tions TAB and SPC, but that the other functions use a separate byte for this symbol. For

example, the following line would be coded as bytes (in decimal) as illustrated below.

—i—
Link 10 139 32 181 40 65 41 179 53 32 167 32 153 32 163 88 41

Line

Number
INT THEN PRINT TAB

The operators (the symbols +,— ,*,/,<, = ,> and the words AND, OR, and

NOT) are given keyword codes (high-order bit set) since they "drive" the BASIC
interpreter just as reserved words do (e.g., 179 for <). The standard ASCII codes for

these symbols (e.g., 60 for <) appear only in the text of a string.

Spaces in the source line are stored except for the space between the line number
and first keyword. This space is supplied on LISTing when a stored statement is

expanded to its original form. You can conserve memory storage space by eliminating

blanks (but this makes the program harder to read). You can also conserve space by

putting more than one statement on a line, since the five bytes of link, line number,

and 0-end-byte are stored only once.

1 024 1 025 1 026 1 027 1 028 1 029

| | | Link | |
Line*

|

4-

Compressed BASIC text

End of text is indicated by

two link bytes of zero

s
| Link | | Line*

| |
Compressed BASIC text | j |

i

End of

statement

is flagged

by zero byte

I Link I I Line* I I Compressed BASIC text I I I

ok

Figure 7-3. BASIC Statement Storage

342 PET/CBM Personal Computer Guide

Pointer Address

(62, 63) DATA statement pointer

Start of program

(40, 41) Start of text

(42, 43) Start

(44, 45) Start

(46, 47) Start of free space

Memory Location

(48, 49) End of strings

(50. 51) Top of memory 8191 (8K system)

Figure 7-4. User Program Area on Power-Up

The size of each statement is variable and is terminated by a byte of zero to

indicate the end of the statement. (A value of zero anywhere within the text is stored as

48.) 0-byte flags are used by the BASIC interpreter in executing a program when it goes

through the compressed BASIC text from left to right picking out keywords and per-

forming the indicated operations. A 0-byte indicates the end of the statement; the next

four bytes are the link and the line number of the next statement. In contrast to search-

ing through the text and using 0-byte indicators to locate the next statement, links are

used when searching the statements for their line numbers. Three consecutive bytes of

zero (the last statement's 0-byte followed by two zero link bytes) flag the end of text

when executing the program.

A program is stored onto cassette tape in the same format as for memory

storage (Figure 7-3). Thus, it is basically "dumped" onto tape in a continuous block,

including link addresses and O-end-bytes.

The use of tokens in place of keywords is not unique to the CBM BASIC, but

there is no standard coding from one interpreter to another. Thus, a BASIC source pro-

gram SAVEd on tape by CBM BASIC is not compatible with other BASICs, nor can

BASIC programs generated on other (non-CBM) machines normally be loaded by the

CBM BASIC interpreter.

USER PROGRAM AREA INITIALIZATION

On power-up, the user program area of memory is initialized to " + " characters

(code 170) except for the first few beginning locations 1024 to 1026. Location 1024 is

zero, the initial link in locations 1025 and 1026 is also zero. The pointers into the user

area are initialized as shown in Figure 7-4.

Chapter 7: System Information 343

As lines are entered and edited and new programs loaded, the contents of

memory locations throughout the user program area change. They change, however,

only as necessary for the current program. The user area is not continuously reinitialized

(to
" + " or any other code). It is the pointers into the user area that determine the

extent of the current program, if any. The action of a NEW statement is simply to re-

adjust the pointers to the initial values shown in Figure 7-4. A CLR does the same thing

except that it adjusts the variable and array pointers from the end of the program rather

than the start of the program as NEW does. In fact, if you have accidentally cleared the

program or variables, you can reinstate them by "reading" through the user program

area as needed and restoring the pointer values.

DATA FORMATS

Variables

Variables are stored in the Variable Area of user program memory (see Figure

7-2). These are simple (unsubscripted) variables; arrays are stored in a separate area.

The variables may be floating point, integer, or string and are freely intermixed in the

Variable Area. Each variable, regardless of its type, occupies seven bytes of memory.

The first two bytes contain the variable name, and the remaining five bytes further

define the variable. Variables are entered into the variable table as they are encountered

during execution of the user program. A variable that is not in the table is assumed to

have a value of zero for numeric variables or null for a string variable.

Floating Point Variable Format

Byte: 1 2 3 4 5 6 7

1st

char

2nd
char

or

Expo-

nent

!
I

I
I

+ Fraction

Byte 1 contains the first character of the variable name. Byte 2 contains the

second character of the variable name or, if there is no second character, byte 2 con-

tains a zero. The characters are stored in standard ASCII codes (see Appendix A). For

example, the name A is stored as 65, whereas the name AO is stored as 65, 48. A float-

ing point variable is denoted by variable names having stored ASCII values of 90 or

below.

Bytes 3 through 7 contain the value of the floating point variable. Byte 3 contains

the exponent in excess 128 format. The exponent determines the magnitude of the

number. In excess 128 format, 128 is added to the true exponent (after normalization of

the significant digits) so that the smallest exponent representation contains all zeros.

The largest exponent representable contains all ones. A true exponent of zero is repre-

sented by an exponent value of 128 (0+128). Excess 128 format eliminates having to

consider a sign in the exponent. Here are some examples:

Actual Exponent Stored Exponent Approximate Value

127 255 1 38 (maximum exponent)

34 162 10 1 °

-1 127 10-1

-126 2 10-38

-128 1
-39 (minimum exponent -

number is zero)

344 PET/CBM Personal Computer Guide

Bytes 4 through 7 contain the significant digits of the number. The number is

normalized such that the binary point is to the immediate left of the first non-zero bi-

nary digit. That is, it is represented as a fraction in the form:

-First digit always 1

1 x x X...X x x

-Remaining 15 binary digits

-Binary point

The binary point is always assumed and is not stored. Further, the most signifi-

cant 1 digit is always assumed (since it is always 1) and is not stored either. Its bit

position is used to hold the sign of the number, = positive and 1 = negative. To nor-
malize a number, the point is moved to the left and the exponent decremented (smaller

numbers), or the point is moved to the right and the exponent incremented (larger

numbers), until the number is a fraction in the form shown above. The number zero is

generally represented by all zeros in bytes 3 through 7, but the fraction may contain
roundoff errors; an exponent of zero is sufficient to make the number zero.

Some examples of floating point number representations stored in the Variable
Area follow. 1E+38 has the maximum exponent of 255. This decreases down to zero as

the numbers decrease to zero. Fractional floating point numbers (e.g., 5, .01, .006) have
exponents below 129. For negative numbers, the exponent increases from to 255 as
the absolute value of the numbers increases. In byte 4 the high-order bit is the sign bit.

In this column, decimal numbers less than 127 have bit 7=0 (positive numbers), and
decimal numbers higher than this have bit 7 = 1 (negative numbers).

Byte: 3 4 5 6 7
Number Exponent ±MSB Fraction LSB

1E+38 255 22 118 153 83
1E+10 162 21 2 249
1000 138 122
1 129 00
0.01 122 35 215 10 62
1E-4 115 81 183 23 90
IE 62 60 229 8 101
1E-39 32

-1 129 128
-1000 138 250
-1E+10 162 149 2 249
-1E+38 255 150 118 153 83

The following short program allows you to examine floating point representa-
tions for any numbers. Line 10 inputs a number that you enter from the keyboard, ter-

minating with a RETURN key. Line 20 points to the beginning of variables +2 to go
past the two-byte variable name. Line 30 prints the number that was input, followed by
the five bytes PEEKed from the variable table. The program is continuous; to end, enter
a null line (RETURN key only).

18 INPUT fl

20 X=PEEK<43>*256+PEEK<42>+2
30 PRINT fl;"="PEEK<X);PEEK<X+n;PEEK(X+2>;PEEK<X+3>PEEK<X+4>
40 GOTO 10

Chapter 7: System Information 345

Integer Variable Format

Byte: 1

1st

char

+ 128

2nd
char
+ 128
or 128

Value

High I Low

Byte 1 contains the first character of the variable name shifted (+ 128). Byte 2

contains the second character of the variable name shifted (+ 128), or if there is no

second character, byte 2 contains 128. An integer variable is denoted by variable

names having ASCII values of 176 or higher. The % notation is dropped from the

variable name. Bytes 3 and 4 contain the value of the integer in high-byte, low-byte

order. (Note that this value is not an address and does not conform to the reverse stan-

dard for pointers). The value is stored in twos complement format so that the high-

order bit (bit 7 of byte 3) represents the sign, 0=positive, and l=negative. The

remaining three bytes are not used and are set to zero.

The following are some examples of integer representations stored in the Variable

Area. You can use the same program as above to look at integer number representations

after changing A to A% in lines 10 and 30.

255 (256-127 +255=32767)
254
176

255
1

255(FFF 16) + 1 = 1

254
2

1

Byte 3

Number

32767 127
32766 127

14000 54
256 1

255
1

-1 255
-2 255
-32766 128
-32767 1281

String Variable Format

1 2 3 4 5 6 7

1st

char

2nd
char
+ 128
or 128

Char

count

Pointer

High Low

Byte:

Byte 1 contains the first character of the variable name. Byte 2 contains the

second character of the variable name shifted (+ 128), or if there is no second

character, the second byte contains 128. This combination of ASCII ranges denotes a

string variable entry. The $ notation is dropped from the variable name. Byte 3 contains

a count of the number of characters in the string (1 to 255). This is the value fetched

for the LEN function. Bytes 4 and 5 contain a pointer to the beginning of the string

itself, stored elsewhere in memory. This pointer is in the standard 6502 low-byte,

high-byte order. The remaining two bytes are not used and are set to zero.

String storage is optimized by using the copy of the string already in memory if

there is one. If there is not, a string is created and stored in the String Area in upper

memory. A few examples are given below.

346 PET/CBMPersonal Computer Guide

Constants

Constants are stored in the BASIC statement itself. They are not placed into a sep-

arate area of memory, and they are not stored in the Variable Area. Floating point,

integer and string constants are all stored as ASCII character source codes, as de-

scribed previously under BASIC Statement Storage. For example, the line:

10 PRINT "HI!"

is stored entirely in the BASIC Statement Area, in the form:

Link 10 153 32 34 72 73 33 34

~L?n7~ g "HI!"
nurriber 1

N
T

whereas the statement

10 fl*="HI!":PRINT R$

is stored in two areas. The original statement is stored in the BASIC Statement Area:

Memory
Address

ID
CM

CO
COo

•*
CO
o

CM

Link 10 65 36 178 34 72 73 33 34 58 153 32 65 36

Line

number

A $ = " H I ! " : P A
R
I

$

T

The illustrated memory addresses assume that this is the first statement in program

memory, therefore it is stored at the beginning of the user program area (location 1025).

In addition, when this statement is executed the following entry is made in the Variable

Area:

Byte

(42, 43)H 65 128

Length

of string

I (String)

No 2nd

char

4-256+9
= 1033

The string in the BASIC Statement Area is pointed to (beginning at memory location

1033 in this program) rather than storing a copy of it in upper memory. However, when
you create a new string, as in:

28 B$=fl*+"H0"

the BASIC Program Area entry is:

Link 20 66 36 178 65 36 170 34 72 79 34

Line

number

B $ =

Chapter 7: System Information
347

and the entry in the Variable Area is:

Byte: 12 3 4

66 128 5 251 31 o V

\ 1
B Length

of string

No 31-256+ 251 =

2nd 8187
char

- (42, 43)

This time the pointer addresses a location in upper memory (8187 in this program) that

contains the string:

8188 8190
8187 I 8189 | 8191

72 73 33 72

H I ! H

The address 8187 assumes an 8K memory. The largest available address is then 8191.

ARRAY STORAGE FORMAT

Arrays are stored in the Array Area of user program memory (see Figure 7-2).

Arrays may be floating point, integer, or string, and are stored in the order in which they

are created by the program. The type of array is distinguished by the way in which the

two-character array name is stored. Array names and variable names are encoded in

exactly the same way. An array is stored with a header, followed by the elements of the

array, as follows:

Header Element Element 1 Element n

Elements are stored in reverse order for strings.

Array Header

All types of arrays have the same header format. The header contains seven

bytes, plus two additional bytes for each array dimension beyond 1.

2 3 4 5 6 7 (Bytes as needed)
Byte:

1st

char

2nd

char

Total bytes

Low I High

No. of

dimen-
sions

Last
dimension size

Low High

Next-to-last I First

dimension size . . . dimension size

I

Low High ,
Low High

Floating point array elements are encoded using floating point variable format,

therefore each floating point array element occupies five bytes. But array integers

require just four bytes, while array strings require five bytes; in each case the zero bytes

are discarded.

In the array header, bytes 1 and 2 contain the array name. Bytes 3 and 4 con-

tain a count of the number of memory locations that the array occupies. For example,

348 PET/CBM Personal Computer Guide

A(0) would occupy 12 bytes: 7 for the header and 5 for the single element. The byte
count is stored in low-byte, high-byte order. Byte 5 contains a count of the number of

dimensions in the array. Thus, A(5) has one dimension (byte 5= 1) and A(10,10,2)
has three dimensions (byte 5 = 3). For a one-dimensional array (or vector), bytes 6 and
7 contain the dimension size — this is the number specified between parentheses in the
DIM statement + 1. For example, the dimension size = 61 for DIM A(60), = 101 for

DIM A(100), etc. If the array does not appear in a DIM statement, the dimension size

defaults to 11. The dimension size is stored in low-byte, high-byte order. For a multi-
ple dimension array, the header contains additional bytes in which additional dimen-
sion sizes are stored. Two additional bytes are used for each additional dimension.
The dimension sizes are stored in reverse order as compared to the order in which
they appear in the DIM statement. For example, for DIM A(10,5) the dimension sizes
are stored as bytes 6,7 = 6 and bytes 8,9= 11. For DIM X(2,l,3) the dimension sizes are
stored as bytes 6,7=4, bytes 8,9= 2 and bytes 10,11=3.

Array element formats for each type of array are shown below. Formats are as
described for variables, with bytes deleted.

Byte:

Floating Point

Array
Exponent Fraction

Byte:

Integer

Array

Byte:

String

Array

Value

High I Low

1 2 3

Char
Pointer

count High I Low

The size of the header may be calculated as five bytes plus twice the number of
dimensions in the array. Memory occupied by array elements may be calculated as the
number of bytes per element (5 for floating point, 2 for integer, 3 for string) times the
number of elements (the dimensions multiplied together + 1). The total size of the
array, header plus elements, is stored in byte 4 of the array header.

The following program examines Array Area entries

:

10 DIM fl<5> ,V/.<2,2> ,C*a0>: REM SAMPLE RRRflVS
28 FOR 1=0 TO 5: fl<I>=I-- NEXT I

30 FOR 1=0 TO 2: FOR J=0 TO 2: B5i<J, I>=100+3*I+J: NEXT J, I
40 FOR 1=0 TO 10: C*<I)=CHR*<FlSC.<"A">+I>: NEXT I
50 X=PEEK<45>*256+PEEK<44> : REM POINT TO ARRAY AREA
60 V=PEEK(47)*256+PEEK(46) : REM END OF ARRAS'S
70 FOR I=X TO V
80 PRINT I,PEEK<I>
90 GET D$: IF D$="" GOTO 99
100 NEXT I

Each of the three types of array is dimensioned. Line 20 fills the floating point array A
with the numbers through 5. Line 30 fills the integer array C$ with the single strings A
through K. Lines 50 and 60 fetch the pointers to the end of the Variable Area and the

Chapter 7: System Information
349

end of the Array Area. The display stops at each memory location; to print the next loca-

tion, press any key (e.g., the RETURN key). You will need to locate the beginning of

the arrays by the sequence for the first array shown below (the pointer addresses the end

variable). The memory locations will appear as shown below.

Array Area

(A) 5
1 65 37 1 6 129

•I

A 1
—~

J
A(0) = Ad) = 1

No 2nd

char

No. of

dimensions

1 •

Array size = No. of

37 bytes elements

130 130 64

A(2) = 2 A(3) = 3

131 131 32

A(4) = 4 A(5) = 5

3

Array

B

1 2 3 4 5 6 7 8 9

'
Area ll94 128 27 2 3 3 100 101 |l02 |l03|

B

+ 128
No
2nc

char

dir

No. o

nens

f

ons

1

B% 0.0)

100
B%(1,0)
= 101

B%(2,0)

= 102
B%(0.1)

= 103

Array Last First

size = dimension dimension

27 bytes size = 3 size = 3

104 [l05 |l06 fl07 |l08|

B%(1.1) B%(2,1) B%(0,2) B%(1,2) B%(2,2)

= 104 = 105 = 106 = 107 = 108

Array Area

C$110)
67 128 40 1 11 1 255 31 1 254 31 1 253 31 1 252 31

c No *

2nd

No. of p~c$(10)
dimensions

C$(9) C$(8) C$(7)

char 1

Array size = No. of 256«31

40 bytes elements +255=8191

1

45

1 251 31 1 250 31 1
249J

31 1 248 31 1 247 31 1 246 31 1 |245 31

C$(6) C$(5) C$(4) C$(3) C$(2) C$(1) C$(0)~"~f
256»31+2

=8 181

"reaE

8182 8184 8186 8188 8190

8181 | 8183 \ 8185 | 8187 \ 8189 \ 8191

66 67 68 69 70 71 72 73 74 75

H I

350 PET/CBM Personal Computer Guide

CHARACTER REPRESENTATION

ASCII (American Standard Code for Information Interchange) is a widely used

code for representing character data. It is normally a 7-bit code, allowing 128 charac-

ters (7F
16
= 128

10
) to be represented. The standard ASCII 7-bit character set is shown

in Table A-2 in Appendix A. Bits are numbered from (least significant bit) to 6 (most

significant bit):

ASCII code

The first 32 codes are reserved for non-printable control characters, intended for

message formatting and print format control.

CBM computers store characters in an extended, 8-bit version of ASCII for-

mat. With eight bits normally available, rather than just seven, up to 256 characters can

be represented. Within compressed BASIC text, the 8-bit character codes are

interpreted as shown in Table A-l, where bit 8 = 1 signifies a keyword. Elsewhere in

main memory the 8-bit character codes are interpreted as shown in Table A-4.

The screen memory, occupying memory locations 32768 through 33767, uses a

different ASCII character representation than main memory. It is a 7-bit code as

shown in Table A-3. The eighth bit is a normal/reverse field indicator. Note that the

characters are arranged such that bits through 5 represent one key on the PET
keyboard, with bit 6= being the unshifted character and bit 6 = 1 being the shifted

character of the same key.

7 6 5 4 3 2 10

II ll

- Key code

- = unshifted character

1 = shifted character

-0 = normal field

1 = reverse field

The complete character set for screen memory is shown in Table A- 4 under the PEEK/
POKE column.

The screen memory ASCII code may be derived from the CBM ASCII code by

moving bit 7 of the main code into bit 6 and dropping the previous value of bit 6. The

examples below illustrate the four cases of a or 1 in bit 7 going into a or 1 in bit 6:

Character

Main Memory
Representation

Screen Memory
Representation

Shifted A (^

'

1

Shifted 1(H)

01000001
11000001
00110001
10110001

00000001
01000001
00110001
01110001

When PRINTing to the screen, the CBM computer automatically makes the

conversion to screen codes. Only when you are PEEKing and POKEing in screen

memory do you need to be concerned with character set differences.

Chapter 7: System Information 351

Screen memory can be looked upon as having an additional bit that selects the

alternate character set in response to a POKE 59468,14. POKE 59468,12 restores the

standard set. The alternate set is also shown in Table A-4.

ASSEMBLY LANGUAGE PROGRAMMING

CBM BASIC can execute small programs written in 6502 assembly language. As-

sembly language programs execute faster and require less memory space for a given

function than the equivalent BASIC program. You might want to write an assembly

language program to be run on the CBM computer if:

1. The operation is not fast enough using a BASIC program.

2. The operation cannot be implemented in CBM BASIC.

3. The operation takes up too much memory space as a BASIC program.

4. Assembly language lends itself better to the task than the BASIC language.

Some I/O operations probably fall into this category.

An assembly language program can be loaded into memory by POKEing the

decimal values of the 6502 instructions that make up the program. There is no area

set aside for use by assembly language programs. You have to make space, either by

taking otherwise unused locations or by setting up a space in the user program area of

memory. The following are possible locations:

1. Cassette Buffers. If you do not have a second cassette unit, then the 192-byte

tape buffer for cassette #2 can be used to store an assembly language pro-

gram. The buffer #2 extents are locations 826 to 1017 (see Appendix F). In

addition, if the console cassette unit is not going to be used while the assembly

language program is operating, then the other 192-byte tape buffer for

cassette #1, at memory locations 634-825, is also available. No LOADs,

SAVEs or other tape I/O can be performed accessing the particular cassette

while its buffer is used by an assembly language program.

2. Top of Memory. Memory locations 52 and 53 contain the pointer to the top of

memory. On 8K PETs this value is 8192. You can temporarily set the top-of-

memory pointer to a lower address, thereby reserving a number of bytes from

the new pointer value to the actual top of memory for storage of an assembly

language program. To set the pointer, say, down 1000 bytes, you will need to

store the value 7192 (8192-1000) converted into low address, high address

order:

High Low

7192 10=1C18 16
- 1C 16 = 28 10 and 18 16 = 24 10

So 24 is to be stored at location 52 (low byte), and 28 is to be stored at

location 53 (high byte). The following instructions can be used:

10 AL=PEEK<52>:flH=PEEK<53>:REM SAVE CURRENT POINTER
20 POKE 52, 24: POKE 53, 28: REM TOP OF CORE = 7192

100 POKE 52,AL:P0KE 53,RH:REM RESTORE POINTER
110 END

352 PET/CBM Personal Computer Guide

3. You may find usable locations in the BASIC Statement Area. You may
create a block of dummy DATA statements and use those locations. There

are generally a few locations free between the end of the program and the

beginning of the Variable Area. But you must be very careful that your assem-

bly language program and the BASIC interpreter do not get in each other's

way.

The CBM BASIC interpreter can be used to load an assembly language pro-

gram into the selected area of memory. The process is a rudimentary one, consisting

of POKEing the decimal equivalents of the 6502 machine language instructions. To
get the instructions in decimal, write your program in 6502 assembly language

(reference manuals are listed in Appendix D), hand assemble it into hexadecimal, and
then convert the hexadecimal codes to decimal. Commodore's Terminal Interface

Monitor stores the hexadecimal codes directly. However, with the Monitor you must
load the assembly language routine separately from the BASIC program, whereas by

POKEing you can load the assembly language routine as part of executing the main pro-

gram written in BASIC. DATA statements are used to define the machine language

codes, which can be subsequently READ into the program and passed to a POKE loop.

Control is transferred to an assembly language program in one of two ways: the

SYS or the USR function, which are more or less interchangeable. SYS is geared to

turning control over to an assembly language program. USR is a true function reference

that allows a value to be sent to the called assembly language routine and a value

returned by it to the main program.

The assembly language program must return control to BASIC via a Return-

from-Subroutine (RTS) assembly language instruction.

SYS

SYS is a system function that transfers program control to an independent sub-

system.

Format:

SYS(address)

where:

address is a numeric constant, variable, or expression representing the starting

address at which execution of the subsystem is to begin. The
value must be in the range < address < 65535.

Unlike other functions, SYS can be specified alone in a direct or program state-

ment.

Example:

'6\'S<.S26':> In immediate mode transfer control of the system to the 6402 assembly
language program beginning at memory location 826
(the 2nd cassette buffer)

55 bVS(.Bi;'6.:' Same as above but executed in program mode. On return, execution

proceeds with the first statement following the SYS statement

i26 SVS<R+14> Transfer control of the system to the computer address A+14

SYS is the assembly language subroutine equivalent of GOSUB, but with the

important difference that the safeguards built in to CBM BASIC to protect the system

from user program errors are no longer operable. The system will tend to crash even

Chapter 7: System Information 353

more frequently while debugging assembly language programs than it does debugging

BASIC programs.

Use the RTS assembly language instruction to return to BASIC.

Values can be passed between the BASIC program and the SYS subroutine using

PEEKs and POKEs.

USR

USR is a system function that passes a parameter to a user-written assembly

language subroutine whose address is contained in memory locations 1 and 2 and

fetches a return parameter from the subroutine.

Format:

Example:

USR(datan)

where:

105 fl=UsR';6S)

datan is the numeric parameter value passed to the subroutine

Displays in immediate mode the value returned by the USR
subroutine when passed a value of 60

Same as above but in program mode

>I0 IF SRCXK4 GOTO 50

5 1 8 SM=USR '. XFl > +USR i 3 . 4 ;> +SuR (V ':> +tt

Before making a USR reference, the beginning address of the assembly

language subroutine must be placed into memory locations 1 and 2. For example, if

the subroutine is located in the cassette #2 area, you would include the instructions:

10 POKE 1,58 Low High

20 POKE 2,3 826 10=033A 16=3A 16=58 10 and 03 16=3 10

The parameter value is passed to the USR subroutine in system locations that

function as a floating point accumulator (FAC) for all functions. The FAC resides in

six bytes, from memory locations 94 to 99 (5E
16
-63

16
). The FAC has the following for-

mat:

Memory location: 94 95 96 97 98 99

1
I

11

1

1

Fraction

Sign

FAC
Floating

Point

Exponent

-0 = positive

-1 = negative

Like floating variables, the exponent is stored in excess 128 format and the frac-

tion is normalized with the high-order bit of byte 95 (the high-order byte of the fraction)

set to 1. The difference between this format and the variable format is that the high-

drder 1 bit is present in byte 95 of the FAC. An extra byte (99) is used to hold the sign of

the fraction. (This is done for ease of manipulation by the functions that use the FAC.)

354 PET/CBM Personal Computer Guide

The USR subroutine must fetch the value passed to it from the FAC locations.

It must deposit the value being returned into the FAC before terminating. If the USR

subroutine does not alter the FAC, then the same value is returned to the program as

was passed from it.

RANDOM ACCESS FILES

Random access files are created by directly addressing diskette data blocks and

memory buffers.

Diskette data blocks each occupy a single sector. Random access files directly

address diskette data blocks via their actual track and sector address. Diskette memory

buffers, likewise, are directly addressed and assigned to logical file secondary addresses.

(Recall that each diskette unit has sixteen 256-byte memory buffers.)

Random access files are created by using a number of subroutines that directly

access the diskette surface and memory buffers. These are the same subroutines used to

implement sequential and relative file logic; however, your program creates the field/

record/file structure, whatever it may be.

You should not use random access files unless you are a very experienced pro-

grammer. You will be working at the same level as the people who designed the sequen-

tial and relative file logic found in standard CBM BASIC. These individuals are profes-

sional system programmers. Unless you are an equally experienced programming pro-

fessional, you are unlikely to have much success with the information presented in this

section.

Diskette random access is programmed using PRINT* statements with

appropriately coded text strings in their parameter list. The PRINT* statements

access the command channel, via secondary address 15. Random access logical files

are opened with specific diskette memory buffers assigned to each logical file via its sec-

ondary address. The PRINT* statement parameter list uses the secondary address to

identify logical files and assigned buffers.

The following standard OPEN statement format is used when opening a random

access logical file:

100 OPEN lf,dev,sa,"#[bu]"

where:

If is the logical file number specified in the command channel OPEN statement

dev is the device number (usually 8)

sa is the secondary address, which should have a value between 2 and 1

4

bu, if present, is the buffer number allocated to the specified secondary address. There are

sixten 256-byte buffers; the first three buffers are used by the disk operating

system. Buffer numbers 3 through 1 5 are therefore available. If bu is not specified,

then the next available buffer is assigned to the secondary address

You can execute a GET* statement immediately after opening a random access

file in order to determine the assigned buffer number. However, the GET* statement

must be executed before any other input or output statement accesses the logical file.

Here is an example program:

5 REM ASSIGN BUFFER 5 TO SECONDARY ADDRESS 4, USED BV LOGICAL FILE 2

1@ OPEN 2,8,4,"#5"
20 PRINT DS* : REM CHECK I/O OPERATION STATUS
30 GET#2.A*:PRINT ASC<fi$>:REM DISPLAY THE BUFFER NUMBER TO CHECK OPERATION

40 PRINTDS*:REM RECHECK I/O STATUS
50 CLOSE 2
60 STOP

Chapter 7: System Information ^55

Random access file commands are subsequently issued using PRINT* statements

with the following general format:

10 OPEN lf.8,15

20 PRINT* If, "parameter"

parameter identifies the random access file operation, parameter has two parts: a

command and a parameter list. The command has a long form which must end with a

colon, or a short form, in which case the parameter list is assumed to begin at the fourth

character position of the string. Parameters can be separated by comma, space or skip

characters. The following abbreviations are used to describe parameters:

sa The secondary address specified in the data logical file OPEN
statement

dr The diskette drive number (0 or 1

)

t The diskette track number

s The sector number within the selected track

p The buffer pointer, or character position selector, which may
have a value between and 255

adl The low-order byte of a memory address

adh The high-order byte of a memory address

nc Number of characters. This number must be between 1 and 34

data A data string with nc characters

adl, adh and nc must be specified as parameters of CHR$ functions. For example,

if adl has the value 123, it must be specified as CHRS023).

Block Read

This statment reads any diskette sector into a buffer. The BLOCK READ state-

ment has the following format:

PRINT* If, "BtOCK-READ:sa,dr,t,s"

PRINT* If, "B-Rsa,dr,t,s"

The following example opens logical file 2, assigning buffer 5 to secondary address

4, then reads sector of track 18 on drive 1 into buffer 5:

1@ REM OPEN LOGICAL FILE 2, ASSIGNING BUFFER 5 TO SECONDARY ADDRESS 4

20 OPEN 2,3,4, "#5"

30 REM READ SECTOR OF TRACK 18 ON DRIVE 1 INTO BUFFER 5

40 OPEN 15,3,15
50 PRINT#15,"B-R4, 1,13,0"
60 REM DISPLAY THE BUFFER CONTENTS TO PROVE THAT DATA WAS FETCHED
70 REM DISPLAV 256 BVTE BUFFER AS 8 ROWS OF 32 NUMBERS PER ROW
75 PR INT" 3";

80 FOR 1=1 TO 8
98 FOR J=l TO 32
100 GET#2,A*:IF A*="" THEN 109
110 PRINT ASCiA*).:
120 NEXT J
130 PRINT
140 NEXT I

150 CLOSE 2
160 CLOSE 15
170 STOP

_J5<S PET/CBM Personal Computer Guide

Block Write

This statement writes the contents of a buffer to a specified sector. It has the

following format:

PRINT* If ,"BLOCK-WRITE:sa,dr,t,s"

or PRINT* If,"B-Wsa,dr,ts"

The following statements open logical file 2, assigning buffer 8 to secondary

address 7. The contents of buffer 8 are written to sector 10 of track 35 on drive 0:

200 OFEN 2,8,7,"#3"
210 OPEN 15,8 15
220 REM STATEMENTS THAT WRITE TO BUFFER 8 MUST FOLLOW HERE
300 PRINT#15, "B-W7, 0,35,0"
310 CLOSE 2
320 CLOSE 15
336 STOP

Block Execute

This statement is the same as a BLOCK READ, except that data read from the

sector is assumed to be an assembly language program's object code. As soon as the pro-

gram is loaded it is executed. The program must end with a Return-from-Subroutine

instruction (RTS) . It has the following format:

PRINT* If,"BLOCK-EXECUTE:sa,dr,t,s"

or PRINT* lf,"B-Esa,dr,t,s"

Buffer Pointer

This statement moves the pointer from the beginning of the buffer to any

character position within the buffer. It has the following format:

PRINT* lf,"BUPFER-POINTER:sa,p"

or PRINT* lf,"B-Psa,p"

The statement on line 55, shown below, if added to the BLOCK READ example,

moves the buffer pointer to character 24:

55 PRINT#15, "B-P4,26"

Block Allocate

This statement updates the Block Availability Map (BAM) to show how the cur-

rent block has been used. The block availability map is written to the diskette when the

logical file is closed. If the requested block (sector) has already been allocated, the error

channel identifies the next available block, while specifying a NO BLOCK error. If no

blocks are available, then 00 is returned for the track and sector parameters. It has the

following format:

PRINT* If ,"BLOCK-ALLOCATE:dr,t,s"

or PRINT* lf."B-Adr,t.s"

Memory Write

The MEMORY WRITE statement writes data into a diskette buffer. It has the

following format:

PRINT* lf,"M-W"adl/adh/nc/data

Chapter 7: System Information 357

Table 7-2. Starting Address for Model 2040 and Model 8050
256-Byte Diskette Buffers

Model 2040/8050
Buffer

No. Hexadecimal Decimal

1000 4096

1 1100 4352

2 1200 4608
3 1300 4864
4 2000 8192

5 2100 8448

6 2200 8704

7 2300 8960
8 3000 12288

9 3100 12455

10 3200 12800
11 3300 13056

12 4000 13312

13 4100 13568
14 4200 13824
15 4300 14080

Diskette memory buffer addresses are summarized in Table 7-2 for the Model

2040 and 8050 diskette drives. Note that buffer addresses are somewhat scattered.

Suppose the four data bytes 32, 0, 17 and 96 are to be written into buffer 2 of a

Model 2040 diskette drive. From Table 7-2, note that this buffer starting address is

1800
10

. Therefore the following PRINT* statement is needed:

108 PRINT#15, "MH^CHR*<00>CHR*<18>CHR$<32>CHR*<0>CHR*a7>CHR*<96:>

Memory Read

This statement allows a byte of data to be read from a diskette buffer. It has the

following format:

PRINT* lf,"M-R"adl/adh

The address of the byte to be read is specified by the parameter list using CHR$
functions. The byte itself is then read using a GET* statement, via the control channel

(15). Subsequently an INPUT* statement will not execute correctly until a random

access statement other than a MEMORY READ, MEMORY WRITE or MEMORY
EXECUTE has been executed.

For example, the following statements read a data byte from buffer address 1808:

100 PRINT#15, "M-R"CHR*<8>CHR*a8>
110 GET#15,a*

Memory Execute

This statement executes an assembly language subroutine. It has the following

format:

PRINT* lf,"M-E"adl/adh

adl and adh are the decimal low- and high-order halves of the subroutine starting

address in diskette buffer memory. The subroutine which gets executed must end with

the following Return-from-Subroutine instruction:

RTS-*60

358 PET/CBM Personal Computer Guide

Table 7-3. Random Access File User Statements

User Alternate

Designation User Designation
Function

U1 UA BLOCK-READ replacement

U2 UB BLOCK-WRITE replacement

U3 UC jump to $1300
U4 UD jump to $1303
U5 UE jump to $1306
U6 UF jump to $D008
U7 UG jump to $D00B
U8 UH jump to $D00E
U9 Ul jump to $D0D5
U: UJ power up $E18E

User

There are ten special "user" statements. The first two substitute for BLOCK
READ and BLOCK WRITE; seven are JUMP TO subroutines, while the eighth enters

the power-up routine. User statements are summarized in Table 7-3. For U3 through

U9 see the revision 3 memory map given in Appendix F in order to identify the routines

jumped to.

For Ul and U2 use the following format:

PRINT* lf"Ux;sa,dr.t,s"

x is 1 for Ul or 2 for U2.

Chapter 8

CBM BASIC

This chapter describes the syntax for all CBM BASIC statements and functions.

Statements are described first, listed in alphabetic order; then functions are described,

also in alphabetic order.

This chapter serves as a reference for all statements and functions. Chapters 4, 5

and 6 describe programming concepts; these three chapters also give examples of state-

ments and functions used in programs.

Immediate and Program Modes

Most statements can be executed in immediate or program mode. Unless other-

wise stated, you can assume that a statement can be used in both modes. Exceptions are

identified. Some statements can be used in one mode, but not the other; other state-

ments can be used in both modes, but only one mode is practical.

BASIC Revisions

All statements and functions are identified as available with BASIC 4.0 only, or

with all versions of BASIC. Statements and functions are cross referenced where an "all

versions" statement or function has a BASIC 4.0 equivalent. All BASIC 4.0 statements

need DOS 2.0, or higher releases of DOS.

560 PET/CBM Personal Computer Guide

Format Conventions

Consistent syntax is used when defining the format for all statements and func-

tions. The following conventions have been adopted:

UPPER CASE

lower case

[]

line number

Upper case words and letters must appear exactly as shown.

Lower case words and letters are variable; the exact wording or

value is supplied by the programmer.

Braces indicate a choice of items; braces do not appear in an actual

statement.

Brackets indicate that the parameter is optional; brackets do not

appear in an actual statement.

Ellipses indicate that the preceding item can be repeated; ellipses do
not appear in actual statements.

A beginning line number is implied for all stored statements.

Terms are used as follows in statement and function format definitions:

bno

byte

condition

constant

c$

<CR>
d

data

datan

data$

Dd

destfile

dev

the way in which a data file is to be accessed. Use WRITE for a write

access and READ for a read access.

the character number within a record of a relative data file.

a numeric constant variable or expression which evaluates to a num-
ber in the range through 255.

a relational term or expression of the type:

<
>

'< =
1 > =

[expression]

If the expression to the right of the relational operator is absent

then = is implied,

any numeric or string constant,

a character string or CHR$ function representing a comma, carriage

return, or other legal separator in a PRINT* statement

parameter list,

a carriage return character,

a destination diskette drive number (0 or 1).

any constant, variable or expression,

any numeric constant, variable or expression,

any string constant, variable or expression.

a destination diskette drive number which must be specified as DO or D1

.

the name of a destination file,

a physical unit device number (see Table 8-1).

Table 8-1. Physical Device Numbers

Device Number Device

Keyboard

1 (default) Cassette tape unit # 1

2 Cassette tape #2
3 Video display screen

4 Printer

5-7 IEEE port devices

8 Diskette unit

9-30 IEEE port devices

31-255 Currently unassignable

Chapter 8: CBM BASIC
361

Table 8-2. Secondary Address Codes

Device
Secondary

Address Code
Operation

CBM Cassette

Tape Units

(default)

1

2

Open for read

Open for write

Open for write and end-of-file

(EOF) tape mark

Write end-of tape (EOT) mark when

file is closed

CBM Line

Printer

(default)

1

2

3

4

5

6

7*

8*

9"

10*

Normal Print

Print under format statement control

Store the formatting data

Set number of lines per page

Enable printer format diagnostic messages

Define a programmable character

Set spacing between lines

(Model 2022 only)

Select lower-case

Select upper-case

Turn off Unit 4
Reset

CBM Diskette

Unit

1

2-14

15

Not defined

Not defined

Open for Read/Write as specified

Access parameter

* New printer ROMs only

diskname

dr

Ds

<ESC>
expression

filename

Ivv

If

line

line;

Ly

memadr

message

newname

nvar

oldname

ON Uz

rno

<RVS>
s

sa

sourcefile

statement

type

var

var(sub)

vv

W

the name assigned to a disk.

a diskette drive number (0 or 1).

a source diskette drive number which must be specified as DO or D1

.

the escape key or character.

an arithmetic expression containing any combination of operators,

numeric constants and variables,

any file name,

a diskette number which may range between 00 and 99, and must

be written as I00 through I99.

a logical file number (an integer between and 255).

any basic program line number,

one of many basic program line numbers,

relative file record length, y is the number of characters per record; it

may range between 1 and 254. The record length must be

specified using the format L1 through L254.

any memory address. Memory addresses may range from to 65536.

any text string enclosed in quotes,

a new data file name,

any numeric variable name,

any old data file name,

the standard BASIC 4.0 means of specifying a physical unit number.

ON U must be present; z is the physical number. If this

parameter is absent physical unit number 8 (the standard disk

drive physical number) is assumed,

the record number within a relative data file,

the unshifted REVERSE key.

a source diskette drive number (0 or 1).

a secondary address (see Table 8-2).

the name of a source data file,

any BASIC statement,

data file type specification. SEQ represents a sequential file, PRG represents

the program file, and USR represents a random access file,

any numeric integer or string variable,

any subscripted integer, numeric, or string variable,

a diskette number (between 00 and 99).

a parameter specifying the sequential file being opened for a write access.

362 PET/CBM Personal Computer Guide

BASIC STATEMENTS

APPEND* (BASIC 4.0)

The APPEND* statement opens an existing sequential diskette file and allows

new data to be added at the end of the file. (See also PRINT* COPY.)

Format:

APPEND#lf,"filename"[,QdKON Uz

]

The APPEND* statement opens sequential data file "filename" on the diskette

on drive d and positions file pointers beyond the current end of file. Subsequent

PRINT* statements referencing logical file If can then write additional data, which gets

appended to the end of the file. If no disk drive is specified (d is absent) drive is

assumed.

Example:

?lPPEHD#l . "CflLC" Open sequential file "CALC" as logical file # / on drive 0. Write

?RINT#1 .. M variable A contents to the end of the file

FlPPENB#3 ..
" TALK " .. B

1

Open sequential file "TALK" as logical file # 3. The string " 123" is

PR I NT#3 . " 1 23 " added to the end of the file

BACKUP (BASIC 4.0)

The BACKUP statement duplicates an entire diskette. The duplicate and original

have the same header, disk name, identification number, directory, and files. (See also

PRINT* DUPLICATE.)

Format:

BACKUP Ds TO Dd [ON Uz]

The diskette in drive s is duplicated. The duplicate diskette is generated in drive d.

Duplicating the entire diskette takes a couple of minutes.

Example:

BACKUP D8 TO HI Duplicate contents of diskette in drive to diskette in drive 1

BACKUP Dl TO D0 Duplicate contents of diskette in drive 1 to diskette in drive

Caution: All files on the diskette must be properly closed before the diskette is

backed up.

CLOSE

The CLOSE statement closes a logical file. (See also DCLOSE.)

Format:

CLOSE If

The CLOSE statement closes logical file If. If If is not present, all open logical files

are closed by BASIC < 3.0, but BASIC 4.0 gives a syntax error.

Chapter 8: CBM BASIC 363

Every file should be closed after all file accesses have been completed. An open

logical file may be closed only once. The particular operations performed in response to

a CLOSE statement depend on the open file's physical device and the type of access that

occurred. For details see Chapter 6.

Example:

CLOSE 1 Close logical file 1

CLOSE 14 Close logical file 1

4

CLR

The CLR statement sets all numeric variables to zero and assigns null values to all

string variables. All array space in memory is released. This is equivalent to turning the

CBM computer off, then turning it back on and reloading the program into memory.

CLR closes all logical files that are currently open within the executing program.

Format:

CLR

A program will continue to run following execution of a CLR statement providing

the effects of the CLR statement's execution do not adversely effect program logic.

Example:

18@ CLR

CMD
The CMD statement sends to physical unit 4 (the printer) all output that would

have gone to the display. Output goes to the printer, instead of the display, until a

PRINT* statement specifying the same logical file number is executed. At least one

PRINT* statement must follow a CMD statement.

Format:

CMD If

The CMD statement assigns a line printer output channel to logical file If. After

execution of a CMD statement, PRINT and LIST both print data instead of displaying it.

See Chapter 6 for a discussion of line printer programming.

Example:

The following sequence uses CMD to print program listings.

OPEN 5 , 4 Open logical file 5 selecting the printer

CMH 5 Direct subsequent output to the printer

_ I ST Print the program listing

F'RIHT#5 Print a carriage return and deselect the printer

CLOSE 5 Close logical file S

j64 PET/CBM Personal Computer Guide

COLLECT (BASIC 4.0)

The COLLECT statement recreates a Block Availability Map (BAM) for all files

on the diskette. Improperly closed files are closed or deleted.

Format:

COLLECT [DdKON Uy]

The diskette on drive d is collected. If the Dd parameter is absent, drive is

assumed.

Example:

COLLECT Collects space on diskette in last drive accessed

COLLECT DO Collects space on diskette in drive

COLLECT DI Collects space on diskette in drive J

CONCAT (BASIC 4.0)

The CONCAT statement concatenates two data files. (See also PRINT* COPY.)

Format:

CONCAT[Ds,]"sourcefile" TO [Dd,]"destfile"[ON Uz]

The contents of sourcefile on the diskette in drive s is concatenated onto the end

of destfile on the diskette in drive d. The file named sourcefile does not change. The file

named destfile keeps its original contents, with the contents of sourcefile tacked on at

the end. If drive numbers s and/or d are not specified, then drive is assumed.

Caution: Files must be closed before they are concatenated.

Example:

CONCAT "FIRST" Tu "SECOND" The contents of file FIRST is concatenated on the end of

file SECOND. Both files are on the diskette in drive

CONCAT D

1

,
" ABC " TO L0 .•

" XVZ " The contents of file ABC on the diskette in drive I is

concatenated on the end of file XYZ on the diskette

in drive

CONT

The CONT statement, typed at the keyboard in immediate mode, resumes pro-

gram execution after a BREAK.

Format:

CONT

A break is caused by execution of a STOP statement or an END statement that

has additional statements following it. Depressing the STOP key while a program is run-

ning also causes a break. Program execution continues at the exact point where the

break occurred.

Pressing the RETURN key in response to an INPUT statement will also cause a

break. Typing CONT after this break re-executes the INPUT statement.

Example:

CONT

Chapter 8: CBM BASIC 365

COPY (BASIC 4.0)

The COPY statement copies a single diskette file, or all the files on a diskette. (See

also PRINT* COPY.)

Format:

COPY [Ds,]["sourcefile"l TO [Dd,]["destfile"][ON Uz]

If the COPY statement is used to copy a single file, then the file named sourcefile

on the diskette on drive s is copied to a new file named destfile on the diskette in drive d;

the file names sourcefile and destfile must be present, but if Ds and/or Dd are absent,

drive is assumed.

The COPY statement can also be used to copy all files from the diskette in one

drive to the diskette in the other drive. To use the COPY statement in this fashion, file

names sourcefile and destfile must be absent, but drive numbers Ds and Dd must be

present and different.

If the name of a source file that is being copied exists on the destination diskette,

then the copy will be aborted at that file, and a FILE ALREADY EXISTS error will be

reported.

COPY does not modify any files previously on the destination diskette.

Caution: A file must be closed before it is copied.

Example:

COPV D 1 TO IiiZi Copy all files on the diskette in drive D 1 to the

diskette in drive DO. (DOS 2.0 and higher

re/eases only)

COPY D i, "MAJOR" TO Dl., "MINOR" Create MINOR file on the diskette in drive D1

DATA

The DATA statement declares constants that are assigned to variables by READ
statements.

Format:

DATA constant[,constant,constant,...,constant]

DATA statements may be placed anywhere in a program.

The DATA statement specifies either numeric or string contents. String constants

are usually enclosed in double quotation marks; the quotes are not necessary unless the

string contains graphic characters, blanks (spaces), commas, or colons. Blanks, com-

mas, colons and graphic characters are ignored unless the string is enclosed in quotes. A
double quotation mark cannot be represented in a DATA string; it must be specified

using a CHR$(34) function.

The DATA statement is valid in program mode only.

Example:

10 DATA NAME. "CD. " Defines two string variables

58 DATA 1E6< -10.XVZ Defines two numeric variables and one string variable

See the READ statement for a description of how DATA statement constants are

used within a program.

366 PET/CBM Personal Computer Guide

DCLOSE (BASIC 4.0)

DCLOSE closes a single file or all the files currently open on a disk unit. (Also see

CLOSE.)

Format:

DCLOSE#lf [ON Uz]

The DCLOSE statement closes logical file If. If the logical file number is not

specified, all currently open diskette files are closed.

Example:

DCLOSE Closes all open diskette files

BCL0SE#1 Closes the diskette file identified by logical file 1

DCLOSE ON !J8 Closes all open diskette files on physical unit #8

DEF FN

The DEF function (DEF FN) allows special purpose functions to be defined and

used within BASIC programs.

Format:

DEF FNnvar(arg)=expression

Floating point variable nvar identifies the function, which is subsequently

referenced using the name FNnvar(data). (If nvar has more than five letters a syntax

error is reported. A syntax error is also reported if nvar is a string or integer variable.)

The function is specified by expression, which can be any arithmetic expression,

containing any combination of numeric constants, variables, and/or operators, arg is a

dummy variable name which can (and usually does) appear in expression.

arg is the only variable in expression which can be specified when FNnvar(data) is

referenced. Any other variables in expression must be defined before FNnvar(data) is

referenced for the first time. FNnvar(data) evaluates expression using data as the value

for arg.

The entire DEF FN statement must appear on a single 80 character line; however

a previously defined function can be included in expression, so user-defined functions

of any desired complexity can be developed.

The function name var can be re-used, and therefore redefined by another DEF
FN statement appearing later in the same program.

The DEF FN definition statement is illegal in immediate mode. However, a user-

defined function that has been defined by a DEF FN statement in the current stored

program can be referenced in an immediate mode statement.

Chapter 8: CBM BASIC 36 7

Example:

10 DEF FNC<R:>=fr*Rt2 Defines a function that calculates the circumference of a circle. It

takes a single argument R, the radius of the circle, and returns a

single numeric value, the circumference of the circle

?FNC < 1 > Prints 3.1411 59265 (the value of n)

fl=FNC <. 1 4 > Assigns to A the value calculated by the user-defined function FNC,

using an argument of 14

55 IF FNCOO>6@ GOTO 15S Uses the value calculated by the user-defined function FNC as a

branch condition. The current contents of variable X is used

when calculating the user-defined function

DIM

The Dimension statement DIM allocates space in memory for array variables.

Format:

DIM var(sub)[,var(sub),. . ..var(sub)]

The DIM statement identifies arrays with one or more dimensions as follows:

var(subj) Single-dimension array

var(sub;,subj) two-dimension array

var(sub;,subj,sub
k) Multiple-dimension array

See Chapter 4 for a complete description of arrays.

Arrays with more than eleven elements must be dimensioned in a DIM state-

ment. Arrays with eleven elements or less (subscripts through 10 for a one-dimen-

sional array) may be used without being dimensioned by a DIM statement; for such

arrays, eleven array spaces are automatically allocated in memory when the first array

element is encountered in the program. An array with more than eleven elements must

occur in a DIM statement before any other statement references an element of the

array.

If an array is dimensioned more than once, or if an array having more than eleven

elements is not dimensioned, a ?REDIM'ED ARRAY error occurs and the program is

aborted.

A CLR statement allows a DIM statement to be reexecuted.

Example:

10 DIM FK3> Dimension a single-dimensional array of 3 elements.

45 DIM X$<44.. 2> Dimension a two-dimensional array of 88 elements.

1000 DIN MLKX.. 3*E>.. N< 22; Dimension a two-dimensional array of X times 3*5 elements and a

single dimensional array of 12 elements. X and B must have

been assigned values before the DIM statement is executed.

DIRECTORY (BASIC 4.0)

The DIRECTORY statement displays directories for diskettes in one or both

drives. The word CATALOG may be used instead of DIRECTORY (also see

LOAD"$dr").

368 PET/CBM Personal Computer Guide

Format:

DIRECTORYlDdMON Uz]

The directory for the diskette in drive d is displayed. If the Dd parameter is absent,

directories for the diskettes in both drives are displayed.

If a selected drive contains no diskette an error status is reported.

The DIRECTORY statement is usually executed in immediate mode.

Example:

HI RECTORV Displays the directory of drive and drive 1

DIRECTORY Bl Displays the directory of drive 1

Printing a Directory

A directory can be printed instead of being displayed by opening a printer channel

before executing the DIRECTORY statement. Here is the required immediate mode

statement sequence:

OPEN 4,4 Open the printer specifying logical file 4

CMIi 4 Deflect display output to the printer

D I RECTORV Print directories for diskettes in both drives

=RINT#4
CLOSE 4

Deflect output back to the display

DLOAD (BASIC 4.0)

The DLOAD statement loads a BASIC program from a diskette into memory

(also see LOAD).

Format:

DLOAD "filename"[Dd][ON Uzl

The DLOAD statement loads program file "filename" from the diskette in drive

Dd into computer memory. If Dd is not present, drive is assumed.

Example:

DLOfiB "CflLC"

DLOfiD "TIME",D1

fl*="PR0G"
DLOFIB Fl*

DLOfiD" PROG ",B0 OH U8

Load CALC file from drive

Load TIME file from drive 1

Load PROG file from drive

Load PROG file from drive on the disk unit

Using BASIC 4.0, if you press the shifted RUN/STOP key, the next program

encountered on the diskette is loaded and run.

Chapter 8: CBM BASIC 369

DOPEN (BASIC 4.0)

DOPEN opens a data file for a read and/or write access.

Format:

DOPEN#lf,"filename"[.Ly][,DdHON Uzlt.W]

The DOPEN statement opens data file filename on the diskette in drive d, assign-

ing to it logical file number If. If d is not specified then drive is assumed. If Ly is not

present then a sequential file is assumed. The sequential file is opened for a write access

ifW is not present; it is opened for a read access if W is present.

If Ly is present then a relative file is assumed with a record length of y bytes. Rela-

tive files are opened for read or write accesses, therefore the W parameter cannot be

present.

Example:

DOPEN* 1 ..
" PR 1 2ES " Opens the sequential file named PRIZES on drive for a read access

D0PEN#6.. "SNRK:t"L30. Dl Opens the relative file named SNAKE, with a record length of 30, for

read and write accesses. The file is on drive DJ

DSAVE (BASIC 4.0)

The DSAVE statement writes a BASIC program file from memory onto a diskette

(also see SAVE).

Format:

DSAVE"filename"[,Dd][ON Uz]

The DSAVE statement saves the BASIC program currently in memory, writing it

to a new file named filename, on the diskette in drive d. If Dd is not present, drive is

assumed.

Example:

HSfiVE"TRUE" Write program file TRUE to diskette in drive

DSflVE" FALSE" , HI Write program file FALSE to diskette in drive 1

END

The END statement terminates program execution and returns the computer to

immediate mode.

Format:

END

The END statement can provide a program with one or more termination points,

at locations other than the physical end of the program. END statements can be used to

terminate individual programs when more than one program is in memory at the same

time. An END statement at the physical end of the program is optional.

The END statement is used in program mode only.

Example:

20081 EN3

3 70 PET/CBM Personal Computer Guide

FOR-NEXT STEP

All statements between the FOR statement and the NEXT statement are re-

executed the same number of times.

Format:

FOR nvar = start TO end STEP increment

[statements in loop]

NEXTInvar]

where:

nvar is the index of the loop. It holds the current loop count, nvar is

often used by the statements within the loop.

start is a numeric constant, variable or expression that specifies the

beginning value of the index.

end is a numeric constant, variable, or expression that specifies the end-

ing value of the index. The loop is completed when the index

value is equal to the end value, or when the index value is incre-

mented or decremented past the end value.

increment if present, is a numeric constant, variable, or expression that

specifies the amount by which the index variable is to be incre-

mented with each pass. The step may be incremental (positive)

or decremental (negative). If STEP is omitted the increment

defaults to 1

.

The nvar may optionally be included in the NEXT statement. A single NEXT
statement is permissible for nested loops that end at the same point. The NEXT state-

ment then takes the form:

NEXT nvar
1
,nvar2 . .

.

The FOR-NEXT loop will always be executed at least once, even if the beginning

nvar value is beyond the end nvar value. If the NEXT statement is omitted and no sub-

sequent NEXT statements are found, the loop is executed once.

The start, end, and increment values are read only once, on the first execution of

the FOR statement. You cannot change these values inside the loop. You can change

the value of nvar within the loop. This may be used to terminate a FOR-NEXT loop

before the end value is reached: set nvar to the end value, and on the next pass the loop

will terminate itself. Do not jump out of the FOR-NEXT loop with a GOTO. Do not

start the loop outside a subroutine and terminate it inside the subroutine.

FOR-NEXT loops may be nested. Each nested loop must have a different nvar

variable name. Each nested loop must be wholly contained within the next outer loop; at

most, the loops can end at the same point.

Example:

1@ FOR IN = TO 100

40 NEXT IN
100 FOR X = H + 14 TU C-64+H/2 STEP 4

150 NEXT X
60 FOR Fll =50 TO STEP -1

90 NEXT
100 FOR I = TO 10 STEP 0.5

155 NEXT
250 FOR I = 1 TO 5

260 FOR J = fi TO E

3fifl NEXT I 300 NEXT
300 NEXT I, J same as 3m NEXT _T

same as
3 , HD,T

Chapter 8: CBM BASIC 371

GET

The GET statement receives single characters as input from the keyboard.

Format:

GET var

The GET statement can be executed in program mode only.

When a GET statement is executed, var is assigned a value if numeric, or a null

value if a string. Any previous value of the variable is lost. Then GET fetches the next

character from the keyboard buffer and assigns it to var. If the keyboard buffer is empty,

var retains its or null value.

GET is used to handle one-character responses from the keyboard. GET accepts

the RETURN key as input and passes the value (CHR$(13)) to var.

If var is a numeric variable and no key has been pressed, is returned. However, a

is also returned when is entered at the keyboard.

If var is a numeric variable and the character returned is not a digit (0-9), a

7SYNTAX ERROR message is generated and the program aborts.

The GET statement may have more than one variable in its parameter list, but it is

hard to use if it has multiple parameters:

GET var,var var

Example:

10 GET C*

10 GET D

16 GET M,B,C

GET*

The GET External statement (GET#) receives single characters as input from an

external storage device identified via a logical file number.

Format:

GET#lf,var

The GET# statement can only be used in program mode. GET# fetches a single

character from an external device and assigns this character to variable var. The external

device is identified by logical file number If. This logical file must previously have been

opened by an OPEN or DOPEN statement.

GET# and GET statements handle variables and data input identically. For details

see the GET statement description.

Example:

10 GET#4, Cf : IF CS="" GOTO IS Get a keyboard character. Re-execute if no character

is present

3 72 PET/CBM Personal Computer Guide

GOSUB

The GOSUB statement branches program execution to a specified line and allows

a return to the statement following GOSUB. The specified line is a subroutine entry

point.

Format:

GOSUB In

The GOSUB statement calls a subroutine. The subroutine's entry point must

occur on line In. A subroutine's entry point is the beginning of the subroutine in a pro-

gramming sense; that is to say it is the line containing the statement (or statements)

which are executed first. The entry point need not necessarily be the subroutine line

with the smallest line number.

Upon completing execution the subroutine branches back to the line following the

GOSUB statement. The subroutine uses a RETURN statement in order to branch back

in this fashion.

A GOSUB statement may occur anywhere in a program; in consequence a

subroutine may be called from anywhere in the program.

Subroutines may be nested; that is to say subroutines may be called from within

subroutines. Twenty-six levels of nesting are allowed; that means 25 GOSUB state-

ments may be executed before the first RETURN statement.

Example:

100 GOSUB i:000 Branch to subroutine at line 2000
118 R = B*C

Subroutine branches back here

20SB Subroutine entry point

2890 RETURN Branch back to line 1 1

GOTO

The GOTO statement branches unconditionally to a specified line.

Format:

GOTO In

The GOTO statement causes program execution to branch to line In.

Example:

10 GOTO 100

Executed in immediate mode, GOTO branches to the specified line in the stored

program without clearing the current variable values. GOTO cannot reference immedi-

ate mode statements, since they do not have line numbers.

Chapter 8: CBM BASIC 373

HEADER (BASIC 4.0)

The HEADER statement formats a diskette, assigning it a disk name and iden-

tification number. (See also PRINT* PREPARE.)

Format:

HEADER "diskname",Dd[.lw][ON Uz]

When formatting a diskette the HEADER statement marks off sectors on each

track, then initializes the directory and Block Availability Map. The formatted diskette

must be in drive d. The diskette is given the name diskname and the number vv. This

name and number appears in the reverse field at the top of a diskette directory display.

The HEADER statement is usually executed in immediate mode.

The HEADER statement can be used to format a blank diskette or to reformat

and clear a used diskette. Because the changes are permanent, this command requires

caution in its use. If executed in immediate mode, the question ARE YOU SURE? is

displayed. You must respond by typing YES (CR) to continue.

If a media error occurs when the HEADER statement is executed, a ?BAD DISK
message is displayed on the screen. Media errors occur when a diskette is missing from

the drive, the write protect tab is in place, or the diskette magnetic surface is defective.

Example:

HEADER "MASTER" . B8.. 102 Prepare and format a diskette, giving it the name "MASTER"
and the number 02. The diskette is in drive

IF-THEN

The IF-THEN statement provides conditional execution of statements based on a

relational expression.

Format:

IF condition THEN statement!: statement. . .] Conditionally execute statementls)

IF condition •{ ____ t line Conditionally branch

If the specified condition is true, then the statement or statements following the

THEN are executed. If the specified condition is false, control passes to the statement(s)

on the next line and the statement or statements following the THEN are not executed.

For a conditional branch, the branch line number is placed after the word THEN, or

after the word GOTO. The compound form THEN GOTO is also acceptable.

IF A = 1 THEN 50
\

IF A = 1 GOTO 50 > Equivalent

IF A = 1 THEN GOTO 50 /

If an unconditional branch is one of many statements following THEN, then the

branch must be the last statement on the line, and it must have "GOTO line" format. If

the unconditional branch is not the last statement on the line, then statements following

the unconditional branch can never be executed.

The following statements cannot appear in an immediate mode IF-THEN state-

ment: DATA, GET, GET*, INPUT, INPUT*, REM, RETURN, END, STOP, WAIT.

374 PET/CBM Personal Computer Guide

If a line number is specified, or any statement containing a line number, there

must be a corresponding statement with that line number in the current stored program.

The CONT and DATA statements cannot appear in a program mode IF-THEN

statement.

If a FOR-NEXT loop follows the THEN, then the loop must be completely con-

tained on the IF-THEN line. Additional IF-THEN statements may appear following the

THEN as long as they are completely contained on the original IF-THEN line. However,

Boolean connectors are preferred to nested IF-THEN statements. For example, the two

statements below are equivalent, but the second is preferred.

10 IF fl* = "X" THEN IF B = 2 THEN IF C > D THEN 50
10 IF fit = "X" FIND B = 2 FIND C > D THEN 50

Example:

40@ IF X > V THEN fl = 1

500 IF M+l THEN RG = 4.5 : G0SUB 1000

INPUT

The INPUT statement receives data input from the keyboard.

Format:

INPUT -j!!*
3"10

„ UarLvar var]
(message ;

)

INPUT can be used in program mode only.

When the INPUT statement is executed, CBM BASIC displays a question mark

on the screen requesting data input. The user must enter data items that agree exactly,

in number and type, with the variables in the INPUT statement parameter list. If the

INPUT statement has more than one variable in its parameter list, then keyboard

entries must be separated by commas. The last entry must be terminated with a carriage

return:

? 1 234 < CR > Single data item response

? 1 234.567.89.NOW < CR > Multiple data item response

If "message" is present, it is displayed before the question mark, "message" can

have up to 80 characters.

If more than one but less than the required number of data items are input, CBM
BASIC requests additional input with double question marks (??) until the required

number of data items have been input. If too many data items are input, the message

$EXTRA IGNORED is displayed. The extra input is ignored, but the program con-

tinues execution.

Chapter 8: CBM BASIC 375

Example:

Statement

10 INPUT fi,B,C*

10 INPUT fi,B,C*

18 INPUT fi,B,C*

10 INPUT "f)= ";(=

Operator Response Result

?123,456, NOW A=123, B=456. C$>

?123 A=123
-456 B=456
??N0U C$="NOW"

?NOW
?REDG FROM START
?123
'45b
?789

A=123
B=456
C="789"

fl= ?123 A=123

"NOW"

Note that you must input numeric data for a numeric variable, but you can input

numeric or string data for a string variable.

Caution: If the RETURN key is pressed in response to an INPUT statement with

no preceding data entry, then program execution ceases and the computer enters

immediate mode. To restart execution type CONT in response to the READY message.

INPUT*

The Input External statement (INPUT*) inputs one or more data items from an

external device identified via a logical file number.

Format:

INPUT#lf var[,var var]

The INPUT* statement inputs data from the selected external device and assigns

data items to variable (s) var. Data items must agree in number and kind with the

INPUT* statement parameter list.

If an end of record is detected before all variables in the INPUT* statement

parameter list have received data, then an OUT OF DATA error status is generated, but

the program continues to execute.

INPUT* and INPUT statements execute identically, except that INPUT*
receives its input from a logical file. Also, INPUT* does not display error messages;

instead it reports error statuses which the program must interrogate and respond to.

Input data strings may not be longer than 80 characters (79 characters plus a car-

riage return) because the input buffer has a maximum capacity of 80 characters. Com-

mas and carriage returns are treated as item separators by the computer when processing

the INPUT* statement; they are recognized, but are not passed on to the program as

data.

INPUT* is valid in program mode only.

Example:

1000 INPUT#10,R

946 INPUT#12,A*

900 INPUT#5,B,C*

Input the next data item from logical file 10. A numeric data item is

expected; it is assigned to variable A

Input the next data item from logical file 12. A string data item is

expected; it is assigned to variable AS

Input the next two data items from logical file 5. The first data item

is numeric; it is assigned to numeric variable B. The second data

item is a string; it is assigned to string variable C$

376 PET/CBM Personal Computer Guide

LET=

The Assignment statement, LET=, or simply =, assigns a value to a specified

variable.

Format:

|
(blank)((blank) >

(LET f
var=data

Variable var is assigned the value computed by resolving data.

The word LET is optional; it is usually omitted.

Example:

10 R=2
450 C*="^"

360 M<1,3>=SGN<X>
310 XX*<I,J,K,L>="STRINGflLONG"

LIST

LIST displays one or more lines of a program. Program lines displayed by the LIST
statement may be edited.

Format:

(blank)

j line

LIST / Iine
1
-line2

'
-line

line-

The entire program is displayed in response to LIST. Use line limiting parameters

for long programs to display a section of the program that is short enough to fit on the

screen.

Example:

L IST List entire program

LIST 50 List line 50

LIST 60-100 List all lines in the program from lines 60 to 100, inclusive

LIST -140 List all lines in the program from the beginning of the program

through line 140

LIST 20000- List all lines in the program from line 20000 to the end of the program

Listed lines are reformatted as follows:

1. ?'s entered as a shorthand for PRINT are expanded to the word PRINT.
Example:

?A becomes PRINT A

2. Blanks preceding the line number are eliminated. Example:

50A=1 becomes 50A=1
100A=A+1 becomes 100A=A+1

3. A space is inserted between the line number and the rest of the statement if

none was entered. Example:

55A=B-2 becomes 55 A=B-2

Chapter 8: CBM BASIC 377

4. The line is displayed beginning at column 2 instead of column 1.

LIST is always used in immediate mode. A LIST statement in a program will list

the program, but then exit to immediate mode. Attempting to continue program execu-

tion via CONT simply repeats the LIST indefinitely.

Printing a Program Listing

To print a program listing instead of displaying it, OPEN a printer logical file and

execute a CMD statement before executing the LIST statement. Here is the necessary

immediate mode sequence:

OPEN A, 4 Open the printer specifying logical file 4

CMD 4 Deflect display output to the printer

LIST Print the program listing

PRINT#4

CLOSE 4
Deflect output back to the display

LOAD

The LOAD statement loads a program from an external device into memory.

(Also see DLOAD.)

Cassette Unit Format:

LOAD ["filename"][,dev]

The LOAD statement loads into memory the program file specified by filename

from the cassette unit selected by device number dev. If no device is specified then

device 1 is assumed by default; cassette unit 1 is then selected. If no filename is given

then the next file detected on the selected cassette unit is loaded into memory.

For cassette unit operating instructions see Chapter 2.

Example:

LORE Load into memory the next program found on cassette unit # /. If

you start a LOAD when the cassette is in the middle of a program.

the cassette will read past the remainder of the current program,

then load the next program

LOAD " " , 2 Load into memory the next program found on cassette unit # 2

LORD "EGOR" Search for the program named EGOR on tape cassette # 1 and load

it into memory.

N*="WHEE ! LS" Search for the program named WHBEILS on cassette unit # 1 and

LORD H* load it into memory.

LORD "X" Search for a program named X on cassette unit # 1 and load it

into memory

378 PET/CBM Personal Computer Guide

Diskette Drive Format:

LOAD "dr:filename",dev

The LOAD statement loads into computer memory the program file with the

name filename on the diskette in drive dr. dev. The device number for the diskette drive

unit is the value 8 in all standard CBM computer systems. If dev is not present, then the

default value is 1 which selects the primary tape cassette unit.

A single asterisk can be included instead of the filename, in which case the first

program found on the selected diskette drive is loaded into memory.

For diskette operating instructions see Chapter 2.

Example:

LOftD"0 : #'S 8 Load the first program found on disk drive

LORD "
: F IREBALL ", 8 Search for the program named FIREBALL on disk drive 0, and load it

into memory

T*="0 : METEOR" Search for the program named METEOR on disk drive and load it

LOAD T$j8 into memory

When a LOAD is executed in immediate mode, CBM BASIC automatically

executes a CLR before the program is loaded. Once a program has been loaded into

memory, it can be listed, updated, and/or executed.

The LOAD statement can also be used in program mode to build program over-

lays. A LOAD statement executed from within a program causes that program's execu-

tion to stop and another program to be loaded. In this case the CBM computer does not

perform a CLR; therefore the old program can pass on all of its variable values to the

new program.

When a LOAD statement accessing a cassette unit is executed in program mode,
LOAD message displays are suppressed unless the tape PLAY key is up (off). If the

PLAY key is off, the PRESS PLAY ON TAPE #1 message is displayed so that the load

can proceed. All LOAD messages are suppressed when loading programs from a dis-

kette in program mode.

Using LOAD to Display the Diskette Directory

The BASIC 4.0 DIRECTORY statement displays diskette directories. To display

the diskette directory using earlier releases of BASIC, you must load and list a program
file name $0 (for the diskette in drive 0) or $1 (for the diskette in drive 1).

Example:

LOAD "*0",8
SEARCH ING FOR *0
LOADING
READV
LIST

379
Chapter 8: CBM BASIC

NEW
The NEW statement clears the current program from memory.

Format:

NEW

When a NEW statement is executed, all variables are initialized to zero or null

values and array variable space in memory is released. The pointers that keep track of

program statements are reinitialized, which has the effect of deleting any program in

memory; in fact the program is not physically deleted. NEW operations are automat-

ically performed when a LOAD statement is executed.

If there is a program in memory, then you should execute a NEW statement in

immediate mode before entering a new program at the keyboard. Otherwise the new

program will overlay the old one, replacing lines if their numbers are duplicated, but

leaving other lines. The result is a scrambled mixture of two unrelated programs.

Example:

NEW

NEW is always executed in immediate mode. If a NEW statement is executed

from within a program, the program will "self destruct;" it will clear itself out.

ON...GOSUB

The ON...GOSUB statement provides conditional subroutine calls to one of

several subroutines in a program, depending on the current value of a variable.

Format:

ON byte GOSUB line, l,line2 Iinenl

ON...GOSUB has the same format as ON. ..GOTO. See the ON...GOTO statement

description for branching rules, byte is evaluated and truncated to an integer number, if

necessary.

For byte=l, the subroutine beginning at line, is called. That subroutine com-

pletes execution with a RETURN statement which causes program execution to con-

tinue at the statement immediately following ON...GOSUB. If byte -2, the subroutine

beginning with line
2
is called, etc.

,

ON...GOSUB is normally executed in program mode. It may be executed in

immediate mode as long as there are corresponding line numbers to branch to in the

current stored program.

Example:

10 ON ft GOSUB 100,200/308

380 PET/CBM Personal Computer Guide

ON...GOTO

The ON...GOTO statement causes a conditional branch to one of several points in

a program, depending on the current value of a variable.

Format:

ON byte GOTO line, [,line2 Iinen]

byte is evaluated and truncated to an integer number, if necessary.

If byte= 1, a branch to line number linej occurs. If byte= 2, a branch to line num-
ber line

2
occurs, etc.

If byte =0, no branch is taken. If byte is in the allowed range but there is no cor-

responding line number in the program, then no branch is taken. If a branch is not

taken, program control proceeds to the statement following the ON. ..GOTO; this state-

ment may be on the same line as the ON...GOTO (separated by a colon), or on the next

line.

If index has a non-zero value outside of the allowed range, the program aborts

with an error message. As many line numbers may be specified as will fit on the 80-

character line.

ON...GOTO is normally executed in program mode. It may be executed in

immediate mode as long as there are corresponding line numbers in the current stored

program that may be branched to.

Example:

48 fl=B<10 Branch to statement 100 if A is true (-1) or branch to

50 ON ft+2 GOTO 106,200 statement 200 if A is false 10)

50 X=X+1 Branch to statement 500 if X= 1, to statement 600 if X=2,
60 OH X GOTO 500,600,700 or to statement 700 if X=3. No branch is taken if X> 3.

OPEN

The OPEN statement opens a logical file and readies the assigned physical device.

(Also see DOPEN.)

Cassette Tape Format:

OPEN IfLdevlLsalL "filename"]

The file named filename on the tape cassette unit identified by dev is opened for

the type of access specified by the secondary address sa; the access is assigned the logical

file number If.

If no filename is specified then the next file encountered on the selected tape

cassette is opened. If no device is specified then device number 1 is selected by default;

this device number selects cassette unit 1. If no secondary address is specified then a

default value of is assumed and the file is opened for a read access only. A secondary

address of 1 opens the file for a write access while a secondary address of 2 opens the file

for a write access with an end-of-tape mark written when the file is subsequently closed.

OPEN 1,1

OPEN 1,1,0

OPEN 1,1,0, "DAT"

OPEN 3,1,2

OPEN 3,1,2, "PENTAGRAM"

Chapter 8: CBM BASIC 381

Example:

OPEN 1 Open logical file 1 at cassette drive # 1 (default) for a read access (default)

from the first file encountered on the tape (no filename specified)

Same as above

Same as above

Same as above but access the file named DAT

Open logical file 3 for cassette # 1. for a write with EOT (End Of

Tape) access. The new file is unnamedand will be written at the

current physical tape location

Same as above but access the file named PENTAGRAM

Disk Unit Format:

OPEN lf.dev.sa, "dr:filename,type[,accessl"

The file named filename on the diskette in drive dr is opened and assigned logical

file number If. type identifies the file as sequential (SEQ), program (PRG), or random

(USR). If the file is sequential then access must be WRITE to specify a write access or

READ to specify a read access, access is not present for a program or random access file.

An existing sequential file can be opened for a write access if dr is preceded by an

@ sign. The existing sequential file contents are replaced entirely by new written data.

dev, the device number, must be present; it is 8 for all standard disk units. If dev is

absent then a default value of 1 is assumed and the primary tape cassette unit is selected.

For a data file the secondary address sa can have any value between 2 and 14,

however every open data file should have its own unique secondary address. A sec-

ondary address of 15 selects the disk unit command channel. Secondary addresses of

and 1 are used to access program files. Secondary address is used to load a program

file; secondary address 1 is used to save a program file.

Example:

OPEN 1,8,2, "0 : DAT, SEQ, READ" Open logical file 1 on a diskette in drive 0. Read from

sequential file DA T

OPEN 5, 8, 3, " 1 : NEWFILE, SEQ, WRITE" Open logical file S on a diskette in drive 1. Write to

sequential file NEWFILE

OPEN 4,8,4, "81: NEWFILE, SEQ, WRITE" Open logical file 4 on diskette drive 1. Write to

sequential file NEWFILE replacing prior contents

See Chapter 6 for a discussion of files and file handling.

POKE

The POKE statement stores a byte of data in a specified memory location.

Format:
POKE memadr.byte

A value between and 255, provided by byte, is loaded into the memory location

with the address memadr.

Example:

10 POKE 1,A POKE value of variable A into memory at address 1

POKE 32768, ASC<"A">-64 POKE 1 (the value of ASC C'A")-64) into memory at address

32768

382 PET/CBM Personal Computer Guide

PRINT

The PRINT statement displays data; it is also used to print to the line printer.

Format:

{™NT
} data!

|;f
data, j'} data]

Print Field Formats:

Numeric fields are displayed using standard numeric representation for numbers
greater than 0.01 and less than or equal to 999999999. Scientific notation is used for

numbers outside of this range. Numbers are preceded by a sign character and are

followed by a blank character:

sign blank

number

SNNN....NN b

The sign is blank for a positive number and minus sign (—) for a negative number.
Strings are displayed without additions or modifications.

PRINT Formats:

First data item. The first data item is displayed at the current cursor position. The
PRINT format character (comma or semicolon) following the first data item specifies

the location of the second data item's display. The location of each subsequent data
item's display is determined by the punctuation following the preceding data item. Data
items may be in the same PRINT statement, or in a separate PRINT statement.

New line. When no comma or semicolon follows the last data item in a PRINT
statement, a carriage return occurs after the last data item is displayed.

Tabbing. A comma following a data item causes the next data item to be displayed
at the next default tab column. Default tabs are at columns 1, 11, 21 and 31 for a 40 col-

umn display, continuing at 41, 51, 61 and 71 for an 80 column display. If a comma pre-
cedes the first data item, then a tab will precede the first item display.

Continuous. A semicolon following a data item causes the next display to begin
immediately, in the next available column position. Numeric data always has one trail-

ing blank character. For string data, items are displayed continuously with no forced
intervening spaces.

Example:

40 PRINT B

40 PRINT fi,B,C

40 PRINT fi;B;C

48 PRINT, fi;B;C

40 PRINT "NUMBERS", fi;B;C

40 PRINT "NUM";"BER";

41 PRINT "S",A;BJC

Chapter 8: CBM BASIC 383

PRINT*

The Print External statement (PRINT#) outputs one or more data items from the

CBM computer to an external device (cassette tape unit, disk unit, or printer) identified

by a logical file number.

Format:

PRINT#lf,data;c$;data;c$;...data

Data items listed in the PRINT# statement parameter list are written to the exter-

nal device identified by logical unit number If.

Very specific punctuation rules must be observed when writing data to external

devices. A brief summary of punctuation rules is given below but for complete details

see Chapter 6.

PRINT* Output to Cassette Files

Every numeric or string variable written to a cassette file must be followed by a

carriage return character. This carriage return character is automatically output by a

PRINT# statement that has a single data item in its parameter list. But a PRINT# state-

ment with more than one data item in its parameter list must include c$ characters that

force carriage returns. For example, use CHR$(13) to force a carriage return, or a string

variable which has been equated to CHR$(13) wherever c$ appears.

PRINT* Output to Diskette Files

The cassette output rules described above apply also to diskette files with one
exception: groups of string variables can be separated by comma characters

(CHR$(44)). The comma character separators, like the carriage return separators, must
be inserted using c$. String variables written to diskette files with comma character sepa-

rators must subsequently be read back by a single INPUT* statement. The INPUT*
statement reads all text from one carriage return character to the next.

PRINT* Output to the Line Printer

When the PRINT* statement outputs data to a line printer c$ must equal

CHR$(29). No punctuation characters should separate c$ from data items as illustrated

in the PRINT* format definition.

Caution: The form ? # cannot be used as an abbreviation for PRINT*.
Using BASIC <3.0, the PRINT* statement terminates every line output with a

carriage return character. Using BASIC 4.0, this occurs only for file numbers of 127 or

less, no automatic carriage return is output. Some non-Commodore printers require a

carriage return character to be output at the end of a line. If you have such a printer,

then using BASIC 4.0, choose a file number greater than 127, or output the carriage

return as a separate terminating character.

384 PET/CBM Personal Computer Guide

Example:

100 PRINT#1 , fi Output numeric variable A and a RETURN code to logical file 1

200 PRINT#4, A* Output string variable AS and a RETURN code to logical file 4

300 PRINT#10,BJi; ", ";C* Output numeric variable B%, a comma, string variable C$, and a

RETURN code to logical file 10

1 OPEN 1,1,2 Open logical file #2 on cassette # 1 for write

20 PRINT#1 , "HI " Output HI to logical file # 1 on cassette #2

The PRINT* statement also performs a variety of disk-handling operations.

These uses of PRINT* are summarized below. BASIC 4.0 has individual statements

that perform the same operations.

Disk files must be closed before being subject to any disk-handling operation.

COPY

Use PRINT* to copy and/or merge files. (Also see BASIC 4.0 COPY and CON-

CAT statements.

Format:

PRINT #lf,"C[OPY]d:destfile=s:sourcefile[,s:sourcefile....]"

Up to four source files can be concatenated and copied to a destination file. The

source files are not changed. The source files are identified by their file name sourcefile

and drive s. If more than one source file is specified then files are concatenated in the

order in which they appear in the PRINT* statement. The newly created destination file

is identified by its file name destfile and drive d.

Example:

OPEN 1 , 8.. 15 Open the diskette command channel

PRINT#1 , "CI : FILE1=C0 : FILE0" Copy FILEO on drive to a new file named

FILE1 on drive 1

PRINT#1 , "C0 : NEWFIL=C1 : FILEfl, C0 : FILEB" A new file named NEWFIL is created on

drive Oby concatenating file FILEB on

drive at the end of file FILEA on drive I

DUPLICATE

Use PRINT* to duplicate a diskette and thus generate a backup copy of it. (See

also the BASIC 4.0 BACKUP statement.)

Format:

PRINT #lf,"D[UPLICATE]d=s"

The diskette in drive d becomes a duplicate of the diskette in drive s. Diskette

name and number are copied, along with all data files.

Before duplicating a diskette it is wise to put write protect tabs on the diskette

which is to be duplicated. Then if you put diskettes in the wrong drives, or if you mix the

source and destination drive numbers in the PRINT* statement, you will simply get a

diskette write error; you will not wipe out the diskette that you were trying to duplicate.

Chapter 8: CBM BASIC 385

Example:

OPEN 1-8-15 Open the diskette command channel

PRINT#1 - "D0=1 " The diskette in drive 1 is duplicated; the duplicate is

, generated in drive

PRIHT#1 - "DUPLICflTE0=l " Same as above

INITIALIZE

Use PRINT# to initialize a diskette before performing any operation on it. You do

not need to initialize diskettes if you are using a DOS release 2.0 or higher, and BASIC

4.0.

Format:

PRINT #file."l[NITIALIZE)[dr]

The diskette in drive dr is initialized. If the dr parameter is not present, diskettes

in both drives are initialized.

Versions of DOS preceding release 2.0 require diskettes to be initialized before

any file on the diskette is opened. BASIC 3.0 and earlier versions were used with these

revisions of DOS. DOS 2.0 and subsequent releases automatically initialize diskettes

when they are loaded into drive. BASIC 4.0 should be used with DOS 2.0 and subse-

quent releases.

You do not need to initialize a diskette after preparing it; the preparation process

also initializes the diskette.

Example:

OPEN 1(8-15 Open the diskette command channel

PRINT#1 - " I " Initialize diskettes in drives O and 1

PRINT#1 - " INITIfiLIZEl " Initialize the diskette in drive 1

NEW

Use PRINT# to prepare and format a new diskette, or to erase and reformat an

old diskette. (See also the BASIC 4.0 HEADER statement.)

Format:

PRINT #lf,"NlEW]dr:diskname,vv"

The diskette in drive dr is prepared. When a diskette is prepared, sectors are laid

out on the diskette surface. The diskette directory and Block Availability Map (BAM)
are initialized. The diskette is assigned the name diskname and the number vv.

The diskette name and number is displayed in the reverse field at the top of a

directory display.

Example:

OPEN 1-8-15 Open the diskette command channel

PR INT# 1 - "NO : NEWDfiTfl - 02 " A diskette has been prepared for use in drive 0. The diskette is given

the name NEWDATA and the number 02

jg6 PET/CBM Personal Computer Guide

When preparing an old diskette, you can specify a new diskette name, while keep-

ing the old diskette number; or you can keep the old diskette name and number. For

example, suppose a diskette has the name NEWDATA and the number 02. The follow-

ing preparation statements are legal:

OPEN 1j8;15 Open the diskette command channel

PRINT#1 / "NEW0" Prepare an old diskette in drive 0. Keep its old name and number.

PRINT#1 > "Nl ' NEWDISK" Prepare an old diskette in drive I. Rename the diskette

NEWDATA but keep the old diskette number

PRINT#1 , "Nl : NEWDflTfi, 01 " As above but give the diskette the number 01

The following statement is illegal:

PRINT#l,"Nfj:02"

This statement is attempting to give the old diskette a new number while keeping the old

name.

RENAME

Use PRINT* to rename a diskette file. (See also the BASIC 4.0 RENAME state-

ment.)

Format:

PRINT#lf,"R[ENAME]dr:newname=oldname"

A file on the diskette in drive dr has its name changed from oldname to newname.

Example:

OPEN 1 .. S.' 15 Open the diskette command channel

PRINTil, "Rl BF)CKUP=CURRENT" The file on the diskette in drive 1 which was named
CURRENT is renamed BACKUP

SCRATCH

Use PRINT* to scratch one or more files on a diskette. (See also the BASIC 4.0

SCRATCH statement.)

Format:

PRINT#lf,"Sdr:filename[,dr:filename]"

A single PRINT* statement can delete one file, many files or all files, on a single

diskette, or on both diskettes.

To scratch one or more files, specify the drive number and file name for each file

that is to be scratched.

When a number of similarly named files are to be scratched, use the asterisk (*)

and question mark (?) characters to name the files.

The asterisk (*) is used to scratch a number of files whose names have the same

beginning characters. Enter the common beginning file name characters, followed by an

asterisk. For example the name "FILE*" will scratch all files whose names begin with

the four letters FILE. The name "F*" will scratch all files whose names begin with the

letter F. The name "»" will scratch all files on the diskette. The asterisk (*) may be used

in the same way to specify names for OPEN, DOPEN and DLOAD statements.

Chapter 8: CBM BASIC 387

Use the question mark (?) in file name character positions that are allowed to

differ. For example the name "FILE7.SRC" will scratch all files named "FILEX.SCR"

where X can be any character. The name "F???NO" will scratch any file whose name

begins with an F, ends with NO and has any three characters in between. The name

F???N* will scratch any file whose name has an F in the first character position and an N
in the fifth character position.

Example:

OPEN 1 • 8 15 Open the diskette command channel

PR I NT# 1
.. " S0 : F I LENANE " Scratch the file on drive named FILENAME

PR INT# 1 , "SO •• F I LENfiME , 1 : HEWF I LE " As above but also scratch the file on drive I named NEWFILE

PR I NT# 1 ,
" S0 : F I LENRME .. & ' NEW* " As above but also scratch all files on drive whose

names begin with the letters NEW
PRINT#1 .. "SI : A???" Scratch all files on drive 1 whose names begin with A and

have a total of 4 characters in the name

PR I HT# 1
.. " S6 * " Scratch all files on the diskette in drive

VALIDATE

Use PRINT* to validate a diskette. (See also the BASIC 4.0 COLLECT state-

ment.)

Format:

PRINT #lf."V[ALIDATE][dr]"

The diskette in drive dr is validated. If the dr parameter is absent, then the dis-

kette in the most recently selected drive is validated.

When a diskette is validated, a new Block Availability Map is created for all valid

data files on the diskette. Any files that were improperly closed, or were not closed

become invalid files; they are deleted from the diskette and their diskette space is

released.

Do not validate a diskette that contains random access files; validation will erase

the random access file.

If a read error occurs during validation, the validation operation is aborted and the

diskette is left in its initial state.

A diskette must be initialized after it is validated.

Example:

OPEN 1 , 8 .. 1

5

Open the diskette command channel

PR IHT# 1 , "10" Initialize the diskette in drive

PR I HT# 1
.. " V@ "

Validate the diskette in drive O

388 PET/CBM Personal Computer Guide

READ

The READ statement assigns values from a DATA statement to variables named

in the READ parameter list.

Format:

READ vaitvar var]

READ is used to assign values to variables. READ can take the place of multiple

assignment statements (see LET=).
READ statements with variable lists require corresponding DATA statements

with lists of constant values. The data constants and corresponding variables have to

agree in type. A string variable can accept any type of constant; a numeric variable can

accept only numeric constants.

The number of READ and DATA statements can differ, but there has to be an

available DATA constant for every READ statement variable.

There can be more data items than READ statement variables, but ifthere are too

few data items the program aborts with an ?OUT OF DATA error message.

READ is generally executed in program mode. It can be executed in immediate

mode as long as there are corresponding DATA constants in the current stored program

to read from.

Example:

10 IiflTfl 1/2/3 On completion, A=1. B=2, C=3
20 R'EfiH fl/E/C

150 REHIi C*.n.F$ On completion, C$="STR", D=1 4.5, FS="TM"
166 DfiTfi STR
170 BRIM 14.5.. "TM"

RECORD (BASIC 4.0)

The RECORD statement adjusts a relative file pointer to select any byte

(character) of any record in the relative file. The RECORD statement is used before

GET#, INPUT* or PRINT* statements.

Format:

RECORD #lf.rno[,bno]

The RECORD statement selects byte number bno in record rno of the file iden-

tified by logical file If.

If the RECORD statement sets the file pointer beyond the end of the file, and a

PRINT* statement attempts to write another record, the file is extended to include

these additional records. If an INPUT* statement is executed after the RECORD state-

ment has set the record pointer beyond the last record, INPUT* will return null data

and an end of file status is generated in ST, the status word variable.

Example:

18 B0PEN#1.. "MTfiFILE",L20,6: REM RELATIVE FILE DflTflFILE HAS 20 EVTES PER RECORD
20 RECORD#1..20/6: REM SELECT THE 6TH BVTE RECORD N0. 20
30 GET#1,A$-IF R$= THEN 30: REM LORD THIS EVTE INTO fl*

40 STOP

Chapter 8: CBM BASIC 389

REM

The Remark statement (REM) allows comments to be placed in the program for

program documentation purposes.

Format:

REM comment

where:

comment is any sequence of characters that will fit on the current 80 column line.

REM statements are reproduced in program listings, but they are otherwise

ignored. A REM statement may be placed on a line of its own or it may be placed as the

last statement on a multiple statement line.

A REM statement cannot be placed ahead of any other statements on a multiple-

statement line, since all text following the REM is treated as a comment.

REM statements may be placed in the path of program execution, and they may

be branched to.

Example:

10 REM *** *************** ****
20 REM ***PROGRAM EXCfiL I BUR***
30 GOTO 55 REM BRANCH IF OUT OF DATA

RENAME (BASIC 4.0)

The RENAME statement changes the name of a file on a diskette without altering

the file. (See also PRINT* RENAME.)

Format:

RENAME[dr]"oldname" TO "newname"[ON Uz]

The file named oldname on the diskette in drive dr has its name changed to

newname. If dr is absent, drive is assumed.

If you have any trouble renaming a file, try to validate the file, then rename it.

Caution: A file must be closed before it is renamed.

Example:

RENAME "PET" TO "CBM" Rename PET file on drive 0. The new file name is CBM

RENAME Bl, "ONE" TO "TWO" Rename ONE file on drive 1 . The new file name is TWO

RESTORE

The RESTORE statement resets the DATA statement pointer to the beginning of

data.

Format:

RESTORE

RESTORE may be given in immediate or program mode.

390 PET/CBM Personal Computer Guide

Example:

19 DATA 1,2,H44
20 READ fl,B,E* A=1, B=2. B$="N44"
36 RESTORE
40 READ ;»:,V,2$ X=1, Y=2, ZS="N44"

RETURN

The RETURN statement branches program control to the statement in the pro-

gram following the most recent GOSUB call. Each subroutine must terminate with a

RETURN statement.

Format:

RETURN

Example:

100 RETURN

Note that the RETURN statement returns program control from a subroutine,

whereas the RETURN key moves the cursor to the beginning of the next display line.

The two are not related in any way.

RUN

RUN begins execution of the program currently stored in memory. RUN closes

any open files, and initializes all variables to or null values.

Format:

RUNIIine]

When RUN is executed in immediate mode, the CBM computer performs a CLR
of all program variables and resets the data pointer in memory to the beginning of data

(see RESTORE) before executing the program.

If RUN specifies a line number, the CBM computer still performs the CLR and
RESTORES the data, but execution begins at the specified line number.

RUN specifying a line number should not be used following a program break —
use CONT or GOTO for that purpose.

The RUN may also be used in program mode. It restarts program execution from
the beginning of the program with all variables cleared and data pointers re-initialized.

Example:

RUN Initialize and begin execution of the current program

RUN 1000 Initialize and begin execution of the program starting

at line 1000

Chapter 8: CBM BASIC 391

SAVE

The SAVE statement writes a copy of the current program from memory to an

external device. (Also see DSAVE.)

Cassette Unit Format:

SAVE ["filename"][,dev)[,sal

The SAVE statement writes the program which is currently in memory to the tape

cassette drive specified by dev. If the dev parameter is not present then the assumed

value is 1 and the primary cassette drive is selected. The filename, if specified, is written

at the beginning of the program. If a non-zero secondary address (sa) is specified, then

an end of file mark is written on the cassette after the saved program.

Although none of the SAVE statement parameters are required when writing to a

cassette drive, it is a good idea to name all programs. A named program can be read off

cassette tape either by its name, or by its location on the cassette tape. A program with

no name can be read off cassette tape by its location only.

The SAVE statement is most frequently used in immediate mode, although it can

be executed from within a program.

For cassette operating instructions when using the SAVE statement see

Chapter 2.

Example:

SAVE Write the current program onto the cassette in drive 1,

leaving it unnamed

SAVE "RED" Write the current program onto the cassette in drive 1,

assigning the file name of RED

A$="REB" Same as above
SAVE AS

SAVE "BLACKJACK" ..2,1 Write the current program onto the cassette in drive 2

naming the program BLACKJACK. Write and end of

file mark after the program

Diskette Drive Format:

SAVE "dr:filename",dev

The SAVE statement writes a copy of the current program from memory to the

diskette in the drive specified by dr. The program is given the name filename, dev must

be present; in all standard CBM computer systems it has the value 8. If dev is absent, a

default value of 1 is assumed and the primary cassette is selected.

The file name assigned to the program must be new. If a file with the same name

already exists on the diskette, a syntax error is reported. However a program file can be

replaced; if an @ sign precedes dr in the SAVE statement text string, then using DOS 2.0

or higher, the program replaces the contents of a current file named filename.

The diskette SAVE statement is also used primarily in immediate mode although

it can be executed out of a program.

For diskette operating instructions see Chapter 2.

392 PET/CBM Personal Computer Guide

Example:

SfiVE " : BLACKJACK " . 8 Write the current program to the diskette on drive and name the

program file BLACKJACK

SAVE "@0 : BLACKJACK " .. 8 Write the current program to the diskette on drive 0. replacing prior

contents of program file BLACKJACK

SCRATCH (BASIC 4.0)

The SCRATCH statement erases a single file from a diskette. (Also see PRINT*
SCRATCH.)

Format:

SCRATCH [Dd],"filename"[ON Uz]

The file named filename on the diskette in drive d is deleted. If the Dd parameter

is not present, drive is assumed.

The SCRATCH statement is used in immediate mode and in program mode. In

immediate mode the statement is used to perform general diskette housekeeping opera-

tions. When executed the message ARE YOU SURE? is displayed. You must key the

response YES <CR> or Y <CR>, or the file will not be scratched.

When the SCRATCH statement is executed out of a program, no prompt

messages are displayed. Temporary data files are frequently created by a program to hold

transient data that will not fit in available memory. Temporary data files should be

scratched before the program completes execution; otherwise a FILE EXISTS syntax

error will be generated when the program is run next.

Files must be closed before they are scratched. If you attempt to scratch an open
file the CBM computer may perform complex, erroneous diskette operations.

If using DOS 2.0 it is a good idea to COLLECT the diskette in immediate mode
before scratching any files (see COLLECT).

Example:

SCRATCH 1)0, " DUMMY 1

"

Scratch file DUMMY 1 on diskette drive

SCRATCH "HUMMV1" Same as above

SCRATCH Dl .. "FILE1 " Scratch FILE1 on diskette drive 1

STOP

The STOP statement causes the program to stop execution and return control to

CBM BASIC. A break message is displayed on the screen.

Format:

STOP

Example:

655 STOP Will cause the message BREAK IN 655 to be displayed

?Q?
Chapter 8: CBM BASIC

VERIFY

The VERIFY statement compares the current program in memory with the con-

tents of a program file.

Cassette Unit Format:

VERIFY ["filename"][,devl

The program currently in memory is compared with the program named filename

on the cassette in the unit specified by dev. If dev is not present, a default of 1 is

assumed and cassette unit 1 is selected. If filename is not present, the next file on the

cassette in the selected unit is verified.

You should always verify a program immediately after saving it.

The VERIFY statement is almost always executed in immediate mode. For

cassette operating instructions see Chapter 2.

Example:

VER I FV Verify the next program found on the tape

VERIFY "CLIP" Search for the program named CLIP on cassette unit * 1 . and verify it

R$= " CL I P " Same as above

VERIFY fl*

Diskette Drive Format:

VERIFY "dr:filename",dev

The program currently stored in memory is compared with the program file

named filename on the diskette in drive dr. The dev parameter must be present and in

all standard CBM computer systems it must have the value 8. If the dev parameter is

absent a default value of 1 is assumed and the primary cassette drive is selected.

In order to verify the program most recently saved, use the following version of

the VERIFY statement:

VERIFY "*",8

You should always verify programs as soon as you have saved them.

The VERIFY statement is nearly always executed in immediate mode. For

diskette operating instructions see Chapter 2.

Example:

VERIFY "*".. 8 Verify the program just saved

VER I FV " 9 : SHELL

"

, 8 Search for the program named SHELL on disk drive 0, and verify it

Cf= " : SHELL " Same as above

VERIFY C*

394 PET/CBM Personal Computer Guide

WAIT

The WAIT statement halts program execution until a specified memory location

acquires a specified value.

Format:

WAIT memadr, mask[,xor]

where:

mask is a one-byte mask value

xor is a one-byte mask value

The WAIT statement executes as follows:

1. The contents of the addressed memory location are fetched.

2. The value obtained in step 1 is Exclusive-ORed with xor, if present. If xor is

not specified, it defaults to 0. When xor is 0, this step has no effect.

3. The value obtained in step 2 is ANDed with the specified mask value.

4. If the result is 0, WAIT returns to step 1, remaining in a loop that halts pro-

gram execution at the WAIT.

5. If the result is not 0, program execution continues with the statement follow-

ing the WAIT statement.

The STOP key will not interrupt WAIT statement execution.

FUNCTIONS

CBM BASIC functions are described below in alphabetic order. Names and

abbreviations used are described at the beginning of this chapter.

A few functions are available only on CBM 8000 series computers; these func-

tions are described in the next section.

ABS

ABS returns the absolute value of a number. This is the value of the number with-

tions are described in the next section.

Format:

ABS(datan)

Example:
fl=ftBSa > Results inA= 10

R=f=lES < - 1 > Results inA=10

PRINT ABS i

X

.">
.. ABS (. V) , FIBS (

2

')

Chapter 8: CBM BASIC 395

ASC

ASC returns the ASCII code number for a specified character.

Format:

ASC(data$)

If the string is longer than one character, ASC returns the ASCII code for the first

character in the string. The returned argument is a number and may be used in

arithmetic operations. ASCII codes are listed in Appendix A.

Example:

?RSC<"fl") Prints 65

X=fiSC<"S">.
$X Prints the ASCII value of "S". which is 83

ATN

ATN returns the arctangent of the argument.

Format:

ATN(datan)

ATN returns the value in radians in the range ±17.

Example:

fl=flTN<fiG>

?180ir*flTN<fD

CHR$

CHR$ returns the string representation of the specified ASCII code.

Format:

CHR$(byte)

CHR$ can be used to specify characters that cannot be represented in strings.

These include a carriage return and the double quotation mark.

Example:

IF C*=CHR*<13) GOTO 10 Branch if CS is a carriage return ICHRS/1 3D

?CHR* <: 34 > : "HOHOHO "
: CHR* C 34 ':> Print the eight characters "HOHOHO" (where CHRS/34)

represents a double quotation mark)

COS

COS returns the cosine of the argument.

Format:

COS(datan)

396 PET/CBM Personal Computer Guide

Example:

FlG=@.25
fi=C0S<.'fiCO A is assigned the value 0.968912422

DS (BASIC 4.0)

Whenever the variable DS is referenced by any BASIC statement, an integer

number is returned specifying the status of the most recent disk access operation. See

Table 8-1 for DS interpretations.

Example:

2B IF BSO0 THEN PRINT "ERROR": STOP

DS$ (BASIC 4.0)

When the string variable named DS$ is referenced by any BASIC statement the

status of the most recent disk access is returned with the following format:

EE ERROR MESSAGE TT SS

FT -Sector

-Track

- Error message

- Error number

See Appendix B for a summary of diskette error messages.

Example:
28 IF HS>2@ THEN PRINT DS* : STOP

If DS has a value of 1, a file has been scratched; any other value less than 20 is no

error.

EXP

EXP returns the value earg
. The value of e used is 2.71828183.

Format:

EXP(argn)

argn must have a value in the range ±88.029691. A number larger than

+ 88.029691 will result in an overflow error message. A number smaller than

-88.029691 will yield a zero result.

Chapter 8: CBM BASIC 397

Example:

7EXPC0) Prints 1

?EXP< 1) Prints 2. 71828183

EV=EXF<2) Results in EV= 7.3890561

EE=EXPC50. 24) Results in EV=6.59105247E+21

?EXP< 88. 8296919) Largest allowable number, yields 1.70141 183E+38

?EXP< -88. 0296919) Smallest allowable number, yields 5.877471 76E-39

?EXP(.' 88. 029692) Out of range, overflow error message

7EXF088. 029692) Out of range, returns O

FRE

FRE is a system function that collects all unused bytes of memory into one block

(called "garbage collection") and returns the number of free bytes.

Format:

FRE(arg)

arg is a dummy argument. It may be string or numeric.

FRE can be used anywhere a function may appear, but it is normally used in an

immediate mode PRINT statement.

Example:

INT

?FRE < 1

)

Institute garbage collection and print the number

of free bytes

INT returns the integer portion of a number, rounding to the next lower signed

number.

Format:

INT(argn)

For positive numbers, INT is equivalent to dropping the fractional portion of the

number without rounding. For negative numbers, INT is equivalent to dropping the

fractional portion of the number and adding 1. Note that INT does not convert a floating

point number (5 bytes) to integer type (2 bytes).

Example:

fi= I NT < 1 . 5

)

Results in A=1

R=INT<>1.5) Results in A=-2
!»:= I NT < -a . 1

)

Results in X=-1

A caution here: Since floating point numbers are only close approximations of real

numbers, an argument may not yield the exact INT function value you might expect.

For instance, consider the number 3.89999999. The function *INT(3.89999999) would

yield a 3 answer, not 4 as would be expected:

? I HT< 3. 89999999)

398 PET/CBM Personal Computer Guide

LEFT$

LEFTS returns the leftmost characters of a string.

Format:

LEFT$(arg$,byte)

byte specifies the number of leftmost characters to be extracted from the arg$

character string.

Example:

?LEFT*< "flRG" , 2> Prints AR

fl$=LEFTt!:B*, 10.) Prints leftmost ten characters of B$ string

LEN

LEN returns the length of the string argument.

Format:

LEN(arg$)

LEN returns a number that is the count of characters in the specified string.

Example:

?LEH (.
" fiBCBEF " > Displays 6

N=LEN(C*+D$> Displays the sum of characters in strings C$ and DS

LOG

LOG returns the natural logarithm, or log to the base e. The value of e used is

2.71828183.

Format:

LOG(argn)

An ILLEGAL QUANTITY ERROR message is returned if the argument is zero

or negative.

Example:

?L0G<i:> Prints O

fl=L0Gae:> Results in A=2.30258509

R=L0GC'1E6> Results in A=1 3.81 551 06

fi=L0G';X>,'
,

L0G i; 10> Calculates log to the base 10

Chapter 8: CBM BASIC 3"

MID$

MID$ returns any specified portion of a string.

Format:

MIDSldataS.byte! [,byte2l)

Some number of characters from the middle of the string identified by data$ are

returned. The two numeric parameters byte, and byte
2
determine the portion of the

string which is returned. String characters are numbered from the left, with the leftmost

character having position 1. The value of byte
1

determines the first character to be

extracted from the string. Beginning with this character, byte
2
determines the number of

characters to be extracted. If byte
2
is absent then all characters up to the end of the string

are extracted.

An ILLEGAL QUANTITY ERROR message is printed if a parameter is out of

range.

Example:

?MID*< "PiBCDE" ,2.. 1) Prints B

?MIMC "RBCTJE" ,3j Z':> Prints CD

?MID*< " ABODE" , 3> Prints CDE

PEEK

PEEK returns the contents of the specified memory location. PEEK is the func-

tion counterpart of the POKE statement.

Format:

PEEK(memadr)

Any memory location can be PEEKed except for system locations that contain the

BASIC interpreter. These locations have been PEEK-protected to discourage examina-

tion of proprietary software. The protected area returns a PEEK value of 0. Locations of

interest that you might want to PEEK at are discussed in Chapter 7.

Example:

?PEEK <. 1) Prints contents of memory location 1

fl=PEEKC 20@0@J

POS

POS returns the column position of the cursor.

Format:
POS (data)

data is a dummy function; it is not used and therefore can have any value.

POS returns the current cursor position. If no cursor is displayed, the current

character position within a program line or string variable is returned. Character posi-

tions begin at for the leftmost character.

400 PET/CBM Personal Computer Guide

For a 40 column display POS will return a value between and 39. For an 80 col-

umn display POS will return a value between and 79.

Recall that program logic processes 80 character lines even if a CBM computer has

a 40 character display. If program logic in such a computer is processing a character in

the second half of the line, the POS function will return a value between 40 and 79, even

though the computer only has a 40 character display.

By concatenation, string variables with up to 255 characters may be generated. If

program logic is processing a long string, then the POS function will return the character

position currently being processed. Under these circumstances the POS function will

return a value ranging between and 255.

Example:

?posa>

?"ABCRBC";P0S<1>

At the beginning of a line, returns O

With a previous POS value of O, displays i

POS value of 6

RIGHT$

RIGHT$ returns the rightmost characters in a string.

Format:

RIGHT$(arg$,byte)

byte identifies the number of rightmost characters that are extracted from the

string specified by arg$.

Example:

3IGHT*<flRG,2> Displays RG

,1M*=R IGHT* <X$+ " # "
, 5) MMS is assigned the last four characters of XS, plus the

character #.

RND

RND generates random number sequences ranging between and 1.

Format:

Example:

RND(argn)

RND(-argn)

A=RND<-1>

A=RND<1)

Return random number
Store new seed number

Store a new seed based on the value -

1

Fetch the next random number in sequence

An argument of zero is treated as a special case; it does not store a new seed, nor

does it return a random number. RND(0) uses the current system time value TI to

introduce an additional random element into play.

A pseudo-random seed is stored by the function:

RNDC-TI) Store pseudo-random seed

Chapter 8: CBM BASIC 401

RND(O) can be used to store a new seed that is more truly random, by using the

following function:

RHIi (-RHD (B)) Store random seed

For a complete discussion of the RND function see Chapter 5.

SGN

SGN determines whether a number is positive, negative, or zero.

Format:

SGN(argn)

The SGN function returns +1 if the number is positive, non-zero; if the num-

ber is zero; — 1 if the number is negative.

Example:

?SGN<>6> Displays -1

?SGN(0> Displays

?SGN<44:> Displays 1

IF AX: THEN Sm=SGH<:X>

if sgn<:m:>>= e then print "positive number"

SIN

SIN returns the sine of the argument.

Format:

SIN (argn)

Example:
fi=SIN<AG>
?SIN<:45*1T/'180:) Displays the sine of 45 degrees

SPC

SPC moves the cursor right a specified number of positions.

Format:

SPC(byte)

The SPC function is used in PRINT statements to move the cursor some number

of character positions to the right. Text which the cursor passes over is not modified.

The SPC function moves the cursor rightward from whatever column position the

cursor happens to be at when the SPC function is encountered. This is in contrast to a

TAB function which moves the cursor to some fixed column measured from the left-

most column of the display. (See TAB for examples.)

402 PET/CBM Personal Computer Guide

SQR

SQR returns the square root of a positive number. A negative number returns an

error message.

Format:

Example:

SQR(argn)

fl=SQR < 4) Results in A=2
fl=SQR<4. 84) Results in A=2.2

?SQR<144E30) Displays 1.2E+16

ST

ST returns the current value of the I/O status. This status is set to certain values

depending on the results of the last input/output operation.

Format:
ST

ST values are shown in Table 8-3.

Status should be checked after execution of any statement that accesses an exter-

nal device. See Chapter 6 for a complete discussion of I/O status.

Example:

10 IF ST O0 GOTO 500 Branch on any error

50 IF ST=4 THEN '"'SHORT BLOCK"

STR$

STR$ returns the string equivalent of a numeric argument.

Format:

STR$(argn)

STR$ returns the character string equivalent of the number generated by resolv-

ing argn.

Example:

fl*=STR$<14.6> Displays 14.6

?FI*

?STR*C1E2) Displays 100

?STR*C1E10) Displays 1E+10

Chapter 8: CBM BASIC 403

Table 8-3. ST Values for I/O Devices

ST Bit

Position

ST Numeric
Value

Cassette

Tape Read

Cassette Tape
Verify and Load

IEEE Devices

Read/Write

1

2

3

4

1

2

4
8

16

Short block

Long block

Unrecoverable

read error

Short block

Long block

Any mismatch

Time out write

Time out read

5

6

7

32
64

-128

Checksum error

End of file

End of tape

Checksum error

End of tape

EOI

Device not present

SYS

SYS is a system function that transfers program control to an indepeqdent sub-

system.

Format:

SYS(memadr)

memadr is the starting address at which execution of the subsystem is to begin.

The value must be in the range0<address<65535. SYS is described in Chapter 7.

TAB

TAB moves the cursor right to the specified column position.

Format:

TAB(argn)

TAB moves the cursor to the n + 1 position, where n is the number obtained by

resolving argn.

Example:

?" QUARK"; SPC
<

' 10)j "W" These two examples show the difference between
QUARK W SPC and TAB. SPC skips ten positions from

the fast cursor location, whereas TAB skips to

the 10+ 1th position on the row
?"QUARK".;TfiBae:'.;"W"
QUARK W

Using the TAB Key

Recent CBM computers have a TAB key. This key can be used within a PRINT
statement's text string to set tabs, clear tabs, or move the cursor right to the next tab

stop.

Tabs are set and cleared using the shifted TAB key, or the CHR$(9) function. A
tab is cleared if the cursor is in a column where a tab was previously set; a tab is set

otherwise.

Tabs may be set and cleared in immediate mode or in program mode. To set or

clear tabs in immediate mode simply move the cursor to the desired screen column then

404 PET/CBM Personal Computer Guide

press the shifted TAB key. In program mode execute a PRINT statement that moves the

cursor to the required column position, then execute a shifted tab character.

Up to 80 tabs may be set. Execution of a carriage return makes tab settings perma-
nent until cleared.

The unshifted TAB key or the CHR$(137) function moves the cursor right to the

next tab column.

Example:

The following example sets tabs at columns 15, 25, and 50, then displays the

words one, two, and three at these three column positions:

PR I NT "S»PM»»»»«t»»»M*»E»»»f»»»»»»»»»»»»n"
20 PR INT " HONEIFWOirrHREE "

TAN

TAN returns the tangent of the argument.

Format:

Example:

TAN(argn)

?TflNC3.2) Displays 0.0584738547
XVCi:)=TFINa8@*iT/lS0)

Tl, Tl$

TI and TI$ represent two system time variables.

Format:

Example:

Tl Number of jiffies since current startup

Tl$ Time of day string

?TI
TI*="081000"

Usages of TI and TI$ are described in Chapter 5, under "Setting Time of Day."

USR

USR is a system function that passes a parameter to a user-written assembly
language subroutine whose address is contained in memory locations 1 and 2. USR also

fetches a return parameter from the subroutine.

Format:

USR(arg)

The USR function is described in more detail in Chapter 7.

Chapter 8: CBM BASIC 405

VAL

VAL returns the numeric equivalent of the string argument.

Format:
VAL (data $)

The number returned by VAL may be used in arithmetic computations.

VAL converts the string argument by first discarding any leading blanks. If the

first non-blank character is not a numeric digit (0-9), the argument is returned as a

value of 0. If the first non-blank is a digit, VAL begins converting the string into real

number format. If it subsequently encounters a non-digit character, it stops processing

so that the argument returned is the numerical equivalent of the string up to the first

non-digit character.

Example:

fl=VHL<"123"
NN=VflL<B*)

CBM 8000 EDITING FUNCTIONS

The CBM 8000 Computer also supports the following unique functions.

BELL

BELL rings the console bell of appropriately equipped CBM 8000 computers.

Format:

CHR$(7) or <ESCXRVS>g

The bell rings whenever BELL format characters appear in a PRINT statement

parameter list. The bell rings automatically on power-up, or when the cursor moves

through column 75 of the display. If the screen window has been narrowed using win-

dow scrolling functions, then the bell sounds when the cursor passes through the fifth

column from the right edge of the window.

Example:

100 PRINT CHR*<7>

DELETE LINE (BASIC 4.0)

Delete a line on the display. Scroll up all text below the deleted line.

Format:
CHR$(21) or <ESCXRVS>u

406 PET/CBM Personal Computer Guide

To delete a line include one of the formats illustrated above in a PRINT statement

parameter list. The line on which the cursor is currently located gets deleted. The line is

deleted on the display only; memory is not modified. This function should be used in

programs that create displays; it should not be used to erase data from memory.

Example:

PRINT ,, <HOMEXCRSRiXCRSRl><CRSRJ><ESCXRVS>U" Delete the fourth display line

ERASE BEGIN

ERASE BEGIN erases all text on the current cursor line from the beginning of the

line up to the cursor position.

Format:

CHR$(150) or <ESC><RVS>V

To access the ERASE BEGIN function, one of the formats illustrated above must
appear in a PRINT statement parameter list. The display line on which the cursor is

located is erased from the beginning of the line up to the cursor position but memory is

not modified. This function should only be used in programs that are controlling screen

displays.

Example:

1 136 PRINT THE C 20) ; CHR* < 1 50 ; Erase first 20 characters of line

ERASE END

ERASE END erases all text on the current cursor line from the cursor position up
to the end of the line.

Format:

CHR$(22)or <ESO<RVS>v

To access the ERASE END function, one of the formats illustrated above must
appear in a PRINT statement parameter list. The display line on which the cursor is

located is erased from the cursor position up to the end of the line, but memory is not

modified. This function should only be used in programs that are controlling screen dis-

plays.

Example:

100 PRINT TfiE<20)JCHR*<S2) Erase line starting at character 20

GRAPHIC

The GRAPHIC function changes the screen display from text to graphic charac-

ters.

Format:

CHR$(142) or <ESO<RVS>N

Chapter 8: CBM BASIC 407

The GRAPHIC function is enabled when one of the formats illustrated above is

encountered in a PRINT statement parameter list. The standard character set is selected

for those characters which have a graphic symbol. Also, spacing between lines is elimi-

nated to improve the quality of graphics.

The effect of the GRAPHIC function is cancelled by the TEXT function.

Example:

PRINT CHR*<142> Select graphics display

INSERT LINE

The INSERT LINE function inserts one blank line at the cursor position on the

screen display.

Format:

CHR$(149)OR <ESCXRVS>m

A line is inserted in the screen display at the current cursor position when one of

the character formats illustrated above is encountered in a PRINT statement parameter

list. The display below the inserted line is scrolled down one line; the bottom display line

is scrolled off the screen.

The insert line function modifies the screen display but does not alter memory.

This function should be used only in programs that are creating and modifying displays.

Example:

PRINT "^HOMEXCRSRp-CCRSRjiXCRSRiXESfXRVSJII" Insert a line at display line 4

SCROLL DOWN AND SCROLL UP

These two functions scroll text down one line, or up one line within a display win-

dow.

Format:

Scroll Down: CHR$(153) or <ESCXRVS>Q
Scroll Up: CHR$(25) or <ESCXRVS>q

The SET BOTTOM and SET TOP functions can be used to define a window on the

CBM computer display. Within this window the SCROLL DOWN function will scroll

text down one line; a blank line appears at the top of the window, while the bottom line

of the window is scrolled off the screen. The SCROLL UP function scrolls text up one

line within the window, scrolling the top line off the screen, while a blank line is inserted

at the bottom of the window. These two functions are enabled when they appear in a

PRINT statement parameter list.

The SCROLL UP and SCROLL DOWN functions modify the display, but do not

change memory. These two functions should only be used in programs that create dis-

plays.

Example:

IS PRINT CHRS*<25> Scroll up one line within window

408 PET/CBM Personal Computer Guide

SET BOTTOM AND SET TOP

These two functions define a window on the CBM computer display.

Format:

Set Bottom: CHR$(143]
Set Top: CHR$(15)

The SET BOTTOM function defines the bottom righthand corner of the screen.

The SET TOP function defines the top lefthand corner of the screen. In order to define

the window a PRINT statement parameter list must move the cursor to the required

bottom right and top left corners of the window and then execute the SET BOTTOM
and SET TOP functions respectively.

To cancel a window, execute a PRINT statement with two consecutive HOME
characters in its parameter list.

Example:

Suppose a display window is to be bounded by rows 5 and 15, and columns 10 and
60. The following PRINT statement would establish the required window:

: e pr int" asswMS" ; trba e :> ; chr* ; is:).:" ssfipasuwdss" , tab c 6@ > ; chr* < 1 43 >

Subsequently the following PRINT statement would cancel the window:

160 PRINT "<H0ME><H0ME>"

TEXT

The TEXT function cancels the effect of the GRAPHIC function. Characters that

have a graphic symbol in the standard character set are switched to the alternate

character set representation.

Format:

CHR$(14) or <ESO<RVS>n

The TEXT function is enabled by executing a PRINT statement with one of the
formats illustrated above in its parameter list.

Example:

100 PRINT CHR*U 4) Bnd graphics

Appendix A

CBM Character Codes

This appendix contains the following tables:

• CBM BASIC keywords (Table A-l)

• CBM ASCII 7-bit codes (Table A-2)

• CBM screen memory 7-bit codes (Table A-3)

• CBM standard and alternate character set 8-bit codes (Table A-4)

Tables A-l, A-2 and A-3 are self-explanatory; they are referred to frequently

throughout the book. The standard and alternate character sets illustrated in Table A-4

are also referred to frequently throughout the book; however, being unique to CBM
computers, information presented in this table is summarized below.

The first two columns of Table A-4 show the standard and alternate character sets

for the PET and CBM computers. The right three columns show each character's corres-

ponding ASCII code and PEEK/POKE number. The characters are arranged in ascend-

ing sequence by their CBM ASCII code number. If the character does not have a CBM
ASCII code number, as in the case of reverse characters, they are arranged in ascending

sequence of PEEK/POKE number. Many characters appear twice because they have two

CBM ASCII code numbers.

Standard Character Set. The standard character set is in effect when the PET

2001 computer is powered up, or when a value of 12 is poked into memory location

59468 by a POKE 59468,12 statement on a PET or CBM computer. The standard

character set has upper-case alphabetics, numbers, graphic characters and special sym-

bols.

410 PET/CBM Personal Computer Guide

Alternate Character Set. The alternate character set is in effect when the CBM
computer is powered up, or when a value of 14 is poked into memory location 59468 by
a POKE 59468,14 statement on a PET or CBM computer. The alternate character set

has upper- and lower-case alphabetics, numbers, and some special symbols.

CBM ASCII Code. ASCII stands for American Standard Code for Information
Interchange. Commodore Business Machines developed its own ASCII code for the
CBM Computer in order to include its unique characters.

The ASCII code column (and Table A- 2) shows both the decimal and hex-
adecimal CBM ASCII codes for each character. To find a character's ASCII code col-

umn, find the desired character in the character column, then look across the chart for

the corresponding CBM ASCII code. When using the ASC() or CHR$() function refer

only to the decimal ASCII number.
The last portion of the chart, the reverse characters, do not have CBM ASCII

codes. Therefore they are arranged by their PEEK/POKE numbers.
PEEK/POKE. The PEEK/POKE number is the number used when POKEing a

character to the screen. It also represents the number of the character returned when
PEEKing into memory to see what character is contained in a specified memory loca-

tion. The PEEK/POKE numbers do not appear in strict ascending sequence until the
reverse characters portion of the chart. At this point, the chart is arranged in ascending
PEEK/POKE order because the reverse CBM characters lack CBM ASCII numbers, and
can only be referenced with PRINT or PEEK/POKE statements.

Appendix A: CBM Character Codes 411

Table A-1 . CBM BASIC Keyboard Codes

Code Character/ Code Character/ Code Character/ Code Character/

(decimal) Keyword (decimal) Keyword (decimal) Keyword (decimal) Keyword

End of line 70 F 141 GOSUB 181 INT

1-31 Unused 71 G 142 RETURN 182 ABS

32 space 72 H 143 REM 183 USR

33 I 73 1 144 STOP 184 FRE

34 " 74 J 145 ON 185 POS

35 * 75 K 146 WAIT 186 SQR

36 $ 76 L 147 LOAD 187 RND

37 % 77 M 148 SAVE 188 LOG

38 & 78 N 149 VERIFY 189 EXP

39 79 150 DEF 190 COS

40 (80 P 151 POKE 191 SIN

41) 81 Q 152 PRINT* 192 TAN

42 • 82 R 153 PRINT 193 ATN

43 + 83 S 154 CONT 194 PEEK

44 84 T 155 LIST 195 LEN

45 _ 85 U 156 CLR 196 STR$

46 86 V 157 CMD 197 VAL

47 / 87 w 158 SYS 198 ASC

48 88 X 159 OPEN 199 CHR$

49 1 89 Y 160 CLOSE 200 LEFTS

50 2 90 z 161 GET 201 RIGHTS

51 3 91 [162 NEW 202 MID$

52 4 92 \ 163 TAB(203 Unused

53 5 93] 164 TO 204 CONCAT*

54 6 94 t 165 FN 205 DOPEN*

55 7 95 166 SPC(206 DCLOSEt

56 8 96-127 Unused 167 THEN 207 RECORD*

57 9 128 END 168 NOT 208 HEADER*

58 129 FOR 169 STEP 209 COLLECT*

59 130 NEXT 170 + 210 BACKUP*

60 < 131 DATA 171 _ 211 COPY*

61 132 INPUT* 172 • 212 APPEND*

62 > 133 INPUT 173 / 213 DSAVE*

63 ? 134 DIM 174 t 215 CATALOG*

64 @ 135 READ 175 AND 216 RENAME*
65 A 136 LET 176 OR 217 SCRATCH*
66 B 137 GOTO 177 > 218 DIRECTORY*

67 C 138 RUN 178 = 219 ?SYNTAX ERROR*
68 D 139 IF 179 < 220-254 Unused

69 E 140 RESTORE 180 SGN 255 7T

* For E ASIC 4.0 onh

412 PET/CBM Personal Computer Guide

Table A-2. ASCII Standard 7-Bit Codes

E
6

1 1

1 1 1

1

1

1"l
' b

3 2 T 1 4 1 1 1 1

NUL DLE SP @ P P
1 SOH DC1 I 1 A Q a

1 STX DC2 "
2 B R b

1 1 ETX DC3 # 3 C S
1 EOT DC4 $ 4 D T d t
1 1 ENQ NAK % 5 E U e
1 1 ACK SYN & 6 F V f
1 1 1 BEL ETB • 7 G w g

BS CAN (8 H X h
1 HT EM) 9 I Y y

1 LF SUB •
J z

1 1 VT ESC + K [k
1 FF FS < L \ I

1 1 CR GS — = M] m
1 1 SO RS > N A n —
1 1 1 S, US

J

/ ? - DEL

NUL Null FF :orm feed ETB End of transmission block
SOH Start of heading CR Carriage return CAN Cancel
STX Start of text SO Shift out EM End of medium
ETX End of text SI Shift in SUB Substitute
EOT End of transmiss on DLE Data line escape ESC Escape
ENQ Enquiry DC1 Device control 1 FS File separator
ACK Acknowledge DC2 Device control 2 GS Group separator
BEL Bell, or alarm DC3 Device control 3 RS Record separator
BS Backspace DC4 Device control 4 US Unit separator
HT Horizontal tabulat ion NAK Negative acknowledge SP Space
LF Line feed STN Synchronous idle DEL Delete I

VT Vertical tabulatiori

Table A-3. CBM Screen Memory 7-Bit Codes

B 61 8 1 1 1 1
1 t» 1 8 1 1 8 1 1

1 41 1 1 1 13210 1

UtlfcJU 1 <k F _
1

UDU1 1 H Q i 1 * • 1 -i.

UUlt) 1 b K 2 1

0011 1 C S t? '6 — * -|

U1UB 1 V T % 4
-

1 |

fcUWl 1 E U 'A b
1 t

U11U 1 F V & b _ X m |
0111 1 ij H 7 1 i

lUUcJ 1 H X (ci 1 <*
...

1001 I

luiu 1

i

J

i'

I »

9 1 t

i J
ltui i K L +

;
j + r

lltfU 1 L \ * <. L 5
k>

1101 1 H J - = X
1

L _!

1110 1 H T . i / ..

lin I
*-

/ ? 1
•<< *

Appendix A: CBM Character Codes
413

Table A-4. PET/CBM Standard and Alternate Character Sets (Continued)

Standard Alternate ASCII PEEK/ Standard Alternate ASCII PEEK/

Character Set Character Set POKE Character Set Character Set POKE

PET CBM PET CBM DEC HEX PET CBM PET CBM DEC HEX

00 ft ft 3 a 65 41 1

1 01 B B b b 66 42 2

2 02 C c c c 67 43 3

STOP STOP 3 03 D D d d 68 44 4

4 04 E E e e 69 45 5

5 05 F F f f
70 46 6

6 06 G C 9 g 71 47 7

7 07 H H h h 72 48 8

8 08 I I i i

73 49 9

9 09 J J i i
74 4fl 10

10 0fl K K k k 75 4B 11

11 0B L L 1 1
76 4C 12

12 0C M M m m 77 4D 13

RETURN RETURN 13 0U N N n n 78 4E 14

14 0E o o 79 4F 15

15 0F P P P P 30 50 16

IS 10 Q Q Q q 81 51 17

CRSRJ CRSR I
17 11 R R r r 82 52 18

RVS RVS 18 12 s s s s S3 53 19

HOME HOME 19 13 T T t t
84 54 20

DELETE DELETE 20 14 U U u u 85 55 21

21 15 V v v v 86 56 22
22 16 w w w w 87 57 23

23 17 ;; y. X X 88 58 24

24 18 v v v y S3 53 25

25 19 z <~ z z 90 5ft 26

26 lfl c : c c 31 5B 27

27 IE \ V, 32 5C 28

28 1C 1 3 3 3 93 5D 29

CRSR— CRSR— 29 m t t t f 94 5E 30

30 IE «- *- *- *- 95 5F 31

31 IF 36 60 32

ft » c V 32 20 32 i ! I
I 97 61 33

t 1
33' 21 33 < " •n » 93 62 34

i. " 34 22 34 # * # * 99 63 35

35 23 35 * * * * 100 64 36

* * 36 24 36 "« ' "•* " • 101 65 37

ym 37 25 37 * * 4 & 102 66 38

& & 38 26 38 1 03 67 39
39 27 39 ^ >; < c 1 04 68 40

< (40 28 40) > ;, ;> 105 69 41

) y 41 29 41 * * * * 106 6ft 42

* * 42 2R 42 + + + + 107 SB 43
+ + 43 2B 43 1 08 6C 44

44 2C 44 - - - - 199 6D 45
_ _ 45 2D 45 110 6E 46

46 2E 46 / / / 111 6F 47
",

/ 47 2F 47 m 112 70 48
48 30 48 l i 1 1 113 71 49

1 1 43 31 49 2 2 .- 2 114 72 50

2 2 50 32 50 3 3 3 3 115 73 51

3 3 51 33 5i 4 4 4 4 116 74 52

4 4 52 34 52 5 5 5 5 117 75 53

5 5 53 35 53 6 6 6 6 118 76 54

6 6 54 36 54 7 7 7 7 113 77 55

7 7 55 37 55 8 8 8 s 120 78 56

8 56 38 56 9 9 9 9 121 79 57

9 3 57 39 57 122 7R 58
58 3fl 58 123 7B 59
59 3B 59 < < < < 124 7C 60

^ < 60 3C 60 = = = = 125 7D 61

_ = 61 3D 61 > > > > 126 7E 62

^ > 62 3E 62 ? ? 7 ? 127 7F 63
:1. "s 63 3F 63 128 30 64

@ @ 64 40

414 PET/CBM Personal Computer Guide

Table A-4. PET/CBM Standard and Alternate Character Sets (Continued)

Standard

Character Set

Alternate

Character Set

Shifted RETURN Shifted RETURN

CRSRJ

RVS Off

CLR Screen

INSERT

Shifted U

I I

CRSR1

RVS Off

CLR Screen

INSERT

Shifted b

I I

/ /

DEC HEX

129 SI
13S
131
132
133
134
135
136
137
13S
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
130
131
182
183
184
135
186
187
188
139
190
191

192

82
83
84
85
86
87
88
S3
Sft

8B
8C
SB
8E
8F
96
91
92
93
94
95
36
97
98
93
9fl

9B
9C
3D
9E
3F
(=10

(=11

FI2

03
fl4

(=15

FI6

A7
AS
(=19

flft

FIB

AC
KB
RE
HF
B0
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BR
BB
BC
BD
BE
BF
C0

PEEK/
POKE

65
66
e?
68
69
70
71

72
73
74

se
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
93
39
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
113
119
120
121
122
123
124
125
126
127
64

Standard

Character Set

PET CBM
* *

r r

r
l

Alternate

Character Set

n n
E E
F F

N

W

+

P p
Q Q
P R

T T
U U

W

DEC HEX

193 CI
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

213
214
215
216
217
218
219
220
221

224
225

228
229
230
231
232

234
235
236

240
241

C2
C3
C4
C5
C6
C?
C8
C9
Cfl

CB
CC
CD
CE
CF
B0
Dl
D2
D3
B4
D5
US
D7
ns
B9
Dfi

HE
DC
DD
HE
BF
EO
El
E2
E3
E4
E5
E6
E7
E8
E9

PEEK/
POKE

65
66
67
63
69
70
71

72
73
74
75
76

80
81
82
83
84
85
36
87
S3
89

9-J

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112
113

-r 242 114
-1 243 1-15

1 244 116
1 245 117

1 246 IIS— 247 119
— 248 120
_ 249 121
J 250 122

251 123
252 124

J 253 125
254 126

ss 255 1<27

Appendix A: CBM Character Codes 415

Table A-4. PET/CBM Standard and Alternate Character Sets (Continued)

Standard Alternate ASCII PEEK/ Standard Alternate ASCII PEEK/

Character Set Character Set POKE Character Set Character Set POKE

PET CBM PET CBM DEC HEX PET CBM PET CBM DEC HEX

H B H H 128 M « ™ 192
sl :l

r
a a -^ 129 ;j :3 Sl SI 193

is >a b b 130 ii ii iS i:3 194
a a c c 131 5 a a 195
id m d d 132 a m 11] 196
a a a e 133 a a 197
a si f f 134 9 £ J j 198
a a g g 135 II » » a 199
:i :: h h 136 II ! :i :i 208
it it i i 137 a » •• 11 201
u II i i 138 K B w u 202
a a k k 139 M M a si 203

1 1 140 a 204
SI il m m 141 9 B il il 205
81 il verse' n n y reversal 1 42 6 B il il 206
W .« 143 « w :« 207
d jj P P 144 il Si 208
w :si q q 145 n n JO M 209
91 S) r r 146 *! si j 210
a a s s 147 71 71 a a 211
it ii t t 148 II II 1 11 212
* ii u u 149 m k Ml .11 213
W A V V 150 is c ffl A 214
91 91 w w 151 » Sl il 91 215
* SI X X 152 :a :a * a 216
H fl y v 153

."J n 217
at 4

1.
z 154 -t n sl sl 218

II l« 14 M 155 i :: :: 219
a a a B 156 B « a a 220
11 II II II 157 11 11 11 11 221
ii ii ii ii 158 m m £ £ 222
S S 3 3 159 k ». ES S 223

160 B B 224
II II 11 11 161 1 I 225
ui m ww 162 - - - - 226
::i :;i :;; ::i 163i 227
S3 S3 !i 53 164 228
« * * a 165 229
a a a m 166 m « ^ a 230MM MM 167 231MM MM 168 R « ss ss 232an la a 169 a a a ^ 233
:3 ;i :3 is 170 234
3 3 3 3 171 : i: : 1: 235

Ml MM 172 r r r r 236
3 3 3 3 173 i: i: Ii Ii 237

M MM 174 a n a a 238
« B m V 175 239
a m a a 176 r. r. r. r. 240
ii ii it ii 1 7r »

2m
"* 241

a -a m /si 178 3 3 * 242
« ffl si <l 179 :i :i SI SI 243
SI *l *! *l 180 244
a n am 181 i 1 1 245
a a a a 182 i 1 1 246
* * MM 183 247
a a a a 184 248
a a a a 135 " 249

186 a a m 250
a u a h 187 t i 1 1 £51
a SI MM 188 1. b la h 252
3 3 3 3 189 il si Si 3 253as a is 190 •1 * el el 254
« M (3 rS 191 f »• •• * 255

Appendix B

CBM Error Messages

Error messages may be displayed in response to just about anything you key in at

the CBM keyboard or when your program is running. Both the CBM BASIC interpreter

and the operating system issue error messages, listed separately below.

Whenever the CBM BASIC interpreter detects an error, it displays a diagnostic

message, headed by a question mark, in the general form:

?message ERROR IN LINE number

where message is the type of error (listed alphabetically below) and number is the line

number in the program where the error occurred (not present in immediate mode).

Following any error message, BASIC returns to immediate mode and gives the READY
prompt.

CBM BASIC error messages are listed below, with two descriptive

paragraphs: The first describes the cause of the error, and the second discusses possible

ways of correcting the error.

BASIC ERROR MESSAGES
Error Message Cause and Suggested Remedies

BAD SUBSCRIPT An attempt was made to reference an array ele-

ment that is outside the dimensions of the array.

This may happen by specifying the wrong number

of dimensions (different from the DIM state-

ment), using a subscript larger than specified in

the DIM statement or using a subscript larger

than 10 for a non-dimensioned array.

418 PET/CBM Personal Computer Guide

CAN'T CONTINUE

DIVISION BY ZERO

FORMULA TOO COMPLEX

ILLEGAL DIRECT

ILLEGAL QUANTITY

NEXT WITHOUT FOR

Correct the array element number to remain

within the original dimensions, or change the

array size to allow more elements.

A CONT command was issued, but program

execution cannot be resumed because the pro-

gram has been altered, added to or cleared in

immediate mode, or execution was stopped by an

error. Program execution cannot be continued

past an error message.

Correct the error. The most prudent course is to

type RUN and start over. However, you can

attempt to reenter the program at the point of

interruption by a directed GOTO.
An attempt was made to perform a division

operation with a divisor of zero. Dividing by zero

is not allowed.

Check the values of variables (or constants!) in

the indicated line number. Change the program so

that the divisor can never be evaluated to zero or

add a check for zero before performing the divi-

sion.

This is not a program error but indicates that a

string expression in the program is too intricate

for CBM BASIC to handle.

Break the indicated expression into two or more
parts and rerun the program (this will also tend to

improve program readability).

A command was given in immediate mode that

is valid only in program mode. The following are

invalid in immediate mode: DATA, DEF FN,
GET, GET*, INPUT, INPUT*.

Enter the desired operation as a (short) pro-

gram and RUN it.

A function is passed one or more parameters

that are out of range. This message also occurs if

the USR function is referenced before storing the

subroutine address at memory locations 1 and 2.

Check the ranges given in Chapter 8 for the

function in question. Change the program to be

sure that the argument will always be within

range, or add a check before the function

reference to make sure that the argument is

allowed. If USR error, insert statements to POKE
the subroutine address before the USR reference.

A NEXT statement is encountered that is not

tied to a preceding FOR statement. Either there is

no FOR statement or the variable in the NEXT
statement is not in a corresponding FOR state-

ment.

Appendix B: CBM Error Messages 419

OUT OF DATA

OUT OF MEMORY

OVERFLOW

REDIM'D ARRAY

REDO FROM START

The FOR part of a FOR -NEXT loop must

be inserted or the offending NEXT statement

deleted. Be sure that the index variables are the

same at both ends of the loop.

A READ statement is executed but all of the

DATA statements in the program have already

been read. For each variable in a READ state-

ment, there must be a corresponding DATA ele-

ment.

Add more DATA elements or restrict the num-
ber of READs to the current number of DATA
elements. Insert a RESTORE statement to reread

the existing data. Or add a flag at the end of the

last DATA statement (any value not used as a

DATA element may be used for the flag value)

and stop READing when the flag has been read.

The user program area of memory has been

filled and a request is given to put more in, e.g.,

add a line to the program. This message may also

be caused by multiple FOR - NEXT and /or

GOSUB nestings that fill up the Stack; this is the

case if ?FRE(0) shows considerable program area

storage left.

Simplify the program. Pay particular attention

to reducing array sizes. It may be necessary to

restructure the program into overlays.

A calculation has resulted in a number outside

the allowable range, i.e., the number is too big.

The largest number allowed is 1.70141 184E+38.

Check your calculations. It may be possible to

eliminate this error just by changing the order in

which the calculations are programmed.

An array name appears in more than one DIM
statement. This error also occurs if an array name
is used (given a default size of 11) and later

appears in a DIM statement.

Place DIM statements near the beginning of the

program. Check to see that each DIM statement is

executed only once. DIM must not appear inside

a FOR - NEXT loop or in a subroutine where

either may be executed more than once.

This is a diagnostic message during an INPUT
statement operation and is not a fatal error. It

indicates that the wrong type of data (string for

numeric or vice versa) was entered in response to

an INPUT request.

Reenter the correct type data. INPUT will con-

tinue prompting until an acceptable response is

entered.

420 PET/CBM Personal Computer Guide

RETURN WITHOUT GOSUB

STRING TOO LONG

SYNTAX

TYPE MISMATCH

UNDEF'D STATEMENT

UNDEF'D FUNCTION

A RETURN statement was encountered with-

out a previous matching GOSUB statement being

executed.

Insert a GOSUB statement or delete the

RETURN statement. The error may be caused by

dropping into the subroutine code inadvertently.

In this case correct the program flow. An END or

STOP statement placed just ahead of the

subroutine serves as a debugging aid.

An attempt was made by use of the concatena-

tion operator (+) to create a string longer than

255 characters.

Break the string into two or more shorter

strings as part of the program operation. Use the

LEN function to check string lengths before con-

catenating them.

There is a syntax error in the line just entered

(immediate mode) or scanned for execution (pro-

gram mode). This is the most common error

message, and is caused by such things as misspell-

ings, incorrect punctuation, unmatched paren-

theses, extraneous characters, etc.

Examine the line carefully and make correc-

tions. Note that syntax errors in a program are

diagnosed at run time, not at the time the lines are

entered from the keyboard. You can eliminate

many syntax error messages by carefully

scrutinizing newly entered program lines before

running the program.

An attempt was made to enter a string into a

numeric Assignment variable or vice versa, or an
incorrect type was given as a function parameter.

Change the offending item to correct type.

Refer to Chapter 8 for acceptable parameter types.

An attempt was made to branch to a nonexis-

tent line number.

Insert a statement with the necessary line num-
ber or branch to another line number.

Reference was made to a user defined function

that has not previously been defined by appearing

in a DEF FN statement. The definition must pre-

cede the function reference.

Define the function. Place DEF FN statements

near the beginning of the program.

OPERATING SYSTEM ERROR MESSAGES
BAD DATA String data was input when numeric data was

expected.

Appendix B: CBM Error Messages 421

BAD DISK

DEVICE NOT PRESENT

FILE ALREADY EXISTS

FILE NOT FOUND

FILE NOT OPEN

FILE OPEN

LOAD

Correct the input data to numeric, or change

the program to accept string input.

A media failure on a HEADER command, due

to either the diskette missing from the drive, a

write protect tab, or a defective magnetic surface.

Check the disk drive to see if a diskette is pro-

perly inserted. Remove write protect tab if pre-

sent. If magnetic surface is defective, use a

different diskette (BASIC 4.0).

No device on the IEEE 488 Bus was present to

handshake an attention sequence. The Status

function will have a value of 2, indicating a

timeout. This message may occur for any I/O

command.
If the device identification is in error, correct

the OPEN (or other) statement. If the statement

is correct, especially if it has worked before, check

the addressed device for malfunction, misconnec-

tion, or power off.

The name of the source file being copied with

the COPY statement already exists on the

destination diskette.

Delete the file on the destination diskette

before attempting to COPY, or use a different dis-

kette as the destination diskette.

The filename given in the LOAD or OPEN
statement was not found on the specified device.

Check that you have the correct tape or diskette

in the device. Check the filenames on the tape or

diskette for possible spelling error in the program

statement.

An attempt was made to access a file that was

not opened via the OPEN statement.

Open the file.

An attempt was made to open a file that has

already been opened via a previous OPEN state-

ment.

Check the logical file number (first parameter

in the OPEN statement) to be sure a different

number is used for each file. Insert a CLOSE
statement if you want to reopen the same file for a

different I/O operation.

An unacceptable number of tape errors were

accumulated on a tape load (more than 31) that

were not cleared on reading the redundant block.

This message is issued in connection with the

LOAD command (see Chapter 4).

422

NOT INPUT FILE

NOT OUTPUT FILE

VERIFY ERROR

PET/CBM Personal Computer Guide

An attempt was made to read from a tape file

that has been opened for output only.

Check the READ* and OPEN statement

parameters for correctness. Reading requires a

zero as the third parameter of the OPEN state-

ment (this is the default option).

An attempt was made to write to a tape file that

has been opened for input only.

Check the PRINT* and OPEN statement

parameters for correctness. Writing to a file

requires a 1 (or a 2 if you want an EOT at the end

of the file) as the third parameter in the OPEN
statement.

The program in memory and the specified file

do not compare. This message is issued in connec-

tion with the VERIFY command (see Chapter 8).

DOS ERROR MESSAGES

REQUESTING ERROR MESSAGES
To request error messages under BASIC 4.0, execute a PRINT statement to

display numeric variable DS or string variable DS$.

DS$ displays four parameters as follows:

ERROR MESSAGE

Sector accessed

Track accessed

Type of error

Error number

Using BASIC <3.0 you cannot access variables DS or DS$. To examine error

status, you must OPEN a logical file specifying physical unit 8 with secondary

address IS. You must then input four string variables and display them. This may be

illustrated as follows:

10 OPEN 1,8,15

20 INPUT* 1, A$, B$, C$, D$
30 PRINT A$,B$,C$,D$

40 CLOSE 1

A$, is the error message number, BS is the error message, C$ is the track number, and

D$ is the sector number.

Table B-l includes the track number and sector number for all DOS errors.

Appendix B: CBM Error Messages 423

Table B-1. DOS Error Messages

Error

Number Error Message Track Sector

(0

» s,
3 %
3 S
<n e
5

00
01

OK
FILES SCRATCHED

00
FILES

00
00

V)

o

HI

o
(0

tr

20
21

22
23
24
27

READ ERROR (Block header not found)

READ ERROR (No synch character)

READ ERROR (Data block not present)

READ ERROR (Checksum error in data block)

READ ERROR (Byte decoding error)

READ ERROR (Checksum error in header)

T
T
T
T
T
T

S

s

s

s

s

s

(0

O

«

5

25
26
28
29

WRITE ERROR (Write-verify error)

WRITE PROTECT ON
WRITE ERROR (Long data block)

DISK ID MISMATCH

T
T
T
T

s
s

s

s

(A

o

u]

X
(0

c

1/1

30
31

32
33
34
39
50
51

52

SYNTAX ERROR (General syntax)

SYNTAX ERROR (Invalid command)
SYNTAX ERROR (Long line)

SYNTAX ERROR (Invalid file name)

SYNTAX ERROR (No file given)

SYNTAX ERROR (Invalid DOS command)
SYNTAX ERROR (Record not present)

SYNTAX ERROR (Overflow in record)

SYNTAX ERROR (File too large)

00
00
00
00
00
00
00
T
T

00
00
00
00
00
00
00
s
s

vt

o

UJ

©

il

60
61

62
63
64
65
66
67

WRITE FILE OPEN
FILE NOT OPEN
FILE NOT FOUND
FILE EXISTS
FILE TYPE MISMATCH
NO BLOCK
ILLEGAL TRACK AND SECTOR
ILLEGAL SYSTEM TRACK AND SECTOR

00
00
00
00
00
T
T

T

00
00
00
00
00
s
s
s

(0

o

lij

E
o
<n>
<0

70
71

72
73
74

NO CHANNEL
DIR ERROR
DISK FULL
DOS MISMATCH
DRIVE NOT READY

00
00
00
00
00

00
00
00
00
00

READ ERRORS
Error MessageError Message

Number

20

21

Block header

not found

No synch

character

Cause of Error

The disk controller is unable to locate the

header of the requested data block. Caused by an

illegal sector number, or the header has been

destroyed.

The disk controller is unable to detect a synch

mark on the desired track. Caused by misalign-

ment of the read/write head or no diskette is pre-

sent. Can also indicate a hardware failure.

424 PET/CBM Personal Computer Guide

22 Data block The disk controller has been requested to read

not present or verify a data block that was not properly writ-

ten. This error message occurs in conjunction

with the BLOCK commands and indicates an

illegal track and/or sector request.

23 Checksum error

in data block

This error message indicates that there is an

error in one or more of the data bytes. The data

has been read into the DOS memory, but the

checksum over the data is in error. This message

may also indicate grounding problems.

24 Byte decoding The data or header has been read into the DOS
error memory, but a hardware error has been created

due to an invalid bit pattern in the data byte. This

message may also indicate grounding problems.

27 Checksum error

in header

The controller has detected an error in the

header of the requested data block. The block has

not been read into the DOS memory. This

message may also indicate grounding problems.

WRITE ERRORS
Error Message Error Message

Number

25 Write-verify

error

26 WRITE
PROTECT
ON

Cause of Error

This message is generated if the controller

detects a mismatch between the written data and

the data in the DOS memory.

This message is generated when the controller

has been requested to write a data block while the

write protect switch is depressed. Typically, this is

caused by using a diskette with a write protect tab

over the notch.

28 Long data The controller attempts to detect the synch

block mark of the next header after writing a data block.

If the synch mark does not appear within a pre-

determined time, the error message is generated.

The error is caused by a bad diskette format (the

data extends into the next block), or by hardware

failure.

29 DISK ID This message is generated when the controller

MISMATCH has been requested to access a diskette which has

not been initialized. This message can also occur if

a diskette has a bad header.

Appendix B: CBM Error Messages 425

SYNTAX ERRORS

Error Message Error Message
Number

30 General syntax

Cause of Error

The DOS cannot interpret the command sent to

the command channel. Typically, this is caused by

an illegal number of file names, or patterns are

illegally used. For example, two file names may
appear on the left side of the COPY command.

31 Invalid

command

32 Long line

33 Invalid file

name

34 No file

given

The DOS does not recognize the command.
The command must start in the first position.

The command sent is longer than 40 characters.

Pattern matching is invalidly used in the OPEN
or SAVE command.

The file name was left out of a command or the

DOS does not recognize it as such. Typically, a

quotation mark (") or colon (:) has been left out

of the command.

39 Invalid DOS An unrecognizable disk operating system corn-

Command mand was received.

50 Record not An INPUT* or GET* statement selected a

present record beyond the current end of file. This is an

error if you are attempting to read a record; it is

not necessarily an error if you are positioning to

the end of a file in order to add new records to an

old file.

51 Overflow in A PRINT* statement attempted to write more
Record than the allowed number of characters to a rela-

tive file. The terminating carriage return is

counted as one character when computing record

length.

52 File too

large

The current record position will result in disk

overflow on the next write-to-disk operation.

426 PET/CBM Personal Computer Guide

FILE ERRORS

Error Message Error Message
Number

Cause of Error

60 WRITE FILE This message is generated when a write file that

OPEN has not been closed is being opened for reading.

61 FILE NOT This message is generated when a file is being

OPEN accessed that has not been opened in the DOS.
Sometimes, in this case, a message is not gener-

ated; the request is simply ignored.

62 FILE NOT The requested file does not exist on the indi-

FOUND cated drive.

63

64

65

FILE EXISTS

FILE TYPE
MISMATCH

NO BLOCK

The file name of the file being created already

exists on the diskette.

The file type does not match the file type in the

directory entry for the requested file.

This message occurs in conjunction with the B-

A command. It indicates that the block to be allo-

cated has been previously allocated. The
parameters indicate the next higher in number
available track and sector. If the parameters are

zero (0) , then all blocks higher in number are in

use.

66 ILLEGAL An attempt has been made to access a sector

TRACK that does not physically exist. The track and/or
AND SECTOR sector number specified is outside of the allowed

range for the current diskette. Unless you are

using random access files, you should never see

this error code.

67 ILLEGAL
SYSTEM
TRACK AND
SECTOR

When accessing program or data files, an

attempt has been made to access a sector that is

reserved for use by the disk operating system.

Appendix B: CBM Error Messages 427

SYSTEM ERRORS

Error Message Error Message

Number

70 NO
CHANNEL
(available)

Cause of Error

The requested channel is not available, or all

channels are in use. A maximum of five sequen-

tial files may be opened at one time to the DOS.

Direct access channels may have six opened files.

71 DIR(ectory) The BAM does not match the internal count.

ERROR There is a problem in the BAM allocation or the

BAM has been overwritten in DOS memory. To

correct this problem, reinitialize the diskette to

restore the BAM in memory. Some active files

may be terminated by the corrective action.

72 DISK FULL Either the blocks on the diskette are used or the

directory is at its limit (152 entries).

73 DOS Data written to a diskette using any one version

MISMATCH of DOS may be read using any other version of

DOS. However, you must write to a diskette

using the same DOS version with which the dis-

kette was initialized. Error 73 is reported if you

attempt to write to a diskette using a different ver-

sion of DOS from the one which created and

initialized the diskette.

74 DRIVE NOT An attempt has been made to access the 8050

READY diskette unit with the selected drive.

Appendix C

BASIC Bibliography

Advanced BASIC. James S. Coan, Hayden Book Co., Rochelle Park, New Jersey.

BASIC. Albrecht, Finkle, and Brown, Peoples Computer Company, Menlo Park,

California, 1967.

BASIC: A Computer Programming Language. C. Pegels, Holden-Day, Inc., 1973.

Basic BASIC. James S. Coan, Hayden Book Company, Rochelle Park, New Jersey.

BASIC Programming. J. Kemeny and T. Kurtz, Peoples Computer Company, Menlo

Park, California, 1967.

Entering BASIC. J. Sack and J. Meadows, Science Research Associates, 1973.

A Guided Tour of Computer Programming in BASIC. T. Dwyer, Houghton Mifflin Com-
pany, 1973.

Hands-On BASIC with a PET. Herbert D. Peckham, McGraw-Hill Book Company, New
York, 1979.

Programming Time Shared Computers in BASIC. Eugene H. Barnett, Wiley-Interscience,

Library of Congress #72-175789.

What to Do After You Hit Return. Peoples Computer Company, Menlo Park, California

94025.

Appendix D

CBM Newsletters and References

This appendix contains a listing of CBM-related publications for CBM users who
want to seek out continuing sources of information on the CBM computer. Many of

these sources contain notices of PET/CBM user groups and activities. No endorsement

of these publications is implied.

Periodicals

Calculators/Computers Magazine, Box 310, Menlo Park, California 94025. Bimonthly.

$10.00 year. A magazine that has several PET articles in each issue.

Commodore PET Users Club Newsletter, Commodore Business Machines, Inc., 3330

Scott Blvd., Santa Clara, California 95051. Monthly. $15.00 year U.S., $25.00 year

foreign. Official Commodore newsletter in U.S.

Commodore PET Users Club Newsletter, Commodore Systems, 360 Eusten Rd., London,

England NW1 3BL. Bimonthly. £10. Official Commodore newsletter in Europe.

COMPUTE!, P.O. Box 5406, Greensboro, North Carolina, 27403. Monthly. $16.00 year

U.S., $18.00 year Canada, $20.00 year elsewhere. Each issue has a regular section on

PET/CBM products.

CURSOR, P.O. Box 550, Goleta, California 93017. Monthly. $33.00 year. A cassette

magazine — you receive a tape cassette of programs that can be loaded into the

CBM. Each cassette comes with a 2-page newsletter/program description.

MICRO, The 6502 Journal, 8 Fourth Lane, South Chelmsford, Massachusetts 01824.

Bimonthly. Single copies $1.50, $6.00 year. A magazine that has several CBM articles

in each issue. For the experienced CBM user.

432 PET/CBM Personal Computer Guide

People's Computers, 1263 El Camino Real, Box E, Menlo Park, California 94025.

Bimonthly. Single copies $1.50, $8.00 year. A magazine that has several CBM articles

in each issue.

PET Users Group Newsletter, Lawrence Hall of Science, University of California,

Berkeley, California 94720. Monthly. $4.50 for 6 integral issues, checks payable to

Regents of the University of California. Highly recommended.

Purser's Reference List of Computer Cassettes. Quarterly. Single copy $4.00 domestic,

$5.00 foreign. $12.00 year domestic, $16.00 year foreign. Extensive list of CBM pro-

grams available on cassette.

Reference Manuals

CBM Floppy Disk User Manual Model 2040, Commodore Business Machines, Inc., 3330
Scott Blvd., Santa Clara, California 95051, 1979. By the manufacturers of the CBM
computer.

CBM Printer User Manual Models 2022 & 2023, Commodore Business Machines, Inc.,

3330 Scott Blvd., Santa Clara, California 95051, 1979. By the manufacturers of the

CBM computer.

Commodore Business Computer User's Guide Series 8000, Commodore Business

Machines, Inc., 3330 Scott Blvd., Santa Clara, California 95051, 1980. By the

manufacturers of the CBM computer.

MCS6500 Microcomputer Family Programming Manual, MOS Technology, Inc., 950 Rit-

tenhouse Road, Norristown, Pennsylvania 19401. $10.00 (price may vary with loca-

tion). By the manufacturers of the 6502 microprocessor.

MCS6500 Microcomputer Family Hardware Manual, MOS Technology, Inc., 950 Rit-

tenhouse Road, Norristown, Pennsylvania 19401. $10.00 (price may vary with loca-

tion). By the manufacturers of the 6502 microprocessor.

PET and the IEEE 488 Bus (GPIB), E. Fisher and C. W. Jensen, Osborne/McGraw-Hill,
630 Bancroft Way, Berkeley, California 94710, 1980. $15.99.

PET 2001-8 Personal Computer User Manual, Commodore Business Machines, Inc.,

3330 Scott Blvd., Santa Clara, California 95051. (8K system). $9.95. By the manufac-
turers of the PET computer.

PET 2001-16, 16N, 32, 32N Personal Computer User Manual, Commodore Business

Machines, Inc., 3330 Scott Blvd., Santa Clara, California 95051. (16K and 32K
systems.) $9.95. By the manufacturers of the PET computer.

6502 Assembly Language Programming, Lance Leventhal, Osborne/McGraw-Hill, 630
Bancroft Way, Berkeley, California 94710, 1979. $16.99.

Appendix E

Conversion Tables

This appendix contains the following reference tables:

Hexadecimal-Decimal Integer Conversion

Powers of Two

Mathematical Constants

Powers of Sixteen

Powers of Ten

434 PET/CBM Personal Computer Guide

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexa-

decimal integers in the range 0-FFF and decimal integers in

the range 0-4095. For conversion of larger integers, the

table values may be added to the following figures:

Hexadecimal

01 000

02 000

03 000

04 000

05 000

06 000

07 000

08 000

09 000

0A 000

0B 000

0C 000

0D 000

0E 000

OF 000

10 000

11 000

12 000

13 000

14 000

15 000

16 000

17 000

18 000

19 000

1A000
IB 000

IC 000

ID 000

IE 000

IF 000

De

4 096

8 192

12 288

16 384

20 480

24 576

28 672

32 768

36 864

40 960

45 056

49 152

53 248

57 344

61 440

65 536

69 632

73 728

77 824

81 920

86 016

90 112

94 208

98 304

102 400

106 496

110 592

114 688

118 784

122 880

1 26 976

00

01

02

03

04

05

06

07

08

09

0A
0B

0C

0D
0E

OF

1

0000

0016

0032

0048

0001 0002

0017 0018

0033 0034

0049 0050

Hexadecimal

20 000

30 000

40 000

50 000

60 000

70 000

80 000

90 000

A0 000

B0 000

CO 000

DO 000

E0 000

FOOOO
100 000

200 000

300 000

400 000

500 000

600 000

700 000

800 000

900 000

AOO 000

800 000

COO 000

D00 000

E00 0O0

F00 000

1 000 000

2 000 000

al

131 072

196 608

262 144

327 680

393 216

458 752

524 288

589 824

655 360

720 896

786 432

851 968

917 504

983 040

1 048 576

2 097 152

3 145 728

4 194 304

5 242 880

6 291 456

7 340 032

8 388 608

9 437 1 84

10 485 760

1

1

534 336

12 582 912

13 631 488

14 680 064

15 728 640

16 777 216

33 554 432

Hexadecimal fractions may be converted to decimal fractions

as follows:

1. Express the hexadecimal fraction as an integer times

16~n
, where n is the number of significant hexadecimal

places to the right of the hexadecimal point.

0. CA9BF3 1&
= CA9BF3,

6
x 16~6

2. Find the decimal equivalent of the hexadecimal integer

CA9 BF3,
6

= 13 278 195
|Q

3. Multiply the decimal equivalent by 16~n

13 278 195

; 596 046 448 x 10"

0.791 442 096
)0

Decimal fractions may be converted to hexadecimal fractions

by successively multiplying the decimal fraction by '6.q.

After each multiplication, the integer portion is removed to

form a hexadecimal fraction by building to the right of the

hexadecimal point. However, since decimal arithmetic is

used in this conversion, the integer portion of each product

must be converted to hexadecimal numbers.

Example: Convert 0.895iq to its hexadecimal equivalent

0.895

Ml
@-320

16.

©.120
- 16

Q.920
16

0.E51 E,
6
- <3).720

B D

0003 0004

0019 0020

0035 0036

0051 0052

0005 0006 0007

0021 0022 0023

0037 0038 0039

0053 0054 0055

0064 0065 0066 0067

0080 0081 0082 0083

0096 0097 0098 0099

0112 0113 0114 0115

0128 0129 0130 0131

0144 0145 0146 0147

0160 0161 0162 0163

0176 0177 0178 0179

0192 0193 0194 0195

0208 0209 0210 0211

0224 0225 0226 0227

0240 0241 0242 0243

0068 0069 0070 0071

0084 0085 0086 0087

0100 0101 0102 0103

0116 0117 0118 0119

0132 0133 0134 0135

0148 0149 0150 0151

0164 0165 0166 0167

0180 0181 0182 0183

0196 0197 0198 0199

0212 0213 0214 0215

0228 0229 0230 0231

0244 0245 0246 0247

0008 0009 0010 0011

0024 0025 0026 0027

0040 0041 0042 0043

0056 0057 0058 0059

0072 0073 0074 0075

0088 0089 0090 0091

0104 0105 0106 0107

0120 0121 0122 0123

0136 0137 0138 0139

0152 0153 0154 0155

0168 0169 0170 0171

0184 0185 0186 0187

0200 0201 0202 0203

0216 0217 0218 0219

0232 0233 0234 0235

0248 0249 0250 0251

0012 0013 0014 0015

0028 0029 0030 0031

0044 0045 0046 0047

0060 0061 0062 0063

0076 0077 0078 0079

0092 0093 0094 0095

0108 0109 0110 0111

0124 0125 0126 0127

0140 0141 0142 0143

0156 0157 0158 0159

0172 0173 0174 0175

0188 0189 0190 0191

0204 0205 0206 0207

0220 0221 0222 0223

0236 0237 0238 0239

0252 0253 0254 0255

Appendix E: Conversion Tables 435

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued

1 2 3 4 5 6 7 8 9 A B C D E r

10 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271

11 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287

12 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303

13 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

14 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335

15 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351

16 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367

17 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

18 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399

19 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415

1A 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431

IB 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

1C 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463

ID 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479

IE 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495

IF 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

20 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527

21 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543

22 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559

23 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

24 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591

25 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607

26 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623

27 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 Q636 0637 0638 0639

2& 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655

29 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671

2A 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687

2B 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2C 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719

2D 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735

2E 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751

2F 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

30 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783

31 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799

32 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815

33 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

34 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841' 0842 0843 0844 0845 0846 0847

35 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863

36 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879

37 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

38 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911

39 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927

3A 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943

3B 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3C 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975

3D 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991

3E 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007

3F 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

436 PET/CBM Personal Computer Guide

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

i 2 3 4 5 6 7 8 9 A B C E F

40 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

41 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

42 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

44 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

45 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

46 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

48 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

49 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

4£ 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

4B 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4C 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

4C 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

4E 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

4F 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

50 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

51 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

52 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

53 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

54 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

55 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

56 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

57 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

58 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

59 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

5B 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5C 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 I486 1487

5D 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

5E 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

60 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

61 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

62 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

63 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

64 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

65 1616 1617 16.18 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

66 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

68 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

6B 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6C 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

6F 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

Appendix E: Conversion Tables 437

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

1 2 3 4 5 6 7 8 9 A B C D E F

70 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

71 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

72 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

73 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

74 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

75 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

76 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

77 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

78 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

79 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

7,4 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

7B 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7C 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

7D 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

7E 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

7F 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

80 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

81 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

82 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

83 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

84 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

85 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

86 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

87 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

88 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

89 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

8A 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

8R 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8C 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

8D 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

86 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

8F 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

90 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

91 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

92 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

93 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

94 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383

95 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

96 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415

97 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

98 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447

99 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

9A 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

9B 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9C 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511

9D 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

9E 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

9F 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

438 PET/CBM Personal Computer Guide

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

i 2 3 4 5 6 7 8 9 A B c D E r

AO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

A] 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 259!

A2 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

A3 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A4 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639

A5 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

A6 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

A7 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A8 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703

A9 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719

AA 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735

AB 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

AC 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767

AD 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

AE 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

AF 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

Bl 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847

B2 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863

B3 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B4 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895

B5 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911

B6 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

B7 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B8 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959

B9 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

BA 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990. 2991

BB 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BC 3008 3009 3010 3011 3012 30)3 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

BD 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039

BE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055

BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

CO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

CI 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103

C2 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119

C3 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C4 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

C5 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167

C6 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183

C7 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C8 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215

C9 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

CA 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

CB 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CC 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279

CD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295

CE 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 331 1

CF 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

Appendix E: Conversion Tables 439

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

1 2 3 4 5 6 7 8 9 A B C D E F

DO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

Dl 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

D2 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375

D3 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D4 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407

D5 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423

D6 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439

D7 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D8 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471

D9 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487

DA 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503

DB 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DC 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535

DD 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551

DE 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

DF 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

EO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599

El 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

E2 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631

E3 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E4 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663

E5 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

E6 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695

E7 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E8 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727

E9 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743

EA 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759

EB 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

EC 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791

EC 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807

EE 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823

EF 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855

Fl 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

F2 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887

F3 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F4 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919

F5 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935

F6 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951

F7 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F8 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983

F9 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999

FA 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015

FB 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FC 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

'FD 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063

FE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079

FF 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

440 PET/CBM Personal Computer Guide

POWERS OF TWO MATHEMATICAL CONSTANTS

Comtonl Dec in I Vol U «

4 2 0.25

8 3 0.125

16 4 0.062 5

32 5 0.031 25

64 6 0.015 625

126 7 0.007 812 5

256 8 0.003 906 25

512 9 0.001 953 125

1 024 10 0,000 976 562 5

2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25

32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5

131 072 17 0.000 007 629 394 531 25

262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812

V?

l O 10

3. 14159 26535 89793

0.31830 98861 83790

1.77245 38509 05516

1.14472 98858 49400

2.71826 18284 59045

0.36787 94411 71442

1.64672 12707 00126

0.43429 44619 03252

1.44269 50408 88963

0.57721 56649 01533

-0.54953 93129 81645

1.41421 35623 73095

0.69314 71805 59945

0.30102 99956 63981

3.16227 76601 68379

2.30258 40929 94046

Heaodeeimal Value

3.243F 6A89

0.517C CIB7

I.C5BF 89 1C

I.250D 048F

2.B7E1 5163

0.5E2D 5809

1.A6I2 98E2

0.6F2D EC55

1.7154 7653

0.93C4 67t4

-0.8CAE 9BC1

1 .6A09 E668

0.B172 17F8

0.4D10 4042

3.29BB 075C

2.4075 3777

1 048 576 20 0.000 000 953 674 316 406 25

2 097 152 21 0.000 000 476 837 158 203 125

4 194 304 22 0.000 000 238 418 579 101 562 5

8 388 608 23 0.000 000 1 19 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625

33 554 432 25 0.000 000 029 802 322 387 695 312 5

67 108 864 26 0.000 000 014 901 161 193 647 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 296 461 914 062 5

536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625

2 147 483 646 31 0.000 000 000 465 661 287 307 739 257 6'>. 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25

6 589 934 592 33 000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 «'' 913 467 407 226 562 5

34 359 738 368 35 0.000 000 000 029 103 83« 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 0)4 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5

274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25

549 755 613 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776

2 199 023 255 552

4 398 046 511 104

8 796 093 022 206

40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25

42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 4)8 860 808 014 869 689 941 406 25

35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125

70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656

562 949 953 421 312

1 125 899 906 842 624

2 251 799 813 685 248

0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
0.000 000 000 000 001 776 356 839 400 250 464 677 810 666 945 312 5

0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5

9 007 199 254 740 992 53 0.000 000 000 000 000 1 1 1 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625

36 026 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 000 013 677 767 807 814 456 755 295 395 851 135 253 906 25

144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125

288 230 376 15! 711 744 58 0.000 000 000 000 000 003 469 446 951 953 6>4 188 823 848 962 783 813 476 562 5

576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 4 1 i 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625

2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 660 868 994 201 773 602 981 !20 347 976 684 570 312 5

4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 2 16 840 434 497 100 886 801 490 560 173 988 342 285 156 25

9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

Appendix E: Conversion Tables 441

POWERS OF SIXTEEN

16"

1

n

0.10000 00000

16"

00000 00000 X 10

16 i 0.62500 00000 00000 00000 X 10"

256 2 0.39062 50000 00000 00000 X 10"

4 096 3 0.24414 06250 00000 00000 x 10"

65 536 4 0.15258 78906 25000 00000 X 10"

1 048 576 5 0.95367 43164 06250 00000 x 10"

16 777 216 6 0.59604 64477 53906 25000 X 10"

268 435 456 7 0.37252 90298 46191 40625 X 10"

4 294 967 296 8 0.23283 06436 53869 62891 x 10"

68 719 476 736 9 0.14551 91522 83668 51807 x 10"

1 099 511 627 776 10 0.90949 47017 72928 23792 X 10"

17 592 186 044 416 11 0.56843 41886 08080 14870 X 10'

281 474 976 710 656 12 0.35527 13678 80050 09294 X 10'

4 503 599 627 370 496 13 0.22204 46049 25031 30808 X 10'

72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 10'

1 152 921 504 606 846 976 15 0.86736 17379 88403 54721 X 10'

-7

-16

POWERS OF TEN
(Converted to Hexadecimal Values)

21
i

n

1.0000

10"

0000 0000 0000

A i 0.1999 9999 9999 999A

64 2 0.28F5 C28F 5C28 F5C3 X 16"

.3E8 3 0.4 189 374B C6A7 EF9E X 16"

2710 4 0.6 8 DB 8BAC 710C B296 X 16"

1 86A0 5 0.A7C5 AC47 1B47 8423 X 16"

F 4240 6 0.1 0C6 F7A0 B5ED 8D37 X 16'

98 9680 7 0.1 AD7 F29A BCAF 4858 X 16'

5F5 E 100 8 0.2 AF 3 1DC4 6118 73BF X 16"

3B9A CA00 9 0.44B8 2FA0 9B5A 52CC X 16"

2 540B E400 10 0.6 DF 3 7F67 5EF6 EADF X 16"

17 4876 E800 11 O.AFEB FFOB CB24 AAFF X 16"

E8 D4A5 1000 12 0.1 197 9981 2DEA 1119 X 16"

918 4E72 A000 13 0.1C25 C26 8 4976 81C2 X 16"

5AF3 107A 4000 14 0.2 D09 370D 4257 3604 X 16

3 8D7E A4C6 8000 15 0.480E BE7B 9D5 8 566D x 16"

23 8652 6FC1 0000 16 0.734A CA5F 6226 FOAE X 16"

163 4578 5D8A 0000 17 0.B877 AA32 36A4 B449 X 16"

DEO B6B3 A76 4 0000 18 0.1272 5DD1 D243 ABA1 X 16'

AC7 2304 89E8 0000 19 0.1 D83 C94F B6D2 AC35 X 16'

Appendix F

Variations for

Revision Level 2 ROMs

This appendix describes the differences between the Revision Level 3 ROMs, as

presented in the chapter material, and the Revision Level 2 ROMs.

Chapter 1 : STARTUP

Asterisks (*) appear in place of the pound signs (#) in the initial display line of the

Revision Level 2 ROMs:

*** COMMODORE BRSIC***

You can use this as an indicator of which ROMs your CBM computer has.

Chapter 4: ARRAYS

On the Revision Level 2 ROMs, the total number of array elements in any one

array is limited to 256. For example, for a one-dimensional array, elements may go from

to 255. For a two-dimensional array with dimension 2 in the second subscript, ele-

ments may go from (0,0), (1,0) to (127,0) or (0,1), (1,1) to (127,1), etc.

An example of programming within this restriction is given below under

"Chapter 5: Generating Random Numbers."

444 PET/CBM Personal Computer Guide

Chapter 5: DEVELOPING A PROGRAM, Interactive
Programming

In the Revision Level 2 ROMs, the system location that enables the cursor to

blink is location 548. To enable the cursor, you would use the statement:

80 POKE 548,0 Enable cursor (Revision Level 2 ROMs)

instead of:

80 POKE 167,0 Enable cursor (Revision Level 3 ROMs)

Chapter 5: RND
RND(O) is non-functional. An argument of zero returns a value that is constant,

or nearly constant, and that may vary from CBM to CBM computer.

You will have to use -TI to generate random seeds. This is the method used in all

of the examples in Chapter 5 under "Generating Random Numbers."

Chapter 5: GENERATING RANDOM NUMBERS
Do not try to use RND(-RND(0)) to generate random seeds; it will not work.

Instead, use — TI as shown in all of the examples.

The RANDOM VERSION 2 sample program in Chapter 5 will not work on the

Revision Level 2 ROMs because of the 256-element array limitation. A second version

of the program is shown below. It shows the lengths you have to go to in order to pro-

gram with the 256-element array limitation. In this program the 1000-element table is

divided into four quarters of 250 elements each.

5 REM RANDOM VERSION 2A
10 REM ******* B L A N K E T *******
20 REM RANDOM DISPLAV OF ONE
30 REM CHARACTER ENTERED FROM THE
40 REM KEYBOARD
50 REM *******************************
70 DIM T1C249>,T2'C249:>,T3<249>,T4<249:>
75 T=4 REM NUMBER OF TABLES
76 N=250 :REM NO OF ELEMENTS
80 GOSUB 200 REM INITIALIZE TABLES
90 PRINT"HIT A KEV OR <R> TO END";
95 N1=N:N2=N:N3=N:N4=N
100 GET CflF C*="" GOTO 100
105 IF C*=CHR*<13> GOTO 170
110 PR INT "IT; REM CLEAR SCREEN
120 X=RND(-TI> REM START NEW SEED
125 C=<BSC<C*>flND128>/2 OR <ASC<C*>AND63>
126 FOR L=1TO1000 REM 1 FOR EACH SPOT
127 TX=T*RND<i:> + l REM PICK A TABLE
128 ON T5i GOSUB 300,400,500.600 REM GO PICK AN ELEMENT
130 POKE A,C :REM DISPLAV CHAR
140 NEXT L
160 GOTO 95
170 END
199 REM **SUBR TO INITIALIZE TABLES**
200 FOR 1=0 TO N-l TKI>-I NEXT
210 FOR 1=0 TO N-l T2<I>=I+250NEXT
220 FOR 1=0 TO N-l T3< I 5 = 1+500: NEXT
230 FOR 1=0 TO N-l T4 < I >=1+750 NEXT
240 RETURN
299 REM **SUBROUTIh4E FOR TABLE TI**

Appendix F: Variations for Revision Level 2 ROMs 445

300 N1=N1-1
305 REM IF EMPTV, GO TO ANOTHER TABLE
318 IF NK0 THEN ON INT<3*RND< 1 > + l > GOTO 400,500,600

320 Afi=<Nl +l>*RND<0 REM PICK AN ELEM
330 A=Tl<flfi>+32768 :REM FORM POKE ADDR
340 TP=TKAJi>:TKfl?S:>=Tl<Ni:>:Tl<Nl>=TP :REM SWAP ELEMENTS
350 RETURN
393 REM **SUBROUTINE FOR TABLE T2*«
400 N2=N2-1
410 IF N2<0 THEN ON INT<3*RND< 1 >+l > OOTO 300,500,600
420 AX=<.N2+1>*RND<1>
430 A=T2<A?i> +32768
440 TP=T2<A5i> : T2<AX>=T2<N2> : T2<N2>«TP
450 RETURN
499 REM »*SUBROUTINE FOR TABLE T3*#
500 N3=N3-1
518 IF N3<0 THEN ON INT<3*RND< 1 >+l > GOTO 300,400,600
520 AJ!=<N3+1>#RND<1)
530 A=T3<AX>+32768
540 TP=T3<AX> ;T3<AX>=T3<N3> :T3<N3>=TP
550 RETURN
599 REM **SUBROUTINE FOR TABLE T4**
680 N4=N4-1
610 IF N4<0 THEN ON INT(3*RND< 1 >+l > GOTO 300,400,500
620 A>i=<N4+l>*RND<i:>
630 A=T4< By. > +32768
640 TP=T4<AX> : T4<Afi>=T4<N4> : T4<N4>=TP
650 RETURN

Chapter 6: FILES

This section is for CBM users who are having problems reading cassette data files

using the old ROMs. If your CBM has the Revision Level 2 ROMs and you intend to use

data files frequently, you should seriously consider replacing the Revision Level 2

ROMs with the Revision Level 3 ROMs, as the Revision Level 3 ROMs ensure greater

reliability when reading and writing data files.

If you do plan to use the Revision Level 2 ROMs, you must do a little extra pro-

gramming to get around these problems. When writing data to the data tape, the Revi-

sion Level 2 ROMs neglect to initialize the pointer to the start address of the cassette

tape buffer, and also fail to leave enough blank space on the tape between physical

records. 1 Consequently, when the CBM attempts to read the data back from the data

tape, the problems may result in lost or garbled data. Here are a few precautions you can

take to overcome these obstacles.

1. Initialize the pointer of the cassette buffer start address. Because the Revi-

sion Level 2 ROMs fail to initialize the start address to the cassette tape buffer before a

file is OPENed, you must be sure to do so before opening a file with a series of POKEs:

Cassette #1:POKE 243.122:POKE 244,2:OPEN 1.1,1

Cassette #2: POKE 243,58 :POKE 244,3:OPEN 2,2,1

Memory address locations 243 and 244 point to the start address of the current

tape buffer. By POKEing in the above values the pointer will be initialized properly.

2. Force interrecord gaps. The Revision Level 2 ROMs do not leave enough

blank space on the tape between physical records. When the CBM attempts to read back

the data with an INPUT* or GET*, if the physical records are too close together the

data cannot be read, resulting in read errors and lost data. To prevent this, you can force

larger gaps to be written between records by calling a routine to advance the tape each

time the cassette buffer is emptied.

446 PET/CBM Personal Computer Guide

Before forcing an interrecord gap you must detect when the cassette buffer has

written out a "physical record" or "block" of data to the tape. The buffer holds 191

characters (or 191 bytes). A full buffer is a signal that a block of data was just written to

the tape, since the contents of the buffer are dumped only after it has reached its

capacity. By detecting a full buffer, you can infer that a block of data was just written to

the tape and an interrecord gap is needed.

How to Detect a Full Buffer

When writing data out to a tape, following each PRINT* statement the length of

each data item is calculated and kept in an accumulator, which is then compared to the

buffer limit (191 characters). When the accumulator equals 191 the writing to the tape is

stopped until an interrecord gap is written on the tape. Below is a sample program:

10 POKE 243- 122: POKE 244. 2 : OPEN1 .. 1 .. 1

20 FOR X=l TO 100
30 PRINT#1,X
40 fl=LENt.STR*<X:>:> + l

50 IF <QT+fl»=191 GOSUB 1000 REM #IF BUFFER FULL CBLL SUB. TO RDVBNCE TFIPE*
60 QT=QT+I=t

70 NEXT X
80 CLOSE

1

90 END

Line 20 prints a variable. If the variable printed (in this case, X) is numeric it must
be converted to string form so the LEN function may be used to determine X's length,

as shown in line 40:

40 A=LEN(STR$(X)) + 1

One is added to the lengths of the strings to include the carriage returns that are

written on the tape following each data item. Line 50 accumulates the number of charac-

ters in the previous strings, (QT), plus A, and compares the total to 191 (the buffer

limit). If the number of characters written to the tape (QT + A) is greater than or equal

to 191 the entire buffer is written to the tape, and it is time to force an interrecord gap by
calling the subroutine at 1000. However, if QT+A is less than 191 (QT+ A<191), the

buffer is not yet full. Line 60 increments QT by A, and the process keeps repeating until

the buffer is full, and all the data is written from the buffer to the tape, interspersed with

the interrecord gaps.

Advancing the Cassette Tape

There are three necessary steps in the routine to advance the tape:

1. Turn on the cassette tape motor (POKE 59411,53).

2. Use a wait loop to the stall program while the tape is advancing.

3

.

Turn off the cassette tape motor (POKE 594 1 1 ,6 1)

.

POKE 59411,53 pokes "53" into memory address location 59411, which controls

the cassette motor. Value 53 turns on the motor to advance the tape. Once the motor is

on, a wait loop lets the tape advance for a few jiffies. The wait loop will be discussed

shortly. To stop the tape, a POKE 59411,61 turns off the cassette motor. The length of

the wait loop may be varied or altered, but these two POKEs are absolutely necessary to

turn the cassette motor on and off.

Appendix F: Variations for Revision Level 2 ROMs 447

Following is a sample wait loop inserted between the two POKE statements:

1000 POKE 59411,53 REM *START TAPE MOTOR*
1010 T=T1
1020 IF (TI-TXIO GOTO 1020 REM *UAIT IS JIFFIES*
1030 POKE 59411,61 REM *STOP TAPE MOTOR*
1040 QT=0
1050 RETURN

Lines 1010 to 1020 make up the wait loop. Line 1010 sets variable T to the current

value of TI. TI is the number of jiffies since the PET was powered up or the clock was

zeroed. (A jiffy is 1/60 of a second.) TI is incremented once every jiffy, or 60 times a

second. By subtracting T from TI, the elapsed time is calculated. The program must wait

until ten jiffies (1/6 of a second) has elapsed before the program can continue. While TI

increments, until the difference between TI and T equals ten jiffies the program is

stalled, letting the cassette tape advance. This blank space on the tape is the interrecord

gap. Once (TI— T) equals ten, the next statement turns off the cassette motor with a

POKE 59411,61.

The routine calculates the space between each record. The tape is advanced

exactly the same amount between each physical record because the time between

POKEing on and off the cassette motor will always be ten jiffies. The length of the wait

loop may be adjusted by changing the constant of the condition expression:

TI-T<X

The larger the value of X, the larger the interrecord gap will be. If you're unsure

how long the interrecord gap should be, keep the wait loop between 5 and 30 jiffies. It is

always better to have the interrecord gap too long than too short.

There is one potential problem with this routine, though it is doubtful you will

ever encounter the problem. If the CBM computer has been powered up for close to

twenty-four hours, or you have set the internal clock close to the twenty-fourth hour,

the routine might hang up during the wait loop. At 24:00:00 the jiffy clock is reset from

5184000 jiffies to zero. If T is assigned within a few jiffies of 5184000 both TI and
the jiffy clock will be reset to zero. The result is that the condition TI — T<10 will always

be true (0000008-5183998 < 10) and the wait loop will hang up infinitely because

TI—T will never be greater than nine. It is very improbable that this will ever happen to

you, but you should use caution if the jiffy clock is nearing the twenty-fourth hour.

Here is another way to advance the tape:

POKE 59411-53
POKE 514,0
WAIT 514, 16
POKE 59411,61

REM *START TAPE MOTOR*
REM *ZERO JIFFV CLOCK*
REM *WAITS 16 JIFFIES*
REM *STOP TAPE MOTOR*

POKE 514,0 pokes a zero into the low-order byte of the internal clock at memory
address 514, wiping out the current jiffy time and resetting the clock to zero. The WAIT
514,16 inhibits further program action until the clock has incremented 16 jiffies. Mean-
while, the tape advances until memory address location 514 contains 16 and the follow-

ing POKE turns the cassette motor off.

There is one drawback with this wait loop. Every time the jiffy clock is reset to zero

the CBM loses track of time. Therefore, this routine should no? be used if it is important

within the program that real time be kept or used in any way.

Here is yet another way to implement a wait loop during the data tape advance:

POKE 59411,53
FOR 1=1 TO 60: NEXT I

POKE 59411,61

448 PET/CBM Personal Computer Guide

This method is simple but less accurate than the previous two. Using a FOR-

NEXT loop, the program is stalled as the loop increments to the maximum value of

I before turning off the motor. However, the time it takes to increment through a FOR-
NEXT loop cannot be measured as accurately as time measured in jiffies, and thus the

interrecord gaps cannot be precise. One advantage with this method is that it does not

alter or inhibit the use of the jiffy clock in any way.

Let's go back to the original wait loop and combine it with the routine that detects

a full buffer. Below is a sample program which writes 100 numbers to a data tape with a

FOR-NEXT loop. Within the loop is a check for a full buffer. If the buffer is full the data

is written to the tape, and the subroutine at 1000 is called to create an interrecord gap:

10 POKE 243,122:P0KE 244,2:0PEN1, 1 ,

1

20 FOR X=l TO 100
30 PRINT#1,X
40 A=LEN<STR*<X>:> + 1

50 IF <QT+ft>>=191 OOSUE 1000 = REM *IF BUFFER FULL CALL SUE. TO ADVANCE TAPE
60 QT=QT+A
70 NEXT X
80 CLOSE

1

90 END
1000 POKE 59411,53 REM *STHRT TAPE MOTOR*
1010 T=TI
1020 IF <TI-T><10 GOTO 1020
1030 POKE 59411,61
1040 QT=0
1050 RETURN

REM *UIAIT 10 JIFFIES*
REM *STOP TAPE MOTOR
REM *RESET ACCUMULATOR

where:

A is the length of the printed string plus 1 for carriage return

QT is the accumulator to add lengths of printed strings.

If you follow these suggestions and routines you should have little or no trouble

writing and reading data files. But, if you find that you cannot get the files to work even

with these routines, you should install the Revision Level 3 ROMs in your CBM com-

puter.

Chapter 7: MEMORY MAP
All of the changes in Chapter 7 are based on the fact that the memory map for the

Revision Level 2 ROMs was reorganized for the Revision Level 3 ROMs.
The detailed memory maps used by the different versions of CBM BASIC are

shown in the back of this appendix.

Table F-l describes the Revision Level 2 ROMs used in the original PET com-

puters. Table F-2 shows the Revision Level 3 ROMs used in BASIC 3.0 CBM com-

puters. Table F-3 shows the most recent memory map for the BASIC 4.0 CBM com-

puters.

Tables F-l and F-2 have a similar format; the Table F-3 format differs. Tables F-l

and F-2 show the memory address in decimal and hexadecimal, and also show sample

decimal and hexadecimal equivalent values in memory locations. Table F-3 compares

the BASIC 4.0 memory map with the BASIC 3.0 revision shown in Table F-2. The

DESCRIPTION column provides the location description as currently used by Com-
modore; the LABEL column shows the assembly language label currently assigned to

the location by Commodore. The BASIC 4.0 column gives the hexadecimal address of

each location, while the BASIC 3.0 column gives the equivalent BASIC 3.0 hexadecimal

Appendix F: Variations for Revision Level 2 ROMs 449

Pointer Address

Start of program

(247, 248) Start of text

(144, 145) DATA statement pointer

(1 24, 1 25) Start of variables

(126, 127) End of variables

(1 28, 1 29) End of arrays

(130, 131) End of strings

Typical Values

(132, 133) Top of memory

Variables

Arrays

Strings

1946

2072

2231

8172 (8K system)

8191 (8K system)

Figure F-1. Principal Pointers in User Program Area

address. To find any BASIC 4.0 location, first find the hexadecimal address given in

Table F-2. Find this hexadecimal address in the BASIC 3.0 column of Table F-3 and the

comparable BASIC 4.0 hexadecimal address is in the adjacent column.

With the exception of the first two entries in Table F-3, which actually represent

memory address 0000, all subsequent 0000 addresses identify entries which do not exist

in one version of BASIC or the other. For example, if you see an address in the BASIC
3.0 column with 0000 in the BASIC 4.0 column, then BASIC 4.0 has no equivalent loca-

tion in its memory map. Conversely, a 0000 address in the BASIC 3.0 column identifies

a new entry in the BASIC 4.0 memory map for which there is no BASIC 3.0 equivalent.

Chapter 7: CBM BASIC INTERPRETER

The system locations holding principal pointers in the user program area are

different for the Revision Level 2 ROMs. Your pointers, in place of Figure 7-2, are as

shown in Figure F-1. Figure F-2, replacing Figure 7-4, also reflects these changes.

450 PET/CBM Personal Computer Guide

Pointer Address

(144, 145) DATA statement pointer

(247, 248) OS Start of program

(122, 123) Start of text

(1 24, 1 25) Start of variables

(126, 127) Start of arrays

(128, 129) Start of free space

Memory Location

(130, 131) End of strings v^
(132, 133) Top of memory -^- 8191 (8K system)

Figure F-2. User Program Area on Power-up

Chapter 7: VARIABLES, Floating Point Variable Format

Use the following program to examine floating point representations:

10 INPUT A
20 X=PEEK<125)*256+PEEKC124J+2
30 PRINT fi;" = ";PEEK<X>;PEEK(X+l);PEK<X+2>;PEEK';x+3>JPEEK';X+4>
40 GOTO 10

This is che same one given in Chapter 7 except for the system locations at line 20 being

PEEKed.

Chapter 7: CONSTANTS
Instead of pointer (42,43), the pointer in the diagrams is (124,125).

Chapter 7: ARRAY STORAGE FORMAT
Use the following program for viewing sample Array Area entries:

10 DIM R<.5>,By.<2,2>,C*<10> REM SAMPLE ARRAYS
20 FOR 1=0 TO 5 A<I)=INEXT
30 FOR 1=0 TO 2:FOR J=0 TO 2

:

HY.< J, I >=100+3*I+J : NEXT J,

I

40 FOR 1=0 TO 10:C*CI>=CHR*i:ASCi:"fl"> + I> : NEXT
50 X=PEEKa27.l*256+PEEKi:i26> REM POINT TO ARRAV AREA
60 V=PEEK<129.1*256+PEEK<12S) REM END OF ARRAYS
70 FOR I=X TO V
80 PRINT I,PEEK<I>
90 GET D*IF D*="" THEN GOTO 90

: REM HIT KEY FOR NEXT ELEMENT
100 NEXT

This is the same as the program in Chapter 7 except for the system locations

accessed in lines 50 and 60.

Appendix F: Variations for Revision Level 2 ROMs 451

Chapter 7: ASSEMBLY LANGUAGE PROGRAMMING
For the Revision Level 2 ROMs, item 2, Top of Core discussion should read as

follows:

2. Top of MEMORY. Memory locations 134 and 135 contain the pointer to the

top of memory. On 8K CBMs this value is 8192. You can temporarily set the top of

memory pointer to a lower address, thereby reserving a number of bytes from the new
pointer value to the actual top of memory for storage of an assembly language program.

To set the pointer, say, down 1000 bytes, you will need to store the value 7192 (8192-

1000) converted into low, high address order, e.g.:

High Low

7192 10 = 1C18 16 -1C l6 = 28 10 and18 l6 = 24l0

So 24 is to be stored at location 134 (low byte), and 28 is to be stored at location 135

(high byte). The following instructions can be used:

IB RL=PEEK<134>flH=PEEKi:i35>:
20 POKE 132,24:P0KE 135,28:

100 POKE 134,flL:pOKE 135.FIH
110 END

REM SAVE CURRENT POINTER
REM TOP OF CORE NOW =7192

REM RESTORE POINTER

Chapter 7: USR

Since the accumulator is maintained in different system locations on the Revision

Level 2 ROMs, the accumulator description will read as described below.

The parameter value is passed to the USR subroutine in system locations that

function as a floating point accumulator (FAC) for all functions. The FAC resides in six

bytes from memory locations 176 to 181 (B0,

mat:

-B5.,). The FAC has the following for-

Memory location: 176 177 178 179 180 181 (FAC

1

11

1

l

Fraction

Sign

Floating

Point)

Exponent

-1 = negative

Like floating point variables, the exponent is stored in excess 128 format, and the frac-

tion is normalized with the high-order bit of byte 177 (the high-order byte of the frac-

tion) set to 1. The difference between this format and the variable format is that the

high-order 1 bit is present in byte 177 of the FAC. An extra byte (181) is used to hold

the sign of the fraction. (This is done for ease of manipulation by the functions that use

the FAC.)

1. PET User Notes, Volume 1, Issue 6, Sept.-Oct. 1978, p. 14, "Cassette File Usage Summary" by Jim Butter-

field.

2. Best of the PET Gazette, p. 38, "On Data Files" by Michael Richter.

452 PET/CBM Personal Computer Guide

Table F-1. CBM Memory Map (Rev. 2 ROMs)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

Page (0-255)

USR Function Locations

0000 76 4C Constant 6502 JMP instruction

1-2 0001-0002 826 033A User address jump vector

Terminal 1 /O Maintenance

3 0003 00 Active input device number

(0=keyboard)

4 0004 00 No. of nulls to print after CR/LF

(0=normal)

5 0005 00 Cursor position for POS function (0-255)

6 0006 127 7F Terminal width (unused)

7 0007 127 7F Limit for scanning source columns

(unused)

8 0008 60 3C Line number storage preceding buffer

9 0009 3 03 Constant

10-89 OOOA-0059 48 30 BASIC input line buffer (80 bytes)

90 005A 00 General counter for BASIC

91 005B 00 Delimiter flag for quote mode scan

92 005C 255 FF Input buffer pointer, general counter

Evaluation of Variables

93 005D 00 Flag for dimensioned variables

94 005E 00 Flag for variable type:

00=numeric

FF=string

95 005F 00 Flag for numeric variable type:

00=floating point

80=integer

96 0060 00 Flag to allow reserved words in strings

and remarks

97 0061 00 Flag to allow subscripted variable

98 0062 00 Flag for input type:

0=INPUT

64=GET
152=READ

99 0063 00 Flag sign of TAN function

100 0064 00 Flag to suppress output:

4- normal

— suppressed

101 0065 104 68 Index to next available descriptor

102-103 .0066-0067 101 0065 Pointer to last string temporary

104-111 0068-006F 2 0002 Table of double-byte descriptors that

point to variables (8 bytes)

112-113 0070-0071 14525 38BD Indirect index #1
114-115 0072-0073 62983 F607 Indirect index #2

116 0074 1 01 Pseudo-register for function operands

(6 bytes)

117 0075 234 EA
118 0076 00

119 0077 00
120 0078 00
121 0079 00

Appendix F: Variations for Revision Level 2 ROMs 453

Table F-1. CBM Memory Map (Rev. 2 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

Data BASIC Storage Maintenance

122-123 007A-007B 1025 0401 Pointer to start of text

124-125 007C-007D 1946 079A Pointer to start of variables

126-127 007E-007F 2072 0818 Pointer to end of variables

128-129 0080-0081 2231 08B7 Pointer to end of arrays

130-131 0082-0083 8192 2000 Pointer to start of strings (moving down)

132-133 0084-0085 8191 1FFF Pointer to end of strings (top of available

RAM)

134-135 0086-0087 8192 2000 Pointer to limit of BASIC memory

136-137 0088-0089 2000 07D0 Line number of current line being

executed

— 1 in 137=direct mode statement

138-139 008A-008B 110 006E Line number for last line executed

before CONT

140-141 008C-008D 1922 0782 Pointer to next line to be executed after

CONT

142-143 008E-008F 1150 047E Line number of current DATA line

144-145 0090-0091 1879 0757 Pointer to current DATA line

146-147 0092-0093 13 000D Next DATA item within line

148-149 0094-0095 89 0059 Current variable name

150-151 0096-0097 2032 07F0 Pointer to current variable

152-153 0098-0099 2032 07F0 Pointer to next FOR. . . NEXT variable

154-155 009A-009B 31999 7CFF Pointer to current operator in ROM table

156 009C 00 Mask for current logical operator

157-158 009D-009E 898 0382 Pointer to user function FN definition

159-160 009F-0OA0 104 0068 Pointer to a string description

161 00A1 221 DD Length of string

162 00A2 3 03 Constant used by garbage collection

routine

163 00A3 76 4C Constant 6502 JMP instruction

164-165 00A4-00A5 0000 Jump vector for user function FN

166-171 00A6-00AB 129 81 Floating point accumulator #3 (6 bytes)

172-173 00AC-00AD 00 Block transfer pointer #1

174-175 00AE-00AF 00 Block transfer pointer #2

176-181 00B0-0OB5 Floating point accumulator (FAC)#T

(6 bytes)

00 176 00B0 Exponent +128

00 177 00B1 Fraction MSB Floating

Point

00 178 00B2 Fraction

00 179 00B3 Fraction MSB Integer

00 180 00B4 Fraction LSB

00 181 00B5 Sign of fraction (0 if zero or

positive. —1 if negative)

182 00B6 00 Copy of FAC #1 sign of fraction

183 00B7 00 Counter for number of bits to shift to

normalize FAC #1

184-189 00B8-00BD 00 Floating point accumulator #2 (6 bytes)

190 OOBE 00 Overflow byte for floating argument

191 OOBF 00 Copy of FAC #2 sign of fraction

192-193 O0C0-OOC1 258 0102 Conversion pointer

454 PET/CBM Personal Computer Guide

Table F-1. CBM Memory Map (Rev. 2 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

RAM Subroutines

194-199 00C2-00C7 230 E6 Routine to fetch next BASIC character

200 00C8 173 AD Entry to refetch current character

201-202 00C9-00CA 1929 0789 Pointer to source text

203-223 00CB-00DF 201 C9 Work area for RND function

OS Page Zero Storage

224-225 OOEO-0OE1 33728 83C0 Pointer to start of line where cursor is

flashing

226 00E2 00 Column position where cursor is flash-

ing (0-79)

227-228 00E3-00E4 33792 8400 Utility pointer

229-230 OOE5-0OE6 1929 0789 End of current program

231-233 00E7-00E9 254 FE Utility

234 00EA 00 Flag for quote mode. = not quote mode
235-237 00EB-00ED 192 CO Utility

238 OOEE 00 No. of characters in current file name

239 OOEF 5 05 Current logical file number

240 00F0 255 FF GPIB primary address

241 00F1 63 3F GPIB device number

242 00F2 39 27 Max no of characters on current line

(39.79!

243-244 00F3-00F4 634 027A Pointer to start of current tape buffer

(634 or 826)

245 00F5 23 17 Line number where cursor is flashing

(0-24)

246 00F6 10 OA I/O storage

i!47-248 00F7-00F8 1024 0400 OS pointer to program

:149-250 OOF9-00FA 3100 0C1C Pointer to current file name

251 OOFB 00 Number of Insert keys pushed to go

252 OOFC 9 09 Serial bit shift word

253 OOFD 00 Number of blocks remaining to

read /write

254 OOFE 09 Serial word buffer

255 OOFF 243 F3

Page 1

Overflow byte for binary to ASCII con-

versions

(256-511)

256-up 0100-up 32 20 Tape read working storage (up to 511)

and conversion stg.

256-318 For error correction in tape

reads (62 bytes)

256-266 Binary to ASCII conversion

(1 1 bytes)

51 1-down 01FF-down 00

Page 2-3

Stack (down to 256)

(512-1023)

OS Working Storage

512-514 0200-0202 3801352 3A0108 24-hour clock incremented every 1 /60

second (jiffy). Resets every 5.184.000

jiffies (24 hours). Stored in low to

high order.

Appendix F: Variations for Revision Level 2 ROMs 455

Table F-1. CBM Memory Map (Rev. 2 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

515 0203 255 FF Matrix coordinate of key depressed at

current jiffy.

1-80=key

255=no key

516 0204 00 Status of SHIFT key:

0=unshifted (up)

1=shifted (down)

517-518 0205-0206 37916 941

C

Secondary jiffy clock

519 0207 52 34 Interrupt driver flag for cassette # 1 ON
switch

520 0208 00 Interrupt driver flag for cassette #2 ON
switch

521 0209 255 FF Keyswitch PIA

522 020A 00 Utility

523 020B 00 I/O flag:

= LOAD
1=VERIFY

524 020C 00 I/O status byte

525 020D 00 Number of characters in keyboard buffer

(0 to 9)

526 020E 00 Flag to indicate reverse field on

(0=normal)

527-536 020F-0218 85 55 Keyboard buffer (10 bytes)

537-538 02 19-021

A

34048 8500 Hardware interrupt vector

539-540 021B-021C 0000 6502 BRK instruction interrupt vector

541-546 021D-0222 Input routine storage (6 bytes)

13 0D 542 021 E No. of characters on screen

547 0223 255 FF

line

Key image

548 0224 1 01 Flag for cursor enable:

= Enable

1=Disable

549 0225 11 0B Counter to flip cursor (20 to 1)

550 0226 32 20 Copy of character at current cursor posi-

tion

551 0227 00 Flag for cursor on/off:

0=cursor moved

1=blink started

552 0228 00 Flag for tape write

553-577 0229-0241 High byte of screen line addresses

553-559=128 (lines 1-7)

560-565= 129 (lines 8-13)

566-572= 130 (lines 14-20)

573-577= 131 (lines 21-25)

578-587 0242-024B 5 05 Table of logical numbers of open files

588-597 024C-0255 5 05 Table of device numbers of open files

598-607 0256-025F 255 FF Table of secondary address modes of

open files

608 0260 00 Flag for input source:

0=keyboard buffer

1 =screen memory

609 026! 00 I/O utility

610 0262 1 01 Number of open files (index into tables)

456 PETICBM Personal Computer Guide

Table F-1. CBM Memory Map (Rev. 2 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

611 0263 00 Default input device number
(0=keyboard)

612 0264 3 03 Default output device number
(3=screen)

613 0265 00 Tape parity byte

614 0266 o • 00 I/O utility

615 0267 00 I/O utility

616 0268 00 Byte pointer in filename transfer

617 0269 00 I/O utility

618 026A 255 FF I/O utility

619 026B 00 I/O utility

620 026C 8 08 Serial bit count

621 026D 00 Count of redundant tape blocks

622 026E 00 Tape utility

623 026F 00 Cycle counter flip for each bit read from

tape

624 0270 00 Countdown synchronization on tape

write

625 0271 00 Tape buffer 1 index to next character

626 0272 00 Tape buffer 2 index to next character

627 0273 00 Countdown synchronization on tape

read

628 0274 00 Flag to indicate bit/byte tape error

629 0275 00 Flag to indicate tape error

0=first half-byte marker not written

630 0276 00 Flag to indicate tape error

0=2nd half-byte marker not written

/Tape dropout counter

631 0277 00 Tape dropout counter

632 0278 128 80 Flag for tape read current function

633 0279 9 09 Checksum utility

634-825 027A-0339 1 01 Tape buffer for cassette #1 (192 bytes)

826-1017 033A-03F9 173 AD Tape buffer for cassette #2 (192 bytes)

1018-1023 03FA-03FF 28 1C Utility space /unused.

Page 4-32 (1024-8191)

1024-8191 0400- 1FFF 00 1 User program area

Page 33-128 (8192-32767)

8192-32767 2000-7FFF 00 1 Expansion RAM

Page 129-144 (32768-36863)

32768-36863 8000-8FFF 12 OC TV RAM
32768-33767 Display memory

(1000 bytes)

Page 145-192 (36864-49151)

36864-49151 9000-BFFF 00 I Expansion ROM

Page 193-232 BASIC (49152-59391)

Pointers to BASIC Routines

49152-49153 C000-C001 50973 C71D Pointer -1 to END"

49154-49155 C002-C003 50760 C648 Pointer -1 to FOR

49156-49157 C004-C005 52277 CC35 Pointer -1 to NEXT

These memory locations contain the address of the byte preceding the specified BASIC routines.

Appendix F: Variations for Revision Level 2 ROMs 457

Table F-1. CBM Memory Map (Rev. 2 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

49158-49159 C006-C007 51183 C73F Pointer -1 to DATA
49160-49161 C008-C009 51909 CAC5 Pointer -1 to INPUT*
49162-49163 C00A-C00B 51935 CADF Pointer -1 to INPUT

49164-49165 C00C-C00D 53104 CF70 Pointer -1 to DIM

49166-49167 C00E-C00F 52003 CB23 Pointer -1 to READ
49168-49169 C010-C011 51356 C89C Pointer -1 to LET

49170-49171 C012-C013 51100 C79C Pointer -1 to GOTO
49172-49173 G014-C015 51060 C774 Pointer -1 to RUN
49174-49175 C016-C017 51231 C81F Pointer -1 to IF

49176-49177 C018-C019 50956 C70C Pointer -1 to RESTORE
49178-49179 C01A-C01B 51071 C77F Pointer -1 to GOSUB
49180-49181 C01C-C01D 51145 C7C9 Pointer -1 to RETURN
49182-49183 C01E-C01F 51250 C832 Pointer -1 to REM
49184-49185 C020-C021 50971 C71B Pointer -1 to STOP

49186-49187 C022-C023 51266 C842 Pointer -1 to ON
49188-49189 C024-C025 55041 D701 Pointer -1 to WAIT
49190-49191 C026-C027 65492 FFD4 Pointer -1 to LOAD
49192-49193 C028-C029 65495 FFD7 Pointer -1 to SAVE

49194-49195 C02A-C02B 65498 FFDA Pointer -1 to VERIFY

49196-49197 C02C-C02D 53908 D294 Pointer -1 to DEF

49198-49199 C02E-C02F 55032 D6F8 Pointer -1 to POKE

49200-49201 C030-C031 51582 C97E Pointer -1 to PRINT*

49202-49203 C032-C033 51614 C99E Pointer -1 to PRINT

49204-49205 C034-C035 51012 C744 Pointer -1 to CONT
49206-49207 C036-C037 50599 C5A7 Pointer -1 to LIST

49208-49209 C038-C039 51055 C76F Pointer -1 to CLR

49210-49211 C03A-C03B 51588 C984 Pointer -1 to CMD
49212-49213 C03C-C03D 65501 FFDD Pointer -1 to SYS

49214-49215 C03E-C03F 65471 FFBF Pointer -1 to OPEN
49216-49217 C040-C041 65474 FFC2 Pointer -1 to CLOSE
49218-49219 C042-C043 51870 CA9E Pointer -1 to GET
49220-49221 C044-C045 50512 C550 Pointer -1 to NEW

49222-49223 C046-C047 56075 DBOB Pointer to SGN"
49224-49225 C048-C049 56222 DB9E Pointer to INT

49226-49227 C04A-C04B 56106 DB2A Pointer to ABS
49228-49229 C04C-C04D 0000 Pointer to USR pointer

49230-49231 C04E-C04F 53860 D264 Pointer to FRE

49232-49233 C050-C051 53893 D285 Pointer to POS

49234-49235 C052-C053 56868 DE24 Pointer to SQR

40236-49237 C054-C055 57157 DF45 Pointer to RND
49238-49239 C056-C057 55487 D8BF Pointer to LOG
49240-49241 C058-C059 56992 DEAO Pointer to EXP

49242-49243 C05A-C05B 57246 DF9E Pointer to COS
49244-49245 C05C-C05D 57253 DFA5 Pointer to SIN

49246-49247 C05E-C05F 57326 DFEE Pointer to TAN
49248-49249 C060-C061 57416 E048 Pointer to ATN
49250-49251 C062-C063 55014 D6E6 Pointer to PEEK

49252-49253 C064-C065 54868 D654 Pointer to LEN

49254-49255 C066-C067 54089 D349 Pointer to STR$

49256-49257 C068-C069 54917 D685 Pointer to VAL
49258-49259 C06A-C06B 54883 D663 Pointer to ASC

49260-49261 C06C-C06D 54724 D5C4 Pointer to CHR$

49262-49263 C06E-C06F 54744 D5D8 Pointer to LEFT$

These memory locations contain the address of the first byte of the specified BASIC routines

458 PET/CBM Personal Computer Guide

Table F-1. CBM Memory Map (Rev. 2 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

49264-49265 C070-C071 54788 D604 Pointer to RIGHTS

49266-49267 C072-C073 54799 D60F Pointer to MID$

49268-57343 C074-DFFF BASIC Routines

Starting Address Function

49836 C2AC FOR. . . NEXT stack

check

49882 C2DA Insert line space

marker

49949 C31D Stack overflow check

50007 C357 Error message

abort

50057 C389 READY
50068 C394 Execute line

50092 C3AC Handle new line

50224 C430 Rechain lines after

insert/delete

50274 C462 Input line

50297 C479 Get character from

input line

50317 C48D Keyword encoder

50466 C522 Line number

search

50513 C551 NEW
50586 C59A Set pointer to start

of program

50600 C5A8 LIST

50761 C649 FOR. . NEXT

50869 C6B5 Statement processor

50930 C6F2 Statement execute

50957 C70D RESTORE

50972 C71C STOP

50974 C71E END
51013 C745 CONT
51056 C770 CLR

51061 C775 RUN
51072 C780 GOSUB
51101 C79D GOTO
51146 C7CA RETURN

51184 C7F0 DATA
51198 C7FE Next line scan

51232 C820 IF

51251 C833 REM
51267 C843 ON. .. GOTO /GOSUB
51299 C863 Number fetch

51357 C89D LET=
51484 C91C Digit check

51583 C97F PRINT*
51589 C985 CMD
51615 C99F PRINT

51751 CA27 Print string

51780 CA44 Print character

51831 CA77 Input data error

51871 CA9F GET

Appendix F: Variations for Revision Level 2 ROMs 459

Table F-1. CBM Memory Map (Rev. 2 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

51910 CAC6 INPUT*

51936 CAED INPUT

51991 CB17 Input prompt

52004 CB24 READ

52242 CC12 Error messages

52278 CC36 NEXT

52370 CC92 Format checker

52408 CCB8 Expression evaluator

52538 CD3A Stack argument

52637 CD9D Symbol evaluator

52668 CDBC Pi

53105 CF71 DIM

53207 CFD7

53415 D0A7

53860 D264

Variable table

look-up

Floating-to-integer

FRE

53880 D278

53893 D285

Integer-to-floating

POS

53909 D295 DEF

54089 D349 STR$

54724 D5C4 CHR$
54744 D5D8 LEFTS

54788 D604 RIGHTS

54799 D60F MID$

54868 D654 LEN

54883 D663 ASC
54917 D685 VAL

55014 D6E6 PEEK

55033 D6F9 POKE

55042 D702 WAIT
55080 D728 Subtraction

55103 D73F Addition

55487 D8BF LOG

55552 D900 Multiplication

55646 D95E

55650 D962

Load number to

AFAC
Load variable to

AFAC

55780 D9E4 Division

55924 DA74 Load Accumulator

(FAC)

55928 DA78 Load variable to FAC

55979 DAAB Store variable from

FAC

56075 DB0B SGN
56106 DB2A ABS

56222 DB9E INT

56868 DE24 SQR

56878 DE2E Raise AFAC to

power FAC

56992 DEA0 EXP

57157 DF45 RND
57246 DF9E COS
57253 DFA5 SIN

57326 DFEE TAN

460 PET/CBM Personal Computer Guide

Table F-1. CBM Memory Map (Rev. 2 ROMs) (Continued)

Memory Address

Decimal Hexadecimal

Sample Value

Decimal Hexadecimal
Description

57344-59391 E000-E7FF Screen Editor

Starting Address Function

58004-58986 E294-E66A

57416 E048

57525 E0B5

57910 E236

57981 E27D

Video driver

58282 E3AA

58346 E3EA

58185 E349

58346 E3EA

58713 E559

58758 E586

ATN
Initialize BASIC

system

Clear screen

Character fetch

Scroll processor

Video display routine

Quote mode ($EA)

switcher

Print character

Scroll 1 line

Interrupt Request

(IRQ)

58987-59012

59013-59198

59199-59227

59228-59348

59408

59409

59410

59411

59424

59425

59426

59427

E66B-E684

E685-E73E

E73F-E75B

E75C-E7D4

Interrupt handler

Clock update

Keyboard scan

Keyboard encoding table

E810

E811

E812

E813

E820

E821

E822

E823

233

60

255

61

255

188

255

60

E9

3C

FF

Page 233-240 I/O Ports and Expansion I/O (PIA's and VIA) (59392-61439)

Keyboard PIA (59408-59411)

I/O Port A and Data Direction register

Control Register A — screen blanking

52= Screen off (blanked)

60=Screen on

I/O Port B and Data Direction register

255= all keys except:

254=RVS key

253= key

251=SPACE key

247= < key

Control Register B — #1 cassette motor

53= motor on

61 = motor off

IEEE Port PIA (59424-59427)

I/O Port A and Data Direction register

PEEK (59424) reads input data.

Control Register A — set output line CA2

POKE 59425.52= low

POKE 59425.60=high

I/O Port B and Data Direction register

POKE 59426.data writes output data

POKE 59426.255 before a read to Port A

Control Register B — set output line CB2

POKE 59427.52= low

POKE 59427,60= high

3D

FF

BC

FF

3C

Appendix F: Variations for Revision Level 2 ROMs 461

Table F-1. CBM Memory Map (Rev. 2 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

Parallel User Port VIA

(59456-59471)

59456 E840 254 FE I/O Port B

207= #2 cassette motor on

223= #2 cassette motor off

WAIT 59456.23.23 waits for vertical

retrace of display

Bit 1 =PB1 (NFRD on IEEE connector) out-

put line

Bit 3= PB3 (ATN on IEEE connector) out-

put line

59457 E841 255 FF I/O Port A with handshaking

59458 E842 30 1E Data Direction register for I/O Port B

59459 E843 00 Data Direction register for I/O Port A
For each bit 1=output, 0=input

=0 all input

=255 all output

59460-59461 E844-E845 25248 62A0 (Low. high order) Read Timer 1 Counter;

write to Timer 1 Latch and (high byte)

initiate count

59462-59463 E846-E847 65381 FF65 (Low, high order) Read Timer 1 Latch

59464 E848 113 71 Read Timer 2 Counter low byte and reset

interrupt; write to Timer 2 low byte

PEEK (59464) Clock decrements every

microsecond

POKE 59464,n sets SR rate of shift from

high (n=0) to low (n= 255) for music

from User Port.

59465 E849 200 C8 Read Timer 2 Counter high byte; write to

Timer 2 high byte and reset interrupt.

PEEK (59465) Clock decrements every

256 microseconds

59466 E84A 1 01 Serial I/O Shift register (SR)

POKE 59466,15 or 51 or 85 to generate

square wave output at CB2 for playing

music from User Port.

59467 E84B 00 Auxiliary Control register.

= 16 Sets SR to free-running mode for

music from User Port.

=0 for proper operation of tape drive

59468 E84C 14 0E Peripheral Control register

= 12 for graphics on shifted characters

= 14 for lower-case letters on shifted

characters

59469 E84D 00 Interrupt Flag register

59470 E84E 128 80 Interrupt Enable register

59471 E84F 255

Page 241

FF

-256 Operating

I/O Port A without handshaking

System (61440-65535)

61622-61904 F0B6-F1D0 File Control

Starting Address Function

61905-63532 F1D1-F82C 61905 F1D1 Get a character

(without cursor)

61921 F1E1 Input a character

(with cursor)

462 PET/CBM Personal Computer Guide

Table F-1. CBM Memory Map (Rev. 2 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

62002 F232 Display a character

62026 F24A Close all files

62121 F2A9 CLOSE

62250 F32A STOP search

62278 F346 Tape playback

62402 F3C2 LOAD
62481 F411 Display filename

62515 F433 Fetch file number

62556 F45C Number fetch

62647 F4B7 VERIFY

62724 F504 Fetch filename

62741 F515 Fetch tape character

62753 F521 OPEN

62824 F568 Record SAVE routine

62894 F5AE Tape header search

62947 F5E3 Clear current tape

buffer

62957 F5ED Write tape end block

63101 F67D Set up tape end

pointer

63108 F684 SYS

63134 F69E SAVE

63153 F6B1 SAVE memory block

on cassette

63273 F729 Update secondary

jiffy clock

63533-64789 F82D-FD15
Tape Control

63582 F85E Check for cassette on

63615 F87F Tape read to buffer

63684 F8C4 Write block to tape

63765 F915 Interrupt wait

64824-65458 FD38-FFB2 Power-On Diagnostics

64824 FD38 System reset

SYS (64824) simu-

lates power-on reset

64909 FD8D Reset BASIC (does

not affect User Pro-

gram)

64912 FD90 EOT-buffer compare

65472-65516 FFCO-FFEC Jump Vectors

65472-65474 FFC0-FFC2 76 62753 4C F521 JMP OPEN

65475-65477 FFC3-FFC5 76 62121 4C F2A9 JMP CLOSE

65487-65489 FFCF-FFD1 76 61921 4C F1E1 JMP RDT

65490-65492 FFD2-FFD4 76 62002 4C F232 JMP WRT

65493-65495 FFD5-FFD7 76 62402 4C F3C2 JMP LOAD

65496-65498 FFD8-FFDA 76 63134 4C F69E JMP SAVE

65499-65501 FFDB-FFDD 76 62647 4C F4B7 JMP VERIFY

65502-65504 FFDE-FFED 76 63108 4C F684 JMP SYS

65508-65510 FFE4-FFE6 76 61905 4C F1D1 JMP GETC

65514-65516 FFEA-FFEC 76 63273 4C F729 JMP Clock Update

65530-65535 FFFA-FFFF 6502 Interrupt Vectors

65530-65531 FFFA-FFFB 51808 CA60 Non-maskable interrupt (NMD

65532-65533 FFFC-FFFD 64824 FD38 System reset (RESET)

65534-65535 FFFE-FFFF 58987 | E66B | Interrupt request, break (IRQ+BRK)

Appendix F: Variations for Revision Level 2 ROMs 463

Table F-2. CBM Memory Map (Rev. 3 ROMs)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

Page (0-255)

USR Function Locations

0000 76 4C Constant 6502 JMP instruction

1-2 0001-0002 826 033A User address jump vector

Evaluation of Variables and

Terminal I/O Maintenance

3 0003 00 Search character

4 0004 00 Delimiter flag for quote mode scan

5 0005 255 FF Input buffer pointer, general

counter

6 0006 00 Flag for dimensioned variables

7 0007 00 Flag for variable type:

00—numeric

FF— string

8 0008 00 Flag for numeric variable type:

00—floating point

80— integer

9 0009 00 Flag for DATA scan; LIST quote; memory

10 000A 00 Flag to allow subscripted variable; FNx flag

11 000B 00 Flag for input type:

0=INPUT

64=GET
152=READ

12 OOOC 00 Flag for ATN sign; comparison evaluation

13 000D 00 Flag to suppress output:

+ normal

- suppressed

14 000E 00 Current I/O device for prompt-suppress

15 OOOF 40 28 Terminal width (unused)

16 0010 30 1E Limit for scanning source columns (unused)

17-18 0011-0012 828 033C Basic integer address (for SYS. GOTO, etc

)

19 0013 22 16 Index to next available descriptor

20-21 0014-0015 19 13 Pointer to last string temporary

22-29 001 6-001

D

2 0002 Table of double-byte descriptions that point

to variables (8 bytes)

30-31 001E-001F 16451 4043 Indirect index #1

32-33 0020-0021 26119 6607 Indirect index #2
34 0022 1 01 Pseudo-register for function

operands (6 bytes)

35 0023 140 8C

36 0024 00

37 0025 00

38 0026 00

39 0027 00

464 PET/CBM Personal Computer Guide

Table F-2. CBM Memory Map (Rev. 3 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

Data Storage Maintenance

40-41 0028-0029 1025 0401 Pointer to start of BASIC text

42-43 002A-002B 1920 0780 Pointer to start of variables

44-45 002C-002D 2032 07 F0 Pointer to end of variables

46-47 002E-002F 2191 088F Pointer to end of arrays

48-49 0030-0031 8192 2000 Pointer to start of strings (moving down)

50-51 0032-0033 8191 1FFF Pointer to end of strings (top of available

RAM)

52-53 0034-0035 8192 2000 Pointer to limit of BASIC memory

54-55 0036-0037 2000 07D0 Current line number. Loc 55=2 if no

program yet executed

56-57 0038-0039 110 006E Previous line number

58-59 003A-003B 1897 0769 Pointer to next line to be executed (for

CONT)

60-61 003C-003D 200 00C8 Line number of current DATA line

62-63 003E-003F 1855 073F Pointer to current DATA item

Expression Evaluation

64-65 0040-0041 514 0202 INPUT vector

66-67 0042-0043 89 0059 Current variable name.

68-69 0044-0045 2006 07D6 Pointer to current variable

70-71 0046-0047 2006 07D6 Pointer to current FOR NEXT variable

72-73 0048-0049 1279 04FF Pointer to current operator in ROM table

74 004A 00 Mask for current logical operator

75-76 004B-004C 62268 F33C Pointer to user function FN definition

77-78 0040-004E 26531 67A3 Pointer to a string description

79 004F 243 F3 Length of string

80 0050 3 03 Constant used by garbage collection routine

81 0051 76 4C Constant 6502 JMP instruction

82-83 0052-0053 00 Jump vector for functions

84-89 0054-0059 211 D3 Floating point accumulator #3 (6 bytes)

90-91 005A-005B 0000 Block transfer pointer #1
92-93 005C-005D 0000 Block transfer pointer #2
94-99 005E-0063 Floating point accumulator (FAC) #1

(6 bytes)

00 94 005E Exponent +128

00 95 005F Fraction MSB Floating Point

00 96 0060 Fraction

00 97 0061 Fraction MSB Integer

00 98 0062 Fraction LSB

00 99 0063 Sign of fraction (0 if zero or

positive. -I if negative)

100 0064 00 Copy of FAC #1 sign of fraction

101 0065 00 Counter for number of bits to shift to nor-

malize FAC #1
102-107 0066-006B 00 Floating point accumulator #2

(6 bytes)

108 006C 00 Overflow byte for floating argument

109 006D 00 Copy of FAC #2 sign of fraction

110-111 006E-006F 258 0102 Conversion pointer

Appendix F: Variations for Revision Level 2 ROMs 465

Table F-2. CBM Memory Map (Rev. 3 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

RAM Subroutines

112-135 0070-0087 230 E6 Routine to fetch next BASIC character

173 AD 1 18 76 Entry to refetch current character

1904 0770 1 19-120 77-78 Pointer into source text

136-140 0088-008C 128 80 Next random no. in storage and RND work

area

OS Page Zero Storage

141-143 008D-008F 398710 061576 24-hour clock incremented every 1/60 sec-

ond (jiffy). Resets every 5.184.000 jiffies

I24 hours) Stored in high to low order

144-145 0090-0091 58926 E62E Hardware interrupt vector

146-147 0092-0093 64791 FD17 6502 BRK instruction interrupt vector

148-149 0094-0095 50057 C389 NMI interrupt vector

150 0096 00 Status word ST (1 byte)

151 0097 255 FF Matrix coordinate of key depressed at cur-

rent jiffy

1-80=key.

255=no key

152 0098 00 Status of SHIFT key:

0=unshifted (up)

1=shifted (down)

153-154 0099-009A 65282 FF02 Correction factor for clock

155 009B 255 FF Keyswitch PIA: STOP and RVS flags

156 009C 00 Timing constant buffer

157 009D 00 I/O flag:

0-LOAD
1 -VERIFY

158 009E 00 Number of characters in keyboard buffer (0

to 9)

159 009F 00 Flag to indicate reverse field on (0=normal)

160 00A0 00 IEEE 488 output flag

FF=character waiting

161 00A

1

13 OD Byte pointer to end of line for input

162 00A2 00 Utility

163-164 00A3-00A4 11. 13 OB, OD Cursor log (row, column)

165 00A5 63 3F IEEE 488 output character buffer

166 00A6 255 FF Key image

167 00A7 1 01 Flag for cursor enable:

0=Enable

1 -Disable

168 00A8 17 11 Counter to flip cursor (20 to 1)

169 00A9 32 20 Copy of character at current cursor position

170 00AA 00 Flag for cursor on/off:

0— cursor moved
1 -blink started

171 OOAB 00 Flag for tape write

172 OOAC 00 Flag for input source:

0=keyboard buffer

1 —screen memory

466 PET/CBM Personal Computer Guide

Table F-2. CBM Memory Map (Rev. 3 ROMs) (Continued)

Memory Address

Decimal

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

190

191

192

193

194

195

196-197

206

Hexadecimal

199-200 00C7-00C8

201-202 00C9-00CA

203-204 OOCB-OOCC

205 0OCD

OOAD

OOAE

OOAF

00B0

00B1

00B2

00B3

00B4

00B5

00B6

00B7

00B8

00B9

OOBA

OOBB

OOBC

OOBD

OOBE

OOBF

00C0

00C1

00C2

00C3

00C4-00C5

Sample Value

Decimal

00C6

OOCE

207 OOCF

208 00D0

209 0OD1

210 00D2

211 00D3

212 00D4

213 00D5

214-215 00D6-00D7

3

33728

33792

4

255

4

39

Hexadecimal

00

01

00

03

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

83CD

00

8400

0000

00

00

00

00

00

00

04

FF

04

27

0000

Description

OS Page Zero Storage (Continued)

I/O utility: X save flag

Number of open files (index into tables)

Default input device number (0=keyboard)

Default output device number (3=screen)

Tape parity byte

Flag for byte received

I/O utility

Tape buffer character

Byte pointer in filename transfer

I/O utility

Serial bit count

Tape utility

Cycle counter — flip for each bit read from

tape

Countdown synchronization on tape write

Tape buffer 1 index to next character

Tape buffer 2 index to next character

Countdown synchronization on tape read

Flag to indicate bit/byte tape error

Flag to indicate tape error

0=first half-byte marker not written

Flag to indicate tape error

0=2nd half-byte marker not written

Tape dropout counter

Flag for cassette read current

function

0=scan, 1-15=count,

40-igHoad. 80-|6-end

Checksum utility

Pointer to start of line where cursor is flash-

ing

Column position where cursor is flashing

(0- 79)

Load start address: utility pointer

Load end address

Tape timing constants

Flag for quote mode

0=not quote mode

Flag for tape read timer enable

0=disabled

Flag for EOT received from tape

Read character error

No. of characters in current file name

Current logical file number

Current secondary address

Current device number

Current screen line length (39, 79)

Pointer to start of current tape buffer (634 or

826)

Appendix F: Variations for Revision Level 2 ROMs 467

Table F-2. CBM Memory Map (Rev. 3 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

216 00D8 24 18 Line number where cursor is flashing (0-24)

217 00D9 10 OA I/O storage: last key input, buffer

checksum, bit buffer

218-219 00DA-00DB 0000 Pointer to current file name

220 00DC 00 Number of Insert keys pushed to go

221 OODD 00 Serial bit shift word

222 OODE 00 Number of blocks remaining to read/write

223 OODF 00 Serial word buffer

224-248 00E0-00F8 High byte of screen line addresses

128 80 224-230=128 (lines 1-7)

129 81 231-236=129 (lines 8-13)

130 82 237-243=130 (lines 14-20)

131 83 244-248=131 (lines 21-25)

249 00F9 00 Cassette #1 status switch

250 OOFA 00 Cassette #2 status switch

251-252 00FB-00FC 54144 D380 Tape start address

253-255 00FD-00FF 243 F3 Utility

Page 1 (256-511)

256-up 0100-up 32 20 Tape read working storage (up to 511) and

conversion storage

256-318 For error correction in tape reads

(62 bytes)

256-266 Binary to ASCII conversion

(11 bytes)

51 1-down 01FF-down 44 2C Stack (down to 256)

Page 2-3 (512-1023)

512-592 0200-0250 BASIC input line buffer (80 bytes)

12597 3135 512-513 0200-0201 Program Counter

50 32 514 0202 Processor status

00 515 0203 Accumulator

171 AB 516 0204 X index

00 517 0205 Y index

00 518 0206 Stack pointer

15104 3B00 519-520 0207-0208 User modifiable IRQ

593-602 0251-025A 4 04 Table of logical numbers of open files

603-612 025B-0264 4 04 Table of device numbers of open files

613-622 0265-026E 255 FF Table of secondary address modes of open

files

623-632 026F-0278 3 03 Keyboard buffer (10 bytes)

633 0279 28 1C Keyboard utility

634-825 027A-0339 28 1C Tape buffer for cassette #1 (192 bytes)

826-1017 033A-03F9 173 AD Tape buffer for cassette #2 (192 bytes)

1018-1019 03FA-03FB 59383 E7F7 Vector for Machine Language Monitor

1020-1023 03FC-03FF 195 C3 Utility space/unused

468 PET/CBM Personal Computer Guide

Table F-2. CBM Memory Map (Rev. 3 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

OS Page Zero Storage (Continued)

Page 4-128 (1024-32767)

1024-32767 0400-7FFF 00 User program area and Expansion RAM
4K PET: 1024-4095 0400-OFFF

User program area

4096-32767 1000-7FFF

Expansion RAM
8K PET: 1024-8191 0400-1FFF

User program area

8192-32767 2000-7FFF

Expansion RAM
16K PET: 1024-16383 0400-3FFF

User program area

16384-32767 4000-7FFF

Expansion RAM
32K PET: 1024-32767 0400-7FFF

User program area

Page 129-144 (32768-36863)

32768-36863 8000-8FFF 32 20 TV RAM
32768-33767 Display memory (1000 bytes)

Page 145-192 (36864-49151)

36864-49151 9000-BFFF 144 90 Expansion ROM

Page 193-232 BASIC (49152-59391)

Pointers to BASIC Routines

49152-49153 C000-C001 51008 C740 Pointer -1 to END'

49154-49155 C002-C003 50775 C657 Pointer -1 to FOR

49156-49157 C004-C005 52255 CC1F Pointer -1 to NEXT

49158-49159 C006-C007 51199 C7FF Pointer -1 to DATA

49160-49161 C008-C009 51878 CAA6 Pointer -1 to INPUT*

49162-49163 C00A-C00B 51904 CACO Pointer -1 to INPUT

49164-49165 C0OC-COOD 53090 CF62 Pointer -1 to DIM

49166-49167 C00E-C00F 51974 CB06 Pointer -1 to READ

49168-49169 C010-C011 51372 C8AC Pointer --1 to LET

49170-49171 C012-C013 51116 C7AC Pointer -1 to GOTO
49172-49173 C014-C015 51076 C784 Pointer -1 to RUN

49174-49175 C016-C017 51247 C82F Pointer -1 to IF

49176-49177 C018-C019 50991 C72F Pointer -1 to RESTORE

49178-49179 C01A-C01B 51087 C78F Pointer -1 to GOSUB
49180-49181 C01C-C01D 51161 C7D9 Pointer --1 to RETURN

49182-49183 C01E-C01F 51266 C842 Pointer -1 to REM

49184-49185 C020-C021 51006 C73E Pointer -1 to STOP

49186-49187 C022-C023 51282 C852 Pointer -1 to ON

49188-49189 C024-C025 55055 D70F Pointer -1 to WAIT

49190-49191 C026-C027 65492 FFD4 Pointer -1 to LOAD

49192-49193 C028-C029 65495 FFD7 Pointer -1 to SAVE

49194-49195 C02A-C02B 65498 FFDA Pointer -1 to VERIFY

49196-49197 C02C-C02D 53900 D28C Pointer -1 to DEF

49198-49199 C02E-C02F 55046 D706 Pointer -1 to POKE

49200-49201 C030-C031 51594 C98A Pointer -1 to PRINT*

These,1 memory locations conUnn the address uf th*j byte preceding the specified BASIC routines

Appendix F: Variations for Revision Level 2 ROMs 469

Table F-2. CBM Memory Map (Rev. 3 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

Pointers to BASIC Routines (Continued)

49202-49203 C032-C033 51626 C9AA Pointer -1 to PRINT

49204-49205 C034-C035 51050 C76A Pointer -
1 to CONT

49206-49207 C036-C037 50612 C5B4 Pointer -
1 to LIST

49208-49209 C038-C039 50550 C576 Pointer -
1 to CLR

49210-49211 C03A-C03B 51600 C990 Pointer -
1 to CMD

49212-49213 C03C-C03D 65501 FFDD Pointer -
1 to SYS

49214-49215 C03E-C03F 65471 FFBF Pointer -
1 to OPEN

49216-49217 C040-C041 65474 FFC2 Pointer -
1 to CLOSE

49218-49219 C042-C043 51836 CA7C Pointer -
1 to GET

49220-49221 C044-C045 50522 C55A Pointer -
1 to NEW

49222-49223 C046-C047 56133 DB45 Pointer to SGN "

49224-49225 C048-C049 56280 DBD8 Pointer to INT

49226-49227 C04A-C04B 56164 DB64 Pointer to ABS
49228-49229 C04C-C04D 0000 Pointer to USR pointer

49230-49231 C04E-C04F 53849 D259 Pointer to FRE

49232-49233 C050-C051 53882 D27A Pointer to POS

49234-49235 C052-C053 56926 DE5E Pointer to SQR
49236-49237 C054-C055 57215 DF7F Pointer to RND
49238-49239 C056-C057 55542 D8F6 Pointer to LOG

49240-49241 C058-C059 57050 DEDA Pointer to EXP

49242-49243 C05A-C05B 57304 DFD8 Pointer to COS
49244-49245 C05C-C05D 57311 DFDF Pointer to SIN

49246-49247 C05E-C05F 57384 E028 Pointer to TAN
49248-49249 C060-C061 57484 E08C Pointer to ATN
49250-49251 C062-C063 55016 D6E8 Pointer to PEEK

49252-49253 C064-C065 54870 D656 Pointer to LEN

49254-49255 C066-C067 54079 D33F Pointer to STR$

49256-49257 C068-C069 54919 D687 Pointer to VAL
49258-49259 C06A-C06B 54885 D664 Pointer to ASC
49260-49261 C06C-C06D 54726 D5C6 Pointer to CHR$
49262-49263 C06E-C06F 54746 D5DA Pointer to LEFTS

49264-49265 C070-C071 54790 D606 Pointer to RIGHTS

49266-49267 C072-C073 54801 D611 Pointer to MID$

49268-49297 C074-C091 Hierarchy and action addresses for

tors

opera-

49298-49553 C092-C191 Table of BASIC keywords

49554-49833 C192-C2A9 BASIC error messages

BASIC Routines

Starting Address Function

49834-59343 C2AA-DFFF 49834 C2AA FOR. . . NEXT stack

check

49880 C2D8 Insert line space

marker

49947 C31B Stack overflow

check

49960 C328 Error message
abort

50057 C389 READY

50091 C3AB Handle new line

These memory locations contain the address of the first byte of the specified BASIC routines.

470 PET/CBM Personal Computer Guide

Table F-2. CBM Memory Map (Rev. 3 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

BASIC Routines (Continued)

Starting Address Function

50242 C442 Rechain lines after

insert/delete

50287 C46F Input line

50325 C495 Keyword encoder

50476 C52C Line number search

50523 C55B NEW
50551 C577 CLR

50599 C5A7 Set pointer to start

of program

50613 C5B5 LIST

50776 C658 FOR

50944 C700 Statement execute

50992 C730 RESTORE

51007 C73F STOP

51009 C741 END

51051 C76B CONT
51077 C785 RUN
51088 C790 GOSUB
51117 C7AD GOTO
51162 C7DA RETURN

51200 C800 DATA
51214 C80E Scan for next BASIC

statement

51217 C811 Scan for next BASIC line

51248 C830 IF

51267 C843 REM
51283 C853 ON
51315 C873 Number fetch

51373 C8AD LET =

51496 C928 Add ASCII digit to

Accumulator #1
51595 C98B PRINT*

51601 C991 CMD
51627 C9AB PRINT

51740 CA1C Print string

51769 CA39 Print character

51791 CA4F Input data error

51837 CA7D GET

51879 CAA7 INPUT*

51962 CAFA Input prompt

51975 CB07 READ

52220 CBFC Error messages

52256 CC20 NEXT

52345 CC79 Format checker

52383 CC9F Expression evaluator

53091 CF63 DIM

53101 CF6D Variable table lookup

53249 D001 Create new variable

53420 D0AC Array table search/

create array

Appendix F: Variations for Revision Level 2 ROMs 471

Table F-2. CBM Memory Map (Rev. 3 ROMs) (Continued)

Memory Address

Decimal Hexadecimal

Sample Value

Decimal Hexadecimal

Description

BASIC Routines (Continued)

Starting Address Function

53849 D259

53869 D26D

53882 D27A

53888 D280

53901 D28D

54079 D33F

54726 D5C6

54746 D5DA
54790 D606

54801 D611

54870 D656

54885 D665

54919 D687

54994 D6D2

55016 D6E8

55047 D707

55056 D710

55091 D733

55150 D76E

55542 D8F6

55607 D937

55704 D998

55818 DA0A
55982 DAAE

56030 DADE
56072 DB08

56088 DB18

56133 DB45

56164 DB64

56280 DBD8

56526 DCCE

56553 DCE9

56319 DBFF

56926 DE5E

56936 DE68

57050 DEDA
57215 DF7F

57304 DFD8

57311 DFDF

FRE

Integer-to-floating

POS

Valid direct check

DEF

STR$

CHR$
LEFT$

RIGHTS

MID$

LEN

ASC
VAL

Floating-to-integer

PEEK

POKE

WAIT

Subtraction

Addition

LOG

Multiplication

Load number to AFAC

Division

Load Accumulator (FAC)

Store FAC

Copy AFAC to FAC

Copy FAC to AFAC

SGN
ABS

INT

IN line message

Numenc-to-ASCII

String-to-floating

SQR

Power function

EXP

RND
COS
SIN

472 PET/CBM Personal Computer Guide

Table F-2. CBM Memory Map (Rev. 3 ROMs) (Continued)

Memory Address

Decimal Hexadecimal

Sample Value

Decimal Hexadecimal

Description

57344-5391

3100-58906

58907-59113

59114-59127

59128-59241

59242-59391

59408

59409

59410

59411

59424

59425

59426

59427

Screen Editor

Starting Address Function

E000-E7FF TAN

ATN
Subroutine to be moved to

page ($70-$87)

Initial RND seed (5 bytes)

Initialize BASIC system

Clear screen

Home cursor

Character fetch

E2F4-E61A

E61B-E6E9

E6EA-E6F7

E6F8-E769

E76A-E7FF

57384 E028

57484 E08C

57593 E0F9

57617 El 1

1

57622 El 16

57897 E229

57943 E257

57989 E285

Video driver

58100 E2F4 Input from screen

58175 E33F Quote mode ($CD) switcher

58188 E34C Print character

58687 E53F Scroll 1 line

Interrupt Handler

Keyboard Scan

Keyboard Encoding Table

Subroutines for Machine Language Monitor

Page 233-240 I/O Ports and Expansion I/O (PIA's and VIA) (59392-61439)

E810

E811

E812

E813

E820

E821

E822

E823

249

60

255

61

255

188

255

60

F9

3C

FF

3D

FF

BC

FF

3C

Keyboard PIA (59408-59411)

I/O Port A and Data Direction register

Control Register A — screen blanking

52=Screen off (blanked)

60=Screen on

I/O Port B and Data Direction register

255=al! keys except:

254=RVS key

253=(key

251=SPACE key

247= < key

Control Registers B — #1 cassette motor

53=motor on

61=motor off

IEEE Port PIA (59424-59427)

I/O Port A and Data Direction register

PEEK (59424) reads input data

Control Register A — set output line CA2

POKE 59425.52=low

POKE 59425.60=high

I/O Port B and Data Direction registers

POKE 59426. data writes output data

POKE 59426.255 before a read to Port A

Control Register B — set output line CB2

POKE 59427,52=low

POKE 59427.60=high

Appendix F: Variations for Revision Level 2 ROMs 473

Table F-2. CBM Memory Map (Rev. 3 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

Parallel User Port VIA

(59456-59471)

59456 E840 223 DF I/O Port B

207= #2 cassette motor on

223= #2 cassette motor off

WAIT 59456.23.23 waits for vertical

retrace of display

Bit 1=PB1 (NFRDon IEEE connector)

output line

Bit 3-PB3 (ATN on IEEE connector)

output line

59457 E841 255 FF I/O Port A with handshaking

59458 E842 30 1E Data Direction register for I/O Port B

59459 E843 00 Data Direction register for I/O Port A

For each bit 1=output. 0=input

=0 all input

=255 all output

59460-59461 E844-E845 29241 7239 {Low. high order) Read Timer 1, Counter;

write to Timer 1 Latch and (high byte)

initiate count

59462-59463 E846-E847 65535 FFFF {Low, high order) Read Timer 1 Latch

59464 E848 147 93 Read Timer 2 Counter low byte and reset

interrupt; write to Timer 2 low byte

PEEK (59464) Clock decrements every

microsecond

POKE 59454,n sets SR rate of shift from

high (n=0) to low (n=255) for music from

User Port

59465 E849 217 D9 Read Timer 2 Counter high byte; write to

Timer 2 high byte and reset interrupt

PEEK (59465) Clock decrements every

millisecond

59466 E84A 00 Serial I/O Shift register (SR)

POKE 59466. 15 or 85 to generate

Square wave output at CB2 for playing

music from User Port.

59467 E84B 00 Auxiliary Control register

= 16 Sets SR to free-running mode for

music from User Port

=0 for proper operation of tape drive

59468 E84C 14 0E Peripheral Control register

= 12 for graphics on shifted

characters

= 14 for lower-case letters on shifted

characters

59469 E84D 00 Interrupt Flag register

59470 E84E 128 80 Interrupt enable register

59471 E84F 255 FF I/O Port A without handshaking

3age 241-256 aerating System 61440-65535)

61440-61621 F000-F0B5 Monitor messages

474 PET/CBM Personal Computer Guide

Table F-2. CBM Memory Map (Rev. 3 ROMs) (Continued)

Memory Address Sample Value
Description

Decimal Hexadecimal Decimal Hexadecimal

GPIB Handler (IEEE 488 Bus)

Starting Address Function

61622-61904 F0B6-F1D0 61622 F0B6 Setup for Listen. Talk, etc

61678 FOEE Send character

61736 F128 Output character

immediate mode

61750 F136 Error messages

61796 F1 64 Send immediate

Listen command,

then secondary

address

61807 F16F Output characters

61823 F17F Send Unlisten/

Untalk

61836 F18C Input character

File Control

61905-63493 F1D1-F805 61905 F1D1 Get a character

(without cursor)

61921 F1E1 Input a character

(with cursor)

62002 F232 Output a character

to any device

62062 F26E Close all files

62066 F272 Restore default I/O devices

62121 F2A9 CLOSE

62209 F301 STOP search

62223 F30F STOP key

62229 F31 5 Direct mode test

62402 F3C2 LOAD
62474 F40A Display filename/

fetch file number

62526 F43E Fetch LOAD/SAVE
parameters

62560 F460 Fetch byte paramter

62566 F466 Send program name

to GPIB

62612 F494 Tape header search

62647 F4B7 VERIFY

62670 F4CE Fetch OPEN/CLOSE

parameters

62753 F521 OPEN

62886 F5A6 Find any tape

header

62938 F5DA Write tape header

63036 F63C Process tape header

63108 F684 SYS

63134 F69E SAVE
63273 F729 Clock update

63344 F770 Set input device

63420 F7BC Set output device

Appendix F: Variations for Revision Level 2 ROMs 475

Table F-2. CBM Memory Map (Rev. 3 ROMs) (Continued)

Memory Address

Decimal

63494-64720

64721-64784

64785-65471

65472-

65475-

65478-

65481-

65484-

65487-

65490-

65493-

65496-

65499-

65502-

65505-

65508-

65511-

65514-

65474

65477

65480

65483

65486

65489

65492

65495

65498

65501

65504

65507

65510

65513

65516

65530-65531

65532-65533

65534-65535

Hexadecimal

F806-FCD0

FCD1-FD10

FD11-FFBF

FFC0-FFC2

FFC3-FFC5

FFC6-FFC8

FFC9-FFCB

FFCC-FFCE

FFCF-FFD1

FFD2-FFD4

FFD5-FFD7

FFD8-FFDA

FFDB-FFDD

FFDE-FFED

FFE1-FFE3

FFE4-FFE6

FFE7-FFE9

FFEA-FFEC

FFFA-FFFB

FFFC-FFFD

FFFE-FFFF

Sample Value

Decimal

76 62753

76 62121

76 63344

76 63420

76 62066

7661921

76 62002

76 62402

76 63134

76 62647

76 63108

76 62223

76 61905

76 62062

76 63273

65766

64721

58907

Hexadecimal

4C F521

4C F2A9

4C F770

4C F7BC

4C F272

4C F1E1

4C F232

4C F3C2

4C F69E

4C F4B7

4C F684

4C F30F

4C F1D1

4C F26E

4C F729

FCFE

FCDI

E61B

Description

63494 F806

63541 F835

63573 F855

63622 F886

63716 F8E6

Tape Control

Advance tape buffer

pointer

Gheck for cassette on

Tape read to buffer

Write block to tape

Interrupt wait

Power-on Diagnostics

64721 FCD1

64766 FCFE

64769 FD01

System reset

SYSI64721) simulates

power-on reset

NMI interrupt entry point

Table of interrupt

vectors

Machine Language Monitor

Jump Vectors

JMP OPEN

JMP CLOSE

JMP Set Input Device

JMP Set Output Device

JMP Restore Default I/O Devices

JMP Input Character - RDT

JMP Output Character — WRT
JMP LOAD
JMP SAVE

JMP VERIFY

JMP SYS

JMP Test STOP Key

JMP Get Character

JMP Close all files

JMP Clock Update

6502 Interrupt Vectors

Non-maskable interrupt (NMI)

System reset (RESET)

Interrupt request break (IRQ+ BRK)

476 PET/CBM Personal Computer Guide

Table F-3. Hex Addresses and Label References: CBM BASICs

BASIC
3.0

0008
0088
0001
0002
0002
0003
0003
0003
0004
0004
0005
0006
0007
0008
0008
0009
0009
000A
008A
0006
000C
080C
0008
000E
0010
0011
0011
0012
0013
0014
0016
0016
0017
001E
001F
001F
0021
0023
0824
0025
0025
0026
0028
0028
002A
0020
002C
002E
0038
0832
0834
0835
0036
0038
003A
083C

BASIC
4.0

0000
0800
0001
0002
0802
0003
0083
0003
0004
08O4
0005
0006
0007
0008
0008
0009
0089
000R
008A
000B
008C
008C
000D
0010
0018
0011
0011
0812
8813
0814
0016
0016
0817
001E
00 IF
081F
8021
0823
0024
0025
0025
0026
0028
0028
002A
O02fl
002C
002E
0030
0032
0034
0035
0036
0038
003A
003C

Labels

U3RP0K
ERRNF
ADOPRC
BUFPAG
RD0PP.2
STR5I2
INTEGR
CHARAC
EHDCHR
RD0PR4
COUNT
DIMFLG
VALTYP
INTFLG
ADDPR8
GARBFL
DORES
CLMHID
SUBFLG
INPFLG
DOMASK
TANSGN
D5DESC
CHANHL
ERRSN
POKER
LINNUM
F0R5IZ
TEMPPT
LASTPT
TEMPST
ERRRG
NUMLEU
NCMP05
I NDEX
I NDEX

1

INDEX2
RESHO
RESMOH
ADDEND
RESMO
RESLO
LINLEN
TXTTAB
VARTAB
ERROD
ARVTAB
STREND
FRETOP
FRESPC
MEMS 1

2

ERRFC
CURL IN
OLDLIN
OLDTXT
DATLIN

Description

<T4C CONSTANT AND ADDRESS TO DISPATCH USR
ERROR CALL VALUE - ECU - NEXT MITHOUT FOR

INPUT BUFFER AT $0208

NUMBER OF LOCS PER STRING DESCRIPTOR
ONE-BYTE INTEGER FROM "QINT"
STARTING DELIMITER
ENDING DELIMITER

GENERAL COUNTER FOR BASIC
FLAG TO REMEMBER DIMENSIONED VARIABLES
FLAG FOR UARIABLE TYPE 0-HUMERIC JFF-STPING
FLAG FOR INTEGER TYPE

FLAG WHETHER CAN OR CAN'T CRUNCH RESEPUED WORDS
SI2E OF PRINT WINDOW
FLAG WHICH ALLOWS SUBSCRIPTS IN SYNTAX
FLAGS INPUT OR READ
MASK USED BY RELATION OPERATIONS
FLAG SIGN OF TANGENT
DS$ LENGTH AND POINTER TO DS$
ACTIVE I/O CHANNEL #
ERROR CALL UALUE - ECU - SYNTAX
HOLDS ADDRESS FORE POKE COMMAND
LINE NUMBER STORAGE
AMOUNT OF BYTES USED ON STACK FOR-NEXT
INDEX TO NEXT AVAILABLE DESCRIPTOR
POINTER TO LAST STRING TEMP LO:HI
STORAGE FOR NUMTMP TEMP DESCRIPTORS
EC',.' - RETURN WITHOUT G0SU6
NUMBER OF GOSUB LEVELS ALLOWED

INDRIECT INDEX #1
SAME
INDIRECT INDEX #2
RES -REGISTER
[

TEMP USED BY "UMULT"
C

I

LENGTH OF SCREEN LINE 40-COL EDITORS
POINTER TO START OF BASIC TEXT AREA
POINTER TO START OF VARIABLES
ECU - OUT OF DATA
POINTER TO START OF ARRAY TABLE
POINTER TO END OF VARIABLES
POINTER TO START OF REAL STRINGS
POINTER TO TOP OF FREE STRING SPACE
HIGHEST RAM ADDR AVfiLIBLE FOR BASIC
ECU - ILLEGAL QUANTITY
CURRENT LINE BEING EXECUTED
LAST LINE EXECUTED (FOR CONT COMMAND

J

OLD TXTPTR (FOR CONT COMMAND) AND TEMP STORAGE
DATA LINE # FOR ERRORS

Appendix F: Variations for Revision Level 2 ROMs 477

Table F-3. Hex Addresses and Label References: CBM BASICS (Continued)

BASIC BASIC
Labels Description

3.0 4.0

003E 003E DATPTR DATA STATEMENT POINTER
8040 O04O INPPTR SOURCE OF INPUT ADDRESS
0042 0042 UARNAM CURRENT VARIABLE NAME
0044 0044 FDECPT POINTER INTO POWERS Of TEN FOR FOUT
0044 0044 UARPNT POINTER TO UARIABLE IN MEMORY
0045 0045 ERROU ECU - OUERFLOW
0046 0046 LSTPNT PNTR TO LIST STRING
0046 0046 ANDMSK THEN MASK USED BY WAIT FOP HHDING
0046 0046 FORPNT POINTER TO CURRENT FOR-NEXT VARIABLE REFERENCE
0047 0047 EORMSK THE MASK FOR EORING IN WAIT
0048 0048 UARTXT POINTER INTO LIST OF VARIABLES
0048 0048 OPPTR POINTER TO CURRENT OPERATOR IN TABLE
004ft O04H OPMASK MASK CRERTED BY CURRENT OPERATOR
0046 0046 GR6PHT POINTER USED IN GARBAGE COLLECTION
0046 0046 TEMPF3 A THIRD FAC TEMPORARY 4-6YTES
0046 0046 OEFPNT POINTER USED IN FUNCTION DEFINITION
004D 004D DSCPHT POINTER TO A STRING DESCRIPTION
004D 004D EPROM ECU - OUT OF MEMORY
0050 0050 F0UR6 UARIABLE CONSTANT USED BY GARB COLLECT
0051 0051 6UFLEH INPUT BUFFER MAX SIZE+1
0051 0051 JMPER $4C CONSTANT AND ADDRESS USED TO DISPATCH FUNGS
0052 0052 SI2E
0053 0053 OLDOU THE OLD OUERFLOW
0054 0054 TEMPF1 A FAC TEMP 4-BYTES
0055 0055 ftRVPNT A POINTER USED IN ARRAY BUILDING
O055 0055 HIGHDS DESTINATION OF HIGHEST ELMENT IN BLT.

0057 0057 HIGMTR SOURCE OF HIGHEST ELEMENT " TO MOUE
0059 0059 TEMPF2 A FAC TEMP 4-BVTES
005ft 005ft DECCNT NUMBER OF PLACES BEFORE DECIMAL POINT
005ft 005fi LOWDS LOCATION OF LAST BYTE TRANSFERRED INTO
005ft 005ft ERRUS ECU - UNDEF'D STATEMENT
0056 0056 TENEXP BASE TEN EXPONENT FOR FIN AND FOUT
0O5C 0O5C GR6T0P A POINTER USED IN GARBAGE COLLECTION
005C 0O5C DPTFLG FLAG IF A DECIMAL POINT HAS BEEN INPUT
O05C 005C LOWTR LAST THING TO MOUE IN BLT.
O05D 0050 EXPSGN SIGN OF BASE TEN EXPONENT
005D 0050 EPSGN
005E 005E DSCTMP THIS IS WHERE TEMP DESCS ARE BUILT
005E 005E FftC THE MAIN FLOATING POINT ACCUMULATOR
O05E O05E FRCEXP THE EXPONENT BYTE
0O5F 005F FACHO [MOST SIGNIFICANT BYTE OF MANTISSA
0060 0060 FACMOH CONE MORE
0061 0061 I NO ICE INDICE IS SET UP HERE BY "QINT"
0061 006 1 FftCMO [MIDDLE ORDER OF MANTISSA
0062 0062 FRCLO [LEAST SIG BYTE OF MANTISSA
0063 0063 FACSGH SIGN OF FAC CO OR -1) WHEN UNPACKED
0064 0064 DEGREE A CONT USED BY POLYNOMIALS
0064 0064 SGNFLG SIGN OF FAC IS PRESERVED HERE BY FIN
0065 0065 BITS COUNTER FOR # OF BIT SHIFTS TO NORMALIZE FAC
0066 006* ARGEXP THE ARG REGISTER EXPONENT
0067 0067 flRGHO L

0068 0068 ftRGMOH [

0069 0069 fiRGMO [

006ft 006ft ftRGLO [

0066 0066 ARGSGN THE SIGN (SAME AS FRO
0066 0066 ERRBS ECU - BAD SUBSCRIPT

478 PET/CBM Personal Computer Guide

Table F-3. Hex Addresses and Label References: CBM BASICS (Continued)

BASIC
3.0

BASIC
4.0

Labels Description

006C 006C STRNG

1

POINTER TO A STRING OR DESCRIPTOR
006C O0.5C ARISGN A SIGN REFLECTING THE RESULT
006D 00.SD FACOU OVERFLOW BVTE OF 1 HE FRC
006E O0.5E BUFPTR POINTER TO BUF USED BV "CRUNCH ROUTINE"
006E 006E STRHG2 POINTER TO STRING OR DESC.
O06E 006E POLVPT POINTER INTO POLYNOMIAL COEFFICIENTS.
006E 0O6E CURTOL ABSOLUTE LINEAR INDEX IS FORMED HERE
0O6E 006E FBUFPT POINTER INTO FBUFFER USED IN FOUT.
0070 0070 CHRGET ROUTINE - GETS NEXT CHARACTER FROM BASIC TEX T

0076 0076 CHRGOT ROUTINE -REGET5 CURRENT CHARACTER FROM BASIC TEXT
0077 0077 TXTPTR POINTER TO CURRENT SOURCE TEXT
0078 0078 ERRDD ECU - REDIM'D ARRAY
0O7D 007D QNUM LABEL IN CHRGET
00S0 0080 ENDTK TOKEN - END
0081 0081 FORTH TOKEN - FOR
0083 0083 OATATK TOKEN - DATA
008S 008S ERRDUO ECU - DIVISION BY 2ER0
0087 0087 CHRRTS LABEL IN CHRGET
0088 0088 RNDX NEXT RANDOM NUMBER - INITIAL LOAD FROM ROM
0089 0089 GOTOTK TOKEN - GOTO
0086 008B 227
0O8D 008D CTIMR 24 HR CLOCK 1X60 OF SEC
008D 0O8D GOSUTK TOKEN - GOSUB
008F 0O8F REMTK TOKEN - REM
0095 0095 ERR ID ECU - ILLEGAL DIRECT
0096 0096 CSTAT I/O OPERATION STATUS BVTE (UARIABLE ST)
0099 0099 PRINTK TOKEN - PRINT
00A2 0OA2 SCRATK TOKEN - NEH
0OA3 0OA3 TA6TK TOKEN - TAB
00fl3 0003 ERRTM ECU - TYPE MISMATCH
0OA4 00A4 TOTK TOKEN - TO
00A5 00A5 FNTK TOKEN - FN
0OA6 00A6 SPCTK TOKEN - SPC
00R7 00A7 THENTK TOKEN - THEN
0OA8 0OA8 NOTTK TOKEN - NOT
00A9 00A9 STEPTK TOKEN - STEP
00AA OOAA PLU5TK TOKEN - +
0OA6 O0A6 MINUTK TOKEN
0OBO 00B0 ERRLS ECU - STRING TO LONG
0061 00B1 GREATK TOKEN - >
0062 0062 EQULTK TOKEN - =

0OB3 00B3 LES5TK TOKEN - <

00B4 0OB4 ONEFUN TOKEN - SGN START OF SINGLE PARM FUNCTIONS
0OBF 0OBF ERRBD ECU - FILE DATA
00C6 00C6 TRMPOS
0OC7 00C7 LASNUM TOKEN - CHR* LAST FUNC WITH ARITHMETIC PARMS
00C8 00C8 ERRST ECU - FORMULA TOO COMPLEX
0OCB 0OCB GOTK TOKEN - GO (' GO TO :

00D6 00D6 ERRCN ECU - CAN'T CONTINUE
0OE9 00E9 ERRUF ECU - UNDEF'D FUNCTION
00FF 00FF PI VALUE OF PI SYMBOL'
00FF 00FF LOFBUF START OF FOUT STRING FOR STRD AND TI$
0100 0100 FBUFFR FOUT BUFFER HOLDS ASCII STRING FOR OUTPUT
01FB 01FB STKEND TOP OF STACK FOR BASIC
01FF 01FF 221
01FF 01FF 225

Appendix F: Variations for Revision Level 2 ROMs 479

Table F-3. Hex Addresses and Label References: CBM BASICs (Continued)

BASIC
3.0

BASIC
4.0

Labels Description

01FF 01FF 224
0200 0200 BUF BASIC INPUT BUFFER (80 CHARACTERS-BYTES LONG;
0200 0200 6UF0FS SAME AS ABOVE
0201 0201 222
0202 0202 223
0400 0400 RAHLOC BEGINING OF RAM AOALIABLE FOR BASIC TEXT
0000 8000 OFFSET RVALUE USED IN ASSEMBLY - ROM VERSION
0000 8668 228
C000 B000 ROMLOC BEGINING OF BRSIC ROMS -U2=$C000 U4=*6000
C000 6000 3TMDSP START OF COMMAND DISPATCH TABLE
C046 6066 FUND5P START OF FUNCTION DISPATCH TABLE
C04C 606C U5RL0C
C074 B094 OPTAB START OF MATH OPERATORS DISPATCH TABLE
C089 B0A9 NEGTAB UNITARY NEGATE DISPATCH (.BYTE 125, DISPATCH;.
C08C B0AC NOTTAB NOT OPERATOR DISPATCH (.BYTE 90, DISPATCH;.
C08F B0AF PTDORL COMPARISON DISPATCH (.BYTE 1 00, DISPATCH)
0092 60B2 RE5L5T START OF RESERVED WORD LIST .: ASCI I , END COR 480 ;.

;.

C 1 92 B20D ERRTAB START OF BASIC ERROR MESSAGE STORAGE
C23B 6306 ERR MESSAGE - "ERROR"
C292 630D INTXT MESSAGE - "IN"
C297 6312 REDDV MESSAGE - "READY"
C2A2 B3 1

6

BRKTXT MESSAGE - "BREAK"
C2AA 6322 FNDFOR PEEKS AT THE STACK FOR AN ACRTIOE "FOR" LOOP
C2AF 6327 FFLOOP
C2C4 633C CMPFOR
C2D0 6348 ADDFRS
C2D7 B34F FFRTS
C2D8 6350 BLTU "OPENS UP" A SPACE IN BASIC FOR A NEW LINE
C2DF 6357 BLTUC
C2FC 6374 6LT1
C308 B38Q BLTLP
C30C 6384 M0REN1
C313 B386 DECBLT ?^

C31B 6393 GET3TK TEST FOR STACK-TOO-DEEP ERROR
C328 B3H0 REASON CHECKS FOR AUALIABLE MEMORY SPACE

B3AA TRYMOR
C336 63AE REASAU
C341 6369 RERSTO
C354 63CC REARTS
C355 63CD OMERR OUT OF MEMORY ERROR OECTOR
C357 63CF ERROR ERROR HANDLER (ERROR TYPE IN . X)
C364 B3DA ERRCRD
C36A B3E0 GETERR
0000 B3ED TVPERR PRINTS OUT THE ERROR MESSAGE
C37E B3F4 ERRFIN
C389 B3FF READY PRINTS "READY." GOES INTO MAIN BASIC LOOP (> hm i ;.

C392 B406 MAIN MAIN BASIC: LOOP, ANALY2ES INPUT LINES
C3AB B41F MR INI LINES THAT START WITH A NUMBER HANDLED HERE
C3E6 645A QDECT1
C3EE B462 MLOOP
C3FC B470 MODEL
C417 B48B NODELC
C431 B4A5 STOLOR
C439 B4AD FINI CLEANS BASIC: SYSTEM UP; CLR
C442 B4B6 LNKPRG RELINKS BASIC STATEMENTS IN TEXT AREA
C44B B4BF CHEAD

480 PET/CBM Personal Computer Guide

Table F-3. Hex Addresses and Label References: CBM BASICs (Continued)

BASIC BASIC Labels Description
3.0 4.0

C453 B4C7 C2L00P
C4*E B4E1 LNKRT5 X
C46F B4E2 INLIN INPUT fl LINE OF INFORMATION INTO BUF (MAX 80 i :HRRS>

C4?i B4E4 INLINC X

C47E B4F8 FININi
C495 B4FB CRUNCH LOOKS UP KEYWORDS IN RH INPUT LINE
C49B B501 KLOOP X
C4R7 BSOD CMPSPC
C4BD B523 KLOOP

1

;:-r

C4C5 BS2B MUSTCR
C4CF BS3D RESER X

C4D1 B544 RE5C0N
C4E0 BS52 GETBPT X

C4E2 B554 STUFFH X
C4F5 B567 COL 1

5

C4F7 B5<S9 NODRTT X
C4FE B570 STR1 X
C507 B579 STRNG
C50E B580 NTH 1

5

X
C512 E«S4 NTH I SI
0000 B58D NTHI52 X
C522 B599 CRDONE X

C52C B5R3 FNDLIN SEARCHES FOR R LINE NUMBER (NUMBER IN LINNUMj
C530 B5R7 FNDLNC X

C547 B5BE FNDLOi X

C558 B5C7 RFFRT5 X

C559 B5D0 FLINRT X

C55FI B5D1 FLNRTS K
C5SB B5D2 SCRRTH IMPLEMENTS "NEW" COMMAND - CLEfiRS EMERY THING

C55D B5D4 SCRTCH X
C572 B5E9 RUNC
C577 B5EE CLERR CLR - ROUTINE
CS79 B5F0 CLERRC X

0000 B60B FLORD j<;

C593 B60E STKINI X

C5R6 B621 STKRTS
CSR7 B622 STXTPT TXTPTR=TXTTRB-1
C5B5 B630 LIST ROUTINE - LIST
C5BD B63S GOLST *;

C5D4 B64F LSTEND X
C5E2 B65D LIST4
C5FF B67R TSTDUH X

060

1

B67C TVPLIN X

C608 B683 PRIT4
C60C B687 PLOOP
C619 B494 PL00P1 X
C62D B6R8 GRODV X

C430 B6R6 GPLOP X
C642 B6C5 RESRCM
C645 B6C8 RESCR1 X

O0Q0 B6CE RESCR2
C64D B6D4 PR ITS X

0000 B6D5 PRIT3B
C655 B60E FOR ROUTINE - FOR
C669 B6EF NOTOL
Cifli B727 LDFONE

Appendix F: Variations for Revision Level 2 ROMs 481

Table F-3. Hex Addresses and Label References: CBM BASICs (Continued)

BASIC
3.0

BASIC
4.0

Labels Description

C6B5 B73& OHEON
C5C4 &74A NEWSTT MR IN STATEMENT DISPATCH LOOP (DO HE; ;t statement;.
C6D4 B759 DIRCON
C6E4 6769 DIRCH1
C6F7 B77C GONE DISPATCHES NEXT BVTE CHRGET RETURNS
C700 &735 G0NE3 DISPATCHES .A IF N0N2ER0 ELSE LOOP "r NEWSTT
C702 B787 G0NE2
0000 B795 G0NE4
C717 B7A2 GLET
C71A 67A5 MORSTS
C71E B7A9 SHERRi SYNTAX ERROR UECTOR
0000 67AC GO HANDLE GO TOKEN CASE (FIND A TO)
C73B B7B7 RESTOR ROUTINE - RESTORE
C73A B7C1 RESFIN
C73E B7C5 I SORTS
C73F &7C6 STOP STOP - SEC END - CLC
C741 E.7C8 END ROUTINE - END
C742 B7C9 STOPO ROUTINE - STOP
C751 6706 STPEND
C75? 67E8 DIRIS
C7SB B7F.2 EHDCON
C768 B7EB GORQV JMP READY
C76B b^ee CONT ROUTINE - CONT
C784 B807 CONTRT X
C785 B808 RUN ROUTINE - RUN
C790 B813 GOSUB ROUTINE - GOSUB
C7A4 B827 RUNC2
C7A0 B830 GOTO ROUTINE - GOTO
C7C4 B847 LUK4IT
C7C8 B84B LUKALL
C7D9 B85C GORTS
C7DA B8!5D RETURN ROUTINE - RETURN
C7E6 B8.5E USERR BAD SUBSCRIPT ERROR UECTOR
C7F0 B873 SHERR2 SYNTAX ERROR UECTORV
C7F3 &S76 RETU1 ^;

C800 B883 DATA
C803 B886 ADDON
C30D B690 REMRTS
C80E B691 DATAN SEARCH FOR NEXT '

C811 B894 REMN LOOK FOR EOL(*00:> (TXTPTR OFFSET IN Y)

C819 B89C EXCHOT
C82i 68A4 REMER
C830 B8B3 IF ROUTINE - IF
C83F B8C2 OKGOTO
C843 &8Cd REM ROUTINE - REM
C348 B8CB DOCOND

B8D3 DGCO
C853 B8D6 ONGOTO ROUTINE - ON (GOTO OR GOSUB.)
CS5B B8DE SNERR3 SYNTAX ERROR UECTOR
C85F B8E2 ONGLOR X
Co'67 68EA 0NGLP1
C87£ B8F5 ONGRTS
C8:73 68F6 LINGET INPUT A BASIC LINE NUMBER (0-53999

V

UALUE IN LINNUM)
0879 B8FC MORLIN
C8A7 B92H NXTLGC
C8AD B930 LET ROUTINE - LET

482 PET/CBM Personal Computer Guide

Table F-3. Hex Addresses and Label References: CBM BASICS (Continued)

BASIC
3.0

BASIC
4.0

Labels Description

C8CR B94D QINTGR
C8DE B9.51 COPFLT
C8E1 B964 C0P5TR
C8E2 B96E INPCOM
C8F5 B978 TIMELP X
C98F B992 N0ML6
C91F 69A2 TIMEST
C928 B9AB TIMHUM X
C92F B9B2 FCERR2 ILLEGAL QUANITV ERROR VECTOR
C932 B9BE GOTNUM
C937 B9BA GET5PT COPV STRINGS IF NEEDED
08013 B9BE OSKX0
ooee B9D2 DSKXi X
0088 B9D4 DSKX2
C948 B9E1 QWRRIR X
C956 B9EF DNTCPV X
C95D B9F6 COPV
C973 BR 13 COPVC
0088 BR2E COPV08 X
0888 BA44 COPV01 X
0888 BA4* COPY02
0008 BR4E 5TRRDJ POINT TO STRING FOR fl COPV
0888 BR.5C RDJ Y,

0888 BA70 RDJXX X
0088 BR74 RDJ02 X
0080 BR83 ADJOO Y,

0008 BR85 ADJ01 yt

C98B BR88 PRINTN ROUTINE - PRINT*
C991 BASE CMD ROUTINE - CMD
C99B BR98 SAVE IT X
C9fl5 BRR2 STRDON X
C9fl8 BARS NEWCHR X
C9AB BROS PRINT ROUTINE - PRINT
C9RD BRRR PR INTO X
C9D5 BHD2 FININL X

C9E2 BfiDF CRDO OUTPUT A CARRIAGE RETURN
C9EC BRED CRFIN X
C9EE BREF PRTRT3 X
C9EF BRFO COMPRT
C9F2 BRF3 M0RC01 X

C9FC BfiFD TRBER TAB AND SPC HANDLER
CA0C BBOD R5PRC
CA0D BBOE XSPAC \;

CA0E BBOF XSPAC2 X

CA11 BB12 NOTRBR
CPU 7 BB18 XSPAC

1

X
CA1C BB10 5TR0UT PRINT STRING FROM ADDRESS IN .V AND .A

CfilF BB20 5TRPRT PRINT STRING POINTED TO BV INDEX
CA2* BB27 5TRPR2
CR39 BB3R OUTSPC OUTPUT A SPACE
CR40 BB41 CRTSKP OUTPUT A $10
CA43 BB44 0UTQ5T OUTPUT fi ?
Cfl45 BB44 OUTDO OUTPUT THE CHAR IN .A

CA4C BB49 OUTRTS X

CH4F BB4C TRMNOK HANDLES BAD INPUT DATA
CA59 BB56 GETDTL

Appendix F: Variations for Revision Level 2 ROMs 483

Table F-3. Hex Addresses and Label References: CBM BASICs (Continued)

BASIC
3.0

BASIC
4.0

Labels Description

ChSD BB5A STCURL
Cfiil BB5E SNERR4 SYNTAX ERROR '...'ECTOR

CA64 BB.i 1 TRMH01
CA6D BB.ifl DORG I

N

CR7D BB7A GET ROUTINE - GET OR GET#
CR94 BB91 GETTTV
CAR7 BBA4 INPUTN ROUTINE - INPUT*
CSB7 BBB4 IODOHE RESTORE INPUT TO KEVBORRO
CA69 BBB6 IORELE
CRC1 E.BBE INPUT ROUTINE - INPUT
CRD2 BBCD NOTQTI
CAOfl BBD5 GETAGN X
CAEG B6E8 &UFFIJL
0000 BBF1 PTHRTI
CflFft BBF5 GINLIN PROMPTS FIND RECEIUES THE INPUT
CB04 BBFF GINLIN
CB07 BC02 READ ROUTINE - READ
cboe EC09 INPCON ^;

CB10 E.C0B INPC01
CB1* BC11 I NLOOP X
CB42 BC3D QDATA
CB4B BC46 GETNTH x
CB4E BC49 DRT&K
CB52 BC4D 0RT&K1 X
C&66 BC.il SETGUT X
CB72 BC6D RE5ETC
CB73 BC*E NOWGET X
CB7E BC79 N0WGE1 X
CB8A E.C85 NUMIHS
CB92 BC30 STR0N2
CB9E &C99 TRMOK
CBB9 BCB4 DRTLOP
CBD2 BCCD NOWLIN-
CBDF &CDA '.,'RREND
CBEFl BCES '.,'RRYO PRINT "EXTRA IGNORED " IF KEYBOARD AND A SEPERATOR
CBFB &CF6 INPRT5
CBFC &CF7 EKIGNT MESSAGE - EXTRA IGNORED
CCOD BO07 TRYRGN MESSAGE - ?REDO FROM START
CC2S &D19 NEXT ROUTINE - NEXT
CC26 &D1F GETFOR
CC29 BD22 3TXF0R
C034 BD2D ERRG05
CC3* BD2F HRUFOR
CC79 BD.iF NEWSGO
CC79 BD72 LOOPDN CHECKS DATA FORMAT
CC8B BD84 FRMNUM .IMP FRME'.JL
CC8E B087 CHKNUM CHECK THRT CURRENT TVPE IS NUMERIC
CC90 BD89 CHK5TR CHECK THAT CURRENT TYPE IS STRING CCHKS URLT' r'P)

CC91 BDSFi CHKUAL
CC97 BD90 CHKOK
CC98 BD91 DOCSTR
CC9R BD93 CHKERR TYRE MISMATCH ERROR VECTOR
CC9C BD9S ERRG04
CC9F BD98 FRME'JL FORMULA EURLURTOR - EVALUATES ALL FORMULAS
OCRS B09E FRME','1

CCHH &'dA3 LPOPER

484 PET/CBM Personal Computer Guide

Table F-3. Hex Addresses and Label References: CBM BASICs (Continued)

BASIC BASIC Labels Description
3.0 4.0

CCB9 BDB2 TSTOP x
CCBC BOBS LOPREL
CCD6 BDD1 ENOREL
CCFi BOER GPREC
CCFA BDF3 DOPREC
CCFB BDF4 NEGPRC X

CD88 6E01 FINREL
CD 12 BE0B FINRE2
COIR BE 13 BPREC1
CD21 BElfl D0PRE1 PUSHES R PARTIAL EURLURTION ON THE STACK
CD31 BE2A SNERR5 SVNTRX ERROR UECTOR
CD34 BE2D PUSHF1 x
CD39 BE32 PU5HF
CD44 BE41 F0RP5H
CDS?' BE54 QOP
CD5C BE59 QOPGO
CD5E BE5B GCHNUM X
CD65 BE62 UNPSTK
CD67 BE44 PULSTK RESTORE RRG FROM STACK (PUSHED EURLURTION)
CD31 BE7E Q0PRT5 X
CD83 BE80 UNPRTS X
CD84 BE81 EURL EVALUATES NUMERIC FORMULAS
CD88 BESS EUAL0
CD8D BE8R EUAL

1

CDP0 BE8D EURL2 X
CDR3 BERG PI URL STORAGE - THE BINARY. VALUE OF PI
CDA8 BER5 QDOT
CDB8 BEB5 STRTXT IMMEDIATE STRINGS HANDLER
CDC1 BEBE STRTX2
CDC7 BEC4 EURL3
CDCF BECC NOTOP EUfiL - NOT
CODE BEDB EURL4
CDEC BEEP PRRCHK EVALUATE fl FUNCTION WITHIN O'S iTRMEVL)
CDF2 BEEF CHKCLS CHECK FOR RIGHT PRRENTHESIS)

CDF5 &EF2 CHKOPN CHECK FOR LEFT PARENTHESIS C

CDF8 BEF5 CHKCOM CHECK FOR A COMMA
COFR BEF7 SVNCHR COMPARE TXTPTR AGAINST .R IF < > THEN...
CE03 BF00 3NERR . . . SYNTAX ERROR SECTOR
CESS BF05 DOM IN SET UP FUNCTION FOR FUTURE EURLURTION
CE0R BFS7 GONPRC
cieea BF0C CKSM&0 THE CHECKSUM BYTE FOR THE $6000 ROM
OSS© BFOO ISUJMP JMP ISUAR
8SSS BF10 PRBBS PATCHES
ooss BF10 PRTCHG P

esse BF 1

D

PCTH0 P
0S8S BF1E PCTH1 P
0000 &F21 PRTCHH P
esse BF2E PATCH

I

P
CESF BF8C ISURR SET UP A URRIRBLE NRME SEARCH
CEH &F8E 226
CE12 BF8F ISURET
0080 BFC1 I SUDS DS$ TEST AND HANDLER
CE42 BFD3 STRRTS
CE43 BFD4 GOOD
CE54 BFE5 Gl II If II 1! 1

0000 BFFC CHKDS CHECK FOR A OS URRIRBLE

Appendix F: Variations for Revision Level 2 ROMs 485

Table F-3. Hex Addresses and Label References: CBM BASICs (Continued)

BASIC BASIC Labels Description
3.0 4.0

CE69 C003 GETTIM ASSIGN TIME TO TI
CE75 C OOF G5TATU
0OO0 C010 0O5HU
CE32 C 040 GOMOUF
C E89 C 047 I5FUN DISPATCH RND EUflL IF IT'S A FUNCTION
C EB3 C 071 OKHORM X
c EB8 C 076 FINGO PLRCE FUNCTIONS DISPATCH ADDRESS IN JUMPER AND GO
c ECS C 086 OROP EUAL - OR
c ECB C089 ANDOP EUAL - AND
r EF8 C066 DOREL 00 COMPARISONS
C F18 C OCE 5TRCMP
C F36 C 0F6 STASGN
c F3D C8FB NXTCMP
c F43 C 101 QCOMP
r F48 C 106 GETCMP
c FS4 C 112 DOCMP
c FSD C lib GOFLOT
CF68 C HE DIM3 MULTIPLE DIM RE-ENTRY (CHKS FOR A COMMA;.

CF63 C 121 DIM ROUTINE - DIM
CF6D C 12B PTRGET SEARCHES FOR A BASIC UARIABLE
CF72 C 130 PTRGT1 X
CF74 C 132 PTRGT2 X
CF7E C 13C INTERR SYNTAX ERROR UECTOR
CF31 C 13F PTRGT3 X
CF91 C 14F I55EC
CF92 C 158 EATEM X
CF9C C ISA NOSEC
CFA6 C 164 NOTSTR X
CFB6 C 174 TURNON X
CFBO C 17B STRNAM x
CFTI3 C 18F STXFND
CFD5 C 191 LOPFND x
CFDF C 19B LOPFN
0000 C 1AB NXTPTR MOUE SEARCH TO NEXT TABLE ENTRY
CFED C 1AC NOT IT X
CFF7 C 1B6 I5LETC
0000 C 1BF ISLRTS X
DO01 C ICO H0TFN5 DID NOT FIND UARIABLE - CREATE A NEW ONE
0007 C 1C6 LDZR X
D00C C 1CB NOTEUL
00 1C C 106 GOBADU X
D01F C IDE QSTAUR CHECK FOR ST CASE
O0O0 C 1E6 QDSUAR CHECH FOR OS CASE
0027 C 1F2 UAROK GOOD USABLE UARIABLE
0830 C 208 NOTEUE X
0448 C 21C ARYUA2
D44C C 220 ARYUA3
0457 C 228 ARYUGO SEARCH THE ARRAYS
0488 C 259 ARYGET MOUE THRU THE ARRAY TABLES
0492 C 263 GOGO
0000 C 281 GOGO

1

D4D0 C 290 QUARTS
0000 C 290 ARYDON
0069 C 2B9 FINPTR LOGS BASIC UARIABLE LOCATION
0073 C 2C3 FINNOH
0078 C iiL-6 FMAPTR ARRAY POINTER SUBROUTINE

486 PET/CBM Personal Computer Guide

Table F-3. Hex Addresses and Label References: CBM BASICS (Continued)

BASIC BASIC Labels Description
3.0 4.0

D084 C2D4 JSRGM
0089 C2D9 N32768 STORAGE - THEN BINARY VALUE -32768
D08O C2DD I NT I OX EVALUATE FORMULA RESULT IS POSITIVE INTEGER VALUE
D093 C2E3 POSINT CONVERT FLOATING BINARY TO POSITVE INTEGER
D09B C2EA flVINT CONVERT FLOATING BINARY TO INTEGER
DOA7 C2F7 NONONO ILLEGAL OUANITY ERROR VECTOR
O0A9 C2F9 GINTGO ..IMP 01 NT
D0AC C2FC ISARY LOCATES AND/OR CREATES ARRAYS
DOB* C306 INDLOP
D0F7 C347 LOPFDA
D103 nr-iRr^ LOPFDV
D112 03*2 NMARY1
D12S C370 BSERR BAD SUBSCRIPT ERROR VECTOR
D123 C373 FOERR ILLEGAL QUANITY ERROR VECTOR
D125 C375 ERRG03 X
D128 0378 GOTARY
D13C 0380 HOTFDD
D150 C39F NOTFLT
D159 C3A8 STOMLT
Dl*2 C3B1 LOPPTA
D172 C3C1 NOTDIM
D195 C3E4 GRER3E
D1A4 C3F3 2ERITA
D1A9 C3F8 DECCUR
D1C5 C415 GETDEF
DICE 04 ID INLPNM
D1E4 0433 BSERR7 SYNTAX ERROR VECTOR
D1E7 043* OMERR

1

OUT OF MEMORY ERROR VECTOR
DIEfi 0439 INLPN2
D1EB 0431=1 INLPN1
D1FC C44B ADDING X
D20D C4SC N0TFL1
D213 04*2 ST0ML1
D227 0476 DIMRT5 X
D228 C477 UMULT INTEGER ARITHMETIC ROUTINES FOR MULTI-DIM ARRAYS
D231 0480 UMULTD X
D23B C48A UMULTC
D254 C4A3 UMLCNT
D258 C4A7 UMLRTS
D259 C4A8 FRE ROUTINE - FRECX)
0260 C4AF HOFREF X
D26D C4BC GIMflVF CONVERTS INTEGER TO FLOATING BINARY
D27A 0409 P05 routine - pos.rx;.

D27C C4CB SNGFLT X
D280 C4CF ERRDIR IF COMMAND TYPE IS INDIRECT ONLY - ILLEGAL DIRECT
D288 C4D7 ERRGUF UNDEFINED FUNCTION ERROR VECTOR
D28D 0400 DEF ROUTINE - DEF FNO =

D2BB C50A GETFNM
D2CE 05 ID FHDOER EVALUATES FNO IN FORMULAS
D2F2 0541 DEFSTF
D329 0:576 DEFFIN
D33F 058E 3TRD ROUTINE - STR$
D349 0598 TIMSTR MAKE A STRING OUT OF INFO AT $01FF
D34F C59E 5TRINI MAKE A STRING OUT OF (FACMO POINTER;.
D357 C:5A6 STRSPA
D3*l C5B0 5TRLIT SCANS AND SETS UP STRING ELEMENTS

Appendix F: Variations for Revision Level 2 ROMs 487

Table F-3. Hex Addresses and Label References: CBM BASICs (Continued)

BASIC
3.0

034
D37
D37

D3R4
D3HC
D3hF
D3CE
D3D0
D3DB
0000
D3E5
0000
O3F0
D480
0000
0088
0880
0000
0000
0000
0000
0000
0000
0008
0000
0000
0000
0000
0800
0000
0000
0000
0000
0000
D517
D537
D554
D5.52

D564
DSifi

D570
D58S
[JS84
0000
0O08
DSfiF

0000
D5B5

BASIC
4.0

C5C0

C5D

1

C5D2
C5DE
C5E8
C5F3
CSF6
C5FE
C61D
C* 1

F

C63H
C644
C85P,

CiSE.

C66H
C87E
C630

C69E
C60?
0*62
CiCE

C6F0
C700
C703
C71i
C71F
C724

C730

C73F
C744

C74F
C76F

C79R

C7P2
C7A&
C7&4
C7E.S

C7B8
C7BC
C7DE

C7FC
f:7FE

Labels

5TRLT2
STRGET
STRFIN
STRFI1
STRFI2
STRST2
STRCP
PUTNEW
ERRG02
PUTNW1
GETSPH
TRY0G2
TRV0G3
TRVHG4
STRFRE
GETRT5
GfiR&AG
GORB02
GLOOP
COL00
COL00B
COL00H
COL01
COL02
GL0P1
COL02B
COL02O
GRBENO
COL03
ENDGR&
5KIP2
5K I P20
MOUPNT
MOU00
MOUTOP
MOM01
SET I NX
3ET00
COT
SI2E0K
MOM INS
MOUSTR
HUUDO
MOULP
HUDONE
tWSTRT
FRE5TR
FREFOC
FRETMP
RES00
FRE01
FREPLH
FRE02
FRETMS
FRERTS
CHRD

Description

CHECK STRING TEMPS PLfiCE PHTO IN TEMPf

BUILDS STRING UECTORS

DOES 'GARBAGE COLLECTION' POCKS STRINGS

JMP EHDGRB
MOVES FRESPC TO
MOUES FRESPC TO

FRETOP
FRETOP

CONCATENATE TMO STRINGS CFOO AND (+<-<TXTPTR) I

FREES UP TEMPORARY STRING POINTERS

ROUTINE - CHR$(UflLUE) (VALUE 0-255)

488 PET/CBM Personal Computer Guide

Table F-3. Hex Addresses and Label References: CBM BASICs (Continued)

BASIC
3.0

BASIC
4.0

Labels Description

DSDfi C836 LEFTD ROUTINE - LEFT*0
O5E0 C33C RLEFT
05E6 C842 RLEFT

1

D5E7 C843 RLEFT2
OSES C844 RLEFT3
D5FF C856 PULMOR
0606 C862 RIGHTO ROUTINE - RIGHT:tO
06 11 C860 MI DO ROUTINE - MI0*0
D622 C87E MI 02
063B C897 PREflM USED BV RIGHT
0656 C8B2 LEN ROUTINE - LEN (STRING;.
D65C C868 LEN1
0665 CSC1 R5C ROUTINE - ASC; STRING)
0672 C8CE GOFUC
0675 CSD

1

GTBVTC DOES fi CHRGET RND GETBYT
D678 C8D4 GETE.VT EVALUATE THE FORMULA AND RETURN A BYTE UALUE ON .X)
D67B C8D7 CON INT
0687 C8E3 URL ROUTINE - URL (STRING)
D6R7 C903 VAL2 X
D66P C918 ST2TXT
D6C5 C920 VALRTS
D6C6 C921 GETNUM EVALUATE FORMULA AND RETURN INTEGER UALUE CB-•65535)
D6CC C927 COMBYT x
D6D2 C92D GETRDR CONVERT FAC TO VALUE C 0-65535) PLACE IN POKER
D6E8 C943 PEEK ROUTINE - PEEKCX)
06FB C94E GETCON X
D6FE C951 005GFL
D707 C95R POKE ROUTINE - POKE X
07 10 C963 FNURIT ROUTINE - WRIT
07 IF C972 STORDO X
0723 C976 MR ITER
072B C97E ZERRTS X
D72C C97F FRDDH ADD 1/2 TO FPB VALUE IN FAC
0733 C986 FSUB UNPACKS ARGUMENT AND SUBTRACT FPB
0736 C989 F5UBT FPB SUBRRTRRCTION ARG-FRC
D76E C998 FRDD5 X
D773 CP9D FRDD UNPACK ARGUMENT INTO ARG DO A FPB ADD
0776 C9R0 FRDDT FPB ADDITION FAC=FAC+ARG
D783 C9flD FRODC
D79F C9C9 FfiDOfi

D7R3 C9C0 FR0D1
D7AF C9D9 FRDD4
D7BB C9E5 SUB IT
D7DE CR08 FROFLT
D7E3 CROD NORMAL NORMALIZE ADDITION AND SUBTRACTION RESULTS
D7E7 Cfl 1

1

NORMS
0803 CR2D 2ER0FC FAC=0
0805 CR2F 2ER0F1
D807 CR31 2ER0ML MAKE SIGH POSITIVE
O80R CR34 FADD2 X
0829 CR53 N0RH2
0835 CR5F NORM 1

0842 CA6C SQUEEZ
D844 CA6E RNDSHF
0852 CA7C RNDRTS X
D853 CA7D NEGFRC COMPLEMENT FRC ENTIRELY

Appendix F: Variations for Revision Level 2 ROMs 489

Table F-3. Hex Addresses and Label References: CBM BASICS (Continued)

BASIC B
3.0

ASIC
4.0

Labels Description

D859 CA83 HEGFCH COMPLEMENT JUST THE NUMBER IN FAC
037B C AA5 INCFAC INCREMENT FAC
D889 C AB3 INCFRT
D68R CAB4 OUERR OVERFLOW ERROR UECTOR
D88F C AB9 MULSHF SHIFER ROUTINES
D891 CABB SHFTR2
0SA5 CACF SHIFTR
D8B2 C ADC SHFTR3
D8B8 C AE2 5HFTR4 X
DSBC C RE* ROLSHF
DSC* r AF0 5HFTRT X

D8C8 C AF2 FONE FLOAT I NG-PO INT-PI NARV CONSTANTS
08CD CAF7 L0GCN2
D8E2 CB0C SQR05
D8E7 C Bll SQR20 X

D8EC : B16 HEGHLF X
D8F1 C BIB L0G2
DSF* CB20 LOG ROUTINE - LOG<X>
D8FD C B27 LOGERR ILLEGAL SUANITV ERROR UECTOR
0900 C B2A L0G1 X

0008 CBSA MULLN2
0934 CBSE FMULT FPB MULTIPLY FAC=FAC*ARG
D937 C 661 FMULTT FPB MULTIPLY WITH ARG AND , AC LOADED
D965 C B8F MLTPLV
096A C B94 MLTPL1
D96D C B97 MLTPL2 X

D989 CBB3 MLTPL3 X

0997 C BCi MULTRT
0998 CBC2 CONUPK UNPACK MEMORY INTO ARG
D9C3 L BED MULDIU CHECK AND ADJUST EXPS OF FPB MULT AND DIM
D9C5 C BEF MLDEXP X
D9D0 C BFfl TRVOFF
D9E0 C CQA MLDUEX
D9E6 CCIO ZEREMU X
D9EB C CIS GOOUER OMERFLOW ERROR UECTOR
D9EE CCIS MUL10 MULTIPLY FAC BY 10

D9F9 C C23 FINML6
DM4 C C2E MUL10R
OR05 C C2F TENC FPB VALUE 10

DAOfi CC34 DIU10 DIUIDE FAC BY 10
DA 13 C C3D FDIUF
DA IB C C4S FDIU UNPACK MEMORY AND DIUIDE
DA IE CC48 FOIUT FAC = ARG/FAC
DP35 CC5F DIUIDE X

DA4B C C75 SAUQUO
DA58 C C82 Q5HFT X
DASB CCSS 5HFRRG X
DA69 C C93 DIUSUB X
DH86 CCB0 LD100 X
DA8A C CB4 DIUHRM
DA94 r. CC0 OU0ERR OVERFLOW ERROR UECTOR
DAvB ij CCS MOUFR MOUE RES TO FAC
OAAE CCDS MOUFM MOUE MEMORY TO FAC
DAD3 CCFO M0U2F X
OR06 C D00 MOM IF X
DfiDC C006 MOMMF

490 PET/CBM Personal Computer Guide

Table F-3. Hex Addresses and Label References: CBM BASICs (Continued)

BASIC
3.0

BASIC
4.0

Labels Description

DAE0
0608
DB0A
DBBE
DB1S
DB1B
DB1D
DB2*
DB27
DB2F
0B37
DB3B
DB3G
DB44
DB45
DB48
DB50
DB55
D656
DB64
0B67
DB69
DB9E
DBA4
DBA7
DBBB
DBC6
DBC7
DBD8
DBFS
OBFE
DBFF
DCS3
DC 12
DC 16

DC 19
DC IB
DC3A
DC3C
DC3F
DC41
DC4D
DCS3

PC5E
DC67
PCSE
DC73
DC76
DC7D
DCSfi

DC9D
DCAC
DCBfi

DCBF
DCC4

D0A
D32
D34

D42
D4S
D47
050
D51
059
06 1

D<S5

06?
D6E
D6F
072
D7A
D7F
D85
DSE
D91
D93
DCS
DCE
DD1
DE5
OF0
DF1
E02
E1F
E28
E29
E2D
E3C
E40
E43
E45
£.54

E66
E69
E6B
E77
E7D
E7F
E88
E91
E98
E9D
EA0
EA7
EB4
EC7
ED*
EE4
EE9

CEEE

MOUMF
MO'JFA
M0'.,'FA1

MOUFAL
MOUhF
MOUEF
MOUAFL
MOVRTS
ROUND
INCRND
SIGH
FCSIGN
FCOMPS
SIGHRT
SGN
FLOAT
FLOATS
FLOATC
FLOATB
fibs

FCOMP
FCOMPN
FCOMPC
FCOMPD
QIHT
QISHFT
QINTRT
QINT1
INT
CLRFAC
INTRT5
FIN
FIH2LP
QPLUS
FINC
FINDGQ
FIN1
FINEC1
FINEC
FNEDG1
FINEC2
FINDP
FINE
FINE1
FINDIU
FINMUL
FINQNG
NEGXQS
FINDIG
FINDG1
FINLOG
FINEDG
mle;-;i0

MLEXMI
N0999
N9999

MOVE FHC TO MEMORY
MOVE' ORG TO FAC

MOME FRC TO ORG

ROUND FHC

EXTRACT SIGN FROM FAC IN .ft

ROUTINE - SGN<X>
FLOAT THE SIGNED INTEGER IN FAC
FLOAT THE SIGNED NUMBER IN FftC

ROUTINE - ABSCX)
COMPARE ARG AND FAC ,fi=l«-A<F

FAC=INTi::FAC;. SIGNED ROUTINE - INT<X)

ROUTINE - IHTCX)
.A TO ALL POSISTIONS OF FAC

FBP INPUT, TXTPTR POINTS TO ASCII, RETURNS IN FAC

FPB VALUE 99?
FPB VALUE 99?

Appendix F: Variations for Revision Level 2 ROMs 491

Table F-3. Hex Addresses and Label References: CBM BASICS (Continued)

BASIC BASIC Labels Description
3.0 4.0

DCC9 CEF3 NM I

L

FPB UhLUE 10-9
00130 CEF8 CKSMC0 CHECKSUM BYTE $CO00 ROM
DCCE CF78 INPRT PRINT CURRENT LINE NUMBER
DC09 CF83 LINPRT PRINT NUMBER IN (.A<+IIGH . V<-LOW;.

DCE6 CF90 STR0U2 JMP STROUT
DC El9 CF93 FOUT FPB OUTPUT
DCE6 CF95 FOUTC
DCF3 CF9D F0UT1
DD0C CFB* F0UT37
DD15 CFBF F0UT7
DD17 CFC1 F0UT4
DD22 CFCC F0UT3
DD2D GFD7 F0UT3S X
DD34 CFDE F0UT9
DD36 CFE5 F0UT5
DD3E CFE8 BIGGES
DD53 CFFD FOUTP

I

DD54 CFFE F0UT6
D05F D009 F0UT39
DO70 001

A

FOUT 16

DG72 D01C F0UT8
D074 D01E FOUT I

M

CLOCK ENTRY INTO FOUT
DD74 D020 F0UT2
D09A D044 F0UT4

1

DD9C D04i F0UT40
ODA3 D04D FOUTVP
DDBE D068 5TXBUF
DDOO D07H FOULDV X
DDD2 D07C FOUT 11

DDDF D089 FOUT 12
DDEF D099 FOUT 1

4

DDFB D0A5 FOUT 1^
DE10 D06A FOUT 19" X

DEI 3 O0BD FOUT 1

7

DEI 8 D0C2 FOUT20
DE1D D0C7 FHALF FPB UHLUE 1/2
DE1F DOC? 2ER0
DE22 DOCC FOUTBL TABLES OF POWERS OF -101X
DE46 D0F0 FDCEND END OF POWERS TABLE
DE5E D108 T I MEND FPB TIME CONVERSION TABLES
DE5E 01 08 SGR ROUTINE - SGR<X;i

DE68 D112 FPWRT ROUTINE (RRGtFHC;i
DE71 Dl IB FPWRT

1

DE8B D135 FPWR1
DEfil D14B NEGOP NEGATE THE NUMBER IN FAC
DEhB DISS NEGRTS
DEfiC D 1 58 L0GEE.2 FPB UALUE LOGCEJ BASE 2
DEB1 D15B EXPCON LOG AND EXPONENT FPB TABLES
DEDh D

1

84 EXP ROUTINE - EXPCFAC;.
DEER Pi 94 STOLD
DEF5 D19F GOMLDV
nFF8 D1R2 EXP1
DFB8 PI .32 SWAPLP.
DF2D D1D7 POLYX POLYNOM I AL EUALUATOR
DF43 DIED POLY POLYNOM I AL EUALUATOR
DF47 D1F1 P0LY1

492 PET/CBM Personal Computer Guide

Table F-3. Hex Addresses and Label References: CBM BASICs (Continued)

BASIC
3.0

DF56
0F5A
0F67
DF77
DF7B
DF7F
DF9D
DFB2
DFC2
DFD5
0FD6
DFDF
E011
E014
E021
E028
E050
E054
E059
E05E
E063
E08C
E094
E0A2
E0B5
E0BB
E0BC
E0F9
E0FF
E110
0000
E131
E 1 5D
El.i-5

El 74
El 78
E1B7
E1C4
E1DE
0000
E844
0800
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

BASIC
4.0

D200
D204
0211
0221

0247
D25C
0260
D27F
0282
0289
D2BB
D2E.E

D2CB
0202
D2FA
02FE
0303
0308
0300
032C
0334
0342
0355
D35B
035C
0399
D39F
D3B0
D3B6
D3C9
0400
0408
0417
04 1

B

D44B
0458
0472
DEA4
E844
FF93
FF94
FF99
FF9C
FF9F
FFA2
FFA5
FFfiS
FFfiB

FFAE
FFB1
FFB4
FFB4
FFB7
FFBA

Labels

P0LY3
P0LV2
P0LY4
RMULC
RflDDC
RND
GSETNR
RND 1

STRNEK
GMOUMF

SIN
SIN1
SIH2
S I N3
TAN
C05C
PI2
TWOPI
FR4
5 1 NOON
HTN
flTNl

ATN2
RTN3
ATH4
ATNCON
INI TAT
CHOGOT
CHDRTS
INIT
MOUCHG
LOOPMM
L00PM1
USEDEC
USEDEF
WORDS
FREMES
LfiSTWR
PATCH2
CHTIM
CONCAT
DOPEN
DCLOSE
RECORD
FORMAT
COLECT
BACKUP
DCOPV
RPPENO
DSAUE
DLOfiD
IRCST

DCfiT
RENAME
SCRATC

Description

rndcx;.

rotine - cos<;;>o

ROUTINE - SINiTAC

ROUTINE - TftNrFfiC;.

FPB UfiLUE PI,-'2

FBP UfiLUE 2*PI
FP6 UfiLUE 1/4
SIN TfiBLES FPB UALUE5
ROUTINE - fi-TNCFfii::;.

BRSIC SYSTEM INITIALIZATION CODE

BfiSIC SYSTEM INITIALIZATION ROUTINE

MESSfiGE - 'BYTES FREE'
MESSAGE - '### COMMODORE BASIC ###'
LAST BYTE OF BRSIC SYSTEM CODE+1
PATCHES

UECTOR
UECTOR
UECTOR
UECTOR
UECTOR
UECTOR
UECTOR
UECTOR
UECTOR
UECTOR
UECTOR
UECTOR
UECTOR
UECTOR
UECTOR

CONCfiT
DOPEN
DCLOSE
RECORD
FORMAT
COLLECT
BACKUP
COPY
APPEND
DSAUE
DLOfiD
DIRECTOR'-,
CfiTfiLOG
RENAME
SCRATCH

Appendix F: Variations for Revision Level 2 ROMs 493

Table F-3. Hex Addresses and Label References: CBM BASICS (Continued)

BASIC
3.0

BASIC
4.0

Labels Description

' res

FFC;,

f- f " "I -_

;_:4oi

FFij'-

ffcc

FFDS
FFDB
FFDE
FFE1
FFE4
FFE7
000F
000D
000F
0010
006C
007F
C494
C721
D404
D41E
D427
D433
D43B
D440
D48A
D497
D4A1
D4B6
D4C0
D4DB
D4E0
D5B0
D74S
D74S
D745
D74S

FFC0

FFCi
FFC9
FFCC
FFCC
FFCF
FFCF

FFDS
FF08
FFDB
FFOE
FFEi
FFE4
FFE7
0000
0000
0000
0000
0000
0001
000U
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

READDS
COPEN

COIN
COOUT
CLSCHN
CCCHH
IHCHR
CINCH

CLuhD
C3AUF
CUERF

ISCNTC
CGETL
CCRLL
CONTH
CNTWFL
LINUID
NCMWIP
STRNGI

INCRTS
SNERRX
FNDUAR
TUAR
SUARS
SUAR
SUARGO
ARVUAR
ARYSTR
DURRS
DUflR
PURR2
DURR3
GRBRTS
GRBPAS
FRETRT
5T0RD1
ST0RD1
STORO

1

ST0RD1

UEC
UEC
UEC
UEC
iJEi

SAME
UECTi

SAME
UECT
UEC
UEC
UEC
UEC
UEC
UEC
UEC

JR - DS AND D5$
JR - OPEN
3R - CLOSE
IiR - SET INPUT DEUICE
IiR - SET OUTPUT DEUICE
HR - RESTORE NORMAL I/O DEUICES
AS ABOUE

;ir _. INPUT fl CHARACTER (FROM SCREEN)
AS fl&OUE

jp. _ OUTPUT R CHARACTER
LORD

JR - SRUE
IR - UERIFV

|R - TEST STOP KEV
IR - GET CHARACTER FROM KEYBOARD BUFFER
|R - ABORT ALL I/O CHANNELS

Index

Abbreviations, 115-17

ABS, 138, 394

American Standard Code for Information

Interchange (ASCII), 341, 346, 350, 410
APPEND*, 362

Arithmetic operations. See Numbers
Arrays

characteristics, 112-14

dimensions, 113-14, 121, 348

header, 347-49

Revision Level 2 ROM, 443

size, 114

storage, 336, 347, 450

variables represented, 113

ASC, 395

Assembly language programming, 351-52, 451

ATN, 138, 395

BACKUP, 288, 352

BASIC
commands, 114-16

dialect, 96

defined, 91

statements. See Statements

versions, 277

BELL, 405

BLOCK ALLOCATE, 356

BLOCK EXECUTE, 356

BLOCK READ, 355

BLOCK WRITE, 356

Braces, 360

Brackets, 360

Branch statements

computed GOTO, 122-23

GOTO, 121-22, 372

job queuing, 312

ON. ..GOTO, 380

subroutines. See Subroutines

Brightness adjustment, 6

Buffer

cassette drive buffer, 235

data buffer, 233, 235, 257, 277

keyboard buffers, 142-45

BUFFER POINTER, 356

Bytes. See Memory

Cassette files

access, 242-45

characters written, 249

concept, 231-32

data transfer, 233-39

diskettes compared, 270

formats, 265-69

header, 241

PRINT* output, 383

program storage, 58, 342

reading data, 252-64

rewriting or rerecording, 241

separation of data fields, 268

sequential storage, 241

starting cassette movement, 241

updating, 242

writing data to cassette drive, 241

writing numbers, 245-47

writing strings, 248-52

Cassette tape drive controls

eject, 29

fast forward, 28

play, 29

record, 28

rewind, 28

stop, 29

Cassette tapes

advancing tape, 446-48

care, 30

erasures, 28

loading and unloading, 29

storage, 30

write-protect, 31

Cassette tape units

built-in units, 5, 23

external units. See External cassette tape units

Catalog. See Diskette Directory

CATALOG or DIRECTORY, 75, 286, 367-68, 378

Cathode Ray Tube (CRT) display. Sec Display

CBM 2001/B described, 3, 7

CBM 8000 described, 2, 7

Card shuffling, 228

Channels, 235-36, 278

Characters

ASCII character representation, 341, 346, 350, 410

496 PET/CBM Personal Computer Guide

Characters (Continued)

carriage, use of, 291, 302, 303

cassette files, 249

character representation, 350

defining and drawing own characers, 330-31

double width, 326

literal, 325-26

non-dollar monetary data, 332

printer control characters, 326

question mark character, 115

quote characters, 328

reverse field characters, 328

special control characters, 326-28

upper case space bar, space codes, 323

variable names, 103-04

Character sets

alternate, 63, 410

literals and text, 326

PEEK and POKE, screen memory, 350
PET keyboard character sets, 312

standard, 63, 209, 409

CHR$, 395

Clock

accession, 217-18

digital display clock, 220-23

jiffies, 218-19

operation, 218

setting clock, 217

string variables, 217

CLOSE, 80, 236-38, 243-44, 362-63

CLR, 363

CMD, 78,313, 316,363

COLLECT, 286, 364

Commands
abbreviations, 115-16

execution as statements, 114

Computer cassette drives, program storage, 64

CONCAT, 364

Concatenation

CONCAT, 364
diskette files, 287-88, 300-01

sequential data files, 300
strings, 145-49

Constants, 346-47

CONT, 62, 364
Controls. See Cassette tape drive controls

Copies

copying errors, 288

diskette files, 282, 287-88, 384

program files, 311

COPY, 311, 365

COS, 138, 395

Cursor control keys

CBM 2001, 20

clear screen, 12, 81

cursor down, 13, 81

cursor right, 14, 81

cursor up, 13, 81

home, 23, 81

insert/delete, 14, 81

PET 2001, 22

strings, 52-55, 102

CURSOR LEFT, 13-14, 81-82

DATA, 119,365
Data files. See Cassette files; Diskette files; Files

DCLOSE, 313, 366

DEF FN, 366

DELETE, 83

DELETE LINE, 405

Demagnetizer, 27-28

DIM, 121, 367

DIRECTORY, 75, 286, 367-68, 378

Disk drives

connection, 31-32, 42

data writing, 271

indicator lights (LED), 34-35

initialize, 70

power-on test, 34

tracks and sectors, 271

characteristics, 271

display, 73, 282, 285

loading, unloading, 70, 75

printed, 368

Diskette file errors

clearing error status, 281

copying, 288

opening errors, 279-80

operations, 280-82

Diskette files

Block Availability Map, 271

cassettes compared, 270

closing files, 280, 282-83

collecting, 286

command channel, 278

concatenation, 387-88, 300-01

concentric tracks, 271

concept, 231-32, 270

copies, 282, 287-88, 384

create, 384-86

delete, 282, 289-90

directory. See Diskette directory

duplication, 288, 384-85

erase, 282, 385

GET statements, 308-10

index, 271, 275

initialization, 285, 385
loading programs, 69-72, 74-75, 310
memory buffers, 233, 235, 257, 277

merge, 384
names, 276

opening file, 277-83

preparation, 283-84

PRINT*, 383-85

program storage, 58

random, 270, 277

relative files. See Relative files

renaming, 282, 289, 386, 389
replacing, 290

scratch 386-87

secondary addresses, 278

sectors, 275, 282, 286

sequential files. See Sequential files

soft-sectored, 271

validate, 387

Diskettes

blanks, 72, 76

care, 39

damage, 39

defined, 31

diskette drives, error indicator, 28'

labeling, 39

loading and unloading-, 35-38

magnetic fields, 39

soft-sectored, 35

Index 497

write-protect, 39
Disk operating system (DOS), 69, 276
Display

brightness adjustment, 6

CBM 2001/B, 3

CBM 8000, 2

character display space, 7, 47
clearing screen, 57

directory, 73, 282, 285
numbers, 382

PET 2001/N, 3

program list, 59-60

resolution, 7

strings, 102, 147

time, 218

DLOAD, 75, 310, 368

DOPEN, 278, 313, 369
DS, 396

DS$, 396

DSAVE, 77, 310, 369

Editing

current display line, 82

immediate mode, 81

line editor, 339
program statements, 88-90

text within quotation marks, 85-88

Editing functions (See individual

function names)
Ellipses, 360

END, 137, 244, 369

ERASE BEGIN, 406

ERASE END, 406

Erasures, 28, 62, 282, 312, 385, 406
Error Messages

File errors, 426
printer diagnostic messages, 332
Read errors, 423-24

requesting messages, 422

System errors, 427
Write errors, 424
diskette files. See Diskette file errors

printout specifications, 332

syntax, 242, 420, 425

ESCAPE, 16

EXP, 138, 396

External cassette tape units

cassette tape interface, 333

cleaning and demagnetizing, 27

drive controls, See Cassette tape drive controls

external tape drive, 23

I/O block, connection to, 333

operation test, 26

plug-in procedure, 24-25

second unit, 23, 25

Execution

defined, 92

immediate mode, 92, 94, 359

programmed mode, 92, 359

programs, 60-61, 72

Files See also Cassette files; Diskette files;

Random access files

capacity, 232

data files

creation, 233

fields, 233, 265

records, 233, 265

size, 233

logical files, 235-39

program files

accessing files, 310

changing, 311

copies, 311

creation, 232

job queuing, 311

loading and saving, 310, 342

name, 232

size, 232

Revision Level 2 ROM, 445-46

Floating point variables, 104, 343-44, 450
Formats

automatic format, 317

blank diskettes, 72, 76

cassette file formats, 265-69

conventions, 360-61

defined, 132

lines per page, 329

lines per vertical inch, 329
mixed data, 324-25

numeric data, 317-21

page length, 328-29

POS, 133-34

PRINT formats, 382

space between lines, 329

SPC function, 132-33

specifications, 325, 332

strings, 321-24

syntax, 360

TAB, 133

top of form, 329

FRE, 397

Function keys, 9Jf.

PET 2001, 22

strings, 52

Functions. See individual

function names
arithmetic, 138-39

characteristics, 137-39

formatting. See Formats

string, 139

system, 140

user-defined, 140

GET, 135-36

GET*, 308-10, 371

GRAPHIC, 209, 406-07

Graphics

animation, 213-16

drawing a square, 209-11

editing format, 109, 406-7

enlarging a square, 216-217

immediate mode, 209

programs, 211-13

standard graphic character set, 209
string concatenation, 147

Header, 7^ 241, 347-49

HEADER. 373

IEEE 488 interface, 6

IF-THEN, 130, 373

Immediate mode
arithmetic calculations, 55

characteristics and use, 49, 92, 359
cursor movement, 57

498 PET/CBM Personal Computer Guide

Immediate Mode (Continued)

editing, 81

execution, 92, 359
graphics, 209
input, 50-51

loading program from diskette, 75

one-line programs, 93-94

printing to printer, 79

programs, 93-94

re-execution, 94

strings, 52-55

variables, 56

Indicator lights, 34-35

INITIALIZE, 70

INPUT, 130, 134-35, 374
INPUT*, 375

INSERT, 84

INSERT LINE, 407

INT, 138, 397

Internal cassette tape units, 5, 25

Interpreter, CBM BASIC, 339-40, 449

Keyboard

buffer, 142-45

CBM 2001/B, 3, 14

CBM 8000, 2, 14

PET 2001/8K, 3, 20

PET 2001/N, 16

rollover, 141

Keys

alphabetic, 9, 15, 17, 21

cassette tape control keys. See Cassette tape drive

controls

cursor control keys. See Cursor control keys
function keys. See Function keys

graphic, 9, 16, 18, 22

numeric, 9, 16, 18, 21

special symbols, 9, 16, 20, 23

strings, 52

Keywords
defined, 341

operators. See Operators

reserved words, 114-15, 341

Languages

assembly language programming, 351-52, 451
BASIC. See BASIC
varieties, 96

LEFTS, 398

LEN, 398

Light emitting diodes (LED), 34-35

LIST, 59-60, 72, 76, 376-77

LOAD, 66-68, 71, 76, 310, 377-78

LOAD & RUN, 76

LOG, 138, 398
Looped control statements

FOR-NEXT, 123-26, 370
GET, 145

nested loops, 125-26

Lower case words, 360

Magnetic fields, 39

Memory
arrays, 336, 347, 450
ASCII character source codes, storage as, 346
assembly language programs, 351-52

blanks, elimination of, 341

data buffer, 233-35, 257, 277

disk directory, 70

erasures, 62, 312
extra memory, 6

floating point variables, 343-44

cassette drive buffer, 235

CBM 2001/B, 3

CBM 8016, 2

CBM 8032, 2

conservation of space, 341

constants, 346-47

integer variables, 345

link address, 340
loading program files, 310, 342
location, 340

location, change of, 343

logical operator keywords, 341

maps, 338-39, 448-49

MEMORY EXECUTE, 357
Memory Expansion Connector, 6

MEMORY READ, 357
MEMORY WRITE, 356-57

OUT OF MEMORY, 419
PET 2001/8K, 5

PET 2001/N, 3

pointer, 340

program file size, 232
program mode statements, 49, 58

read only memory (ROM), 5, 443-51

reserved words, 341

screen memory, 350
source lines, 339

statements per line, 341

strings, 336, 345

top of memory, 351

variable area, 336, 343-45

MID$, 399

Models, 2-5

Modes
alternate mode, 14

diskette files, 276

immediate mode. See Immediate mode
program files, 232

program mode, See Programmed mode
RENAME, 262, 289, 386, 389
standard mode, 16, 18

Modification of programs, 95

Names
diskette files, 276

program files, 232
RENAME, 282, 286, 289

variables, 103-04

NEW, 72, 312, 379

Numbers
arithmetic functions, 138-39

arithmetic operators, 105-08

cassette files, 245-47

channel (logical file/logical unit) numbers, 236-37
device numbers, 237

digits, 99

displays, 382

floating point, 99-101

formats, 317-21

integers, 101, 104, 227, 345
mixed data, 324-25

Index 499

numeric string defined, 147

printing formatted numeric data, 317-21

random numbers. See Random numbers
relative files, 304

scientific notation, 100-01

separation of numeric data fields, 268

sequential files, 291-95, 298

simple equations, 55

string concatenation, 147-48

variables. See Variables

writing numbers to cassette tape, 245-47

OPEN, 78, 236-39, 242-43, 380-81

Operators

arithmetic, 105-08

Boolean, 109-12

features, 104

relational, 108-19

sequence, 108

OUTPUT, 130

Paper

loading, 46-48

paper-feed, 41

Parallel user port, 6

PEEK
function, 140, 399

statement, 136, 410

Peripheral devices. See External cassette tape units;

Diskette drives; Printers

PET 2001/8K described, 3, 5, 7

PET 2001/N described, 3, 7

Pi, 18

POKE, 136, 229-30, 381, 410

POS, 399-400

Power
cord, 6

switch, 6, 8

test, 36

up, 8, 34

PRINT, 51, 131-32, 382

PRINT*, 313, 316-17, 183-87

Printers

access, 313

characters. See Characters

closing, 80

computer output, 239

connection, 42-45

control and use, 78

diagnostic messages, 332

formatted data. See Formats

operation, 79

paper-feed, 39

paper loading, 46-47

print head test, 46-47

PRINT* output, 383-84

printer control characters, 326

printing data as received, 313

ribbon, 39, 43

special control characters, 326-28

string concatenation, 147

Print formatting function. See Formats

Programmed mode
characteristics, 92

entering statements, 49, 58

execution, 92, 359

GET* statement, 371

line numbers, 92, 97-99

Programs

assembly language programs, 351-52

BLANKET, 58, 64, 73, 77, 142-43, 145, 229-30

continuing, 62

defined, 58, 91-92

deletion, 62

digital display clock, 220-23

Disk Operating System, 69, 276

displays and printouts, 177-83

editing, 88-90

execution, 60-61, 92

files. See Cassette files; Diskette files; Files;

Random access files

graphics, 211-13

immediate mode, 93-94

input and output, 149-77

listing, 59-60, 79, 377

load and run, 68

loading, 66-69, 71

MAIL, 250-52, 256-64

mathematical programming, 183-208

modification, 95

one-line programs, 93-94

PAGINGL25, 330

POUNDCHAR, 332

POUNDVAL, 332

PRINTDATE, 325

PRINTDATEL1, 325-26

saving, 64

statements. See Statements

stopping, 61

storage, 58, 342

timing program speeds, 219

transfer between computer and external units, 235

verification, 65, 74

Printouts

directory, 368

keyboard character set, 312

literal characters, 325-26

numeric data, 317-21

program listings, 79, 377

programs, 177-83

random numbers, 225-26

Quotation marks, editing text within, 85-88

RANDOM, 223-30

Random access files

creation, 354-58

Random numbers
printing, 225-26

seeds, 223-24, 226

sequences, 224-25

range, 226-27

READ, 119-20, 388

Read/write memory. See Memory
Rear panel, 5-6, 8

RECORD, 307, 388

RECORD*, 310
Relative files

BASIC 3.0, 277

changing records, 308

characteristics, 270, 273-74

field separators, 302

GET*, 309-10

numeric data, 304

positioning to records, 307

reading records, 303

500 PET/CBM Personal Computer Guide

Relative Files (Continued)

RECORD*, 310

record lengths, 302-4

Revision Level 2 ROM, 444-45

string data, 305-07

RENAME, 289, 389
REPEAT, 14

Reserved words, 114-17, 341

RESTORE, 120, 389
RETURN

function, 9, 49

statement, 390
REVERSE ON/OFF, 1

1

RIGHTS, 400

RND, 138, 400

RUN
function key, 11

statement, 60-61, 72, 76, 390
Reserved words, 114-17, 341

SAVE, 64, 73, 310, 391

SCRATCH, 286, 289, 392
Screen. See Display

SCROLL DOWN, 407
SCROLL UP, 407
Sequential files

adding data, 299-300

appending data, 302
BASIC 3.0, 277

characteristics, 270, 273-74

concatenating files, 300-01

field separators 291

GET*, 308
mixed data, 298-99

numeric data, 291-95

opening file, 279
strings, 295-98

SET BOTTOM, 407-08

SET TOP, 407-08

SGN, 138, 401

SHIFT, 9

SHIFT LOCK, 9

SIN, 138, 401

Smoking, diskette damage, 39
Spaces, 96

SPC, 401

SQR, 138, 402
ST, 402

Statements, 362

assignment, 118-19, 224
branch statements. See Branch statements

commands, execution of statement as, 114
defined, 49

editing, 88-90

entering, 49, 58

external statements, 308, 313, 316, 362,371, 375,

looped control statements. See Looped control

statements

print formatting function. See Formats
remarks, 97, 389
size, 342

subroutines. See Subroutines

syntax, 96

STOP
function key, 11, 61

statement, 137, 392

Storage. See Cassette files; Diskette files; Files;

Memory; Random access files

383

STR$, 402

Strings

cassette files, 248-52

concatenation, 145-49

cursor control keys, 52-55, 102

defined, 52, 102

display, 102, 147

formats, 321-24

function keys, 52

functions, 139

immediate mode, 52-55

mixed data, 324-25

printing strings, 52-55

relative files, 305

separation of string fields, 268

sequential files, 295-99

storage, 336, 345

STRING TOO LONG, 420
variables, 217, 248-52, 265, 295, 303, 322, 345-46

writing strings to cassette tape, 248-52

Subroutines

computed GOSUB, 129-30

GOSUB, 128-29, 372

nested subroutines, 129

ON. . . GOSUB, 379

Return-from-Subroutine, 352
use, 127-29

Syntax

defined, 96

errors, 242, 420
formats, consistent syntax, 360

SYS, 352-53, 403

TAB, 16, 403

Tape cassettes. See Cassette tapes

Tests

power-on, 34

print head, 46-47

TEXT, 408

TI, TI$, 404

Time. See Clock

Timing program speeds, 219
TV brightness adjustment knob, 6

Upper case words, 360

VAL, 405

Variables

arrays, 113

concept, 102-03

floating point variables, 104, 343-44, 450
immediate mode, 56

integer variables, 345

names, 103-04

numeric variables, 56, 291 , 298 , 303, 327, 343-46

storage, 336, 343-45

string variables, 217, 248-52, 265, 295-99, 303,

322, 345-46

VERIFY, 65, 74, 77, 393

WAIT, 394

Words
abbreviations, 115-17

keywords, defined, 341

lower case words, 360

reserved words, 114-15, 341

strings. See Strings

upper case words, 360
Write-protect, 31. 39

