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CHAPTER 1: INTRODUCTION AND OVERVIEW

1.1 Introduction and plan of the book

The purposes of this book are to teach competent programming and provide a compre-
hensive reference text on the PET/CBM range of microcomputers. These aims are not
entirely compatible: virtually everyone interested in these machines begins with BASIC
and progresses to machine-code, but, on the other hand, for completeness it is often
necessary to mix both types of program. Comparative beginners will therefore find
themselves skipping quite large sections of temporarily difficult text. I have included
demonstration routines in BASIC (Chapter 5), 6502 machine-code (Chapter 12), and
disk, tape, and printer programming (Chapters 7 and 8). To reduce the chance of
mis-keying, these routines have been kept as short as possible; in this way it is poss-
ible to learn by doing, by experimenting at the keyboard to get the feel of the comm-
ands, without the tedium associated with entering long illustrative programs.

Commodore's most recent machines, the VIC home computer and the MMF 'Micro-
mainframe' are not dealt with here, partly for reasons of space. VIC has many things
in common with CBM microcomputers, MMF rather fewer. My rule has been to try to
cover most of the common configurations of hardware which exist at present and are
likely to exist in the fairly near future. For this reason little space has been given to
modems, hard disks ('Winchesters') and networks, while tape and diskettes are ex-
plained in depth. I've documented each of the three versions of CBM BASIC issued to
date, although with a bias to the later versions. This may seem rather wasteful - until
questions of compatibility between ROMs arise.

1.2 Conventions

Most CBM machines switch on in upper-case/ graphics mode, and except in few cases,
mainly 8032 disk commands, BASIC is printed in upper-case characters here, which
also distinguishes BASIC keywords from the normal text. BASIC can of course appear
in lower-case on the VDU, if the mode is changed, a fact which may cause confusion
to programmers unused to this dual display. Machine-code and BASIC, entered from
the keyboard in the usual way, use mostly unshifted keys.

CBM BASIC has special screen-editing commands, which appear within quotes as
reversed characters. (See Chapter 2). For increased readability I have printed these
in square brackets - [HOME], [CLEAR], and so on. Chapter 13 has a LIST routine to
perform this task automatically for BASIC.

The only other non-standard notation is the use - for machine-code only! - of
round brackets as a shorthand for a 2-byte indirect address. For example, I have
written (2A) to denote the two-byte number held in locations 2A and 2B, taking the
first byte as low and the second as high, in accordance with 6502 logic. Similarly,
(FFFE) is a convenient way to refer to the interrupt address, held in FFFE and FFFF.

Spelling of computer terms is more-or-less American. Occasionally BASIC terms
are written in lower-case, when used in a general sense, not specifically BASIC. For
example, 'printing to screen' can use PRINT or some machine-code equivalent, and
'peeking' could mean PEEK or a machine-code command like LDA.

1.3 Sources of information

Manuals CBM's product manuals are widely recognized to be unhelpful; this is one of
the reasons for the existence of this book. MOS Technology (now a part of the Comm-
odore Semiconductor Group) produces reasonable manuals on 65xx series hardware and
65xx programming.

Magazines, journals In the U.K. the largest-selling small computer journals are Pract-
ical Computing and Personal Computer World. These are not particularly CBM-orient-
ated. Printout was, but is no longer, exclusively about the CBM. Compute! deals with
6502 machines (Apple, Atari, PET/CBM) and is the best magazine for the non-beginner.
Micro has machine-code articles on the 6502 and 6809. Byte magazine and kilobaud-
Microcomputing are two other well-known general microcomputer publications; other
market niches are covered by (for example) Creative Computing and Dr Dobbs' Journ-
al. All but the first three of these magazines are American. There are also periodicals
aimed at the education market, the home computer and games market, the technical
hardware market, and what might be called the uninformed businessmen's market.

ly
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There are four weekly 'throwaways' in the U.K. at the time of writing (Computing,
Computer Weekly, Datalink and Computer Talk) of which Datalink is most interested

in microcomputing. '

User groups and newsletters Commodore in Canada produces 'The Transactor', which
is useful and informative. The U.S Commodore Newsletter ( called 'Interface') is less
good. The U.K. equivalent was called the PET Users Club Newsletter, later abbrev-
iated to CPUCN, and renamed 'Commodore Club News' in mid-1981. Like all periodicals,
it is episodic and fragmentary (I have lost count of the number of reviews of word
processor packages). However, it is responsive to its readers' requests.

User groups are the best source of up-to-date information. IPUG ('Independent
PET Users Group') has many branches in the U.K. and many experienced software and
hardware people. Other groups include SUPA ('Southern Users of PETs Association')
and the Association of London Computer Clubs, a loose organization of groups which
meet in polytechnics, universities and community centres, and is not specifically CBM.
Books*and other publications Osborne/ McGraw-Hill's 'PET/CBM Personal Computer
Guide' is issued with PETs sold in the U.S. It is currently in its third edition, edited
by Jim Strasma. This omits machine-code, which is covered in a number of books, of
which a few are explicitly PET: 'Hitch-Hikers Guide to the PET' for example. Some
books appear to be available only in the U.S., for example Gregory Yob's 'PET User
Manual'. Nick Hampshire has written three (of a projected ten) books for Commodore
U.K., including 'Library of PET Subroutines' and 'PET Graphics'. 'The PET Revealed
deals mainly with hardware and the BASIC 1 PET; other hardware books are listed at
the end of Chapter 8.

Several compendium-type books exist, for example by IPUG, by CPUCN, and by
Printout. The 'Channel Data Book' is an American compilation of PET /CBM products
and packages. The 'Computerist's Guide' is an indexed survey of the contents of most
of the microcomputer magazines, arranged by topic. Commodore produce a 'Software
Encyclopedia', essentially an uncritical list of every type of software package.

1.4 Acknowledgements

Peter Best, Jim Molloy and Pete Sydenham of A. Gallenkamp Ltd (who supply labor-

atory equipment) provided considerable assistance with this book. I am also grateful
to the software people who provided ideas and programs, and who are acknowledged
in the text, and also to Jim Butterfield for permission to print 'Supermon'. Finally, I
am grateful to my wife's tolerance during the rather long duration of writing.

I have gone to some lengths to test and check the information in this book, and
in fact believe it to be more reliable than most on this subject. Nevertheless there are
certain to be errors, and I apologize for any inconvenience or puzzlement which may
be caused. The usual disclaimer applies: I cannot accept responsiblity for failures in
software or hardware which may be based on suggestions found in this book.

There are many company names, trade marks, and business names mentioned in
the book; CBM ('Commodore Business Machines'), MMF ('Micro-Mainframe'), PET ('Per-
sonal Electronic Transactor') and VIC ('Video Interface Chip') are all trade marks of
Commodore Business Machines. PET/CBM is a general way of referring to Commodore's
microcomputers with both keyboard and screen, and equipped with Microsoft BASIC.

Charles ('Chuck') Peddle, the designer of the PET/CBM and also, apparently,
the 6502 chip, deserves a special mention at this point, although his path has
diverged considerably from Commodore's.

*There are many general books on computers. Chris Evans wrote popular books on the
supposed impact of microprocessors. The technical side of chips was dealt with (e.g.)
in 'Scientific American'. Critics of applications include Joseph Weizenbaum, a Profess-
or at M.I.T. Gerry Weinberg is well-known (e.g. 'The Psychology of Computer Programm-
ing'), taking a conventional, optimistic viewpoint. Philip Kraft on the other hand has
examined de-skilling by management, and women's status within the industry. (Sartorial
iconographers might note that Weinberg is always depicted bearded and pullovered, but
Kraft neatly-suited). Some journalists have drawn attention to the role of cheap lab-
our in the Far East in chip manufacture. Academic computing's domination by software
theoreticians has been attacked by only one hardware-based writer that I know of, Ivor
Catt, who called programmers 'updated clerks'. (See e.g. 'Computer Worship).
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1.5 PET/CBM hardware and family tree

1: Introduction

APPROXIMATE CHRONOLOGY OF COMMODORE MICROCOMPUTERS

1977,
1978

1979

1980,

8032

1981

{o
MF

1982

1975/ 65xx chips: by Rockwell, MOS Technology
KIM: single-board 6502-based microcomputer
2001-8: 8K RAM, built-in cassette, 8" 40-column white

screen, small keyboard. BASIC 1. (ROM -19,
issued to replace -11, cures screen edit bug).

2001-16, 2001-32: 16K or 32K RAM, 8" 40-column green

screen, large keyboard, no cassette. BASIC 2
('Upgrade ROM') including monitor. Later re-
named 3008, 3016, 3032 with 'BASIC 3'.

4008, 4016, 4032: 8" 40-column green screen, large key-

board, similar to previous except for BASIC 4.
32K RAM, 12" 80-column green screen, extra
keys, beeper. BASIC 4 (includes CBM disk
commands). (ROM -23, issued to replace ROM
-19, cures bug in DS$).

4008, 4016, 4032: Made with 12" 40-column green screen

only, with extra keys, beeper.

22 columns, color with external TV, sounds.
64K extra RAM in 16 switchable blocks from
$9000-9FFF, 6502/6809, RS232 and high-speed
RS232, many languages, existing and under
development at Waterloo Universtity).

BASIC 5 with BCD arithmetic? 40-column VIC,
discontinued 40-column CBM? Color CBM?

2000 series printers.
2040 disk drives (DOS 1,
sequential files only).
3040 disk drives (DOS 1.2
Shugart).

4o40 disk drives (DOS 2.1
including relative files).

8050 disk drives (DOS 2.5,
Micropolis).

4022 printer (=MX-70).

8250 disk drives (DOS 2.7,
Tandon).

The table summarises most of the hardware developments of Commodore to date. I have
omitted some of the printers. See Chapter 2 for more information on the differences
between BASIC ROMs, which are also mentioned in passing throughout much of the
book. Chapter 6 deals with disk drives, and Chapter 7 with the commands introduced
in BASIC 4.0. Printers and other hardware are explained in Chapter 8. A significant
difference between 12" and 8" models is the CRT controller chip: see Chapter 9 on
this, which also covers the built-in 'beeper’.

Internal layouts

The diagram is a rough guide to the layout of the main chips and

ports on the printed circuit boards of the early PET, the 8" screen 3000 and 4000
series CBMs, and the 12" screen 4000 and 8000 series CBMs.
8" 3000 & 4000

2000

IEEE User Tape

IEEE User Tape

Port #2 IJ9 Port #1 79
= 6502 hips
E=-6502 & 1/0 ||o4 fsp Ja
chips FEDCBAS
/ ROL chips
ROM chips
FEDCBAS
[| Tape RAM chips [ Tape RAM chips
#1 #2

12" 4000 & 8000

IEEE User Tape
_ Port 51 Jlg Tape
6502 & i J"f
I/0 chips I
RAM chips
JROM chips|g
A
B
C
D
E
LJ F
Bell
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CHAPTER 2: BASIC AND HOW IT WORKS

2.1 Keyboard, screen and screen-editing The keyboard and screen are described in
detail in Chapters 8 and 9 respectively. These devices offer the most direct commun-
ication with the machine. The keyboard is decoded by a 6520 chip and ROM software;
the screen memory is organised in a straightforward memory-mapped way, in which
sequential RAM locations correspond to screen positions moving left to right and down.
Screens in the CBM have 25 rows. 40-column and 80 column screens therefore require
1000 and 2000 RAM locations respectively. The screen starts at location $8000 in each
case, exactly half-way in the memory-map. The entire 4K from $8000 - $8FFF is alloc-
ated to the screen, and the address-lines connected so that the upper part of this
block duplicates the lower. (So $8000-$83FF and $8400-$87FF are not distinguished from
each other in 40-column machines, for example, and a poke or peek to $8000 has the
same effect as a poke or peek to $8400). A few bytes are left over in RAM which do
not appear on the screen: 24 in 40 column machines, 48 in 80-column, because 1024-
1000 = 24 and 2048 - 2000 = 48. Tables of hexadecimal and decimal values of screen
locations are printed in Chapter 9. It is worth memorizing the figure 32768 (=$8000),
which is the location of the top-left of screen. Try POKE 32768, 33 for instance.

Screen editing is the process by which characters on the screen are altered and
moved from the keyboard. PET/CBM has a number of special keys for this purpose,
which are fairly self-explanatory. The main complication is the use of the quote (")
to hold screen-editing characters in storage in BASIC. When this is done, the charac-
ter appears as a meaningless graphics symbol, and is printed in the usual consecutive
sequence without having its usual effect, such as clearing the screen. The exception
to this exception occurs with a few keys, like 'Delete', which have to work both in
quotes and out; the resulting editing system has a few anomalies, which make it less
easy than might be the case to perform editing tasks. However, it is still noticeably
easier than some rival systems. Commodore's manuals and some books go into great
detail on this; it is much more easily explained by demonstration and trial than by the
written word. Try the examples which follow if you are uncertain about screen editing;
without covering every possible aspect, they incorporate most features.

(i) Editing a line without quotes. Switch on the machine, so Commodore's BASIC
message appears. Press [HOME].* The message may be edited, by (say) moving the
cursor right several positions, then inserting spaces. The end of the line moves right;
eventually, when it is 80 characters long (88 with VIC!) it will not expand more.

(ii) Using quotes. Type PRINT " and a series of miscellaneous keys including
editing characters. The effect of [RVS], [RVSOFF], [HOME], [CURSOR DOWN], and
the rest can be explored in this way. On pressing Return, the line is processed and
printed. With practice it is easy to produce quite complicated layouts; PRINT ''[HOME]*
[DOWN]*[DOWN]*" prints three asterisks diagonally from the top left of the screen.

(iii) Editing a line with quotes. Type 1 PRINT "BASIC" so the cursor now is
positioned after the second quote, and quotes mode is off. Backspace the cursor one
position, and type several [INSERT] characters; the second quotation mark will move
right. Now type the [DELETE] key several times. Delete characters, appearing as
reversed Ts, fill the space. Press Return, the type RUN Return, to see the effect of
these characters. LIST will redisplay the line.

(iv) Shift-Return and the ESCape key. Return moves the cursor to the next
line and causes the edited line to be processed - i.e. incorporated into BASIC or ex-
ecuted in direct mode. Shift-Return moves the cursor without causing processing. The
ESCape key (12-inch screen machines only) has an analogous effect from within quotes,
turning off the quotes mode and the reverse mode, so the effect is identical to that
obtained from Shift-Return combined with cursor moves back to the original line.

(v) BASIC editing. LIST displays a line, or range of lines, from BASIC. Any
line may be edited in any way; for example, if the linenumber is changed and Return
pressed, a duplicate line is produced within the program. An isolated number erases
the corresponding BASIC line, if there is one.

*In most of this book I have conventionally represented the special characters by a
name in capitals within square brackets. (Chapter 13 has a routine which lists pro-
grams in this way). This is far more readable than a single graphics character which
is its equivalent.
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LIST appearance of CBM special characters:

Mode .IL == RVS |[RVSO |HOME| CLR |TAB |DEL | INS
Lower-case |IES(DE (NI M| DE | 1A = B3 K e
Upper-case| iR| CX (AN | BE | 1 - Ex 0| wm | Im

2.2 Entry and storage of BASIC BASIC can run in either of two modes: direct (or
immediate or 'calculator' mode) or program ('stored') mode. If a line begins with a
number, it is treated as a program line, and stored in memory with other program lines
until it is run. If a line does not start with a number it is executed immediately Return
is pressed. The principles on which immediate mode runs are identical to those which
apply to stored programs; in this and the following sections we shall therefore mainly
consider BASIC programs.

A program may be examined with the LIST command. However, this provides no
clue to the way BASIC is organised in RAM, since it involves an elaborate process of
decoding. (See Chapter 13). We can look at BASIC in situ using either BASIC or the
machine-code monitor in these ways:

(i) X=0: FOR J=1025 TO 1200: POKE 32768+X, PEEK(J): X=X+1: NEXT is a simple direct
mode line which displays several hundred bytes of BASIC at the top of the screen.
(Lower-case mode - POKE 59468,14 - gives the clearest representation). The bytes are
not easily deciphered, although text (in quotes) is clear enough. In the two examples,
the first has more text (including REMs) than the second.

I ROM4 RELOCATING “PRINT USING” ROUTINE "oT - |
AN S55468.12: @ “_______ " :@ UNDERLIME (SHIFT-%> TIDIES TITLECRLGEN e
B "machine code i= now loaded into swvs 826 and sys 831.H "Hlload the prosram +to

1622,128 ) " 1MARIDOUM 3, 4X50-Ma"RICK LEONN "' 1aRRFPROMINICO LTOD. g ggsm” YANCOUVER
7" IMARARRARDTRUEY. 15,8, 1S5EMEURS | (130 6 S L e XISl T
— |BLB$x"_______ HMOS$,"____ LMes" _ Oda gis" 000+
(ii) After entering the monitor (SYS 4 is easiest) we can display bytes in hexa-
decimal form from $0400 onwards. With the program 10 PRINT"HELLO" in memory, we

get this: '\ a40e oo BE 0F) (BA OO 99 22 48 <—O4PE = Ned lne's link ponder (¢ here).
.1 D408 45 4C 4C 4F 22 (@D (08 0@)_ “pe0A = BASIC lneramber (18 hew),
Lt 8410 AR AR AA AR AR AR AR AR PO = End-of-lire ; BEFB=End of program.

The ASCII characters for "HELLO" are visible in there, but so is much else.

The table on the following page gives a complete breakdown of the storage of
lines of BASIC, excluding the linenumbers and connecting details. All the components
are stored in ways which exclude ambiguous interpretation. Literals are held within
quotes, or after REM or DATA, and are not treated like the remaining BASIC. Numb-
ers, as in GOTO 1000 or X=89.8, are also held as ASCII strings, so that the 1000 of
GOTO 1000 occupies 4 bytes. Punctuation (commas, colons, semicolons, but not full
stops which are used as decimal points) is held as single bytes; so are the special
BASIC characters of %, $, (, and ). Variable names use alphanumeric characters; the
initial is always alphabetic, to avoid confusion with numerals. Finally, the keywords
themselves are held in compact form, as single bytes; see the table. These are called
'tokens'. Slightly confusingly, single-byte keywords like <,=,* and / are also tokenised
into alternative single bytes. Tokens always exceed 127; the high bit of the byte is on,
and this enables machine-code to immediately recognise a token. This feature is common
to Microsoft BASICs.

A BASIC program is a 'linked list' or 'chain' of individual program lines. Unless
specially modified, BASIC starts at $0400 with a zero byte and is held in consecutive
locations up in memory. Each line starts with a 2-byte link address, which is an ab-
solute address pointer to the link address starting the next line. This is followed by
the linenumber, also in 2 bytes. In each case the low byte is first. Each line is term-
inated by a zero byte, and in addition 2 more zero bytes mark the end of the pro-
gram, so a link address of zero denotes the end. As we shall see, BASIC is support-
ed by a set of pointers which monitor important features as a program runs. If these
are modified, various non-standard effects can be realized.

The link addresses, linenumbers, tokens and so on can be identified with pract-
ice quite easily; the one-line program above has had its marked to show how they are
arranged. Again, this is standard Microsoft, as is the use of the zero byte to mark
the end of a line. (It is not universal; Apple Integer BASIC uses 1 to mark ends of
lines, and has an offset pointer, with maximum 255, to the next line).
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PET /CBM INTERNAL STORAGE OF BASIC

32 20 sp 64 40 @ 128 80 END 160 A0 CLOSE 192 C0 TAN

33 21!/ 65 41 A 129 81 FOR 161 A1GET 193 C1 ATN

34 22" 66 42 B 130 82 NEXT 162 A2 NEW 194 C2 PEEK

35 23 # 67 43 C 131 83 DATA 163 A3 TAB( 195 C3 LEN

36 24 $ 68 44 D 132 84 INPUT# 164 A4TO 196 C4 STRS

37 25 % 69 45 E 133 85 INPUT 165 A5FN 197 C5 VAL

38 26 & 70 46 F 134 86 DIM 166 A6 SPC( 198 C6 ASC

39 27 ' 7147 G 135 87 READ 167 A7 THEN 199 C7 CHRS$

40 28 ( 72 48 H 136 88 LET 168 A8 NOT 200 C8 LEFTS

41 29 ) 73 491 137 89 GOTO 169 A9STEP 201 C9 RIGHTS

42 2A * T4 4A ) 138 8A RUN 170 AA + 202 CA MIDS

43 2B + 175 4B K 139 8B IF 171 AB- 203 CB GO*

44 2C, 176 4CL 140 8C RESTORE 172 AC* 204 CC CONCAT*

45 2D - 177 4D M 141 8D GOSUB 173 AD/ 205 CD DOPEN

46 2E . 78 4E N 142 8E RETURN 174 AE 206 CE DCLOSE

47 2F / 79 4F O 143 8F REM 175 AF AND 207 CF RECORD

48 30 0 80 50 P 144 90 STOP 176 B0 OR 208 D0 HEADER

49 31 1 81 51 Q 145 91 ON 177 B1> 209 D1 COLLECT

50 32 2 82 52 R 146 92 WAIT 178 B2 = 210 D2 BACKUP

51 33 3 83 53 S 147 93 LOAD 179 B3< 211 D3 COPY

52 34 4 84 54T 148 94 SAVE 180 B4 SGN 212 D4 APPEND

53 355 85 55U 149 95 VERIFY 181 B5 INT 213 D5 DSAVE

54 36 6 86 56 V 150 96 DEF 182 B6 ABS 214 D6 DLOAD

55 37 7 87 57T W 151 97 POKE 183 B7USR 215 D7 CATALOGC

56 38 8 88 58 X 152 98 PRINT# 184 B8 FRE 216 D8 RENAME

57 399 8959Y 153 99 PRINT 185 B9 POS 217 D9 SCRATCH

58 3A: 90 5A Z 154 9A CONT 186 BASQR 218 DA DIRECTORY

59 3B; 91 5B/ 155 9B LIST 187 BBRND 219 DB

60 3C < 92 5C\ 156 9C CLR 188 BCLOG 220 DC ---See

61 3D = 93 5D ] 157 9D CMD 189 BDEXP 221 DD Notes—--

62 3E > 94 5E 7 158 9E SYS 190 BECOS 222 DE

63 3F ? 95 5F < 159 9F OPEN 191 BFSIN 223 DF

Notes: (i) Valid BASIC bytes from 0-127, in bold type, are space, " # $ $ ( ) , and
in order, followed by 0-9, : ; and A - Z. The zero byte is valid as an and-of-line

and end-of-program marker. On LIST, bytes from 96-127 appear as duplicates of the
characters 32-63, but, like the italicised characters above, cause ?SYNTAX ERROR.

*(ii) Valid bytes from 128 - 255 are BASIC tokens; and GO is omitted from
BASIC 1, while CONCAT and the following keywords are omitted from BASIC<4.
Bytes beyond the end of the table list as apparent duplicates of keywords in BASIC<4,
and as error messages and garbage in BASIC 4. Note that Shift-K (BASIC 1), Shift-L
(BASIC 2), and Shift-[ (BASIC 4 - may not be on the keyboard!), all cause LIST to
stop with ?SYNTAX ERROR. Spurious keywords can LIST but will not run.

(iii) The quotation mark, CHR$(34), can of course legitimately precede any
character.

When a BASIC program is entered at the keyboard, the contents of the line in
which Return is pressed are transferred to a buffer. This is 80 characters long, and
can hold one line; BASIC 1's buffer was in the zero-page ($0A - $5A), but later BASIC
versions moved it to $0200 - $0250. After the line has been moved, it is scanned for
keywords ; any that are found are converted into tokens. The tokenised line is then
merged into the program in memory, its position determined by its linenumber. The
tokenisation process can be watched (see Chapter 13) with the aid of a machine-code
routine which displays the input buffer at the top of the screen. In direct mode, the
line is executed in the input buffer; this enables a line like PRINT "[CLEARJHELLO" to
run from the start to the end, even though it is erased from the screen as it runs.
40-column BASIC has provision in it to distinguish 40-character lines from 80-character
lines; a screen-line table of 25 bytes holds a value for each line to indicate whether
two lines have been conceptually connected by the screen editor. Note also that short
forms of keywords are acceptable. These are listed in Chapter 5. They provide a way
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to enter lines which otherwise might be overlength. Provided that the line doesn't
exceed 80 characters, this is acceptable, although when LISTed the same line will be
hard to edit, since it will overflow the end of the 80-character line. The order of the
keywords in the table determines whether an abbreviation is possible; if there is any
ambiguity, the interpreter picks the first in the table. So E shift-N enters END, and
F shift-O enters FOR; but R shift-E is READ, RESTORE needing RE shift-A. INPUT#
can be entered as I shift-N, but INPUT cannot be abbreviated by this method. PRINT
is only available in a short form because '?' is specially written in to the interpreter.

2.3 Variables, variable storage, and pointers A 'variable' is an algebraic idea: a
symbol stands for a quantity (or string of characters). Microsoft BASICs have three
variable types: numeric, integer, and string. The interpreter distinguishes between
them by testing for a character after the alphanumeric characters which make up the
name. '$' and '3 represent string and integer variables respectively. If there is no
special character, the variable is numeric or 'real'. The presence of '(' denotes that
the variable is subscripted. CBM BASIC allows multi-dimensioned arrays; the individ-
ual arguments are separated by commas. Three array types exist, distinguished by the
same type declarators as simple variables.

Interconversion between variable types is automatic as far as numerals are con-
cerned; string-to-numeric conversion and vice versa requires special functions. For
example, L%=L/256 automatically rounds L/256, and checks that the result is in the
signed, 2-byte range (-32768 to 32767) to which CBM integers are confined. And
L$=STR$(L) and L=VAL(L$) or L%=VAL(L$) convert numerals to strings and vice-versa,
subject to certain rules (see Chapter 5). Two other interconversion functions are
CHR$ and ASC , which operate on single bytes and enable expressions which would other-
wise be treated as special cases to be processed. Q$=CHR $(34) assigns the quote to
variable Q$; and 10 GET X$: IF X$="" GOTO 10 / 20 IF ASC(X$) = 13 GOTO 100 / ETC.
tests for Return, which is only possible with the aid of these byte-level commands.

Variables' names are subject to these rules:

The first character must be alphabetic.

The next character may be alphanumeric.

Any further alphanumerics are valid, but not considered part of the name.
The next character may be % or $, denoting integer or string respectively.

. The next character may be (, denoting a subscripted variable.

A name cannot include reserved words, as the translater will treat them as
keywords and tokenise them. Note that reserved variables (TI, ST, DS, DS#$)
can be incorporated in names, as they are not keywords.

All these rules simply have the purpose of removing ambiguity and making storage
convenient and fast. If (say) 1A were a valid variable name, 100 1A=1 would require
special syntactical treatment to distinguish it from 1001 A=1. And if other symbols than
alphanumerics were permitted, so that B= were a valid name for instance, again this
could cause problems. We shall see very shortly why names of length 2 are used.

The next page has a table of names; some are valid, others are not. Italicised
text indicates the presence of a keyword, making the name unacceptable. All those
names without italics are perfectly usable; but care has to be taken to avoid using
what is in fact one variable under the impression that it is two or more; for example,
NUMBER and NUMERAL are legitimate variables, but both could be replaced by NU, and a
program which 'thinks' they are different will give surprising results.

Even with valid names, some ambiguity is possible, particularly if a program is
‘crunched' so that all spaces are removed (except in quotes). The next section has
examples.

Variables, in either direct mode or program mode, are stored after the program
currently in memory; the space is known to be there, and as a program runs variables
are created and modified in this area. Strings,because of their dynamic nature, do not
fit tidily into this scheme, and are stored in two parts, a name with a pointer, and
the string pointed to; with most variables' manipulations involving strings, RAM has to
be checked to ensure there is room to store the next string. Chapter 5, in DIM and
FRE and elsewhere, discusses storage. Before looking at the system of pointers, let's
examine the RAM storage of each type of variable. These can be peeked in exactly the
same ways that BASIC programs can be. There is a complication that the actual values
stored may vary; a BASIC program peeking values which follow itself may produce
different results at different times. Provided we avoid minor confusions of this sort we
can investigate the way in which BASIC variables are stored.

bW -
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ADD DOLLAR LIMIT PENCE TOP
AGE END LINES PERCENT TOTAL
AMOUNT ESCAPE LOAD PIA TOWN
ANSWER ESTIMATE LOCATION PLACE TRACK
ARRAY EVALUATION LOW POSITION TYPE
AVAILABLE EXTENT LOWER POUND UNDER
AVERAGE FILE MACHINE PRICE UNIT
BAD FINAL MARGIN PRIMARY UPPER
BEST FINISH MARK PRINT VALUE
BETTER FIRST MARKUP PRODUCT VARIABLE
BIT FLASH MASS PROFIT VARIATION
BLOCK FORM MEAN QUANTITY VARIETY
BRANCH FORMULA MEASURE RATE VERTICAL
BYTE FORWARD METER RECORD VIA
CALCULATION FOUND METRE REFERENCE WAGE
CALENDAR FRACTION MINUTE REORDER WEIGHT
CANCEL FUNCTION MONEY REVERSE WORD
CATA GOOD MONTH RIGHT WORST
CENTER GUESS NEVER ROOT YEAR
CENTRE HEX NEW ROUNDING
CODE HORIZONTAL NOTE SALARY
COMMAND HOUR NOwW SALES
COMMENT IEEE NUMBER SEARCH
CONTENTS IN NUMERAL SECOND
CONTROL INCOME NUMERATOR SECONDARY
CORRECT INDEX OFF SECTOR
COST INPUT OK SKIP
DATA INTEGER OLD SOLUTION
DATE INTEREST ON STANDARD
DAY INVENTORY ORDER START
DECIMAL INVESTMENT OUT STATEMENT
DEFAULT INVOICE OUTPUT STOCKS
DENOMINATOR ITEM OVER STRING
DERIVATIVE KILO PACK SUBSTITUTE
DEVIATION BOR PAGE SUBTOTAL
DIAMETER ABOUR PARAMETER SUM
D/FFERENCE LAST PARTS SURPLUS
DIVIDE LEFT PAUSE TABULATE
DISCOUNT LENGTH TIME

TITLE

Simple variables Every non-array variable occupies 7 bytes of RAM following its pro-
gram, or, in direct mode with no stored program, in BASIC's RAM space starting at
$0401. In addition, strings occupy the top of RAM. BASIC 4 strings are stored with a
2-byte pointer back to their names. Of the 7 bytes, the first two hold the name. The
high bit of each may be set or unset, giving 4 permutations of effectively the same
name; in this way, the variables A, A%, A$, and FN A are distinguished by the inter-
preter. At run time, an expression like A=4 causes the entire table of variables to be
searched, if A is not present, and A to be set up at the end of the current table. For
this reason, BASIC may be noticeably faster if variables are defined in order of im-
portance. Note that all four types of variable are stored together; there is no separ-
ation of strings from real numbers, for example. Note also that arrays are stored after
the simple variables; their range is defined by an extra pointer. This is necessary
because arrays would slow variables' search times by spoiling the consistency with
which 7 can be added to each simple variable's pointer to find the next. At any rate,
this is standard Microsoft. Consequently, new variables, defined after arrays, cause
the entire array structure to be moved 7 bytes up RAM, which may generate strange
delays, and is a further reason to define variables at a program's start. The storage
system is rather wasteful: 3 bytes are unused with integer-type variables, 2 with
strings, and 1 with function definitions.
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Subscripted variables These are segregated from simple variables, and constructed
differently: each array has an offset pointer to the next array, since obviously all
arrays are not the same length. Microsoft's system saves space compared with simple
variables: integer arrays, in particular, are very efficient in space usage. It also
avoids the possibility of confusion between simple variables and arrays, which other-
wise could arise.

Storage of CBM variables

Variable type: Name: Details of storage:

Lo ASCII MANTISSA
Floating-point ASCII or 0 EXPONENT WML N2 EE %A

Sign bit
Integer Asc+128 |ASCH128 1| by pyre | Lo BYTE 0 0 0
or 128 |}
Sign bit
X ASC+128 POINTER

String ASCIL | . 128 LENGTH 75 BYTE| HI BYTE 0 0

. ' ASCII | POINTER TO DEF'N [POINTER TO VARIABLE | INITIAL
Function def'n |Asc+128 | ', LO BYTE |HI BYTE| LO BYTE |HI BYTE | OF VAR.

The table shows all four types of simple variable. The name carries an implicit type
declaration; thus a name consisting of the values 71 and 199 (decimal) is GG$, and a
name consisting of 65 and 0 is A. Taking these in turn, note that a floating-point
number's value is EXP-129 M1 M2

SIGN * 2 * (1 +12—8 +—'—-"—-128*256 + ...)
which can be expressed in various ways. (See e.g. Chapter 16, and Chapter 5 on
VARPTR). This is a standard floating-point format. Integers are held in signed, 2-byte
form, with range -32768 to 32767. The value may be found from this formula:

(HI AND 127)*256 + LO + (HI>127)*32768. .

For example, HI=0 and LO=100 stores an integer variable of value 100; HI=255 and LO-=
156 stores -100. (The two expressions add to 0 with overflow).

The string name is held with a pointer to the start of the string, which contin-
ues up memory for length LEN. (See LEN in Chapter 5). BASIC 4 differs from earlier
BASICs in that each string has a pointer, which points to the string's name lower in
RAM. This is to facilitate memory freeing; see Chapter 5 on FRE for this.

POINTER
BASIC 4 STRINGS: STRING 5T gt
Main ﬁointer Pointer back to LEN of itself in low RAM

A function definition has two pointers; one to the definition in the body of the
BASIC program, and one to the floating-point dependent variable. They point just
after the '=' sign and to the exponent byte respectively. The final byte is garbage,
generated when the definition is set up, and is not used.

Strings and function definitions, unlike numeric variables, can be defined so
that their pointers indicate some point within BASIC. If a new program is loaded and
run, retaining these values (i.e. by LOAD from within a program), the pointers will
no longer indicate correct values, so a string of this sort will be garbage, and a
function is likely to give a ?SYNTAX ERROR message. Strings can be moved into high
RAM using X$=X$+"" and the equivalent for other strings, but functions must be re-
defined as a rule.

Subscripted variables (arrays)

y OFFSET _|NO. OF | LAST DIM+1]  |FIRST Dili+l %
ARRAY NAME 'rowTHIGH | DIMS | HIGH | Low| "' [HIGH | Low| " """ DATA

The diagram shows the layout of all three array types. The high-bit conventions for
type are identical to those for simple variables (there is no equivalent to the function
definition). The 'offset' figure is the total length of the low-RAM part of the array;
we shall see how this is calculated. The 'number of dimensions' figure is 1 for a one-
dimensional array, e.g. A(x); 2 for a two-dimensional array like C(x,y) and so on.
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A set of pairs of bytes holds the value of DIM+1; since dimensions are counted from
the zeroth element. Finally, we have the data. This is held in 5-byte batches (reals),
3-byte batches (strings) and 2-byte batches (integers). It is exactly similar to that
for simple variables, except that spare bytes are not wasted. For example, the string
array data consists of sets of 3 bytes, consisting of the length of each string in the
array and its pointer. Strings are, of course, held in high RAM or in the body of a
BASIC program. The variables, or pointers, are held in strict sequence, which is
ascending order of argument, with the lattermost variables changing least frequently.
For example, DIM A(1,2) stores its variables in the order

A(0,0) A(1,0) A(0,1) A(1,1) A(0,2) A(1,2) , and DIM X(1,1,2) in the
order

(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1) (0,0,2) (1,0,2)
(0,1,2) and (1,1,2). The position of any one item of an array can be calculated;
X(a,b,c) is at a + b*(1l+dim;) + c*(1l+dimp)*(1+dim2) for instance.

All of the above can be checked using simple BASIC; a program of this sort both
sets up a variable and prints RAM contents:

10 BB%=100
20 FOR J=1084 TO 1090: PRINT J;CHR$(PEEK(J));" '";PEEK(J): NEXT

Line 10 can define any variable; the values of J in line 20 will need juggling unless J
is defined in terms of the end-of-program pointer.

The length occupied by an array is easy to calculate (the figure is identical to
that of its own offset pointer). The number of bytes is:

5 + 2*NUMBER OF DIMENSIONS + (DIM;+1)*(DIMg+1)*...*(DIMN+1)*2,3, or 5,
the figure depending on the array type (integer=2, string=3, real=5). In addition, the
strings of a string array must be included, and, in BASIC 4, 2 bytes for each string.
Examples: X$(1000), defined so that each X$(n) string has length 10, occupies

5 + 2 + 1001*3 + 1001*10 = 13020 bytes, plus 2002 bytes = 15032 in BASIC 4.

A%(50,50), which holds about 2500 integers, occupies
5 + 2%2 + 51*%51*2 bytes = 5211 bytes.

BASIC pointers There are seven principal pointers in Microsoft BASIC. PET/CBM has:

START OF BASIC (usu. 1025) {$28) (40 dec) ($7A) (122)
END OF BASIC/ START OF VARIABLES ($2A) (42 dec) ($7C) (124)
END OF VARIABLES/ START OF ARRAYS | ($2C) (44 dec) ($7E) (126)

END OF ARRAYS ($2E) (46 dec) ($80) (128)
START OF STRINGS ($30) (48 dec) ($82) (130)
END OF STRINGS ($32) (50 dec) ($84) (132)
TOP OF MEMORY ($34) (52 dec) ($86) (134)

The bold figures apply to BASICs 2 and 4; the order of these pointers is low byte
followed by high byte, following the 6502 itself. Knowledge of these locations enables
the top of memory (normally fixed when the machine is turned on) to be lowered, thus
creating extra RAM space protected from BASIC. See HIMEM & LOMEM in Chapter 5.
Arrays can be erased by changing the pointers: see the 'Scatter Sort' in Chapter 5.
BASIC can be made to start at other locations than 1025, and so on. This program, for
BASIC>1,reports the current values of these pointers within a program. As it stands,
two simple variables (X and FN DE(X)) exist, but others may be added earlier in the
program and the results watched. The right-hand column of the table is BASIC 1.

5000 DEF FN DEEK(X) = PEEK(X) + 256 * PEEK(X+l)

5010 PRINT " START OF PROGRAM"; FN DEEK(40)

5020 PRINT "END OF PROGRAM/START OF VARIABLES"; FN DEEK(42)

5030 PRINT " (LENGTH OF PROGRAM ="; ( FN DEEK(42) - FN DEEK(40) ) ; "BYTES )"
5040 PRINT

5050 PRINT " END OF VARIABLES/START OF ARRAYS" ; FN DEEK(44)

5060 PRINT "(NUMBER OF VARIABLES ="; ( FN DEEK(44) - FN DEEK(42) ) / 7 ; ")"
5070 PRINT

5080 PRINT " END OF ARRAYS/START OF FREE RAM"; FN DEEK(46)

5090 IF FN DEEK(44) = FN DEEK(46) THEN PRINT " (NO ARRAYS EXIST)"
5100 PRINT

5110 PRINT " START OF STRINGS"; FN DEEK(48)

5120 PRINT " END OF STRINGS"; FN DEEK(50)

5130 PRINT " TOP OF MEMORY"; FN DEEK(52)

5140 PRINT

5150 PRINT "DATA STATEMENT POINTER"; FN DEEK(62)
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Because these pointers mark the boundary between one set of data and another, it
follows that the upper limit over a range is exclusive, not inclusive. A 32K machine
has a top-of-memory indication of $8000 on switchon, but this means that $8000 is an
upper limit which is not reached, so characters don't appear in the top left of screen.
These pointers can all be seen by entering SYS 4 and displaying bytes from 0028 on,
with .M 0028 0030.

By defining the variables' area to coincide with the screen, we can watch var-
iables being set up in real time. The program prints the current operation on the top
line of the screen, and awaits a keypress before each piece of processing:

100 POKE 42,40: POKE 43,128 :REM START OF VARIABLES = $8040 (2ND LINE)

110 POKE 52,207: POKE 53,135 :REM TOP OF MEMORY = $83E8 (BTM RIGHT OF SCREEN)
120 CLR :REM MAKES POINTERS ALL SELF-CONSISTENT

130 PRINT "[CLEAR]": POKE 59468,14: REM LOWER-CASE MORE READABLE

200 DIM VA(20) : GOSUB 1000 :REM SUBROUTINE AWAITS KEY (E.G. SPACE BAR)

210 A=1234 : GOSUB 1000 :REM WATCH ARRAY MOVE, 'A' APPEAR
220 DIM ST$(20): PRINT [HOME] "ST$(20)'": GOSUB 1000 :REM PRINT TO SCREEN TOP
230 ... ETC ...

1000 GET X$: IF X$="" GOTO 1000
1010 RETURN

80-column CBMs require a slightly modified program if the full screen is to be used;
and BASIC 1 requires different POKEs in lines 100 and 110 - see table.

The dimensioning of arrays, and filling with null variables, can be watched; so
can assignments of all types of variables. Strings fill down from the top of memory,
and start again near the top when space temporarily runs out. If several different
strings are assigned to the same string variable, FRE can be watched as it moves the
most up-to-date value into as high RAM as can be managed.

2.4 BASIC syntax

BASIC is sometimes described as 'English-like’; in fact the resemblance is tenuous. Its
syntax has to be learnt, like that of any other computer language. BASIC is a rather
ad hoc language, and a comprehensive account of its syntax is made difficult because
the interpreter allows great latitude in a program. For example, is RETURN or GOTO
10 valid, if there is no subroutine or no line 10 respectively? How can the correct
syntax of READ ... DATA ... RESTORE be defined? Is NEW:!*? valid? The usual
approach is to define the individual components of BASIC using some form of the Back-
us-Naur notation, but I shall spare my readers this experience. The account following
outlines the major features of BASIC in a purely descriptive way.

Numerals and literals These are actual numbers and strings, not variables. Examples
of the first are 0, 2.3 E-7, 1234.75, and -744; examples of the second are "hello",
"ABC123", and "%!£/" where the quote symbols are delimiters (not part of the literal).
The rules which determine the validity of these forms are complex; generally, numbers
are valid if they contain 0-9, +, -, E and . in certain combinations. Thus, imaginary
numbers (e.g. 2i+3j) are not accepted, and 3E 2E 1 (i.e. 3 * 1020) and 1.2.3 are not
accepted. The only point likely to cause difficulty is the use of E to mean '10 raised
to the power ...'. Strings can include any CBM ASCII character; tricky characters
can be manipulated with the CHR$ function. However, some characters - 13 (Return)
and 0 (null) for example - produce unusual side-effects.

Variables At any moment, a variable must equal a numeral or string; the default val-
ues are 0 and the null character respectively. (See Chapter 5 on CHR$ for a discuss-
ion on CHR$(0) and "", each of which can be considered a null string). A variable,
as the name is supposed to imply, can be changed to other valid values.

Operators (or 'connectives') Binary operators connect two items of the same type, giv-
ing a single new item; unary operators operate on a single item, generating a new one
of the same type. The CBM numeric operators are completely standard, and are ident-
ical in type and hierarchy to those of FORTRAN. The string operators and logical
operators are less standard:-

Binary Numeric +- %/ Unary Numeric +-
String + String ..hone..
Logical AND OR < => Logical NOT

'Dyadic', 'monadic', and 'Boolean' are synonyms for 'binary', 'unary', and logical'.
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Parentheses Parentheses (round brackets) signal the translator to process the follow-
ing data as a unit, completed only when the corresponding right parentheses have been
found. Intermediate calculations are stored on the 6502's stack.

Functions Some of the BASIC keywords are valid only when followed by an express-
ion in parentheses; they may be used on the right of assignment statements or as part
of an expression under evaluation. Numeric functions include SQR, LOG, EXP, and
SIN; string functions include LEFT$, MID$, and RIGHT$. PEEK, although not a func-
tion in the usual deterministic mathematical sense, has the syntax of a numeric function
and is considered to be one.

Expressions An Arithmetic expression is a collection of numeric functions, numerals,

real and integer variables, connected with operators and parentheses, and always used

in an assignment statement or with PRINT, PRINT#, or CMD. For example:
SQR(VAL(Q$(2,3)) + M%) + SGN(Z)*(X>4)

A String expression is a collection of string functions, literals and
string variables, connected (optionally) with parentheses and/or the only string oper-
ator, which is '+'. For example:

STR$(25) + MID$("HELLO" + Y$,3,4) + CHR$(N)

A Logical expression evaluates to 'true' or 'false'; it may contain relat-

ional operators (<,=,>) and/or logical operators. For example:

(A=4) OR NOT (21=X)
There is not a sharp distinction between this type of expression and an arithmetic
expression. The same routine evaluates them both, which makes possible constructions
like PRINT 1>2 and ON 2 + (P=Q) GOTO 100,200. See Chapter 5 on AND, NOT, and OR.

Statements A statement is a syntactically correct portion of BASIC separated by an
end-of-line marker or a colon from other statements. All statements begin with a BASIC
keyword, or, where LET has been omitted, with a variable. There are some peculiar
cases; for example, IF A=B THEN is a statementbecause its syntax is accepted. (Note:
keywords are sometimes called 'statements'). Types of statement include:

Assignment statement LET variable = expression. LET is optional. Here, the '='

symbol is used differently from the relational operator '=', and it is distinguished in
some computer languages (e.g. ALGOL) by being written ':=' and read 'becomes ...'.
Conditional statement IF condition THEN ... . See Chapter 5 on IF.

Control (or 'sequential') statement Alters the program's flow of control. GOTO,
GOSUB, RETURN, STOP are examples of keywords.

Input statement fetches data from a device or from a DATA statement. INPUT,
INPUT#, GET, GET#, and READ are the relevant keywords.

Loop (or 'block' or 'compound') statement enables many statements to be exec-
uted in a block; this is really a structured programming concept, only applicable to
CBM BASIC in a loose sense to FOR ... NEXT loops and subroutines.

Output ('print') statement sends data to tape, disk, screen, or other output
device. See PRINT and PRINT# in Chapter 5 for an account of formatting, tabulation,
evaluation of functions, and so on.

Remark (or 'comment') statement In BASIC, REM followed by any information,
which is ignored by the computer but useful from the point of view of documentation
of the program. Lines which are never executed perhaps come into this category:

0 GOTO 100/ 1 VERSION #1/ 100 REM BODY OF PROGRAM never executes line 1.*

Type conversion statement converts between string variables and literals/ real
variables and numerals/ integers and numerals, using such functions as ASC, CHRS,
INT, STR$, VAL.

Program lines are made up from statements. Each line is preceded by a zero byte, a
link address, and a line number, and terminated by a zero byte. The line itself may
contain tokenised keywords (all with their high bit set), double quotes, literals within
the quotes, screen editing characters with the high bit set, $,%, or ( type declarators,
variables, parentheses, numeric strings in ASCII, punctuation (;:,), ASCII strings in
comment statements and DATA statements, and other items, for example '#' as part of
ngT# and non-standard BASIC used with a modified GETCHAR routine, typically !, or

*The slash symbols (/) are a space-saving device, enabling several lines of BASIC or
machine-code program to be printed as though only one line were occupied. When this
sort of program is keyed in, obviously Return takes the place of '/'.
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2.5 Manipulating BASIC and its variables

Pointers, link addresses and linenumbers An ordinary BASIC program is stored as
this diagram indicates. The starting address is $0400 (=1024), each line has a 2-byte
link pointer and 2-byte linenumber, and is terminated by a zero byte. Normally, no
zero bytes appear within a BASIC line, and the linenumbers are all different, in as-
cending order, and less than $FF00 (=65280). Each link pointer points to the next link
pointer in memory, and the chain proceeds regularly upwards, until a zero link sig-
nals the end of the program. Any of these features can be modified, either in BASIC
or machine-code, enabling non-standard results to be achieved. Conversely, such
functions as renumbering, searching BASIC and compressing BASIC can be written
when the storage mechanism is understood. Modified BASIC is likely to be more-or-less
unstable; it may be difficult to edit, for example.

START END QF LINE END OF LINE END OF LINE PROGRAM END
LINK]LINE# [ BASIC LINEIQILINK'LINE#‘BASIC‘ﬂ‘ﬂI&l
> 5 7

v

g

LGlLINK|LINE#[BASIC LINE

The link addresses and linenumbers are quite easy to locate in either BASIC or mach-
ine code; they can also be examined by entering the monitor and reading the memory
dump from $0400 onward. This BASIC routine illustrates the principles:

10 A=1025

20 L=PEEK(A) + 256*PEEK(A+1): IF L=0 THEN END

30 PRINT "LINK POINTER IS " L ;

40 PRINT " LINENUMBER IS " PEEK(A+2) + 256*PEEK(A+3)
50 A=L: GOTO 20

When RUN, A=current link, L=next link; the program prints both items for every line.
The machine-code equivalent, illustrated by this

outline routine, uses an intermediate double-byte LDA 28 ;A AND X HOLD
address to store link addresses. In ROM, the LDX 29 ; START-OF-BASIC
routines at C522/ C52C/ B5A3 for BASICs 1/2/4 Ll LDY #01 ;Y IS OFFSET
search BASIC for a given linenumber, typically STA 5C ; (5C) IS A TEMP.
when executing GOTO. The short program here STX 5D ; POINTER
carries out a small part of that operation, skipping LDA (5C),Y ;IF LINK'S 2ND
through the link pointers to the end of the pro- BEQ L2 ;BYTE=0, EXIT
gram. TAX ;GET NEW X ...
Chapter 5 has several examples of this. See DEY
for example the 'tiny renumber' routine, which LDA (5C),Y ;... AND NEW A
changes all linenumbers which lie within a requested JMP L1 ;AND CONTINUE

range, by poking the new values for the linenumbers L2 RTS

directly into RAM. As another example, look at

this BASIC search routine, which prints the linenumbers of all lines which contain
the contents of the first line (e.g. line 0) of the program.

62000 A=1025: B=256: J=1029: X=PEEK(J): REM X IS FIRST CHARACTER OF LINE O
62010 P=PEEK(J): IF P=X THEN GOSUB 62500
62020 IF P<>0 THEN J=J+1: GOTO 62010

62030 IF PEEK(J+2)=0 THEN END , ¢ REM END OF PROGRAM FOUND
62040 J=J+4: A=PEEK(A) + B*PEEK(A+l): GOTO 62010 : REM UPDATE LINK AND J
62500 K=1 :REM TEST REST OF LINE O FOR MATCH

62510 Y=PEEK(1029+K): IF Y=0 THEN PRINT PEEK(A+2) + B*PEEK(A+3): RETURN
62520 IF Y=PEEK(J+K) THEN K=K+1: GOTO 62510
62530 RETURN

This routine is written without loops, in a form suited to direct conversion into mach-
ine code, which is enormously faster than BASIC in this case. The point of the rout-
ine is to scan only the BASIC line, while keeping track of the link pointers; line
62510 prints out a linenumber when all the characters in line 0 match some part of
BASIC. It is necessary to remember the way in which BASIC is stored in routines like
this one; for example, 0 PEEK(1025) will cause all occurrences of PEEK(1025) to be
recorded, but 0 EEK(1025) is not tokenised and will probably find nothing.

The actual contents of BASIC may be changed in a systematic way. The short
BASIC routine on the next page inserts carriage return characters into REM state-
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ments, when REM is the first keyword in a line.

50000 A=1025: B=256

50010 IF A=0 THEN END

50020 IF PEEK(A+4)<>143 THEN A = PEEK(A) + B*PEEK(A+1): GOTO 50010

50030 POKE A+5,13: POKE A+6,13: A=PEEK(A)+B*PEEK(A+1): POKE A-2,13: GOTO 50010

It operates by searching for the tokenised form of REM (=143 in decimal), and putting
three Returns into the REM line.

Note that arrays in memory can be scanned in a similar way. The only differ-
ence is that an offset, not an absolute pointer, is used:

10 DIM N(7),MM(50),X1$(200),JJ%(6),Q$(19)
20 S=PEEK(44)+256*PEEK(45): E=PEEK(46)+256*PEEK(47): REM START, END FOR BASIC>1

30 PRINT "NAME OF ARRAY: " ;CHR$(PEEK(S)); CHR$(PEEK(S+1))
40 O=PEEK(S+2)+256*PEEK(S+3): S=S+0: : REM O=OFFSET
50 IF S<E GOTO 30 : REM S POINTS TO NEXT ARRAY

SORT in Chapter 5 uses a machine-code version of this.

The following pair of BASIC subroutines changes the link addresses of lines in
their own programs. The first alters a pointer so that a line is skipped; that line is
also renumbered 0. It is likely to become visible on editing. When RUN, the hidden line
is processed normally, although LIST and GOTO cannot find it.

50000 A=1025: B=256

50010 INPUT “CONCEAL LINE AFTER":X

50020 FOR R=1TO1EB: IFFEEK(A+2) +B#PEEK(A+3) (XTHEN A=FFEK(A}+B*PEEK(A+1):NEXT
50025 IF PEEK(A+2) + B*PEEK(A+3))X THEN PRINT “NON EXISTENT LINE": END
50030 XS=A: REM START LOCN OF LINE X

50040 YS=FEEK(A) + EB*PEEK(A+1): REM START OF FOLLOWING LINE

50050 X1=FEEK(YS): X2=PEEK(YS+1): REM LINK ADDRESS BYTES OF NEXT LINE

50060 FPOKE XS»X1 : FOKE XS+1,X2 : REM LINK ADDRESS STRADDLES LINE AFTER X
50070 FOKE YS+2,0: POKE YS+3,0 : REM AND PREVIMNG LINE IS NUMBERED ©

This second routine demonstrates how CRUNCH can compress BASIC lines together,
making them longer than the normal maximum of 80 characters. It must be positioned
at the start of BASIC; when it runs, a range of linenumbers is asked for, and these
lines are combined into one longer line by deleting link addresses and pointers, put-
ting in colon separators, and adjusting the initial link address to span the entire line.
If the line's length exceeds 251, it will be difficult to edit; it will run, however, in
most cases, though not if REM is too far from the end of the line.

INPUT "COMBINE LINES FROM,TO";L,U: C=1025: B=256: E=PEEK(42)+B*PEEK(43)-4
LT=PEEK(C+2)+B*PEEK(C+3): PRINT LT;

IF LT<L THEN C=PEEK(C)+B*PEEK(C+1): GOTO 1

IF LT>L THEN PRINT "LINE NOT FOUND": END

LINK=C: C=C+4

Q=PEEK(C): IF Q<>0 THEN C=C+1l: GOTO 5

IF PEEK(C+1)+PEEK(C+2)=0 THEN END

LT=PEEK (C+3)+B*PEEK(C+4): PRINT LT;

IF LT>U THEN C=C+1: POKE LINK,C-INT(C/B)*B: POKE LINK+1,C/B: GOTO 4
POKE C,ASC(":"): FOR J=C+1 TO E: Q=PEEK(J+4)

10 POKE J,Q: NEXT: E=E-4: GOTO 5

11+ --REST OF PROGRAM--

WO bhwnHEO

If the pointers to the start of BASIC are altered, BASIC can be storad in other places
than the usual $0400; for example, it could start at $1000, leaving a large amount of
RAM free for other purposes. Similarly (see HIMEM & LOMEM in Chapter 5) the point-
ers to the top of memory can be changed.

POKE 40,1: POKE 41,16: POKE 4096,0:NEW
Sets BASIC>1 to start at $1000. The zero byte at the very start is necessary; without
it, ?SYNTAX ERROR will be generated. To return to normal, enter

POKE 40,1: POKE 41,4: POKE 1024,0: NEW
(NEW, or CLR, is the easiest way to ensure the pointers are consistent). A program
of this sort may be saved, with its machine-code, by moving the start pointers back
to the normal value; the first line of the 'mormal' program must be something like
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0 POKE 41,16:RUN
which will run the main program correctly.

The variables themselves may be manipulated: see e.g. VARPTR in Chapter 5.
The entire collection of RAM variables can be saved as a RAM image; for example, a
large integer array may be saved and later reloaded, providing rapid access to a lot
of numeric data. Strings are less easy to handle, because they are not held in the fix-
ed way in which numerals are. This technique is not very easy, since any change in
the program length or in the number of variables will cause the data not to match its
pointers. Reloading is also made more difficult than it might be by CBM BASIC's tend-
ency to restart programs which use LOAD.

When a program is edited, CBM BASIC always resets the pointers relevant to the
variables. In fact the variables are still present, if the new program is shorter than
the old; so if the pointers are poked with their previous values, all the variables will
be recovered; the only exceptions may be strings held within the program and func-
tion definitions.

2.6 LOADing and RUNning BASIC

LOAD or DLOAD followed by RUN is the normal method of running CBM BASIC; the
only automatic RUN facility is provided by Shift-Stop, which LOADs and RUNs the
first program on tape or CBM disk depending on the version of BASIC in ROM. Both
LOAD and RUN are covered in detail in Chapter 5, and DLOAD is explained in Chap-
ter 7. The overlay feature of each load command, when in program mode, is also out-
lined. RUN executes some initialisation before entering a loop which processes state-
ments consecutively. Before every statement, the Stop key is tested, and the end-of-
program byte is checked for (without this, each program would need END) at the end
of each line. By dropping some of these subroutines, the execution time of BASIC can
be improved; this requires a RAM routine, probably called by a SYS command, to per-
form the functions of RUN.

Numeric routines are mostly carried out using two 'floating-point accumulators'
of 6 bytes each, and some other RAM storage areas in the zero-page. Strings are
constructed in the top of memory. The 6502 stack is used by GOSUB and FOR, each
of which puts several bytes of data in store on the stack; see Chapter 5. Also, eval-
uations which include parentheses for priority put intermediate results on the stack.
An unexpected ?0UT OF MEMORY ERROR can result if the stack is asked to hold too
much data.

1 PRINT (1+(2+(3+(4+(5+(6+ (7T+(8+(9+ (10+(11+(12))))M)MN))))
causes such an error. The limits of the stack are determined by a combination of the
number of GOSUBs, FOR loops, and parentheses at any one time.

As each statement is executed, the CONT pointer is updated. In this way, when-
ever Stop is pressed, CONT can resume the program, since a record is kept of the
statement last executed.

2.7 Optimising BASIC

The principal optimisation problem likely to be met with in BASIC is making a program
run as fast as possible. (The other problem - shortage of space - I am assuming to be
a matter of correct initial design). Input/ output, to disks and especially to tape, is
slower than processing in RAM; slow printers can also impose a drag on a system. The
BASIC program itself can be accelerated using the methods in CRUNCH (see Chapter
5), and the subroutine management techniques in GOSUB (Chapter 5). These rely on
knowledge of the way BASIC works to avoid small cumulative losses of time. GOTO can
be optimised ensuring that the destination line is as near the start of the program as
possible, or has a linenumber whose high byte exceeds that of the GOTO line. Some
CBM manuals have a section on this subject (almost word-for-word identical to a simi-
lar section in Apple manuals). Apart from the routine compression methods of CRUNCH,
the most significant timesavers are (i) the use of variables, not constants, and (ii) the
deliberate setting up of variables in the best order (i.e. most popular first) at the
start of a program. As a simple example,

10 FOR A=0 TO 5000: B = B + 1: NEXT takes about 15% longer than:-

10 B=0:L=1:FORA=0T05000:B=B+L: NEXT
The point about using variables is that the numerical value is already stored in float-
ing-point form, so the time spent in the conversion process is saved. Generally, loops
are likely to make the most difference to running-time, and one-off routines such as
exit routines and error messages the least. This program enables single BASIC state-
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ments to be timed, so the reader can experiment in this area:
PROGRAM TO MEASURE PROCESSING TIME WITH BRASIC-

18 N = 188;: Ti=2: T2=0

28 T1 =TI :REM STORE THE TIME ...

@ FOR I = 1 TO N

48 :

S8 NEXT

@ T2 =TI - Ti tREM ... S0 NOW T2 IS THE TIME TRKEH BY LOOP 36 - Sa.
88 T1 = TI :REM STORE THE TIME ...

96 FOR I = 1 TO N

186 ¢ X=123,456

118 NEKT

128 T2 = TI - T1 - T2 :REM T2 = TIME TO EXECUTE LINE 188 RFTER THE COLOM.
138 PRINT 1088 #% T2 / <6@#%N> "MILLISECONMDS"

1808 REM seksiriokskirkkoiololkiorokdokpok ol ok dlor ook s olklor kbbb jok dof 4ok ok ¥k

leal REM % EXECUTE AWD TIME COMMAND{S> IM LINE 188 *
100z REM * *
1893 REM % NOTE THE LEADING COLOM, TO ALLOW CORRECTION FOR LOOP PROCESSING %—
1024 REM #* *
1905 REM % CHECK :— ZERD MILLISECONDS SHOULD APPEAR WITH 18@: RLONE *
1686 REM * *
1887 REM % INMCREARSE THE YALUE OF H IN LINME 188 IF THE INSTRUCTION IS FRAST #
1688 REM % NB: SEVERAL LIMES OF CODE CAN ALSDO BE TESTED WITHOUT DIFFICULTY #
1989 REM #* NB: DEFIMING YARIABLES AT START AYQIDS SERRCH TIME ERRORS »

BASIC<4 has a well-known drawback in the long time spent freeing strings in memory.

This means that large arrays (e.g. X$(500)), however convenient for storage of easily

recovered data strings, are prone to cause prolonged delays; FRE takes about 1 second
with 100 strings, 10 seconds with 350 and 100 seconds with 1100 - see Chapter 5 for a

formula. Chapter 4 has details on minimising these delays.

2.8 Differences between ROMs

The major differences between ROMs are listed below. Generally, later ROMs can run
all earlier programs, but earlier ROMs may not have some features assumed in later
programs. Programs using machine-code calling ROM routines or specific RAM locations
are unlikely to transfer between machines. BASIC 4's two versions, 40- and 80-column,
are dissimilar in some ways, the 40-column version retaining some features of BASIC 2.

Differences: BASIC 1 BASIC 2 ﬂ BASIC 4

RAM map | Input buffer in zero-page| Input buffer $0200 - $0250; more @#-page pointers
Tape buffer #2 partly used

ROM map CO000-FFFF CO000-FFFF BO000-FFFF

Apart from kernel addresses, almost all ROM entry points differ (Ch. 15).
Monitor RAM only (see manual) Machine-language monitor present in ROM
Interrupt | 60 Hz 60 Hz | 50 Hz (12-inch models)
Other General improvements (e.g. LIST).
Differences which may affect BASIC programs:
Keywords GO GO, DS,DS$, & disk commands
Syntax Spaces in keywords valid*
Arrays See DIM (Ch. 5) for bugs
IEEE Improved
Screen Fast screen; more editing chrs.
Strings FRE slow FRE fast (see Ch. 5)
Tape Data file bugs (Ch. 8) Data file handling improved

*In BASIC 1, 'IF 10=LE THEN PRINT "10"' and 'IF F OR G GOTO 100' generate ?SYNTAX ERROR
as 'LET' and 'FOR' respectively are assumed. BASIC>1 does not scan tokens in the same
way (hence the need for GO). However, in all BASICs there is scope for ambiguity:

' IFY=GORXTHENPRINT"ERROR"' , 'IFS=TANDUGOTO50', and 'Y=TORU' illustrate this.
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CHAPTER 3: PROGRAM AND SYSTEM DESIGN

3.1 General introduction

This chapter explains some of the techniques and thought-processes required to write
programs and systems. Chapter 4 provides examples, mostly in BASIC. Chapter 17
has examples and suggestions involving actual systems; the intermediate chapters deal
with the hardware and software knowledge required to actually do the job.

Designing a system is a tricky process which is unlikely to be successful with-
out a considerable amount of experience, unless a system is fairly small and informal,
and either unimportant or easy to reconstruct in the event of disruption. The differ-
ence between small systems and those consisting of many programs operating on alarge
database, with full validation and crashproofing, and with checking and recovery pro-
cedures, is enormous. Obviously it is necessary to assess whether a proposed system
is feasible at all, and the optimum amount of work to put into it. Since this book is
largely about the PET /CBM, we can leave aside the difficult problems of deciding
between rival machines. We can also ignore the special problems of programming ex-
ternal hardware, for example in process control, which is a minority interest. By and
large our concern is with a computer, tape and/or disk storage, and probably a print-
er. What can such a combination of hardware do? Experienced programmers, naturally,
already know. For those less experienced, we can subdivide the replies into three cat-
egories: results which can be achieved easily, those which are difficult, and those
which are impossible. In the first category we have standard packages, if they exist.
Sometimes several packages may be able to share data. The absence of programming
effort does not, of course, guarantee success. Programs requiring calculations, when
the formulas are known, are usually fairly easy; anything from architecture to zoo
nutrition might be required. Any type of alphanumeric data can be stored and retriev-
ed, though not necessarily rapidly; dictionaries, tables, price-lists, technical words,
names, can be filed and recovered, provided the storage capacity of tape or disk is
allowed for. Small business programs, with reasonable crash-proofing, are possible if
the processing demands aren't large: invoices and mailing-lists for example. Payroll
programs are possible in 4K, in some developing countries. Tidy formatting and out-
put is not a big problem. Nor are slowish graphics.

The second category includes anything really fast. Graphics; fast searches in
memory; rapid updating, input, formatting, and output usually require machine-code,
which is more difficult than BASIC. Any disk reading or writing which uses a key
other than the record number, and is fast, will need to be thought out carefully.
Completely crashproof and validated input is not easy. Data may be coded, abbreviated
and packed in many ways to save storage space, and so store more data than may
seem to be possible at first sight. Where many programs operate on the same data, the
order in which they are run may need internal checking. Data checking programs may
be needed which provide an assurance that the data on a disk is self-consistent. Some
programs may require annual updates, or need to be easy to modify. All these things are
comparatively time-consuming and difficult to write. As the workload increases, the
viability decreases: sorting the names in a telephone book, performing simulations of
atmospheric physics, calculating the payroll of thousands of people, may be impossible.
The machine cannot program itself, understand English, correct errors in a specific-
ation of a system, or work while switched off in a corner.

Typical complaints (about computer systems generally) are illustrated by these
quotations from a medical man: 'They lead to more clerical work, not less... produce
sheaves and sheaves of that printout stuff... VDUs are very slow; you can't just read
a patient's record, you have to type it in... you could lose all the data! The whole
lot!'. And an export manager: 'The biggest disaster is the so-called informal specif-
ication. We assumed we were speaking the same language... the program takes days.
We'd seen programmes on television where the results come up instantly...'. Retailers
are often asked for their 'standard stock control package and PAYE payroll package';
often these do not exist. I have stressed the possibilities of failure, because it is im-
portant to realise that this can occur. In practice, the direr prophecies of mass busi-
ness failures due to microcomputers have not come true: systems which are clearly
useless remain unused, and the risks inherent in risky systems are not taken. I don't
want to imply, by my mention of this topic, that CBM hardware is unreliable; comparative
figures are unavailable, and all computers are liable to hardware problems and software
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bugs, and these may be an unpleasant shock to those accustomed to the facade of
smooth-running efficiency presented by data processing departments.

3.2 Designing programs

The general idea of BASIC is simple: the program does what it's told, starting at the
beginning and continuing to the end, occasionally encountering a GOSUB and execut-
ing a subroutine, or encountering a GOTO and jumping to a program line. The con-
ceptual difficulty with programming is the need to understand what the separate comm-
ands do. Only when they are more-or-less grasped is it possible to tell the computer
what to do. As a simple example, consider a set of short reports being printed by an
ordinary computer printer; at the end of each one, a 'top of form' command has to be
issued, whereupon the paper is shifted in preparation for the start of the next report.
Suppose some reports take several pages, and the printer has no automatic facility to
leave a few lines at preset intervals. Then it is necessary to keep a running total of
the number of lines printed, and to check this number after printing each line; if the
total equals a preset value, 'form feed' is issued, and the total reset to zero, to be
used for the next page. Typical complications include lines which belong in batches,
and are not to be separated, page numbers, running totals, and titles dependent on
the last line of the previous page. In this way, an apparently straightforward task of
programming can become complex.

There are many theories on the 'best' programming methods. For example, 'top-
down' programming designs the main flow first, then the subsidiary routines, while
'bottom-up' programming starts with the subroutines. But 'structured programming' is
undoubtedly the major buzzword. There are several versions of this, ranging from the
avoidance of 'GOTO', through the use of nested routines, to the attempt to match the
structure of the data,as it is filed,with the program. CBM BASIC lacks the syntax to
apply such techniques directly, but they can be simulated. The object is to produce
programs which are easily read, so that in turn they can be changed or reused with
little difficulty. In practice (in my opinion) programmers' methods are always ad hoc
and chaotic, and maintainability of programs is possible (if at all) only because pro-
grams are tidily arranged in routines with heavy commentary. Similarly, flowcharts,
once regarded as highly scientific, are widely regarded as obsolete, replaced for the
most part by pseudo-programming languages. But it is not obvious why one form of
notation should be superior to another; the sad fact is that any complex program will
remain complex in whatever way it is written down. For these reasons, I suggest that
the reader treats 'definitive' announcements on these subjects with scepticism.

There are two types of non-linear program flow: a loop (when the program jumps
back repeatedly to an earlier point in the program; forward jumps are essentially still
linear), and a branch (when differing parts of a program are selected according to the
results of some test. Several flowchart representations are:-

: T
Process Do
data Do while

until

Condition Case?

Condition Loop 2nd [3rd [Other
true? \t v
Flowcharts of loops Flowchart of branch / casentry

There is a British Standard on flowcharting. For our purposes it is sufficient to de-
note branches by a diamond (or similar) shaped box, usually containing the condition
as a question, and processing by a rectangular box in which are written details of the
processing. Arrowed lines indicate the direction of flow of control. Detail may be at
the level of single instructions, or at almost any level of vagueness, depending on
whether the object is to present a detailed or overall picture of the program. In CBM
BASIC, a loop is usually of the form FOR A<B TO C STEP D ... NEXT A with an implied
count from B to C in steps of D. Changing the variables within the loop is apt to
prove confusing. The orthodox structured forms of DO WHILE and DO UNTIL do not
count, but wait until a condition is no longer true and a condition becomes true re-
spectively. These forms can be simulated easily in BASIC; for example, a construction
like: -
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DO WHILE LINECOUNT<50
PERFORM ROUTINE TO PRINT LINE AND INCREMENT LINECOUNT
ENDDO

can be written in this way (or many others):-

FOR A=1 TO 1000
LINECOUNT=LI+1
IF LI=50 THEN A=1000: GOTO x
GOSUB y TO PRINT LINE
x NEXT

And the casentry construction can be written as a series of IF statements or, in situa-
tions where a variable takes values 1,2,3,... , as ON ... GOTO or GOSUB. With a
little practice, all this becomes straightforward. When flowcharting, to avoid tangling
of lines it is usual to adopt a direction convention. Typically, the general direction is
down the page, with loops branching back anticlockwise and forward jumps clockwise
to avoid clashes. The diagram below gives typical extra symbols which may be included
in this sort of chart.

Keyboard . Merge
Disk TITLE A
drive Subroutine
or Module v
‘qiii!’ START / END

These symbols are based on notation for large computers; the disk isn't very like a
floppy disk, and the tape is a spool rather than a cassette. But the general idea is
clear enough. Other types of chart include those with subprograms connected by ref-
erence labels, rather than lines. A page number and label marks each jump and branch.
This technique is suitable for machine-code flowcharts, which are unlikely to have tidy
loop structures. The 'Nassi and Schneiderman' notation is topologically identical to a
flowchart, but is rearranged to increase the space for explanatory detail. It has 'pro-
cess boxes' of four types: condition (normally binary); loop with test after processing;
loop with test before processing; and a plain processing box.

% Enter Surname
Does it exist in the
N
Y

array?
N Y

&

'Not found’ Print name, add-
ress, comment

Until no more

PROCESS

There are innumerable techniques, each with local
variants and modifications, and the purpose of this
section is to give some idea of the appearance of

the resulting documentation. Any sizeable program
will be far more complex than the simple examples
presented here, and may occupy several pages of

N
'text'.

% The internal detail of a program may be doc-
umented and clarified in various ways. Firstly,
subroutines may be handled in a systematic way:

they can be documented (see Chapter 4) and arranged within the program to maximise

efficiency (see GOSUB in Chapter 5). In principle, standard subroutines are a possib-
ility *. Variables' names can be selected in some systematic, meaningful way, within the

S

*MUSE (Micro Users in Secondary Education) has standards intended to enable easy inter-
conversion of programs between machines. (See e.g. Ed'l Comp'g,July '80). N Hampshire
has a book of 'Standard Subroutines' for PET/CBM, using linenumbers 10000-30000. A
McGraw-Hill book has 'BASIC scientific subroutines for all computers'.
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limitations inposed by the fact that only the two leading characters distinguish between
names. (See Chapter 2). Line-number maps, including subroutines, can be useful in
navigating long BASIC programs; and conversely, intricate programs with many GOTOs
may be deciphered in extremis by simply writing down all the linenumbers in execution
sequence, perhaps revealing islands of code which are never used. The logical process
which a program carries out is also depictable in many ways. A condition table is one
method (see diagram) which in principle can be drawn up without any programming
knowledge, to be turned into a program as a routine task. The patternsof Ys and Ns,
which should cover all possible combinations of the conditions, correspond to one or
more actions, marked with 'x'.

Conditions: Stock > reorder level? Y Y| Y|[N|N
Stock minus stock out > reorder level? Y N|[N|[N|N

Stock out > stock? N|IN|Y |N|Y

Actions: Issue stock x| x| -|x|-
Issue reorder request -|lx[x]-1-

art issue stock/ increase commitments -l -lx|-|x

'Data-structured design' is another methodology, associated, particularly in the
U.K., with Michael Jackson. Its object is to simplify matters by matching file structure
to program structure. If BASIC compilers come to be widely used, techniques of this
sort will become more applicable to BASIC than they are at present. Before describing
(in outline) the tenets of this school of thought, we must clarify the idea of a comput-
er 'file'. CBM disk and tape files are described in detail in Chapters 6 and 8 respect-
ively, but a few words of introduction are necessary. In the usual office sense of the
word, 'opening a file on Mr Smith' means either looking at Mr Smith's records or start-
ing a new folder of details on him. This is not a computer 'file'. In the computing
sense, a 'file' is a collection of many records, which for convenience have a name ass-
igned to them, and which are more-or-less similar in content. A 'mame-and-address
file' contains details not only of Mr Smith, but of many other people. 'Opening a file'
means preparing the computer to read or write individual records from or to the file.
A simple example might consist of a file with (a) a header record, i.e. a single record,
holding perhaps the date on which the file was last used; (b) a consecutive set of re-
cords, of which some are to be printed, and others are not. These would be distinct
in some way; for example, items might be marked as deleted, or as having fallen below
the reorder level. (c¢) A trailer record might mark the end of the file, typically hold-
ing totals. The diagram shows the structure of this file, with a standard box notation:

A structured program to process this file is

illustrated in the second chart, which gives FILE

a general picture of the processing without

much detail. The modules and subroutines, //\

if they are sufficiently commented and REM'd

within the program, ought to make detailed

processing fairly easy to follow. Note the 'LIVE' 'DEAD'
correspondence between the program and the HEADER | | prcorp | |rEcomp| |TRATHER
data structure.

PROGRAM CONTROL CONTROL LEVEL
OPEN READ READ READ CLOSE
FILES HEADER UNTIL TRAILER FILES MODULES
END
'LIVE'| ['DEAD'

N

READ A PRINT A
RECORD RECORD

SUBROUTINES
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Algorithms An algorithm is a set of rules which (if the algorithm works!) generate a
solution to a problem. Taking care with algorithms will improve the logical accuracy of
programs and probably their speed and efficiency. Typical algorithms deal with sort-
ing, merging, and similar large-scale processing, down to the details of rounding, page
throws, and date processing. As concrete examples, let's briefly consider five types:

(i) Linear programming. This is a technique for maximising a linear combination
of variables subject to certain restrictions. It is not easy, or necessary, to under-
stand the steps involved, which slowly but surely grind out the solution.

(ii) Warnsdorf's Rule provides a means to generate complete knight's tours round
a chessboard. The rule is: move the knight to the square with the fewest exit squares.
This often (not always) gives a solution. There is no real justification for the rule; it
gives an attack on the problem, without an indication of whether its solutions are only
a subset of the total of solutions, or of the procedure to follow when the rule finds
several squares which are equally legitimate.

(iii) Decision-tree pruning is a technique used in the analysis of games (e.g.
chess) by computer, where the 'tree' of moves and replies has a colossal number of
'branches'. When any 'branch' is assessed as 'worse' than some other branch, no fur-
ther time is spent on that 'branch'. (The 'alpha-beta algorithm' is an example).

(iv) Sorting. Dates stored in the form DDMMYY or MMDDYY may be sorted three
times, by year, month and day. YYMMDD requires only one sort.

(v) 3-Dimensional 'tic-tac-toe' or (U.K.) noughts and crosses has a variation in
which the first player to make a line loses. An algorithm for the first player is: start
at the centre, then make all moves exactly opposite to the opponent's. This ensures
that the first player cannot lose. (It doesn't prove that a draw is impossible).

Formal logic is sometimes helpful in simplifying complex conditions which have to
be met: see Chapter 5 on AND, OR, and NOT.

3.3 Designing systems

'Systems Analysis' has no necessary connections with computers. The approach is to
examine exactly what you'd want a computer to do, taking particular note of the ‘'odd
10%', or whatever figure applies, of oddments, exceptions, and special cases. Useful
clarification may result irrespective of computers, the mental effort producing results
which are unexpected, economical, and neat (in the words of Prof. Parkinson). Trans-
lation of the result to a computer may nevertheless be unsuccessful. Typical mistakes
include allocating insufficient space for data, so some figures are too large to fit into
a file; failure to test the timing of a system, in which case the performance may fall
off dramatically as data is added; adding new features during development, of a type
likely to increase the number of bugs in the system. (For example, an 'escape' key
might be introduced to take the operator back to the start of the system, if the wrong
part of a program has been inadvertently called. The incomplete data already set up
may cause unforeseen errors). File layout is important if any sort of elaborate tech-
nique is to be used (i.e. anything other than sequential access or, with disks, access
of relative records by record number). Once a database is set up, apparently simple
operations like sorting on some unusual field, not allowed for in the design, or delet-
ing or inserting records, may simply take too long to be workable. The aim must be to
achieve a flexible design, since it is all but impossible to think out all the implications
of a system beforehand, and in any case may not be cost-effective with cheap comput-
ers.

A complete system typically has a menu of options; entering a numeral or letter
at the keyboard calls either a new program from disk, or enters a subprogram within
the program which holds the menu and some program responses. In this way, functions
of the system can be partitioned up in discrete, tidy units. A separate routine may
handle each of the three operations of adding records, deleting records, and amending
records, for example; another batch of programs might handle inventory reports, in-
voicing reports, outstanding orders, and so on. Microcomputer systems are usually
interactive. This means that files are modified at the time data is keyed in. The alter-
native type of design is that of batch systems. These are common in mainframe (i.e.
big computer) environments, the idea being to store data on file, and later run a pro-
gram to check this data and add it to the current file, updating it by the batch of
new data. In the same way, output can be 'spooled', saved on a file for later printing
in mass. This is an efficient way to use a big machine, since successions of jobs can
be run, and the computer doesn't waste time awaiting input from terminals. There may
be insufficient tape or disk storage space with small machines to make batch process-
ing possible. Note however that from the security point of view, running separate
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batches may be preferable to direct updates, because, if a check shows that the files
contain 'corrupted' (i.e. wrongly written, scrambled) data, the previous copy of the files
and the new data can be re-run.

The relation between data storage - in RAM, tape or disk - and the frequency
with which it is accessed is one of the main features of system design: see Chapter 17
for examples of this and the related problems of the use of printers for 'hard copy’.

Specific computer techniques (i) Data compression and codes. It is possible, and may
be necessary, to save storage space by encoding data. The following chapter has rout-
ines to compress ‘integers to half their length, and to combine many on-off flags into a
single number.

(ii) Checkletters and checkdigits. These guard against wrong input by providing
a test for self-consistency, typically for use with a reference number of a client or
item. Chapter 4 has examples.

(iii) Sorting. The capacity to sort data and store it in sorted order is important
in large-scale data processing for two reasons. First, reports, printouts, and lists may
be required in order - typically alphabetic. Secondly, the knowledge that data is sort-
ed enables much faster processing to be possible than would otherwise be the case.
Merging new data with old typically requires the matching of two sorted files; in this
way, at any moment only two records need to be compared to determine whether the
new record is to be inserted into the file, used to update its existing equivalent, or
ignored temporarily while the main file is read again. And searching data by the
'binary chop' method - equivalent to opening a telephone book in the middle, checking
the name sought against the middle name, and continually halving the size of the chunk
of text which must hold the target name - needs sorted data. Chapter 4 outlines some
important aspects of sorting.

3.4 Timing, 'sizing', and checking systems

When considering the practicability of a large system, it is often worthwhile to write
programs to generate 'dummy' data, to simulate a full file. This data can be generated
with the help of RND, with which both numbers and alphabetic strings of data can be
constructed. (With CHR$ in the case of strings). By testing for inequality, strict
ascending or descending sequences are easy to simulate. In the light of tests on this
data, improvements in the logic or file-structuring may be suggested.

Estimating the storage capacity to run a system is relatively straightforward: in
the simplest case, all records are the same length, so the product of the maximum
number of records and the record-length gives the solution. This figure can usually
be reduced by data-compression techniques, at the cost of extra programming time.
Sequential files, in which records can differ widely in length, obviously occupy space
in proportion to the average record length. Disk systems usually reserve some storage
for their own operating system, to hold directories and so on, and this must be taken
into account if space is short. In addition, the pair of disk drives in most systems are
operationally distinct, so that the data may have to be held in a subdivided form on
two (or more) disks. When this happens, it is of course important to ensure that each
disk independently has sufficient room for its own quota of information.

Testing systems is not particularly easy. (See Chapter 17 on this subject). The
writer, however, does at least have informed knowledge which should ease the pin-
pointing of likely errors. On the other hand such knowledge may simply result in un-
conscious or conscious avoidance of areas known to be suspect. For this reason, the
user is often asked to supply test data and try it in the system, and to check that its
results are correct. This process will often expose assumptions whichthe programmer
has wrongly made, but it is unreasonable to expect such testing to be thorough. There
may be parts of programs which are not tested; and systematic errors may not be re-
vealed, because the combinations of data which show up the error happen not to be
entered. Systematic errors, in which, for example, every 44th record is lost, or rec-
ords of length 254 are corrupted, or items on an invoice after the tenth are duplicated,
are nearly always caused by programming errors. Unfortunately the triggering combin-
ations of circumstances may be sufficiently complicated to produce errors apparently at
random. Apart from testing every part of each program at least once, and ensuring
that test data gives consistently correct output, commercial programming practice is to
try to minimise program errors by insisting on standard methods, heavy documentation,
and 'walkthroughs'. The latter are a kind of group criticism of a programmer's design,
as a result of which the programmer is supposed to improve his or her program. The
effectiveness of such methods remains in some doubt.
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CHAPTER 4: EFFECTIVE PROGRAMMING IN BASIC

4.1 Specific BASIC problems and solutions

This section deals with the following topics:

4.1.1 Subroutines and documentation 4.1.2 Checkdigits and checkletters

4.1.3 Codes 4.1.4 DATA: processing steps; relocation
4.1.5 Date processing 4.1.6 Error messages

4.1.7 Hard and soft coding 4,1.8 INPUT

4.1.9 The keyboard buffer 4.1.10 Numeral packing and unpacking
4.1.11 Rounding 4.1.12 RAM data storage

4.1.13 Searching 4.1.14 Sorting

4.1.15 String handling 4.1.16 Validation

4.1.17 Arrays

4.1.1 Subroutines and documentation Subroutines are used to handle an enormous
variety of processing tasks: setting scrolling windows on the screen, printing error
messages, inputting and formatting data, reading passwords, reading a record from a
disk file, and so on. If they are to be usable as standard subroutines, a certain
amount of documentation is helpful. The example converts a hexadecimal number into a
decimal, and prints the answer. All the variables used by the subroutine are listed,
with an example or two to illustrate the method of use. If the subroutine itself called
other subroutines, these too would be listed. Note that the documentation occupies far
more space than its routine.

REM*** ONE LINE HEXADECIMAL TO DECIMAL CONVERTER #*#%

REM

REM  CONVERTS STRING OF 4 HEX DIGITS INTO DECIMAL NUMBER AND PRINTS RESULT
REM USES J, L, L%, LS

REM ALL THESE ARE ALTERED BY THE ROUTINE

REM

REM ‘EXAMPLE OF USE:

REM L$="ABCD" : GOSUB 600 : PRINTS 43981

REM

REM

L=0:FORJ=1T04:LZ=ASC(L$):LZ=L2-48+(LZ>64)*7:L$=MID$ (LS, 2) :L=1 6*L+L2%:NEXT : PRINTL : RETURN

A similar decimal-to-hex conversion routine follows; this uses the same four variables,
but the relevant variable on entry is L, not L§$.

500 L=L/4096:FORJ=1T04:L2Z=L:L$=CHRS (48+L2Z~(L%>9)*7):PRINTLS$;:L=16*(L~LZ):NEXT:RETURN

4.1.2 Checkdigits and checkletters are (usually) suffixes, computed by an algorithm,
which are appended to important alphanumeric data. Typically, the data involved is a
reference number or some key number in a system. The composite data is made intern-
ally consistent, so that keying-in errors can be detected. As an example, consider
International Standard Book Numbers (ISBNs). These consist of 9 digits followed by a
checkdigit of 0-9 or X. The 9 digits are codes for the publisher and the title; the
checkdigit is computed by multiplying each numeral in turn by 10,9,8,..,4,3,2 and
adding the result. The remainder after division by 11, when subtracted from 11, is the
checkletter (except that 10 becomes X, and 11 becomes 0). It is true that any ten
random numerals have 1/11 chance of forming a valid ISBN, so the system is not fool-
proof. But the point is that the most common input errors are protected from entry to
the system, if the computer is programmed to test the checkletter. There are two
common typing errors: the first is the entry of a completely wrong single value (e.g.
7 instead of 1), and the second is the transposition of two adjacent keys. Because of
the system of weighting, and the use of the prime number divisor, either of these mis-
takes is entirely preventable. Another algorithm assigns 23 characters, A-W, as check-
letters, depending on the result of division by the prime number 23, As a refinement,
'0' becomes 'X' and 'I' becomes 'Y'.

Because this form of validation is easy to implement with computers (it is too
arduous for human operators) a checkdigit system may be well worth implementing;
without it, whole sets of data may be miskeyed because of some misunderstanding about
the layout of an item number or customer number.
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If ISBN$ is a string of nine numerals (without spaces), this routine computes the ISBN:

10 CT=0: FOR L=1 TO 9: CT = CT + (11-L)*VAL(MID$(ISBN$,L,1)): NEXT
20 CD$=STR$(11 - CT + INT(CT/11)*11): REM 11 MINUS REMAINDER OF CT DIVIDED BY 11

30 IF VAL(CD$)=11 THEN CD$=" O" : REM ALLOWS FOR CBM'S STRANGE STR$
40 IF VAL(CD$)=10 THEN CD$=" X"
50 PRINT ISBN$ + CD$ : REM FULL ISBN

4.1.3 Codes. BASIC logical functions use 16 bits in all. If we forget the negative first
bit, we can hold up to 15 on-off flags in a single real or integer variable. We can test
any single bit with:

IF FL AND 21N THEN ... :REM WHERE N = 0 TO 14

And we can reverse any bit, leaving the rest untouched, with:
FL = FL - 21N *(2*%((FL AND 2T™N)=0) + 1)

This technique is useful in storing, in a compact form, data which might otherwise be
written to a file as 'Y' or 'N', or some other pair of alternatives.

4.1.4 DATA: processing steps; and relocating DATA subroutines. The following coin
analysis program, which converts a number of wages/ salaries into their breakdown by
notes and coin, shows one method for dealing with irregular steps: the values, of
which there are seven here, are stored in an array:
10 DATA 7,10,5,1,.5,.1,.05,.01 :REM 7 U.K. DENOMINATIONS
20 READ NUMBER OF DENOMS: DIM CN(NU), QU(NU):REM COIN/NOTE DENOMS AND QUANTITIES
30 FOR J=1 TO NU: READ CN(J): NEXT :REM READ DENOMINATIONS INTO ARRAY
40 INPUT "NUMBER OF EMPLOYEES"; EMPLOYEES: DIM SALARIES OF (EMPLOYEES)
50 FOR J=1 TO EM: INPUT SALARY OF (J): NEXT
100 FOR J=1 TO EMPLOYEES
110 FOR K=1 TO NUMBER OF DENOMS
120 X%=SAL(J)/CN(K): SAL(J)=SAL(J)-X%*CN(K): QU(K)=QU(K)+X%
130 NEXT: NEXT
200 FOR J=1 TO NU: PRINT CN(J) "=" QU(J): NEXT
Strictly, to avoid any possibility of rounding error, line 50 could include
:SA(J) = SA(J) + CN(NU)/2: NEXT, adding in this example ip to each salary. Line
10 can be replaced by any currency combination, provided the denominations are in
order, and the first DATA value is the total number of denominations. Note that DATA
statements can be made relocatable; this avoids problems which can arise when new
DATA statements are inserted before existing ones. READ operates purely sequentially,
so the introduction of new data may spoil previously correct routines. One method is:
10000 REM STANDARD SUBROUTINE WITH 'DATA'
10010 RESTORE
10020 FOR L=1 TO 1E10: READ X$: IF X$<>"SEARCH M/C" THEN NEXT:REM READ 'TIL NAME
10030 REM *** READ DATA HERE ***
10040 RETURN
10050 DATA SEARCH M/C,100,0,45,34,66: REM ETC.

4.1.5 Date processing. We have three date routines here: the first calculates the day
the week given the date, the second calculates days-between-dates, and the third

2

1 REM *%xx%xx%%%%%%%%% ZEILLLER’S CONGRUENCE 3 %% % 3% 3% 3% 3 3 3 3 3 3 3 3 3 3% 3 96 3 3 3 3% 3 % % 3% % 3%
2 REM * FINDS DAY OF WEEK FOR ANY DATE *
3 REM 333336 % 3 363 36 963 3 3 3 3636 36 36 36 36 36 363636 36 3636 36 96 0 36 336 36 36 36 36 9696 3 36 36 36 969636 36 36 96 36 3 36 3 I 3696 36 36 36 36 36 96 3 % ¢
4 REM * ‘CENTURY’ IN ITALIAN SENSE: 19 FOR 20TH CENTURY *
5 REM #* IF WE ASSUME 19, LINE 50 BECOMES: *
6 REM * SO J = INT(2.,6%M - ,19) + D + Y +INT(Y/4) - 34 *
7 REM #* *
8 REM * DATES MAY BE TESTED FOR IMPOSSIBILITY BY AN ADDITIONAL ROUTINE =*
QD REM 996963 3636 36 3 3 96 36 36 3636 3 36 36 36 36 36 36 3 36 36 36 363 36 36 3 36 96 96 3 6 369636 36 6 36 36 96 3 36 36 36 36 36 3 36 96 96 36 3 36 36 96 36 36 36 I 36 3¢ 36 %

10 DATA SUNsMONs TUE; WEDs THUs FRI » SAT
20 FOR J = 0 TO &6: READ D$(J): NEXT :REM TABLE OF DAYS OF WEEK
30 INFUT "DAYs»MONTHs YEARs CENTURY"; DsMsYsC

40 M = M-2: IF M{1 THEN M=M+12: Y=Y-1: REM LEAP YEAR ALLOWANCE
SO0 J = INT (2.6%M - .19) + D + Y + INT(Y/4) + INT(C/4) - 2xC
60 J = J - INT(J/7)%7

70 PRINT D$(J)
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is a short validation routine, which checks that a combination of day, month and year
is valid, allowing for leap years (but not for 1600, 2000 etc. not being leap years).

ROUTINE TO CALCULATE NUMBER OF DAYS BETWEEN DATES

10 UATA ©,31,5%9,90, 120, 151,181,212, 243,273,304, 334: REM DAYS ELAFSED

15 DIM D(12)

20 FOR J=1 TO 12: READN D(J): NEXT: REM DAYS ELAFSED BY MONTH: NOT LEAP YEAR
7?9 REM +%# NOTE U.S. USAGE IS MsD,Y BUT U.K, USAGE IS D,M,Y %%

100 INPUT "DATEL1": N»M,Y: GOSUB 2000

105 DX = DE

110 INFUT “DATEZ"; DsMsY: GOSUB 2000

115 Iy = DE

116 FRINT DY-DX

120 GOTO 100

1990 REM 3385 88 HH KR HMRK R XI5 3 9309963609636 3696 36 3606936 0696 3696 96 96 3696 3696 36 36 96 36 .36 3

1991 REM * DAYS ELAFPSED BETWEEN DATES SUBROUTINE. THIS FUNCTION COMPUTES *
1992 REM * DAYS SINCE AN ARBITRARY EARLY DATE IN THE CENTURY, USING *
1993 REM # DAY OF MONTH + DAYS ELAPSED DURING YEAR + DAYS IN CENTURY *
1994 REM * WITH CORRECTION FOR FAST: AND FOSSTBLE PRESENT, LEAP YEARS. *
1995 REM 336535656 % 3 3 8 305 363630 3069 38 136 3636 3636 36 369696 36 36 369696 36 36 36 369696 36 36 36 9636 3636 96 36 96 3696 36 36 36 9 36 36 36 969636 4 %
2000 DE = D+ D{M> + 365%#Y + INT ((Y-1)/4) - ((INT(Y/4)%4=Y) AND (M}>2))
2010 RETURN

6200 OK=-1 AND Y>81 AND Y<85 AND M>0 AND M<13 AND D>0 :REM Y,M,D INTEGERS ONLY
6210 OK=0K AND D<32+(M=4 OR M=6 OR M=9 OR M=11)+(M=2)* (3+INT(Y/4)*4=Y))

Line 6200 tests for a year of '82 to '84; obviously other values may be substituted.

4.1.6 Error messages are used to signal to the operator that an error has been made.
This short routine prints the message in reverse at the bottom of the screen, then
deletes it after a short delay. EM$ holds the message, (e.g. 'IN SALES CODE' or
'INVALID DATE'), which is preceded by *** ERROR on the screen:

12000 rem ** error message (max.length 19) with delay loop and remove **

12005 print"[home][down][down][downl";:for1=1to10:print"[right][down][down]"; next:print
"[revs]*** FRROR "em$" [rvsol";

12010 for 1=1 to 2500:next

12020 forli=1tolen(em$)+11:print"[left] [lef+I";:next

12025 return

4.1.7 Hard and soft coding. 'Hard coding' means that important parts of a program use
constants; 'soft coding' means variables are used. Soft coding is usually easier to mod-
ify, but slightly more trouble to write. See the second example under MID$ in Chapter
5 as a specimen. Section 4.1.4's coin analysis program, in which a simple change in a
DATA statement can convert a program to run with any set of currency denominations,
illustrates the same lesson.

4.1.8 INPUT of data. Chapter 5 (under INPUT) and Chapter 2 outline the problems of
the ordinary INPUT statement, and include cures, notably for the crash when Return
alone is pressed. (The easiest solution is POKE 3,1 or POKE 14,1 or POKE 16,1 for
BASICs 1,2, and 4 respectively).

In order to input commas within strings, elaborate techniques using GET are
necessary, of which the following is an example. When GOSUB 70 is called within a pro-
gram, a reasonably crashproof input results (with a flashing cursor), returning the
string as ZZ$. Line 76 allows for the 'delete' key. As we shall see on the next page,
this subroutine is a very small-scale version of a completely watertight INPUT.

69 REM #% SPECIAL INPUT ROUTINE FOLLOWS: WHICH RETURNS STRING ZZ$ %*%*
70 ZZ$ = "": POKE 548:0 & REM LOCATION=167 wirt BASIC 2 & BRSC 4o (FLASHES CuRsoR),
72 GET ZA%$: IF ZA%$="" THEN 72

74 IF ASC(ZA$) 13 THEN PRINT" ";: FOKE 548:1: RETURN

76 IF ASC(ZA%$) = 20 THEN GOTO 84

78 211% = 171%+1A%

80 PRINT ZA%:

82 GOTO 72

84 IF LEN(ZZ$) » 1 THEN ZZ$=LEFT$(ZZ%$,LEN(ZZ%)-1): GOTO 80

86 IF LEN(ZZ$%) = 1 THEN ZZs%="" : GOTO 80

88 GOTO 72
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The BASIC routine on the next page (not for the faint-hearted!) is a successful input
routine which is fully parameterised and has the following characteristies:
VARIABLES 'F' prefix refers to screen format:
FT=TOTAL NUMBER OF ITEMS TO BE INPUT FROM THE SCREEN
FC=NUMBER OF CURRENT ITEM; ALWAYS <= FT & FL=LOWEST ITEM INPUT
FH%(), FV%(), FL%(), and FS$() hold horizontal position and vertical
position of start of item/ maximum length/ type of field. The 'type’
may be a string ("S"), integer ("I"), or 2-decimal point number ("N")
'J' prefix refers to input from screen:
JH, JV, JL, and J$ = current horizontal, vertical, length, and type.
J1$ is a single character, J1 its ASCII value, and JS$ the current
input being built up. J$() holds the array of FT inputs from the
screen. Finally, JD is a decimal-point counter.
SUBROUTINES 100 HTAB & VTAB USING JH & JV COORDINATES; SEE CHAPTER 5

120 GET NON-INITIAL CHARACTER WITH FULL VALIDATION
140 NUMERAL PROCESSING ROUTINE (ENSURES DEC. PT. CORRECT)
160 GET INITIAL. PERMITS USE OF '<' AND '>' FOR BACK/FORWARD STEP
190 REPRINT 2 D.PT. NUMBER, ADDING '.' AND ZEROES IF ABSENT
200 PRINT 'CURSOR', A SINGLE GRAPHICS CHARACTER
220 DELETE SINGLE CHARACTER, REPLACE WITH SPACE
250 **% INPUT ROUTINE *x*
300 PROCESS STEPS: '<' BACK, '>' FORWARD, WHERE POSSIBLE

The length of each variable is defined, so screens of the sort illustrated in section
9.3 can be used - there is no need to follow each input by a blank line. Short dem-
onstration routines (below) show how the routine is used. Unfortunately, flexibility in
input is not very easy to achieve. The routine ignores characters which are not num-
erals, alphabetics or punctuation. The double-quote (") is ignored, and must be re-
placed by the single quote ('), because of problems which may arise in strings which
contain a quote. All upper-case keys are ignored, except for alphabetics; shift-space
is converted to space, and shift-return to return. In this way, fields which are to be
compared or searched, which may appear different to the computer because space (AS-
CII 32) is held differently from shift-space (ASCII 160), are held correctly, and shift-
return, which typists naturally regard as identical to return, is treated as a normal
return. The 'cursor' is a static graphics character, which does not flash. It can be
controlled by the keys '<' and '>', which step through the fields on the screen either
back or forwards. The cursor control keys are not used, since they are unfamiliar to
typists. The previous values entered in each field are displayed, to be overwritten by
new values if desired (but not otherwise), which speeds input. Finally, input of integ-
ers allows only 0-9; input of strings allows all alphanumerics and punctuation marks;
and input of real numbers assumes two decimal places, and will not allow input which
infringes this. For example, if the length of a number is specified as 6, 999.99 is the
largest number which may be input; the attempt to enter 9999 will be disallowed. The
decimal point, followed by 00, is automatically inserted if omitted.

The first part of the example program defines six inputs; these are (i) a single
letter, which must be A or B; (ii) three integers of maximum length 2, which make up
a date; (iii) a string of length 25, perhaps a name or comment; (iv) a string of max-
imum length 3, which, if 'YES', causes the screen of data to be accepted, and process-
ing to continue. (Otherwise, '<' is used to go back to amend some entry). In practice,
thirty or so separate entries can be made easily from a single screen.

10000 DATA S,I1,I1,I,S,S :REM TYPES. NOTE THAT N=2 DECIMAL PLACE NUMBER.

10010 FOR J=0 TO 5: READ FS$(J): NEXT :REM FILL ARRAY OF TYPES

10020 DATA 1,2,2,2,25,3:REM LENGTHS OF EACH INPUT

10030 FOR J=0 TO 5: READ FL%(J): NEXT :REM FILL ARRAY OF LENGTHS

10040 DATA 20,10,13,16,4,3 :REM HORIZONTAL START POSITIONS - TYPICAL VALUES
10050 FOR J=0 TO 5: READ FH%(J): NEXT :REM FILL ARRAY OF HORIZONTAL POSITIONS
10060 DATA 2,5,5,5,10,24 :REM VERTICAL START POSITIONS - TYPICAL VALUES
10070 FOR J=0 TO 5: READ FV%(J): NEXT :REM FILL ARRAY OF VERTICAL POSITIONS

This routine must be run before any input takes place. A further subroutine prints
the screen details from which the input will be made: again, see section 9.3 for a
screen layout, which incorporates variables. Assuming the strings are stored in the
array J$(), as in the example following, the screen printing subroutines looks like
this:
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100 REM HTAB, VTAB USING JH AND JV COORDINATES; THEN RETURN
120 GET J1$: IF J1$="" THEN 120
122 J1 = ASC(I1$)
124 IF J1>127 THEN IF J1<193 OR J1>218 THEN J1=J1-128:J1$=CHR$(J 1)
126 IF J1 = 13 OR J1=20 THEN RETURN
128 IF J$="S" THEN IF J1<32 OR J1=34 THEN J1$="":RETURN
130 IF J$="I" THEN IF J1<48 OR J1>57 THEN J1$="":RETURN
132 IF J$="N" THEN GOSUB 140
134 RETURN
140 IF J1<46 OR J1>57 OR J1=47 OR (JD>0ANDJD=LEN(JS$)-2) THEN J1$ = ""
142 IF JD>LEN(JS$) THEN JD=0
144 IF J1=46 AND JD<=LEN(JS$) AND JD>0 THEN J1$=""
146 IF J1=46 AND JD=0 THEN JD=1+LEN(JS$)
148 IF J1=46 AND JD>JL-2 THEN J1$=""
150 IF J1<>46 AND JD=0 AND LEN(JS$)>JL-4 THEN J1$=""
152 RETURN
160 GET J1$: IF J1$="" THEN 160
163 J1=ASC(J1$):IF J1>127 THEN IF J1<193 OR J1>218 THEN J1=J1-128:J1$=CHR$(J1)
166 IF J1=13 OR J1=20 OR J1=60 OR J1=62 THEN RETURN
169 IFJ$="S"THEN IF J1<32 OR (J1>127ANDJ1<160) OR J1>223 ORJ1=34THEN J1$ = ""
172 IF J$="I" THEN IF J1<48 OR J1>57 THEN J1$=""
175 IF J$="N" THEN IF (J1 <> 46 AND J1<48)OR J1>57 THEN J1$ = ""
178 IF J$="N" AND J1=46 THEN JD= 1
181 IF J1$="" THEN 160
184 RETURN
190 IF JD=0 THEN JS$=JS$+".":PRINT"."; :JD=LEN(JS$)
192 IF JD>LEN(JS$)-2 THEN JS$=JS$+"0":PRINT"O0";:GOTO 192
194 IF LEN(JS$)<JL THEN FOR L = LEN(JS$)TOJL-1:JS$=" "+JS$:NEXT
196 RETURN
200 PRINT" [LEFT] [REVS]4 [RVSO]"; : RETURN
220 GOSUB 100: PRINT"[LEFT] ";: RETURN
247 REM
248 REM ** INPUT ROUTINE FOR STRINGS, INTEGERS, & 2 D.P. NUMERALS
249 REM
250 Js$="": JD=0: JH=FH%(FC): =FV%(FC): JL=FL$(FC): J$=FS$(FC)
253 GOSUB 100: GOSUB 200: GOSUB 160
256 IF J1=13 AND JS$="" THEN GOSUB220:GOT0250
259 IF J1=60 OR J1=62 THEN GOSUB300:GOT0250
262 IF JS$="" THEN FOR L = 1 TO JL:PRINT" ";:NEXT
265 IF JS$="" THEN FOR L = 1 TO JL:PRINT" [LEFT]"; : NEXT
268 IF J1=13 AND J$="N" THEN GOSUB 190: GOTO 277
271 IF J1=13 AND J$="I" THEN GOSUB 194: GOTO 277
274 IF J1=13 AND LEN(JS$)<JL THEN FOR L = LEN(JS$)TOJL-1:JS$=JS$+" ":NEXT
277 IF J1=13 THEN GOSUB 220: RETURN
280 IF J1 = 20 THEN IF LEN(JS$) < 2 THEN PRINT "[LEFT] [LEFT]": GOTO 250
283 IF J1 = 20 THEN JS$ = LEFT$(JS$, LEN(JS$) —-1):PRINT "[LEFT] [LEFT]";: GOTO 295
286 IF LEN(JS$)>=JL THEN J1$=""
289 Js$ = JS$ + J1$
292 PRINTJI1S$;
295 GOSUB 120: GOTO 268
300 GOSUB 220
305 IF (FC=FL AND J1=60) OR (FC=FT AND J1=62)THEN RETURN
310 IF J1=60 THEN PRINTJ$(FC):FC=FC-1
315 IF J1 =62 THEN PRINTJ$(FC): FC=FC+1
320 RETURN

Parameterised crashproof ''NPUT' routine

2000 PRINT "[CLEAR]J[RVS] TITLE [RVSOFF]

2010 PRINT : PRINT " ENTER TYPE (A or B): "; J$(0)

2020 PRINT : PRINT : PRINT " DATE: "; J$(1); J$(2); JI$(3)

2030 PRINT : PRINT : PRINT "[RVS] ENTER FULL NAME:- [RVSOFF]": PRINT " "J$(4)
2040 PRINT "[DOWN][DOWN] ...[DOWN] Check: Entry OK? "

This method is useful where repeat entry of data is wanted. If the data is one-off, or
the previous values aren't carried over from entry to entry, the screen will be similar,
but the expressions in J$() will be omitted, as J$(5) is here (because its only function
is to wait for 'YES').

Finally, in addition to these preliminary routines, the actual input itself is made
by a loop; this is necessary to permit free movement between fields during input. The
example should make the process, and the inbuilt possibility of extravalidation in add-
ition to that by type, reasonably clear:-
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1000 GOSUB 2000 :REM PRINT SCREEN

1010 FC=0: FT=5 :REM SET LOW/HIGH LIMITS
1020 GOSUB 250: OK=-1 :REM GET INPUT FROM SCREEN
1030 IF FC=0 THEN IF JS$<>"A'" AND JS$<>"B" THEN OK=0:REM VALIDATE FIRST ITEM
1040 IF FC=1 THEN DD$=JS$ :REM DDMMYY ASSUMED HERE
1050 IF FC=2 THEN DM$=JS$ :REM VALIDATION ROUTINE CAN
1060 IF FC=3 THEN DY$=JS$: :REM BE USED (SEE 4.1.5)
1070 IF FC=4 THEN GOSUB 500 :REM SOME SORT OF VALIDATION, SETTING OK=0 OR -1
1080 IF NOT OK THEN GOTO 1020 :REM REINPUT IF NOT OK

1090 IF FC=FT AND JS$="YES" GOTO 1500 :REM EXIT AT BOTTOM OF SCREEN
1100 IF FC=FT THEN GOTO 1020 :REM CARRY ON IF NOT "YES"
1110 J$(FC)=JS$ :REM STORE VALUE IN J$()
1120 FC=FC+1: GOTO 1020 :REM CARRY ON WITH NEXT ITEM

1500 REM CONTINUE PROCESSING WITH FULLY-CHECKED DATA

Single-character input fills RAM remarkable rapidly, so BASICs earlier than 4 will give
trouble with memory-freeing if there are many strings in use. (See FRE, and Chapter
2). Suppose we input ABCD. Two sets of strings build up in memory, so RAM looks
like this: ABCDDABCCABBAA, where each individual GET takes one byte, and each
composite string takes up one more byte than it did previously. A little algebra gives
in(n+3) bytes for a string of length n. So a 25-byte entry uses 350 bytes. At this
rate, automatic FRE in memory occurs often. If this is a problem, as it may be when
using BASIC<4, palliatives vary from restructuring the program so that data is held in
RAM by poking and peeking, to holding several strings as one, separating out the
individual strings with MID$ when they're needed. (If the number of strings is reduc-
ed to one-third of its previous value, garbage collection is about nine times faster).An
alternative is to temporarily dissociate the bulk of string variables: In BASIC 2, this
means the contents of ($34) are replaced temporarily by those of ($30), moving the
'top of memory' to the 'bottom of strings'. Only those variables used in the routine are
affected by FRE, which is usually much faster. To recover the remaining strings, the
original top of memory pointers must be replaced. The addresses in decimal are 52 and
53 ('top of memory') and 48 and 49 ('bottom of strings'). BASIC 1's pointers are diff-
erent (see Ch. 15). NOTE: see Ch. 17 for Commodore's 'Standard data entry environment'.

4.1.9 The keyboard buffer is dealt with in Chapter 8, section 8.8. Chapter 5 also
has some examples: see AUTO and DEL, amongst others. This example is a routine to
convert machine-code into DATA statements, for later use as part of a machine-code
loader. After the input of the start and end addresses - obviously necessary - and
the starting linenumber, data statements are printed on the screen and incorporated
in BASIC in direct mode. The key to the program is to note that line 60030's END does
not actually end the program; a [HOME] and two Returns are forced into the keyboard
buffer, and since the screen holds something like this:

63000dA169,0,133,148,169,32,133,2,165,0,
201,80,176,86,165,1,201, 50,176, 80, 169
1= 63000+1: s= 847: E=903: goto 60000

on END, the cursor is homed and two returns entered; the effect is identical to that
achieved by entering these three keys at the keyboard. Values are for BASIC>1.

1 print"(clear]DATA STATEMENT GENERATOR

10 inputh"start location";s

20 inputvend location";e

30 input"iinenumber®;|

60000 print"iclear]™mid$(str$(1),2)"dA"; :g=peek (54)+256*peek (55)

60010 forj=s to e

60020 ifpos(0)+peeck(196)>7Tthenprintt[left] ":print"lhomel {down][down]I="|"+]:5="j":e="e
ll:pofo" .

60030 i:pos(g)+peek(I96)>77fhenpoke623,19:poke624,I}:poke625,I}:pokelﬁﬁ,}:end

60040 printmid$(str$(peek(j)),2)",";

60050 next

60060 printt[left] ":poke623,19:poke624,13:poke158,2:end

4.1.10 Numeral packing and unpacking is a space-saving measure, sometimes useful
when disk space is Iimited. It is also rather time-consuming to implement, and slows
down the program's running to some extent. Two complementary subroutines (next
page) convert a numeral string (e.g. "12345"), held as NS$, into a packed form NPS$,
and vice-versa. In effect the number is stored to base 100. Lines 80 and 410 contain
32; the object of this is to avoid some codes, e.g. CHR$(0) and CHR$(13), which may
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not store successfully.
1+ UNPACK FPACKED STRING NP$ INTO INTEGER NS%:

B8O NB$ = "": FOR L = 1 TC LEN (NPs): NI$ = STRE(ASCIMIDE(NFE, Ly 1))-32)
82 IF LEN(NI#){3 THEN NIs=" 0" + RIGHT#®#(NI$,LEN(NI$)-1): GOTO 82
84 NS$ = NG$ + RIGHTH(NI$,2): NEXT L: RETURM

2, PACK INTEGER STRING NS$ INTO FACKED STRING NF$:

400 NP$="": TF INT(LEN(NS$)/2)%2 () LEN(NS%} THEN NS$=CHR$(32) + NE%
405 FOR L = 1 TO LEN(NS$) STEP 2

410 NPE = NP$ + CHRS(VAL(MIDS(NS$:L,2))+32)

415 NEXT L

420 RETURN

DEMONSTRATION ROUTINE:

1000 INPUT NS$: GOSUB 400: PRINT"PACKED VERSION IS "NF%
1010 GOSUE 80: FRINTUNPACKED VERSION IS "NS4%
1020 GOTO 1000

PACKS NUMBERS OF FORMAT 99799.99 WITHOUT THE DECIMAL POINT:

480 NS$= LEFT$(ND%,5) + RIGHT$(ND%,2)
484 GOSUB 400
488 RETURN

4.1.11 Rounding is the process of converting and representing a number in a less
accurate, but more convenient, form: $10 plus 15% is $11.50; $10.45 plus 15% is
$12.0175; to two decimal places these are 11.50 and 12.02 respectively. (I have not
considered the question of relative accuracy here, i.e. accuracy to a certain number
of significant digits). A good rounding routine may format the number to a known
length with leading spaces, insert (for example) '.00' after a plain integer, and put in
a leading zero in the case of numbers less than 1. Poor routines may put the decimal
point in the wrong place, produce spurious values, or print characters like 'E', on
occasion. Alignment may be difficult, and zeroes not treated as a special case.

DEF FN P(X) = INT(LOG(ABS(X)+.001)/L0OG(10))

is intended to calculate the number of places before the decimal point; but there may
be very occasional errors in the calculations of the logarithms. This expression:

DEF FN R(X) = INT(100*X + .5)/100

rounds X to the nearest 2 decimal places: adding .5 has the effect of converting a
number with decimal component greater than .5 into the next highest number on INT.
This, on PRINT X, gives the usual 1.3 (not 1.30) for 1.3, and 1 (not 1.00) for 1.
The following more comprehensive routine is intended to round and format numb-
ers as suggested above. Apart from intermediate variables, the routine uses L to store
the number to be rounded, RQ ('rounding quantity') as a measure of accuracy, and
L2 to determine the type of rounding. RQ=100, for example, rounds to 2 decimal places,
and RQ=1000 to 3. When RQ=100, L2=.005 rounds to the nearest; L2=0 rounds down;
and L2=.995 rounds up.

92 L=INT(L*RQ+L2)/RQ: JS$=STR$(L): JIS$=MID$(JS$,2)

93 JL=LEN(JS$): IF JL>2 THEN IF MID$(JS$,JL-2,1)="." GOTO 96

94 IF JL>1 THEN IF MID$(JS$,JL-1,1)="." THEN JS$=JS$+"0": GOTO 96
95 JS$=JS$+".00"

96 IF LEFT$(JS$,1)="." THEN JS$="0"+JS$

97 IF LEN(JS$)<11 THEN FOR J=LEN(JS$) TO 10: JS$=" "+JS$: NEXT

98 RETURN

Line 92 computes a rounded string, without a leading space.

Line 93 branches on numbers like 123.45, 9999.99, 1.23, and .67.

Line 94 adds a zero to numbers like .5, 123.4, and 99999.9.

Line 95 converts integers to 2 dec. pt. form, e.g. 1234 into 1234.00.

Line 96 adds a leading zero to numbers like .5, .12.

Line 97 adds leading spaces up to a predetermined length (11 characters here).
The routine is intended for positive numbers > .01.
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BASIC rounding routines always have a residual uncertainty about them, because the
effects of rounding by the calculation routines aren't certain. Chapter 5's PRINT
USING avoids this difficulty, since it edits the number before output; it is also faster.
Whenever a rounding routine is to be used, unless it has been previously tested, it is
good practice to write a test routine to generate numbers to be rounded; either at
random or in a sequence. It is usually impossible to test each individual value.

4.1.12 RAM data storage has two forms: data may be poked and peeked in some fixed
part of RAM, typically near the top, or it may be processed by arrays in the normal
way, but differ from normal file-handling in being loaded and saved directly from RAM.
The first method is useful in association with machine-code: a set of names, key numb-
ers or indexes can be searched in RAM virtually instantaneously, cutting down on disk
or tape use. The second approach also cuts down on input/ output, and, provided
that the whole of a batch of data fits RAM, can lead to very efficient processing; for
example, a 10K program can coexist with (say) 10000 integers stored in 20K of arrays,
and both the program and data could be loaded from tape, providing economical pro-
cessing of quite a large amount of data. The technique is fairly tricky. As we saw in
Chapter 2, the program starts in RAM at $0400 and is followed by a block containing
all the variables, string pointers, and function definitions so far encountered in the
running of the program; after this comes a block of arrays and string array pointers.
If we have integer arrays only, and if every variable is set up already, the position
of the integer arrays is known, so that they can be saved and reloaded freely. Pro-
grams using this method will have a layout of this sort:

Set (or LOAD) pointers to the correct positions for variables and arrays
LOAD stored arrays of data

Menu

The first time round, with no variables in memory and no data yet on disk, a starting
up procedure is necessary. This involves (a) entering all the variables in direct mode
in optimum sequence, e.g. J=0:KK=0:IN$="", (b) Dimensioning all arrays. (¢) GOTO
the line after 'LOAD stored arrays of data'. The menu will be displayed, and all the
variables are in place. The program must be STOPped to peek the pointers needed to
save and to reload. If the program is edited, this process will have to be repeated,
since the position of the data varies with the program length.
Section 4.1.17 has an example of this method in use.

4.1.13 Searching is necessary whenever a file structure provides no way of calcul-
ating the position of a record. Chapter 6 has a long section on disk files, which looks
at this problem. With CBM disks, 'relative files' (accessed by record number) or dir-
ect access files (which must be specially written) enable a record to be found very
rapidly; sequential files of any length are much slower. But often the record number
of a relative file may not be known, or may be less convenient than (say) entering a
name or phone number and waiting for the corresponding record to be read. Chapter
6 explains how such files may be subdivided, so the searching process is accelerated.
We may distinguish between searches in RAM and those which read data from
disk. In the first type, machine-code searches are so fast that the data need not be
ordered or arranged in any way. It is fast enough, normally, to scan from the start
to the finish, without elaboration. Section 6.7 has a fairly long example, including both
BASIC and a machine-code subroutine. However, when searching from disk, this may
be too slow. As we saw in Chapter 3, under these circumstances a search which con-
verges on the sought value is usual. The 'binary chop' is the best-known, and is easy
to program. (The 'Fibonacci search' is faster, but less easily programmed). It requires
that its data be in sorted order. This diagram shows how the convergence takes place:

ITEM NUMBER IN SEQUENCE: 1 2 3 4 5|6
NUMBER OF SEARCHES TAKEN: |4 3 4 5 2|5

using the algorithm on the next page, and applying it to 20 items of data. We can cal-
culate the average number of searches used by the binary chop, by amount of data:

NUMBER OF ITEMS OF DATA: 50| 100 | 200 | 500 [1000| 2000 | 4000|9000
AVERAGE NUMBER OF SEARCHES: 5 6 7 8 9 10 11 12

9 10|11 12 13 14 15/16 17 18 19 20
5 1/ 4 3 4 5 2( 4 5 3 4 5

7 8
3 4
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b Input and validate item to be searched for (say, K$ = key item).
N1 and N2 set to current low and high record numbers
y R = INT((N1+N2)/2) :REM CALCULATE NEW MID-POINT
. Read the appropriate field of record no. R; say R$
IF R$=K$ GOTO 2z :REM FOUND IT!
IF N1>=N2 THEN PRINT "RECORD NOT ON FILE": GOTO x:REM NON-EXISTENT
IF R$>K$ THEN N2=R-1: GOTO y :REM REVISE UPPER LIMIT DOWN
N1=R+1: GOTO y :REM REVISE LOWER LIMIT UP
z Continue processing the record

This schematic program of the binary chop search is, I hope, self-explanatory. Nland
N2 converge, sandwiching the correct value of R between them. Note that records
needn't be disk-based; they could as easily be a sorted array in RAM, in which case
the test line would read IF R$(R)=K$ GOTO z. Try out this technique before implem-
enting a large system, generating test-data with a program, and timing the result. It
may be too slow, depending on the disk system and size of file.

4.1.14 Sorting is an important operation in commercial data processing. (COBOL has
a SORT verb). Chapter 5 has a collection of routines, mostly in BASIC, with notes.
The first example, the 'tournament' sort, is unlike all the others in computing individ-
ual results singly, so that results can be printed continually, before all the values
are ordered. Most sorts wait until the entire batch of data has been ordered, and
this can be irritating to wait for and slightly worrying, as the machine may appear to
do nothing for long periods. The'bubble' sort has achieved fame through being very
slow. It operates by checking neighbouring values in the array, interchanging those
which are out of sequence, and repeating this process until the sort is guaranteed, or
until any pass takes place without a transposition, depending on the algorithm. That
in Chapter 5 (section 5.3) has a test in line 620 which uses a 'finished' flag. The sort
is assumed to be in ascending order, and after every pass another value is positioned
at its correct value at the 'top' of the heap, unless, with a partly-sorted set of data,
many items are simultaneously sorted. To illustrate the idea, seven figures in the left-
hand column are shown sorted (in five passes) in the right-hand column.

Starting at the bottom of the set of data, each

A A item is compared with its immediate neighbour
7 4 6 6 6 . ep ie s
1 6 a 5 5 and interchanged if it is out of sequence. The
- process is repeated to a distance up the data
3 1 5 4 4 . .
= which depends on the previous number of
5 3 1 3 3 . . .
passes; the underlined digit represents the top
2 5 3 1 2 e el . .
6 2 2 2 1 limit in each pass. With n items of data, a

maximum of n + (n-1) + (n-2) + ... passes is
required, making about in2? in all. On this basis it is often said that the bubble sort
takes time proportional to the square of the number of items to be sorted. However,
the correct time is very sensitive to partial ordering of the data. The graph at the
end of SORT shows that new items, added to an already sorted array, then bubble
sorted together, is very fast; in fact, under these circumstances, the bubble sort is
one of the fastest possible, since it does little more than check that each item is corr-
ectly related to its neighbour, which is necessary in any sorting system. The machine-
code sort operates on string arrays, changing the pointers where appropriate, and
using the identical comparison to that of BASIC, for consistency. It does not sort the
zeroth element, which can therefore be used as a title or reminder. If new items are
to be sorted in, keep a number of null or blank elements at the start of the array.
As the diagram illustrates, high values (e.g. 6) can rise quickly from the bottom, but
low values (e.g. 1) are slow in descending. Note finally that the machine-code can be

made to sort from the second, third, ..., characters of the string, rather than the
first, by changing $FF in $032E (BASIC 1), or $7FB6 (BASIC>1) to 0 (second), 1
(third),... A demonstration BASIC routine is provided with the machine-code. Of the

other sorts, the Shell-Metzner and Quicksort are well-known; the former performs many
small bubble sorts on longitudinal subsets of the data; the latter compares data with a
'pivot value', putting the result into one or other 'stack' depending on the result. It
may run out of space; if so, dimension the array in line 40 with a larger value. The
'scatter' sort is an attempt to mimic human sorting: a subsidiary array is used, into
which data is first roughly sorted, on some a priori basis, for example with the As at
the beginning, Zs at the end, and others in between. Then this array is sorted thor-
oughly. Its use of RAM is too great to permit the method to be very useful on micros.
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4.1.15 String handling. CBM BASIC has three closely related string functions, LEFTS$,
MID$, and RIGHT$, each of which extracts a substring from a string. Chapter 5 has
examples of the use of each function, and an additional function INSTRING$, which
helps illustrate machine-code string handling. Strings can be represented by variables
or literals (e.g. X$ or "XYZ"), and also by the type-conversion functions CHR$ and
STR$. Substrings can be concatenated (=chained) together with the binary operator
'+', and in fact any conceivable rearrangement of strings is possible with + and the
LEFT$, MID$, and RIGHT$ commands. In many cases, MID$ alone can be used. Note,
however, that a string's length cannot exceed 255 bytes, because of the storage method
used by BASIC. Typical string processing includes the following:

(i) The use of extended, composite strings. The components need not be the
same length, but for ease of programming this is usual.

x$=""ppPSundaypppMondayppTuesdayWednesdaypThursdaypppFridaypSaturday"

print mid$(x$, (d-1)*9+1,9)
Each substring is 9 bytes long (B represents one space character), because the long-
est component is "Wednesday". The second expression prints a substring of length 9
corresponding to the d'th day's name, where d=1 to 7.

(ii) Padding a string with leading or trailing spaces, so that alignment is auto-
matic on printing out. The obvious way is to add individual spaces:

FOR J=LEN(S$) TO 19: S$="p"+S$: NEXT :REM PADS STRINGS OF LENGTH <20 TO 20
A quicker and more elegant way (which also uses less RAM, and is therefore better
with BASIC<4) is to add the entire substring in a single chunk:

S$ = LEFTS$ ("BEBPEEEEEEEEBBEE", 20-LEN(S$)) + S$: REM PADS STRING TO LENGTH 20

(iii) Scanning a string for certain alphanumerics. In such activities as checking
a response for accuracy in foreign-language (or English!) teaching, and playing hang-
man, a FOR ... NEXT loop can examine the string. Let's consider hangman, the word=
matching game, where W$ is the target word, L$ a guessed letter, which, if it exists
within W$, appears in the display D$. Typically, W$ will be selected by some such
routine as this: RESTORE: FOR J=1 TO RND(1)#*201: READ W$: NEXT: REM ASSUMES 200 WORDS
Then D$ is generated with: D$=LEFT$("---———=———o-—oecuu—— " ,LEN(W$)). This gives a
string of hyphens of the same length as the target word. We now put: D$="g"+D$+"B",
which is a slight subtlety, enabling us to use only single-line processing, without
having to take account of special cases when the first or last letter has been selected.
Now, for each letter L$,

FOR J=1 TO LEN(W$)

IF L$=MID$(W$,J,1) THEN GOSUB x: PRINT "[HOME]D$ :REM ASSUMES DISPLAY AT TOP

NEXT
W$ is scanned from beginning to end; if a match is found, the string D$ is revised and
printed over its previous value. If a letter occurs several times in W$ the process re-
peats, but is fast enough for the process not to be visible. The subroutine which up-
dates D$ has to insert L$ within D$ at the correct position defined by variable J:

x D$=LEFT$(D$,J) + L$ + RIGHT$(D$,LEN(D$)-J-1): RETURN

(iv] Note on BASIC 4: A rare bug may occur when concatenating more than two

strings, and when fewer than $300 bytes of RAM are free; the string is corrupted.

4.1.16 Validation is the process of checking that data is of the correct type, without
necessarily guaranteeing the actual value. A date 19/19/82 is invalid, but if it is accept-
ed may cause processing errors, and so will be rejected by most systems. The date
3/5/82 is valid, but may not be correct. Similarly, '20' may be an acceptable entry for
a sum of money, but 'twenty' may not.

The simpler forms of validation repeat the request for data in the event of an
incorrect entry:

100 INPUT "DISK DRIVE NUMBER"; D$ :REM D$ WILL ACCEPT ANYTHING

110 D=VAL(D$): IF D<>INT(D) OR D<O OR D>1 GOTO 100 :REM INTEGER O OR 1 ONLY.
More sophisticated checking may include error messages (see 4.1.6) and soft-coding to
enable acceptable entries to be modified. This batch of subroutines has tests for four
variables, and was used with a crashproofed INPUT routine:

500 if js$="Y" or js$="N" then return

503 ok=0:em$=" Y or N only" :gosub 800: return

510 ni$="ABCDEFGJKMPTYWX": for I=1 to len(ni$):1f Js$=mid$(ni$,|,1) then return
513 next: ok=0:em$="in sales code":gosub800:return

520 ni$="04123": for I=1 to len(ni$): if Js$=mid$(nl$,1,1) then J5=1: return
523 next: ok=0: em$="In VAT code":gosub800: return

530 if (asc(js$)>192 and asc(js$)<219) or asc(js$)=32 then return

533 ok=0: em$="in Foreign code":gosub800: return



Programming the PET /CBM -33 4: Effective BASIC

4,1.17 Arrays (subscripted variables) provide a powerful extension to the usual sys-
tem of simple variables, and are well worth mastering for any serious application. The
principle is to provide a whole series of strings or numbers with a single name, using a
subscript to distinguish the separate elements. Chapter 5 (see DIM) has information on
the use of arrays; Chapter 2 explains their storage methods and the pointers which
keep track of the data. Arrays of numbers, subject to their own rules of addition, sub-
traction and multiplication, are called 'matrices': see Chapter 16 on this. We can think
of arrays as belonging to one of two classes: 'one dimensional' and 'multi-dimensional’.
The latter are conceptually more difficult, so it makes sense to start with the first type:-

One-dimensional arrays are variables with a single subscript, which may take any value
from 0 to the dimension of the array in DIM. (If no DIM statement was used, a default
value of 10 is assigned). Unless an item is specifically assigned a value, it will be
stored as 0 (numeral) or the null character (string array). The array can be visualised
as a set of consecutively-numbered pigeon-holes, which are filled with a data-item, num-
eric, integer, or string, by the usual methods of assignment.

10 INPUT N: DIM A$(N): FOR J=0 TO N: INPUT A$(J): NEXT
inputs the size of the array, then a series of elements to fill it, and can be regarded
as the array version of INPUT. Similarly the stored results can be output by

20 FOR J=0 TO N: PRINT A$(J): NEXT
A typical application of these arrays is the /ook-up table. For example, an array might
hold opcodes for machine-code: A$(0)="BRK", A$(1)="ORA", and so on. Then there is
a simple relationship between a peeked value of a location (say, P) and the string A$(P).
A numeric array could hold the values of the locations of the start of each line on the
screen; DIM L(24) could hold each value from 32768 up. Then the location of the ninth
character along line fifteen is L(15)+9. A fifty-two element array might hold all the
cards in a pack. As mentioned in Chapter 5, the zeroth element can be reserved for
special purposes, typically for averages or totals. Other uses include the storage of
values for sorting. The sorts in Chapter 5 all operate on string arrays, which could
consist of a key (name, catalogue number, reference) followed by a relative-file record
number. An array variable is slower to process than a simple variable, because of the
processing overhead associated with its subscript. Nevertheless, access is faster than
some calculations and function evaluations, so look-up tables are sometimes used to speed
up programs which contain repetitive calculations on a limited range of arguments. For
instance, it may be worthwhile to set up a table holding present values of money over a
number of years, or of square roots from 1 to 100.

Arrays are useful in games and problems of the board-game or rectangular grid
type, and we can use this topic as a bridge to multi-dimensional arrays. Ingenious
applications of single-dimension arrays where more dimensions appear appropriate include
the '8 queens' problem, where the object is to arrange 8 chess queens on a chessboard
so that none attacks any other. An array of only 8 numbers can represent the board;
each value must be different, and from 1- 8 to denote the position of that column's
queen. Diagonals are tested by a difference method which the diagram illustrates, the
first example passing all tests and the second having two attacking queen pairs:

[6 4158273]| [¢738156 2]
[, ~S—

Another ingenious algorithm is that for ass%sJéing card strengths in five-card poker: the
hand is sorted, and the four consecutive differences evaluated. Of these, there are only
three of importance: 0,1, and any other value, corresponding respectively to pairs (or
threes or fours), straights, and others. The 34 (=81) possible values can be assessed
by an array. Chess games are usually stored as an 8 by 8 array, pieces being rep-
resented by a positive or negative number (representing colour) of value related to
the importance of the piece.

Multi-dimensional arrays have more than one subscript; the maximum is 255. It is al-
ways possible, though inconvenient, to simulate such arrays by partitioning single-dim-
ension arrays, so there are BASICs which permit only one subscript. A simple two-dim-
ensional example shows how the contents of the array dimensioned by DIM A$(1,7)
might be stored: A0 o 1 2 3 p 5 5 7

0 ["POSITIVE"| "HOT"|"ON" ["LARGE"|"HIGH"|"WARM'"|"CALM" | "WELL"
1 "NEGATIVE" "COIID" IIOFFII "SMALLI' 'lLowll "COOL" "ROUGH" IIILL"
So that INPUT A$(0,3) had taken in LARGE from the keyboard, or been assigned in a
program, and PRINT A$(1,7) prints the word "ILL". Note that an array with n dimen-
sions usually requires n nested loops to input or output all its data.
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These arrays are valuable for storing data for business reports, as the example shows.
The schematic BASIC routine demonstrates the logic which was used to generate the
reports (which are incomplete here, for reasons of space restriction). It should be self-
explanatory. The only subtle point is the use of an additional code of each type; this is
an overflow or 'wastebasket', into which unrecognised items are put. In each case the
contents of this extra, non-existent code should be zero. For example, if a sales code
had somehow been recorded as "%", J would take the value 15 on leaving line 100.
FOR ALL RECORDS: READ SALES CODE S$, ORIGIN CODE O$, AGE CODE A (1-8), VALUE V
100 FOR J=1 TO 14: IF S$<>MID$("ABCDEFGJKMPTVX",J,1) THEN NEXT
110 SA(J,A) = SA(J,A) + V
120 FOR J=1 TO 10: IF O$<>MID$("BCFGHOPQSU",J,1) THEN NEXT
130 0(J) = 0(J) + V: 0(@)=0(@) + V
NEXT
FOR J=1 TO 15: FOR K=1 TO 9: SA(J,0)=SA(J,0) + SA(J,K): NEXT: NEXT
At the end of this process, array SA() holds values by sales code and age code, and
0O() holds the same values by origin code. Totals are held in the zero elements.

TOTALS BY SALES CODE AND AGE CODE

SALES CODE: A 10343,00 SALES CODE: © 15275,71 SALES CODE: C 38916411 SALES CODE: D 798,42
Age Code: 1 8152,35 Age Code: 1 10720.77 Age Code: 1 28721.49 Age Code: | 507,24
Age Code: 2 1256.08 Age Code: 2 3128,44 Ago Code: 2 5296.83 Age Code: 2 152.68
Age Code: 3 337.19 Age Code: > 541,57 Agz Code: 3 3025.,52 Age Code: 3 139,10
Ago Codo: 4 155,49 Agy Code: 4 365,40 he Code: 4 GH2,46 Ase Code: 4 0,00
Age Code: 5 388,40 Age Code: 5 490,01 Age Code: S 111,06 ~Agz Code: 5 C.00
Age Code: 6 50,49 Age Code: 6 29,52 Age Code: 6 93,75 Age Code: 6 0,00
Age Code: 7 0.00 Age Code: 7 0.00 Age Code: 7 0.00 Age Code: 7 0.60
Age Code: 8 0,00 Pge Code: 8 0.00 Agr Code: 8 0.00 Age Code: 8 0.00
Age Code: 9 0.00 Age Codo: 9 0.00 Age Code: 9 0,00 Age Codo: 9 C.00

SALES CODE: E 0.00 SALES CODE: F 20135,51 SALES CODE: G 1513,80 SALES CODE: J 18237.65
Age Code: 1 0,0¢C Age Code: 1 15037,31 Ags Code: 1 1592.80 Age Code: 1226331
Age Code: 2 0,00 Age Code: 2 3302,80 Age Code: 2 21.00 Age Code: 2 3252,12

SUMMARIES BY SALES CODE,ORiGIN CODE & AGE CODE

SALES CODE: A 10343,00 ORIGIN CODE: B 157,01 AGE CODE: 1 89536,95

SALES CODE: B 15275, ORIGIN CODE: C 223,7¢ AGE CODE: 2 19006, 55

SALES CODE: C 38916411 ORIGIN CODE: F 2527.49 AGE CODE: 3 8255.2¢8

SALES COCE: D 798.42 ORIGIN CODE: G 0.00 AGE CODE: 4 1892.56

SALES CODE: E 0.00 ORIGIN CODE: H 0.00 AGE CODE: 5 3473458

SALES CODE: F 20185,51 ORIGIN CODE: O 59R15,17 AGE CODE: 5 317453

SALES CODE: G 1613.80 OR1GIN CODE: P 36286415 AGE CODE: 7 0.00

SALES CCOE: J 13237.68 CRIGIN CODE: Q 238,20 AGE CODE: 8 C.20

SALES CODE: K 173,60 ORiIGIN CODE: S 13666417 AGE CODE: 9 0.00

SALES OODE: ™ 16313,35 ORIGIN CODE: U 3513.18 AGE CODE: 0.C0

SALES ODDE: P 546,59 ORIGIN CODE: 0.01

SALES CODE: T 0.00

SALES CODE: V 0.00

SALES CODE: X 78,17

SALES OODE: 0,01
TOTAL BY SALES OODE: 122481.,95 TOTAL BY ORIGIN CROE: 122481,95 TOTAL BY AGE CODZ: 122481.95

Two-dimensional arrays may be used to store quite large quantities of data (about 32K
less the space occupied by BASIC) very efficiently. Integer arrays, which store numb-
ers from -32768 to 32767 in only 2 bytes, are particularly efficient. They can be saved
and reloaded en bloc to disk, providing rapid access to a lot of data with little disk
drive use. To understand the approach, read the next few paragraphs carefully.

The example we'll consider is a garment inventory system. Its volumes of data
are: 50 cloth types, identified by a four-digit number.

Each cloth is available in 1 to 12 colours; the average is about 4.

Each cloth/ colour combination has 1 to 8 styles of garment; that is, a cloth in
blue may be made into only one type of jacket; the same cloth in brown may be made
into two other designs.

Each garment is produced in six sizes.

At each level of complexity, details about the cloth or the clothes are stored; for
example the cloth width is recorded for every cloth type, and, at a more detailed level,
the quantity in stock of every size of each garment is required.

We can store the data in arrays like this:
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C%(50, 4) M%(200, 3) S%(800,2) SZ%(u4800)
0 1 2 3 4 0 1 2 3 0 1 2
0 3 0 4] 0 0 0 0 0 0 0 0 0 0 0 0 0
11101 | _g_‘__l__ _60_ ___2_1 3 (200 2 2 1| (99121 6 1 44
2 1149 5 12 36 7 2/ (4] 50 | 3| 5 2] |40 |210 12\\ 2 17
3 2065 3 10 60 10 3 1100 1 6 24022 | 18 3 8
4 0 0 (V] 0 0 4 2 (200 1 7 E 18220 | 24 4 23
5 3 (250 4 |11 \\Ej 113|004 | 30 5 90
........................ 6 7 |00 6 | 17 \ 50 [001 | 36 6 12
500 O 0 0 V] 0 7] 10 (100 3|20 54 (001 | 42 7 10
8 6 (200 2 | 22 8 ||153|001 | 48 8 10
EJ 6 (200 2 |24 9 |[58001 | 54 9 10
10{63 (001 | 60 10 12
C%(0,0)= Total number of R 11 25
cloths entered 200/ O 0 0 0 12 23
C%(n,0)= Cloth number 8od o] of o ~
C%(n,1)= No. of colours I
C%(n,2)= Delivery date 4800__0
C%(n,3)= Cloth width M%(n,0)= Colour codes
C%(n,4)= Cumulative no. M%(n,1)= Length stored S§%(n,0)= Telephone
of colours M%(n,2)= No. of styles orders SZ%(n)=
M%(n, 3)= Cumulative no. S%(n,1l)= Style code inventory+
of styles S%(n,2)= Cumulative some other

no. of sizes data

Together, these arrays occupy 16160 bytes (including the array overheads. See Chap-
ter 2). The brackets show the way in which one array is dependent on the earlier
array. The details, once set up, are difficult to alter, because all the subsequent
details are stored immediately after, leaving no room for manoeuvre. C%(0,0) currently
holds 3, showing that only three cloths' data has been keyed in so far. When the next
cloth is entered, the fourth row of C%() will fill, 1 - 12 rows of M%() will depend on
this, and a maximum of 96 rows in S%() may be filled in turn. Finally, SZ%() has from
1 to 576 elements filled. The cumulative frequency pointers (which are not strictly
necessary) make this scheme fairly easy to implement. However, BASIC programs which
store data like this are amongst the most difficult to decipher of any BASIC, the prob-
lems increasing with the number of arrays. Whether this is undesirable depends on
one's point of view. Some short extracts from programs show the type of program to
expect:

S%((M%((C%(N-1,4) + M - 1),4) + K),0) = P : REM TELEPHONE ORDERS

SZ%(S%(J + K - 1,1) + U) = SZ%(S%(J + K - 1 ,1) + U) + S : REM UPDATE STOCK POSN

PRINT M%(C%(N-1,4) + M ,1) : REM PRINTS AVAILABLE STOCK

Multi-dimensional arrays with more than two dimensions

are not used much, probably because of the difficulty of
visualizing the data's storage pattern within its arrays.
The diagram (right) illustrates a three-dimensional array,
set up by the statement DIM X(15,20,3). Since zero ele-
ments are allowed, the array's 'pigeonholes' occupy 16 by
21 by 4 locations. Assuming a conventional order or rows,
then columns, then depth, leads to the diagram, in which
for instance X(0,0,0) is the top-left element in the 2-dim-
ensional array on top of the heap, and X(1,2,3) occupies
row 1 and column 2 of the array at the bottom of the heap.
Four-dimensional arrays can be pictured as several stacks
of three-dimension arrays arranged side-by-side. After
this, depiction becomes progressively more complicated.
The maximum number of dimensions is 255 (see Chapter 2).
In practice, shortage of RAM will make this figure, or anything like it, impossible.
Section 2.3 of Chapter 2 explains the calculations necessary to determine the total
number of bytes taken up in RAM by any array.
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4.2 Debugging BASIC programs

This section lists common faults in BASIC programming. While such a list cannot hope to
be exhaustive, it should help in pinpointing errors.

Peculiarities of BASIC. These include a few bugs.

ASC of a null character doesn't evaluate as 0, but crashes.

CLOSE doesn't properly close an IEEE file without PRINT# to the file.

DATA statements may give trouble if new DATA statements are inserted before them.

FOR ... NEXT occasionally behaves oddly: see Chapter 5 on this.

FRE may be slow in BASICs1and 2. See for example Chapter 2.

INPUT ecrashes on Return; also input from a file prints no warning message if extra

data (e.g. separated by commas) has been read in.

LEFT$, RIGHT$ may crash if the numeric part of the argument is 0.

PRINT attempts to print anything it is given; a stray '.' appears as 0, for instance.

.S saves machine code, omitting the final byte; so add 1 to the end address.

STR$ introduces a leading space into positive numbers.

TAB and SPC have some quirks carried over from CBM BASIC's ancestors.
Numerals are held and formatted to a certain degree of accuracy; see Chapter 13.
Strings have a maximum length of 255; attempts to exceed this give ?string too long.
Some mathematical functions will not accept certain values without error.

CBM disks: see the end of Chapter 6 for a summary of possible bugs.

Differences between BASIC ROMs are outlined in Chapter 2 and explained elsewhere in
detail. BASIC 4 disk commands, and SYS calls to ROM, are nearly always
incompatible between BASICs.

Syntax errors are usually fairly self-explanatory. These cases may be difficult:
(i) Included keywords. Misprints are particularly easy with logical constructions,
because these are largely alphabetic. IF A=B OF C=D reads IF A=BO=D for example.
(ii) 20UT OF MEMORY has diverse causes:-
i. Too many levels of brackets, especially within loops and subroutines.
ii. Absence of POP causing RETURNs to build up on the stack. See Chapter
5. Example: IF ASC(IN$)=27 THEN POP:GOTO MENU correctly aborts input.
iii. Insufficient RAM, especially with large arrays.
iv. Can occur when start and end of program pointers are altered.

Incorrect processing, without Syntax error indication is often caused by one of these:-
(i) Variable name repeated by mistake. See Chapter 2's variable name list.
(ii) Variable value changed in error. Typically FOR L=1 TO 10: GOSUB 100: NEXT
(iii) Wrong meaning of a statement. Very common with logical expressions.
(iv) Subroutines may be poorly structured, so program flow drops through.
(v) Omission of 'FN' will cause a function to be read as an array. Example: PRINT FN
DEEK(X) mistyped as PRINT DEEK(X) is interpreted PRINT DE(X).

Errors caused by assuming a software setup appear when a program is re-run but not
preceded by a setting-up program; examples include failure to specify the screen char-
acter set, failure to change memory pointers, failure to send control commands to the
printer, and sometimes the use of LOAD within a program. Operators accustomed to a
rigorous input validation may not adapt to the occasional use of INPUT.

Systematic, recurrent errors are usually caused by faults in the logic of programs:

(i) The zeroth or last entries in buffers may be omitted or misplaced.

(ii) Graphics or data-storage POKEs may change strings, variables, BASIC, or
machine-code.

(iii) Keyboard entries at the wrong time or of the wrong sort may corrupt data, for
example where an ESCape key allows exit from any routine back to the menu.

(iv) The logic of (say) a merge may be faulty in special cases. Identifying these
may be difficult, requiring a painstaking dry run through the code.

Hardware problems can be detected by test programs. But during the course of run-
ning programs, trivial hardware problems may be overlooked:
(i) Shift-lock on causes the screen appearance of inputs to be odd, and may cause
apparently valid key entries to be rejected.
(ii) A printer may lack paper or ribbon, or not be online, and so fail to function.
It may be wrongly set.
(iii) Disk drives may be off or disconnected.
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CHAPTER 5: ALPHABETIC REFERENCE TO BASIC KEYWORDS

This chapter lists all CBM BASIC keywords with explanations, examples, notes, and
details of their operation at machine-code level. It should be useful to the learner, and
also provide a convenient source of reference to experienced programmers who wish to
check up on programming queries of the sort which inevitably arise in the course of
writing programs. I have occasionally drawn attention to differences between CBM
BASIC and other dialects of BASIC. The format of the explanations is roughly consist-
ent for each keyword, which appears in bold type at the top of the page. Normal type
indicates 'keywords' which are not present in CBM BASIC, but which can be written
for it or adapted from other sources, or obtained in software form or as plug-in
EPROMs. BASIC 4's specifically disk oriented keywords are listed in Chapter 7.

Note on BASIC operators.

When a string expression or arithmetic expression is evaluated, the result depends on
(a) the priority assigned to each operator, and

(b) the presence of parentheses.

Parentheses, in either string or arithmetic calculations, have the effect of ensuring
that the entire expression within parentheses is evaluated as a unit. In the absence
of parentheses, priority is assigned to operators in this order, starting high:

T Power

+ - Unary plus and minus
* /| Multiply and divide

+ - Binary plus and minus

< = > Comparisons - less than, equal to, greater than
NOT Logical NOT - unary operator

AND Logical AND - binary operator

OR Logical OR - binary operator

The arithmetic operators are relatively familiar and straightforward. Note the high
priority of unary plus and minus; the point of this is illustrated by expressions like:

27-4*3 and 6 + -3 and -1234 * - 2345,

which otherwise are meaningless. CBM BASIC evaluates a 'true' statement as -1, and
a 'false' statement as 0. These are not standard between computers; Apple for example
has true = 1, and other differences in interpretation. CBM comparisons are straight-
forward with numerals, but less so with strings, which are compared as far as the
shorter string. So "1" as a string is < "10", but also "5" is > "449". CBM BASIC's
logical operators use a 16-bit, 2-byte system; this means that 'true', which is printed
as -1, is held as #FFFF. The maximum range of arguments for logical expressions is
therefore -32768 to 32767. PRINT NOT 32768, for example, gives an error. Because
NOT flips the 16 bits of the argument, X plus NOT X always add to -1, so NOT 10 is
-11.

It is important to realise that the /ower priority operators have the largest
sphere of influence, as it might be called. Ordinary arithmetic illustrates this in many
ways: 2x + 1 is immediately seen to be twice x, plus 1. With the less common logical
and comparison operators, this is rather easier to forget. See for example note [3]
to AND.
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ABS

BASIC arithmetic function

PURPOSE: Computes the absolute value of the arithmetic expression in parentheses
following ABS. In other words, ABS makes a negative number or expression
positive. This function has some applications in programming with numbers;
it is not a major feature of BASIC.

Syntax: ABS(arithmetic expression). A string expression, or incorrect arithmetic
expression, will generate one of a number of errors, including syntax, type
mismatch, and division by zero errors. An expression which, when evaluated,
is too large, causes an overflow error. Like all functions, ABS can appear
on the right of an assignment statement, within a PRINT statement, and as
part of a logical expression, for example after IF.

Modes: Both direct and program modes are valid.

Examples: IF ABS(QTY) > 10000 THEN PRINT "*": REM PRINT WARNING ASTERISK
X = -12.5 + .5: PRINT ABS(X) : REM PRINTS 12
1000 IF ABS(X - X1)< 1E-6 THEN PRINT "FINISHED": END
2000 Z% = ABS(10*SIN(X)): REM Z%=INTEGRAL PART OF ABSOLUTE VALUE

10220 IF ABS(AX%-BX%)<4 AND ABS(AY%-BY%)<4 GOTO 10200: REM FETCH BETTER START POSNS

The first example prints an asterisk if variable QT exceeds 10000,or if QT
is negative with magnitude larger than 10000, such as -25342.3.

The third example shows how to test for approximate equality; this may be
very useful when allowing for rounding errors and when performing iterative
calculations which converge to some correct value. In this example, the value
is accepted if the maximum error is 1E-6 (.000001). Typically, the more exact
the precision, the longer such a program will take to run.

Fourthly, Z% in line 2000 takes integer values 0-10 only, in a pattern resembling
a rectified sine curve. The very last line is taken from a game in which each
player has a 'worm' to control on the screen; this line ensures that the
starting positions of player A and player B, which are generated by the RND
function, are not too close together.

Abbreviated entry: aB
Token: $B6 (182)

Operation: The expression in parentheses is evaluated and checked, and.if valid
put into floating point accumulator #1. ABS operates only on the sign byte
of this accumulator. In fact ABS does less work than any other function.
The sign byte (location $63, or $B5 in BASIC1) is shifted right, so that the
negative (high) bit is not set. It does this whether or not the byte was neg-
ative. As far as further calculations are concerned, the number is positive.
There is no loss of accuracy in this conversion inside the accumulator, but
as with all numerical expressions, there may be a loss so far as the initial
evaluation process is concerned. That is, ABS(-123456789012) and
ABS(123456789012) are identical, but don't retain all the figures of the
original arguments.

ROM entry points:

BASIC 1: $DB2A (56106)
BASIC 2: $DB64 (56164)
BASIC 4: $CDBE (52622)
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AND

BASIC binary logical operator

PURPOSE: Calculates the logical AND of two expressions which are first converted
into 2-byte integers. The result is itself a 2-byte integer. If the expressions
were logical, the values 0 ('false') and -1 ('true') obtain, so the truth-value
of a multiple condition can be found.

Syntax: Arithmetic or logical expression AND arithmetic or logical expression.
Both expressions must be integers within the range -32768 to 32767, or
floating point numbers which round down to within this range. Logical
expressions invariably fall within this range, since they take values of -1
or 0 only. Out of range values, string expressions, and syntax errors in
either of the two expressions will cause an appropriate error message to be
printed to the screen.

Modes: Direct and program modes are both valid.

Examples: PRINT 380 AND 75
100 IF D%>0 AND D%<100 THEN PRINT "WITHIN RANGE 1-99"
6260 OK = -1 AND Y>79 AND Y<90 AND M>0 AND M<13
146 IF J1=46 AND JD=0 THEN JD=1+LEN(JS$)

The first example is a straightforward 16-bit AND between two numerals.
The values and their bit equivalents are 380 (=%00000001 01111100) and
75 (=%00000000 01001011), so 380 AND 75 is evaluated by CBM BASIC as
$00000000 0100100 or 72.

The second example shows AND used in a composite test; both parts of the
test must be true to print the message.

The third example is a simplified part of a date validation subroutine. The
object is to check that the decade is the 80s and the month within the usual
range. OK is set to 'true', ANDed with four separate tests, each of which
must be true if OK is to remain true.

Finally, another example of a composite test: this line, from a very long
input routine, accepts decimal numbers which it build into a string JSS§$.

J1 is the ASCII value of the last key pressed; JD is the position of the
decimal point, or zero if no decimal point has yet been input. The example
tests for the truth of two conditions: if the decimal point (ie full stop, with
ASCII value 46) has been typed at the keyboard, and also this key is an
acceptable one, then the decimal point's position in JS$ is fixed.

Notes: [1] The truth table for AND is:-

AND|T F ANDJ|1 0 Where 1='true' or 'bit set on',
T[T F 110 0='false' or 'bit set off'.
F|F F 0i0 0

Note that when stored as 2-byte signed integers, false =0 =$0000, whereas
true =-1 =$FFFF. (To convert $FFFF into its positive equivalent, flip the
bits and add 1. This method gives $0000+1, so $FFFF is -1). This is why
AND with a false expression is always false, while AND with a true ex- -
pression leaves the value unaltered. It is also the reason that NOT-1 is 0
and vice versa.

[2] Hierarchy. BASIC order copies FORTRAN and ALGOL. NOT then AND
then finally OR have the lowest priority of all the operators. AND is
therefore processed last in many cases.

[3] Common bugs: logical expressions are quite tricky; errors are compar-
atively easy to overlook. Because of this four examples of typical wrong
statements follow:

[i] DE =D + DM + 365*Y + INT(Y/4) - (INT(Y/4)*4=Y) AND M>2

This is taken from a routine to find the weekday. The day, month and year
are combined mathematically into a parameter taking only the values 0-6.
In the example, the final expressions are intended to subtract 1 should the
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year be a leap year and the month be March to December. But because of
the low priority given to AND, if M is 1 or 2, the entire expression eval-
uates as 0. Everything after '=' and before AND is calculated, but this re-
sult is then ANDed with 0. This shows the power of a low priority command
which could be compared - perhaps a little fancifully - to a recessive gene.
The correct version has the joint expression enclosed in another set of
parentheses.

[ii] IF INT(Y/4)*4=Y AMD M>2 THEN DE=1

Logical operators have relatively few syntactical requirements and so, if mis-
typed, are difficult for the translator to distinguish from variables. The line
when run will not, as might be expected, cause a ?SYNTAX ERROR message.
Instead it is interpreted like this:

IF INT(Y/4)*4=YA>2 THEN DE=1
and its run-time behaviour will depend on whether YA exists.
[iii] IF PEEK(C+1) AND PEEK(C+2)=0 THEN END: REM END OF PROGRAM REACHED

Failure to fully specify all the conditions is a source of bugs; the example
is-supposed to find two zero bytes at the end of a BASIC program stored in
RAM. What is needed is this:

IF PEEK(C+1)=0 AND PEEK(C+2)=0 THEN END
or:

IF PEEK(C+1) + PEEK(C+2)=0 THEN END

The incorrect version will stop whenever PEEK(C+2) is zero and PEEK(C+l)
is non-zero.

[iv] IF J<1 AND J>8 THEN

Never happens!
Abbreviated entry: aN
Token: S$AF (175)

Operation: Binary operators are evaluated with the first argument in floating point
accumulator #1, and the second in accumulator #2. AND uses exactly the same
routine as OR, except that on entry a test location is loaded with zero. (OR
loads it with #$FF). This is the only difference between these routines. Each
accumulator in turn is converted into a 2-byte integer, and the low and high
bytes are processed separately. Using 'TEST' to refer to the byte in the
test location, the routine computes this function:

TEST EOR ( (TEST EOR A) AND (TEST EOR B)).
When TEST is #$00, EOR TEST has no effect, so

A AND B ( A AND B)
A OR B = NOT( NOT A AND NOT B)

All ROMs process this instruction in the same way.

ROM entry points:

BASIC 1: $CED9 (52953)
BASIC 2: $CECB (52939)
BASIC 4: $C089 (49289)
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APPEND

System command unavailable directly in CBM BASIC

PURPOSE: Links two programs end-to-end into a single program. This can be
very helpful in adding standard subroutines or BASIC utilities such as
cross-referencers onto a BASIC program.

NOTE: APPEND in the sense used here applies to BASIC programs only, not
files of data, and may be run on any CBM machine, irrespective of whether
or not it is equipped with disks.

Versions: Appending one program onto another requires that the linenumbers do
not overlap; if they do, a program with lines 10 20 30 and 50, say, which
has another program with 40 50 and 60 appended to it will appear as one
program linenumbered 10 20 30 50 40 50 60. If the routines aren't too long,
they can be listed on the screen and incorporated into the main program by
loading it, homing the cursor, and entering the lines remaining on the
screen. Longer routines would require a boring, but reliable, process of
repeatedly loading the routine to be appended, loading the program, adding
new lines, and saving the result so far. This process gives a MERGE, not
an append; a merge is often potentially more use than an append, but is
harder to implement.

Amongst the versions that have been written are several for tape: Jim Russo
and Henry Chow's 'Merger' (Pet User Notes, Nov-Dec '78) and Roy Bus-
diecker 'Universal Tape Append' (Compute! Mar '81) are two. They use

the same method, namely loading the second tape to start at the end address
of the first program. From the users's point of view this is fairly nice and
easy; all you do is press 'play' twice. The routine to be appended must be
at the start of another tape, or at a known position. Between these two
versions' publishing dates, a lot has happened, and much of Busdiecker's
article is concerned with variations between ROMs. Disk versions are less
sophisticated usually, because the header is more difficult to get at. For
example CPUCN 245 has a 30-line program which reads a program, writes

it as data, reads the nexts program, and writes it to the same file. See
Chapter 6 for details.

The version below uses a different principle, and will append programs
from different sources and recorded on different machines. The program
to be appended - i.e. added onto the end - is loaded first. Then a SYS
command moves the entire program up memory into the high end of RAM,
as indicated by the pointer; so protected machine-code is untouched. Then
the main program is loaded, and a second SYS command shifts the first
program back to connect with the second. The program also rechains the
BASIC lines, so that the link addresses are correct. I have included an
?0UT OF MEMORY indication if the programs together are too large. The
USR locations 1 and 2 store temporary pointers, so if you're using USR,
these will need resetting.

Examples.

[1] Load the append program, then run it, so that cassette buffer #1
holds the machine-code. Now enter SYS 634. This moves the append
program itself into high memory.

Type NEW and enter 100 PRINT "HELLO".

This short program is held in the ordinary BASIC part of RAM
starting at $0401.

SYS 673 will move APPEND down again from its position higher in
RAM. It will be positioned correctly and chained, so that on LISTing
you'll see line 100 at the start of the program, which runs normally,
apart from briefly printing "HELLO".

Don't RUN a program between the two SYS commands, as strings may
corrupt the part of memory storing the program to be appended.
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[2] Load any program; type SYS 634. (Both SYS commands can be
used repeatedly without reloading). Now load any other program
(or the same one again!) and enter SYS 673. The new composite
program should be correctly linked and should run as one pro-
gram. If you type SYS 634 again, the new program will move
up memory and a further program can be inserted at the start.

Notes: [1] ROMs. The BASIC loader is set up for the upgrade ROM (BASIC 2).
BASIC 4 shares pointers with BASIC 2, and is therefore an identical
routine, except for two absolute addresses. The data statements finish
with two jumps ($4C = 76 decimal); one rechains the appended programs,
the other prints the out-of-memory message when an append is impossible.
BASIC 4 requires JMP $B4B6 and JMP $B3CD in place of the upgrade ROM

routines. So 80 DATA .... 76,182,180,76,205,179 is correct for BASIC 4.
BASIC 1 ('Old ROM') needs pointers from 40-53 decimal to be changed to
122-135.

[2] Cassette Buffers. With BASIC 4 in mind, I've written the routine to
load into cassette buffer #1, which is untouched by BASIC 4's disk hand-
ling. If loading is to be done from cassette #1, this buffer will of course
be overwritten, so the machine-code must be loaded elsewhere, the obvious
place being buffer #2. The code relocates, so substitute 826-864 for
634-672, and 865-934 for 673-742.

BASIC 2 APPEND ROUTINE:-

POKE 59468, 12: PRINT " [CLEAR]$$$$$$" :REM UNDERLINE (SHIFT-$) TIDIES TITLE

PRIN? " [REVS]APPEND": PRINT " [DOWN]MACHINE CODE IS NOW LOADED INTO SYS 634 AND SYS
673.

2 PRINT "[DOWN]LOAD THE PROGRAM TO BE APPENDED; ENTER [REVS]SYS 634[RVSO] ";

3 PRINT "TO STORE IT HIGH UP IN MEMORY.

4 PRINT " [DOWN]LOAD THE MAIN PROGRAM AND ENTER [REVS]SYS 673 [RVSO],TO ";

5

6

- O

PRINT "MOVE THE FIRST PROGRAM DOWN AGAIN, ONTO THE END OF THE PRESENT ONE.
PRINT " [DOWN]LINES ARE AUTOMATICALLY LINKED.

10 DATA 165,53,133,2,165,52,133,1,160,0,165,1,208,2,198,2,198,1,177,42

20 DATA 145,1,165,42,208,2,198,43,198,42,208,234,165,43,201,4,208,228,96

30 FOR L = 634 TO 672: READ M: POKE L,M: NEXT: REM SYS 634 MOVES PROGRAM UP

50 pATA 160,0,56,165,1,229,42,165,2,229,43,144,54,165,42

60 DATA 208,2,198,43,198,42,177,42,208,244,56,165,42,233,1,176,2

70 DATA 198,43,133,42,177,1,145,42,230,42,208,2,230,43,230,1,208,2,230,2

80 DATA 165,53,197,2,208,234,165,52,197,1,208,228,76,66,196,76,85, 195

100 FOR L = 673 TO 742: READ M: POKE L,M: NEXT: REM SYS 673 APPENDS PROGRAM

READY.

Top of RAM pointer $8000
o ProcrAM2 000 “[wu |}
Jo  PROGRAM2 000] PROGRAM2 000] VDU T3

Temporary pointer‘}

o PROGRAM1 000 PROGRAN2 000] oo [}
“out of mem. test

|o  ProGRAM1 | PROGRAMZ 000] | IR
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ASC

BASIC arithmetic function of string argument

PURPOSE: Computes the Commodore ASCII value of the initial character of a
string expression. ASC is essential when testing individual characters, for
example screen formatting characters from the keyboard, and generally
whenever the numerical equivalent of an ASCII character is more easily
handled than the character itself.

Syntax: ASC(string expression). The string expression can be any valid express-
ion of literals, string functions and the '+' concatenator, with the single
exception of the null character "". Any string whose length is 0 elicits an
?ILLEGAL QUANTITY ERROR message; in practice the null character as
defined by "" is the only easy way to generate such a string. The CBM
ASCII value as returned by ASC can take any value from 0-255; a table in
the appendices shows the relationships between characters and their ASCII
values. Note that ASC(X$)=0 when X$=CHR$(0); this is not the same as ""
in Commodore's BASIC.

Modes: Direct and program modes are both valid.

Examples: 160 GET J1$: IF J1$="" GOTO 160
163 J1=ASC(J1$): IF J1=13 THEN : REM PROCESS CARRIAGE RETURN
166 IF J1=20 THEN: REM PROCESS DELETE KEY

This incomplete program extract shows how keyboard entries can be process-
ed; line 160 GETs a key, avoiding the ?illegal quantity trap by testing for
the null character. When a key has been entered, it is converted to its ASCII
value for processing. Complete validation of keyboard entries in BASIC can
be carried out in this manner, with the exception of the STOP key only.

1340 FOR L=1 TO 6: POKE 799+L, ASC(MID$(TEST$,L)): NEXT

This example shows the method to move a string into RAM: the string TE$
of length 6 is POKEAd into locations 800 to 805, for use in a machine-code
comparison routine, from BASIC, in six separate pokes.

22000 IF PEEK(QQ)=ASC("*") THEN ERR$='" * SET"
PRINT ASC(MID$(S$,L)) - 192 : REM CONVERTS UPPER CASE A~Z TO 1-26

Finally, the third example shows how readability can be improved by using
the ASCII function itself, rather than its value - 42 in the case of "*",
The fourth example prints the Lth letter of string S$ as a number from 1 to
26, so if S$="HELLO" and L=2, the value 5 appears. This type of routine is
useful when computing check digits, enciphering data, and so on.

Notes: [1] The converse function to ASC is CHR$. PRINT ASC(CHR$(N)) prints
N. STR$ is not the converse: STR$(42) is not an asterisk, but " 42".

Abbreviated entry: aS
Token: $C6 (198)

Operation: After the function's string expression has been evaluated, it is set up
in RAM with its 3 parameters (length and 2 byte pointer) on the stack. ASC
recovers these parameters. It tests the length, and if this is zero exits
with ?illegal quantity. This is surely a bug; there is no problem in making
the value 0. However, now the accumulator is loaded from memory, using the
string's pointers, so whatever the length of the string, its initial is fetched.
This value is the ASCII value: there is no conversion carried out on the byte.
A standard ROM routine turns it into the floating point equivalent in accum-
ulator #1.

All ROMs process this function in this way.

ROM entry points:

BASIC 1: $D663 (54883)
BASIC 2: 3$D665 (54885)
BASIC 4: $C8C1 (51393)
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ATN

BASIC arithmetic function

PURPOSE: Calculates in radians the principal value of the arctangent of the argu-
ment; this can be any arithmetic expression irrespective of sign. The diagram
illustrates the relationship between two sides of a right-angled triangle, and
the angle calculated by ATN.

NOTE: This function has no connection with ATN on the IEEE bus, which is
the ‘attention’ line.

Syntax: ATN(arithmetic expression). The expression must be syntactically correct
and within the range acceptable to the floating point logic (*1.7 E38 approx).

Modes: Direct and program modes are both valid.

Examples: 1100 ALPHA = -ATN (YV/ZV9: BETA = -ATN(XV/ZV):
2130 LET R=ATN( (E2-E1)/(N2-N1) ):REM COMPUTE BEARING AND DISTANCE

Both examples, as might be expected, are related to trigonometry; one is
from a perspective plotting program, the other from a two dimensional pro-
gram for surveyors in which coordinates easting and northing are input.
In each case the assigned variable, ALPHA, BETA, and R, takes the value
of an angle in radians, which therefore is in the range -pi/2 to +pi/2.

Notes: [1] The diagram shows the connection between X and ATN(X),for those who
are unused to geometry; a right angled triangle is a convenient standard to
demonstrate geometrical ratios, but has no particular significance beyond its
ease of use.

ATN(X)

[2] See the appendix on trig. functions for general solutions.

[3] To convert radians to degrees, multiply by 180/pi. This changes the
range of values of ATN from -pi/2 - pi/2 to -90° - 90°,

[4] In some cases, ATN(X) is a useful transformation to apply, since it
condenses almost the entire number range into a finite set from about -1.57
to +1.57.

Abbreviated entry: aT
Token: $C1 (193)

Operation: The actual evaluation uses a 12-constant series summation. The argument
(after validation) is converted into the range 0-1: if negative, the sign is
stored for later recovery, but the calculation is carried out on the absolute
value. And if the argument is greater than 1, the reciprocal is used in the
series, and the result subtracted from pi/2 (90°).

All ROMs process this instruction in the same way. That is to say, the logic
is identical, even though the entry points, absolute addresses, and (with
BASIC 1) zero page locations vary.

ROM entry points:

BASIC 1: $E048 (57416)
BASIC 2: $EO08C (57484)
BASIC 4: $D32C (54060)
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AUTO

BASIC system command not available directly in CBM BASIC
PURPOSE: Utility to generate linenumbers when entering BASIC program lines.

Versions: Typically these generate linenumbers starting at 100 and incrementing
in steps of 10. The usual implementation is a BASIC routine to print numb-
ers and to input an entire line when return is pressed, using the keyboard
buffer to accept two carriage return characters. One of these causes the
line to be incorporated into the program; the next runs the program again.
This is also a favourite machine-code command on EPROMs from 'Toolkit' through
to 'Power’'.

The following routine has these features:

[1] Optional flashing cursor; omit the POKE in 60010 if this is not needed.
[2] Check for premature return, so that a linenumber is not wasted,

[3] Lines up to length 80 are accepted

[4] Press STOP to stop.

60000 INPUT "AUTO: ENTER START, INCREMENT"; S,I

60010 PRINT "[CLR][DOWN][DOWN][DOWN]"; S;: POKE 167,0

60020 GET A$: IF A$="" GOTO 60020

60030 PRINT A$;: IF ASC(A$)<>13 THEN 60020

60040 P = PEEK(32889 + LEN(STR$(S))): IF P=32 OR P=160 GOTO 60010
60050 PRINT "S=" S+I ":I=" I ":GOTO 60010[HOME]"

60060 POKE 158,2: POKE 623,13: POKE 624,13

60070 END

Note that line 60040 checks the location just after the linenumber; if it finds
either a space or a shift-space, clearly nothing has been entered in the line
so far. The routine therefore prints the same linenumber again. The value
32889 is 32768 + 121, which is appropriate to 40-column screens. With the
8032 this must be replaced by 32768+241 = 33009.

BASIC 1 PETs have the keyboard buffer (and much more) differently arrang-
ed. Line 60010 requires POKE 548,0 and line 60060 becomes
60060 POKE 525,2: POKE 527,13: POKE 528,13
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CHR$

BASIC string function of numeric argument

PURPOSE: Converts any numeric expression in the range 0-255 into a string with
length 1 consisting of the CBM ASCII equivalent character. This is the only
convenient method to print and manipulate special characters like carriage
return and ", which are CHR$(13) and CHR$(34) respectively.

Syntax: CHR$(numeric expression). The expression in parentheses must evaluate
to 0-255. If the number is non-integral, it will be rounded down, and this
rounded value must be in the correct range. So CHR$(-.01), CHR$(500) and
CHR$(X$) cause error messages.

Modes: Direct and program modes are both valid.

Examples: A$ = CHR$(34) + CHR$(18) + "NAME" + CHR$(146) + CHR$(34)
NS$ = CHR$(160) + NS$
PRINT CHR$(7)
, 3300 PRINT#4,CHR$(27)"EO08"CHR$(27)"L06"

The four examples above illustrate the use of this function to construct in-
dividual characters which are otherwise difficult to deal with. The first puts
a string within quotation marks, and adds the [RVS] and [RVSOFF] charact-
ers. The second adds a leading shifted-space to a string; this is more read-
able than the alternative NS$ = " " + NS$. CHR$(7) is the 'bell', and this
command will make appropriately equipped CBM's tinkle and printers beep.
The final example shows a command typical of non-IEEE, non-Commodore
printers; CHR$(27) is 'Escape' and the string sets horizontal and vertical
spacing on a Qume daisywheel printer.

PRINT CHR$(34);: FOR J = 1025 TO 1100: PRINT CHR$(PEEK(J));: NEXT
C$="": FOR J =1 TO 6: C$ = C$ + CHR$(PEEK(KT + J)): NEXT

Conversions of the contents of RAM into strings can be performed in BASIC by
combining CHR$ with PEEK. The first example, in direct mode, prints a line
or two of BASIC as it is stored in RAM.(This is not the best method). The
second recovers a string which has been poked into RAM; C#$ is built up one
character at a time until a 6-character long string is formed.

Notes: [1] CHRS$ is the converse function to ASC. A particular application of these
functions is conversion from one character set to another, for instance screen
dumping to a printer, where the PEEKed value needs a fairly elaborate routine
to ensure that it PRINTs the way it looks on the VDU. See DUMP.

[2] CHR$(0) represents a null character, but has length 1. This may result
in some anomalies; X$=X$+CHR$(0) adds a trailing null character to X$, the
length of which is also incremented by 1, but the nulls do not print; so X$'s
length appears to be longer than X$. Embedded null characters can be insert-
ed into strings: Y$="123" + CHR$(0) + "45" prints 12345 but returns VAL
of 123 and LEN of 6. If sorted, Y$ precedes 123*5, 12344, and so on. Note
that ""<CHR$(0) is 'true', rather oddly.

Abbreviated entry: cH (includes the $)
Token: $C7 (199)

Operation: First, the contents of the parentheses are found and checked for range
0-255. Provided this is correct, a string of length 1 is set up at the current
string pointer position, and the single byte value stored in this location. If
the string is assigned - X$=CHR$(123) say - this string is permanent; if the
string is used as an intermediate only, as in PRINT CHR$(123), the pointers
are not reset and the next string will overlay the character.

All ROMs process this function in this way.

ROM entry points:

BASIC 1: $D5C4 (54724)
BASIC 2: $D5C6 (54726)
BASIC 4: $C822 (51234)
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CLOSE

BASIC input/output command

PURPOSE: Completes the processing of a file and deletes the file and its details

from the three file tables. Files opened to the keyboard or the screen are
deleted from the tables with no other action. Cassette files opened for
reading are dealt with in the same way. But cassette files which write data
also write a zero byte to denote end-of-file; and if the secondary address
was 2, a tape 'header' is also written holding the end-of-tape value of #5.
IEEE files with secondary address zero - usually, non-CBM hardware - again
are simply removed from the tables; other IEEE files are sent commands to
close files, and this function is carried out by the receiving hardware. In
the case of CBM disks, an end-of-file: indicator is put into the last sector
of the file, so that the chaining sequence of tracks and sectors for that
file is complete and up-to-date and terminates correctly.

Syntax: The syntax is identical to that of CLOSE; however, any parameters

Modes
Examp

Notes:

Abbreviated entry: clO

Token: $A0 (160)

following the logical file number are subsequently over.ritten by CLOSE,
so for practical purposes CLOSE arith. expr. is the correct syntax, where
the expression must evaluate, after rounding down, to 1-255. If the file
does not exist, no error message results.

: Direct and program modes are both valid.

les: OPEN 4,4: PRINT#4,"HELLO!": CLOSE 4: REM MESSAGE TO PRINTER
OPEN 1,1,1,"FILE": PRINT#1,"HELLO!'": CLOSE 1: REM MESSAGE TO TAPE
100 CLOSE 1,2,3,"4": REM SAME EFFECT AS CLOSE 1
1000 PRINT#8,CHR$(13);: CLOSE 8: REM BASIC<4 DISK FILE CLOSE
1100 PRINT#4: CLOSE 4: REM CLOSE PRINTER, WHEN CMD HAS BEEN USED

CLOSE is a straightforward command, made more complicated than need be
the case by the behaviour of CMD and PRINT#. The former leaves output
devices still listening, and needs a final PRINT# to unlisten the bus; the
latter, on CBM disk drives using BASIC<4, prints extra linefeed characters
(ASCII character 10) after the carriage returns which mark the end of
adjacent records. BASIC 4 also has the DCLOSE command.

[1] RAM Tables. CLOSE deletes three entries from these tables (see OPEN
for illustrations) unless the entry happens to be the last of the files, by
overwriting its three parameters by those of the last entry, then reducing
the number of files open by 1. This of course is designed so that the ten
files maximum may be efficiently used. Sometimes, notably after editing a
program, the number-of-open-files parameter is set to 0, leaving the tables
in RAM. If a file has not been closed, due to Stop or perhaps a syntax
error, it may still be possible to close it by poking in the number of open
files (or 10) and closing the file in direct mode. The location is 174 (610
in BASIC 1). Alternatively, OPEN15,8,15: CLOSE 15 is suggested in a manual.

[2] Disk Files. Files opened for read need not be closed except to make
space for more files. CBM disk files opened for write must always be CLOSEd
correctly. Otherwise, the track/sector pointer in the final sector will point
to a usable area on the disk; sooner or later two files will become interlocked
and the data on one corrupted. See COLLECT for more on this subject.

Operation: Parameters are fetched by the identical routine used by OPEN. The

logical file is looked for, and, if found, its parameters are taken from the
tables are overwrite any other values. The device number determines which
branch is now taken: cassettes, screen, and keyboard are processed as
described above; IEEE devices also call a 'Clear Channel' ROM routine.

ROM entry points: CLOSE is a 'kernel' command. Its address is $FFC3. It calls:

BASIC 1: $F2C8 (62152) LDA file no. then: $F2CD (62157) CLOSEs.
BASIC 2: $F2A9 (62121) " $F2AE (62126) "
BASIC 4: $F2DD (62173) " $F2E2 (62178) "
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CLR

BASIC command

PURPOSE: Appears to erase all BASIC variables currently in memory, leaving the
BASIC program, if there is one, unchanged. Any machine code routines in
RAM are left unaltered.

Syntax: CLR. CLR has no parameters. It may be followed by spaces, but must
be followed by a colon or and end-of-line zero byte. (Some versions of BASIC
use a parameter with CLEAR to allocate specially reserved RAM: this cannot
be done directly with Commodore's CLR).

Modes: Direct and program modes are both valid.

Examples: CLR
50000 CLR: ?"VARIABLES ALL ERASED'": REM ALL RESULTS SO FAR ARE LOST.
10 POKE 52,0: POKE 53,48: CLR: REM TOP OF MEMORY IS NOW $3000
10 POKE 134,128: POKE 135,48: CLR: REM OLD ROM: TOP OF RAM=$3800

This command operates by moving pointers about; it does not erase variables
in the sense of, say, putting null characters in all the locations which pre-
viously held data. The first two examples are straightforward; in direct
mode, if X perhaps was 1.414 and S$ was "J. Smith", then after CLR both
variables will return 0 or null, as appropriate to the variable type. And in
program mode the same effect obtains. Program running is not changed; so
the program carries on as before, except that its variables, which presum-
ably aren't wanted, are cleared. Also references to subroutines and loops
are lost. For a complete description of this command, read the detailed ex-
planations which follow. However, it is not necessary to fully understand its
operation. The final two examples, which are alternative program lines, one
for BASIC 1, show how CLR can be exploited for useful purposes, given an
understanding of its modus operandi. A pair of zero-page pointers hold the
location of top of RAM; this is not set by hardware, but by the machine itself
on switchon. If new, low values are poked in the machine acts as though its
RAM storage had been reduced; strings which normally fill RAM to its limit
now limit themselves to the new value. In this way, free RAM is made avail-
able to the programmer for machine code routines and general storage. CLR
ensures consistency between all the pointers.

Notes: [1] Simple variables (integers, strings, floating-point variables and function
definitions) and arrays (integer, string, and floating-point) are deleted.In
addition the DATA pointer is RESTOREd and the stack pointer reset, losing
all FOR .. NEXT and GOSUB .. RETURN references. $FFE7 in ROM is called
to abort input/output activity: files are aborted and the screen and keyboard
are restored to primacy.

[2] There is no easy way to erase strings only, for example, or just integ-
ers. It is possible to erase arrays; their pointers are held differently, as is
necessary to avoid ambiguity. After CLR, variable and array pointers are not
distinguishable, so recovering the lost values is difficult.

[3] As with NEW, CLR generates anomalous error messages if a machine-code
program has been loaded or the BASIC pointers are abnormally set for some
other reason. Poking values for the start and end of BASIC, then CLRing,
is one possible cure.

Abbreviated entry: cL Token: $9C (156)

Operation: The 'limit of RAM' pointer, as we've seen, is stored in the 'bottom of
strings' pointer; this means that new strings will be stored in the top of mem-
ory, overwriting the old ones. The 'end of BASIC' pointer is stored in the
'end of variables' and 'end of arrays' pointers. This loses both variables
and string pointers. When the stack is reset, the top two values are retain-
ed, so RTS continues the program running at the same place. In addition to
the changes listed in note [1] a few flags are reset.

ROM entry points: BASIC1:$C770 (51056) BASIC2:$C577 (50551) BASIC4:$B5EE (46574)
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CMD

BASIC output command

PURPOSE: CMD combines two entirely distinct functions. (i) It prepares an output
device, typically a printer, to receive subsequent PRINTed data until the
device is unlistened. (ii) It then prints whatever string follows CMD to the
printer or other device. In essence it allows a program with many PRINT
statements, which would normally appear on the screen, to be diverted to
some other output device.

Syntax: CMD arithmetic expression:
CMD arithmetic expression, printable expression including , and/or ;
The arithmetic expression must evaluate to 1-255. A logical file number of
zero is disallowed. The comma separator, for example in CMDS5, " "HELLO",
appears with INPUT# too, but not with PRINT. This is because PRINT 25
is syntactically correct, but CMD 5 25 is ambiguous.

Modes: Direct and program modes are both valid.

Examples: Assume OPEN 5,4 has opened a file to a printer. (OPEN 4,4 may well be
used in practice: I've put 5 purely to make clear which parameter is which.

CMD 5 switches further output to printer. Then prints crilf.
CMD 5, ; " Without crilf.
CMD 5, "HELLO" " & prints "HELLO"

PRNT=5: CMD PRNT is syntactically valid.

Notes: [1] If we compare PRINT#5, "HELLO" with CMD5,"HELLO" it is clear that
these instructions are rather similar; however, the puzzling feature of the
commands is that PRINT#5,; which unlistens the device does exactly the
opposite of CMD5,; which causes it to listen. This confusing aspect of CMD
is the result of its combining two disparate instructions.

[2] Problems: CMD often gives rise to minor bugs.

[i] OPEN 4,4: CMD 4: INPUT "NAME";N$ :REM "NAME" IS PRINTED
[ii] GET turns off CMD; only one line appears on the printer:
10 OPEN 4,4: CMD 4,;
20 PRINT "LINE" :REM PRINT LINE REPEATEDLY...
30 GET X$: IF X$="" GOTO 20 :REM IF NO KEY IS PRESSED?
40 PRINT#4,;: CLOSE 4: END
[iii] Commodore printers (not others) somehow tend to make CMD fail
to operate. GOSUB for example has this effect.

[3] To summarise, CMD seems to be, in the US phrase, a kludge to enable
a program full of print statements to be easily diverted from the screen to
some other device. It is easier than replacing all PRINTs with PRINT #.
When developing a new program, PRINT# is likely to be a better choice: it
lends itself better to CLOSE and will not lose its effect erratically. Also
Commodore (cf. their printers) seem to support PRINT# in preference.

Abbreviated entry: cM
Token: $9D (157)

Operation: The parameter following the CMD token is checked. It must evaluate
to 1-255. The device number corresponding to this file number is looked up
in a table of up to 10 values, and the output device set. ?FILE NOT OPEN
or ?DEVICE NOT PRESENT errors may greet the user while this is being
attempted. The syntax is checked after CMD's parameter. Either an end-of-
statement (colon or new line) or comma followed by printable expression is
accepted. Finallt, the PRINT routine in ROM is entered.

ROM entry points:

BASIC 1: $C985 (51989)
BASIC 2: $C991 (51601)
BASIC 4: $BASE (47758)
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CONT

BASIC command

PURPOSE: Resumes BASIC program running after encountering STOP or END in
the program, or after the STOP key had been pressed, or after a null input
crash on INPUT. In this way not only can breakpoints be put into BASIC,
but a program can be stopped and restarted at any point. (Well ... nearly
any point. The STOP key will abort files, so that its message and READY
will appear on the VDU; in some cases therefore CONT does not completely
resume operation).

Syntax: CONT. No other parameters; may be followed by spaces, but must be
followed by a statement terminator - a colon or end of line.

Modes: Direct mode only. (In program mode CONT goes into an infinite loop which
continually jumps to itself).

Notes: [1] As a BASIC program runs, a record is kept of current and previous
linenumbers, and a pointer is kept which indicates where the next state-
ment is. All this is part of the overhead which helps to make translators
slower than compilers. It also makes useful commands like CONT possible.
The HELP command, implemented on some toolkits to point to the error in
a line which has caused a syntax error, uses the linenumber and pointer;
the routine cannot be in BASIC, which would change the pointer, but must
LIST a single line in machine-code and then calculate where in the LISTed
line the error was located.

[2] While the program is stopped, any of its variables may be examined by
PRINTing; their values can also be changed in direct mode. With CBM BASIC
new lines can't be added if CONT is to work. A ?CAN'T CONTINUE ERROR
is also caused after CLR or NEW or if exit from the program was by way of
a syntax error. In such cases, GOTO a convenient linenumber may serve
the same purpose.

[3] The principal locations are: ($3A) holds 'previous linenumber’,

($38) holds the pointer into BASIC.
The high byte of ($38) is made zero if exit was by syntax error; by POKE-
ing these locations, CONT can be made to work, and jump to anywhere in
BASIC, although there's little practical value in doing this.

Abbreviated entry: cO
Token: $9A (154)

Operation: First the syntax is checked. Then the pointer into BASIC used by
CONT (not the same as CHRGET) is tested for high byte zero, which is a
standard test for a syntax error exit. Obviously a valid pointer into BASIC
must be $0400 or greater, so the zero byte never leads to ambiguity. If a
zero byte is found, therefore, the routine branches to print the can't cont-
inue message. Otherwise, and let us hope usually, the routine puts the
stored previous linenumber into the 'present linenumber' slot, sets GETCHR
to the pointer to the next statement, and runs.

ROM entry points:

BASIC 1: $C745 (51013) Unvalidated: $C747
BASIC 2: $C76B (51051) " $C76D
BASIC 4: $B7EE (47086) " $B7FO0
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COS

BASIC arithmetic function

PURPOSE: Evaluates the cosine of the argument, which is assumed to be in
radians. The cosine is a ratio which is constant for an angle; the diagram
illustrates this.

Syntax: COS(arithmetic expression). The expression must be syntactically correct
and within the range acceptable to the floating-point logic (+1.7 E38 approx).

Modes: Direct and program modes are both valid.

Examples: PRINT COS(1) prints cosine of 1 radian = .54 approx.
PRINT COS(45 * [P1]/180) prints cosine of 45° = ,707 approx.
1000 Y=EXP(~-K*T) * (A*SIN(W*T) + B*COS(W*T))
2000 X=ALPHA+SIN(ALPHA): Y=1-N*COS(ALPHA)

The first examples show COS used in direct mode (sometimes called 'calcul-
ator mode'!) performing direct calculations. The conversion between degrees
and radians has to be performed by the user. The second examples are
typical formulas using trigonometrical functions; the first is the equation

of a damped sine curve. The second calculates two coordinates, X and Y,
on a cycloid.

Notes:[1] The diagrams show the cosine's ratio in terms of a right angled triangle,
and the concept of a radian. 'A' and 'H' conventionally represent sides ad-
jacent to X and hypotenuse (diagonal), respectively.

r

A
COS(X) = A/H Angle = 1 radian

[2] Accuracy is not greatly affected by the size of the angle: this function
operates by dividing the argument by 2*pi and taking the remainder, so
there is no series approximation error related to the size of the argument,
only the error caused by the limited precision to which the argument can
be held.

[3] See the appendices for the inverse function ARCCOS.
Abbreviated entry: None
Token: $BE (190)

Operation: The argument is evaluated, and the result put into floating-point accum-
ulator #1. Pi/2 is added and the routine then drops into SIN, so COS(X)is
avaluated as SIN(X + pi/2).

ROM entry points:

BASIC 1: $DF9E (57246)
BASIC 2: $DFD8 (57304)
BASIC 4: $D282 (53890)
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CRUNCH

BASIC system command unavailable directly in CBM BASIC

PURPOSE: Improves the speed of BASIC execution by deleting as much of the
program as is considered redundant.

Versions: Quite a number have been issued; some, in BASIC, are only suitable
for preparation of a 'fast' version of the program; some machine code
versions may be used at run-time. The routine is also called 'compactor'.
Uncrunch programs, which present each instruction spaced out on its own
individual line, are possible too. ‘

The rationale is that REM statements, spaces, short lines and so on, while
helpful to an investigator into a program, slow the translator by wasting
time jumping past spaces, switching to new lines and so on, and indirectly
by slowing up GOTOs and GOSUBs, lengthening the program and thus
causing more garbage collection, and so on. Unfortunately, it must be

said that such mechanical ways of speeding up program execution do not
have a great effect, even with specially constructed programs; their appeal
is really of the 'every little bit helps' type.

Various points of attack are:-

[1] Elimination of all REM statements and lines. If they are referenced by
GOTO or GOSUB or THEN the REM statement only may be retained, or,
better, deleted but with its reference changed to the next line.

[2] Elimination of all spaces which are not within quotes. (Some BASICs,
e.g. Apple's, do this anyway). A program modified in this way sometimes
gives problems; X=T AND U will think it contains the function TAN.

[3] Elimination of lines by conflating as many together as possible. Lines
spanning more than 255 bytes are unreliable, however, since pointers for
DATA for example are single-byte only. Also the program won't LIST. So
the maximum linelength is usually limited to 250 BASIC characters. Also,
of course, a line may be referenced, say by GOTO, and therefore not be
conflatable with the previous line(s).

[4] Renumbering the program with lines starting at 0 and increment of 1
makes line references as short as possible: processing 'GOTO 53' is faster
than 'GOTO 12000’

[5] Systematic changes of variable names to 1 character names only, where
possible, speeds up variable processing.

[6] Spare semi-colons can be removed from PRINT statements.

[7] Since the program has no spaces, the CHRGET routine may be modified
to exclude the check for spaces.

[8] A trace or shadow routine might be able to count the frequencies with
which variables are used during an actual program run; an initialisation
routine could be added to the program to assign the variables in their
optimum order.

For further discussion on these points, see Chapter 2.

[9] Where a 'wedge' is in use, which intercepts the GETCHR routine,
considerable timesaving is often possible by deleting it with a short 6502
routine, if it is not required at run-time.

See Chapter 14 for details.

[10] Finally, the interrupt sequence can be shortened. Since the keyboard
buffer will not work if this is done, its use is limited to programs which
perform prolonged processing without intervention by an operator.

See Chapter 13 for details on this point.
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The BASIC routines on this page illustrate the sort of methods by which BASIC
programs may be compressed. They are far slower than the machine-code
equivalents but nevertheless have some interest. The first, longer subroutine,
to be appended on or near the end of a BASIC program, deletes all spaces not

within quotes from the program, and deletes all REM statements from lines
unless the entire line is a REM statement. In this case, only REM is left in
place of the original REM line; it is not completely erased, since it may be the
destination of a GOTO or GOSUB. Note that abbreviated forms of keywords
appear on the screen; this prevents over-long lines from overrunning the
standard 80 character linelength. (Because of the way the listing has been
printed, the abbreviation of 'END' has appeared 'En'. This means unshifted

E followed by shifted N. The same sort of thing is true for the other abbreviat-
ions, which are, of course, identical to those printed in the BASIC keywords
reference section).

63000
63002
63003
63004
63006
63008
63010
63012
63014

POKE59458,62:A=1025:B=256:GOSUB 63100:GOTO 63003:REM *** AS STARTER

B=256 :A=B*PEEK(826)+PEEK(827) :A=PEEK(A)+B*PEEK(A+1) :GOSUB 63100
L=PEEK(A+2)+B*PEEK(A+3): IF L>62999 THEN PRINT"FINISHED":END

PRINT" [CLEAR] [DOWN] [DOWN] [DOWN] "L" [LEFT]"; : Q=0: REM PRINT LINENUMBER,SET QUOTES
FOR K=A+4 TO A+93: P=PEEK(K): REM NOW LOOP THROUGH LINE

IF P=0 THEN 63050:REM END OF LINE

IF P=143 AND K<>A+4 THEN PRINT"[LEFT] ";:GOTO63050:REM DEL 'REM' UNLESS AT S
IF P=143 THEN PRINT"REM";:GOTO63050:REM LEAVE 'REM' IF AT START

IF P=34 AND Q THEN Q=0:PRINTCHR$(34);:NEXT:REM END OF QUOTES

63016 IF P=34 AND NOT Q THEN Q=-1:PRINTCHR$(34);:NEXT:REM START OF QUOTES

63018 IFNOTQANDP>127ANDP<203 THEN PRINTT$(P-127); :NEXT:REM PRINT EXPANDED TOKEN
63020 IF P=32 AND NOT Q THEN NEXT:REM IGNORE SPACE

63022 PRINTCHR$(P); :NEXT:REM PRINT VARIABLES, INTEGER, $,% ETC

63050 PRINT:PRINT"GOT063002":REM PREPARE FOR NEXT LINE

63052 POKE 826,A/B: POKE 827,A-INT(A/B)*B:POKE 158,2:POKE623, 13:POKE624, 13

63054
63100
63101
63102
63103
63104
63108
63110
63112

PRINT" [UP] [UP] [UP] [UP] [UP] [UP] [UP] " :END

DATA***,"En" ,"Fo","Ne","Da","In","INPUT","Di", "Re",LET, "Go","Ru","IF","REs"
DATA"GOs" ,"REt",REM,"St",ON, "Wa", "Lo","sa","Ve","De", "Po","Pr",?,"Co", "Li"
DATA"C1","Cm","Sy","Op","CLo","Ge" ,NEW,"Ta",TO,FN,"Sp","Th", "No", "STe" , +
DATA-,*,/,”,"An",OR,>,=,<,"Sg",INT, "Ab", "Us" ,"Fr","Po", "Sq", "Rn",LOG, "Ex"
DATACOS, "Si",TAN, "At","Pe",LEN, "STr","Va","As","Ch","LEf","Ri","Mi"

FOR K=1 TO 1E5: READ X$:IF X$<>"***" THEN NEXT: REM READ DATA UP TO *

DIM T$(75):REM ARRAY FOR TOKENS

FOR K=1 TO 75:READ T$(K):NEXT:RETURN:REM FILLS ARRAY WITH EXPANDED TOKENS

This second subroutine belongs at the start of BASIC and has the function of
combining several lines into one. The composite line consists of the original
lines separated by colons. The maximum linelength resulting must not exceed

251 characters, since the ROM rechaining routine (amongst others) cannot

then operate properly.

0 INPUT "COMBINE LINES";L,U: C=1025: B=256: E=PEEK(42)+B*PEEK(43)-4

1 LT=PEEK(C+2)+B*PEEK(C+3): PRINT LT;: REM PRINTS LINENUMBERS

IF LT<L THEN C=PEEK(C)+B*PEEK(C+1): GOTO 1: REM FIND LOWER LINE

IF LT>L THEN PRINT "LINE NOT FOUND": END

C=C+4: REM START EXAMINING BYTES IN THE PROGRAM LINE

Q=PEEK(C): IF Q<>0 THEN C=C+1l: GOTO 5: REM FIND END OF LINE ZERO
LT=PEEK(C+3)+B*PEEK(C+4): PRINT LT;: REM PRINT LINENUMBER

IF LT>U THEN SYS 46262: END: REM RECHAIN. (NOTE** BASIC 4 VERSION)
POKE C,ASC(":"): FOR J=C+1 TO E: POKE J,PEEK(J+4): NEXT: E=E-4:GOTO5

** BASIC 2: Line 7 contains SYS 50242, but is otherwise identical.
** BASIC 1: Line 0 has E=PEEK(124)+B*PEEK(125)-4. Line 7 uses SYS 50227.

W N®ObdwN

And line 8 must be spread over 2 lines, 8 & 9, because POKE of PEEK fails.

Chapter 2 explains the working of these routines and others like them.
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DATA

BASIC data marker

PURPOSE: Enables data of any type, alphabetic, numeric, or ASCII to be stored
within a program, without being read from disk or tape or being keyed in.
The data is retrieved by the READ statement which assigns each item of
data to a variable in the same order that the data is stored. Originally,
BASIC accepted data from punched cards, not from keyboards, so READ
statements appeared throughout programs in the way INPUT and GET do
now.

Syntax: DATA is followed by ASCII characters interpreted like this:-
" delimits a literal, which is READ as a single string
, outside of quotes separates one DATA item from the next
: outside quotes, or a new line, ends the DATA statement.
Other characters are treated as data. Note that the position within a pro-
gram of DATA statements is irrelevant, but the order is important.

Mode: Program mode only is valid. (The data pointer starts at BASIC, and cannot
reference data in the input buffer).

Examples: 100 DATA "Al,Aluminum,24.6","Cu,Copper,136.2","Fe,Iron,35.1"
12000 DATA MACHINECODE,120,169,46,133,96: PRINT "STARTING.."
50000 DATA 27,14,27,9,22,9,22,9: REM HORIZONTAL
50010 DATA 3,4,5,8,8,9,9,10 : REM VERTICAL
50020 DATA 1,20,2,6,6,6,6,6 : REM LENGTHS OF INPUTS

The first example shows three strings held as data; READ X$ takes in the
entire string within quotes, so READ X$: PRINT X$ repeated three times
prints each string. The second example shows data with a special marker;
a block of DATA beginning in this way can be made relocatable, using a
loop to read all the data until, in this example, X$ say = "MACHINECODE",
Finally, three lines show how data can be structured. Three sets of eight
parameters hold details relevant to a screen input format.

Notes: [1] DATA is used for repetitive work: sometimes there is no need for DATA
e.g. PU$="EachPackUnitTubeReelSet Pair" holds information as a string. The
command is processed by the same routines that INPUT and GET use, which
explains the punctuation by " and , and :. Also the variables must be of
the same type as the data. Read X$ is always safe, but READ Y may not
be. See READ for full explanations of these points. Note also that RESTORE
sets the pointer to DATA back to start, so data is always rereadable.

[2] DATA statements can be forced into a program using the keyboard buff-
er to simulate keyboard entry of a line.

[3] Bugs: (i) DATA uses INPUT's routines, so some peculiarities of INPUT
affect READ. Unshifted leading spaces and some graphics are lost.

(ii) Syntax error reported in a valid DATA line in fact means that there is
an error in the READ statement. You'll have to search to find which one.
(iii) Unnoticed commas can introduce baffing bugs. The statement

DATA 31,28,31,30, has 5 data items, including a null string.

(iv) Take care when introducing more DATA into a program which has some
already. READ will impartially treat information in the wrong sequence as
though it were correct. This can create problems, especially with 6502 code.
(v) A varidble cannot be input: DATA 1,2,3,X treats X as a string.

Abbreviated entry: dA Token: $83 (131)

Operation: When a data statement is found, it is ignored, just like a remark
statement except that the next statement, not the next line, is jumped to.
The routine hunts for a : or zero byte, the Y register holding the offset;
this is added to CHRGET's address so the effect is to skip the data.

ROM entry points:
BASIC 1: $C7F0 (51184) BASIC 2: $C800 (51200) BASIC 4: $B883 (47235)
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DBL

Command unavailable directly in CBM BASIC

PURPOSE: increases the accuracy of calculations by increasing the storage space
of floating-point numbers.

Versions: Some BASICs (IBM, Tandy) have commands of this type, in which space
allocated for the storage of floating-point numbers is, for example, doubled.
Longer numerals are slower to process, but more accurate. Commodore (and
Apple, which has nearly identical number processing routines) are designed
around their standard five byte storage system, and it is impossible to extend
the processing capability of the current routines. (There are rumours that
BASIC 5 will include BCD arithmetic, enabling great accuracy to be obtained).
It is certainly possible to reach the point at which numerals are no longer
processed accurately. Thus 999 999 999.1 is printed as 999999999, and any
values much larger are converted so they appear in scientific notation. There
is of course an element of spurious 'accuracy' in many figures of this magnit-
ude. Not many measurements are correct to one part in a thousand million.
There are few routines available, as a result of this, to process long numerals.
Osborne/Donahue has 25 pages on the subject.* The best approach is to use
fixed-point numbers; in this way all the difficulties associated with floating-
point accumulators are abolished. A usable format might be 15 figures before
and after the decimal point, plus extra space to allow the output to be group-
ed in sets of three digits separated by commas or spaces. Fifteen figures
after the decimal may seem excessive; but some calculations, for instance
overnight interest on bank deposits, need considerable precision. The BASIC
translater could be programmed to intercept and process (say) A$=A1$*A2S.
But this would be ambiguous in the case A$=A1$+A2$. So the best routine is
likely to use syntax like this: !'A$+B$ or this: SYS 700: A$+B$, and, to
avoid having to peek the answer byte by byte, to assign the result to
another string.

*This book has BASIC programs which add, subtract, and multiply (mot divide)
integers only. The relevant chapter is 'Making the most of CBM features' which
appeared in the earlier edition as 'Overcoming the limitations of PET BASIC'.
The multiply routine has bugs: the first item must have an even number of char-
acters, and embedded zeros may crash the program. To remedy this, add:

1160 GOSUB 3000

2150 RETURN
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DEF FN

BASIC command

PURPOSE: Assigns a numerical function, which can be called by FN. The function
definition has a name (of the usual BASIC type) and a dependent variable.

Syntax: DEF FN real variable (real variable) = arithmetic expression. The variable
in brackets is the dependent variable. If the arithmetic expression does not
include it, it's called a 'dummy variable'. The definition has to fit into one
line of BASIC. After the function has been defined, it can perform calculations
on its argument: PRINT FN name (arith. expr.) for instance prints the value
taken by the function. There may be run time errors if the function cannot
be evaluated, typically ?DIVISION BY ZERO ERROR.

Mode: Program mode only; direct mode produces an ?ILLEGAL DIRECT ERROR.

Examples: 10 DEF FN DEEK(X)=PEEK(X) + 256%*PEEK(X+1):REM SETS UP FN DE(X)
100 DEF FN MIN(X)= - (A>B)*B - (B>=A)*A  :REM RETURNS SMALLER
1500 DEF FN Y(X)=A*X*X + B*X + C :REM CALCULATE AXZ+BX+C
527 DEF FN L(QQ)=QQ*(B=10):REIM ALWAYS 0; OR -QQ WHEN B=10

Line 10 defines DEEK(X) as a double-byte peek. The result is much easier to
read than a subroutine; PRINT FN DEEK(1) prints the current USR address
which is stored in bytes 1 and 2. If X is negative, or exceeds 65535, the
program will of course crash, with an error. The second example uses X as
a dummy variable. In the same way that FRE(0) and FRE(99) return the same
value, FN MIN(1) and FN MIN(9) take the identical value, which is A if A is
smaller, B if B is smaller. Line 1500 is a mathematical function: the example
is a quadratic expression; it could be a financial calculation, a scientific
formula, a commercial cost expression. Note that line 1500 includes three
variables,A, B, and C, which are included in the evaluation of the quadratic.
The function can of course contain constants:

10 DEF FN Z(X)=5*(1+TAN(X)), and it can include a function def-
inition: 15000 DEF FN P(P) = 1 + 2*(1-P) + 3*%(1-P)A2 + ... +FN PP(P)
15005 DEF FN PP(P)= 6*(1-P)A7 + 7*(1-P)A8: REM 2 LINES FOR DEF

Notes: [1] DEF works by storing a pointer to the expression among the simple
variables. FN causes the dependent variable to be assigned the value in
brackets, and then the BASIC code in the program itself is used to evaluate
FN. A function can be redefined freely, like any other variable: DEF FN
Y(X)=X: DEF FNY(X)=22: is OK. The definition is stored like this:

NAME NAME PTR. TO EXPR. PTR. TO VAR. Not used

ASCII+128| ASCII LOW | HIGH LOW | HIGH

The high bits in the name, which are on and off respectively, ensure there

will not be confusion with other variable types, so DEF FNX(X)=X%+X$ is valid.

[2] Bugs. i. FN called before the equivalent DEF FN gives ?UNDEF'D FUNC-

TION ERROR, because it is unable to find, and can't set up, the function.

ii. An error in the function definition causes ?SYNTAX ERROR in the line

using FN, even if the line is valid. (READ does the same thing).

iii. If a new program is loaded from within an old one, unless it has an

identical definition in the identical place in RAM, any function definitions

which existed will no longer work correctly, and should be redefined.

[3] Note that the dependent variable does not change when a function definitiol
is used. So, in the very first example above, X=100: PRINT FN DEEK(1000) leave
X unchanged, although FN DEEK uses X. The value of X is in fact temporarily
stored in the area reserved for the function definition itself.

Abbreviated entry: dE (fn has no short form) Tokens: DEF $96 (150), FN $A5(165)
Operation: DEF checks FN token, mode, variable types, brackets, and '=', but not

the expression, then sets the name and pointers. FN has no action address;
it is searched for during expression evaluation and has its own ROM routine.

ROM entry points:
DEF: BASIC 1:$D295 (53909) BASIC 2:$D28D (53901) BASIC 4:$C4DC (50396)
FN: BASIC 1:$D2D6 (53974) BASIC 2:$D2CE (53966) BASIC 4:$C51D (50461)
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DEL

BASIC command not available in CBM BASIC.

PURPOSE: DEL deletes BASIC program lines; typical syntax is DEL a - b where
a and b are linenumbers. This command removes test routines and driver
routines to clean up a program when testing is over, or removes particular
features of a program to leave a core of reusable standard routines.

NB: DELETE is sometimes a disk command to remove a file; 'SCRATCH' is
Commodore's version.

Versions: In view of the simplicity of programming and usefulness of this command
it is remarkable how few versions exist. In Microsoft BASIC DEL can only
be supported in direct mode, because the program shrinks, and the storage
of variables has to be revised. Validation of DEL a - b is similar to LIST,
and the operation of the routine would be to search for the two lines, then

memory move the upper part of the program to the end of the lower part,
and rechain the result.

The version below is in BASIC, in the form of a subroutine which sits at
the end of the program. RUN 61000 inputs the linenumber limits, and the
routine proceeds to print on the screen all the linenumbers which the pro-
gram has between (and including) the limits. It relies on the well-known
keyboard buffer trick of putting in carriage returns from the program.

61000 A=1025: B=256: INPUT "DELETE FROM,TO";L,U
61010 IF PEEK(A+2)+B*PEEK(A+3) < L THEN A=PEEK(A)+B*PEEK(A+l): GOTO 61010
61020 POKE 828,U-INT(U/B)*B: POKE 829,U/B: GOTO 61040
61030 B=256: A=PEEK(826)+B*PEEK(827): U=PEEK(828)+B*PEEK(829)
61040 IF PEEK(A+2)+B*PEEK(A+3) > U OR PEEK(A)+B*PEEK(A+1)=0 THEN END
61050 PRINT "[CLR][DOWN][DOWN][DOWN]" PEEK(A+2)+B*PEEK(A+3):
PRINT "GOTO 61030': PRINT "[UP][UP][UP][UP][UP][UP][UP]
61060 POKE 826,A-INT(A/B)*B: POKE 827,A/B: POKE 158,2:POKE 623,13:POKE 624,13
61070 END

Comments:

A=first byte of link address; so its initial value is 1025, and the pointer to
the next line, and the current linenumber, are stored in locations A/A+1,
and A+2/A+3.

B=256 is a convenient constant.

61000 inputs L,U = lower and upper linenumbers

61010 scans the line numbers until one is found which is not less than L

61020 stores the upper linenumber in cassette buffer #2

61030 Loop to print linenumbers: A recovers link, U recovers upper line
61040 ends if upper linenumber exceeded, or program's end reached.
61050 clears screen, prints linenumber, prints GOTO 61030, moves up
61060 saves link address and puts two returns into the buffer.

61070 END causes the loop to delete one line.



Programming the PET /CBM ~-58- 5: BASIC keywords

DIM

BASIC command

PURPOSE: Allocates space in memory for an array of specified name, type, and
dimensions. The name has two significant characters, the type may be real,
integer or string, and multiple dimensions are accepted. Array elements are
numbered from zero. On setting up, every element of any array is made 0
if numeric or null if string.

NOTE: Strings do not need to be individually dimensioned for length; the
system takes care of this. So X$(20) is a string array holding 21 strings;
not a single string of length 20.

Syntax: DIM name(arith. exp.1, arith.exp. 2, ..., arith. exp.nl) [, name 2(arith.exp.
» »..)] where the square brackets indicate optional repetitions. Each
arithmetic expression is evaluated and rounded down if non-integral. The
permitted range of values is 0-32767. High values will generate ?0UT OF
MEMORY ERROR. See note [3] for information about BASIC 1's peculiarities.
The syntax is not checked thoroughly. DIM T for example does not give
any error indication.

Modes: Direct and program modes are both accepted.

Examples: 12000 DIM P%(18),L%(8),A1(18),SG$(2)
540 DIMS(B*N + 20): REM B= 2 TO 4.
50 DIM A(10,10,10),T(24),POSN(X,Y,Z): DIM LOCATE (2*Y),Q(X,10)

FOR J=0T010: X$(J)=STR$(J): NEXT: FOR J=10 TO O STEP -1: ?X$(J): NEXT

DIM is a straightforward command: the problems associated with it mainly
derive from the difficulties associated with processing large amounts of data,
Arrays can be 'dynamically' dimensioned with Microsoft BASIC. This means
lines like 540 are valid, where an arithmetic expression has been used to
compute the array subscript size, as well as lines like 12000, in which
absolute values are used. Line 540 assigns an array S() a dimension which

is B times as large as another array of dimension N, and adds another 20
spare elements. In this way, arrays can be assigned by soft-coding to be

a suitable size for the work in hand. Line 50 dimensions three multi-dimension
arrays. Note that DIM must be repeated at the start of each new DIM
statement. Finally, the direct mode example shows an implicit dimensioning of
the array X$(). Although DIM X$(10) is not included in the line of coding,
the first time it is met during running the translator searches for X$(0), and
when it doesn't find it, sets up the array. The default value of DIM is always
10; larger arrays therefore must be dimensioned to avoid ?BAD SUBSCRIPT
ERRORs.

Notes: [1] Some general notes on arrays. These notes are long and comprehensive;
don't be put off DIM and arrays because of this detail and apparent complex-
ity. The basic idea of giving a whole batch of data just one name is simple,
and the method of numbering the separate items isn't too hard either.

i. Since computers start counting at zero, it is not surprising that Microsoft
have allowed zeroth elements in their arrays. Some people *consider that
these elements should not be used, because of possible compatibility problems
between other versions of BASIC. In any program developed for subsequent
mini or mainframe use, or with portability in mind, this is likely to be true.
On the other hand, this may be unimportant; certainly there are plenty of
other potential conversion problems. The zero element, because of its
uniqueness, may hold averages, totals, comments, or any other summary item
about the array. This example line shows how a total might be built up:

DIM A(20): FOR X=1T020: INPUT N: A(X)=N: A(0)=A(0)+N: NEXT

ii. PREDIM'D ARRAY ERROR will occur if DIM is inadvertently included within
a loop. Move it to an earlier part of the program.

*gee for instance Donald Alcock's 'Illustrating BASIC'.
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iii. DIM X (5,0) is syntactically correct but adds nothing extra to the array X(5)

except the additional effort of incorporating ', 0' to the subscripts. DIM C(7,2)

sets up a three-column array, with a choice of C(M,1) or C(M,2) for M = 1 to 7.
(And the zero elements may also be used). Two-dimensional arrays, like this one,

are usually visualised as rows followed by columns: A(R,C).

iv. CLR seems to delete all variables and all arrays, an effect produced by the

shifting of several pointers. (See diagram). Because of the way variables are

partitioned into simple and subscripted types, it is easy to erase all the arrays
from memory, whilst leaving all the simple variables untouched. We can achieve

this in BASIC>1 with: POKE 46, PEEK(44): POKE 47, PEEK(45) and in BASIC 1

with: P=PEEK(126): POKE 128,P: P=PEEK(127): POKE 129,P. Large arrays consume
a lot of RAM; this manoeuvre may therefore usefully eliminate a redundant array

from memory. The 'Scatter Sort' (q.v.) provides an example.

[2] Array dimensioning by default doesn't only occur when an assignment
statement refers to a non-existent array value. It happens also when such an
array is present in an expression. This program: 0 X=Y=Z: END when run,
sets up variable X and assigns it the value -1, because Y and Z are both zero.
Although X is present after the program, neither Y or Z is. But this:

0 X=Y=2(3): END not only sets up X, but array Z (), which is given the

default dimension of 10. This may lead to unexpectedly small reserves of RAM.

[3] BASIC 1. This ROM has a serious bug, causing an array to remain empty
from its 255th element on. Items out of this range are written wrongly (the
260th as the fourth) and read back wrongly. This error applies to multi-
dimension arrays, and causes bugs which can be hard to detect. For example,
remembering to allow for the zeroth element, X(4,50) has 5*51 =255 elements,
and Y (9,24) has 10%25 =250 elements. Both of these will process successfully.
But Z(16,16) has 17*17 = 289 elements and will not be reliable.

[4] String Arrays. Any previously undefined variable will cause all the arrays

held in RAM to memory-move up, to create the necessary space. This is time-

consuming and especially so with BASIC 4 string arrays. This is because BASIC
4 strings each have their own pointer, and these all need updating. To see this

effect, try DIM X$(1000):A=1:B=2:C=3:D=4:PRINT A. /f this once-only delay
is important - often it won't be - set up most or all variables before large

arrays are dimensioned. For the connection between string array dimension and

memory-freeing time, see Chapter 2 and the section on FRE. Finally, note that
DIM can be absurdly high with strings, because all the pointers can point to
the same string: FOR J=0 TO 1000: X$(J)="ELEPHANTINE": NEXT uses 3K bytes.

POINTERS: End of BASIC £nd of vars/End of arrays

BASIC<4: PROGRAM Vggs/Strin pointers] String array ] Strings |
BASIC 4: | PROGRAM | Vars/String pointers|String array| 1 Strings |
™ X 7

[5] Storage Space. Space taken up in RAM can be found with the aid of FRE.
F=FRE(0): DIM Z%(500): PRINT F-FRE(0) shows the method. It can be found
by the formula, for any n-dimensional array:

Bytes=5 + 2*n + (diml + 1)*(dim2 + 1)* ,,. *(dimn + 1)*2,3 or 5 for integer,

string, or real number arrays respectively. Example: PQ(100,4, 2) occupies
5+ 6 + 101*%5%3*5 bytes = 7586 bytes.

Abbreviated entry: dI (this is why DIRECTORY needs diR!)
Token: $86

Operation: The first character of the array name is stored in X. Most of the work
is done by the next routine, which searches for the variable, and by another
routine which it calls, and which is extremely long, 'find or create array'.
After this, if the statement hasn't ended, DIM loops back to check for a comma
and repeat the operation with the next array to be dimensioned.

ROM entry points: pys101:$cF71 (53105) BASIC2:$CF63 (53091) BASIC4:$C121 (49441)
Find/create array:BASIC1:$DOB9 (53433) BASIC2:$DOAC (53420) BASIC4:$C2FC (49916)
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DUMP

Utilities unavailable directly in CBM BASIC

PURPOSES: (1) A screen dump prints a duplicate of the screen onto paper.
A printer may, of course,be unable to reproduce the full range of Commodore
characters. Routines of this sort are valuable for record-keeping purposes.
If the screen is built up with POKEs or machine-code a special routine is
necessary. With output which is simply PRINTed to the screen it is usually
quicker to direct the output to the printer.
(2) A dump of variables prints out current variable names and values.
This is of some use when debugging BASIC.

Versions: (1) Screen Dumps. Many versions, both BASIC and machine-code,
exist. Before looking at these, let's consider the problems that can arise.
Firstly, some characters may be unprintable. Secondly, a printer may not
use CBM'S version of ASCII. Thirdly, the upper and lower case alternate
character sets have to be allowed for. Fourthly, some screens have 80
columns, others 40. None of these is a real problem. (If however some
non-standard screen display is used, for example a high-resolution graphics
hardware unit, completely new routines will be needed to dump their screen
output).

Early versions, in BASIC,*were concerned with non-CBM printers, which
did not exist. They convert the screen memory characters into outputtable
equivalents. (See appendix for screen memory and ASCII). Graphics were
ignored or printed as (say) *. This program, including allowance for
either graphics mode, shows the type of thing necessary:

40000 REM *** 40 COLUMN SCREEN DUMP *x*x*

40010 OPEN 4,4: CMD 4: IF PEEK(59468)=14 GOTO 40200

40100 FOR J=0 TO 24: FOR K=0 TO 39: X=PEEK(32768 + J*40 + K)
40110 IF X<32 THEN PRINT CHR$(X+64) ;: GOTO 40160
40120 IF X>31 AND X<65 THEN PRINT CHR$(X) ;¢ GOTO 40160
40130 IF X>128 AND X<160 THEN PRINT CHR$(X-64) ;: GOTO 40160
40140 IF X>159 AND X<T93 THEN PRINT CHR$(X-128);: GOTO 40160
40150 PRINT "*";

40160 NEXT: PRINT: NEXT: PRINT#4: CLOSE4: RETURN

40200 FOR J=0 TO 24: FOR K=0 TO 39: X=PEEK(32768 + J*40 + K)
40210 IF X<32 THEN PRINT CHR$(X+96) ;: GOTO 40160
40220 IF X>31 AND X<91 THEN PRINT CHR$(X) ; + GOTO 40160
40230 IF X>128 AND X<160 THEN PRINT CHR$(X-32) ;: GOTO 40160
40240 IF X>159 AND X<219 THEN PRINT CHR$(X-128);: GOTO 40160
40250 PRINT "*";: GOTO 40160

This routine separates lower-case mode (40200 ff.) from upper-case, and
is therefore a general purpose routine. Changing the range of K from
0-39 into 0-79 makes this usable for an 80-column machine. Note, though,
that BASIC 1 in lower case has its upper and lower cases reversed, so
programs written in BASIC 1 tend to yield odd displays, and odd dumps,
when run on other ROM machines. Note that the BASIC subroutine above
can be compressed, with loss of clarity. Lines 40110 to 40140 can be
replaced by:

40110 IF X<65 OR (X>128 AND X<193) THEN PRINT CHR$(X-(X AND 128)
-2*(X AND 32)+64);: GOTO 40160

and lines 40210 to 40240 by:

40120 IF X<91 OR (X>128 AND X<219) THEN PRINT CHR$(X-(X AND 128)
-96* ((X AND 96)=0));: GOTO 40160, ‘

*CPUCN nos. 6 & 7 for example have a routine (lower-case mode only) by J Allason
and M. Bennet.
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Screen dumps in machine code are newer. K Finn, ('Micro', Aug '80) has
a CBM printer version for BASICs 1 and 2. C Brannon ('Compute!'Nov/Dec
'80) and E Brannon ('Compute! Mar '81) have versions for BASIC 2 and 1
respectively. The first uses SYS to print the screen; a variable number of
lines may be selected. The second changes the interrupt, so a simple key-
stroke will print the screen. This is valuable if for some reason (e.g. a
program in machine-code) a SYS command can't be issued, or if, in direct
mode, the SYS command spoils the screen's appearance.

My routine below (see elsewhere for rationale) is a short relocatable dump
for any printer; graphics characters*are treated as '#. Upper and lower
case settings are allowed. It saves temporary values in RND's workspace.
It is often helpful to have such a routine available, perhaps in a cassette
buffer. To use it, open the printer: OPEN 4,4: CMD 4: SYS 826: PRINT#4:
CLOSE4 is an example, when the routine starts at $033A (=826). Three
locations are marked; these are all user-modifiable.

This routine calls one ROM address, which prints carriage return and line
feed. It is written for BASIC2. There is no serious difficulty in writing it
to run on either machine ... however, as it stands, BASIC 4 requires the

following substitute lines:

6020 A9 01 85 89 20 DF BA A2
6060 8C DO AD 4C DF BA.
B* RELOCATABLE BASIC 2 SCREEN DUMP.

PC IRQ SR AC XR YR SP
.; 0401 E62E 32 04 5E 00 F8

6000 A9 00 85 89 85 8A 85 8B

6008 A9 80 85 8C A9 40 85 88

6010 E6 89 A5 89 C9 29 DO OF $29
6018 E6 8A A5 8A C9 19 FO 43 $19
6020 A9 01 85 89 20 E2 C9 A2

6028 00 Al 8B 29 7F 24 88 DO

6030 06 24 7E FO 13 DO 21 24

6038 7E DO 09 48 A9 02 2C 4C

6040 E8 DO OD 68 A9 23 DO 10 $23 = Default character (#)
6048 48 A9 02 2C 4C E8 DO 05

6050 68 09 40 DO 03 68 09 60

6058 20 D2 FF E6 8B DO Bl E6

6060 8C DO AD 4C E2 C9

(2) Variable Dumps. The best known implementation is the Toolkit's
version; it and related routines dump ordinary (string, integer, and
floating-point) variables, but not arrays, which are thought to be too
difficult. There is no difficulty writing such routines in BASIC; and in
any case values can simply be printed. Generally dumps are designed to
print to the screen; diverting output to a printer may produce oddities.
There is a published example of this type of dump in Compute! (3#1, Jan
'81) by F Levinson. This works by putting 12 bytes into the output buffer:

" A ="A ;O (the zero is intended to represent a null character).
The variable names are changed in cyclical sequence, through A,A0-A9,
AA-AZ,B,B0-B9, BA-BZ,...A%,A0%-A9%,AA%AZS%,..., and at each loop the
variable is sought, using the ROM routine for the purpose. When a variable
is found, the buffer is printed; the print routine determines the value of
the variable, and the name in quotes is printed verbatim.

An alternative type prints the variables in the order in which they
are stored in RAM, in other words in their order of first use by the program.

Max.Cols. + 1
Max.Lines to be output

*Including the shifted space character.
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END

BASIC command

PURPOSE: Causes a program to exit to immediate mode. The Ready message is
printed. This command may be used to set breakpoints in BASIC programs.
CONT causes a program to continue at the next instruction after END.

Syntax: END has no parameters. It may be followed by spaces, and must be
followed by an end of statement byte - either a colon or a zero byte at
the end of the line.

Modes: Direct and program modes are both valid.

Examples: 20000 PRINT#4,CHR$(12): CLOSE 4: SYS 45056: SYS 739: END
855 IF PEEK(32766)<>TR THEN PRINT '"*** TRACK READ ERROR": END
5000 GOSUB 51000: END: GOSUB 58000:END: GOSUB 15000: END
59999 END

Several related facets of the END command are shown here. The first
program line is part of an exit routine, which tidies up the program before
ending; a control character resets the printer which is then closed, and

the disk unit is reconnected and a RAM routine called. (None of this is
standard to Commodore). The second example shows an error-trapping

line of BASIC which stops the program if a condition is not met: in the
actual example, a test location which holds an incorrect track number
causes execution to end. The third example is not from a finished program,
but illustrates a way to use breakpoints. Each subroutine performs some
initialisation function: lowering the top of memory, allocating variables in
memory in an efficient order, poking machine code. In the final version

no ENDs will be present here, but during testing each routine can be
separately checked, using CONT to continue with the next. The last
example uses END to ensure that subroutines - located at 60000 and after-
are not inadvertently entered.

Notes: [1] Some BASICs require an END at the physical end of a program, even
if it ends invariably somewhere else. (The last line might be GOTO 1, say).
This is carried over from the days when programs were held as stacks of
cards, and it was important to separate the programs in a box of cards.

[2] END leaves the program in memory: other exits, such as calling ROM
routines to clear RAM, can be employed, if for example it is feared that
lines from the program might be accidentally deleted in direct mode.

Abbreviated entry: eN
Token: $80 (128)

Operation: This routine is shared with STOP; the only difference is that the
carry bit is set on entry to the routine by STOP or by the stop key, but
is cleared for END. This flag (the carry bit) determines whether the
message "BREAK IN" plus linenumber is printed. With END, of course, it
isn't. After the usual syntax check, the routine tests the mode: if it is
direct mode it skips past several instructions which save two parameters
for CONT, the linennumber and the current CHRGET address pointer.
The routine now throws away two bytes from the stack, since it wishes to
enter direct mode, and does not need the return address. In the case of
END it prints "READY." after loading pointers to the BREAK IN .. text
stored in memory, which of course are unused. Early BASICs set the I/O
device to 0, or keyboard, but BASIC 4 does not, so presumably CONT may
be entered from non-CBM devices.

All the ROMs process this instruction in similar ways; the test used in
BASIC 1 for direct mode is different, though, because the input buffer is
in its zero page.

ROM entry points:BASIC 1: $C71E (50974) 2: $C741 (51009) 4: $B7C8 (47048)
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EXP

BASIC arithmetic function

PURPOSE: Calculates e (2.718281828...) raised to any power within the range
-88 to +88 approximately. The result is always positive, approaching zero for
large negative powers, and increasing indefinitely for large positive powers.
EXP(0) is 1.

Syntax: EXP(arithmetic expression). If the expression evaluates to a value larger
than about 88, 7O0VERFLOW ERROR will result and the program will end. If the
expression is a large negative number on evaluation, there is no equivalent
underflow error message; the value is simply set to zero.

Modes: Direct and program modes are both valid.

PRINT EXP(10): REM PRINTS 22026.44 ...

Y=EXP(1): REM ASSIGNS Y VALUE OF E = 2,7182818 ...

PRINT EXP(LOG(N)): REM PRINTS N (POSSIBLY WITH ROUNDING ERROR)
100 FOR N=0 TO 20: P(N)=(M N)*EXP(-M)/FACT(N): NEXT: REM POISSON
200 NT = NE * EXP(-B*EXP(-K*T)): REM GOMPERTZ
Like SQR, this function is a special case of the power function, and therefore
is strictly speaking unnecessary. EXP(Q) can be replaced by 2.7182818AQ.
But like SQR it is more easily recognisable in its familiar form EXP; familiar,
that is, to the mathematically-minded.

Examples:

The two first examples are straightforward evaluations. The third reveals
or underlines the fact that EXP is the converse function to LOG, which is
calculated to base e. Whenever a logarithmic transformation has been used,
perhaps to reduce the magnitude of the numbers being dealt with, EXP can
reconstruct the solution, provided that it is within the limits accepted by
the PET's floating-point logic.

The final examples are both formulas; EXP invariably is used in scientific or
statistical calculations. The first such example is a statistical one; the
Poisson probability distribution deals with randomly occurring, rare events.
Given the mean number M of such events (misprints per page, say) line 100
computes the probabilities of 0,1,2, ...,20 such events happening. It uses a
function definition FACT (N ) which is N! or N*(N-1)*(N-2)* ..., *1. Chapter
16 has more on this topic. Finally, we have a growth curve of the so-called
'logistic' or 'ogive' shape. This sort of thing turns up in population models.

Notes: [1] The number e has a large number of special properties. The rate of
growth of EXP(X), for example,equals EXP(X), so for small DX,
(EXP(X+DX)-EXP(X))/DX is about equal to EXP(X). Malthus' population
theory gives a result involving e, which accounts for the popular meaning of
'exponential growth'. The infinite series 1+x+x2?/2+x3%/6+... converges to
EXP(x). It (e) is irrational; only the first few terms appear to recur. *

Abbreviated entry: eX

Token: $BD (189)

Operation: Rather unexpectedly, this function does not call the power routine in
ROM, but uses its own series evaluation method. This involves the following
steps: (i) The argument is multiplied by 1/loge2. (ii) The result is tested for
range. (iii) The result is normalised into the range 0-1, saving the exponent
on the stack. (iv) The accumulators are interchanged. (v) The series routine
is called; this computes 2A(x/loge2). (vi) The power of 2 is added back; the
result is now ea(argument). All ROMs process this instruction similarly.

ROM entry points:

BASIC 1: $DEAO (56992)
BASIC 2: $DEDA (57050)
BASIC 4: $D184 (53636)

*'Irrational' means, mathematically, 'not expressible as a ratio’.
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FOR..TO..I[STEP]

BASIC loop command

PURPOSE: Permits repetitive processing of all BASIC between a FOR variable ...
TO... [STEP] statement and the corresponding NEXT. When NEXT is
encountered, the loop variable is checked and, if it matches NEXT, added
to the value originally assigned to STEP. If the result falls within the
limits specified by FOR and TO, the loop continues with the statement
following the FOR statement. Otherwise, BASIC continues linearly with
the statement following NEXT.

The loop variable may be used as a counter, pointer, or subscript, and
may be changed within the loop. Step size defaults to 1.

Syntax: The full syntax is: FOR real variable = arithmetic expression TO arith-
metic expression [STEP arithmetic expression] . Constructions such as
FOR / UNTIL and DO / WHILE are not obtainable directly in BASIC, but
can be simulated by programming. Many FOR loops can coexist while the
program runs, and they are called 'nmested' loops, unless NEXT doesn't
match FOR, in which case either a loop variable or variables will be lost,
or ?NEXT WITHOUT FOR ERROR appears.

NEXT, the end of the loop, has syntax: NEXT [real variable [,real var-
iable][,real variable] ... ]. Square brackets denote optional variables.

Modes: Direct and program modes are both valid.

Examples: FOR J=1 TO 1000: PRINT "*";: NEXT: REM J USED TO COUNT TO 1000
FOR J=1 TO 1000: PRINT J;: NEXT : REM ACTUAL VALUE OF J USED
FOR J=1 TO 1000: NEXT: REM DELAY LOOP; ABOUT 1 SEC

These three simple loops illustrate loop processing with about the minimum
possible code. In each case J is the loop variable, and in neither case is

it modified within the loop. Therefore, unless the Stop key is pressed,

each loop continues 1000 times. Whenever NEXT is met, J is incremented by
1, since 1 is the default value of STEP. On leaving the loop, J equals 1001.
Loops are often used in benchmarks, which provide some indication of the
speed of execution of a computer language. The third example takes about
a second; the same BASIC operating with the 6502 at a different clock speed
will take a proportionally longer or shorter time.

100 K=0: FOR J=32768 TO 32768+255: POKE J,K: K=K+1: NEXT
200 FOR J=33768 TO 32768 STEP -1: POKE J+1, PEEK(J): NEXT

Screen peeks and pokes are the subject of the next couple of loops; the
first puts 0 to 255 directly into screen memory, starting at the top of the
screen, so all 256 ROM characters appear. They appear differently in upper
and lower case modes, of course. The inclusion of K within the loop shows
one method by which variables can be made to change in step with each
other. This principle is quite useful. Line 100 can in fact be simplified,
eliminating K, by writing 100 FOR J=0 TO 256: POKE 32768+J,J: NEXT .

Line 200 is a memory-move routine, which shifts 1000 bytes of the screen
forward by one location. To do this successfully, it is essential to begin at
the top end and work back, since otherwise each byte will be obliterated by
the previous byte. This is the reason for the negative STEP parameter.
Try the routine omitting the negative step if you don't yet see this.

1000 FOR J=1 TO LEN ("ABCX£$"): IF IN$<>MID$("ABCX£$",J,1) THEN NEXT:
IN$="! "

1010 REM J NOW EQUALS 1-6, THE POSITION OF I$ WITHIN THE STRING OF
CHARACTERS WE'RE TESTING, OR J EQUALS 7 AND IN$ = "!"

2000 FOR Y1 = Y1 TO 9E9: IF Y1-Y>1 THEN PRINT#5,SOUTH$: NEXT
Two program extracts show how IF statements within loops can be dealt
with. The first tests input IN$ against the contents of a string. If IN$
is not found in the string, it's reset to a warning value. Otherwise, J now
equals IN$'s position within the test string; this may be useful in extracting
other substrings. Line 2000 is part of a graph plotting program: steps are
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Notes:

drawn southward, from Y to Y1, incrementing Y1 until the condition fails.
Finally, we have an example of nested loops, in which J controls the step size
between a 2-dimensional plot on the screen. I have assumed (see SET) thata
function to draw single 'points' exists:

FOR J=60 TO 2 STEP -1: FOR X=0 TO 79 STEP J: FOR Y=0 TO 49 STEP J:
POKE 0,X: POKE 1,Y: SYS 826: NEXT Y,X,J

[1] Loops in practice are quite easy to use; don't let the rather long list
of notes efface this fact from your mind.

[2] Syntax. (i) A loop variable must be a simple real variable: FOR X% = 1 TO 9
and FOR X(5)=0 TO 10 both cause ?SYNTAX ERROR. (ii) A loop is always
executed at least once, even though strictly, in standard BASIC, a loop like

thus slowing down benchmarks, the corresponding NEXT has to be found, and,
in unstructured BASIC, this is impossible. So the example sets V to 1, then
executes the contents of the loop once. (iii)Inclusive limits apply, so that:
FOR J=0 TO 9: causes J to take values 0,1,2,...,9 and execute the loop ten
times. (iv) for j=1 to 1lE4: in lower-case mode is treated as 1 to 14.

[3]1 Accuracy. If the loop variable and the step size are each stored exactly,
there will be a rounding error only with extreme values, so a loop will execute
precisely under these conditions. Generally, integers and binary decimals are
stored exactly, including the default step value of 1. For this reason, both
FOR Q=1 TO 1000000: and FOR J=.5 TO 1000000 STEP .0625 execute perfectly, but
FOR M=1 TO 1000: STEP 1/3 doesn't, as can be seen by including PRINT M

in the loop. FOR M=1 TO 1000.1 will ensure the count is correct.

[4] Speed. When fine-tuning a program to run with as little delay as is
possible, the contents of loops are an obvious candidate for examination.
Firstly, the variables: the loop variable itself is held by the stack as a
pointer, so if it is used merely as a counter there is no point in putting it
early on into the RAM variables. The rule should be to order variables in
RAM according to their presence inside the loop. When loops are nested,
the innermost variables obviously should have priority over those within
fewer loops. The more variables a program has, the more difference this
will make. Time-saving can be more spectacular with the second approach,
rewriting the loop(s) to use fewer instructions, or fewer redundant oper-
ations such as assignments, calculations, or conditions. It is easy to compose
examples showing many faults, and a large speed increase when these are
removed, but again, in practice, factors of the order of five or six times
the original speed are not very likely to occur. Let's consider an example
incorporating both these factors:

7600 REM DATA IS STORED IN RAM IN BATCHES OF 116 BYTES, STARTING AT $6CO00.
7610 REM SO RECORD NO. R% STARTS AT 27648 + 116*(R%-1).

7650 0$(1)="":08$(2)="":0$(3)="":... :REM 0$() HOLDS OUTPUTS

7660 FOR J=0 TO 27: 0$(1)=0$(1)+CHR$ (PEEK(27648)+ 116*(R%-1) + J)): NEXT
7670 FOR J=28 TO 47:0$(2)=0$(2)+CHR$ (PEEK(27648)+ 116*(R%-1) + J)): NEXT
7680 ...

This program extract is perfectly good and workable, but, owing to BASIC's
restrictions, the decision to rewrite it to run faster may be worthwhile. If
so, we see that each loop holds g considerable amount of calculation, which
can be moved out of the loop, and performed once only. We can use a
temporary string in place of the arrays, which will process faster; and we
can ensure that the variables are arranged in the optimum order. We get:-

7650 RS=27648 + 116*(R%~1): S$="" :REM RECORD START POSITION AND STRING

7660 S$="": FOR J=0 TO 27: S$=S$+CHR$(PEEK(RS+J)): NEXT: 0$(1)=S$

7670 S$="": FOR J=28 TO 47:S$=S$+CHR$ (PEEK(RS+J)): NEXT: 0$(2)=S$

7680 ... :REM BEST ORDER FOR THIS CODE IS S$="":RS=0:J=0 WITH 0$() 1ST ARRAY

S$ is the most important variable in the rejigged code, because it occurs
twice as often as any other variable. R%, which was very influential in the
original, now is unimportant as far as this part of the program goes.
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[5] Nested and structured loops. A nested loop has an appearance which
may be represented diagrammatically like this:
And in a program like this:

FOR X = X1 TO X2: ... First variable
FOR Y = Y1 TO Y2: ... Second variable
FOR Z = Z1 TO Z2: ... [Third variable
NEXT Z NEXT

NEXT Y NEXT

NEXT X NEXT

Each depth of nesting puts 18 bytes of information on the stack, and each
NEXT moves the stack pointer back 18 bytes. FOR and GOSUB share the
stack; there are limits on the ways they can be used together. Every new
FOR variable is checked against the current stack contents, and, should an
active FOR loop exist already with that variable, the stack pointer is reset
to that previous loop, erasing subsequent loops in effect. Several 'nests'
can be built within a larger loop, and this is perfectly legitimate and should
give no bugs:

FOR X=X1 TO X2: FOR Y=Y1 TO Y2: FOR Z=Z1 TO Z2: NEXT Z,Y: FOR A=A1TOA2:
FOR B=Bl TO B2: NEXT B,A,X

Omission of the loop variables from NEXT (i.e. NEXT:NEXT and so forth)
guarantees correct nesting. Structured programming has several things to
say about loops; one is that there should be one exit point only, and not
jumping from the middle of a loop to another part of the program. Another
is the requirement for an explicit exit condition at the start of the loop, to
make it more readable. The following skeletal loop shows how both of these
ends can be achieved. It is a 100 OK=-1: FOR J=BEGIN TO 9E9

DO...UNTIL loop, starting - .
with its loop variable set to 110 IF NOT OK THEN J=9E9: GOTO 200

) C . PROCESSING ...
EEG;II? I?r;lg with an arbitrary 150 IF ... THEN OK=0: REM TEST
ppP . . PROCESSING ...

200 NEXT J

[6] Bugs. (i) Omission of a negative step: FOR J=100 TO O: A(J)=J: NEXT
(ii) Omission of NEXT. There is no 'next omitted' error. FOR H=1 TO HRIZ:
FOR V=1 TO VERT: GOSUB 1000: NEXT. Both these errors cause loops to end
much more quickly than in the correct version. This may also happen with
(iii) Inadvertent change in the loop variable; this is particularly liable to
happen with subroutines in the loop - see GOSUB for examples.
(iv) The loop variable(s) may be omitted by mistake: FORI=0 TO A: FOR J=0
TO B: X(A,B)=A*B: NEXT J,I needs X(I,J)=I*J in place of the expressions in
A and B if the object is to fill the array with the product of row*column.
(v) An incomplete GOSUB (i.e. with RETURN not yet made) will give ?NEXT
WITHOUT FOR, for example: 10 FOR J=1 TO 10: GOSUB 20: END / 20 NEXT
(vi) The upper limit of the loop is stored in the stack; therefore the attempt
to vary the exit from the loop by controlling it will fail (unless the stack
itself is altered). Example: 100 A=10: FOR XX=1 TO A: REM i.e. 1-10
110 INPUT A: PRINT A : REM CHANGE A...
120 NEXT: REM BUT LIMITS REMAIN 1-10.
(vii) Use of nonexistent loop variable will give ?NEXT WITHOUT FOR; so
will NEXT without a loop variable if previous loops do not exist any longer
or never existed. 0 FOR I=1 TO 10: NEXT II uses a non-existent variable;
0 NEXT has no corresponding FOR; and 0 FOR I=1 TO 10: FOR J=1 TO 10:
NEXT I: NEXT eliminates J by its reference to I, so nothing is left for NEXT.

[7] Logical variables. DO WHILE loops can be simulated like this:
FOR J = -1 TO O0: ..., : J = TEST EXPRESSION: NEXT
Where the omitted processing is performed until J becomes false.

Abbreviated entry: fO stE. There is no short form of 'TO'. NEXT has nE.
Tokens: FOR $81 (129) TO $A4 (164) STEP $A9 (169) NEXT $82 (130)
Operation: See NEXT for operation of the stack and ROM entry points.
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FRE

BASIC

arithmetic function

PURPOSE: Computes the number of bytes available to BASIC between the end of

the array storage and the start of strings. FRE first performs the
so-called 'garbage collect' routine, which rearranges all the strings held in
upper RAM into one consecutive block. This is useful when dealing with
strings and string arrays, because (unlike numerals) they occupy variable
space in RAM. This function measures the free memory.

Syntax: FRE(expression). FRE is a function in the sense that it returns a value.

However, its expression is a dummy. Typically, PRINT FRE(0) or F=FRE(1)
may be used. But FRE(X), FRE(X$), or FRE(A%(5)) are syntactically
correct versions of the function.

Modes: Direct and program modes are both valid.

Examp

Notes:

les: PRINT FRE(0)
1000 PRINT FRE(O) "BYTES AVAILABLE AT PRESENT"
200 X=FRE(0): DIM Q$(75): PRINT (X-FRE(O0)) "BYTES USED BY POINTERS"

The first two examples, in direct and program mode respectively, simply
print the free memory. The third is a more elaborate piece of code which
demonstrates the use of FRE to measure the differences before and after
some memory-using statement(s). This example prints the amount of RAM
taken up with the pointers for a string array of dimension 75.

[1] This diagram illustrates the situation. If a new string is defined
which, even after garbage collection, is too long to fit into RAM, an ?0UT
OF MEMORY ERROR message is printed. Top of BASIC RAM

I AAANNNRNNN
BASIC variables | arrays FRE memor strings

This example program shows how rapidly RAM can be used; this is part of
an input routine which gets single characters in order to exercise greater
control over the permitted input than is allowed by INPUT:

5 GET X$: IF X$="" GOTO 5
10 1$=I1$+X$: GOTO 5

Each X$ takes one byte, and each I$ occupies one more byte than it did
previously. A string of length n takes in(nt3) bytes, using a little alg-
ebra. So for example a 20-character input occupies 230 bytes.

[2] with no program in memory, FRE returns the number of bytes after
the end of the program; so after Commodore's BASIC message, and (say)
31743 bytes free, PRINT FRE(0) prints 31740 or 31741 depending on the
ROM. Lowering the top of memory by POKEs will reduce the number of
bytes returned by FRE.

[3] Timing. This is a well-known problem associated chiefly with BASIC 2.

A program using DIM X$(512) will intermittently stop to garbage collect,
whenever string space is short, not only on executing FRE, and the process
is slow. (BASIC 1 has the same problem; but people were cautious of large
arrays, which didn't work correctly). The time taken to free memory is a
function of the number of strings in upper RAM; it is a surprisingly precise
relationship, and is about .00008 * (N+11)? seconds with BASIC<4. See
Chapter 4 on ways of minimising this delay. One of the features of BASIC
4 is that the strings are held differently and freed more quickly. Chapters
2 and 4 give details. The following program, which can be entered in
direct mode, is about the worst case with BASIC 2, and runs in 83 minutes:
DIM A$(7900) :FORJ=0T07900:A$(J)=CHR$ (1) : NEXT :T=TI1:J=FRE(0):?(TI-T)/60 '"SECS"

Operation: The function firstly frees memory by calling the garbage collect sub-

routine. It then subtracts the pointer to the end of the arrays from the
pointer to the bottom of the strings, and converts the result into floating
point in accumulator #1.

ROM entry points: BASIC1:$D264 (53860) BASIC2:$D259 (53849) BASIC4:$C4A8 (50344)
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GET & GET #

BASIC input command

PURPOSE: GET and GET# read a single byte from the keyboard and from any
device, respectively. In the case of the keyboard, if there is no character
in the keyboard buffer a null string or numeric value zero is returned. On
entering GET or GET#, the status byte ST is set to zero; the end of a
correctly CLOSEd tape file sets ST to 64, and the end of a correctly CLOSEd
CBM disk file sets ST to 64 and in addition sets the byte read by GET# to
Carriage Return.

Syntax: GET [#arith. exp.] var. name [,var. name][,var. name] ...
GET may optionally be followed by # with a logical file number which must
evaluate to 1-255. At least one variable name must follow. The processing of
GET resembles INPUT (q.v.) in its use of the input buffer, but no extra
parsing is carried out on GET's single byte, so this command may be used to
input any data, unlike INPUT which presumes certain formatting conventions.

Mode: Program mode only. Direct mode generates ?ILLEGAL DIRECT ERROR.

Examples: 5 GET X$: IF X$="" GOTO 5
10 PRINT "[UP]"X$" [LEFT] [LEFT] [LEFT]" ASC(X$): GOTO 5
200 GET A$,B$,C$: PRINT A$B$C$: GOTO 200

If you're uncertain about the function of GET, these examples, when RUN, will
soon give you the idea. The first prints X$ and its ASCII value at a fairly fixed
position on the screen, where X$ is the single byte returned by GET. You will
be able to observe how GET can accept a carriage return, for instance, which
has the ASCII value 13. This is an infinite loop which Stop can terminate. Line
100 is a similar loop. The syntax is more appropriate to GET#; however, if you
are quick, more than one variable will be set from the keyboard. The method of
line 5 1is necessary if a keypress is awaited. It is the starting-point for
crashproof input routines; see Chapter 4 on this topic.

55 GET A is valid. However, apart from 0-9 which set A=0-9 as expect-
ed, ?SYNTAX ERROR is printed, or 2EXTRA IGNORED with , and :. Also,
space,+,-, and E return 0. It's usually best to GET a string variable.

2000 GET#8,X$: IF ASC(X$)=13 GOTO 3000: REM STRING IN$ IS COMPLETED
2010 IN$=IN$+X$: GOTO 2000 : REM BUILD STRING IN$

This example shows how a string is built up from successive bytes.

Notes: [1] The Keyboard Buffer. GET (provided that an input device number is not
found by $FFE4) takes one character from the keyboard buffer. (Characters
are put there during IRQ servicing). This buffer occupies 10 bytes from $026F
(623 ff. dec.), and $9E (158 dec.) indicates how many characters are present;?
if 0, the null character is assigned to a string variable. BASIC 4 has a variable
length buffer: $E3 holds its greatest length. LINENO GET X$: IF X$>'""GOTOLINENO
empties the buffer. So does POKE 158,0 although this is reversible: POKE 158
with some non-zero number revives characters in the buffer. In fact, poking
158 with 200 in direct mode prints the entire contents of cassette buffer #1.
Apple has a different and inferior GET which waits for a keypress. The short
routine which follows can be used to test any BASIC for keyboard buffering:

10 FOR J = 0 TO 3000: NEXT: FOR J = 1 TO 20: GET X$: PRINT J;X$: NEXT

When RUN, this delays for a few seconds, then GETs and prints out characters.
If several keys are pressed in turn during this delay, they will, with CBM
machines, be printed later, showing that a buffer exists. The buffer can hold ten
keys, and it it easy to demonstrate that BASIC<4 erases the buffer and starts
over if more keys than this number are pressed. This has a practical effect

on crashproof input routines. Note that BASIC 4 retains earlier keys, and

its buffer need not be 10. POKE 227,0 for example locks out the keyboard
altogether.

*Unlike INPUT# and PRINT#, GET# has no separate token, so I've treated it with GET.
2BASIC 4's keyboard buffer is set to 10 characters on power-up, but it can be changed
by a poke. BASIC 1's buffer begins at $020E, and contains $020D bytes at any instant.
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[2] Tape. The tape reading routine is part of $FFE4. It can be recognised
in ROM after the point where the input device number is compared with #3.
After this point, the carry bit is clear for both tape devices, which are
numbered 1 and 2 by Commodore. The character is taken from the cassette
buffer (i.e. 192 bytes from $027A and $033A). When the buffer has been
read, everything pauses while the next block from tape is read into the
buffer, and its pointer reset to start. The end-of-file marker is a zero byte,
which will cause ST to be set to 64 as the last character is read. If this is
not detected, the next GET# (or any other input/output command) resets ST
to zero, so the cassette will keep reading further data.

[3] Disk. Whenever ST is set non-zero, a carriage return character is sent,
except with BASIC 1, which sets ST but returns the previous byte. It is
not only EOI (end of file, in effect) which sets ST; time out on read has the
same effect, so slow devices may send only carriage returns. The time-out
feature can be disabled in BASIC 4 (by POKEing $03FC with a negative
amount, e.g. POKE 1020 ,128). Typically, therefore, this type of routine is
used with GET#:

2000 IN$=""

2005 GET#8,X$: IF ST=64 OR ASC(X$)=13 GOTO 3000: REM EXIT WITH IN$
2010 IN$=IN$+X$

2015 GOTO 2005

[4] Since GET# takes in colons and commas and so forth, it can be used to
check a file's contents in a way impossible with INPUT#. Moreover there is
no limitation to 80 characters length, although a built-up string like the one
in the earlier example cannot exceed 255 characters in length. BASIC<4
include carriage returns when using GET# from the screen; each GET# which
was a multiple of 40, e.g. the 40th, 80th, etc., became CHR$(13). But GET# -
from the screen is rarely used. Note also that the difference between GET
and INPUT as regards cursor flashing is determined by the number of bytes
in the keyboard buffer, but this may be overridden by POKEing the cursor
flash location with the value zero. This location is $A7 (167) in BASIC>1,
and $0224 (548) in BASIC1.

Abbreviated entry: gE & gE#
Token: $A1 (161)

Operation: GET and GET# use the input buffer, but place a zero byte into $0201
so that a single character only is taken. The 'get' part of the routine uses
the kernel routine at $FFE4, which returns with a character in A and with
ST possibly set. There is also an assignment part to the routine, which
shares ROM with READ and INPUT. If the '# symbol is found, the number
or expression after it is worked out and this logical file number is stored
for future use in $03 (BASIC 1), $0E (BASIC 2), or $10 (BASIC 4). When
the byte has been fetched, normal device input/output is restored.

ROM entry points:

GET:BASIC 1:$CA9F (51871) KEYBOARD BASIC 1:$E2B7 (58039)
BASIC 2:$CA7D (51837) FETCH: BASIC 2:$E2B8 (58040)
BASIC 4:$BB7A (47994) BASIC 4:$E003 (57347) - NEEDS SEI.
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GO

BASIC dummy command

PURPOSE: Sole function is to look for a matching TO, and, if found, to perform
GOTO. The raison d'etre is to provide GO TO as well as GOTO in BASIC.

Syntax: GO must be followed by one or more spaces, TO, and a linenumber.

Notes: [1] BASIC 1. This token is not present in BASIC 1; this early version had
the facility to eliminate spaces on tokenisation, so that GO TO converted
itself to GOTO. This method of forming tokens leads to more ambiguities
than the later method. Possibly for this reason, it was changed, so that a
line like:

10 IF 256=LE THEN PRINT "HIGH"

no longer appeared to contain LET. However, GO TO was also eliminated,
and a patch put in, consisting of the token GO and a special routine to
check that it was followed only by TO.

It follows that programs developed on later machines, using GO TO, will
not LIST properly with BASIC 1; GO produces ?SYNTAX ERROR.

[2] BASIC 4. GO is no longer a patch, but processed along with other
tokens. Some versions appear to be defective. An early manual for this ROM
states that an extra byte or token must appear between GO and TO to
compensate for a bug: GOXTO for example, or GO TO TO.

[3] GO can be intercepted by a wedge and used perhaps as a command in
a computed GOSUB or GOTO routine. See Chapter 14, section 14.3.2.

[4] GO causes problems with some renumber utilities, which haven't allowed
for the existence of this token.

Abbreviated entry: None
Token: $CB (203). Not present in BASIC 1.

Operation:In BASIC 2 the routine to execute a BASIC statement is at $C700.
The patch to process this command is at $C721.

In BASIC 4, the entry point for GO is $BTAC (47020).
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GOSUB

BASIC command

PURPOSE: Performs a jump to any line in a program. The target line is identified
by its linenumber. When RETURN is next encountered, control is transferred
to the statement following GOSUB. In association with IF or ON, conditional
calls to subroutines may be made.

Syntax: GOSUB linenumber. The linenumber must be ASCII numerals (e.g. 1234),
and, like GOTO, the first character outside the range 0-9 marks its end.
Computed GOSUBs of the type GOSUB x need to be specially written. If
the line doesn't exist within the program, a run-time error will occur.

Modes: Direct and program modes are both valid. A subroutine in a BASIC
program in memory can be tested in direct mode.

EXanuﬂes:_i FOR V=0 TO 24: FOR H=0 TO 39: GOSUB 1000: NEXT: REM HORIZ & VERT POSNS
1000 POKE 245,V: POKE 226,H: SYS 58843: RETURN: REM FOR BASIC 1

ii 2024 IF RIGHT$(JS$,1)<>CD$ THEM EM$="IN CHECKLETTER": GOSUB 12000

iii 12000 PRINT "[HOME][23 DOWN][10 RIGHT][RVS]*** ERROR " EM$ " [RVSO]";

12010 FOR J=0T02000: NEXT: : REM DELAY LOOP
12020 FOR J=1 TO LEN(EM$)+11: PRINT "[LEFT] [LEFT]";: NEXT
12030 GOSUB 100: FOR J=1 TO JL: PRINT " ";: NEXT: RETURN

iv 500 GOSUB 510
510 REM ** SUBROUTINE TO BEEP BELL ONCE ** (Detail omitted)

i. This first example shows how a subroutine may be called in direct mode.
Line 1000 is a subroutine which positions the cursor, using 2 parameters,

H and V. The direct mode line performs an exhaustive test on it.

ii. The same piece of code may be required in many different places within
a program. This use of subroutines - one of the most important - is
exemplified by line 2024: on discovery of an error in a check digit, the
parameter EM$ is set to a suitable value, and the subroutine called. In
other parts of the program the identical subroutine is called, but EM$ takes
other literal values: "IN SALES CODE", "- NOT ON FILE", and so forth.
iii. This four line routine prints an error message in reverse on the bottom
of the screen, and erases it after about 2 seconds. Then, in line 12030, it
calls another subroutine, which in fact moves the cursor to the position on
the screen which the operator is using for input. The erroneous string, of
length JL, is erased ready for reinput.

iv. This is a simple example of the use of subroutines with multiple entry
points. GOSUB 510 beeps the speaker; GOSUB 500 beeps it twice.

Even when code is used by only one part of a program there are many
situations in which subroutines improve the total program. Here are some
examples:

v. Programs written in a structured or semi-structured fashion can have
controlling routines written like this:

7000 IF JS$="S" THEN GOSUB 2000: GOTO 6000: REM SKIP TO NEW ITEM
7010 IF JS$="B" THEN GOSUB 3000: GOTO 6000: REM BOOK STOCK IN
7020 IF JS$="E" THEN GOTO 4000: REM EXIT AND CLOSE DOWN

vi. Any routine which is too long for one line, or requires multiple IFs or
other confusing constructions, may be easier to deal with as a subroutine.

vii. Batches of similar routines may be clearer when written as subroutines,
so that a block of the program collects together in one place a set of
closely related procedures.

600 PRINT "(";: GOSUB 400: PRINT ")": RETURN: REM INDIRECT JUMP
610 GOSUB 500: PRINT ",Y'": RETURN: REM ZEROPAGE,Y
620 PRINT "(";: GOSUB 500: PRINT ",X)": RETURN: REM (ZEROPAGE,X)
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Notes: [1] Linenumbers following GOSUB are dealt with by the scanning routine
which GOTO also uses. The effect is similar to the VAL function. This
incomplete validation allows ON ... GOSUB to function, since a comma has
to be treated as a marker for the end of linenumber. It permits some odd
anomalies, which also occur with GOTO. For example, all the following
commands are interpreted GOSUB 0:-

GOSUB GOSUB REM NEW GOSUB Oxxx GOSUB [PI] ,
and
GOSUB 1000NEXT GOSUB 50%*2

are interpreted GOSUB 1000 and GOSUB 50 respectively.

[2] Timing: Since subroutines can be called from any part of the program,
it is desirable from the speed point of view to put the most commonly used
of them at the start of the program. This minimises search time for the
linenumber. (RETURN stores a pointer to the original GOSUB, so there is
no search time spent in RETURng) Program structure of this type is
therefore common: GOTO 5000
100+ Standard subroutines
1000+ Menu options 1,2,3,...
5000+ Initialisation
Menu for all options
Closedown and end
50000+ Initialisation, closedown,
and utility subroutines.

[3] Note that GOSUB 500: RETURN has the same effect as GOTO 500.
[4] See text for computed GOSUB routines.

[5] It is sometimes useful to escape from a subroutine without returning
to the previous GOSUB. See POP in this reference section for details.

[6] A program with subroutines is inevitably fragmented into discrete
chunks, so subroutines may need to be isolated from the remaining program
to prevent dropping-through and execution of subroutines at the wrong
time. For example, with subroutines starting at 60000 the line 59999 END
guards against this eventuality. Subroutines can call themselves, but an
exit mechanism of some sort is necessary. 100 GOSUB 100 for example will
generate an ?0UT OF MEMORY ERROR as the stack fills up with return
addresses. When handled correctly, this technique is called 'recursion'. It
is used widely in translaters and compilers. Incidentally, the claim that 23
levels of subroutine can be handled by CBM BASIC should be treated with
caution. All intermediate results, and loops, are pushed on the stack, so
a subroutinewith loops and many parentheses may unexpectedly run out of
memory with far fewer than 23 subroutine levels.

Abbreviated entry: goS Token: $8D (141)

Operation: The stack is tested. If there is not room for 6 bytes an ?0UT OF
MEMORY ERROR message appears. (Although it only uses 5). Assuming
this test is passed, 5 bytes are pushed onto the stack: the current CHRGET
address, the current linenumber, and a GOSUB token ($8D). After this its
operation is identical to GOTO. It scans linenumbers in the same way as
GOTO, either from the start of the program or from its current position,
depending on the linenumber. Finally it carries out a BASIC warm start.

Stack use demonstration program:- Gives:-
10 P=512: GOSUB 20 o 0 198 238

20 PRINT PEEK(P),: P=P-1: IF P=500 THEN END m
w0 coro 20 =
Token Location Li mber

ROM entry points:
BASIC 1: $C780 (51072) BASIC 2: $C790 (51088) BASIC 4: $B813 (47123)
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GOTO & GO TO

BASIC command

PURPOSE: Performs a jump to any line in a program. The target line is identified
by its linenumber; not, for example, by a label. In association with IF or
ON , conditional jumps may be made, selecting which part of the program
to go to.

Syntax: GO TO or GOTO followed by a linenumber. The linenumber must be in
ASCII (e.g. GOTO 1234). Computed GOTOs of the type GOTO x need to
be specially written. Note that the linenumber is processed in a similar way
to the VAL function; the first character not 0-9 is deemed to be the final
character in the linenumber. Nonexistent lines cause ?UNDEF'D LINE ERROR.

Modes: Direct and program modes are both valid. Direct mode will cause a jump
to the program in memory, and, provided the target line number exists,
will execute the program from the point of entry. Since CLR isn't performed
the variables set up by the program are unaltered: this command therefore
resembles CONT and is usable after STOP, END, and the STOP key.

Examples: D$="022983": GOTO 12000
100 GET X$: IF X$="" GOTO 100
GO TO 100

The first example shows a direct mode GOTO statement. Before executing
GOTO, a variable is set; in the example,with an invalid date, to test the
operation of the program. Any line may be jumped to, including itself. The
second example is a conditional loop which, until a key is pressed, loops
indefinitely. Without the condition, line 100 will constitute an infinite loop,
from which only the stop key will rescue the program. The third example
illustrates that GO TO is an acceptable variant of GOTO.

Notes: [1] On the subject of the differences between GOTO and GO TO, see the
reference page dealing with the GO token. Generally, GOTO is better.

[2] Some apparent anomalies result from the translator's method of dealing
with the linenumber following GOTO. GOTO 1010, with I erroneously keyed
in place of the numeral 1, does not produce a syntax error message, but
is treated as GOTO 10 would be. The mistyped GOTOT10 is interpreted
GOTO 0. And the solitary statement GOTO is taken to mean GOTO 0. By
poking a null character into a linenumber, GOTO 200 may be made to LIST
as GOTO 20 but act like GOTO 2.

[3] Timing: the time spent searching for the target linenumber is not on the
whole large. (Some BASICs, notably Sharp, are far slower). However, to cut
this time to a minimum, it's necessary to know how GOTO is processed. This
is done as follows:

(i) The high bytes of the line numbers (and only the high bytes) are
compared; (ii) if the target linenumber is larger by this test, lines after
the current line are scanned; (iii) if the target linenumber is not larger -
by the test - lines from the program's start are scanned. To take a concrete
example: 25600 GOTO 0, 25600 GOTO 10000, and 25600 GOTO 25825 all have
to scan BASIC from the beginning. 25600 GOTO 25856 and 25600 GOTO043000,
on the other hand, scan forward from their current position.

[4] See the text for computed GOTO routines.
Abbreviated entry: gO (=GOTO) Token: $89 (137)

Operation: The linenumber is fetched one character at a time and converted into
a 2-byte integer. The process stops when a non-numeric character is found.
The location of the next line is calculated. Now, in x GOTO y, theshigh
byte of y is compared with the high byte of x: if larger, lines are sought
from the next line. Otherwise, they are sought from the start of BASIC. If
the line wasn't found, ?UNDEF'D LINE is branched to; otherwise, CHRGET
is pointed to the zero byte just before the target line. RTS executes it.

ROM entry points:BASIC1:$C79D (51101) BASIC2:$C7AD (51117) BASIC4:$B830 (47152)
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HTAB & VTAB

BASIC commands unavailable directly in CBM BASIC

PURPOSE: Moves the cursor to any position on the screen, as specified by
horizontal and/or vertical parameters. This is sometimes called PRINT @.

Versions: This type of function is easy to write in CBM BASIC. All that is needed
is a print statement including [HOME] and a suitable number of cursor down
and cursor right characters. Machine code routines can also be written; they
are faster than the BASIC equivalent, which may be important in some
circumstances. For example, a formatted screen which inputs intensively
validated information may well be improved by such a routine. It is quite
easy to find the ROM routines responsible for handling this, since the
reset routine, used at switchon, must format the screen at some stage. The
drawback of machine dependence, though, has to be taken into account,
because each ROM has its routines in a different place, set in silicon. BASIC
4 has two versions!

BASIC 1: POKE 226,H: POKE 245,V: SYS 58843: RETURN

BASIC 2: POKE 198,H: POKE 216,V: SYS 57949: RETURN

BASIC 4

(40 COL): POKE 198,H: POKE 216,V: SYS 57471: RETURN
BASIC 4

(80 COL): POKE 226,H: POKE 224,V: SYS 57439: RETURN

Note that the 8032 is more difficult to deal with because it has several

types of screen editing. This version resets the top left corner of the
scrolling window.

Demonstration: A demonstration program in BASIC follows. Line 1000 holds the
machine-code subroutine, and corresponds to BASIC 2, but any of the
routines listed previously can be substituted for it.

5 REM

6 REM **** RUN 10 USES SYS COMMAND TO POSITION CURSOR AT H,V *¥*x

7 REM

8 REM **x**x RUN 20 PRINTS CURSOR CONTROL CHARACTERS ****

9 REM NOTE THE DIFFERENCE IN SPEED

10 FOR V=0 TO 24: FOR H=0 TO 39: GOSUB 1000: PRINT "[shift &]";:
NEXT H,V: END

20 FOR V=0 TO 24: FOR H=0 TO 39: GOSUB 1001: PRINT "[shift &]";:
NEXT H,V: END

1000 POKE 198,H: POKE 216,V: SYS 57949: RETURN

1001 PRINT "[HOME]";: FOR J=0 TO H: PRINT "[RIGHT]";: NEXT:
FOR J=0 TO V: PRINT "[DOWN]";: NEXT: RETURN
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IF

BASIC conditional command

PURPOSE: Allows (i) Conditional branch to any program line,
(ii) Conditional execution of statements following IF.

Syntax: IF arithmetic or logical expression THEN linenumber or statement(s)
GOTO linenumber
THEN may be followed by a null statement: IF X=1 THEN: is valid.
On execution, if the expression evaluates to 0 it is trcated as 'false' and no
further part of the line is executed; if it evaluates to any non-zero value
it is regarded as 'true'. This fact enables the conditional expression to be
arithmetic, not just logical with alternatives 0 and -1. See also note [1].

Modes: Direct and program modes are both valid.
Examples: FOR N=1 TO 1000 STEP .0l: GOSUB 100: IF VAL(N$)=N THEN NEXT

This direct mode example is being used to test a rounding routine; if the
condition fails, the loop ends and PRINT N displays N's final value.

500 IF P=60 THEN P=0: GOSUB 30000: GOTO 600: REM PAGE THROW

700 IF X=1 THEN IF A=4 AND B=9 THEN PRINT"*'";:REM SPECIAL VALUES
800 IF 7+6 GOTO 900

1000 IF 8 AND 7 THEN THIS IS NEVER REACHED!

1200 IF YN$="Y" THEN: $D,1 : REM BASIC WEDGE IN USE

This batch of examples illustrates most points relevant to IF. Firstly, its use
in conditional execution of BASIC: if 60 lines have been printed, the counter
is reset to 0, a subroutine to call form feed and print a new heading is run,
and the processing resumed. None of this is done if the condition was not
true. Line 700 contains a composite IF; this is entirely valid since THEN may
be followed by any statement. Note that 'IF X=1 AND A=4 AND B=9 THEN' is
exactly identical in its effect (but slightly slower). Line 800 causes an
unconditional branch to 900. This is because 7+6 evaluates to 13, which is
non zero. Line 1000 is the opposite; anything after THEN cannot be reached
by BASIC running normally. Finally, line 1200 demonstrates a point which is
sometimes important with wedges in BASIC which add extra commands. Here,
'$' signals a special instruction (disk directory with Compu/think disks) which
if intercepted by the wedge will carry out the command, even when the IF
condition is false. The colon, starting a new statement, prevents this.

Notes: [1] IF .. GOTOn is of course redundant; it can always be replaced by IF..
THEN n. However, it is slightly faster. Note that IF .. GO TOn is not valid,
while IF .. THEN GO TOn is! IF .. GOSUB n is not allowed, and must have
THEN. On the subject of syntax,notefinally that GOTO doesn't validate the
linenumber fully, so that IF A=B GOTO 10XX will branch to line 10.

[2] IF X THEN... is the same as IF X<>0 THEN ... and vice versa.

[3] Rather strangely, a condition may include strings, which on 'evaluation'
may not use the floating point accumulator, so that the previous calculation
determines the 'truth' of the condition. Q$="":IF X$ THEN: is false, while
Q$=CHR$(I):IF X$ THEN: is true.

[4] Some BASICs, notably IBM's 8100 series, allow only IF .. GOTO, resulting
in exceptionally spaghettied programs. Apple integer BASIC skips to the next
statement, not line, after a false condition.

Abbreviated entry: None Token: $8B (139)

Operation: This short routine evaluates the expression after IF, then checks for
GOTO or THEN. If one of these is found, the exponent of accumulator #1 is
examined. If zero, i.e. 'false', the next line is jumped to, using a routine in
common with REM. If non-zero, i.e. 'true', the next character is checked; if
it's a numeral, GOTO is called; if not, the next statement is executed.

ROM entry points:BASIC1:$C820 (51232) BASIC2:$C830 (51248) BASIC4:$B8B3 (47283)



Programming the PET/CBM -76- 5: BASIC keywords

INPUT

BASIC input command

PURPOSE: Provides users with an easily-programmed method to key in data from
the keyboard to the CBM. INPUT accepts data from the keyboard and
echoes it as output to the screen, unless the input/output devices have
been changed, for example by CMD. INPUT# is an alternative form which
is designed for input from tape or disk file storage. Input is terminated by
the 'Return' key or by the ASCIl character for 'Return’.

Syntax: The INPUT statement itself has this syntax:- )

INPUT [string literal within quotes;] var.name [,var. name][,var. name]...
When RUN, this statement prints a question mark followed by a flashing cursor
to prompt the user. The optional string is printed before the question mark
onto the screen. Thus, INPUT X$ and INPUT "CODE";X$ are each valid. The
first prints ? with the cursor, the second CODE? and the cursor. Subject to
the rules which follow, the variable X$ will be assigned, on Return, the data
typed after the cursor. Note that the optional string must be within quotes
and is not a string expression. If X$="NAME", nevertheless INPUT X$;N$
generates ?SYNTAX ERROR, presumably to avoid confusion with INPUT X$.

The keyed-in data is processed according to these rules:-

(i) Alphanumerics are dealt with straightforwardly, but many characters are
not, notably ", : Return and the screen editing characters. The quotes mark
" sets a flag causing subsequent input to appear as a literal, so that Home and
Delete for example appear as they would within a literal, without homing the
cursor or deleting the previous entry. Other special characters, such as ,
and : may be incorporated into string input in this way. Carriage return,
however, always terminates INPUT and turns off quotes mode. An opening
quote, with or without a later closing quote, is therefore a valid entry in
response to INPUT's prompt; but quotes in the middle of a string entry gener-
ate ?FILE DATA ERROR (or ?BAD DATA ERROR in BASIC 1). INPUT shares
routines with GET and DATA and, like them, relies on the comma as a separ-
ator and the colon to mark the end of a statement. These are treated as
separators with INPUT. ?EXTRA IGNORED will result if the separators seem
to indicate that there are more strings of input than corresponding variables
to assign them. The double prompt ?? is printed when INPUT has had fewer
strings of input than it has variables. Leading spaces are ignored.

(ii) When the input doesn't match the type of variable to which it is assigned,
?REDO FROM START appears and the input is repeated. There are minor
exceptions to this. An integer variable may be assigned a non-integer value
without an error message, and a real variable may be assigned data in scientific
format.

(iii) INPUT takes in all the characters following the prompt to the end of the
line. Consequently it is difficult to use INPUT with a screen neatly boxed
with graphics. (It can be done by editing the resulting graphics input out of
the string). And the total length of the string is limited by the screen width
to 39 or 79 characters, when a prompting string isn't used.

(iv) Finally, CBM's notorious input crash, which alone is sufficient to make an
unmodified INPUT unsuitable for many applications. If 'Return’' only is pressed
in response to INPUT's ? BASIC prints 'READY.' and stops. It can be
revived by CONT without loss of data. Actually, this is true only if no file
appears to be open to INPUT, and like SPC( and TAB(, this feature can be
changed by POKEs. See note [2]. Note: VIC has no input crash!

Mode: Program mode only. Direct mode generates ?ILLEGAL DIRECT ERROR.

Examples: 100 INPUT "NAME";N$
110 INPUT "ADDRESS LINE 1 (NO COMMAS!)'";A1$
120 INPUT "ADDRESS LINE 2 (NO COMMAS!)'"A2$

These are typical elementary input statements, easy to program but subject to
serious drawbacks. 'Home' will home the cursor; 'Return' will crash the pro-
gram; Shift-Stop will attempt to load a new program; the screen can be filled
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with unwanted characters; commas or colons cause some of the string to be
lost. See the notes for cures for these problems.

1000 INPUT AA$,BB,C% :REM INPUTS MUST MATCH
2000 FOR J=0 TO 10: INPUT X$(J): NEXT :REM INPUT 10 STRINGS ...
2010 FOR J=0 TO 10: PRINT X$(J): NEXT :REM ... AND CHECK THEM

Line 1000 expects three inputs. This is a valid response:
HELLO!,-123.45,7.1
After Return, AA$="HELLO!", BB=-123.45, and C%=7. Integer assignments
follow the normal rules as to range and rounding. -1.2 would be assigned -2.
This response will produce ?EXTRA IGNORED:-
HELLO,12,-123.45,7
And this will produce ?REDO FROM START, because of the type mismatch:-
ABCDEF,19%12,4
One or two entries only will be accepted, if they're valid, and the double
prompt of ?? will be printed on the next line, awaiting complete input.
Lines 2000-2010 show how array variables may be used for input too.

Further examples showing use of (i) String literal, (ii) Keyboard buffer.

Notes:

The following examples show some of the ways in which INPUT can be modified.
The first four use screen editing characters to produce interesting variations
on INPUT, including positioning on the screen, underlining, and reversed
text. The fifth is a typical 'crashproofing' routine; sometimes * is used in
place of upper-case (i.e. shifted) space. The sixth shows how characters may
be inserted into the keyboard buffer, which is equivalent to keyboard entry
after the prompt and cursor are printed. They offer the possibility of erasing
the prompt and - as here - automatically entering " at the start of the input
in order to force acceptance of strings with commas, etc. Where constructions
like "LDA $8000,X" are common, this is quite useful. The extra " turns off
quotes mode, so the screen editing facilities will operate.

10 INPUT "[CLR][DOWN][DOWN][DOWN] [DOWN][DOWN][DOWN][RIGHT] [RIGHT]
[RIGHT][RIGHT][RIGHT] [RIGHT] [RIGHT]";X$: PRINT X$

20 INPUT "HELLO[DOWN][DOWN][DOWN][DOWN][RVS]";X$: PRINT X$

30 INPUT "[DOWN][DOWN]TEXT[UP][LEFT][LEFT][LEFT][LEFT]";X$: PRINT X$

40 INPUT " —==——ee—- [LEFT] [LEFT][LEFT] [LEFT] [LEFT] [LEFT] [LEFT] [LEFT]
[LEFT][LEFT][LEFT]";X$: PRINT X$

50 INPUT "CRASHPROOF NAME[USPC][USPC][USPC][LEFT][LEFT][LEFT]";X$:
PRINT X$

60 POKE 158,3: POKE 623,34: POKE 624,34: POKE 625,20: REM 3 ITEMS IN
KEYBOARD QUEUE, WHICH ARE 2 QUOTES AND A DELETE.(BASIC1:525 & 527ff)

70 INPUT X$: PRINT X$: REM X$ MAY INCLUDE , AND/OR :.

[1] See Chapter 4 for methods of foolproofing input using GET. Because
INPUT can occur with screen scroll, if for instance many wrong entries cause
the bottom of the screen to be reached, it's worth checking the result of an
overflow: use, say: 10 INPUT " VERY LONG MESSAGE ";X$/15 PRINT X$/
20 GOTO 10. BASIC 4 is different from BASIC<4.

[2] When CMD is in force, INPUT "MESSAGE";M$ will print the string to the
device, so that MESSAGE may appear on a printer. ?FILE DATA ERROR means
that INPUT is attempting to get data from a listener, such as a printer. When

a file is open like this, the 'Return' crash won't happen: OPEN 1,0:INPUT#1,X$
for example inputs from a file to the keyboard. POKEing the device number
location with a pseudo-file number has similar effects: try POKE 3,1 with
BASIC 1, POKE 14,1 with BASIC 2, or POKE 16,1 with BASIC 4.

[3] Direct mode is prohibited because the buffer which holds the direct-mode
commands is the same as that in which input characters are stored. You can
however try direct mode: use SYS 51956 X$, SYS 51925 X$, or SYS48080 X$
with BASIC 1/2/4. This will attempt to assign X$ to your input. It misses the
test for direct mode. SYS of the ROM addresses below works exactly like
INPUT, except that it will not print a string; try e.g. SYS48062X$,Y%,Z.

Abbreviated entry: None Token: $85 (133)

Operation: See INPUT#
ROM entry points: BASIC1:$CAEO (51936) BASIC2:$CAC1 (51905) BASIC4:$BBBE (48062)
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INPUT #

BASIC input command

PURPOSE: Provides users with an easy method to read back data from a storage
device, normally tape or disk. The input which is read by the CBM is
processed in the same way as INPUT processes it; this means that data sent
to the storage device by PRINT# will be recovered intact. The format is
consistent with that of PRINT# for strings and numerals, which are written
as individual ASCII characters with carriage returns as separators. However
some characters aren't recognized by INPUT# and are ignored; these include
the screen editing characters, unless the quote character, CHR$(34), was
written at the start of the string. Note also that 80 characters is the max-
imum length of a record recoverable with INPUT#.

Syntax: INPUT#arith.expr. ,var. name [, var. name][, var. name] ...
As with PRINT#, a space between the two parts of the keyword's name causes
the interpreter to see two tokens instead of one (except in BASIC 1!). The
arithmetic expression is the logical file number of the input file, and must
evaluate to 1-255 with rounding down. The comma and at least one subsequent
variable are also compulsory. No optional string exists, as it does with INPUT
since a prompt is out of place when reading from tape, say.

The data which is read in is processed according to these rules:-

(i) Alphanumerics are dealt with straightforwardly, and Return, when it is
read, i.e. as CHR$(13) or $0D, terminates a record, in exactly the same way
that the Return key sends data from the keyboard. In an analogous manner
commas or colons, if they were not preceded by a quote mark, are treated as
separators, and the subdivisions of data which they separate are all assigned
their own variables. There is no equivalent to 2EXTRA IGNORED, but none-
theless data will be lost if an INPUT# statement takes in data to the buffer
which is subdivided into more parts than there are variables; this can only
happen if commas and/or colons are used carelessly, e.g. with PRINT#1,CHR$(44)
or PRINT#8,CHR$(58).

(ii) Most other errors cause the program to crash with ?FILE DATA ERROR or
?BAD DATA ERROR in BASIC 1. For example, this occurs with INPUT#1,X$
when X$=CHR $(32), because leading spaces are ignored. Similarly, when the
data doesn't match its assigned variable, this error occurs.

(iii) The maximum string which may be input is constrained by the input buffer
to 79 bytes (89 in VIC). BASIC 4 signals this condition with ?STRING TOO
LONG ERROR and crashes the program; earlier BASICs hang.

Mode: Program mode only. Direct mode generates ?ILLEGAL DIRECT ERROR.

Examples: 10 OPEN 10,2,1,"TEN NAMES": REM OPEN TAPE FILE FOR WRITING TO CASS.#2
20 FOR J=1 TO 10: INPUT X$: PRINT#10,X$: NEXT: REM WRITE TAPE FILE
30 CLOSE 10: REM CLOSE FILE, I.E. WRITE FINAL BUFFER OF DATA.
100 OPEN 5,2,0,"TEN NAMES": FOR J=1 TO 10: INPUT#5,X$: PRINT X$: NEXT
110 CLOSE 5: REM INPUT# HAS EFFECT LIKE PRINT#, SO CLOSE IS NO PROBLEM

The above example shows a simple write-then-readback program, omitting tape
rewind details and ST checks on INPUT#. The logical file numbers are arbit-
rary and different from each other to make things clearer. INPUT# is far less
trouble than INPUT to use, because its data is already formatted in a known

way-. 10 OPEN 1,0: REM OPEN FILE #1 TO THE KEYBOARD
20 OPEN 3,3: REM OPEN FILE #3 TO THE SCREEN
30 INPUT#1,X$:REM INPUT FROM KEYBOARD IS SIMILAR, NOT IDENTICAL,TO .INPUT
40 PRINT#3,X$:REM PRINT TO SCREEN FILE
50 GOTO 30

This next example shows how files can be opened to the keyboard and the
screen. Because an input file (logical file #1) is open, the input crash on
pressing 'Return' alone doesn't happen. A screen file is useful sometimes if
CMD is being used; PRINT#3 sends output to the screen only. Input from the
screen is similar to normal input, but the string may wrap round to the next
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line, depending on the entry in the screen line table, with 40-column screens.
The string length may be 39 or 79. If this interests you, replace line 30 with
30 INPUT#3,X$ and add 45 PRINT "LENGTH="; LEN(X$).

5 SCRATCH "SEQ FILE",D1: DOPEN#2,"SEQ FILE",D1,W: REM OPEN FOR WRITE
10 FOR J=1 TO 10: X$="RECORD NUMBER" + STR$(J) : REM MAKE UP DATA
15 PRINT#2,X$: PRINT DS$ ST: REM WRITE DISK + SHOW BOTH STATUSES

20 NEXT: DCLOSE : REM 10 RECORDS WRITTEN

1000 POPEN#1,"SEQ FILE",D1 : REM OPEN SAME FILE ON DRIVE 1 FOR READ
1005 FOR J=1 TO 10: INPUT#1,X$ :REM READ BACK WITH INPUT# COMMAND
1010 PRINT DS$ ST; X$ : REM PRINT RESULT + STATUSES

1015 NEXT: DCLOSE

This pair of programs is the BASIC 4 disk equivalent of the earlier tape pro-
gram. Again, ten records are written with PRINT # and read back with INPUT #.

Notes: [1] How INPUT and INPUT# work. The buffer used by INPUT in CBM comp-
uters starts at $0200, immediately above the stack, and extends 81 bytes to
$0250. This short routine enables you to see the buffer:

FOR J=511 TO 592: PRINT CHR$(PEEK(J));: NEXT *
and typically there will be many fragments of lines, new and short lines over-
laying earlier long ones. Each input chunk is terminated by a zero byte, which
the little routine above won't show. When INPUT or INPUT# is running, each
successive byte is put into this buffer. Eventually, carriage return is input,
whereupon a zero terminating byte is put in and the buffer parsed by INPUT
for commas and colons separating the buffer: each chunk is assigned a variable
and numerical variables are processed in accumulator #1 before being stored
further up in RAM. The 81st byte therefore may contain a zero. BASICs
prior to 4 could write into RAM above $0250. This region holds the three
tables of logical files, devices andsecondary addresses, so overwriting them
(unless by coincidence the data were identical) removed the record of live files
and so crashed the program. Location $1FF holds a comma: this is to ease the
task of the parser by making each chunk start in the same way, as BASIC is
started with a zero 'end-of-line' byte. Taking an example from INPUT, we may
have something like this: *

$01FF | $0200|-01 [-02|-03 |-04|-05|-06 |-07|-08|-09|-0A |-0B |-0C |-OD |-OE | -OF | -10
, H E | L L |O , 1 2 3 . 4 5 , 7 . 1 |null

From which AA$, BB and C% are assigned.

[2] Disk files may sometimes have data stored with a leading linefeed char-

acter; this is typical of pre-BASIC 4 files written without the precautionary

PRINT#N,X$;CHR$(13); but with PRINT#N,X$: which sends Carriage return

with the line feed. This is not a great problem; if records sometimes print

a line below their expected place, put in a test-with-correction like this:
1005 IF ASC(X$)=10 THEN X$=MID$(X$, 2)

Line~-feed is ASCII 10; when found, X$ is stripped of its initial.

Abbreviated entry: iN Token: $84 (132)

Operation: This is similar to INPUT, except that the input device as specified by
logical file number is first set, then unset, on either side of INPUT. The actual
INPUT is complex: a flag, $0B2 holds 0 to signify INPUT (#$98 means READ,
#$40 GET); another flag, $03%2 holds the quotes mode on-off byte; two more
flags, $07 and $082are used in type matching, holding respectively #$FF or #0
for string /numeral, and #$80 or #0 for integer/real. With BIT and branch,
the routines are elaborately negotiated.

ROM entry points:

BASIC 1: $CAC6 (51910)
BASIC 2: $CAA7 (51879)
BASIC 4: $BBA4 (48036)

*BASIC 1's buffer extends from $0A-$59. $5A is used for working storage. $09 holds
the initial comma. So J=9 TO 89 is the correct PEEK loop with BASIC 1.
2Tn BASIC 1, these are, in order, $62,$5A,$5E, and $5F.
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INSTRING$

BASIC string function unavailable directly in CBM BASIC

PURPOSE: This version of INSTRINGS inserts one string within another, without,
however, overrunning the end of the reipient string. It is modified from a
routine by W Maclean, quoted by Jim Butterfield in CPUCN v2#8, who says
that this type of routine is useful for 'manipulating data records in disk
files and setting up formatted printer or screen outputs'. The routine is
relocatable; location 0 holds length, ($01) pointer, to the string, so USR
(if any) will have to be repoked. The demonstration program sets up a
few adjacent strings in memory; this is a check to ensure that overlapfrom
INSTRING$ doesn't corrupt the next string.

Machine code: This version is BASIC 2; see appendices for other ROMs.

1 826 20 F8 CD $033A JSR $CDFS8 s Check for comma. Error message if absent.

2 829 20 9F CC $033D JSR $CCOF ;s Input expression. Error message if absent.

3 832 20 90 CC $0340 JSR $CC90 ;s Check it‘s a string. Error message if not.

4 835 A0 02 $0343 LDY #3502 s Loop inputs LEN of string into location $00,
5 837 Bl 44 $0345 LDA ($44),Y 3 and stores pointer to the start of string
6 839 99 00 00 $0347 STA $0000,Y ; into indirect docation ($01F.

7 842 88 $034A DEY

8 843 10 F8 $034B BPL $0345

9 845 20 F8 CD $034D JSR SCDF8 Check for comma. Error message if absent.

848 20 9F CC $0350 JSR $CCIF

Input expression. Error message if absent.
851 20 90 cC $0353 JSR $CC90

Check it’s a string. Error message if not.

we we wo wo we we we

854 A0 02 $0356 LDY #$02 Loop inputs LEN of second string into loca-
856 Bl 44 $0358 LDA ($44),Y tion $88, and stores pointer to start of
858 99 88 00 $035A STA $0088,Y second string in indirect location ($89).
861 88 $035D DEY [This is in the RND work area].

862 10 F8 $035E BPL $0358

864 20 F8 CD $0360 JSR $CDF8
867 20 9F CC $0363 JSR $CCIF
870 20 8E CC $0366 JSR $CC8E
873 20 D2 D6 $0369 JSR $D6D2

Check for comma. Error message if absent.
Input expression. Error message 1f absent.
Check it’s numeric. Error message if not.
Convert F1 Pt Acc#l into integer.

N bt et et ot et ot et et
owoo~NOULPWN-O

we we wo We we we we

21 876 18 $036C CLC Check that the numeric value does not exceed
22 877 A5 11 $036D LDA $11 the end of the stting into which it is to
23 879 C5 88 $036F CMP $88 be inserted. Exit if it is.

24 881 BO 1B $0371 BCS $038E

25 883 65 89 20373 ADC $89 s Increment the second string pointer by the
26 885 85 89 0375 STA $89 H low byte of the numeric value, so the

27 887 90 02 $0377 BCC $037B H pointer points inside the string.

28 889 E6 8A $0379 1INC $8A

29 891 A0 00 $0378B LDY #$00 ; Load a byte from the first string ...

30 893 Bl 01 $037D LDA ($01),Y ; oo

31 895 91 89 $037F STA ($89),Y ; ees & put it into the second.

32 897 cC8 $0381 1INY s Increment the position counter Y.

33 898 98 $0382 TYA 3 Now check that the new value of Y doesn’t
34 899 18 $0383 CLC H point outside the second string; if it

35 900 65 11 $0384 ADC $11 H does, some other string will be corrupted.
36 902 CS5 88 $0386 CMP $88

37 904 BO 04 $0388 BCS $038E

38 906 C4 00 $038A CPY $00 3 Check whether we’ve now moved every byte

39 908 DO EF $038C BNE $037D H of the first string - if so, exit.

40 910 60 $038E RTS

BASIC demonstration:

0 INPUT "NUMBER (N)"; N

1 A$="AAAAAA": X$="123": B$="BBBBBB": Y$="ABCDE": C$="CC": D$="DDDDDDDDDD"
2 A$=A$+"": X$=X$+"": B$=B$+"": Y$=Y$+"": C$=C$+"": D$=D$+""": REM IN HIMEM
3 SYS 826,X$,Y$,N: PRINT A$" "X$" "B$" "Y$" "C$" "D$: REM DISPLAY VALUES

4 GOTOO

(NB: line 2 by calculating the strings, leaves them unchanged, but in high RAM.
If this isn't done - try deleting line 2 to see the effect - the actual strings
in line 1 are changed, so the loop in line 4 won't work as might be expected)

The program run as it stands gives:

NUMBER (N)? O

AAAAAA 123 BBBBBB 123DE CC DDDDDDDDDD

NUMBER (N)? 1

AAAAAA 123 BBBBBB A123E CC DDDDDDDDDD etc.
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INT

BASIC arithmetic function

PURPOSE: Converts the argument into the nearest integer which is less than
(or equal to) the argument.

Syntax: INT (arithmetic expression). The argument must be a valid arithmetic
expression; the limit is not the range for integers, but is the range for
floating point numbers, approximately +1.7 E 38. For this reason the
statement L=INT (1234567.8) is valid. However, L%=INT (1234567.8) generates
an error, since the result is too large for an integer variable.

Modes: Direct and program modes are both valid.

Examples: 100 PRINT INT(X+.5) : REM ROUNDS TO NEAREST WHOLE NUMBER (+ve and -ve)
PRINT INT (1234567.8) : REM 1234587 _
PRINT INT (-123.4) : REM -124
1000 PR= INT(.01+ P*(1+MU/100) ): REM PRICE (PENNIES) AND MARKUP
50 IF D<> INT(D) GOTO 40 : REM GO BACK FOR RE-INPUT

Most rounding routines in BASIC use INT. The first and fourth examples
illustrate simple rounding; for commercial use such routines must be more
elaborate, so that 1 appears as 1.00 and so on. The principle on which
the first example relies is that the entire range from X.000 to X.999 is
converted to X by INT. Obviously to round to the nearest number, and
not just drop the decimal portion , .5 must be added, shifting the range up
to X.500 to X+1.499, so the lower half are rounded down by INT, but the
upper half of the range are rounded up. Line 1000 is a similar example,
where P is a price and MU a markup percentage. The value PR is rounded
down. However, there is a small item (.01) also included. This is often
useful with INT, because this function occasionally will round down a value
when this appears unnecessary. In the illustration, P may be 1000 and MU
25; if the outcome of the calculation is held in floating point as 1249.9999,
PR takes the 'wrong' value of 1249, and this may be noticeable.

The second and third examples are straightforward examples; the fifth is
a simple test for integer input.

Notes: [1] Integer expressions in brackets may need to be kept there. Zeller's
congruence for finding the weekday uses INT(Y/4) + INT(C/4) + OTHERS
which is easily 'simplified' into the incorrect INT(Y/4 + C/4) + OTHERS.

[2] 'INT' is the same function as 'ENTIER' in ALGOL. 'FIX' is an alter-
native which rounds negative numbers up. This is equivalent to
SGN (X)*INT(ABS (X)), which separates out the sign.

Abbreviated entry: None
Token: $B5 (181)

Operation: The argumented is evaluated and validated and put into floating-point
accumulator #1. The function's objective is to leave the accumulator with
the rounded down equivalent of the same number, again in floating-point
form. It accomplishes this by converting the entire number into its 4-byte
integer equivalent, then converting this back into floating-point format.
There is also a test on entry of the exponent; if this exceeds or equals
160 no conversion is carried out. The number (>= 291) is too large to have
any decimals.

ROM entry points:

BASIC 1: $DB9E (56222)
BASIC 2: $DBD8 (56280)
BASIC 4: $CE02 (52738)
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LEFTS

BASIC string function

PURPOSE: Extracts a substring from a string, consisting of the leftmost char-
acters from the string. This function, in association with MID$ and RIGHTS$
and the string concatenation operator +, is used in text and string
processing in BASIC.

Syntax: LEFT $(string expression, arithmetic expression). The string expression
must be valid, i.e. made up from string functions and/or literals and/or
string variables only. Its length cannot exceed 255. The maximum value
of the arithmetic expression is 255. Its minimum depends on the ROM:
BASIC<4 will not accept a value of zero, corresponding to a null character,
but BASIC 4 will.

Modes: Direct and program modes are both valid.

Examples: PRINT LEFT$("HELLO"+"THERE!",3) : REM RESULT IS HEL
PRINT LEFT$("HELLO"+"THERE!'",50): REM RESULT IS HELLO THERE!

10 PRINT LEFT$(X$+" ",10);: REM A FORM OF TAB(
3010 PRINT LEFT$(STR$(L)+" ",10);: REM ANOTHER TAB( ...
3010 PRINT L; LEFT$(SP$,10-LEN(STR$(L)));: REM ... AND ANOTHER!

LEFTS$ is closely related to RIGHT$. Further examples of string manipul-
ations are given there. These five lines of code demonstrate some rather
basic points. The first two direct mode statements show how the function
works; its parameter is simply applied to the string, which may be any
expression, and measures off a length from it. Rather than print an error
message if the original string is not long enough (see the second example)
the length parameter is not allowed to exceed the length of the string.

The final three program lines demonstrate methods of formatting strings
for output to a printer; this can be a problem when TAB( doesn't work.
Line 10 shows how X$, a string assumed shorter than 10, can be printed
and also leave the output pointer waiting at a constant position in spite of
differences in individual X$s. The first line 3010 uses exactly the same
construction, but applied to a number. The alternative line 3010 achieves
the same effect, with SP$ defined to be a string of spaces, but it is a less
elegant construction.

Notes: [1] This diagram should make the operation of this function clear:

X$="|O| R| I| G| I| N| A| Lisp| S| T|R|I|N|G|"
String position:|1| 2| 3| 4| 5| 6| 7| 8| 9|10 |11 |12 (13 {14 |15

PRINT LEFT$(X$,6) prints ORIGIN. These are the six leftmost characters.
PRINT LEFT$(X$,3)+"GAMI" prints ORIGAMI.

[2] LEFT$(X$,N) can be replaced by MID$(X$,1,N). With BASIC 4 ROMs
this has no effect, but earlier BASICs reject LEFT$(X$,N) when N is zero.
The MID$ version is preferable therefore when older ROMs are used and
when a null character may be legitimately returned.

Abbreviated entry: leF (includes $) Token:$C8 (200)

Operation: The pointer to the string, and its parameter, say N in LEFT $(X$,N),
are recovered from the stack, where they are put by normal string function
processing. The length of the string is found - the pointer points at it -
and compared with N; the smaller of the two is taken. #0 is pushed onto
the stack, followed by the smaller parameter (in the process, X, Y, and A
are swapped around in a byte-saving but confusing way). Finally, the
routine which LEFT$, RIGHT$ and MID$ all share is dropped into, and the
new string is set up for printing or assignment.

ROM entry points:

BASIC 1: $D5D8 (54744)
BASIC 2: $D5DA (54746)
BASIC 4: $C836 (51254)
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LEN

BASIC arithmetic function
PURPOSE: Determines the length of a string or string expression.

Syntax: LEN(string expression). This is an arithmetic function of a string argument.
The string expression must be valid; it can consist only of literals, string
variables, and string functions concatenated by +. Its maximum permissible
length is 255 characters. If spaces are included when using BASIC>1, for
instance LE N("™D"), an array LE() will be assumed, and a ?TYPE MISMATCH
ERROR generated whenever the code is encountered.

Modes: Direct and program modes are both valid.

Examples: PRINT LEN("HELLO") : REM RESULT IS 5
X$=" SAILOR": PRINT LEN ("HELLO"+X$)+3 : REM RESULT IS 15

330 FOR J=1 TO 10
340 PRINT SPC(19 - LEN(MSG$(J))/2); MSG$(J)
350 NEXT

IF LEN(IN$)<>L THEN PRINT "*** MUST BE" L "DIGITS"

250 X$=" *&#" : REM LIST OF SPECIAL CODES TO BE CHECKED .

260 FOR J=1 TO LEN(X$) : REM NOTE THAT THE LIST IN LINE 250 CAN BE
270 IF G$=MID$(X$,J,1) THEN RETURN: REM CHANGED; THIS ROUTINE WILL
280 NEXT: PRINT "NOT RECOGNISED': REM STILL WORK CORRECTLY.

The first two examples in our illustrative batch are straightforward direct
mode arithmetic calculations. The first simply measures the number of char-
acters in the string; the answer is obviously five. The second is more complex
and shows how LEN, being an arithmetic function, can be used as part of an
arithmetic expression. Again the answer is obvious - the combined string
"HELLO SAILOR" is 12 characters long; 12+3 is 15.

The short routine in lines 330 - 350 is a formatting routine, which prints the
ten strings held as MS$(1) to MS$(9) one after the other, centred on the
screen (change the parameter to 39 for an 80-column screen). It does this
by printing sufficient spaces to print half the string before the midpoint of
the screenline. The other half of the line is therefore printed symmetrically.

The next line of code is a simplified fragment of an input validating routine,
which tests the length of an input string against its correct value.

Finally, lines 250 & 260 show between them how LEN can assist in soft-coding
and make a program more easily modifiable. Had the loop variable in line 260
been 4, program maintenance would have been a little harder.

Notes: [1] LEN cannot return a value outside the range 0-255 (see diagram). The
length isn't actually measured; only the parameter is taken, and anomalies
can result from this, e.g. when CHR$(0)s are concatenated onto a string,
or the parameters are altered by direct poking.

Abbreviated entry: None Token: $C3 (195)

Operation: The ROM has only one subroutine followed by a jump. The subroutine
(which is shared by ASC and VAL) sets pointers to the string and also loads
its length into both A and Y. This part has been slightly rewritten in BASIC
4. The mode flag is changed from string to numeric; this is necessary to
avoid ?TYPE MISMATCH ERRORs. Now a fixed-to-floating point conversion
routine is jumped to; this one is in POS, which puts zero into A, and in
effect converts the length in Y only into floating-point.

{vauE NauE JLencTa| porNTER| 0 | o |

ROM entry points:

BASIC 1: $D654 (54868)
BASIC 2: $D656 (54870)
BASIC 4: $C8B2 (51378)
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LET

BASIC command

PURPOSE: Assigns a value or a string to a variable. The variable's name causes
an integer, real number, or string to be allowed by the assignment.
If the types don't match - if a variable with a string name is assigned a number
or a numeric variable assigned a string - then ?TYPE MISMATCH ERROR is
printed. Interconversions between integers and reals are allowed, subject to
the condition that integers be within the range -32768 to +32767.

Syntax: LET is never needed with CBM BASIC. If the first item in any statement is
not a token, LET is assumed by default; the parsing process looks for a name,
the '=' sign, and a matching arithmetic or string expression. With square
brackets representing the optional command, the syntax is:-

[LET] Real variable name = arithmetic or integer expression, or

[LET] Integer variable name =arithmetic or integer expression, or

[LET] String variable name =string expression.

Variables can be either simple variables (e.g. X,C%,A1$) or subscripted
variables like A(7),JK%(100),M$(Z). If the variable doesn't yet exist, it is
set up in one of the two RAM areas used for the purpose. Subscripted
variables are put into the second of these areas, with dimension(s) set to the
default value of 10, if a prior DIM statement hasn't been used. An integer
variable is assigned the rounded-down value of the arithmetic expression on
the right of '=', but if the value is too extreme ?ILLEGAL QUANTITY ERROR
results.

Modes: Direct and program modes are both valid.

Examples: LET B=45056: LET RQ=.005: REM SAME AS B=45056:RQ=.005
LET Q%=Q/256: LET A1%=12.3: LET B%=10000: REM SAME AS Q%=Q/256 ETC.
LET S$="BCFGHPQSU'": LET DO$="WRITE":REM OR S$="BCFGHPQSU":DO$="WRITE"

100 FOR J=1 TO 50: READ X$: LET Y$(J)=X$: NEXT
142 IF JD>LEN(JD$) THEN LET JD=0

The three direct-mode examples show real, integer, and string assignments.
Note that the expressions assigned to integer variables need not themselves be
integral, but will be rounded down. A1% takes the value 12, and Q% is set equal
to the higher byte of Q, assuming Q is in the range 0-65535. The fourth line

is a composite LET statement which assigns fifty subscripted variables with
strings read from data statements. As with all the other examples, LET may be
omitted. Finally, we have a conditional assignment (taken from a decimal point
processing routine). Note [5] enlarges upon this topic.

Notes: [1] Some BASICs require LET in their assignment statements.

[2] The assignment routine can be called in machine-code, and used to set up
special user-defined variables. See VARPTR for an explicit example.

[3] Variables can be assigned and re-assigned with complete freedom. This
can cause problems: a variable may be changed or reused without its previous
use being remembered. This is particularly a hazard with subroutines, and is
the reason that tables of variables ought to be kept with large programs. There
are computer languages which possess both 'local' and 'global’ variables: FOR~
TRAN and PASCAL do; COBOL doesn't. As an illustration of the type of trap
which may occur, consider this subroutine, which prints the value of L as a
hexadecimal number, so that L=52000:GOSUB 600 prints $CB20:

600 L=L/4096 :FORJ=1T04 :L%=L:PRINTCHR$ (48+L%~- (L%>9)*7) ; :L=16* (L-L%) : NEXT:
RETURN

The subroutine uses, in addition to L, variables J and L%. The values of each
of these are changed by the subroutine. Suppose a table of hexadecimal values
is wanted corresponding to 52000 - 52020. This loop: FOR E=52000 TO 52020:L=K:
GOSUB 600: NEXT will work correctly. This one: FOR L=52000 TO 52020: GOSUB600:
NEXT will not, since L is changed by the subroutine.
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[4] String Assignments. String variables hold their strings in two distinct ways
and this peculiarity of Microsoft BASIC needs to be borne in mind in several
circumstances, the most common being the situation when a program is loaded
from within another program, but uses the first program's variables. (The LOAD
command of course is specially designed to permit this in CBM's BASIC).

10 REM *** DEMONSTRATION PROGRAM TO SHOW VARIABLE SHARING ***
20 A$="HELLO": B$="STRING EXPRESSION"+""
30 LOAD "2ND PROGRAM"

10 REM 2ND PROGRAM
20 PRINT "A$=" A$
30 PRINT "B$=" B$ :REM ABCDEFGHIJKLMNOPQRSTUVWXYZ

These demonstration programs (written for tape - the disk version is similar)
show the problem. SAVE program 1 on tape, then SAVE "2ND PROGRAM".
Rewind and LOAD the run program 1. This puts two string variables after the
program, A$ and B$. But (see diagram) the pointers to A$ point within the area
which program 1 occupied; in fact they point to the position in memory where
"HELLO" originally started. The second program therefore prints A$ as a string
of the correct length but starting somewhere in the REM statement in line 30.
The exact position depends on the number of spaces inserted into the programs.
Variable B$, on the other hand, appears correctly as "STRING EXPRESSION".
This is so because all evaluated strings need to be processed, and have to be
stored in the next available space in RAM. (Again, see the diagram). Chapter

2 has a longer explanation of this and similar phenomena.

¥\ i Ny

| PROGRAM 1 Jag] Bs| | B$ STRING |
¥ ~N__

[ 28D PROGRAM | JA$] B$] \r B$ STRING |

[5] When LET is not used, it becomes easy to forget the distinction between
'=' as an assignment, and '=' as a comparison operator. The statement:

IF X=0 THEN X=12345 or IF X=0 THEN LET X=12345
uses '=' in both senses; the first use does not, obviously, set X=0. When LET
is compulsory, the distinction is retained. The language 'C' uses '==' as its

assignment operator. One practical effect of this occurs where dummy variables
are set up at the start of a program. This statement: A=B=C=D=E looks as if

it will initialise these five variables in the correct order; in fact, the statement
is parsed A=(B=C=D=E), and the bracketed expression evaluated. Only A is set
up, so the hoped-for speed improvement may not materialise. Rather confusingly
this isn't true of arrays. A=B=C=D(5) sets up A and D with the default dimen-
sion of 10 if it doesn't exist already.

Abbreviated entry: 1E (or nothing)
Token: $88 (136)
Operation: Variables are assigned like this: first, the variable is sought in RAM and

ROM

set up if it does not yet exist. (This can be a longish operation if arrays have
to be moved to accommodate simple variables). Its location is saved. Now, the
token for '=' ($B2) is checked; if something else is present, ?SYNTAX ERROR
is printed. Two variable-type flags are saved on the stack; these were set by
the original search routine. Location 7 holds #0 if the variable was numeric,
#FF if it was a string, and 8 holds #80 for an integer, #0 for a real variable.
Now the expression is evaluated; a general-purpose routine exists for this
purpose. The result is checked for type match with the variable name, giving
?TYPE MISMATCH ERROR when appropriate. Finally, the routine branches to
three places, to process integers, reals, and strings respectively. A special
check for TI$ is included in the string processing. All the RONs are similar,
but BASIC 4 has extra string processing to handle its complement of pointers.

entry points:

BASIC 1: $C89D (51357)
BASIC 2: $C8AD (51373)
BASIC 4: $B930 (47408)
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LIST

BASIC system command
PURPOSE: Displays part or all of a BASIC program in memory in a readable form.

Syntax: LIST LIST linenumber LIST linenumber-linenumber
LIST - linenumber and LIST linenumber - are all accepted. LIST 0 is
interpreted in the same way as LIST. The actual linenumbers need not exist
in the program to be specified as parameters.

Modes: Direct and program modes are both valid. In program mode, however,
this command will stop the program when the lines have been listed.

Examples: LIST :REM LISTS ENTIRE PROGRAM
LIST 1000 :REM LISTS LINE 1000 (IF IT EXISTS) ONLY
LIST 60000- :REM LISTS EVERYTHING ON AND AFTER 60000

LIST 70-200 :REM LISTS ALL LINES FROM 70 TO 200 INCLUSIVE

5595 PRINMT “Mgd INSTRUCTIONS

S8R PRINT “egFVvcHE PUTS TRACE ONAQFF~OM

4390 PRINTLO$R$"DISK TYPE2 = "DT$: PRINT "C2HECK HISTORY"
57055 print "-+@@REEAEACECEECEA1060CCAEACEEAEEC10GREEEEA.";

10000 LIST 400: REM LINE 400 HOLDS DATA RELEVANT TO THE PROGRAM

The first four examples illustrate, with comments, various permutations of
this command. Often the output will appear on the screen. When this is
the case, screen scrolling may be slowed with the RVS key, or, with the
8032's revised keyboard, <— . BASIC 4 also has a pause feature, activated
by either : or * , and cancelled by any of a number of keys.

LIST can be made to print to other peripherals. If it is directed to a
printer, typically by OPEN 4,4: CMD 4: LIST a hardcopy will be generated
on paper. It can also print to a cassette or disk file; in this case the file
contains the program as listed, with PRINT for instance stored in 5 bytes
instead of the usual tokenised single byte. The three examples of hardcopy
program listings show the output produced by a Commodore printer, which
is very similar to the way the screen displays it, although some of the dot
patterns are not identical. Non-Commodore printers don't usually have the
special characters of CBM's set, and in some cases, for instance daisywheel
printers, can't have. The two lines 4390 and 57055 are typical examples of
this sort of thing. Most of the listing is intelligible, but strings within
quotes may produce anomalies. Line 4390 includes some RVSOFF characters
which obviously are there to help with the screen appearance. Line 57055
holds a string of graphics characters which in fact are the top line of a
box used in inputting data. Although tiresome, this is not usually much of
a problem. Commodore tend to view all this as a reason for buying only
CBM printers.

The last example shows LIST in program mode. It acts rather like STOP,
except that CONT won't work, but it also lists the lines requested. There
is an application of this in the relocatable loaders for LIST (q.v.).

Notes: [1] REM, quotes, and POKEs. Shifted characters after REM, unless enclosed
in quotes, are interpreted as tokens, and printed out in their expanded
forms. See the notes under REM on this subject. REM is also capable of
holding carriage returns, form feeds, screen clears and so forth, and these
are sometimes used to improve the hardcopy appearance or provide a rudi-
mentary UNLIST. LIST does not provide a one-to-one conversion of program
information into listing. By POKEing, lines can be generated which LIST
apparently perfectly but produce ?SYNTAX ERROR on running. An appendix
on internal storage of BASIC gives details. Strings can be made to list oddly
by inserting unusual characters: For instance, DEL keys can make parts of
a listing invisible, on the screen at least: 10 ?"GO AWAY" can be edited by
moving the cursor back over the second quote, inserting eight spaces with
the insert key, putting in eight deletes (which appear as reverse T) and
erasing the final quote. This lists as 10 PRINT.
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[2] LIST is upward compatible, but not downward compatible, between CBM
BASICs. BASIC 4 disk commands (CONCAT, DOPEN, etc) don't exist as
keywords, and therefore can't be listed, on earlier ROMs. And BASIC 1
cannot list GO TO (with a space) since it lacks the GO token.

[3] BASIC 1 list has a bug, corrected in later ROMs, which causes a line
of apparent length > 255 to list in an infinite loop. If a link address is
faulty for some reason - perhaps a bad load - there is no way to stop the
loop apart from switching off or using some hardware reset. Lines like:

49087 SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN .
43690 +4+++++++++++tt+ bttt bbb bbb bbb bR

manifest an analogous bug; perhaps the end of program bytes have been
changed, so LIST continues past the end. The line of SINs is an attempt
to interpret a collection of $BFs in memory. ($BF=191, and 191 + 191%256=
49087). The line of plusses is a similar effect, but this time is caused by
$AA in memory, probably left from switchon. ($AA=170, and 170 + 170*256=
43690).

[4] Curiosity seekers might like to note the following:
i. 0 LIST is the shortest self-replicating program (unless, as once
suggested in a letter to'Byte', the 'null program' is permitted).
ii. The longest listable valid line is a five digit linenumber followed
by 251 RESTOREs or CATALOGs, depending on the ROM version.

[5] LIST happens to be a relatively compact command in ROM, and is quite
easy to move into RAM and modify. The TRACE routine printed elsewhere
and relocating loaders for user-defined LIST show this. Other modifications
include list routines which scroll down the screen (e.g. in 'Disk-o-Pro'),
lower-case listings for CBM printers which print a cursor down after each
new line, and routines to convert single characters into more readable
forms. Cursor control characters, pi, and tokens corresponding to those
of upgraded ROMs are likely to be useful, so that [HOME], [RVS], [PI]
and DOPEN replace nonsense characters, blanks, ?SYNTAX ERROR. Yet
another possibility is the substitution of graphics characters by their
keyboard equivalent; programs using graphics are difficult to enter from
hardcopy by the keyboard, because they are printed in a run-together
form which is painful to read. The only other programs on these
lines that I'm aware of are by Gregory Yob; see e.g. Printout, April '81,
for a routine, with comments. The article is a reprint from 'Creative Comp-
uting’'.

Abbreviated entry: 11

Token: $9B (155)

Operation: This routine uses many zero page locations; this is one reason why
a program can't CONT if LIST is used from within it. Another is that the
return address to BASIC is pulled from the stack. The first thing to happen
is the validation: ASCII numbers, -, or end-of-statement/ end-of-line are
permitted. If the syntax was correct, the BASIC addresses are pulled by
PLA/ PLA and the linenumber limits set, defaults being $0000 and $FFFF at
the ends of the range. Now there is the start of a loop to print a new
line: it tests the STOP key, prints carriage return-line feed, checks the
current line against the upper limit, and (if it's still in the loop!) prints
the linenumber. Now a second loop starts: this one processes individual
characters . If it has a quote character ($22), it reverses its quotes
flag. If it finds a zero, it uses the link address to loop to the next line
or to exit, when the link is 0. It prints the character, unless it is a
token, and the quotes flag is off, and it isn't pi; in this case, yet another
loop is entered and the Nth token is turned into the Nth reserved word by
looping until N-1 high bytes of the reserved words table have passed.

ROM entry points:

BASIC 1: $C5A8 (50600)
BASIC 2: $C5B5 (50613)
BASIC 4: $B630 (46640)
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63499 REM *** LISTING ROUTINE INCLUDING CURSOR CONTROL CHARACTERS **x*

63500 A=1025: B=256: GOSUB 63600: INPUT "LIST FROM,TO";F,T: INPUT "TITLE";T$

63501 INPUT "LINES PER PAGE";LP: INPUT "MAX.CHRS.PER PRINTED LINE";CM: OPEN4,4:
CMD4, ;

63502 PP=PP+1: IF PP>LP THEN PP=1: PRINT CHR$(12): REM FORM FEED

63503 L=PEEK(A+2)+B*PEEK(A+3): X=PEEK(A)+B*PEEK(A+1): Q=0: IF X=0 OR L>T THEN
PRINT#4, ;: CLOSE4: END

63504 IF L<F THEN A=X: GOTO 63503: REM LOOP FINDS LOWER LINE NUMBER, L

63505 IF PP=1 THEN N=N+1: PRINT T$ " PAGE" N: REM TITLE & PAGE
63506 PRINT RIGHT$(" "+STR$(L),5)" ";: CC=6: REM CHARACTER COUNT=6 SO FAR
63507 FOR K=A+4 TO A+93: P=PEEK(K) : REM LOOP TO PROCESS CHARACTERS
63508 IF CC>CM-7 THEN PRINT: PRINT " ";: REM CHARACTER COUNT=6 AGAIN
63509 IF P=0 THEN PRINT: A=X: GOTO 63502: REM END OF LINE ENCOUNTERED
63510 IF P=34 THEN Q=NOT Q: REM REVERSE QUOTE FLAG

63520 IF Q THEN GOSUB 63700: NEXT: REM INSIDE QUOTES

63530 IF NOT Q AND P>127 THEN PRINT T$(P-127);: CC=CC+CC%(P-127): NEXT

63540 PRINT CHR$(P);: CC=CC+1l: NEXT: REM PRINT ORDINARY CHARACTER

63600 DATA *** END,FOR,NEXT,DATA, INPUT#, INPUT,DIM,READ,LET,GOTO,RUN, IF, RESTORE
63601 DATA GOSUB,RETURN,REM, STOP,ON,WAIT,LOAD,SAVE, VERIFY, DEF, POKE ,PRINT#, PRINT
63602 DATA CONT,LIST,CLR,CMD,SYS,OPEN,CLOSE,GET,NEW, TAB(,TO,FN, SPC(, THEN, NOT
63603 DATA STEP,+,-,*,/,~,AND,OR, >,=,<,SGN, INT,ABS,USR, FRE, POS, SQR, RND, LOG
63604 DATA EXP,COS,SIN,TAN,ATN,PEEK,LEN, STR$, VAL,ASC,CHR$, LEFT$,RIGHT$,MID$
63605 DATA GO,CONCAT,DOPEN, DCLOSE,RECORD, HEADER, COLLECT , BACKUP ,COPY , APPEND
63606 DATA DSAVE,DLOAD,CATALOG, RENAME , SCRATCH, DIRECTORY

63608 FOR K=1 TO 9E9 READ X$: IF X$<>"**x" THEN NEXT: REM MAKES RELOCATABLE

63610 DIM T$(128): FOR K=1 TO 91: READ T$(K): NEXT

63620 DATA 3,3,4,4,6,5,3,4,3,4,3,2,7,5,6,3,4,2,4,4,4,6,3,4,6,5,4,4,3,3,3,4

63630 DATA 5,3,3,4,2,2,4,4,3,4,1,1,1,1,1,3,2,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3
63640 DATA 4,3,4,3,3,4,5,6,4,2,6,5,6,6,6,7,6,4,6,5,5,7,6,7,9:REM KEYWORD LENGTHS
63650 DIM CC%(128): FOR K=1 TO 91: READ CC%(K): NEXT: RETURN

63700 IF P=17 THEN PRINT "[DOWN]";: CC=CC+6: RETURN
63702 IF P=18 THEN PRINT "[RVS]";: CC=CC+5: RETURN
63704 IF P=19 THEN PRINT "[HOME]";: CC=CC+6: RETURN
63706 IF P=29 THEN PRINT "[RIGHT]"; :CC=CC+7: RETURN
63708 IF P=145THEN PRINT "[UP]";: CC=CC+4: RETURN
63710 IF P=146THEN PRINT "[RVOFF]"; :CC=CC+7: RETURN
63712 IF P=147THEN PRINT "[CLEAR]";:CC=CC+7: RETURN
63714 IF P=157THEN PRINT "[LEFT]";: CC=CC+6: RETURN
63716 IF P=255THEN PRINT "[PI];: CC=CC+4: RETURN
63750 RETURN

This list routine is written as an appendable subroutine. It searches only for
those characters within quotes, although this feature can be rewritten if this is
felt important. Any BASIC program can be listed with any ROM using this. The
comments make it, I hope, fairly self-explanatory.

RUN 63500 will ask for the linenumbers between which to list, a title, the number
of lines per page, and the maximum line length on printing. I have assumed the
printer will move to the correct postion on receiving form-feed. Some printers
don't automatically line feed when the end of line is printed; this is the rationale
behind the process of keeping count (with CC) of the characters on the line so
far. Machine-code routines run much faster than BASIC. Details of these are
presented elsewhere in this text; see section 13.4.2 in Chapter 13.

Variables: A=current link address; X=link address of next line, and if zero
denotes the end of the program. L is the current linenumber, K a loop variable,
and P the ASCII value of the character being processed, or simply the value, in
the case of a token. Q is the quotes flag; with each new line it is reset to 0.
CC is the count of characters printed on the current line; CMAX the largest
permitted number. When a line overflows to a new line, it is inset by 6 spaces
in line 63508.
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LOAD

BASIC system command

PURPOSE: Enables a stored memory dump to be reloaded into RAM from external
tape or disk storage. Usually this will be a program in BASIC; it might
alternatively be machine code, a dump of the VDU screen, BASIC with its
stored variables, or any other set of contiguous RAM address contents.
Any of these less common forms of LOAD may require special techniques to
prevent the CBM attempting to process the data as if it were BASIC.

Syntax: Tape has this syntax: LOAD [string exp. [,arith.exp. [,arith.exp.]]].
All the parameters are optional, because there is no ambiguity with tape in
deciding on the next program. The first is the program name, the second
the device number, and the third the secondary address. The secondary
address has no effect whatever on LOAD; it is only possible to include it
because SAVE shares the same validation routine. In all ROMs these para-
meters default to the null string (of length 0) and device #1, so the first
program on cassette #1 will load.

Disk has slightly different syntax: the string expression holding the name
of the routine and its drive number is compulsory.

Note that the string expressions are processed differently: in tape loading,
only the characters specified need match those on tape, so LOAD "HE" loads
HELLO or HEX - whichever is first - but rejects HIGHRES and "".

CBM disks have a more sophisticated matching system in which every char-
acter of the name must be given, unless an asterisk is present, in which
case any subsequent characters are permitted, as with the tape system; or
one or more question marks appear in the string; these require a character
to be present, but don't care what it is. Thus, LOAD "HE*",8 has the same
effect as the tape command above; it searches both disk drives for a prog-
ram with a name that fits its description. LOAD "0:HE???*",8 will load
HELLO but not HEX.

Note that BASIC 4, and BASIC 2 with certain 'toolkit'-type ROMs, has the
DLOAD command (q.v.) for disk loads. Also, CBM's monitor has a load
command: .L "NAME",01 and .L "0:NAME",08 for tape loading from cassette
#1 and from disk drive 0 respectively. After loading, control returns to the
monitor: these routines are not treated as BASIC but as machine code.

Modes: Direct and program modes are both valid. Their effects, however, are
different. Early CBM manuals include a flowchart which explains how they
differ.

Direct Mode: messages are printed to the screen; when the LOAD is com-
plete the program is ready to RUN, LIST, and so on; it displaces any
previous program. Anyone using a CBM is familiar with this. The sequence
of screen messages appears like this, where square brackets indicate the
optional program name allowed by tape load syntax:

Tape: LOAD ["PROGRAM" [,1 or 2]] Disk: LOAD "0 or 1:PROGRAM",S8

PRESS PLAY ON TAPE #1 or 2 SEARCHING FOR PROGRAM
OK LOADING PROGRAM
SEARCHING [FOR PROGRAM] READY.

FOUND OTHER PROGRAM ...
FOUND [PROGRAM]
LOADING [PROGRAM]
READY.

In each case I've assumed that the named program file does actually exist;
if not, ?FILE NOT FOUND ERROR will appear, or, with tape, the recorder
may continue right to the end of the tape (when no end-of-tape header has
been written to tape).

Program Mode: LOAD within a program-line prints no screen messages, leaving
the screen appearance intact, but loads and runs the new program, retaining
the values of the earlier program's variables, subject to some qualifications.
Chaining many short programs is a relic of the old 8K PETs.
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Examples: LOAD :REM LOADS FIRST PROGRAM FOUND ON TAPE #1
LOAD '"CALCS" :REM SEARCHES CASSETTE #1 FOR CALCS, CALCS COPY,
LOAD "PROG",2 :REM SEARCHES CASSETTE #2 FOR PROG, PROGA, PROGRAM,...

LOAD "*",8 :REM LOADS FIRST PROGRAM ON DEFAULT DRIVE O

LOAD "1:*",8 :REM LOADS FIRST PROGRAM FROM DRIVE 1

LOAD '"O:ASSEM*'",8:REM LOADS ASSEM, ASSEMBLER,... FROM DRIVE O

LOAD X$,8 tREM X$ INTERPRETED AS STRING WITH PARAMETER & NAME
LOAD "HEL?*",8 :REM LOADS HELLO, HELP, OR WHICHEVER IS FIRST

10000 PRINT "PLEASE WAIT...": LOAD "NEXT": REM PROGRAM LOADS "NEXT"

1235 LOAD '"O:ANALYSE",8:REM "ANALYSE" IS NOW LOADED AND RUN.

The above examples are, I hope, self-explanatory. With any input/output
operation, there is a chance of error; ?FILE NOT FOUND and ?DEVICE NOT
PRESENT are two 'fatal' errors which will stop BASIC. Other possible load
errors include (with disk) ?FILE TYPE MISMATCH and (with tape) ?LOAD
ERROR. Checking DS$ (disk error message) and ST respectively will show
up errors. In the case of tape, ST is tested for only one bit after a LOAD,
so a checksum error may show up in ST, but not be reported by LOAD.

Notes: [1] Loading from BASIC. This is perfectly successful provided that:
(i) The newly loaded program is not longer than the older one, and
(ii) The new program doesn't use function definitions or non-computed
strings from the old program. All of its other variables may be taken over
with unchanged values; these need to be redefined. This pair of short
programs demonstrates the use of chaining programs with LOAD; this is a
tape version: 10 REM THIS (LONGER) PROGRAM SETS VALUES, LOADS PRINT PROG.
20 A=1: B%=2:C$="3": D$="4"+"": DEF FN E(X)=5: F(0)=6
30 LOAD "NEXT PROGRAM" : REM 'END' IS AUTOMATIC
Save this first, then save, as "NEXT PROGRAM", this:
10 PRINT A,B%,C$,D$,FN E(0),F(0)
Rewind,LOAD and RUN. The earlier program sets up variables with their
values, then loads the second. This is automatically run, without resetting
the variables, in effect performing GOTO the earliest linenumber. You will
see that all the variables still exist, except C$ and FN E. See Chapter 2
for the reasons: they are in fact fairly straightforward.

[2] OLD at the start of a newly-loaded program will enable it to run correctly,
irrespective of the length of the loading program, but variables' values are lost.

[3] A cassette cannot detect if 'Record’' is pressed with 'Play'. If it is, the
tape will not LOAD, but be erased as long as the machine continues.

[4] Automatic RUN routines on load can be written for both tape and disk;
see Chapter 14. LOAD can be relocated into RAM, so that non-standard
loaders can be written. One very useful ROM routine is the load routine
which is used by both LOAD and the monitor's .L and omits all the resetting
of BASIC. In this way, machine-code or a screen dump or whatever can be
loaded from within BASIC, leaving BASIC running. Compu/think disks have
this available as an option, with syntax $L;Drive,"Name". With CBM equip-
ment the following are the relevant locations:

$D4 holds device number; $D1 holds length of string parameter; if this is
non-zero, ($DA) points to its start. (BASIC 1: $F1, $EE, and ($F9)). Also
the load /verify flag must be set to 0, for load: this is $9D (BASIC 1: $020B).
Finally, call the second LOAD routine listed below. Example: In BASIC 4,
POKE 157,0: POKE 209,0: POKE 212,1: SYS 62294 Loads next program on tape #1.

Abbreviated entry: 10 Token: $93 (147)

Operation: The principal load routine has two parts, one for devices 1 and 2 (tapes),
the other for IEEE devices. The IEEE routine takes in 2 characters which it
presumes to be the start address; subsequent bytes are stored there and at.
subsequent locations. A separate end address is not stored. LOAD itself sets
the load flag, checks the parameters, and saves the present pointers before it
calls the load routine; afterwards it checks ST then cold or warm starts.

ROM entry points: LOAD is a 'kernel' command; its jump address is $FFD5.
BASIC1: $F346 /$F369 BASIC2: $F3C2 /$F322 BASIC4: $F401 /$F356
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LOG

BASIC arithmetic function

PURPOSE: Computes the logarithm to base e of any positive arithmetic expression.
It may be positive, zero, or negative. This function is the converse of EXP,

Syntax: LOG (arithmetic expression). Negative or zero arguments will cause an
?ILLEGAL QUANTITY ERROR. There is no upper limit on the argument except
that imposed by the floating-point evaluation of the expression.

Modes: Direct and program modes are both valid.

Examples: PRINT LOG(10) : REM ABOUT 2.3026
PRINT LOG(2.7182818) : REM ABOUT 1
PRINT LOG(X)*.434294482 : REM LOG OF X TO BASE 10
PRINT LOG(X)*1.44269504 : REM LOG OF X TO BASE 2
PRINT LOG(EXP(N)) : REM PRINTS N (POSSIBLY WITH ROUND ERROR)

PRINT EXP( LOG(A)+LOG(B) ) : REM PRINTS PRODUCT A*B
DEF FN P(A)=TEN-INT(LOG(INT (ABS(A))+(INT(ABS(A))=0))*LT)

The two first examples show straightforward calculations using this function.
A logarithm is a transformation that converts multiplicative relations (and
division) into additive relations (and subtraction). The logarithm of ratios is
constant; the logarithm of 1 is zero, since multiplying or dividing by 1 has
no effect on a number. Slide-rules have their sides marked out logarithmic-
ally. These facts are illustrated in various ways in the examples. The last-
but-one shows the transformation from a multiplication into an addition, and
the use of EXP to find the antilogarithm. Generally, this function is used in
statistical and scientific work, either analytically, because its algebraic
properties are known, or simply to perform calculations in which very large
numbers are combined to give a reasonably-sized result; this sort of thing
can happen in statistics.

The final example shows a less desirable application of LOG; the function
definition is part of a rounding routine, to be used in a business program.
The rationale is that (for example) the logarithm to base 10 of numbers from
100-999.99 starts with 2; the logarithm of 1000-9999.99 starts with 3; and so
on, suggesting that a decimal point can be positioned after taking the logar-
ithm of a computed value. Unfortunately, this routine itself is subject to a
rounding error; it is possible that 999.9999 may emerge as 100.00, a rather
large error.

Abbreviated entry: None
Token: $BC (188)

Operation: Negative and zero arguments are tested for, and if found, the routine
exits with ?ILLEGAL QUANTITY ERROR. The series evaluation routine in
ROM is used; this calculates log x to the base 2. It is a remarkably short
series, of 4 terms only. The argument goes through a series of conversions: *
it is put into the range .5-.99999, the remaining exponent being saved on the
stack. Then 1/SQR(2) is added; the result is divided into SQR(2); the result
is subtracted from 1. These transformations turn x into:

(1.414x - 1)/(1.414x + 1), and log,x of this quantity is found. Then the
result is subtracted from .5, renormalised and multiplied by log 2 to base e.
The routine appears to be based on the standard expression for logarithms,
the series #og(x) = (x-1)/(x+1) + 1/3*(x-1)%/(x+1)3 + ...

ROM entry points:

BASIC 1: $D8BF (55487)
BASIC 2: $D8F6 (55542)
BASIC 4: $CB20 (52000)

*] believe the following details are correct. However, there may be errors.
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LOMEM & HIMEM

BASIC system command unavailable directly in CBM BASIC

PURPOSE: Reserves a part only of the normal BASIC RAM for BASIC and its
variables, freeing RAM for other purposes; these include storing machine
code and storing graphics pages to be moved into screen RAM.

Versions: Some micro BASICs have this instruction (Apple, ITT; Tandy has
CLEAR n). In general no larger machines have this sort of command. So
far as I'm aware, no one has written explicit routines to perform this sort
of memory allocation with BASIC; usually, ad hoc pokes do the job. There
are several possibilities which we can distinguish with the aid of diagrams:

This is the normal memory map of BASIC:
$0400 Top of RAM (eg $8000 with 32K)
[ BASIC l Vars[Arrays | Strings

(i) We can lower the pointers to top of memory, creating a spare block of
RAM at the high end, where strings would otherwise be formed.

$0400 T

BASIC Vars |Arrays Strings | *SPARE*

This is easily done, in either direct or program modes. The resulting block
will be completely secure from BASIC, unless the locations are poked or
corrupted.
POKE 52,0: POKE 53,48: CLR: REM SETS TOP OF MEM=$3000 FOR BASIC>1
POKE48, 0: POKE49, 48 : POKE50, 0: POKE51 , 48: POKE52, 0: POKES3, 48

Both these versions have similar effects. Note that $30=48 in decimal, so
$3000 has high byte 48 and low byte 0 when using decimal pokes.

(ii) We can raise the end-of-program pointers, generating space after the
BASIC program in memory. This happens automatically when one program
loads another from disk or tape. Some BASIC loaders of long machine code

routines like Extramon use this method.
$0400 Top

BASIC *SPARE* [Vars|Arrays Strings

POKE 43, PEEK(43)+4: CLR: REM RAISES VARIABLES BY 4*256 = 1024 BYTES

This simple routine adds 4 to the high byte of the pointer to the end of
program. The program will still stop running when it encounters three null
bytes; the unusual positioning of its variables is not relevant to its running.

(iii) We can generate space before BASIC by adjusting the start of BASIC

pointers. Some proprietary software has a 'Memfix' routine which does this.
$0400 Top

*SPARE* BASIC Vars| Arrays Strings

This technique is trickier than the others; it cannot for example be per-
formed from within BASIC. A program modified in this way will SAVE in
a non-standard way and LOAD again from its modified starting address.

POKE 40,LO: POKE 41,HI: POKE 256*%HI+LO-1,0: NEW

In direct mode only prepares memory for the keying in of BASIC, where
LO and HI (default values 1 and 4) can be user-selected).

(iv) There are other possibilities. Chapter 2 has demonstration programs
in which variables (or variables plus their program) are confined to the
screen RAM. POKE 41,128: POKE 53,131: NEW: REM DISPLAYS 768 BYTES BASIC>1

(v) Corresponding locations for BASIC 1, the oldest ROMs, are listed in
the appendix of ROM and RAM addresses.
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MERGE

System command unavailable directly in CBM BASIC

PURPOSE: merges two BASIC programs together into a single program.
Unlike APPEND the ranges of linenumbers within the two programs need not
be mutually exclusive. In this way, standard subroutines may be inserted
into programs without the need for keying-in.

Versions: The usual method involves storing the subroutine(s) on disk or tape as
sequential files - not as tokenised programs - then reading them back by a
routine similar to that used when adding lines from the keyboard. In this
fashion individual lines, one at a time, are merged into the initial program in
memory. Keyboard buffer poking keeps the routine working until an invalid
piece of BASIC is found. Normally, this is'READY.', written conveniently by
LIST at the end of the sequential file. As I say, this is the usual method. It
is possible, as with APPEND, to merge entirely in memory, but here we will
look at two well-known methods, for tape and for CBM disk respectively.*

[1] Tape Merge.

Use this routine to save the subroutine on tape as a sequential file:
OPEN 1,1,1,"NAME OF SUBROUTINE'": CMD 1: LIST [LOW - HIGH]

Where the square brackets denote optional linenumbers,when only a subset
of a program is wanted for future merges. The program lists onto tape.

PRINT#1: CLOSE 1

Close the file with these instructions when the cursor returns. This com-
pletes the first part of the operation; the named subroutine is stored.

Merging can be carried out now whenever you have a suitable program in
memory; the result is a fully merged program, as if the lines had been
separately typed at the keyboard.2? Follow these instructions fairly closely
(i.e. get the pokes and cursor movements right!):-

Starting with a program in memory and the tape in cassette #1,

BASIC 1: POKE 3,1: OPEN 1,1,0,"NAME OF SUBROUTINE"
BASIC 2: POKE 14,1: ditto
BASIC 4: POKE 16,1: ditto

This will read the tape until the correct header has been found; now it
will wait for the tape to be read.

[CLEAR] and type [DOWN][DOWN][DOWN] then:

BASIC 1: POKE 611,1: POKE 525,1: POKE 527,13: PRINT"[HOME]'"[RETURN]
BASIC 2: POKE 175,1: POKE 158,1: POKE 623,13: PRINT"[HOME]"[RETURN]
BASIC 4: ditto

The tape file is now read and merged correctly, subject to the provisos in
footnote 2. Eventually, ?SYNTAX ERROR or ?0UT OF DATA ERROR appears
depending on whether the program or the merged subroutine had the highest
linenumber. This means the merge is finished.

*The tape routine is the work of Brad Templeton and Jim Butterfield. Various versions
exist of which this is the best. Several disk versions exist; this one is based on
Mike Todd's (see IPUG newsletter, May '80). Brad Templeton's 'Power' EPROM uses an
analogous technique to construct files like Apple EXEC files, enabling stored commands
to control the machine as though from the keyboard. The merging process can be routin-
ised: see e.g. 'PET's Librarian' by D J David, kb-Microcomputing, April '80.

2Because the input buffer is 80 characters long, lines with abbreviated input (e.g. ?
for PRINT) may not merge correctly if they LIST with overlength lines; if this happens
the relevant lines must be separated into shorter lines.
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[2] Disk Merge.

LDA #$08
STA DEVICE NO ; SET DEVICE to 8 (I.E. DISK)
JSR IEEE TALK ; SET IEEE UP FOR TALK
LDA $63 ; 3 ORYD WITH #$60
STA SEC ADD ; SECONDARY ADDRESS 3
’

JSR OUTPUT IT ; OUTPUT TO IEEE

LDX #$00 ; COUNTS BUFFER CHARACTERS
JSR INPUT IEEE ; GET CHARACTER FROM IEEE
CMP #$0A ;  LINEFEED?

BEQ -7 ; IF SO, IGNORE IT

CMP #$0D ;  CARRIAGE RETURN?

BEQ +10 ; IF SO, WHOLE LINE INPUT
STA $0200,X ; STORE PROGRAM LINE CHR.
INX INCREMENT COUNTER

CPX #$51 80 CHARACTERS?

BEQ ERROR ; IF S0, LINE IS TOO LONG
’

BNE -21 ; INPUT NEXT CHARACTER

STA KEYBD BUFF ; STORE CARRIAGE RETURN

JSR PROC ; PROCESS LINE IN BUFFER

LDA #$13 ; [HOME]

JSR $FFD2 ; OUTPUT IT TO SCREEN

LDA #$01 ; 1 CHAR IN KEYBOARD BUFFER
STA NO CHRS ;

JMP TOKENISE ; TOKENISE AND INCORPORATE LINE
JMP ERROR ; LINE TOO LONG

This rather schematic machine code illustrates the procedure by which disk
merging can be made to take place. Characters are read into the buffer,
just as though keyboard entry was being used, and the line is processed
and tokenised in the same way. After each line, [HOME] is forced so the
routine is called again. The concept is similar to the tape merge. The test
for lines of length 80+ protects the tables of file numbers, device numbers
and secondary addresses if these are inuse; if, as is likely, they aren't,

a larger number than 81 may be used.

The routine is relocatable, but not transferable between BASICs. The
versions below start at $027A (cassette #1 buffer) for compatibility with
BASIC 4.

Instructions.
Where F is Logical file number, S is Secondary address, D is drive number,
Save a subroutine with:
OPEN F,8,S,"D:NAME OF SUBROUTINE,SEQ,WRITE":CMD F: LIST [LOW - HIGH]
Where the linenumbers are optional. When the file is written, close it with
PRINT#F: CLOSE F
Merge this subroutine with a program in memory by:

OPEN F, 8, 3,"D:NAME OF SUBROUTINE, SEQ, READ" then
enter [CLEAR]SYS 634 [RETURN]

BASIC 2 BASIC 4

: 027A A9 08 85 D4 20 B6 FO A9 .:027A A9 08 85 D4 20 D2 FO A9
.: 0282 63 85 D3 20 28 F1 A2 00 .:0282 63 85 D3 20 43 F1 A2 00
.: 028A 20 8C F1 C9 OA FO F9 C9 .:028A 20 CO F1 C9 OA FO F9 C9
.: 0292 0D FO OA 9D 00 02 E8 EO .:0292 0D FO OA 9D 00 02 E8 EO
.: 029A 51 FO 14 DO EB 8D 6F 02 .:029A 51 FO 14 DO EB 8D 6F 02
.: 02A2 20 D5 C9 A9 13 20 D2 FF .:02A2 20 D2 BA A9 13 20 D2 FF
.: 02AA A9 01 85 9E 4C 95 C3 4C .:02AA A9 01 85 9E 4C 09 B4 4C

.: 02B2 23 D1 .:02B2 73 C3
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MID$

BASIC string function

PURPOSE: Extracts a substring from a string expression. The substring
consists of consecutive characters from the original string expression, and
may contain zero characters, all the characters, or (usually) some inter-
mediate number of characters from the string. BASIC 1 will not permit a
substring of length zero to be taken.

Syntax: MID$(string expression, arithmetic expression[, optional arithmetic
expression]). Neither parameter may take a value greater than 255. If
the second parameter is omitted, the substring continues by default to the
end of the string expression, like RIGHT$. The first parameter determines
the starting point of the substring. See the diagram.

Modes: Direct and program modes are both valid.
Examples: 200 N$=MID$(STR$(N),2) : REM REMOVES LEADING SPACE FROM +VE NUMERAL

620 ni$="EachPackUnitTubeReelSet PairRollMtr "
623 for j=1 to len(ni$) step 4: if js$=mid$(ni$, j,4) then return
626 next: ok=0: em$="in Price Unit": gosub 800: return

1530 MO$=MID$ ("'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC" , 3*M-2, 3)
A$="ABRACADABRA": FOR J=1 TO 6:?8PC(J)MID$(A$,J,12-J): NEXT

These examples illustrate typical uses to which this substring function may
be put. Firstly, line 200 uses the default option in which the second
parameter is omitted. This means that the string function, STR$(N), is
converted into N§$, starting at the second character of STR$(N) and cont-
inuing to the end. So if N=23, STR$(N)=" 23" and N$="23".

The program extract (lines 620-626, listed in lower case) is one of a set
of input validation subroutines. It checks that the string js$ which has
been typed into the machine is one of the four-letter substrings held by
ni$. If it is not, an error message routine is called.

Line 1530 converts month number M (1-12) into a 3-letter equivalent.
Lastly, a loop prints symmetrical portions of the string A$ .
Notes: [1] This diagram should make the operation of this function clear:

x¢="s [a [M[P[L]|Ejsp[s|[T[R|1|N[G"
Position in string:[1 [2[3[4[5]6|7[8[9[10]11]1213]

PRINT MID$(X$,3,6) prints MPLE S which starts at 3 and has length 6.
PRINT MID$(X$,5) prints LE STRING which starts at 5 and ends at 13.

[2] The three functions MID$, LEFT$ and RIGHT $ resemble SIN, COS and
TAN in that they are closely related. LEFTS$ contains the main processing
for all three functions. In BASIC, both LEFT$ and RIGHTS$ can be put in
terms of MID$, although the result is not very readable:

LEFT$(X$,N) is the same as MID$(X$,1,N)

RIGHT$(X$,N) is the same as MID$(X$,LEN(X$)-N+1).

Abbreviated entry: mI (includes $) Token: $CA (202)

Operation: Sets the default for the second parameter to 255. Then, if there is
not a right-hand bracket, checks and inputs the comma and the second
parameter (overwriting 255). The string parameters corresponding to the
first two parameters (string and starting position) are pulled from the
stack. If the string has length zero, ?ILLEGAL QUANTITY ERROR appears.
From this data, the true start position and length of the substring are
calculated; and LEFTS$ is entered to set the new string up. BASIC 2 is
logically identical to BASIC 4, but the old ROM differs in several respects,
mostly connected with validation.

ROM entry points:BASIC1:$D60F (54799) BASIC2:$D611 (54801) BASIC4:$C86D(51309)
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MOD

BASIC arithmetic function unavailable directly in CBM BASIC

PURPOSE: Calculates the remainder when an integer is divided by another.
Whenever a fixed numerical cycle occurs, a function equivalent to this is
likely to be needed;examples include 12-hour clocks, date processing where
weekday is represented by 0-6, conversions between number bases, and
check digits and check letters. The word 'mod' is an abbreviation of
'modulo’; this is a mathematical term, used in sentences like '4 = 19 modulo 5'.

Examples: DEF FN MOD(N) = N - INT(N/D)*D : REM D=DIVISOR; RESULT IS MODULO D

D=12: H=FN MOD(16): REM CONVERTS 16 HOURS TO 4 O'CLOCK
D=4 : L=FN MOD(Y) : REM RETURNS O FOR LEAP YEAR Y.

D=7 : WD=FN MOD(2173): REM RETURNS 3; EG DAY IS WEDNESDAY
D=256: PRINT FN MOD(50000): REM LOW BYTE OF 50000 IS 80.

100 ISBN$="095076500"
110 T=0: FOR J=1 TO 9
120 T = T + VAL(MID$(ISBN$,J,1))*(11-J): REM CALCULATE CHECKTOTAL

130 NEXT J

140 D=11: T = FN MOD (T): REM FIND REMAINDER AFTER DIVN BY 11
150 T=11-T: REM SUBTRACT RESULT FROM 11

160 PRINT T: REM NOW RESULT IS 1 - 10.

The function definition is, I hope, fairly clear: it subtracts the nearest
multiple of the divisor from the original number N which leaves a positive
answer. It returns 0 if the number is an exact multiple of the divisor.
Positive numbers are assumed throughout. Four examples follow, all of
which use this function. The fourth must be a familiar one to any program-
mer using an eight bit microprocessor.

I've included a demonstration program which uses mod to calculate the
checkletter of an International Standard Book Number. Checkletters and
checkdigits are an interesting aspect of computerology which hardly existed
before computers; see Chapter 17 for more on the subject. Briefly, an
ISBN has 9 numerals followed by a checkdigit of 0-9 or X. The value of
the digit is computed as follows: weights of 10,9,8,...,2 are assigned to
the numerals in the ISBN. Each numeral is multiplied by its weight, and
the results added. Finally, this number is forced into the range 0-11 by
taking the remainder when divided by 11. (Then it is subtracted from
11, an extra, unnecessary step). Try the program with other ISBNs. You
will find that the final digit agrees with the printed value of T, or is X
when T is 10.

Note: [1] Generally, integers are held exactly by the machine. All the routines
on this page produce exact values.If there is a possibility of rounding
errors, when using for instance expressions like 3 * .33333333, the
evaluation can be foolproofed by adding in a small value:

DEF FN MOD(N) = INT (.1 + N - INT(.1 + N/D)*D) ,
where both .1s are necessary to ensure accuracy at every stage.
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NEW

BASIC system command

PURPOSE: Appears to erase any BASIC program currently in memory, together
with all its variables, so that a completely new program may be entered
from the keyboard. The effect is similar to turning on the machine anew;
LIST shows nothing. NEW however leaves machine code intact in RAM.

NB: This instruction is not a formatting command for CBM floppy disks.
See 'HEADER' in the disk commands reference section.

Syntax: NEW has no parameters; it may be followed by (@Eptional) spaces, but must
be followed by a colon or an end of line zero byte.

Modes: Direct and program modes are both valid.

Examples: NEW
50000 PRINT '"GOODBYE'": NEW: THIS WILL NEVER BE REACHED

In either direct or program mode the effect of this command is similar; the
program will no longer list, and the programmer is returned to direct mode;
'READY.' is printed.

Notes: [1] Everything in the cassette buffers, program variables, screen RAM,
stored machine code, and most of BASIC, is untouched. Because the memory
still holds most of what it did before NEW, an inadvertently erased program
can be recovered completely, except for the values of variables: see OLD.

[2] Syntax or out of memory or other errors and anomalous results occur
if the start of BASIC pointers don't point to $0401, or if $0400 does not
contain the normal 0 byte. Example: a machine code routine loaded from
disk or tape sets the start and end pointers as for BASIC; the same point-
ers are shared. NEW does not hardcode the value $0401 into RAM, but
relies on the accuracy of the pointers to BASIC. The solution, apart from
switching off or LOADing a BASIC program, is to set the pointers:

POKE 40,1: POKE 41,4: POKE 1024,0: NEW

Operation: First of all the syntax of NEW is validated; this simply uses a branch
which ensures that NEW is a statement on its own. Now the following
changes are carried out: Zero bytes are put at the link address at the
start of BASIC, in $0401 and $0402. The end of BASIC pointer is replaced
by start of BASIC+2. CHRGET's address is made equal to start of BASIC-1.
These changes are all that are needed to make the translator regard the
program as non-existent. Finally, things are tidied up with CLR:
the variables' pointers are made consistent with a new program;I/O activity
is aborted; the DATA pointer and several flags are set to their default
values. READY is printed, and the machine is prepared for a fresh pro-
gram to be keyed in and run.

H BASIC dVa:s|Arrays Strings
s L Y
e W)

M

Abbreviated entry: None
Token: $A2 (162)
ROM entry points:

BASIC 1: $C551 (50513)
BASIC 2: $C55B (50523)
BASIC 4: $B5D2 (46546)
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NEXT

BASIC command

PURPOSE: Changes program flow of control to the statement immediately after the
matching FOR loop. If no loop variable is specified, the most recently en-
countered FOR loop is taken. In this way, loops may be automatically pro-
cessed with relatively less programming effort.

Syntax: NEXT [real variable [,real variable][,real variable] ...]. Square brackets
denote optional variables, which must be separated by commas.
INEXT WITHOUT FOR ERROR is generated whenever the loop variable does
not match that currently in the stack, or if there is no active FOR loop on
the stack. See the notes for an explanation of this term.

Modes: Direct and program modes are both valid.

Examples: NEXT, like RETURN, operates on the 6502's stack, and can appear

anywhere in a program. This type of _ .
structure, therefore, is possible:- ;g :;g:TJEI TO 3: GOTO 100

But, even with its processing omitted, igoNﬁg ;;f:g 2: GOTO 20

it is difficult to read. Straightforward :

nested loops are therefore normal. Inclusion of the loop variable has a small
slowing effect on a loop, but on the other hand makes a loop more readable
since the corresponding FOR can be more easily found. Whenever the loop
variable exists on the stack, but not at the most recent level, one or more
loops will be lost; this is the source of some fairly obvious bugs. For
example, this short program executes
correctly, but the J loop is aborted
repeatedly. Processing of this type
has one practical use, which is when
a loop is left prematurely, without
completion of the entire range of values. As far as BASIC is concerned, the
loop is still usable and active. Another NEXT will cause the loop to be re-
entered. Given a stacked FOR structure, with free-format NEXTs allowed,
this is inevitable. Active FOR loops can cause trouble; this program line

100 FOR J=1 TO 10000: GET X$: IF X$="" THEN NEXT: REM 50 SECS DELAY

delays until a key is pressed, or for about 50 seconds, before continuing
with the next line. If this line is within a loop, a keypress causes early exit
so that J replaces the other loop's variable as the most recent loop. (Try it-
it's hard to describe). 101 FOR J=0 TO O0: NEXT cures this bug.

Notes: [1] How the stack works. For those interested, the following short BASIC
program shows what FOR does:- 10 FOR PQ=512 TO 480 STEP -1
The output includes 18 bytes, like this: 20 PRINT PEEK(PQ),

L inenwmbes Pointer 4 byfe 30 NEXT
; @D L R

10 FOR I=1 TO 10

20 FOR J=100 TO 120

30 IF 1I<6 THEN NEXT I
40 NEXT J,I

0 10 Value of firal variable in floating-point format (=428 her),
1 137 Sign of step (negative hevel.
(0 28 )—STEP size \n floating- powd format (= =L heve)o
129 /(4 49y (129—For token Poter 0 vactable of loop tn RAN.

Operation: FOR checks the syntax, and assigns its variable, setting it up if need be.
The stack is searched, and variable mismatches rejected. If it's a new variable
the stack is tested for at least 18 bytes' space. All the parameters are pushed
on the stack while checking the syntax of TO and the arithmetic expressions.
STEP is assigned 1, then overwritten if a STEP exists. Finally, it drops through
to RUN and continues with the next statement. NEXT, if followed by variables,
searches for the first, later reading its list. The FOR byte is checked, then
STEP is added to the loop variable in acc.#1. The result is compared with the
upper limit, and if less (or, with negative step, greater) CHRGET reset.

FOR: BASIC 1:$C649 NEXT: BASIC 1:$CC36 STEP: BASIC 1:$C69C
BASIC 2:$C658 BASIC 2:$CC20 BASIC 2:$C6AB
BASIC 4:$B6DE BASIC 4:$BD19 BASIC 4:$B731
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NOT

BASIC unary logical operator

PURPOSE: evaluates the complement of any arithmetic expression (within the valid
range) . In the case of truth values, this has the effect of converting true
to false and vice versa. This second case is by far the most commonly used.

Syntax: NOT must be followed by an arithmetic or logical expression. An arithmetic
expression must evaluate to within the range -32768 to 32767. Non integral
values will be rounded down.

Modes: Direct and program modes are both valid.

Examples: 5 IF PEEK(X)=34 THEN Q= NOT Q: REM SWITCH QUOTES FLAG ON CHR$(34)
PRINT NOT 23456
70 IF NOT OK THEN EM$="- pack type": GOSUB 20000: RETURN
1000 IF D=1 OR O AND NOT T$="TAPE" THEN OPEN 15,8,15:PRINT#15,"I0"

The first example shows how NOT can be used to switch the values of a
flag; in this example, Q true means that the quotes flag is set; when the
next quote mark is peeked, it is unset. This has application when writing
special LIST routines in BASIC. The second, direct mode example, illustrates
the numerical effect of NOT. The value is converted into a 2-byte integer
and the bits all reversed: in this example, 23456=$5BA0, so NOT 23456 is
computed to be $A45F, which in signed integer terms = -23457, This adding
of 1 is general, and is because the bytes are complemented, but not 2's
complemented. The third example is a program line which tests the flag OK;
if this has been set false, the error message routine prints a warning to
the operator. Finally, an example shows NOT in a logical expression.

Notes: [1] A fuller explanation of 2's complement numbers appears under AND.

[2] NOT has a higher position in the hierarchy of logical operators than
OR and AND. NOT therefore takes precedence if there would otherwise be
ambiguity. NOT A AND B is effectively identical to (NOT A) AND B.

[3] The usual rules of logic apply to NOT, OR, and AND, and may help
when attempting to decipher elaborate expressions. Three of these are:
A=NOT (NOT A)
NOT (A AND B) = NOT A OR NOT B
NOT (A OR B) = NOT A AND NOT B.
The second and third of these are sometimes called d'Alembert's rules.
These relationships can be demonstrated in many other ways, e.g. Venn

"non

diagr H |
N - e |
I, I/\‘ \\ \ )
i V=
. 1 ll/{
NOT ( A AND B) NOT A OR NOT B
Abbreviated entry: nO Token: $A8 (168)

Operation: The expression following NOT is evaluated, and if valid, converted to
a fixed point number in floating-point accumulator #1. The diagram applies
to BASIC>1:

S5E $5F $60_$6 2 $63
AlY
Fixed-point here

The contents of $62 are reversed and transferred to the Y register; the
contents of $61 are reversed in the accumulator. A standard routine which
converts A low and Y high into floating-point form is called finally.

ROM entry points:
BASIC 1: $CDE8 (52712) BASIC 2: $CDCF (52687) BASIC 4: $BECC (48844)
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OLD

BASIC command unavailable directly in CBM BASIC

PURPOSE: Restores a BASIC program which has been inadvertently erased by
NEW. It does this by resetting zero-page pointers to the start of BASIC
and the end. This has a further effect: a program LOADed from another
program can have its pointers set correctly, so that (for example) a small
menu program can safely LOAD a much larger program.

Versions: Several have been published: Practical Computing (Feb.81) has a 6502
routine, which, however, does not set end-of-program pointers. Printout
(Jan.'81) had several using Toolkit calls with BASIC; Compute! had an UN-NEW.

My version below is relocatable and may be called from within a program.
In direct mode the program will LIST and RUN as usual.

Operation: To decide what OLD is to do, we can start by examining NEW; this
[1] Puts zero bytes at the link address at the start of BASIC, $0401 & $0402.
[2] Changes end-of-BASIC pointer to $0403.
[3] Sets GETCHR address to $0400.
[4] --- Enters CLR routine at this point ---
Current string pointer is set to point to the very top of RAM.
[5] I/O activity is aborted and files closed.
[6] End of variables and end of arrays pointers are set to end of BASIC.
[7] DATA pointer is restored/ some flags are reset/ the stack is reset.

There is an inherent problem in distinguishing simple variables from arrays;
this version therefore does not attempt this. The reversible steps are 1,2
and 6. Therefore OLD needs to:-

[1] Replace the link address in bytes $0401 and $0402,

[2] Recover the end of program pointer,

[6] Set the variable and array pointers to the end of BASIC.

[1] is carried out on the assumption that the next zero byte found marks
the end of line; [2] assumes that three consecutive zero bytes mark the
end of the program. I have also assumed that BASIC starts at $0401, and
included this value explicitly; this clears up some problems when machine
code has been loaded, so the starting address is assumed, by its pointers,
to be somewhere else in RAM.,

This is a flowchart of the part of the routine which searches for the end

of program:
prog START

TESTS
SET CouNnTeR=3

4 -
TEST3p

INCREMENT ADRRESS

CANTENTS ©
ADDRESS =& 2 A

L JE

DECREMENT COUNER

COUNTER
0w 2£&Re?
L YES.
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OLD ... BASIC 4.0

634 $027A A9 01

636 $027C A0 04

638 $027E 85 1F

640 $0280 84 20

642 $0282 A0 03

644 $0284 C8 FINDO

645 $0285 Bl 1F

647 $0287 DO FB

649 $0289 Cc8

650 $028A 98

651 $028B 18

652 $028C 65 1F

654 $028E A0 00

656 $0290 91 28

658 $0292 A5 20

660 $0294 69 00

662 $0296 c8

663 $0297 91 28

665 $0299 88

666 $029A A2 03 TESTO

668 $029C E6 1F TEST30

670 $029E DO 02

672 $02A0 E6 20

674 $02A2 Bl 1F NOINC

676 $02A4 DO F4

678 $02A6 CA

679 $02A7 DO F3

681 $02A9 A5 1F

683 $02AB 69 02

685 $02AD 85 2A

687 $02AF A5 20

689 $02B1 69 00

691 $02B3 85 2B

693 $02B5 4C FO BS
Notes:

693 $02B5 4C 79 C5

-101-

LDA
LDY
STA
STY
LDY
INY
LDA
BNE
INY
TYA
CLC
ADC
LDY
STA
LDA
ADC
INY
STA
DEY
LDX
INC
BNE
INC
LDA
BNE
DEX
BNE
LDA
ADC
STA
LDA
ADC
STA
JMP

JMP

#$01
#$04
POINTRL
POINTRH
#$03

(POINTRL),Y

FINDO

POINTRL
#$00

(BASICL),Y

POINTRH
#$00

(BASICL),Y

#$03
POINTRL
NOINC
POINTRH

(POINTRL),Y

TESTO

TEST30
POINTRL
#$02
PROGENL
POINTRH
#3$00
PROGENH
CLEAR

$C579

5: BASIC keywords

; LOAD UTILITY POINTER
; WITH $0401

;RESTORE LINK ADDRESS
; IN ($0401)
; BY FINDING THE NEXT
; ZERO BYTE

; Y NOW HOLDS #$00

;FIND 3 CONSECUTIVE ZEROS
; MARKING PROGRAM END

; (SEE FLOWCHART)

; ADD #2 TO POINTER TO
; 3 ZEROS AND STORE RESULT
; IN END-OF-PROGRAM

; CLR AND READY.

[1] BASIC 2 is identical except that the last line must be replaced by:

; BASIC 2 CLR AND READY.

[2] SYS 634 calls the routine as written; it is relocatable, however.

[3] The start address of $0401 need not be hard coded in: if your BASIC
is written to start elsewhere, use LDA $28/ LDY $29.

[4] The original ROM (BASIC 1) equivalent is this:

OLD - ORIGINAL ROM

826 $033A
834 $0342
842 $034A
850 $0352
ass $035A
866 80362
874 $036A
882 %0372

A4
cs
65

69

Do
02
7D

a5
71

AO
ca
Do
CA
7C
6A

71
Do
00
91
02
DO

CS

a4
FB
91
7A
E6
F3
72

72
cs
7A
as
72
AS
69
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ON

BASIC conditional command

PURPOSE: Branches to one of a list of linenumbers, depending on the value of
the variable following ON. ON ... GOTO and ON ... GOSUB are valid.
This provides a readable method for programming multiple IF statements
of the CASE type, particularly if the variable takes values 1,2,3, ...

Syntax: ON arithmetic expression GOSUB linenumber,linenumber, ...
or ON arithmetic expression GOTO linenumber,linenumber,...
Note that ON ... GO TO is disallowed.
If the expression, on evaluation, is outside the range 0-255, the message
?ILLEGAL QUANTITY ERROR is generated.
If necessary the value is rounded down. When the value=1, the first line
in the list is the branch; when 2, the second, and so on.

Modes: Direct and program modes are both valid.

Examples: 1000 ON SGN(X)+2 GOTO 2000,3000,4000: REM FORTRAN CONVERSION
60 ON 1 + 10*RND(1) GOTO 100,200,300,400,500,600,700,800,900,1000

6240 ON X GOSUB 400,410,420,430,440, 450,460, 470,480,490,500 ...
6250 ON X-20 GOSUB590,600,610,620,630,640,650,660,670,680 ..

200 ON Q GOSUB 100, ,200,300

The first example shows a three way branch, depending on the sign of the
argument. When X is negative, SGN(X)=-1 so SGN(X)+2=1. So if X is a
negative quantity, the first of the three linenumbers obtains. In the same
way, if it has zero or positive sign, the second or third linenumber is
chosen respectively. The language FORTRAN ('FORmula TRANslation') has
this test; sample line 1000 shows the method of conversion to BASIC.

The second example is taken from a game. The random number generating
function RND returns numbers in the range 0.000001 to .999999 (roughly!)
so the argument evaluates, after rounding, to 1,2,3, ..., 10. Each of the
routines has an approximately equal chance of running.

If all the options cannot be fitted on one line, they may overlap onto the
next line, as the third example shows. See note [1] for explanation.

ON does not share the peculiarity that GOTO and GOSUB share, of allowing
non-numeric characters in linenumbers. However, it does treat null line
numbers, as in line 200, as if they were line 0.

Notes: [1] If the variable is 0, or 5,say, when only 4 linenumbers exist, there
is no error message; the program merely begins on the next line. This is
the reason why lines 6240-6250 in the examples work correctly if X is
between 1 and 30 or whatever. The reason for this behaviour is explained
below in the section on machine code operation.

Abbreviated entry: None
Token: $91 (145)

Operation: Firstly, the argument following ON is evaluated and validated. If, as
it should be, the result is a single-byte numeral, this value is stored (in
$62 with BASIC>1). Next, ?SYNTAX ERROR is printed if the following
token is neither GOTO nor GOSUB. (This is the reason for ON .. GO TO's
unacceptability). The token is stored on the stack: on exit it is pulled
back into the accumulator, so the routine knows which of the two commands
to execute. Before this, however, the list of linenumbers is processed.
This is done in a loop. The first thing is to decrement the stored value of
the parameter; if the result is zero exit occurs to either GOTO or GOSUB.
If the result was not zero, CHRGET gets the next fixed-point linenumber
and stores it in ($11) with BASIC>1. Provided a comma follows, the loop
continues. So a variable value of zero is treated in effect as 256.

ROM entry points:BASIC1:$C843 (51267) BASIC2:$C853 (51283) BASIC4:$B8D6 (47318)
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OPEN

BASIC input/output command

PURPOSE: Enters a file's 'logical file number' in a table, together with the device
number and secondary address. When BASIC refers to a logical file, for
example with PRINT#, the device and its secondary address are taken from
the tables and used in processing. Al/so, where necessary, the device is
prepared for input or output. Tape files have a header either read or
written; disk files' parameters are sent on the IEEE bus to the disk unit.

Syntax: OPEN arith. expr. [,arith.expr. [,arith. expr. [, string expr.]]]. The
first parameter is compulsory and must evaluate to 1-255 after rounding down.
The second parameter is the device number, which must be 0-15, and is a
hardware feature; see the table for CBM equipment's device numbers. The
third parameter is the secondary address, which again is a hardware feature,
and may not be present on non-CBM equipment. The string parameter is a
file name, plus, in the case of CBM disks, other parameters giving drive
number and so on. ?SYNTAX ERROR, ?DEVICE NOT PRESENT ERROR, and
?FILE OPEN ERROR return to direct mode, aborting files which are already open.

Modes: Direct and program modes are both valid.

Examples: Note that, while a logical file number is compulsory, the remaining para-
meters are optional. The device number, secondary address, and string are
assigned 1 (i.e. cassette #1), 0, and null string respectively, in all versions
of BASIC. All the parameters are evaluatable expressions.

Tape: OPEN 10:REM =OPEN 10,1,0,"" WHICH OPENS FILE #10 TO READ #1'S HEADER
OPEN 1,1,0,"TAX": OPEN 2,2,1,"TAX UPDATE": REM SYSTEM WITH 2 CASSETTES

Disk: OPEN 15,8,15: REM OPENS ERROR CHANNEL TO CBM DISK AS LOGICAL FILE #15.
OPEN 1,8,4,"#": REM OPENS A CHANNEL TO A DISK BUFFER FOR B-R, B-W, ETC
OPEN 2,8,4,"0:0RDINARY FILE,SEQ,READ": REM OPEN CBM FILE FOR READING
FILE$="1:FILE A": OPEN 3,8,10,FI$+"SEQ,W": REM OPEN FILE FOR WRITING

Other: 10 INPUT "OUTPUT TO DEVICE #"; D: OPEN D,D

20 PRINT#D, ...:REM PRINT OUT TO SCREEN OR PRINTER ETC, DEPENDING ON
D - E.G. 3=SCREEN. CONTROL CHARACTERS MUST WORK WITH BOTH DEVICES
30 CLOSE D

Tape files always start by reading or writing a header. So two files to the
same cassette are impossible. Our examples show a header being read into its
buffer (where incidentally it may be examined by PEEK) and OPEN statements
for a 2-tape system, where data input from #1 may be processed and output to
#2. The disk examples (BASIC 4 has DOPEN, which is slightly easier) open
files numbered 15,1,2, and 3, all to device 8, the normal disk device number.
It is sometimes warthwhile to open files to the keyboard and/or screen.

Notes: [1] CBM Equipment and its Secondary Addressing.

Device: evice #: Secondary Address:
0 1 2 3-14 15

Keyboard 0
Cassette #1| 1 Read |Write file+ |Write file +

file [end-of-file|leof + end of
Cassette #2 2 marker on |tape marker

CLOSE on CLOSE

Screen

Printer

Modem
Unassigned| 6

Disk Drives

--—- Varies with type of printer* ----

o o

7

oal-

Directory Ergor
Read |Write Channel

Unassigned| 9-15

*\odels 4022/3 used 6, and model 4022 10, secondary addresses, for example.
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As the table shows, many primary and most secondary addresses are unused
so that secondary addresses may be picked at random in most cases. With
disks, secondary addresses 3-14 may be used freely. The parameter can't
simply be ignored, since the default value of 0 prevents a string being sent
on the IEEE and anyway is compulsory before the string. This is why the
examples of OPEN involving disks have rather miscellaneous third paramet-
ers. The keyboard, screen, and non-CBM printers can be opened as files
simply with OPEN 1,0: OPEN 3,3: OPEN 4,4 or with whichever logical file
numbers you like. Cassette files are, on the other hand, entirely dependent
for their correct operation on the secondary address. The default value of
zero is (sensibly) equivalent to reading a file; 1 causes a normal write; and
2 causes an identical write, plus, at the end, a 'header' holding a value
which is interpreted as 'end of tape'.

CBM printers are designed with many secondary address features, many of
which, unfortunately, don't work correctly or are absurdly complicated to
use. Output to these printers is consequently often formatted in ways not
compatible with output to the screen or to other printers. The 4022 has the
following secondary addresses: 0=print 'as received'; 1-print in format; 2=
store format; 3-lines/page; 4=error messages on; 5=define own character;
6=set linefeed space; 7T=upper case; 8='lower case'; 9=error messages off;
and 10-reset. Some models of printer have 4 and 6 transposed.

[2] RAM Tables. Three tables of ten entries each hold logical file numbers,
device numbers, and secondary addresses as they are used by the IEEE bus
or cassettes. They start, and may be peeked, at 593, 603, and 613 decimal
respectively. (578,588,598 in BASIC 1). The number of entries in the table
is stored in another location (174 or $AE; 610 or $0262 in BASIC 1). The

overall effect is as shown in the diagram: 593 4 LOGICAL FILE

Any new OPEN has its logical file number 594 5 NUMBERS
checked against those already present, and 595 15

?FILE EXISTS ERROR reveals duplication. 596 8

BASIC 1 is inedequately protected against  ......

OPENing more than 10 files. Later BASICs 603 4 DEVICE NUMBERS
print ?TOO MANY FILES ERROR. POKEs 604 4

into these tables can cause problems, as 605 8

spurious 'files' may apparently exist. 606 8

OPEN 4,4: OPEN 5,4,1: OPEN 15,8,15:  :.°°_
OPEN 8,8,8,"0:DATA,S,R" gives the tabled 613 255 SECONDARY ADDRESSES

values. gi: 5'171
616 104

[3] BASIC4 has DOPEN; it also has a modification of earlier BASICs: PRINT #
followed by a logical file number with bit 7 low (i.e. 1-127) does not send a
linefeed character with a carriage return. Earlier versions did. This was a
result of the fact that PRINT referred to the screen at first; later, the tape
processing system was arranged to omit linefeeds, but the IEEE bus still trans-
mitted them to disk. On this subject, see PRINT#.

[4] Other locations. OPEN sets these locations: $D2=logical file; $D4=device;
$D3=secondary address; $D1l=length of string and, if this is non-zero,
($DA) points to the start of the string.

Abbreviated entry: oP Token: $9F (159)

Operation: Chapter 13 has a schematic disassembly of this command. The version
is BASIC>1; BASIC 1 is written less concisely, but is otherwise logically
similar. Firstly, parameters are fetched from BASIC by a single ROM sub-
routine. This part can be skipped in machine-code programming, by setting
the variables directly. ST is set to zero and the file table entries made, if
there's room. The IEEE bus, as usual, is processed differently from the screen,
keyboard, and cassettes. The string is sent to the IEEE device only if the
secondary address is non-zero, and the string is not the null string.

ROM entry points: OPEN is a 'kernel' command. Its address is $FFCO.
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OR

BASIC binary logical operator

PURPOSE: Calculates the logical inclusive OR of two expressions which evaluate
into the range -32768 to 32767. The result is a 2-byte integer. With logical
expressions, the result is true if either of the original conditions were
true, or if both conditions together were true.

Syntax: Arithmetic or logical expression OR arithmetic or logical expression.
Both expressions must be integers within the signed integer range, or
floating point numbers within this range when rounded down. All logical
expressions are valid, since they take values of -1 or 0 only.

Modes: Direct and program modes are both valid.

Examples: 100 IF A%<1 OR A%>10 THEN ? "OUT OF RANGE"
PRINT -1 OR 12345
PRINT 380 OR 75
6270 OK=OK AND D < 32+ (M=40RM=60RM=90RM=11)+ (M=2)* (3+ (INT(Y/4)*4=Y)
150 IF NL=60 OR TF THEN NL=2: TF=0: GOSUB 5000: REM NEW PAGE & TITLE

The first and fourth examples show typical applications, where OR checks
the range of a single variable: the first example is, I hope, self-explanatory.
The fourth is part of a date validation routine, which checks that the day
of the month is acceptable. (NB: a leap-year test is included). It takes
advantage of the fact that 'true' evaluates as -1 to calculate the acceptable
upper limit of the day number. The second and third examples, on the
other hand, do not compute logical functions, but operate directly on the
numeral values: -1 ORed with any valid number leaves that number unalt-
ered, because -1 is stored as $FFFF, and this pattern of bits, all 1s,has
no effect when ORed with any other bit pattern. PRINT 380 OR 75 gives a
bit pattern of $00000001 01111111 = 383; cp. AND. The final example shows
OR used with different variables: a new page and two-line title is to be
printed if either 60 lines exist on the page so far, or some other condition
has set TF to true, for example change of client name.

Notes: [1] The use of -1 for 'false' is not universal: Apple for example uses +1.
Routines which run on a particular machine may need changes of sign if
they are to be used with another.

[2] 'OR' is lowest in the operator hierarchy, and is performed after NOT
and AND. Because of this, PRINT 1 AND 2 OR 3 prints result 3, which
is also obtained from PRINT (1 AND 2) OR 3. PRINT 1 AND (2 OR 3) is 1.

[3] The truth table for OR is:-
OR|T F OR|1 0 Where 1l='true' or 'bit set on'
T[T T 1/11 0='false' or 'bit set off'.
F|T F 0j10
The following relationships are fairly easy to demonstrate:
A OR B is equivalent to NOT( NOT A AND NOT B)

A EOR B is equivalent to A OR B AND NOT (A AND B)
And these Venn diagrams show the difference between incl

exclusive OR:
A OR B A B A EOR B A B

Abbreviated entry: None Token: $B0 (176)

Operation: Identical to AND (q.v.) except for the use of a location holding #$FF
which the ROM routine uses to reverse bytes.

ROM entry points:

BASIC 1: $CED6 (52950)
BASIC 2: $CEC8 (52936)
BASIC 4: $C086 (49286)
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PEEK

BASIC arithmetic function

PURPOSE: Computes the decimal value of the contents of any memory location.
PEEK, in conjunction with SYS and POKE and, to a lesser extent, USR,
allows free access to RAM and ROM. Uses include: examination of ROM,
of BASIC, and of variables and pointers; examining hardware locations;
examining machine-code; and performing memory moves.

Syntax: PEEK(arithmetic expression). The range is 0-65535.
Modes: Direct and program modes are both valid.

Examples: PRINT "[CLR]" CHR$(34);: FOR J=1024 TO 1100: ?CHR$(PEEK(J));: NEXT
100 FOR J=1024 TO 1100: POKE 31744+J, PEEK(J): NEXT
7675 FOR LS=49T054: 0$(7)=0$(7)+CHR$ (PEEK(LT+LS)) :NEXT: REM SIZE
2000 IF PEEK(152)=1 THEN PRINT "SHIFT KEY IS PRESSED"

The two first examples, apart from the minor diff erence of mode, carry
out similar functions. Each displays about 1000 bytes of a BASIC program
directly on the screen, so that literals, tokens, linenumbers and so on are
all made visible. The main difference is that the first example prints the
characters, and so may fall foul of Commodore's special characters. The
quote mark at the start prevents this, at least until a second byte holding
34 is found. The second example doesn't have this problem, and is a
routine to memory-move the program into the screen area. Try them both.

The third example is a line from a program, in which information stored as
a file in RAM is now PEEKed out again. O$(7) is the 7th string to be
output, has length 6, and is the size description of the item.

The final example shows how knowledge of the system may be used in a
program. When the keyboard scanning routine finds the shift key depressed
it sets a flag which affects the character printed. The actual figure applies
to BASIC 2 and BASIC 4. (BASIC 1 uses 516).

Notes: [1] BASIC 1. This ROM contains a test ensuring that addresses from C000
to EOFF have a PEEK of 0. This protection has been dropped in all later
ROMs. BASIC 1 also has a bug, caused by the fact that a pointer it uses
is shared by the function processing routine. Line 100 in the examples, and
routines generally with several different PEEKs in a statement, don't work
in BASIC 1. For both of these reasons PEEK may well be replaced by USR
with this ROM.

DATA 165,8,72,165,9,72,32,208,214,160,0,177,8,168,104,133,9,104,
133,8,76,135,210: REM BUG-FREE PEEK FOR BASIC 1 WITH USR.

The 23 bytes above give a peek routine for BASIC 1 JSR D6DO
which is bug-free, so that PRINT USR(50000) prints LDX #00
208, and POKE C, USR(D) transfers the contents of LDA (08,X)
D to C. The 12 byte version to the right removes TAY

the CO000-EOFF protection, but doesn't correct the bug TXA
concerned with function processing. JMP D278

[2] A double-byte peek or DEEK is often convenient and can be written as
a function definition: DEF FN DEEK(X) = PEEK(X) + 256*PEEK(X+1)

Abbreviated entry: pE Token: $C2 (194)

Operation: BASIC>1 saves the contents of ($11) on the stack. (The omission of
this step from BASIC 1 causes its bug). The routine to validate and con-
vert a floating point number from 0-65535 is called; this also stores the 2
byte address in ($11), or ($08) with BASIC 1. It is a straightforward
matter to load the accumulator from the address pointed to, restore the
original contents of ($11), and jump to the ROM routine which loads the
accumulator with #0 and converts Y to floating-point. BASIC 2 has 8 NOPs
left from BASIC 1's protection routine, which are dropped with BASIC 4.

ROM entry points:BASIC1:$D6E6 (55014) BASIC2:$D6E8 (55016) BASIC4:$C943(51523)
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POKE

BASIC command

PURPOSE: Each POKE replaces one RAM location with the byte value specified by
the second parameter. With PEEK and SYS and to a lesser extent USR,
POKE enables RAM to be freely accessed from BASIC. It is useful when
entering machine code from BASIC, modifying pointers, programs, variables
and files in RAM, and putting characters directly onto the screen.

Syntax :POKE arithmetic expression, arithmetic expression. The two parameters
refer to the location and the byte. Their values must be within the ranges
0-65535 and 0-255. A POKE into ROM or into an area not occupied by RAM
or ROM does not print an error message, and has no effect.

Examples: i. FOR J=0 TO 255: POKE 8+*256%16+J,J: NEXT
ii. 10 DATA 162,0,138,157,0,128,232,208,249,96
20 FOR J=826 TO 835: READ X: POKE J,X: NEXT
iii. 10 REM >k kokxkskokokok dk ok 3k ok ok ook ok 3k 3k ok ok o o 5 ok 5k
20 INPUT Y: FOR X=0 TO 9: POKE 1032+X, X+Y: NEXT
iv. FOR J=2000 TO 9E9: POKE J,170: IF PEEK(J)=170 THEN NEXT

The four examples don't cover specific aspects of CBM BASIC operation,

of which there are innumerable possible variations. See for example the
notes in this section on HTAB/VTAB for zero page pokes, on DEL for pokes
which control the keyboard buffer, and VARPTR for hunting variables in
order to modify them by POKE.

Example i is a simple loop which pokes to the screen. Since this starts at
$8000, the values 0-255 are taken and poked into the screen starting at its
top left corner. (The calculation computes $8000 in decimal each time round
which is slow but easy). Example ii illustrates how machine code routines
may be poked into memory. The loop reads data one item at a time and
pokes it into consecutive locations. SYS 826, executed after this short
program has been run, produces in machine code the same effect that the
BASIC routine achieved. The speed increase is considerable.

Example iii is a self-modifying BASIC program in which 10 consecutive bytes
are POKEd into a REM statement. It provides an easy way to discover
which tokens correspond to which values in BASIC.

The last example is a RAM test in BASIC. It performs a similar checking
function that BASIC>1 executes when switched on. Locations 2000 and over
are poked with 170 (bit pattern $%$10101010) and read back; this is repeated
until the PEEKed value is no longer 170, marking either the end of RAM or
a defect in a location. This process is far slower than machine-code.

Notes: [1] This command is not part of standard BASIC, and is missing on most
larger machines to avoid the risk of changing other people's work. It is
sometimes given other names, for example STUFF, on microcomputers.

[2] A double-byte POKE or DOKE cannot be implemented as a function
definition, but requires a subroutine. DOKE Z1 (0-65535), Z2 (0-65535) is

POKE Z1, Z2-INT(Z2/256)*256: POKE Z1+1, Z2/256: REM LOW THEN HIGH

[3] This command is one of the few with a very simple machine-code
equivalent, which examples i and ii illustrate. POKE 8*256*16,0 and
LDA #$00/ STA $8000 each put a zero byte in the top left of the screen.

Abbreviated entry: pO Token: $97 (151)

Operation: The parameters are evaluated by a subroutine shared with WAIT which
evaluates and checks the first parameter, and converts this into a fixed
point number which is stored in ($11) with BASIC>1. The comma and next
parameter are checked, and if the parameter is within the range 0-255 itis
put into the X register and stored in the address in ($11) without a
readback check. All the ROMs process this command similarly.

ROM entry points:BASIC1:$D6F9 (55033) BASIC2:$D707 (55047) BASIC4:$C95A (51546)
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POP

BASIC command unavailable directly in CBM BASIC

PURPOSE: POP discards the last RETURN address from the BASIC stack. This in
effect makes the previous GOSUB no longer effective, so that, if a RETURN
is encountered, the address returned to will be the GOSUB before last's.
This is useful in escaping from subroutines. For example, suppose a user
is to be allowed to exit from a subroutine directly back to a menu, perhaps
if the wrong routine is entered by mistake. It can often happen that a
direct GOTO leaves the subroutine still active. Or imagine a game, written
so that a long sequence of games can be played, and containing a routine
totest for end of game: the test may check whether one player has collided
with the board edge. Ifthe test routine jumps straight to the routine which

prints the score, after 24 or so games the program will stop with an ?0UT
OF MEMORY ERROR.

Note that from the point of view of structured programming, this command
ought to be unnecessary: such program demands the use of subroutines
with one entry point, one exit, and no irregular exits with GOTO or POP.

Versions: The only previously published version I've seen is by Tom Mead, in
the Liverpool Software Gazette (Oct.'80). My routine which follows is based
on the RETURN command in BASIC and mimics this in all respects, except
for the actual change in program control. So the address is erased but the
program continues with its next statement, without a change in the flow of
control. If there's no address on the stack to be popped, ?RETURN WITHOUT
GOSUB is printed.

FOFP DEMONSTRATION (ALL ROMS)

0 A$=""
1 GET X$: IF Xs$="" GOTO 1
2 IF ASC(X$)=13 THEN PRINT: PRINT A$: RETURN
3 IF X#="X" THEN SYS 634: SYS 634: GOT020
4 PRINT X$3;: A$=A$+X%$: GOTO 1
10 FOR I = 1 TO 4: FRINT I;¢« GOSUB O: NEXT: RETURN
20 PRINT: PRINT "MENU": GOSUB 10: PRINT "END": END
50 FORI = &34 TO 657: READ X: FOKE I,X+NEXT: GOTO 20
52 DATA 1699255, 133,152:32,172+194,154,201,141,240, 5, 162,22
54 DATA 769899 195,232,232+232+232,232+154:96
EM
zggoRREM 36969696 36 96 36 3 36 36 36 36 96 36 36 36 36 36 3636 3696 3 36 3696 3636 3 3 36 363 36 3696 3 3 63 3 6 30 3 I 3 696 3 6 3636 3636 3 36 636 3636 3 I R
1010 REM * ‘RUN SO’ DEMONSTRATES POP AS AN ESCAPE KEY., TAKING USER BACK *
1020 REM * TO MENU WHEN HE’S SELECTED A WRONG OPTION:; X USED AS ESCAPE. *
1030 REM # NOTE THAT POP WITHOUT GOSUB GIVES ?RETURN WITHOUT GOSUB ERROR. %
1040 REM 3696335536 309896 36 3636 3696 136 38 3636 35 3636 36 2636 36 36 9636 3636 36 36 6 3636 38 3636 36 36 3636 3363636 38 3636 3636 36 363636 3636 36 3630 30 36 ¢

1990 REM

1995 REM

2000 REM 3963696363533 369696 98 3836 363630909696 36 3630303696 9036383630 96-96-90-969609696 3630 36 3630 36209030 JH 00030 06 3090360303036 90060 96 96 6

2010 REM * BASIC 3 VERSION IS VERY SIMILAR: *

2020 REM # 52 DATA 169,255,133,71,32,170, 194,154,201, 141,240, 5+162,22 *

2030 REM # 54 DATA 76,87,195,232,232,232,232+232,154,96 »*

2040 REM % AS IS BASIC 4 VERSION: *

2050 REM * 52 DATA 169,255,133+71,32,34,179,154,201+141+240,5, 162,22 *
»* »*

2060 REM 5S4 DATA 76:207:179 23292329 232+232,232+ 154,96
2070 REM 38363556369 3636 36 36 9636 36 36 38 35 363630 3 38 36 363636 96 3636 36 3 3616 36 9836 363636 36 363636 3636 36 3636 36363036 006366 96 3 309036 36 36 36 96 3¢



Programming the PET /CBM -109- - 5: BASIC keywords

POS

BASIC arithmetic function

PURPOSE: Computes the position of the cursor on its current screen line.
The range is 0-255. This is not the position on the screen line, but a
measure of the distance the cursor has moved along its present line: some
PRINT statements can return a value up to 255; more usually, when
keying - in program lines for example, the maximum is 80.

Syntax: POS(expression). Like FRE, POS uses a dummy variable, the sole point
of which is to make POS behave like a function. POS(0), POS(X), POS("")
are all valid options which yield identical results.

Modes: Direct and program modes are both valid.

Examples: 61540 IF POS(0)+PEEK(196)>74 THEN PRINT CHR$(34); ' [HOME][DOWN] [DOWN]
L=" L "+1:8=" J ":E=" E ":GOTO" G
PRINT TAB(10)POS(0): PRINT SPC(10)POS(0)
100 PRINT LEFT$(" ",12-POS(0)) ;X$

POS is arguably the least useful of all the BASIC keywords. Nevertheless
it performs some useful services: the first example is taken from a routine
which automatically writes the contents of RAM as DATA statements. If a
system has no facility for dumping memory, as a RAM image, or if RAM
has a relocatable routine, handling it as DATA may be convenient. The
program line checks whether the data so far printed to the screen is in
danger of reaching the end of the line. (In BASIC>1, location 196 holds
40, with a 40-column screen only, if printing is on the line one down from
the top of the screen).

The second example is a direct mode line. The third figure printed
depends on LEN(X$). If LEN(X$)=200, PRINT POS(0) returns 200.

The third example illustrates the close connection between POS and TAB(.
If POS(0) is confined to the range 0-12, line 100 is equivalent to TAB(12).
Suppose that the cursor is at position 4: then 8 spaces will be printed
before X$, so the effect is the same as TAB(12).

Notes: [1] POS uses the same parameter as TAB(. Consequently POS cannot be
used with printer commands unless the identical line is printed on the
screen. Its usefulness is in practice limited to the screen.

Abbreviated entry: None
Token: $B9 (185)

Operation: Loads the Y register from the zero-page location storing the position
of the cursor on its 'line'. This location is $C6 (198 decimal), or in the
case of BASIC 1, location 5. The accumulator is loaded with #0 and a
ROM routine entered which converts A and Y, as high and low bytes, into
floating point form in accumulator #1.

All ROMs use identical logic to process this function. (The absolute
addresses differ).

ROM entry points:

BASIC 1: $D285 (53893)
BASIC 2: $D27A (53882)
BASIC 4: $C4C9 (50377)
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PRINT

BASIC output command

PURPOSE: Evaluates and prints string expressions and numeric expressions to an
output device, usually the screen. The appearance of the output is to some
extent controllable by the punctuation of the statement, and also depends
on the special graphics and screen editing characters of CBM BASIC.

Syntax: PRINT followed by arithmetic and/or string expression(s), separated from
each other by one or more of: SPC(arith. exp.), TAB(arith. exp.), space,
comma, semicolon, or no separator where this causes no ambiguity.

Each string and arithmetic expression must be valid and also evaluate within
acceptable limits when the PRINT statement is run. The parameter for TAB
and SPC must evaluate to within the range 0-255, after rounding down.

The statement terminates when a colon or end-of-line zero byte is found as
part of the punctuation (i.e. not within quotes). See also the flowchart.

Modes: Direct and program modes are both wvalid.
Examples: FOR J=0 TO 255: PRINT CHR$(J);: NEXT: REM PRINT EVERY CHARACTER

FOR J=0 TO 100: PRINT J,: NEXT: REM SHOWS USE OF ','

PRINT X+Y; 124; P*Q*(1+R%/100): REM ARITHMETIC EXPRESSIONS
PRINT "HELLO"; A$B$C$; LEFT$("ABCD",1):REM STRING EXPRESSIONS
100 PRINT TI;TI$;ST;DS;DS$: REM SPECIAL VARIABLES

These five print statements illustrate most of the major features of PRINT
except TAB( and SPC(, which are explained elsewhere. The first is a loop
which uses PRINT to output all 256 individual characters. The effect of the
loop varies with the ROM; 80~column CBMs have a tremendous range of screen
editing characters, so characters shift about and disappear, eventually, as
the scrolling window becomes set, confining themselves to a small rectangle on
the screen. Other CBMs are more sedate, merely clearing the screen and
homing the cursor. The semicolon ensures that alphanumerics print next to
each other; in the next example, the comma tabulates numbers into every
10th column. The third and fourth examples show typical arithmetic and string
expressions respectively. Each expression is evaluated and printed from left
to right, taking account of punctuation. Note that the arithmetic expressions
are printed in the standard Microsoft format explained elsewhere. Semicolons
have been omitted from the string output example; in fact, A$B$C$ prints the
three strings one after the other exactly as A$;B$;C$ would. This is because
the '$' symbol is recognised as a terminator. Similarly, a semicolon is not
necessary after an integer's '$' or an array's ')'. Numeric variables require
more careful punctuation, since their names allow a mixture of alphabetic
characters and numerals. PRINT X+Y 124 is interpreted as PRINT X+Y1, as
an example. This sometimes causes wrong output, but errors in PRINT
statements are easy to correct. Finally, note that PRINT has routines within
it to check for special values, including pi, the status indicator ST, TI and
TI$, and (BASIC 4 only) the disk status variables DS and DSS$.

PRINT (7)(7) :REM PRINTS 7 7

PRINT 1.2..3 :REM PRINTS 1.2 0 .3 ['.' appears ' 0 ']
PRINT READY. :REM PRINTS 0 O [i.e. value of RE then 0]
PRINT ;,LK4*R6R;4 :REM PRINTS 0 4 [i.e. ',',LK*R6,then 4]

PRINT 1/3(5*+--2).51 :REM PRINTS .333333333 10 .51

Graphics. PET graphics characters are usually printed to the screen from a
string in quotes. (They can also be poked directly into sereen RAM). [RVS]
is necessary to complete the character set, and doubles the number of available
graphics. This extract from a program listing (in upper case mode) shows
the type of thing:

1058 PRINT" —Nd -~ B}—o "
1055 PRINT" | NIT COST: "J$iSo" bbmrm——rr——

1869 PRINT" ¥ IOME : " J$L62"J 1M FIXED? "JI$<7>"7|"
1865 PRINT" |@  —MPORT: "J$(2)"1J1@ FIXKED? "I Q"



Programming the PET/CBM ~-111~ 5: BASIC keywords

Notes: [1] The screen appearance is controlled by three factors: (i) The character
generator ROM, (ii) Programmable hardware features, and (iii) The screen
hardware. Taking these in order:-

(i) The oldest PETs use a character generator with upper and lower case
transposed, a transitional feature from the days when upper-case was normal,
so it seemed natural to produce lower-case with a shift key. All subsequent
ROMs use the normal typewriter convention. The ROMs are incompatible.
(ii) POKE 59468,12 and POKE 59468, 14* switch between upper case and
graphics (no lower case obtainable) and lower case with upper case (losing
all the QWERTY graphics, such as the card suit symbols). Try

0 POKE 59468,12: POKE 59468,14: GOTO 0O
to see the effect of this on a screenful of characters.

POKE 59458,62 is one of several equivalent fast-screen pokes, which
cause a large and useful speed increase when printing to the screen.
CAUTION: BASIC 4 CBMs have improved screen printing speed; this POKE
will not work, and can cause damage to the machine.

With early PETs and CBMs, this is perfectly safe and necessary if you wish
to avoid slow screen printouts. The rule is: if the picture on the screen
collapses, don't risk it again.

Wide-screen CBMs have a CRT (cathode ray tube) controller chip. This
is programmable; see Chapter 9 for details.

(iii) The oldest PETs used a blue-white phosphor. All recent machines use
green. Since about mid-1981, 12" screens only have been fitted, on 40 column
and 80 column models. There is some incompatibility, as might be expected,
between 40 column and 80 column PRINT statements. A program designed for
40 columns typically looks similar on an 80 column machine, but uses only the
leftmost 40 columns - unless PRINT statements have been terminated with semi-
colons, in which case the top half of the 80 column screen will be filled with
double lines. Also of course BASIC 4 cursor control characters will not work
on other ROMs, so scrolling windows, line erase characters and so forth
cannot be downward compatible.

[2] The reverse key is necessary to obtain some characters:-

PRINT "[RVS] [DOWN] [DOWN] " :REM REVERSE SPACE IS A SQUARE
PRINT "[RVS] 4[RVSO] " :REM PRINTSI®

This means that it is not always easy to convert a picture on the screen into a
set of PRINT statements. Homing the cursor, then typing linenumbers followed
by ?" and RETURN doesn't accept reversed characters; a tedious procedure
of inserting [RVS] and [RVSO] will need to be used.

Abbreviated entry: ?
Token: $99 (153)

Operation: The flowchart, which applies to all the ROMs, outlines the way PRINT
works. It is not a particularly long routine - a page or two of listing paper -
but calls half a dozen or so other ROM subroutines.

ROM entry points:

PRINT: [SYS of this BASIC 1: $C99F (51615)
address~-6 has thée same BASIC 2: $C9AB (51627)

effect as PRINT] BASIC 4: $BAA8 (47784)
SUBROUTINE TO PRINT ONE STRING:

Accumulator holds low byte, BASIC 1: $CA27 (51751)

Y-register high byte, of start BASIC 2: $CAIC (51740)
of string; terminated by null. BASIC 4: $BB1D (47901) has some changes

OUTPUT ROUTINE FOR SINGLE CHARACTER:

Controls which character, if any, BASIC 1: $CA44 (51780)
will be printed: has 5 entry BASIC 2: $CA39 (51769)
points. BASIC 4: $BB3A (47930)

*59500, which is easier to remember, may be used instead. Nick Green of Commodore
UK pointed this out.
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PRINT

REGET
current
char.
> =
1 1 [ | |
: TAB( SPC( , A
OTHER l ] l
1 CRLF € Validate parameter (0-255)| | Subtract 10
Return. Put into the X-register. repeatedly
Check for parenthesis ')'. | | from cursor
String position till
Expression?, N v negative.
1
Print Convert Subtract hange sign
string numeral cursor (i.e. 2's comp-
using into ASCI| position lement)
$FFD2 string in
_/ buffer. Negative /
1 result?
Print
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space. X
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Get
next
char.

End of print Get
statement? next
char.

Cancel buffer.
Print CRLF and
return to BASIC

End of print
statement?
Return to
BASIC.

N

Notes:

FLOWCHART OF CBM BASIC'S PRINT STATEMENT PROCESSING

[1]

[2]

After a colon or end of line, CRLF is always printed by BASICs 1 and 2.
BASIC 4 however uses the other exit point, checking for device number;
so that if location $10 (16) is < 128, C.Rtn. is output alone, without
Line Feed. This was introduced to simplify writing to disks and tape.
Previously, PRINT#8,X$;CHR$(13); was necessary. With BASIC 4, PRINT#8,
X$ is fine (and is also compatible with the earlier form).

TAB(, SPC(, and comma have slightly different effects when printing,
depending on the contents of 3 (BASIC 1), 14 (BASIC 2), and 16 (BASIC
4)., If this location holds zero, the skip effect is achieved by CBM
cursor right characters, and CRLF is printed at the end of the line;

a non-zero value prints spaces instead, and no automatic CRLF, so non-
CBM equipment may be used. In quotes mode, skip shows as reverse ].
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PRINTH#

BASIC output command

PURPOSE: Evaluates and prints string expressions and numeric expressions to an
output device, usually printer, disk, or tape. The appearance of the output
is identical to that produced by PRINT, except for possible differences in
interpretation of special CBM editing characters.

Syntax: PRINT# arithmetic expression [, expressions to be printed in format
identical to PRINT]. The comma is a separator to make unambiguous such
statements as PRINT#3,3 and PRINT#33. There must be no space between
'PRINT' and '#', because this will interpret into two bytes ('PRINT' and '#'
separately, not the single 'PRINT#' token.) - Except in BASIC 1!

Finally, the expression immediately following '#' must conform to two criteria:
after evaluation and rounding-down if non-integral its range must be 1-255;
secondly, a file with this number ('logical file number') must be open.

Modes: Direct and program modes are both valid.
Examples: 100 OPEN 4,4 : REM CHANNEL 4 TO PRINTER OPEN; NON-CBM PRINTER...

1000 PRINT#4,CHR$(12) "PRICE LIST no."N§$" page'P%

100 OPEN 1,4,1: OPEN 2,4,2: REM 2 CHANNELS TO SAME CBM PRINTER...

110 PRINT #2,"$$$$$9.99" : REM CBM PRINTER FORMAT USES SEC.ADDR.=2
1000 PRINT#1,DOLLARS : REM OUTPUTS IN DESIRED FORMAT (EG.$24.00)
2000 PRINT#4,;: CLOSE4 : REM CLOSES WITHOUT C.RTN. (WITH PRINT,CMD)

10 OPEN 5,8,5,"1:FIRST FILE,SEQ,W" :REM CBM DISK EXAMPLE
20 FOR J=1 TO 20: PRINT#5,"RECORD NUMBER"J: NEXT :REM BASIC 4

5000 PRINT#4,X$Y$Z$; CHR$(13);: REM BASICS 1 AND 2 NEED THIS

These examples are confined to printers and disks only, but in practice of
course files can be opened to tape, screen, or any IEEE device, CBM or
otherwise. The first sets of examples contrast the way a non-IEEE printer
(e.g. Qume) is controlled with CBM's IEEE device. Assuming a hardware
interface exists to convert IEEE to (say) RS232, the file can be opened as
usual, and control characters sent to the printer to alter its spacing or line
separation or other feature, or, here, send a form feed command. CBM
printers rely on the IEEE's secondary address feature to control the printer
in addition to control characters, and the example shows how PRINT# can
distinguish between several files open at one time. Line 2000 shows how a
file is closed if CMD and PRINT were used: see note [1] on this. The

final examples show another complication involving disk files (not tape, and
not BASIC 4). The earlier ROMs wrote linefeed characters to disk, after 