
Ocommodore
COMPUTER

Disk System
User Reference Guide

I

COPYRIGHT NOTICE

No part of this publication may be reproduced in any form or by eiectrical or mechanical means, including in-

formation storage and retrieval systems without permission in writing from Commodore Electronics

Limited.

Copyright © 1982

COMMODORE ELECTRONICS LIMITED

All Rights Reserved

Part Number 320972-01

NOTICE

Commodore makes no express or implied warranties with regard to the information contained herein. The

information is made available solely on an "as is" basis, and the entire risk as to its quality and accuracy is

with the user. Commodore shall not be liable for any consequential or incidental damages in connection

with use of the information contained herein.

TOC

TABLE OF CONTENTS

CHAPTER 1. GENERAL INFORMATION 1

Introduction 2

How To Use This Manual 2

General Descriptions of Commodore Disk Systems 3

Unpacking And Installation 7

Starting The System 9

Loading And Care Of Diskettes 10

Running Performance Tests "• V

CHAPTER 2. FUNDAMENTALS OF USING COMMODORE DISK SYSTEMS ... 12

Disk Storage ^^

Disk Files ^^

The Disk Operating System (DOS) 15

The Block Availability Map (BAM) 15

Communicating With DOS 16

File Name Pattern Matching 17

Command Abbreviations 1^

Using Program Variables With Commands 18

CHAPTER 3. DIRECT DOS COMMANDS 19

Conventions Used To Describe Commands 20

Disk Level Commands 22

H EADER Format a disk 22

INITIALIZE Log a change of diskette 23

DIRECTORY/CATALOG Display disk Directory contents 24

Printing The Disk Directory 25

COLLECT Rebuild BAM and delete open files 26

BACKUP Duplicate an entire disk 26

File Level Commands 27

DSAVE Save a program to disk 27

DLOAD Load a program from disk 27

RENAME Change file name 28

COPY Copy one or more files 28

CONCAT Append one file to another 29

SCRATCH Delete a file or files 29

Page1

TOC

CHAPTER 4. USING DOS FROM BASIC 30

DOPEN# Prepare a file for access 31

APPEND* Continue a sequential file 32
DCLOSE# Quit file processing 33
PRINT# Write data into a file 34
INPUT* Read data from a file 35
GET# Read a character from a file 36
RECORD* Position the file access pointer 37

CHAPTER 5. ADVANCED FILE HANDLING 38

Relative Files — All Models 39

Creating A Relative File 41
Expanding a Relative File 42
Accessing A Relative File 43

Relative Files In 8250, D9060 and D9090 Disc Units 45
Using 8050 Diskettes In 8250 Drives 45

CHAPTER 6. ADVANCED DOS PROGRAMMING 47

DOS Overview Description 48
DOS Utility Command Set ...50
Disk Oriented Utilities 52

BLOCK—ALLOCATE 52
BLOCK—FREE

'"

53
BLOCK—READ 53
BLOCK—WRITE 54
BLOCK—EXECUTE 54
BUFFER—POINTER"" 55

Memory Utilities 55
MEMORY—WRITE 56
MEMORY—READ 57
MEMORY—EXECUTE '

"

' 53

User Utilities 59

Standard User Jump Table 60

Page 2

TOC

CHAPTER 7. DISK STORAGE FORMATS 61

2031 Disk Unit 63

Blocl<s Per Tracl< 63

BAIV! Format 63

Directory Header Format 63

4040 Disl< Unit 64

Blocks Per Track 64

BAM Format 64

Directory Header Format 64

8050 Disk Unit 65

Blocks Per Track 65

BAM Format 65

Directory Header Format 65

8250 Disk Unit 66

Blocks Per Track 66

BAM Format 66

Directory Header Format 67

D9060/D9090 Disk Unit 68

BAM Format 68

Directory Header Format 68

Formats Common To AM Disk Units 69

BAM Block Format 69

Directory Block Format 69

Disk Data File Format 71

CHAPTER 8. DOS ERROR MESSAGES 73

Requesting Error Messages 74

Description Of DOS Error Messages 75

Page 3

TOC

APPENDIX A Summary Of DOS Commands A

1

APPENDIX B Summary Of DOS Error Messages B

1

APPENDIX C Permanent Alteration Of Device Number C

1

APPENDIX D Disk Unit Specifications D

1

APPENDIX E Relative Records Error El

INDEX

LIST OF ILLUSTRATIONS

Figure

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

2.1

2.2

7.1

Title

Model D9060,D9090: Front View 4

Model D9060:

Model D9090:

Model 8250:

Model 8250:

Model 8050:

Model 4040:

Model 4040:

Model 2031:

Model 2031:

Drive Configuration 4

Drive Configuration 4

Front View 5

Drive Configuration 5

Drive Configuration 5

Front View 6

Drive Configuration 6

Front View 6

Drive Configuration 6

Models 8250, 8050, 4040: Rear View 7

Disk System Hookup 8

Position For Diskette Insertion 10

Disk System Diagram 13

Commodore Disk And Recording Head 14

Typical Disk Format 62

Page 4

Chapter 1

CHAPTER 1. GENERAL INFORMATION

CONTENTS

Introduction 2

How To Use This Manual 2

General Description Of Commodore Disk Systems 3

Unpacking And Installation 7

Starting The System ^

Loading And Care Of Diskettes 10

Running Performance Tests "•
"•

Pagel

Chapter 1

GENERAL DESCRIPTIONS OF COMMODORE DISK SYSTEMS

Description Of The D9060 & D9090

The two models of hard disk units described in this manual are the dV*" single-drive non-removable

"Winchester" technology storage devices. The D9060 and D9090 units feature two or three platters with

recording surfaces on both sides and provide respectively 5.0 or 7.5 million characters of storage. A
single random access file may occupy the entire capacity of either unit. An IEEE interface connector is

located on the back of the drive. Near the lower edge of the rear panel is a "slow blow" fuse, and an AC
power cord.

>

•^

D9060 Hard Disk Unit'Front View
(D9090 Similar)

FIGURE 1.1

^^^)/lS^ -A^^ Disk

r^^^J^^J

Recording Head

D9060 Drive Configuration

FIGURE 1.2

D9090 Drive Configuration

FIGURE1.3

Page 4

Chapter 1

Description Of Tlie 8250

The model 8250 dual floppy disk unit uses a 100 Track Per Inch (TPI) two headed drive with a storage

capacity of 1 ,066,496 bytes (characters) per drive. Each 8250 diskette has 154 tracks, 77 on each side, and

is read/write compatible with the 8050 disk drive. A single random access file may occupy an entire 8250

diskette.

Description Of The 8050

The model 8050 dual floppy disk unit uses a 100 Track Per Inch (TPI) single headed drive with a storage

capacity of 533,248 bytes per drive. Each 8050 diskette has 77 tracks, and is read/write compatible with

the model 8250 disk drive. This compatibility is limited to one side of the diskette.

8050 Dual Floppy Disk Unit-Front View

(8250 Similar)

FIGURE 1.4

Diskettes

Recording Head

Diskettes

Recording Head

8250 Drive Configuration

FIGURE 1.5

8050 Drive Configuration

FIGURE 1.6

Page 5

Chapter 1

Description Of Ttie 4040

The model 4040 dual floppy disk unit uses 48 Track Per Inch (TPI) single headed drives with storage

capacities of 174,848 bytes (characters) per drive. Each 4040 diskette has 35 tracks. Diskettes created on

the 4040 drives are read/write compatible with the model 2031 and the VIC-1540 disk units. The 4040 is

neither read or write compatible with model 8050 or the 8250 disk units.

Diskettes

Recording Head

4040 Dual Floppy Disk Unit-Front View

FIGURE 1.7

4040 Drive Configuration

FIGURE 1.8

Description Of The 2031

The model 2031 is a low-cost single drive disk unit. The 2031 uses a 35 track (48 TPI) single headed drive

with a storage capacity of 174,848 bytes. Diskettes created on the 2031 are read/write compatible with the

model 4040 and VIC-1540 disk units. The 2031 is neither read or write compatible with model 8050 or 8250

floppy disk units.

Diskette

Recording Head

2031 Single Drive Unit

FIGURE 1.9

2031 Drive Configuration

FIGURE 1.10

Page 6

Chapter 1

Unpacking The Disk Unit

A caution: disc units—especially hard disks—are sensitive mechanisms. Be careful not to drop them, either

while in their shipping carton or while unpacking.

Before unpacking the disk drive, inspect the shipping carton for signs of external damage. If the carton

is damaged, caution should be exercised when inspecting its contents. The contents and all packing

materials should be removed from the carton. NO packing materials should be discarded until all the con-

tents are located. The carton should contain:

1

.

Model D9060, D9090, 8250, 8050, 4040, or 2031 disk unit.

2. Commodore Disk Reference Manual.

3. TEST/DEMO Diskette (except for D9060/D9090 hard disk units).

If any item is missing or damaged in shipment, your Commodore dealer should be notified.

Before starting to use the disk drive, make sure it is in good working condition. This Includes properly

connecting it to the computer, giving it power-on and initial checkout tests, and finally running perfor-

mance tests using the "PERFORMANCE TEST" program supplied on the TEST/DEMO diskette (except

hard disk).

Commodore disk units described in this manual are operationally compatible with any model PET or CBM
computer with BASIC 3.0 or BASIC 4.0. VIC-20 and Commodore-64 computers equipped with appropriate

PET-IEEE adapter cartridge can also use these disk units.

PIGGYBACK
CONNECTION
(IEEE PLUG)

Models 8250, 8050, 4040 Rear View

FIGURE 1.11

Page 7

Chapter 1

Disk System Hookup
FIGURE 1.12

Connecting Tiie Disk Unit To Tlie Computer

One of two connector cables are required to interface the disk drive to the computer. These cables can be

supplied by your Commodore dealer.

PET-to-IEEE cable: Part#4032036-01 (320101)

This cable should be used if the disk drive Is the only peripheral to be connected to the computer.

lEEE-to-IEEE cable: Part#4032035-01 (905080)

This cable should be used If the disk drive is to be connected (daisy-chained) to another peripheral

device such as the Commodore Model 4022 or other suitably interfaced printer.

NOTE: Be sure to connect the braided-wire ground-strap at both ends of the cables.

Procedure for connecting the disk drive to the computer:

Step 1: Power to the computer and all peripherals should be turned OFF.

Step 2: The PET-to-IEEE cable connects between the IEEE-488 interface on the computer and the

disk drive. If additional IEEE devices are to be connected, the lEEE-to-IEEE cable(s) must be

used.

Step 3: The disk unit power cable should be connected to an AC outlet at this time, but with its

power switch turned OFF.

Pages

Chapter 1

STARTING THE SYSTEM

Read this entire section before preceding.

PERFORMING THE POWER-ON TEST

STEP 1: Power should now be applied to the computer to verify that it is working properly. The
following message will be displayed:

*** Commodore Basic ***

31743 Bytes Free (Depends on memory size)

ready

STEP 2: Power should now be applied to the disk drive. All indicator lights (LEDS) on the front panel

should flash twice. The two-color power-on indicator light, on the front of the unit, should stay

on. For 4040 and 2031 models, the red LED flashes just once.

If the drive lights remain on, or all lights flash continously, or if the power/error LED stays red for more

than 15 seconds, turn the power OFF Wait a moment and try again. If these conditions are repeated, all

other devices should be removed from the IEEE bus. This will assure that a possible problem related to

another device does not affect the disk unit. If the problem persists, your Commodore dealer should be

contacted.

NOTE

After applying power to the D9060 or D9090 Hard Disk units, WAIT
ONE FULL MINUTE before attempting to use any disk command.
This time is required to allow the rotational speed of the disk to

stabilize. Any commands issued before this time will cause a

DRIVE NOT READY error message to occur, and the drive will not

respond to further commands until the INITIALIZE command is

used.

Page 9

Chapter 1

LOADING AND CARE OF DISKETTES

As a general precaution, to insure proper seating of diskettes, be sure the diskette is reasonably well cen-

tered in its casing before inserting it into the drive. Suggested procedures for inserting diskettes into

drives differ from model to model.

Write
Protect
Notch

When covered, diskette

content cannot be altered.

Position For Diskette Insertion

FIGURE 1.13

1 8250/8050: Two types of each of these models exist. One has a unique 'press down' gate which latches

the diskette in place and a green LED on each drive. For these drives, simply insert the diskette until it

clicks into place; then press the gate latch down firmly, but gently without hesitation. An automatic motor

start-up feature will spin the diskette for a few seconds.

2. The second type of 8250/8050 drive has a 'flip down' door and a red LED on each drive. To properly seat a

diskette in these drives, the 'flip down' door should be partially closed once or twice before final closing.

3. 4040/2031 : These drives have the same kind of 'flip down' door as the second type of 8250/8050. For

proper seating of diskettes the 'flip down' door should be partially closed once or twice before final

closing. These drives do not have diskette insertion detect or automatic motor start. Thus, the INITIALIZE

command (Chapter 3) should always be used after changing diskettes, before any other command is

used. (See Figure 1.7 for 4040 unit. See Figure 1.9 for 2031 unit).

Page 10

Chapter 1

Floppy diskettes are fragile but they can be a long-lasting and very reliable data storage medium when
handled properly. Always treat your diskettes gently; never force them into the disk drive. Keep them in

their paper sleeves when not in use - in a case designed to hold them. Keep diskettes away from electro-

magnetic fields, as found near electric motors, power transformers, television sets, or video monitors.

Never set heavy objects, such as cups, bottles, or books on top of diskettes. Be prepared for the

inevitable unforseen accident: MAKE FREQUENT BACKUP COPIES of your data - and keep the copies in

a safe place.

Any 'soft-sector' single-density or double-density certified diskette will work well with Commodore disk units.

However, for the 8050 and 8250 disk units, double-density diskettes are recommended. Diskettes with HUB
reinforcing rings should not be used with these systems as the automatic centering action of the drive will be
adversely affected.

RUNNING PERFORMANCE TESTS

After setting up your floppy disk system and becoming somewhat familiar with its operation you should
run the performance test program supplied on the TEST/DEMO diskette to assure that the disk unit is in-

deed operating correctly. The performance test program exercises the disk system thoroughly under
"worst case" conditions of data and timing to assure that the unit will operate reliably under normal use
conditions.

To run the performance tests, insert the TEST/DEMO diskette into drive and enter the following com-
mands from the keyboard.

dioad "performance" (For computers with BASIC 4.0)

run

load "performance", 8 (For computers with BASIC 3.0)

run

The program will display the options and instructions on the video screen for performing individual tests

and will display pass/fail results. If the unit fails on any test your Commodore dealer should be notified.

Page 1

1

Chapter 2

CHAPTER 2. FUNDAMENTALS OF USING COMMODORE DISK SYSTEMS

CONTENTS

Disk Storage 14

Disk Files 15

The Disk Operating System (DOS) 15

The Block Availability Map (BAM) 15

Communicating With DOS 16

File Name Pattern Matching 17

Command Abbreviations 18

Using Program Variables With Commands 18

Page 12

Chapter 2

CHAPTER 2. FUNDAMENTALS OF USING COMMODORE DISK SYSTEMS

It is best to think of your computer and disk units as parts of an overall system. An understanding of the

concept that each individual component of the system acts and reacts to commands and signals from

other devices in the system will greatly accelerate your grasp of how to operate, control, and master the

system.

Commodore disk systems are designed around two central concepts: using intelligent peripherals to

relieve the computer (and the programmer) of most of the detailed tasks involved in data management;

and providing large file-handling capabilities supported by flexible BASIC programming statements and a

comprehensive Disk Operating System command set.

All Commodore disk units are "intelligent" peripherals, containing their own microprocessors, read-only

and read/write memory. In fact, the Disk Operating System program (DOS) resides in the disk unit. Data

transfers are initiated by means of commands sent from the computer to the disk unit and DOS handles

the tasks of locating, storing, and retrieving data from the disk and sending it to the computer.

Drive Mechanism#1

Disk Drive Unit

Drive Electronics ^ » Drive Mechanism #2

Controiler

DOS

Ot tier IEEE Peripiierals

J
IEEE BUS

Microcomputer

_r

Systems Programs Commands

J_
Applications Program

User

(You)

Disk System Diagram

FIGURE 2.1

Page 13

Chapter 2

Sectors

Recording Head

Last Track
First Tracl<

Commodore Disk and Recording Head
FIGURE 2.2

DISK STORAGE

You now tiave a device whicfi can store thousands or even millions of characters of data. These charac-

ters can be program instructions, text for letters, the inventory data for your company, or almost anything.

The disk stores this information by means of changing magnetic patterns on the disk surface. This is the

same method used to store information on magnetic tapes.

With a tape all data must be read from the beginning of the tape to find your information. This is called

sequential access. A disk drive can go directly to any position on the disk and read the data. This is called

random or direct access. Commodore disks may also use sequential access, but they can start at any

place on the disk to begin reading data.

Data is stored on disk in physical locations called tracks. Each of these tracks is further divided into sec-

tors. Each sector can store up to 254 bytes (characters) of data. Figure 2.2 illustrates the physical storage

of data on Commodore disks. A file uses as many of these sectors as needed to hold its information.

Page 14

Chapter 2

DISK FILES

Your information is stored "physically" in tracks and sectors. It is stored "logically" in files. A file is an

ordered collection of characters. The contents of the file are of no concern to the disk drive, only to you.

Chapter 3 explains the commands that allow you to work with your files as logical items of information.

You may further divide your files into records or variables, and that is discussed in Chapter 4.

If you had to maintain Information of where all your files were kept it would consume most of your

programming time. Commodore disk units are always executing a program that takes care of the

locating, storing and reading of the actual tracks and sectors you access. This program is called the

"DOS", or Disk Operating System. DOS allocates storage as needed, finds your data for you, and keeps

you from having to be concerned with the details of managing your information.

THE DISK OPERATING SYSTEM (DOS)

Inside the disk unit is a computer executing a program called DOS. DOS is controlling the disk drive hardware.

When you want information, a command entered on the keyboard or used in a program is sent to DOS.

The command is interpreted and the necessary operations are performed to supply you, or your program,

with the desired information. This built-in "intelligence" of Commodore disk systems relieves the com-

puter and the programmer of disk storage management and provides a high degree of compatibility with

the various models of Commodore computers.

Commodore BASIC can maintain ten open files at once. DOS allows access to a maximum of five disk

files at once. BASIC can, therefore, access five disk files and five files on other devices, such as printers,

modems, plotters, etc., from within a program.

DOS uses part of the disk for storage of information about the disk. It keeps a list of the file names on the

disk in a section called the Directory. It also keeps a list of the allocated sectors and the free sectors in

the Block Availability Map (BAM).

THE BLOCK AVAILABILITY MAP (BAM)

The BAM is a "map" representing both available and allocated (used) sectors (or blocks) on a disk. For-

matting a disk creates the BAM on the disk. During subsequent disk operations the BAM is read from disk

into DOS memory within the disk unit. The BAM is stored in various locations on the disk depending on

the model of the disk unit.

Page 15

Chapter 2

When the system stores data on the disk, the BAM will be referenced by DOS to determine whether space

is available. For Sequential or Program files DOS checks for space before each block of the file is written.

If a free block is found, the BAIVl is updated to account for the space used and the data block is written to

the disk. If no free blocks are available an error message will be generated.

As changes occur to the BAM in DOS memory, the BAM on disk will be updated periodically to reflect

these changes. Updates to the BAM occur when a program is stored on disk with the DSAVE command,

or when DOLOSE is performed on a Relative or Sequential data file. One block of the BAM is loaded into

DOS memory at a time. When updated, this block is written back to the disk and (on some models)

another block is loaded into DOS memory. This interchange of information between the two BAMs, one in

DOS memory and the other on disk, enables the system to maintain a record of free and allocated space

on the disk.

COMMUNICATING WITH DOS

Transfer of data to peripherals, such as printers, cassettes, disk drives, and other external devices can

sometimes become complex. The computer must be told to open a path, or "channel", for the data tran-

sfer. This is done by the OPEN or DOPEN# statements in GBM BASIC. The DOPEN# statement or com-

mand is used to access disk drives. After the data is transferred you tell the computer to stop using the

channel, and free it for other use, by giving the CLOSE or DCLOSE# statement. The CLOSE and DCLOSE#

statements also update the BAM.

Channel numbers can range from thru 255 and do not have permanent assignments, but are assigned

arbitrarily by the programmer. Channel numbers are referred to through this manual as "logical file"

numbers. The logical file number relates DOPEN#, DCLOSE#, INPUT#, GET#, RECORD* and PRINT#

statements with each other and associates them with the file name and physical device being accessed.

Each device attached to the computer has its own physical device (or unit) number (8 thru 15 for disk units) to

which it responds when being accessed by the computer. The device number is used as a command
parameter when opening a file to identify the physical unit to be accessed.

CBM disk units are preset at the factory as physical device number 8. The number may be changed in the

unit as described in Appendix C, or it may be temporarily altered using a DOS command as described in

chapter 6. If a device number is not specified in a command, DOS assumes unit number 8.

Page 16

Chapter 2

In addition to a logical file number and a device number, Commodore disk units also respond to several

"secondary addresses". These are best visualized as "function codes" from the computer telling the disk

unit what operation to perform.

Address is used (with DLOAD) to read a program file into the computer memory. Address 1 is used (with

DSAVE) to store programs into disk files. Addresses 2 to 14 are used to access data files. Address 15 is a

special "command channel" address used with the OPEN statement to perform many of the special disk

operations described in this manual and to retrieve status information about the disk operations.

FILE NAME PATTERN MATCHING

Pattern matching of file names is available on all Commodore disk units. Pattern matching is the use of

question marks (?) and asterisks (*) with the <file name> parameter on disk commands. Using pattern

matching causes DOS to perform an operation on several files with similar names using a single com-

mand only once.

The asterisk is used at the end of a string of characters to indicate that the rest of the name is to be

ignored in the search for matching file names. For example "FIL*" could refer to files named:

FIL

or FILE1

or FILEDATA
or FILLER

or Any other file name starting with the letters FIL.

The question mark may be used anywhere within a string of characters to indicate that only the charac-

ters in that particular position should be disregarded. For example "?????.SRC" could refer to files

named:

TSTER.SRC
or DIAGN.SRC
or PROGR.SRC

butnotSRC.FIL

Both the character and the position of the character are significant.

The question mark and the asterisk may be combined in many useful ways. However, the asterisk should

always appear as the last character in any pattern, whether or not question marks are used. For example

the pattern "J*????" does not make sense because the question marks are in an area which is in-

significant because of the asterisk.

Page 17

Chapter 2

The pattern "P???FIL*" will access files with the names:

PET FILE

or PRG-FILE-32

or POKEFILES$$
or Any other file starting with "P" and having "FIL" in positions 5 thru 7.

DLOAD "*" will load the first file (which must be a program file) in the disk directory on drive 0. DOPEN#
with pattern matching may be used to open an existing file, in which case the first file that matches the

pattern will be opened. DOPEN# must not be used with pattern matching when creating a new file.

The SCRATCH command with pattern matching should be used carefully, since multiple files will be
scratched. Never use RENAME or DSAVE with pattern matching or an error will result. COPY may be used
with pattern matching for the source file names, but the only pattern permitted for the destination file is

the special case"*".

COMMAND ABBREVIATIONS

Whether entered directly from the keyboard or included in a program, DOS commands many appear with

their full spelling or in abbreviated form. Commands are abbreviated by entering enough characters of

the command name to uniquely distinguish it from any other DOS command or BASIC keyword. All but

the last character of the abbreviation are keyed unshifted and the last character shifted.

For example, "catalog" and "cA" are identical to DOS, as are "print#1" and "pR1". Abbreviation of com-
mands does not reduce memory usage in programs, but is supported as a convenience for users of the

system. When a program containing command abbreviations is listed, the commands will appear in fully

spelled form.

USING PROGRAM VARIABLES WITH COMMANDS

Each disk command or statement has associated with it one or more optional parameters which may be
used to specify file names, drive numbers, etc. When needed, command parameters may appear in either

of two forms. Parameters may be stated explicitly, such as: D0PEN#1,d1,"Inventory File" or BASIC
variable names enclosed in parentheses may be used, such as: D0PEN#1,(dn),(A$). The two DOPEN#
commands would produce the same results.

When entering disk commands from the keyboard, parameters must be stated explicitly. When used in

programs, parameters may be either explicit or variable, and both forms may be used in the same com-
mand.

Page 18

Chapters

CHAPTER 3. DIRECT DOS COMMANDS

CONTENTS

Conventions Used To Describe Commands 20
Disk Level Commands 22

HEADER Format a disl< 22
INITIALIZE Log a change of diskette 23
DIRECTORY/CATALOG Display disk directory contents24

Printing The Disk Directory 25
COLLECT Rebuild BAM and delete open files 26
BACKUP Duplicate an entire disk 26

File Level Commands
27

DSAVE Save a program to disk 27
DLOAD Load a program from disk 27
RENAME Change file name 28
COPY Copy one or more files 28
CONCAT Append one file to another 29
SCRATCH Delete a file or files 29

Page 19

Chapters

CHAPTER 3. DIRECT DOS COMMANDS

CONVENTIONS USED TO DESCRIBE COMMANDS

Throughout this manual certain conventions are used to describe the syntax of disl< commands and to

show both required and optional parts of commands. The rules for interpreting command syntax are as

follows:

1. Command names and other required words are shown in capital letters. They must appear where

shown in the command, entered as unshifted letters, spelled exactly as shown.

2. Items shown within quotation marks (" ") indicate variable data which must be supplied by the user.

Both the quotation marks and the data they enclose must appear in the command.

3. Items enclosed In square brackets
([]) indicate an optional command parameter which, if present,

contains data supplied by the user.

4. Items underlined within square brackets indicate required characters used in optional parameters.

If the optional parameter is used, the required characters must be entered as unshifted letters

spelled exactly as shown.

5. Items within angle brackets (< >) indicate variable data which must be supplied by the user.

The syntax shown for each command uses BASIC 4.0 format. Appendix A shows how the earlier versions

of BASIC accomplish the same task.

Example of syntax format:

HEADER" <name> "[,d <drive>][onu<unit>][,|<id>
]

Example of entered command:

HEADER "Inventory",d1onu9,i05

In actual use, the sequence of parameters appearing in many commands may differ from that shown in

the syntax examples in this manual. The examples are not meant to show all possible sequences but are

intended to present all required or optional parameters.

Page 20

Chapters

The following table shows examples and descriptions of the symbols used for various command
parameters in the following chapters. It is not meant to show every possibility, but to give you a better in-

sight into the syntax that follows.

SYMBOL

< drive >

< unit)

"< filename)"

"(name)"

< dest drive)

< src drive >

< address

)

< filenum)

< rec len >

< var name >

EXAMPLE

8

"Inventory"

"old data"

1

15

67

128

A$

DESCRIPTION

A physical drive number

A hardware device number

An actual file name

Any file or disk name

The drive number for the destination during a
transfer of data.

The drive number for the source of data during

a transfer.

A secondary address "Function code".

A logical file number or channel number.

Physical record length used for relative file

access.

A program variable name.

The DOS commands described in this chapter are called "direct" commands because they are not intrin-

sically a part of the CBM BASIC language. These commands are usually entered via the keyboard for im-
mediate action, though they may also appear as statements in BASIC programs.

The same is true for the statements described in Chapter 4 which usually appear In BASIC programs, but
may also be entered via the keyboard. In general, the terms "command" and "statement" are used inter-

changeably in this manual.

NOTE: The drive number reference in all DOS commands has been maintained in the examples which
follow to be compatible with dual disk drive units. If using the 2031 single disk or the
D9060/D9090 hard disk drives, all references to the drive number must be a zero (0). Any
reference to drive 1 will result in an error condition.

Page 21

Chapters

DISK LEVEL COMMANDS

HEADER Used to format a disk

The HEADER command prepares a new disk for its first use. The HEADER command must be performed

(only once) on any new disk before it can be used for data or program storage.

The HEADER command writes track and sector addresses on the disk, writes binary zeroes in all data

blocks, and creates the BAM, Directory Header, and the Directory for the disk. This process is sometimes
called "formatting" a disk. Any data that may exist on the disk is destroyed during this process.

Because of the irreversible nature of this command, DOS asks "Are You Sure?" before proceeding.

Typing a "y" in response to the question allows DOS to proceed. Any other response causes the com-
mand to abort without writing on the disk.

Syntax — HEADER "< name >"[,d< drive >][onu< unit)][,l< id >]

Example:

HEADER "Inventory",d0onu9,i04

Are You Sure? y

This formats the disk In drive 0, unit number 9, giving it a name of "Inventory", and an ID of 04. If the drive

number Is omitted DOS assumes drive 0. The disk ID may be any two characters selected arbitrarily and

the disk name may be up to 16 characters of any type.

OPTIONAL SYNTAX

For previously used disks DOS provides for an optional syntax. If the disk ID parameter is omitted, DOS
will re-write the Directory Header, and re-write an empty BAIVI and Directory. This can be considered

equivalent to a "SCRATCH" for all flies on the disk, but requiring less time to execute.

Syntax — HEADER "< name >" [,d< drive >][onu< unit >]

Example:

HEADER "parts"

Are You Sure? y

The name of the disk in drive is changed to "parts". The disk ID is not changed. All data on the disk is

lost, because the Directory is erased and all data blocks are made available for use.

Page 22

Chapters

INITIALIZE Log a Change of Diskette

When a diskette is inserted into a drive, for any reason, that drive MUST be initialized to ensure that the
BAM in DOS memory is the proper data for the diskette currently in the drive. Failure to properly initialize

the drive may cause a DISK ID MISMATCH error, or loss of data. Most models of disk units handle
initialization automatically.

The 4040 and 2031 disk units check diskette ID each time a drive is addressed to find whether
initialization is needed. If a new diskette ID is detected the drive is initialized without need for operator
action. If the ID is the SAME as the previous diskette a change of diskettes WILL NOT be detected and
data will be lost if the INITIALIZE command is not used before any other command. Thus care should be
taken to assign unique ID codes for 4040 and 2031 diskettes.

Since the 8050 and 8250 disk units feature automatic detection of diskette removal/insertion, these units will

self initialize when the drive door is closed (8050 'gate' type) or when the drive is first addressed (8250 and
8050 'door' type). Hard disk units self initialize during power-up and need no further attention.

The normal BASIC 4.0 syntax is not used for the INITIALIZE command. The following command sequence
must be used.

Syntax — OPEN < file numbei >,< unit >,« address >

PRINT#< file number >,"I[NITIALIZE]< drive >"

CLOSE< file number >

Example:

OPEN 5,8,15

PRINT#5,"initialize0"

CLOSE 5

This initializes drive of disk unit 8. The secondary address 15 in the OPEN statement is the "command
channel" which must be used whenever PRINT# is used to transmit a command to a disk unit. If the drive

number is omitted from the PRINT* statement both drives will be initialized on dual drive units. The word
"initialize" may be abbreviated to "I".

Page 23

Chapters

DIRECTORY/CATALOG Display Disk Directory contents

The DIRECTORY command displays the list of files stored on a disk onto the screen. If a drive reference is

omitted, the directories of both disk drives are displayed on dual drive systems. While the directory is

listing the following business keyboard entries affect the display:

1. The RUN/STOP key aborts the listing.

2. The colon (:) halts the display temporarily until the 9, 6, or 3 key is pressed. (Business only)

3. The9, 6, or 3 key resumes display.

4. The left arrow key (-^—) causes a slow display.

5. Holding the colon and pressing RUN/STOP lists one line at a time.

For graphics keyboards the space bar halts the display until the space bar is pressed again. The
RUN/STOP key aborts the display.

Syntax — DIRECTORY [d< drive number >][onu< unit >]

or CATALOG [d< derive number >][onu< unit >]

Example:

DIRECTORY d1 or CATALOG dOonuQ

A sample directory printout shows the following:

"8050 DEMO " 8D 20
5 "UNIVERSAL WEDGE" PRG
8 "UNITTOUNIT" PRG
3 "CHANGE 8050" PRG
27 "PRINTER'DEMO" PRG
12 "SEQUENTIAL" PRG
11 "PERFORMANCE TEST" PRG
5 "CHECK DISK" PRG
17 "LOGIC DIAGNOSTIC" PRG
1964 BLOCKS FREE.

The above display shows the following information about the disk:

On first line: "8050 DEMO "8D2C

/ t t \
drive number volume name disk ID DOS version

On other lines: 5 "UNIVERSAL WEDGE" PRG

/ t \
blocks used filename file type

File types are: PRG program file REL relative file

SEQ sequential file USR user file

At the end of the directory display is the quantity of free blocks remaining on the disk.

Page 24

Chapters

PRINTING THE DISK DIRECTORY

The directory display can be sent to a printer with the following command sequence:

0PEN1,4

CMD1

DIRECTORY dO

PRINT#1

CL0SE1

Opens a channel to device 4 (printer)

Changes the screen output to device 4

Prints the directory of drive

Returns output to the screen

Closes printer channel

By replacing the OPEN statement with DOPEN#1,dO,"files", a sequential data file on drive called "files"

would receive the contents of the directory display. A program could then read the directory information

from "files".

Page 25

Chapters

COLLECT Rebuild BAM and delete open files

The COLLECT command is used to re-create a valid BAM on a disk when files have been left "open"

because of programming errors. COLLECT traces through an entire disk and rebuilds the BAM from the

disk data contents. If COLLECT encounters an open file in the directory, that file is deleted and the

blocks used by it are freed for other use. Any User-type files on the disk are also deleted.

If a disk read error occurs during the COLLECT command execution, the process is aborted and the disk

remains in its original state.

Syntax — COLLECT [d< drive >][oriiu< unit >]

Example:

COLLECT dO

Rebuilds the BAM on the disk in drive 0, and deletes any open files or User-type files.

BACKUP Duplicate an entire disk

The BACKUP command creates an identical copy of the entire disk, including the BAM, the disk name,

the disk ID, the directory and all files. The drive number references are required.

Syntax— BACKUP d< src drive >[onu< unit>]TOd< dest drive >[onu< unit>]

Example:

BACKUP d1 TO d0onu9

This copies the entire contents of the disk in drive 1 on unit 8 to drive on unit 9.

Because various models of disk systems differ in storage capacity and the organization of data storage,

the BACKUP command may not be used between disk units of different models. The only exception is the

2031 and 4040 models which use identical diskette formats.

Page 26

Chapters

FILE LEVEL COMMANDS

DSAVE Save a program to disk

This command transfers the program in computer memory to the disl< unit, and places it into the file < file

name >. If the file already exists an error condition results and the file is not stored. The file will be type

"prg". If the first character after the opening quote mark in the file-name is an 'at sign' (@) then if a file of the

same name exists it will be replaced by the program in memory

Syntax — DSAVE [d* drive >][onu< unit >],"[@]< file name >"

Example:

DSAVE d1,"payroll"

This stores the program in computer memory into the file "payroll" on drive 1. The drive parameter

defaults to zero if not present.

Example:

(DSAVE "@TESTprg", dO)

This replaces the file TEST.prg on drive with a newer version of the program. If no such file-name exists, it is

created.

DLOAD Load a program from disk

The DLOAD command transfers a program from disk into the computer memory. DLOAD also closes all

open data files and the disk command channel. The drive number defaults to if not specified.

Syntax — DLOAD [d< drive >][onu< unit >],"< file name >"

Example:

DLOAD dO,"mainmenu"

Load the program "mainmenu" from drive 0, unit 8, into computer memory.

SPECIAL SYNTAX

The command LOAD "*",8 causes the first file in the directory of drive of unit 8 to be loaded. This must

be a program file or the error FILE NOT FOUND is generated.

AUTO START FEATURE

DOS provides for automatic start-up of a program by holding the SHIFT key and pressing the RUN/STOP
key on computers with 4.0 BASIC.

This causes the first file on the disk directory of drive on unit 8 to be loaded and execution to begin on

the first line of the program. If the first file in the directory is not a program file the error FILE NOT FOUND
is generated. A menu program could be used with this feature.

Page 27

Chapters

RENAME Rename a file

The RENAME command changes the name of a file in the disk directory. The data in the file is not altered.

If a drive reference is not given this command searches both drives on a dual drive system. Pattern mat-

ching of file names is not permitted. The new name for the file must not exist on the disk where the file

resides. Duplicate names are not permitted or created.

Syntax — RENAME [d< drive >][onu< unit >],"< original name >" TO "< new name >"

Example:

RENAME dO, "history" TO "older"

This renames the file on drive 0, unit 8, from "history" to its new name of "older". Data in the file is un-

changed.

COPY Copy one or more files

The COPY command duplicates the contents of selected program or sequential files. Files may be copied
to the same or different drive or unit of any model. Source and destination file names may be the same if

the source and destination drive or unit number is different.

Pattern matching of source file names is permitted. The only pattern permitted for the destination file

names is
"*" which causes the source files to be copied without changing their names. If the source and

destination drive/unit are the same, the file names must be different.

Syntax —

COPY[d< src drive >][onu< unit>],"< src name >" TO [d<.dest drive >][onu< unit>],"< destname>"

Example:

COPY dO,"records" TO d1onu9,"backups"

This duplicates the file "records" from drive into a file called "backups" on drive 1, unit number 9.

If the source drive reference number is omitted, both drives will be searched for the files to copy.

Example:

COPYdO,"???basic*"TOd1,"*"

This uses pattern matching to copy all program and sequential files on drive 0, having the letters "basic"

in positions 4 thru 8 of their file names, to drive 1. The destination file names on drive 1 will be identical to

the actual source file names.

Page 28

Chapters

CONCAT Append one file to another

The CONCAT command concatenates or appends the source file to the end of the destination file. Both

file names must exist or an error is generated. The contents of the source file are unaltered. Pattern mat-

ching of the file names is not permitted in this comand.

This command can only be used with sequential ("seq") file types.

Syntax —

CONCAT [d< src drive >][onu< unit >],"< src file >" TO [d< dest drive >][onu< unit >],"< dest file >"

Example:

CONCAT d1,"april" TO d1,"yearly"

This example adds the contents of the sequential file "april", on drive 1 to the end of the sequential file

"yearly" on drive 1. The "april" file is unchanged.

SCRATCH Delete a file or files

This command destroys unwanted files. The file names are removed from the disk directory and their data

space is freed for other use. Pattern matching is permitted in this command, but should be used with

caution.

As a built in safety feature, this command asks for verfication in the same way as the HEADER command.
Entering a "y" in response to the "Are You Sure?" question allows the SCRATCH to continue, any other

response aborts the command.

Syntax — SCRATCH [d< drive >][onu< unit >],"< file name >"

Examples:

SCRATCH d1,"temp"

Are You Sure? y

Deletes the file named "temp" on drive 1, unit 8.

SCRATCH"*"
Are You Sure? y

Deletes every file presently on the disk in drive 0.

SCRATCH dO,"basic*"

Deletes every file on drive with a file name whose first five characters are "basic".

Page 29

Chapter 4

CHAPTER 4. USING DOS FROM BASIC

CONTENTS

DOPEN#
APPEND#
DCLOSE#
PRINT#

INPUT#

GET#
RECORD#

Prepare a file for access 31

Continue a sequential file 32

Quit file processing 33
Write data into file 34
Read data from a file 35
Read a cliaracter from a file 36
Position tine file access pointer 37

Page 30

Chapter 4

CHAPTER 4: USING DOS FROM BASIC

This chapter describes the commands that are used to access the data in a file. The commands may be
directly executed or they may be included in programs as statements.

The data file types referenced in this chapter are either "seq" for sequential, or "rel" for relative. The
command syntax conventions are the same as Chapter 3.

DOPEN# Prepare a File for Access

SEQUENTIAL FILES

This command tells DOS to prepare a sequential type file for access.

When the file is opened for reading the <file name> specified must exist or an error is generated. If the
file is already open an error is also generated. If the file is open for writing the < file name> must not
currently exist, and the file will be created.

Syntax —

TO READ — DOPEN#< file number >[,d< drive >][onu< unit >],"< file name >",R
TO WRITE — DOPEN#< file number >[,dc drive >][onu< unit >],"< file name >",W

Example:

D0PEN#1,d1,"test records",R

Open the file "test records" on drive 1, as logical file number 1 for reading.

D0PEN#2,d1,"print file",W

Create the file "print file" on drive 1 for write operations.

RELATIVE FILES

Relative files allow access to any record in the file in any order. The RECORD* (see page 37) command is

then used to specify which record in the file to access.

Opening a relative file for access allows both reading and writing. If the file does not exist it will be
created. If the file is already open with the same <file number) an error is generated. The record length
<rec len> parameter is optional when opening a file which already exists. Relative files are discussed in
greater detail in Chapter 5.

Syntax — DOPEN#< file number >[,^(drive >][onu< unit >],"< file name >"[,L< rec len >]

Page 31

Chapter 4

Example:

D0PEN#5,"Payables", 180

This prepares logical file number 5, named "Payables" on drive for read and write access. The < rec len >

specified is checked (if "Payables" already exists) against the actual record length on disk and if there is

not a match an error is generated.

The number of files which DOS can allow to be open concurrently depends on the mix of sequential and
relative file types opened. The following maximum combinations are permitted on all models except the

2031.

relative and 5 sequential

or 1 relative and 3 sequential

or 2 relative and 2 sequential

or 3 relative and sequential

On the 2031 the combinations of open files permitted are:

relative and 2 sequential

or 1 relative and 1 sequential

APPEND# Continue a Sequential File

The APPEND* command opens a sequential file to permit more data to be written to the end of the file

using the PRINT# statement. The file must currently exist or an error message is generated.

Syntax — APPEND#< file number >[,d< drive >][onu< unit >],"€ file name >"

Example:

APPEND#3,dO,"translog"

The file named "translog" on drive is opened for writing and the DOS file access pointer is positioned to

the character position following the current end of the file. If the drive number is not specified DOS
assumes drive 0.

Page 32

Chapter 4

DCLOSE# Quit file processing

The DCLOSE# command closes files opened with the DOPEN# command. Specific files can be closed by

supplying a < file number > reference, or all files can be closed by omitting the number. The DLOAD com-

mand also closes all files.

This command causes the BAM to be updated with any information still in DOS memory, and updates the^

directory with the current file size. Forgetting to DCLOSE# a file before changing disl<s will cause data

loss.

Syntax — DCLOSE#< file number) close one file

DOLOSE close all open files

Example:

DCLOSE#36

This closes logical file number 36.

BASIC can maintain a maximum of ten open files. These may include up to five disk files and five files on

other devices such as printers or modems.

Page 33

Chapter 4

PRINT# Write data into a file

The PRINT# command is used to send data to a file. The file must have been opened for writing with the

DOPEN# command. The < file number) must be the same as the logical file number assigned with the

DOPEN# command.

Syntax — PRINT#< file number >[,< variable >][,< variable >]...[,< variable >]

Example: PRINT#5,A$

This transmits the contents of the < variable > named A$ to logical file number 5. The < file number > was

associated with a file name when the file was opened.

The punctuation characters which may be used to separate variable names in the output list are: blank,

comma, and semi-colon. Punctuation characters may be omitted between string type variables or after

the last variable in the statement. A comma must appear before the first variable (if any) in the output list.

Whether blanks, commas, semi-colons, or no punctuation characters are used between variable names,

the effect is the same. The contents of variables in the list are concatenated into a single string followed

by a carriage return character (CHR$(1 3)).

When using BASIC 4.0 any file opened with a logical file number greater than 127 will cause a line-feed

character (CHR$(10)) to be transmitted to the file after the carriage return at the end of an output variable

list. Logical file numbers less than 128 will not send the line-feed character. With earlier versions of

BASIC the line-feed is always sent, regardless of logical file number, unless steps are taken to suppress it.

Examples: where variables A$= "AAA" and B$= "BBB" and C$= "CCC".

PRINT#2,A$;B$;C$

PRINT#3,A$,B$,C$

PRINT#4,ABC$

All send the data: AAABBBCCC< carriage return >

PRINT#150,A$,B$,C$

Sends the data: AAABBBCCCtcarriage return) <line-feed) when using BASIC 4.0 The <file number) of

150 causes the line-feed character.

PRINT#5,A$;B$;C$;CHR$(13);

Sends the data: AAABBBCCC< carriage return > when using any version of BASIC. The trailing semi-colon

will suppress the output of the carriage return and/or line-feed characters which would normally be sent.

Page 34

Chapter 4

INPUT# Read data from a file

The INPUT* statement reads data from a file and places it into < variable > names on the input list. The file

must be open for reading. Data transfer for each < variable > on the input list is terminated by encoun-

tering a carriage return character (CHR$(1 3)) or comma (CHR$(44)) or a line-feed character (CHR$(1 0))/or a null

character (CHR$(0)).

Up to 80 characters of string or numeric data may be read into each variable. If more than 80 characters

are read without encountering a carriage return, comma, or line-feed, an error condition results.

Syntax — INPUT#< file number >,< variable >[,< variable >]...[<, variable >]

Example:

INPUT#2,A$

This reads data from logical file number 2 and assigns it to the variable A$. IVIore than one variable can be

read using the INPUT# statement. A comma must precede each variable name in the input list.

Example:

INPUT#6,A$,B$,C$

Each variable must have been followed by a carriage return, comma or line-feed character when written to

disk to be read separately. Up to 80 characters are transferred into each input variable.

The 80 character limitation of INPUT# can be bypassed by using the GET# command which is described

next.

Page 35

Chapter 4

GET# Read a character from a file

The GET# command is used to read one character of data from the disk. The fiie must have been opened
for reading with the DOPEN# or OPEN command. The data read can be string or numeric.

Syntax — GET#< file number >,< variable >

Example:

GET#8,A

This reads one character from logical file number 8 into numeric variable A.

When reading string data, a binary zero (or null character) must be converted to a CHR$(0) for proper han-
dling by BASIC.

GET#8,B$:IF B$= "" THEN B$= CHR$(0)

This puts the required binary zero in the string variable.

The GET# command allows continuous reading of the data from the file. This is done by concatenating
the characters read into a new variable as follows:

BIG$="":REM initialize result

FOR I = 1 TO 200: REM start loop

GET#18,A$: REM read one byte

BIG$= BIG$+ A$: REM add to final result

NEXT: REM increment loop

At the end of the loop 200 characters have been read into BIG$. A maximum of 255 characters can be read
into a single string-type variable in this manner.

Page 36

Chapter 4

RECORD# Position the file access pointer

This command allows absolute access to any position in a file. It is used only with relative access files. If

< byte position > is omitted the file access pointer is set to the first character of a record.

Syntax — RECORD#i file number >,< rec number >[,< byte position >]

Example:

REC0RC)#16, 10,20

The example positions the pointer for < file number) 16 at the 20th byte of the 10th record.

Example:

RECORD#2,25
INPUT#2,A$

This reads up to 80 characters from record 25 of file number 2 into the variable A$.

RECORD# is discussed in greater detail in chapter 5.

Page 37

Chapters

CHAPTER 5. ADVANCED FILE HANDLING

CONTENTS

Relative Files — All Models 39

Creating a Relative File 4-I

Expanding a Relative File 42
Accessing a Relative File 43

Relative Files in 8250 Disk Units 45
Using 8050 Diskettes in 8250 Drives 45

Page 38

Chapters

CHAPTER 5. ADVANCED FILE HANDLING

RELATIVE FILES

Direct access (or Relative files) is a method that allows the programmer to position a pointer to any
record on the disk relative to the beginning of that file. Compare this method to the standard procedure of

having to search each track and sector for the desired information and it becomes apparent that such
relative handling method would result in a great reduction in the amount of time required to find and fetch

a specific record stored on disk.

The three main components of a relative file are the super side sector (DOS 2.7 and 3.0 only), the side sec-
tor chain of blocks and the data block chain. All are linked together through forward pointers similar to

those used in a sequential file.

The super side sector points to the first side sector in a group of side sectors. Each side sector points to

the other side sectors in the same group and points to the data block chain. Record sizes, while fixed in

length for each data file, may range from 1 to 254 bytes. The number of records is limited (under DOS 2.1 and
DOS 2.5) to that which can be contained in 720 data blocks, as each of the six side sectors can contain a

maximum of 120 data block pointers. The number of records under DOS 2.7 and DOS 3.0 is limited by the

capacity of the disk but for practical purposes may not exceed 65,535 records.

The side sectors do not contain record information, but do contain pointers to the data blocks. The record

size dictates where the pointer is positioned when a record number is referenced because the record size

is used in an algorithm to compute where the pointer is positioned when a record number is given in the
RECORD* command.

The side sector also contains a table of pointers to all of the other side sectors within a file. In order to

move from one side sector to another, the pointer is referenced through the appropriate DOS command,
and the corresponding side sector is read into memory. Using information contained in the referenced
side sector, the data block pointer can be located and used to read the actual data block containing the
record.

The relative file data block pointers in the side sectors allow DOS to move from one record to another
within two disk read commands - a considerable savings in the amount of time required to find a desired
data block compared to the sequential methods.

Page 39

Chapter 5

Each side sector contains pointers for 1 to 120 data blocks. There are six side sectors for each relative file

under DOS 2.1 (4040), DOS 2.5 (8050), and DOS 2.6 (2031). This provides a total file capacity of 182,880
bytes (120 pointers/side sector * six side sectors * 254 bytes per data block). The super side sector of
DOS 2.7 (8250) and DOS 3.0 (hard disks) has the capacity to point to 127 groups of six side sectors, giving

a potential capacity of 23,225,760 bytes per file (182,880 bytes * 127 groups of side sectors).

Spanning of data blocks is a key feature of relative files which aids in reducing the number of disk
read/write operations required to find and retrieve data. Before explaining how this feature of DOS im-
proves time utilization efficiency, we need to examine how I/O channels are utilized by relative files:

When a channel is opened to a previously existing file, DOS positions the file access pointer to the
first record provided that the given parameters match properly. The record length variable is not
necessary on the DOPEN# statement if the file already exists. DOS checks the record size (if specified)

against the record size that is stored in the directory entry for an existing file. If these two do not
match, an error message is generated.

Relative files require three memory buffers from the system, whereas sequential files require only
two. Since there are twelve buffers in the system, and two of these are used for directory searches
and internal functions, only three relative files can be open at once. The highest number of buffers
that can be used is ten, which limits the total number of channels which can be open at any one time.

If a record was found to be on the boundary between two data blocks, that is, starting in one data block
and finishing in another, then DOS would read the first segment as well as any following records in the
second data block. In practice, the records of most relative data files span across data blocks. The only
exceptions are record sizes of 1, 2, 127, and 254. These divide evenly into the 254 byte size of the data
block and spanning is unnecessary.

This method of spanning has the advantage of requiring no system memory overhead aside from that
required for the side sector blocks in the relative files. When a record is written via the PRINT# statement,
the data block is not immediately written to disk. It is only written out when the DOS moves beyond the
particular data block in which that record resides. This can occur through successive printing to sequen-
tial records, or when positioning to another record outside of that particular block.

Page 40

Chapters

Because of the spanning feature, it is imperative that multiple channels NOT be open to a single relative
file at the same time if any channel will be writing to the file. An update may be made in one channel's
particular memory buffer area, but the change may not be made on disk until DOS moves beyond that par-
ticular data block. DOS places no restrictions on this, and when the file is open for read only, it may be
advantageous to have multiple channels open to a single relative file.

DOS terminates printing to a record by detecting the EOl signal which is generated with each PRINT#
statement. If the PRINT# statement goes over the maximum record size an error message is generated.
Any data overflow is truncated to fit the number of characters specified by the record size and DOS
position the file access pointer to the next record in the sequence.

If the PRINT# statement sends less characters than the actual record size, the remaining positions within
that record are filled with nulls or binary zeroes. Consequently, when positioning to a record for input the
IEEE EOl (End-Or-ldentify) signal is generated from DOS to the computer when the last non-null byte is

transmitted. Should the programmer desire to store binary information, a record terminator such as
carriage return must be used and the record size increased by one character to accommodate the ter-

minator.

CREATING A RELATIVE FILE

When a relative file is opened for the first time, the file should be initialized by the programmer to allow
for faster subsequent access, and to assure that DOS reserves sufficient space on the disk for the future
data. A relative file may be initialized by first opening the file, setting the file access pointer to the last

(highest) record number to be contained in the file, printing to that record, and then closing the file.

Example:

DOPEN#1,dO,"FILE1",L50

RECORD#1,100
PRINT#1,CHR$(255)

DCL0SE#1

In the preceding example the DOPEN# creates a file on drive with the name "FILE1 " and a record length
of 50.

Page 41

Chapters

The RECORD* statement positions the fiie access pointer to record number 100 which does not yet exist.

The error 50 RECORD NOT PRESENT occurs at this point, but should be interpreted as a warning rather

than an error condition. This message is expected to occur as a warning when a new record is accessed

for the first time and indicates that no iNPUT# or GET# operation shouid be attempted.

The PRINT# statement causes record number 100 to be written. During this write operation, DOS detects

that records 1 thru 99 do not already exist, and automatically initializes them by placing a CHR$(255) in

the first character of each record. During this process, all necessary side sectors and data block pointers

are also created.

While DOS is generating new data blocks for relative files, the number of blocks required by the

requested record number is compared to the number of data blocks left on the disk. If the resulting num-

ber of data blocks is greater than the number available on the disk, then error 52 FILE TOO LARGE is

generated.

The DCLOSE# statement closes the file and causes space to be allocated in the BAM and updates the

block count in the file's directory entry.

The "file setup" process described here is not a requirement since DOS will automatically create new
data block pointers and side sectors as necessary. However, this procedure is recommended to increase

execution speed of programs using relative files. The setup of a file in this manner need be done only on-

ce when the file is created.

EXPANDING A RELATIVE FILE

To expand an existing file, the same procedure as for creation is used, with the record number changed to

reflect the greater number of records.

When DOPEN# is used on an existing relative file, the record length parameter is optional. If present, it

must match the length set at the time the file was created or an error 50 RECORD NOT PRESENT results.

When a file is expanded in this manner, required side sectors are also created. Side sectors are tran-

sparent to the user since they are automatically generated and accessed by DOS.

Page 42

Chapters

ACCESSING A RELATIVE FILE

NOTE: See Appendix E for more information regarding relative file access for writing.

In order to make the relative file handling system practical, the user must be able to access the file for

reading or writing of data. Both of these operations are simplified by relative files and both may use the

RECORID# command for positioning to the desired record before the operation.

To write data to or read from a predetermined record in a file, the RECORD* statement is used to set the

DOS file access pointer to the desired record. The record number parameter may be a constant or a

BASIC variable name enclosed in parenthesis as shown.

Example:

DOPEN#1,dO„"FILE1"

RECORD#1,25
or

REC0RD#1,(rn) Where rn has the value of 25.

PRINT#1,"Philadelphia"

DCL0SE#1

The resulting record would appear as follows:

(numbers added for clarity)

1 2 3 4 5

1 2345678901 2345678901 2345678901 2345678901 234567890

Philadelphia*

Where *represents a carriage return, CHR$(13).

The following program illustrates an optional feature of the RECORD* statement which permits access
to individual bytes within a record for reading or writing.

DOPEN#1,d0,"FILE1"

RECORD#1,25 (sets file access pointer to record 25)

PRINT#1,"Philadelphia"

REC0RD#1 ,25,20 (sets character pointer to position 20)

PRINT#1,"Penna."

REC0RD#1,25,30 (sets character pointer to position 30)

PRINT#1,"19204"

DCL0SE#1

Page 43

Chapter 5

The following Illustration is a representation of the contents of the record number 25 after the above
example is executed:

(numbers added for clarity)12 3 4 5
1 2345678901 2345678901 2345678901 2345678901 234567890
Philadelphia* Penna.* 10204*

Where * represents a carriage return, CHR$(13).

NOTE: It is important that the fields be written in sequence, since writing to a byte at the beginning
of the record destroys the rest of the record in DOS memory. This means while it is possible to
position and write first to byte 1 and then byte 20, it is NOT possible to first write byte 20 and
then byte 1.

Since the carriage return is recognized as a terminator by the BASIC INPUT# statement, the data in the
preceding example may be retrieved by the following statements:

DOPEN#1,d0,"FILE1"
RECORD#1,25
INPUT#1,A$ (reads "Philadelphia" into the variable A$)
REC0RD#1,25,20
INPUT#1,B$ (reads "Penna." into the variable B$)
REC0RD#1,25,30
INPUT#1,C$ (reads "19204" into the variable C$)

The RECORD* command may be omitted if the file is to be accessed sequentially, which saves time
durmg program execution. An example of this occurs when writing a large data base to the disl< file
Assume that the program has already dimensioned variable D$ as an array which contains 100 elements
These elements are to be written to the disk in records number 1 thru 100 of file "FILE1". This could be
accomplished with the following program.

DOPEN#1,dO,"FILE1'

FOR 1=1 TO 100

PRINT#1,D$(I)

NEXT I

DCL0SE#1

Smce the record pointer is automatically set to record 1 when the file is opened, record 1 is the first
record written. If no REC0RD# command is executed DOS automatically positions the file access pointer
to the next record after each PRINT# statement. Therefore, the contents of the D$ array elements will be
written to records 1 thru 100 of the file.

Page 44

Chapters

RELATIVE FILES IN 8250, D9060 and D9090 DISK UNITS

Relative files on 8050 disk units are limited to a size of 182,880 bytes. On 8250, D9060 and D9090 disk units with

this limit no longer applies and relative files may use the entire capacity of a drive. The 8250 will power-up with

the Expanded Relative File feature enabled. To read/write 8050 formatted relative files (on 8050 diskette) in an

8250 drive, this feature must be disabled as follows:

OPEN 15,8,15

PRINT#15,"M-W"CHR$(164)CHR$(67)GHR$(1)CHR$(255)

CLOSE 15

This disables access to expanded relative files until the 8250 drive is powered down or reset by a U: or UJ
User command, or until the Expanded Relative File feature is re-enabled as follows:

OPEN 15,8,15

PRINT#15,"M-W"CHR$(164)CHR$(67)CHR$(1)CHR$(0)

CLOSE 15

Existing relative files in any diskette format can be converted to the 8250 or hard disk Expanded Relative File

format by means of a program named "EXPAND.REL' which is included on the TEST/DEMO diskette supplied

with the 8250 disk units. To convert other relative files to Expanded format DLOAD and RUN this program (you

must have disk units of both types attached to the computer). A series of instructions is displayed on the screen.

The expanded relative files written by this program can only be accessed by an 8250, D9060 or D9090 disk unit.

USING 8050 DISKETTES IN 8250 DRIVES

Although the 8050 and 8250 disk units are read/write compatible, the first access to an 8050 diskette in-

serted into an 8250 drive (or use of an INITIALIZE command) causes an error 66 ILLEGAL TRACK OR SEC-
TOR message. The message occurs because of the different BAM contents of the two disk systems and
may be ignored. The error only occurs once and all further disk commands operate correctly unless the
diskette is moved to another drive.

For ease of use, data on 8050 diskettes should be transferred to 8250 formatted diskettes using the COPY
command. The BACKUP command cannot be used.

Page 45

Chapters

The 8050 disk unit is upward compatible (read/write) to the 8250 with some exceptions. The 8050 disl< unit
cannot access the reverse (top) side of an 8250 formatted disl^ette. Relative files created on an 8250 disl<
unit cannot be accessed by an 8050 unless the Expanded Relative File feature of the 8250 was disabled
before creating the file and unless the file resides entirely on the bottom diskette surface, the one that
the 8050 accesses.

Page 46

Chapters

CHAPTER 6. ADVANCED DOS PROGRAMMING

CONTENTS

DOS Overview Description 48
DOS Utiiity Command Set 50
Disk Oriented Utilities 52

BLOCK-ALLOCATE 52
BLOCK-FREE 53
BLOCK-READ 53
BLOCK-WRITE 54
BLOCK-EXECUTE 54
BUFFER-POINTER 55

Memory Utilities 56

IVIEMORY-WRITE 56
MEMORY-READ .^.^........... 57
MEMORY-EXECUTE .^^"........[58

User Utilities 59

Standard User Jump Table 60

Page 47

Chapter 6

CHAPTER 6. ADVANCED DOS PROGRAMMING

DOS OVERVIEW DESCRIPTION

DOS 2.1 works with the 4040 dual disk unit. Modei 2040 disk units (with DOS 1.0) can be upgraded to DOS
2.1 by repiacement of ROM chips within the disk unit. Reliabiiity of the recording format of DOS 2.1 was
improved over DOS 1.0 by removing one block from tracks 18 thru 24. As a result the directory holds 144

file entries and 664 blocks for user data.

The Relative Record file structure was added to DOS 2.1 to provide for random access to files. The Block

ReadA/Vrite commands of DOS 1.0 are supported, but the corresponding "U1" and "U2" utility commands
should be used for upward compatibility with future CBM disk products.

In general, software which does not depend on physical device attributes should be upward compatible

with all versions of DOS. Programs using the Block ReadA/Vrite commands are very vulnerable to DOS
changes.

DOS 2.5 is used in all 8050 dual disk drive units. All of the features of DOS 2.1 are included in DOS 2.5 and
adapted for additional capacity. DOS 2.5 also includes enhancements such as disk insertion detect and
expanded error recovery techniques. The directory provides 224 file entries and 2052 blocks are available

for user data.

DOS 2.6 is used with the 2031 single disk unit. DOS 2.6 is a functional equivalent to DOS 2.1 (used in the

4040) and is fully compatible with DOS 2.1 with one exception. Since the 2031 is a single drive unit, dual

drive commands will not work on the 2031 , and will cause a drive not ready error.

DOS 2.7 is used in the 8250 double-sided dual disk unit. DOS 2.5 disk commands and the 8050 disk unit

are upward compatible with DOS 2.7 and the 8250. With certain restrictions diskettes created on either

disk unit are read/write compatible. One important feature of the 8250 is the Expanded Relative File

capability of DOS 2.7 which allows relative files to occupy an entire 8250 diskette, providing over 1 million

bytes of storage.

DOS 3.0 is used in the D9060 and D9090 hard disk units. Features of DOS 3.0 include a dynamically ex-

pandable directory allowing an unlimited number of file entries, replacement-mapping of bad sectors,
and a self-locating BAM. Relative files may occupy the entire capacity of the hard disk unit.

Page 48

Chapters

General Operation of DOS

The DOS file interface controller is responsible for managing all data transfers between the IEEE bus and
the disk controller. Most disk I/O is performed on a pipeline basis, resulting in faster response to
requested operations.

The file system is organized by channels which are opened with the BASIC DOPEN# statement. When the
DOPEN# statement is executed, DOS assigns a workspace buffer to each channel and allocates one or
two disk I/O buffer areas. If either the workspace or I/O buffer area is not available, a NO CHANNEL error
is generated. DOS also uses the channel structure to search the directory, and to delete and copy files.

The common memory between the disk controller and the file interface is used for 256-byte buffer areas.
Three of the sixteen buffers are used by DOS for the Block Availability Map (BAM), variable space, com-
mand channel I/O, and the disk controller job queue.

The job queue is the vital link between the two controllers. Jobs are initiated on the file side by providing
the disk controller with sector header and type of operation information. The disk controller seeks the op-
timum job and attempts execution. A status byte is then returned in place of the job command. If the job
is unsuccessful, the file side re-enters the job a given number of times, depending on the operation,
before generating an error message.

The secondary address given in the OPEN statement is used by DOS as the channel number. The number
the user assigns to a channel is only a reference number that is used to access the work areas, and is not
related to the DOS ordering of channels.

The DLOAD and DSAVE statements transmit secondary addresses of and 1, respectively. DOS
automatically interprets these secondary addresses as DLOAD and DSAVE functions. Unless the fun-
ctions are desired when opening files, avoid secondary addresses of and 1. The remaining numbers, 2
through 14, may be used as secondary addresses to open up to five channels for data.

Page 49

Chapters

DISK UTILITY COMMAND SET

The disk utility command set consists of the following commands. The format and operation of these

commands is compatible across all versions of DOS.

COMMAND ABBREVIATION GENERAL FORMAT

BLOCK- ALLOCATE B-A "B—A:"dr;t;s

BLOCK—FREE B-F "B— F:"dr;t;s

BLOCK—READ B-R "B— R:"ch;dr;t;s

BLOCK—WRITE B—

W

"B—W:"ch;dr;t;s

BLOCK—EXECUTE B-E "B— E:"ch;dr;t;s

BUFFER—POINTER B—

P

"B-P:"ch;p
Memory-Write M—

W

"M-W"adl/adh/nc/data
Memory-Read M-R "M-R"adl/adh
Memory-Execute M—

E

"M—E"adl/adh

User U "Ux:"ch;dr;t;s

The format conventions for the DOS utility commands is shown below:

ch

dr

t

s

P

ad I

adh

nc

data

the channel number in DOS, identical to the secondary address in the associated OPEN
statement.

the drive number, (or 1 for dual drive units).

the track number, 1 thru 154 (depending on model).

the sector number, thru 1 12 (depending on model).

the pointer position for the buffer pointer.

the low byte of the address in chr$(n) form.

the high byte of the address in chr$(n) form.

the number of characters, 1 thru 34, in chr$(n) form.

the actual data in hexadecimal. This is trasmitted by using the chr$ function, i.e. chr$(17)

would send the hexadecimal equivalent of decimal 17.

the index into the User Table.

Page 50

Chapters

These commands may be abbreviated to the first character of each of the key words. Only abbreviations
are accepted for the Memory Read, Write, and Execute commands. DOS searches for parameters
associated with each command starting at a colon (:), or in the fourth character position if a colon is not
present. The following example shows four ways that the same BLOCK—READ command may be given.

Examples:

"BLOCK— READ:"2,1,4,0
"B— R"2,1,4,0

"B— R"2;1;4;0

"B—READ"A;B;C;D

Parameters following the key words within quotation marks may be separated by any combination of

< cursor right >, SPACE, or comma characters. If using variable names to pass command parameters, only
the command string should be enclosed in quotes as shown in the general format examples above.

The Disk Utility commands are sent to the disk unit by first opening a logical file to the DOS "command channel"
using secondary address 15. Then the PRINT# statement is used to issue one or more commands. Finally when
all processing is done, the CLOSE statement is used to 'shut-down' the command channel. The example below
shows the actual statements to use. In examples on the following pages, the OPEN, PRINT# and CLOSE
statements are omitted for clarity

Example:

OPEN 15,8,15

PRINT#15, "B-R:"2;1;18;0

PRINT#15, "B-A:" 1;1;1

CLOSE 15

Page 51

Chapter 6

DISK ORIENTED UTILITIES

BLOCK—ALLOCATE

This command causes DOS to flag the block specified on the drive, track and sector to be "in use". If

successful, the appropriate Block Availability IVIap (BAM) is updated in DOS memory to reflect the block
as allocated (used). In future operations, DOS skips over the allocated block when saving programs or
writing files. The updated BAM is written to disk upon closing an output file or closing the command
channel.

If the block requested has been previously allocated, the error channel indicates the next available block
(increasing track and sector numbers) with the NO BLOCK error. If no blocks are available, greater in

number than the one which was requested, zeroes are shown as the track and sector parameters when
the NO BLOCK error is returned.

Format:

"B—A:"dr;t;s

Example:

"B—A:"0;10;5

This requests that block (sector) 5 of track 10 on drive be flagged as allocated on the disk. Always check
the error channel when using this command to prevent an allocated block from being overwritten. If the
block is already allocated, the error message also indicates the next available block.

Example:

OPEN 15,8,15

INPUT#15,EN,EM$,ET,ES

CLOSE 15

This reads the next available track and sector, respectively, into ET and ES.

EN = Error Number EM$ = Error Message
ET = Error Track ES = Error Sector

Page 52

Chapters

BLOCK—FREE

This command causes DOS to return the specified blocl< to the pool of available storage. The block is

marked as "free" in the appropriate BAM in DOS memory and may later be allocated for other uses. The

BAM is written onto the disk when the command channel or any other file is closed:

Format:

"B— F:"dr;t;s

Example:

"B— F:"1;22;9

This causes DOS to free sector 9 of track 22 on drive 1

.

Care must be taken when using this command to avoid track and sector values belonging to the BAM,
Directory Header, or Directory. If any of these blocks are freed, DOS may allocate them for other use, with

catastrophic results.

BLOCK—READ

This disk utility command provides direct access to any block on the disk. Used in conjunction with other

block commands, a random access file system may be created through BASIC. This command positions

the DOS file access pointer to the first character or "0-position" of the block. When a character in this

position is read with the GET# or INPUT#, an End-Or-ldentify (EOl) is sent. This terminates an INPUT# and

sets the Status Word (ST) to 64 in the computer. The next GET# or INPUT# will read the data normally.

Format:

"B— R:"ch;dr;t;s

Example:

"B— R:"5;0;18;0

This reads the block from drive 0, track 18, sector 0, into channel 5 buffer area.

After using BLOCK—READ to transfer the data to the buffer, the data may be transferred to memory by

INPUT# or GET# from the logical file opened to that disk channel (i.e., by using that secondary address).

The U1 command described under User is similar to the BLOCK—READ command.

NOTE: The B-R command can cause errors in 4040/2031 operations. For 4040 and 2031 models, the

corresponding "U1:" command (see page 59) should always be used instead.

Page 53

Chapters

BLOCK—WRITE

When this command is initiated, the current buffer pointer is used as the last character pointer and is
placed in the sector-link position of the buffer. The buffer is then written to the indicated block on the disk
and the buffer pointer is set to position 1.

Format:

"B—W:"ch;dr;t;s

Example:

"B-W:"7;0;35;10

This writes channel 7 buffer to the block on drive 0, track 35, sector 10. The U2 command described under
User is similar to the BLOCK—WRITE command.

NOTE: The B-W command can cause errors in 4040/2031 operations. For 4040 and 2031 models the
corresponding "U2:" command (see page 59) should always be used instead.

BLOCK—EXECUTE

This command allows part of the DOS or user designed routines to reside on disk, be loaded into disk
drive memory, and be executed. The File Interface Controller begins execution of the contents after the
block IS read into the specified buffer. Execution must be terminated with a "Return From Subroutine"
(RTS) instruction. Future system extensions or user-created functions may implement this feature.

Format:

"B-E:"ch;dr;t;s

Example:

"B— E:"6;0;1;10

This reads a block from drive 0, track 1, sector 10, into channel 6 buffer and executes its contents beqin-
ning at position in the buffer.

^

Page 54

Chapter 6

BUFFER—POINTER

This command changes the pointer associated with a given channel buffer to a new value. This is useful

when accessing particular fields of a record within a block, or if the block is divided into records, in-

dividual records may be set for transmitting or receiving data.

Format:

"B— P:"ch;p

Example:

"B— P:"2;10

This sets the channel 2 buffer pointer to the byte position 10 of the data area in the DOS memory buffer.

The buffer pointer value may range from thru 255.

Page 55

Chapter 6

MEMORY UTILITIES

All three Memory commands are byte-oriented so that the user may utilize machine language programs.

BASIC statements may be used to access data via Memory commands by using the CHR$ function The

system accepts only M-R, M-W, and M-E; neither the full spelling or the use of a colon { :)
is permitted.

The INITIALIZE command must be sent (only once) to a drive before issuing a sequence of Memory com-

mands to the drive.

MEMORY-WRITE

This command provides direct access to DOS memory. Special routines may be down-loaded to the disk

drive via this command and then executed by using the MEMORY-EXECUTE command or one of the

User commands. Up to 34 bytes may be deposited with each use of the M-W command. The

hexadecimal value of DOS memory address must be specified low-byte first and must be converted to

decimal for use with the CHR$ function.

Format:

"M—W'adI adh nc data (spaces are shown for clarity)

Example:

"M-W"CHR$(0)CHR$(18)CHR$(4)CHR$(32)CHR$(0)CHR$(17)CHR$(96)

This write four bytes to buffer 2 ($1200 or decimal 4608). Another use for the M-W command is to tem-

porarily change the physical device number of a disk unit. All disk units are set to device number 8 at the

factory.

When two or more disk units are attached to the computer, the device number of each unit must be made

unique or none will operate correctly. The following program fragment changes the device number of

4040, 8050, or 8250 floppy disk units and the D9060 or D9090 hard disk units.

Example: ("odn" is old device number, "ndn" is new device number)

OPEN15,odn,15

PRINT#15, "M-W"CHR$(12)CHR$(0)CHR$(2)CHR$(ndn-l- 32)CHR$(ndn-i- 64)

CL0SE15

To change the device number of 2031 disk units use this M-W statement:

Example:

PRINT#15,"M-W"CHR$(119)CHR$(0)CHR$(2)CHR$(ndn-l-32)CHR$(ndn-H64)

Page 56

Chapters

The general procedure to change device number is:

1. power-up the first disk unit only.

2. run the above program.

3. if the next unit is a 2031 disconnect it from the IEEE bus.

4. power-up the next disk unit.

5. if this unit is a 2031 re-connect it to the IEEE bus and proceed to step 2.

The device number remains at the new value until changed again by the M—W command or a (U: or UJ)
command is issued or the unit is powered down.

MEMORY—READ

The single byte pointed to by the DOS memory address in the command string may be accessed with this

command. Also, variables from DOS or the contents of the buffers may be read with this command. The
M—R command changes the contents of the error channel since that is used for transmitting data to the
computer. The next GET# from the error channel (secondary address 15) transmits the byte.

An iNPUT# should not be executed after a MEMORY—READ command until after the error channel has
been closed or until a DOS command other than one of the Memory commands is executed. This is

because the unchanged data byte in the error channel would be interpreted as an error number.

Format:

"M—R" adh adi (spaces shown for clarity)

Example:

"M—R"CHR$(128)CHR$(0)

This accesses and reads the byte located at $0080 hexadecimal or 128 decimal. The following GET# transfers
the data to the computer

Page 57

Chapter 6

MEMORY—EXECUTE

Subroutines in DOS memory may be executed with this command. To return to the DOS, terminate the

subroutine with a RTS instruction.

Format:

"M—E" adi adh (spaces shown for clarity)

Exampie:

"M— E"CHR$(128)CHR$(49)

This causes execution of the code beginning at location $3180 hexadecimal. The most common use of the

"M-E" command is to first create a subroutine in a specific buffer and then call it for execution as needed with

the "M—E" command. The subroutine may be "downloaded" from the computer using the print #15, "M—W"

statements or may be read into a buffer using the U1 command. Great caution should be taken in using "M—E"

because an incorrect execution address could cause destruction of your data.

Page 58

Chapters

USER UTILITIES

These commands provide a link to 6502 machine code in the disk according to a jump table pointed to by

the special User pointer. The second character in this command is used as an index to the table. The ASCII

characters thru 9 or letters A thru J may be used. Zero sets the User pointer to a standard jump table

that contains links to special routines.

The special User commands U1 (or UA) and U2 (or UB) can be used to replace the BLOCK—READ and the

BLOCK—WRITE commands on all DOS versions. Because of errors in DOS 2.1 the B—R and B—W com-

mands do not operate correctly in 4040 disk units. Thus B—R and B—W must be replaced with U1 and U2

when programming the 4040.

The U1 command forces the character count (buffer pointer) to 255 and reads an entire block into memory.

This allows complete access to all bytes in the block, including the track and sector link pointer.

Format:

"U1:"ch;dr;t;s

Example:

"U1:"5;0;18;0

This causes the block at track 18, sector 0, drive 0, to be read into the buffer channel number 5. The data

may then be accessed using the M—R and GET# commands.

U2 writes a buffer to a block on the disk without changing the data block link pointer as B—W does. This

is useful when a block is to be read in (with B— R) and updated (B— P to the field and PRINT#), then writ-

ten back to disk with U2.

Format:

"U2:"ch;dr;t;s

Example:

"U2:"5;0;18;0

This writes the data in channel buffer number 5 to drive 0, track 18, sector 0.

Page 59

Chapter 6

STANDARD USER JUMP TABLE

STANDARD ALTERNATE FUNCTION

DESIGNATION DESIGNATION

U1 UA BLOCK—READ replacement

U2 UB BLOCK—WRITE replacement

U3 UC jump to $1300

U4 UD jump to $1303

U5 UE jump to $1306

U6 UF jump to $1309

U7 UG jumpto$130C

U8 UH jumpto$130F

U9 Ul jumpto$10F0 (NMI)

U: UJ Power-up Vector

The U3 thru U8 commands are provisions for user-defined commands. The locations jumped to would contain

jump instructions to subroutines located in the buffer areas of disk unit RAM. User-written DOS routines may be

coded to reside there and may be down-loaded from the computer using the M—W command or read from disk

using the 8—R or Ul commands. The new DOS command can then be called by using the appropriate US thru

U8 command. The U: or UJ commands cause the disk drive to perform its power-up sequence and resets the

device number to 8. The drive(s) must be initialized before using further commands.

Page 60

Chapter?

CHAPTER 7. DISK STORAGE FORMATS

This chapter provides the details of disk storage formats of the 2031, 4040, 8050, and 8250 floppy disk

units and the D9090 and D9060 hard disk units. For each type of the disk the tables which follow show:
Block distribution by track, locations and formats of the Block Allocation Map, the Directory Header, the

Directory, and the formats of Program, Sequential, and Relative files.

CONTENTS

2031 Disk Unit 63

Blocks Per Track 63

BAM Format 63

Directory Header Format 63

4040 Disk Unit 64

Blocks Per Track 64

BAM Format 64

Directory Header Format 64

8050 Disk Unit 65

Blocks Per Track 65

BAM Format 65

Directory Header Format 65

8250 Disk Unit 66

Blocks Per Track 66

BAM Format 66

Directory Header Format 67

D9060/D9090 Disk Unit 68

BAM Format 68

Directory Header Format 68

Formats Common To All Disk Units 69

BAM Block Format 69

Directory Header Format 69

Disk Data File Format 71

Page 61

Chapter 7

Typical Disk Format

FIGURE 7.1

Figure 7.1 is a graphic representation of a disk format. The tracks are shown as concentric rings, with

track 1 being on the outside of the disk. The number of tracks on a disk varies with the model of the disk

unit. The number of sectors on each track varies with model and track number as shown in the following

tables.

A sector has information that enables the DOS hardware to access and verify each sector for integrity.

These items do not concern a programmer, and are normally not accessible. The items of importance are

the pointers and the data.

Some sectors are used for various purposes by DOS, such as Directory Header, Directory, and BAM in-

formation. For each disk unit the locations and formats of these sectors are described. Data file formats

(common to all models) are also described in this chapter.

Page 62

Chapter?

2031 DISK UNIT

NUMBER OF BLOCKS PER TRACK

TRACK NUMBER

1to17

18 to 24

25 to 30

31 to 35

NUMBER OF BLOCKS

21

19

18

17

BLOCK ALLOCATION MAP FORMAT Track 18 Sector 00

BYTE DATA DESCRIPTION

0-1

2

3

4-143

18-00

65

00

Track-Sector of first directory block

ASCII "a" identifies DOS 2.6 format

reserved for future use

Bit map of available blocks, tracks 1-35

DIRECTORY HEADER FORMAT Track 18 Sector 00

BYTE DATA DESCRIPTION

0-143

144-161

162-163

164

165-166

167-170

171-255

160

50,65

160

00

reserved for BAM
Diskette name, padded with shifted spaces
Diskette ID number
Shifted space
ASCII "2a" identifies DOS version & format

Shifted spaces
not used

Page 63

Chapter 7

4040 DISK UNIT

NUMBER OF BLOCKS PER TRACK

TRACK NUMBER NUMBER OF BLOCKS

1to17
18 to 24

25 to 30

31 to 35

21

19

18

17

BLOCK ALLOCATION MAP FORMAT Track 18 Sector 00

BYTE DATA DESCRIPTION

0-1

2

3

4-143

18-00

65

00

Track-Sector of first directory block

ASCII "a" identifies DOS 2.1 format

reserved for future use

Bit map of available blocks, tracks 1-35

DIRECTORY HEADER FORMAT Track 18 Sector 00

BYTE DATA DESCRIPTION

0-143

144-161

162-163

164

165-166

167-170

171-255

160

50,65

160

00

reserved for BAM
Diskette name, padded with shifted spaces

Diskette ID number

Shifted space

ASCII "2a" identifies DOS version & format

Shifted spaces

not used

Note: ASCII data may appear in bytes 180-191 on some diskettes.

Page 64

Chapter 7

8050 DISK UNIT

NUMBER OF BLOCKS PER TRACK

TRACK NUMBER NUMBER OF BLOCKS

1to39
40 to 53

54 to 64

65 to 77

29

27

25

23

BLOCK ALLOCATION MAP (First Block) FORMAT Track 38 Sector 00

BYTE DATA DESCRIPTION

0-1

2

3

4

5

6-255

38-03

67

00

01

51

Track—sector of second BAM block

ASCII "c" identifies DOS 2.5 format

reserved for future use

Lowest track # mapped in the BAM block

Highest track# '+ 1) mapped in this BAM block

Bit map of available blocks on tracks #1-50

BLOCK ALLOCATION MAP (Second Block) FORMAT Track 38 Sector 03

BYTE DATA DESCRIPTION

0-1

2

3

4

5

6-140

141-255

39-01

67

00

51

51

00

Track-Sector of first directory block

ASCII "c" identifies DOS 2.5 format

reserved for future use

Lowest track # mapped in 2nd BAM block

Highest track# {+ 1) mapped In this BAM block

Bit map of available blocks on tracks #51-77
not used

DIRECTORY HEADER FORMAT Track 39 Sector 00

BYTE

0-1

2

3

4-5

6-21

22-23

24-25

26

27-28

29-32

33-255

DATA

38-00

67

00

160

160

50,67

160

00

DESCRIPTION

Track-Sector pointer to first BAM block

ASCII "c" identifies DOS 2.5 format

reserved for future use

not used

Diskette name, padded with shifted spaces

Shifted spaces

Diskette ID number

Shifted space

ASCII "2c" identifies DOS version & format

Shifted spaces

not used

Page 65

Chapter 7

8250 DISK UNIT

NUMBER OF BLOCKS PER TRACK

TRACK NUMBER NUMBER OF BLOCKS

1 to39

40 to 53

54 to 64

65 to 77

29

27

25

23

78 to 116

117to130

131 to 140

142 to 154

29

27

25

23

BLOCK ALLOCATION MAP (First Block) FORMAT Track 38 Sector 00

BYTE

0-1

2

3

4

5

6-255

DATA

38-03

67

00

01

51

DESCRIPTION

Track-Sector of second BAM block

ASCII "c" identifies DOS 2.7 format

reserved for future use

Lowest track* mapped in the BAM block

Highest track* (-t- 1) mapped in this BAM block

Bit map of available blocks on tracks#1-50

BLOCK ALLOCATION MAP (Second Block) FORMAT Track 38 Sector 03

BYTE

0-1

2

3

4

5

6-255

DATA

39-06

67

00

51

101

DESCRIPTION

Track-Sector of third BAM block

ASCII "c" identifies DOS 2.7 format

reserved for future use

Lowest track# mapped in 2nd BAM block

Highest track* (-i- 1) mapped in 2nd BAM block

Bit map of available blocks on tracks #51 -100

Page 66

Chapter?

BLOCK ALLOCATION MAP (Third Block) FORMAT Track 38 Sector 06

BYTE DATA DESCRIPTION

0-1

2

3

4

5

6-255

38-09

67

00

101

151

Track-Sector of fourth BAM block

ASCII "c" identifies DOS 2.7 format

reserved for future use

Lowest track # mapped in the BAM block

Highest track# (-i- 1) mapped in this BAM block

Bit map of available blocks on tracks #101-150

BLOCK ALLOCATION MAP (Fourth Block) FORMAT Track 38 Sector 09

BYTE DATA DESCRIPTION

0-1

2

3

4

5

6-25

26-255

39-01

67

00

151

155

00

Track-Sector of first directory block

ASCII "c" identifies DOS 2.7 format

reserved for future use

Lowest track # mapped in 4th BAM block

Highest track# (-i- 1) mapped in 4th BAM block

Bit map of available blocks on tracks #151-154

Not Used

DIRECTORY HEADER FORMAT Track 39 Sector 00

BYTE

0-1

2

3

4-5

6-21

22-23

24-25

26

27-28

29-32

33-255

DATA

38-00

67

00

160

160

50,67

160

00

DESCRIPTION

Track-Sector pointer to first BAM block

ASCII "c" identifies DOS 2.7 format

reserved for future use

not used

Diskette name, padded with shifted spaces

Shifted spaces

Diskette ID number
Shifted space

ASCII "2c" identifies DOS version & format

Shifted spaces

not used

Page 67

Chapter?

D9060

D9090

D9060/D9090 DISK UNIT

4 Recording Surfaces

6 Recording Surfaces

153 Tracks per Recording Surface

32 Sectors per Tracl<

BLOCK ALLOCATION MAP FORiVIAT Track 1 Sector (normally)

BYTE

0-1

2-3

4

5

6-255

DATA DESCRIPTION

Track-Sector pointer to next BAM block

($FFFF = last BAM block)

Track-Sector to previous BAM block

($FFFF = first BAM block)

Lowest track # mapped in this BAM block

Highest track # {-i- 1) mapped in this BAM block

Bit map of up to 50 tracks, for one recording

surface

DIRECTORY HEADER FORMAT Track Sector

BYTE DATA DESCRIPTION

0-1

2-3

4-5

6-7

8-9

10-11

12-255

00-01

00-255

76-00

76-20

01-00

ID-ID

00

Track-Sector pointer to Bad Track & Sector List

Identifies DOS 3.0 format

Track-Sector of first directory block

Tract-Sector of Header Sector

Track-Sector of first BAM block

Disk ID Code
not used

* The values for track and sector locations will vary due to dynamic reallocation.

Page 68

Chapter 7

FORMATS COMMON TO ALL DISKS

BAM BLOCK FORMAT

Each track has five bytes allocated to map it. A map bit of 1 means that the block is available. A map bit of

means the block is presently allocated. Blocks are mapped by bytes, the high order bit of each byte

maps the lowest numbered block of each group.

BYTE

1

2

3

4

5

Definition

Current number of available blocks for this track

Bit map of blocks 0-7. Bit 7 = block 0,

Bit map of blocks 8-15. Bit 7 = block 8,

Bit map of blocks 16 - 23. Bit 7 = block 16,

Bit map of blocks 24 - 31 . Bit 7 = block 24,

bitO= block 7

bitO= block 15

bitO= block 23

bitO= block 31

DIRECTORY BLOCK FORMAT

2031

4040

8050

8250

D9060/D9090

Track 18 Sectors 01 through 18

Track 18 Sectors 01 through 18

Track 39 Sectors 01 through 29

Track 39 Sectors 01 through 29

Starts on Cylinder 76, uses all tracks - Sectors 00 through 31 ,
then

expands to additional blocks as needed, providing 'unlimited'

directory size.

BYTE

0-1

2

3-4

5-20

21-22

23

24-27

28-29

30-31

32-255

DATA DESCRIPTION

Track-Sector pointer to next directory block

File type

Track-Sector pointer to first file block

File name, padded with shifted spaces

Track-Sector of first side sector (or super side

sector) if Relative File

Record length if Relative file

reserved for future use

Track Sector pointer for replacement

Number of blocks used by the file

Seven more 32-byte file entries, same as 0-31 above,

except the first two bytes of each entry are unused

Page 69

Chapter?

NOTE:
1.32 bytes per file entry.

2. Eight file entries per directory blocl<.

3. File type data is:

Scratched files $00

Sequential data $01

Program files $02

User-defined $03

Relative Record $04

4 File type data is OR'ed with $80 when file is closed.

5. Tracl< value of 00 in byte zero indicates the last used block in the directory. Sector value

then shows the next byte to use.

Page 70

Chapter?

DISK DATA FILE FORMATS

PROGRAM FILES

BYTE Definition

0-1 Tracl<-Sector pointer to next program biock
2-255 Up to 254 bytes of the program. End-Of-File is indicated by three consecutive

bytes of $00.

SEQUENTIAL DATA RECORDS

BYTE Definition

0-1 Track-Sector pointer to next sequential data block.

A track number of 00 indicates the last data block.

The sector pointer then indicates the next byte position available.

2-255 Up to 254 data bytes with a carriage return character (CHR$(13)) as delimiter

between data items.

RELATIVE DATA RECORDS

BYTE Definition

0-1 Track-Sector pointer to next data block assigned for the file. A track pointer of

$00 indicates the last data block, and the sector pointer then points to the next

byte position available for use.

2-255 Up to 254 data bytes with a carriage return character (CHR$(13)) as delimiter

between data items.

Page 71

Chapter?

RELATIVE FILE SIDE SECTOR FORMAT

BYTE Definition

O-i Track-Sector pointer to next side sector.

2 Side sector number- if 2031, 4040 or 8050 relative file

- always $FE if 8250, D9060 or D9090

3 Relative record length

4.5 Track-Sector pointer -first side sector

5.7 Track-Sector pointer - second side sector

8-9 Track-Sector pointer - third side sector

10-11 Track-Sector pointer -fourth side sector

12-13 Track-Sector pointer - fifth side sector

14.15 Track-Sector pointer - sixth side sector

16-255 Track-Sector pointers to 120 data blocks

Total of 720 blocks (maximum of 182.8K bytes) per file

DOS 2.7 and DOS 3.0 Super Side Sector contains Track-Sector pointers to 127 groups of 6 side sectors as

above for a potential file size of 23.25 IVIegabytes.

Page 72

Chapters

CHAPTER 8. DOS ERROR MESSAGES

CONTENTS

Requesting Error Messages 74
Description of DOS Error Messages 75

Page 73

Chapters

CHAPTER 8. DOS ERROR MESSAGES

REQUESTING ERROR MESSAGES

The method for obtaining an error message depends upon the version of BASIC in use. After display of

the error message the device error indicator is cleared.

FOR BASIC 3.0 (except 8250)

FOR BASIC 3.0 (8250 Drives DOS 2.7)

FOR BASIC 4.0

The above variables represent:

OPEN 1,8,15

INPUT#1,A,B$,C,D

PRINT A,B$,C,D

OPEN 1,8,15

INPUT#1,A,B$,C,D,E

PRINT A,B$,C,D,E

PRINT DS$

A Message Number

B$ Error Message

C Track

D Sector

E Drive Number for DOS 2.7

BASIC 4.0 also prints the above five items.

The following is a description of the error messages.

Errors 2 to 19 are unused and should be ignored.

Page 74

Chapters

DESCRIPTION OF DOS ERROR MESSAGES

NOTE: Error message numbers less than 20 should be ignored with the exception of 01 which gives in-

formation about the number of files scratched with the SCRATCH command.

20: READ ERROR (block header not found)

The disk controller is unable to locate the header of the requested data block. Caused by an
illegal sector number, or the header has been destroyed.

21: READ ERROR (drive not ready) Indicates a hardware failure.

22: READ ERROR (data block not present)

The disk controller has been requested to read or verify a data block that was not properly written.

This error message occurs in conjunction with the BLOCK commands and indicates an illegal

track and/or sector request.

23: READ ERROR (checksum error in data block)

This error message indicates that there is an error in one or more of the data bytes. The data has
been read into the DOS memory, but the checksum over the data is in error. This message may
also indicate grounding problems.

24: READ ERROR (bad sector flag)

A hardware error has been created due to an invalid bit pattern in the data byte. This message
may also indicate grounding problems.

25: WRITE ERROR (write-verify error)

This message is generated if the controller detects a mismatch between the written data and the

data in the DOS memory.

27: READ ERROR (checksum error in header)

The controller has detected an error in the header of the requested data block. The block has
not been read into the DOS memory. This message may also indicate grounding problems.

30: SYNTAX ERROR (general syntax)

The DOS cannot Interpret the command sent to the command channel. Typically caused by an
illegal number of file names, or pattern matching illegally used.

31: SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must start in the first position.

32: SYNTAX ERROR (long line)

The command sent is longer than 58 characters.

33: SYNTAX ERROR (invalid file name)

Pattern matching is illegally used in the DOPEN or DSAVE command.

34: SYNTAX ERROR (no file given)

The file name was left out of a command or the DOS does not recognize it as such. Typically, a
colon (:

) has been left out of the command.

Page 75

Chapter 8

39- SYNTAX ERROR (invalid command)

This error may result if the command sent to command channel (secondary address 15) is

unrecognizable by the DOS.

50: RECORD NOT PRESENT
Result of disk reading past the last record via INPUT#, or GET# commands. This message will

also occur after positioning to a record beyond end of file in a relative file. If the intent is to ex-

pand the file by adding the new record (with a PRINT# command), the error message may be ig-

nored. INPUT or GET should not be attempted after this error is detected without first

repositioning to a valid record number.

51: OVERFLOW IN RECORD
Data written with a PRINT# statement exceeds the defined relative record size. Data is truncated to

the defined size. Typical cause is failing to include carriage returns sent as field or record ter-

minators in calculating the record size.

52: FILE TOO LARGE
Record position within a realtive file indicates that not enough blocks remain available on the

disk to contain the specified number of records.

60: WRITE FILE OPEN
This message is generated when a write file that has not been closed is being opened for

reading.

61: FILE NOT OPEN
This message is generated when a file is being accessed that has not been opened in the

DOS. Sometimes, in this case, a message is not generated; the request is simply ignored.

62: FILE NOT FOUND
The requested file does not exist on the indicated drive.

63: FILE EXISTS

The file name of the file being created already exists on the disk.

64: FILE TYPE MISMATCH
The file type on a DOPEN command does not match the file type in the directory entry for the re-

quested file.

65: NO BLOCK ^ ^, , ^ ^
This message occurs in conjunction with the B—A command. It indicates that the block to be

allocated has been previously allocated. The parameters indicate the next higher track and

sector number available. If the parameters are zeroes then all higher numbered blocks are in

use.

66: ILLEGAL TRACK AND SECTOR
The DOS has attempted to access a track or sector which does not exist in the format being

used. This may indicate a problem reading the pointer to the next block.

Page 76

Chapters

67: ILLEGAL SYSTEM TORS
Special error message Indicating an Illegal system track or sector.

70: NO CHANNEL (available)

The requested channel is not available, or all channels are in use. A maximum of five sequential

files or three relative files may be opened at one time to the DOS. Direct access channels may
have six opened files.

71: DIRECTORY ERROR

The BAM does not match the internal count. There is a problem in the BAM allocation or the

BAM has been overwritten In DOS memory. To correct this problem, reinitialize the disk to re-

store the BAM in memory. Active files may be terminated by the corrective action.

72: DISK FULL
Either all blocks on the disk are used or the directory is at its limit. DISK FULL is sent when two

blocks remain available to allow the current file to be closed.

74: DRIVE NOT READY
An attempt has been made to access an invalid device number or the disk is not powered-up or

not up to speed.

75: FORMAT SPEED ERROR
While formatting diskettes the 8250 verifies that drive speed is within 2 milliseconds (1%) of

being 200 milliseconds per revolution. If speed is outside that limit the formatting is halted with

the disk error light on.

76: Controller error — a variety of conditions indicating controller hardware problems.

Page 77

Appendix A

APPENDIX A. SUMMARY OF DOS COMMANDS

The quick reference guide on the following pages will assist you in becoming familiar with DOS corri-

mands as used in both BASIC 3.0 and BASIC 4.0. The commands of BASIC 3.0 are an upward compatible

subset of BASIC 4.0 commands and are recognized by BASIC 4.0 with the same results.

Commands for BASIC 4.0 are shown followed by their BASIC 3.0 equivalent. For some commands only

one syntax is given for all versions of BASIC. Command names are shown in lower-case letters to

illustrate command abbreviations. The parameters for the commands are shown under the command

name in the table.

A separate list is shown of commands available when using the "Universal Wedge" program. The Univer-

sal Wedge is a program supplied on the TEST/DEMO diskette shipped with floppy disk units. The program

is loaded into computer memory and, when run, provides a set of DOS commands identical m format

regardless of BASIC version. To enable these commands, load the "Universal Wedge" file from disk and

type the BASIC statement: SYS 7*4096.

The "Wedge" commands may only be entered directly from the keyboard and may not be used in

programs. Use of the Universal Wedge program is never required, but is provided as a convenient utility.

Page A1

Appendix A

CBM DOS Command Quick Reference

COMMAND ABBREVIATION BASIC VERSION

append# aP# 4.0

< file number >[,d< drive >][onu< unit >],"< file name >"

backup bA 4.0

d< drive >[onu< unit >] to d< drive >[onu< unit >]

print#15, pRl5 3.0

"d[uplicate]< dest drive > =^< src drive >"

catalog cA 4.0

directory diR 4.0

[d< drive >][onu< unit >]

load 10 3.0

"$< drive >",< unit > SEE NOTE 1

.

collect coL 4.0

[d< drive >][onu< unit >]

print#15, pR

"v[alidate][< drive >]"

3.0

concat conC 4.0

[d< drive >][onu< unit >],"< file name >" to [d< drive >][onu< unit>],"< filename)'

Page A2

copy coP 4.0

[d< drive >][onu< unit >],"< src file >" to [d< drive >][onu< unit >],"< dest drive >'

Appendix A

3.0
print#15, pR

"c[opy]< dest drive >:< dest file > = < src drive >x src file >"

dclose#

[< file number)]

close

[< file number)]

dC#

clO

directory dlR

(see catalog command)

dioad dL

[d< drive)][onu< unit),]"< file name)'

load 10

["< drive)j< file name)",< unit)]

4.0

3.0

4.0

4.0

3.0

Page A3

clopen# dO# 4.0

(file number >[,d< drive >][qnu< unit >],"< file name >"[,R]

< file number >[,d< drive >][onu< unit >],"< file name >"[,W]

open oP 3.0

< file number >,< unit >,< address >,"< drive >j< file name >"[,R]

< file number >,< unit >,< address >,"< drive >j< file name >"[,W]

Appendix A

Sequential Files

Sequential Files

dopen# dO# 4.0 Relative Files

< file number >[,d< drive >][onu< unit >],"< file name >"[,L< rec len >]

open oP 3.0 Relative Files

< file number >,< unit >,< address >,"< drive >:< file name >,L"+ chr$(< rec len >)

dsave dS 4.0

[d< drive >][onu< unit >,]"<[@] file name >" See Note 2.

save sA 3.0

"[@] (< drive >] :< file name >",< unit > See Note 2.

header hE 4.0

"< name >"[,d< drive >][onu< unit >][,i< Id >]

print#15, pR 3.0

'n[ew][< drive >]:< name >[,< id >]"

initialize ALL

print#15,"i[nitialize][< drive >]"

Page A4

Appendix A

input# iN# ALL

< file number >,< variable >[,< variable >]....[,< variable >]

record* reC# 4.0

< file number >,< rec number >[,< byte position >]

print#15, pR 3.0

"P"chr$(< file number+ 96 >)chr$(€ rec num low-byte >)chr$(< rec num high-byte >)[chr$(< byte position >)]

rename reN 4.0

[d< drive >][onu< unit >,]"< original name >" to "< new name >"

print#15, pR 3.0

"r[ename][< drive >]:< new name > =^< original name >"

scratch sC 4.0

[d< drive >][onu< unit >,]"< file name >"

print#15, pR 3.0

"s[cratch]< drive >x file name >[,< drive >j< file name >]...."

NOTE 1: This command in 3.0 BASIC destroys previous computer memory contents as the directory is

loaded. To display the directory type LIST.

NOTE 2: The 'at sign' (@) creates the program file-name if it does not already exist. If a file of the same name is

already on the disk, it is replaced with the program in memory

Page A5

Appendix A

UNIVERSAL WEDGE COMMANDS

WEDGE SYNTAX

SAVE"< drive >:< file name >",< unit >

/< drive >:< filename >

t< drive >:< file name>

>$< drive >

>(carriage return)

>N< drive >:< disk name >,id

>l< drive)

>V< drive >

>C< dest drive > = < src drive >

>C< dest drive >:< dest file > = < src drive >:< src name >

>R< drive >:< new name > = < original name >

>S< drive >:< filename)

BASIC 4.0 EQUIVALENT

DSAVE

DLOAD

Shifted RUN/STOP key

DIRECTORY

Request DOS Error Message

HEADER

INITIALIZE

COLLECT

COPY (all files)

COPY (one file)

RENAME

SCRATCH

Page A6

Appendix A

SUMMARY OF COMMANDS AND STATEMENTS

APPEND#-

Open a sequential file to continue output

BACKUP —

Duplicates the entire contents of a disk

BLOCK-ALLOCATE —

Marks the requested block as "in use"

BLOCK-FREE —

Marks the requested block as "free" for use

BLOCK-EXECUTE—

Begins execution of 6502 machine code within the disk unit

BLOCK-READ —

Provides direct access to any block on the disk

BLOCK-WRITE —
Writes a DOS memory buffer to the requested block on the disk

BUFFER-POINTER —

Changes character pointer to a new value

CATALOG —

Displays a list of file names on the disk

COLLECT —

Traces through data block links on a disk and reconstructs a valid BAM for the disk

CONCAT —

Appends one sequential file to the end of another

Page A7

Appendix A

COPY —

Creates identical files

DCLOSE# —

Closes a working file

DIRECTORY —

Displays a list of file names on the disk

DLOAD —

Reads a program from disk

DOPEN# —

Opens a file for working

DSAVE —

Transfers program to disk

GET# —
Reads one byte from the disk

HEADER —
Formats new diskettes

INITIALIZE —

Inform DOS of disk change

INPUT# —

Read variables from the disk

MEMORY-EXECUTE —

Executes subroutines in DOS memory

MEMORY-READ —

Accesses byte pointed to by DOS memory address

Page A8

Appendix A

MEMORY-WRITE —

Writes data to DOS memory

PRINT# —

Transfers data to open relative or sequential file

RECORD# —

Positions file pointer to any position in a file

RENAME —

Changes the name of an existing file

SCRATCH —

Destroys unwanted files

USER —

Provides a link to 6502 machine code within the disk unit

Page A9

Appendix B

APPENDIX B. SUMMARY OF DOS ERROR MESSAGES

OK, no error exists.

1 Files scratched reponse. Not an error condition.

2-19 Unused error messages: should be ignored.

20 Block header not found on disk.

21 Sync character not found.

22 Data block not present.

23 Checksum error in data.

24 Byte decoding error.

25 Write-verify error.

27 Checksum error in header

30 General syntax error.

31 Invalid command.
32 Long line.

33 Invalid file name.

34 No file given.

39 Command file not found.

50 Record not present.

51 Overflow in record.

52 File too large.

60 File open for write

61 File not open.

62 File not found.

63 File exists.

64 File type mismatch.

65 No block.

66 Illegal track or sector.

67 Illegal system track or sector.

70 No channels available.

71 Directory error.

72 Disk full or directory full.

73 Power-up message, or write attempt with DOS mismatch.
74 Drive not read.

75 Format Speed Error

76 Controller Error.

Page B1

Appendix C

APPENDIX C. PERMANENT ALTERATION OF DEVICE NUMBER

As assembled at the factory all CBM disk units have a device number of 8. This may be changed tem-

porarily via the M-W command and will revert to 8 on power-up or reset. The device number may be

changed permanently by means of modifications to printed circuit boards within the disk units. The hardware

changes necessary differ for each model of disk unit.

WARNING

These hardware modifications should be performed only by qualified CBM service technicians.

Alterations attempted by unauthorized personnel wiil void the warranty on your disk unit.

CHANGE 2031

Two diodes (CR18 and CR19) control device number on the 2031. The diodes are located adjacent to I.C.

chip U3J on the digital PCB. To change the device number, cut the leads on one or both diodes as shown:

DEVICE NR. C

8

9

10 1

11 1

CR18 CR19

1

1

(0 = Unchanged)

(1 = Lead Cut)

CHANGE 4040 / 8050 / 8250

Three pins (22, 23, 24) on I.C. chip UE1(on the digital PCB) control device number on these units. These

pins are normally strapped to ground by the circuit etch. Three small circular blocks appear just to the left

of UE1- pin 22 is connected to the topmost of these blocks (when viewing the digital PCB from the front of

the disk unit. To change device number either cut the appropriate trace(s) or remove UE1 and bend the

correct pin(s) up so that they will not make connection when the chip is replaced.

DEVICENR. P

8

9

10

11

12 1

13 1

14 1

15 1

Pin 22 Pin 23

1

1

1

1

Pin 24

1

1

1

1

(= Unchanged)

(1 = Cut/Bent)

Page CI

Appendix C

CHANGE D9060/D9090

Three pins (22, 23, 24) on I.C. chip 7G (on the topnnost PCB) control the device number of these units.

These pins are normally strapped to ground by the circuit etch. To change device number either cut the

appropriate trace(s) or remove 7G and bend the correct pin(s) up so that they will not make connection

when the chip is replaced.

Pin 22 Pin 23 Pin 24

(0 = Unchanged)

1 (1 = Cut/Bent)

1

1 1

1

1

1 1

DEVICE NR. P

8

9

10

11

12 1

13 1

14 1

15 1

Page C2

APPENDIX D.

MODEL D9090

DRIVES 1

HEADS/DRIVE 6

COMMODORE DISK UNIT SPECIFICATIONS
Appendix D

D9060

1

4

8250

2

2

8050

2

1

STORAGE CAPACITY (Per Unit)

Formatted 7.47 Mb 4.98 Mb

MAXIMUM (Each Drive)

Sequential File 7.41Mb 4.94 Mb

Relative File 7.35 Mb 4.90 Mb

2.12 Mb 1.05 Mb

4040

2

1

340 Kb

2031

170 Kb

1.05 Mb 521Kb 168 Kb 168 Kb

1.04 Mb 183 Kb 167 Kb 167 Kb

Disk System

Buffer RAM (Bytes) 4K 4K 4K 4K 4K 2K

DISK FORMATS (Each Drive)

Cylinders (Tracks) 153

Sector/Cylinder 192

Sector/Track 32

Bytes/Sector 256

Free Blocks 29162

153

128

32

256

19442

(77)

23-29

256

4133

(77)

23-29

256

2052

(35)

17-21

256

664

(35)

17-21

256

664

TRANSFER RATES (Bytes/Sec)

Internal 5 Mb
IEEE-488BUS 1.2 Kb

5 Mb
1.2 Kb

40 Kb
1.2 Kb

40 Kb

1.2 Kb

40 Kb

1.2 Kb

40 Kb

1.2 Kb

ACCESS TIME (Milli-seconds)
30

360
100
300

Track-to-track 3

Average track 153

Average Latency 8.34

Speed (RPM) 3600

3

153

8.34

3600

*

**

100
300

*

* *

100
300

30

360
100
300

* "gate" type = 30ms.

"gate" type = 750ms.

"door" type

"door" type

= 5ms.

= 125ms.

Track-to-track.

Average track.

PHYSICAL DIMENSIONS

Height (in.) 5.75 5.75 7.0 7.0 7.0

Width (in.) 8.25 8.25 15.0 15.0 15.0

Depth (in.) 15.25 15.25 13.75 13.75 13.75

Weight (lbs.) 21 21 28 28 28

5.5

8.0

14.25

20

ELECTRICAL SPECIFICATIONS

Voltages (ALL MODELS): 100-1 17, 220, or 240 VAC (European)

Frequency (ALL MODELS - HZ): 60 or 50 (European)

Power (Watts) 200 200 60 50 50 40

PageDI

Appendix E

APPENDIX E ERROR IN RELATIVE RECORDS

An error exists in the Relative Records scheme that is used in all Commodore Disk Systems, 2031, 4040, 8050,

8250, 9060, 9090, and 8280. The error of itself will not corrupt any data files, nor will it cause errors in the disk

system, however, if a particular program sequence (as described later) is being used to update files, the file will

then be corrupted.

PROBLEM DESCRIPTION

Associated with Relative Files is a parameter defining the length of the records in the file. With the exception of

record lengths 1 , 2, 1 27 and 254, the records in the file will span or overlap the boundary between sectors on the

disk.

In any group or series of even length records (10, 40, 66, etc.) that begins on a sector boundary (record #1,

#128, #255, #509, etc.), the record that spans the 2nd and 3rd records in the series will be in error during

reading when all of the following three conditions are true:

1. The total data field in the first record of the series (record 1, 128, 255, etc.) is shorter in length than the

overlapped data (or spill) portion of the record which starts in the second sector and ends in the third

sector (e.g., for a record length of 100, record 6 will span sectors 2 and 3). The data field of record 6 will

have all bytes in excess of byte 9 stored in sector 3. Thus, this condition will be met with a record length of

100 and a data field in record 6 that is 10 or more bytes longer than the data field of record one.

2. The program sequence that is running is a general update of records, where a record is read in, modified

or examined and then written back out to the file. The following sequence will satisfy this condition:

1100 RECORD #1, (I): REM POINT TO ITH RECORD
1200 INPUT #1,A$: REM READ DATA IN

1300 (MODIFY OR EXAMINE A$)

1400 RECORD #1, (I): REM POINT TO RECORD AGAIN
1500 PRINT #1,A$: REM WRITE NEW (OR UNCHANGED) DATA

Page El

Appendix E

3. The records are being updated sequentially, beginning with a record that starts in the first sector

eg: In the above example, adding lines:

1000 for 1=2 to 10

1600 NEXT

will satisfy this condition.

Under the above conditions, the data sent to the computer for record 6 will bfe truncated to the extent that the

data overlap of record 6 into sector 3 exceeds the length of the data in record one. The following program will

demonstrate the bug:

100 A$ = "1234"

200 B$ = "1 23456789ABCDE"

300 D0PEN#1, "TEST", L100

400 PRINT#1, A$: IF DS THEN STOP

500 FOR I
= 2T0 10

600 PRINT#1 , B$: IF DS THEN STOP

700 NEXT: DCL0SE#1
800 D0PEN#1, "TEST":B $="123456789ABCDE"

900 FOR 1=2 TO 10

1000 REC0RD#1, (I): IF DS THEN STOP

1100 INPUT#1, 0$: IF DS THEN STOP

1200 IF LEN(C$) <> LEN(b$) THEN PRINT "REG #"l; B$; LEN(B$); 0$; LEN(C$):GOTO 1500

1300 REC0RD#1, (I): IF DS THEN STOP
1400 PRINT#1, B$: IF DS THEN STOP
1500" NEXT
1600 DCL0SE#1

Running the above will produce a printout of:

REG #6 123456789ABGDE 14 1 23456789ABGD 13

The data in record 6 on the disk is not corrupted, as can be shown by running the program again, starting from

line 800. The error is occurring in the DOS RAM because an end of data pointer is not being set correctly

However, if a blind read, update, rewrite is being followed then the truncated data from record 6 will be operated

on and rewritten, resulting in corruption of the file.

Note also that the truncation is not detectable by error monitoring as no read error occurs.

Page E2

Appendix E

PROBLEM RESOLUTION

Since the error can occur with the general conditions as described, it is not possible to detect any unique

conditions, however there does exist a simple programming technique to bypass the error Adding to the

example program the line:

1450RECORD#1, (1)

will cause the DOS to reset the pointer for the sensitive record, eliminating the problem.

The addition of this statement immediately after the print statement will not materially affect the run time of a

program as the DOS will not have to reaccess the sector

Page E3

Index

INDEX

A

APPEND# Command ^^

Access Pointer Positioning
'^'

Access
Block

^^

DOS Memory ^®

Direct ^^

Disabling Expanded Relative File 45

Pointer
^^

Preparing a File
"^

'

Relative File
^^

Relative Files
"^^

Secondary Adddress ^^

Sector ®2

With Pattern Matching ""S

Worl< Areas ^^

Advanced File Handlinq ^^

Are You Sure? ^2, 29

Auto Start Feature ^^

B

BACKUP Command 26

BAM
Introduction ^^

Updating
""^

BLOCK-ALLOCATE ^^

BLOCK-EXECUTE ^^
BLOCK-FREE ^
BLOCK-READ ^^

BLOCK-WRITE ^^

BUFFER-POINTER ^^

COLLECT Command ^^

CONCAT Command ^^

COPY Command ^^

Channel Numbers

Page1

Index

Commands
APPENDS 32

Abbreviation 18

BACKUP 26

CATALOG 24

COLLECT 26

CONCAT 29

COPY 28

Conventions 20

DCLOSE# 33

DIRECTORY 24
DLOAD 27
DOPEN# '!!!"!!''"!"''!!

31
DSAVE "!!"!!''!!!!!!!!'!!!!''!!!"!!!'!"!!! 27
Direct 21
Disk Utility 50
File Level 27
GETw '^^''^

';'!!;";;;;;;;";;;;;;;;!!!;;;;;;!!!!;;;!! 36
HEADER 22
IN PUT# 35
PRINT# '!!!!!!!!"!'!'!!!"!!!!!'!!!!!!!""!!!!'!! 34
Program Variables 18

RECORDS 37
RENAME 28
SCRATCH 2Q

Creating Relative Files 41

DCLOSE# Command 33

DLOAD Command 27
DOPEN# Command 31

DOS
Communicating With 16
General Operation 49
Introduction 15
Overview Description 48

DOS ERROR MESSAGES 75

DSAVE Command 27
Description

2031 6
4040 6

8050 5

8250 5
D9060/D9090 4

Device Number
Changing Temporarily 56
Changing Permanently App. C

Device Numbers 16

Page 2

Index

24
Directory Display Information

Directory Printing

Disk Files ^c
Introduction

Disk Formatting

Disk Oriented Utilities

Disk Storage Formats
^^

Disk System Concepts

Disk Unit ^
Compatibility

Connecting to Computer

Disk Utility Commands
Disk -^

Data File Formats

Diskette -

Insertion

Diskettes ^
Care and Loading

E

EOl (End-Or-ldentify)
^^'^^

Error IVlessages

Clearing

Obtaining

Expanded Relative File Feature

Expanding Relative Files

F

FILE TOO LARGE
^^

File Access Pointer
55

Changing

File Handling

Advanced

File Level Commands
File Names

Pattern Matching

File Numbers with BASIC 4.0
^^

Files
22

Maximum Number

Floppy Disks

Care of
'.

Page 3

ADDENDUM TO DISK SYSTEM USER REFERENCE GUIDE

The Commodore SFD 1001, single disk drive unit operates, for the most part, the

same way as the Commodore 8250 dual disk drive.

To learn the basic operations available in your SFD 1001 disk drive, please refer to

the 8250 section of your Disk System User Reference Guide.

However, because the 8250 has two drives and the SFD is only one drive the in-

formation presented below defines and explains all the modifications you'll have

to make to the 8250 section of your Disk System User Reference Guide.

1) PAGE 45: RELATIVE FILES IN 8250 DISK UNITS
In this section, all references to 8250 disk units also apply to the SFD 1001.

2) PAGE 45: USING 8050 DISKS IN 8250 DRIVES
References to the 8250 disk unit, also apply to the SFD 1001 disk unit with

the following exception: You can NOT back-up or copy 8050 disks on the SFD
1001 because it's a single unit drive, not a dual unit drive.

3) PAGE 48: DOS 2.5

Your manual refers to the use of DOS 2.5 in 8050 disk drives. The Disk Operating

System has been upgraded so that DOS 2.7 is used in 8050, 8250, and SFD 1001

disk drives.

4) PAGE 57: MEMORY UTILITIES - (Memory-write)

When two or more disk units are attached to the computer, the device number
of each unit must be made unique or neither unit will operate correctly. References

on page 56 for altering the device number on 8250 disk units, also apply to the SFD
1001 disk drive unit.

5) PAGES 66-67: DISK STORAGE FORMATS
Information provided on pages 66-67 also apply to the SFD 1001 disk drive unit.

Index

G

GET# Command 36

H

HEADER Command 22
How To Use This Manual 2

I

ILLEGAL TRACK OR SECTOR 45
INITIALIZE Command 23

INPUT# Command 35

J

Job Queue 49

M

MEMORY-EXECUTE 58

MEMORY-READ 57

MEMORY-WRITE 56

Maximum Files 15

Memory Utilities 56

N

NO BLOCK ERROR 52

NO CHANNEL ERROR 49

Obtaining Error Messages 74

P

PRINT# Command 34
Pattern Matching

File Names 17
Performance Test 11

Positioning the File Access Pointer 37
Power-on Test 9

Preparing a file for Access 31

Printing the Disl< Directory 25
Punctuation in PRINT# Command 34

Page 4

Index

R

RECORD NOT PRESENT ^^

RECORD* Command ^^

RENAME Command 28

Random Access

Description
^^

Relative File Accessing
^"^

Relative Files

Access Methods ^^

43Accessing

Creating '^

'

Expanding ^^

In 8250 Disk Units ^^

^PPOR Appendix E

s

SCRATCH Command ^^

Secondary Address

Sequential Access

Description
'^

Sequential Files

Adding Data To ^^

Side Sector ??39
Side Sectors ^^
Spanning pf Data Blocl^s ^
Standard User Jump Table °°

Status Word ^^
Super Side Sector

''^

U

User Command Jump Table °^

User Utilities ^^

Using 8050 Diskettes in 8250 Drives ^^

Utility Comand Abbreviations
^^

50
Utility Command Conventions "'"

Page 5

G;commodore
COMPUTER

Part Number 320972-01

