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CHAPTER 1: INTRODUCTION AND OVERVIEW 

1.1 Introduction and plan of the book 

The purposes of this book are to teach competent programming and provide a compre­
hensive reference text on the PET ICBM range of microcomputers. These aims are not 
entirely compatible: virtually everyone interested in these machines begins with BASIC 
and progresses to machine-code, but, on the other hand, for completeness it is often 
necessary to mix both types of program. Comparative beginners will therefore find 
themselves skipping quite large sections of temporarily difficult text. I have included 
demonstration routines in BASIC (Chapter 5), 6502 machine-code (Chapter 12), and 
disk, tape, and printer programming (Chapters 7 and 8). To reduce the chance of 
mis-keying, these routines have been kept as short as possible; in this way it is poss­
ible to learn by doing, by experimenting at the keyboard to get the feel of the comm­
ands, without the tedium associated with entering long illustrative programs. 

Commodore's most recent machines, the VIC home computer and the MMF 'Micro­
mainframe' are not dealt with here, partly for reasons of space. VIC has many things 
in common with CBM microcomputers, MMF rather fewer. My rule has been to try to 
cover most of the common configurations of hardware which exist at present and are 
likely to exist in the fairly near future. For this reason little space has been given to 
modems, hard disks ('Winchesters') and networks, while tape and diskettes are ex­
plained in depth. I've documented each of the three versions of CBM BASIC issued to 
date, although with a bias to the later versions. This may seem rather wasteful - until 
questions of compatibility between ROMs arise. 

1. 2 Conventions 

Most CBM machines switch on in upper-case I graphics mode, and except in few cases, 
mainly 8032 disk commands, BASIC is printed in upper-case characters here, which 
also distinguishes BASIC keywords from the normal text. BASIC can of course appear 
in lower-case on the VDU, if the mode is changed, a fact which may cause confusion 
to programmers unused to this dual display. Machine-code and BASIC, entered from 
the keyboard in the usual way, use mostly unshifted keys. 

CBM BASIC has special screen-editing commands, which appear within quotes as 
reversed characters. (See Chapter 2). For increased readability I have printed these 
in square brackets - [HOME], [CLEAR]' and so on. Chapter 13 has a LIST routine to 
perform this task automatically for BASIC. 

The only other non-standard notation is the use - for machine-code only! - of 
round brackets as a shorthand for a 2-byte indirect address. For example, I have 
written (2A) to denote the two-byte number held in locations 2A and 2B, taking the 
first byte as low and the second as high, in accordance with 6502 logic. Similarly, 
(FFFE) is a convenient way to refer to the interrupt address, held in FFFE and FFFF. 

Spelling of computer terms is more-or-less American. Occasionally BASIC terms 
are written in lower-case, when used in a general sense, not specifically BASIC. For 
example, 'printing to screen' can use PRINT or some machine-code equivalent, and 
'peeking' could mean PEEK or a machine-code command like LDA. 

1.3 Sources of information 

Manuals CBM's product manuals are widely recognized to be unhelpful; this is one of 
the reasons for the existence of this book. MOS Technology (now a part of the Comm­
odore Semiconductor Group) produces reasonable manuals on 65xx series hardware and 
65xx programming. 
Magazines, journals In the U.K. the largest-selling small computer journals are Pract­
ical Computing and Personal Computer World. These are not particularly CBM-orient­
ated. Printout was, but is no longer, exclusively about the CBM. Compute! deals with 
6502 machines (Apple, Atari, PET ICBM) and is the best magazine for the non-beginner. 
Micro has machine-code articles on the 6502 and 6809. Byte magazine and kilobaud­
Microcomputing are two other well-known general microcomputer publications; other 
market niches are covered by (for example) Creative Computing and Dr Dobbs' Journ­
al. All but the first three of these magazines are American. There are also periodicals 
aimed at the education market, the home computer and games market, the technical 
hardware market, and what might be called the uninformed businessmen's market. 
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There are four weekly 'throwaways' in the U. K. at the time of writing (Computing, 
Computer Weekly, Datalink and Computer Talk) of which Datalink is most interested 
in microcomputing. . 
User groups and newsletters Commodore in Canada produces 'The Transactor', which 
is useful and informative. The U.S Commodore Newsletter (called 'Interface') is less 
good. The U.K. equivalent was called the PET Users Club Newsletter, later abbrev­
iated to CPUCN, and renamed 'Commodore Club News' in mid-198!. Like all periodicals, 
it is episodic and fragmentary (I have lost count of the number of reviews of word 
processor packages). However, it is responsive to its readers' requests. 

User groups are the best source of up-to-date information. IPUG ('Independent 
PET Users Group') has many branches in the U. K. and many experienced software and 
hardware people. Other groups include SUPA ('Southern Users of PETs Association') 
and the Association of London Computer Clubs, a loose organization of groups which 
meet in polytechnics, universities and community centres, and is not specifically CBM. 
Books*and other publications Osborne/ McGraw-Hill's 'PET/CBM Personal Computer 
Guide' is issued with PETs sold in the U.S. It is currently in its third edition, edited 
by Jim Strasma. This omits machine-code, which is covered in a number of books, of 
which a few are explicitly PET: 'Hitch-Hikers Guide to the PET' for example. Some 
books appear to be available only in the U.S., for example Gregory Yob's 'PET User 
Manual'. Nick Hampshire has written three (of a projected ten) books for Commodore 
U. K., including 'Library of PET Subroutines' and 'PET Graphics'. 'The PET Revealed 
deals mainly with hardware and the BASIC 1 PET; other hardware books are listed at 
the end of Chapter 8. 

Several compendium-type books exist, for example by IPUG, by CPUCN, and by 
Printout. The 'Channel Data Book' is an American compilation of PET ICBM products 
and packages. The 'Computerist's Guide' is an indexed survey of the contents of most 
of the microcomputer magazines, arranged by topic. Commodore produce a 'Software 
Encyclopedia', essentially an uncritical list of every type of software package. 

1 • II Acknowledgements 

Peter Best, Jim Molloy and Pete Sydenham of A. Gallenkamp Ltd (who supply labor­
atory equipment) provided considerable assistance with this book. I am also grateful 
to the software people who provided ideas and programs, and who are acknowledged 
in the text, and also to Jim Butterfield for permission to print 'Supermon'. Finally, I 
am grateful to my wife's tolerance during the rather long duration of writing. 

I have gone to some lengths to test and check the information in this book, and 
in fact believe it to be more reliable than most on this subject. Nevertheless there are 
certain to be errors, and I apologize for any inconvenience or puzzlement which may 
be caused. The usual disclaimer applies: I cannot accept responsiblity for failures in 
software or hardware which may be based on suggestions found in this book. 

There are many company names, trade marks, and business names mentioned in 
the book; CBM ('Commodore Business Machines'), MMF ('Micro-Mainframe'), PET (,Per­
sonal Electronic Transactor') and VIC ('Video Interface Chip') are all trade marks of 
Commodore Business Machines. PET ICBM is a general way of referring to Commodore's 
microcomputers with both keyboard and screen, and equipped with Microsoft BASIC. 

Charles (,Chuck') Peddle, the designer of the PET/CBM and also, apparently, 
the 6502 chip, deserves a special mention at this point, although his path has 
diverged considerably from Commodore's. 

*There are many general books on computers. Chris Evans wrote popular books on the 
supposed impact of microprocessors. The technical side of chips was dealt with (e.g.) 
in 'Scientific American'. Critics of applications include Joseph Weizenbaum, a Profess­
or at M.I.T. Gerry Weinberg is well-known (e.g. 'The Psychology of Computer Programm­
ing'), taking a conventional, optimistic viewpoint. Philip Kraft on the other hand has 
examined de-skilling by management, and women's status within the industry. (Sartorial 
iconographers might note that Weinberg is always depicted bearded and pullovered, but 
Kraft neatly-suited). Some journalists have drawn attention to the role of cheap lab­
our in the Far East in chip manufacture. Academic computing's domination by software 
theoreticians has been attacked by only one hardware-based writer that I know of, Ivor 
Catt, who called programmers 'updated clerks'. (See e.g. 'Computer Worship). 
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1.5 PET ICBM hardware and family tree 

APPROXIMATE CHRONOLOGY OF COMMODORE MICROCOMPUTERS 

1975 65xx chips: by Rockwell, MOS Technology 

197 I KIM: single-board 6502-based microcomputer 

1978 2001-8: 8K RAM, built-in cassette, 8" 40-column white 
screen, small keyboard. BASIC 1. (ROM -19, 
issued to replace -11, cures screen edit bug). 

1979 

1980 

1981 

198.01 

~001-16, 2001-32: 16K or 32K RAM, 8" 40-column green 
screen, large keyboard, no cassette. BASIC 2 
('Upgrade ROM') including monitor. Later re­
named 3008, 3016, 3032 with 'BASIC 3'. 

2000 series printers. 
20110 disk drives (DOS 1, 
seq uential files only). 
30110 disk drives (DOS 1. 2 
Shugart). 

~008, 

8032 

11008, 

VIC 
MMF 

? 

11016, 11032: 8" 40-column green screen, large key- 110110 disk drives (DOS 2.1 
board, similar to previous except for BASIC 4. including relative files). 
32K RAM, 12" 80-column green screen, extra 8050 disk drives (DOS 2.5 
keys, beeper. BASIC 4 (includes CBM disk Micropolis). 
commands). (ROM -23, issued to replace ROM 
-19, cures bug in DS$). 11022 printer PMX-70). 

11016, 11032: Made with 12" 40-column green screen 8250 disk drives (DOS 2.7 
only, with extra keys, beeper. Tandon). 
22 columns, color with external TV, sounds. 
64K extra RAM in 16 switchable blocks from 
$9000-9FFF, 6502/6809, RS232 and high-speed 
RS232, many languages, existing and under 
development at Waterloo Universtity). 

BASIC 5 with BCD arithmetic? 40-column VIC, 
discontinued 4o-column CBM? Color CBM? 

The table summarises most of the hardware developments of Commodore to date. I have 
omitted some of the printers. See Chapter 2 for more information on the differences 
between BASIC ROMs, which are also mentioned in passing throughout much of the 
book. Chapter 6 deals with disk drives, and Chapter 7 with the commands introduced 
in BASIC 4.0. Printers and other hardware are explained in Chapter 8. A significant 
difference between 12" and 8" models is the CRT controller chip: see Chapter 9 on 
this, which also covers the built-in 'beeper'. 
Internal layouts The diagram is a rough guide to the layout of the main chips and 
ports on the printed circuit boards of the early PET, the 8" screen 3000 and 4000 
series CBMs, and the 12" screen 4000 and 8000 series CBMs. 

2000 8" 3000 & 11000 12" 11000 & 8000 
IEEE User Tape 

por~#21 J9 

~6502 & I/O I J4 
chips 

c1f~'P' 
IF E DeB A 91 

IEEE User Tape I 
Port 11 J9 

6502 & ~ chips 
Ci J4 

IF E DeB A 91 

Rl chips 

IEEE User Tape I 
Port 11 ~ ~ape 

6502 & I #2 
1/ chips I J4 
RAM chips 

~~ 
Tape 

#1 
I RAM chips 

D 
E 
F 

Bell 

24 
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CHAPTER 2: BASIC AND HOW IT WORKS 

2.1 Keyboard, screen and screen-editing The keyboard and screen are described in 
detail in Chapters 8 and 9 respectively. These devices offer the most direct commun­
ication with the machine. The keyboard is decoded by a 6520 chip and ROM software; 
the screen memory is organised in a straightforward memory-mapped way, in which 
sequential RAM locations correspond to screen positions moving left to right and down. 
Screens in the CBM have 25 rows. 40-column and 80 column screens therefore require 
1000 and 2000 RAM locations respectively. The screen starts at location $8000 in each 
case, exactly half-way in the memory-map. The entire 4K from $8000 - $8FFF is alloc­
ated to the screen, and the address-lines connected so that the upper part of this 
block duplicates the lower. (So $8000-$83FF and $8400-$87FF are not distinguished from 
each other in 40-column machines, for example, and a poke or peek to $8000 has the 
same effect as a poke or peek to $8400). A few bytes are left over in RAM which do 
not appear on the screen: 24 in 40 column machines, 48 in 8o-column, because 1024-
1000 = 24 and 2048 - 2000 = 48. Tables of hexadecimal and decimal values of screen 
locations are printed in Chapter 9. It is worth memorizing the figure 32768 (=$8000), 
which is the location of the top-left of screen. Try POKE 32768,33 for instance. 

Screen editing is the process by which characters on the screen are altered and 
moved from the keyboard. PET ICBM has a number of special keys for this purpose, 
which are fairly self-explanatory. The main complication is the use of the quote (") 
to hold screen-editing characters in storage in BASIC. When this is done, the charac­
ter appears as a meaningless graphics symbol, and is printed in the usual consecutive 
sequence without having its usual effect, such as clearing the screen. The exception 
to this exception occurs with a few keys, like 'Delete', which have to work both in 
quotes and out; the resulting editing system has a few anomalies, which make it less 
easy than might be the case to perform editing tasks. However, it is still noticeably 
easier than some rival systems. Commodore's manuals and some books go into great 
detail on this; it is much more easily explained by demonstration and trial than by the 
written word. Try the examples which follow if you are uncertain about screen editing; 
without covering every possible aspect, they incorporate most features. 

(i) Editing a line without quotes. Switch on the machine, so Commodore's BASIC 
message appears. Press [HOME]. * The message may be edited, by (say) moving the 
cursor right several positions, then inserting spaces. The end of the line moves right; 
eventually, when it is 80 characters long (88 with VIC!) it will not expand more. 

(ii) Using quotes. Type PRINT " and a series of miscellaneous keys including 
editing characters. The effect of [RVS], [RVSOFF], [HOME], [CURSOR DOWN], and 
the rest can be explored in this way. On pressing Return, the line is processed and 
printed. With practice it is easy to produce quite complicated layouts; PRINT "[HOME]* 
[DOWN]*[DOWN]*" prints three asterisks diagonally from the top left of the screen. 

(iii) Editing a line with quotes. Type 1 PRINT "BASIC" so the cursor now is 
positioned after the second quote, and quotes mode is off. Backspace the cursor one 
position, and type several [INSERT] characters; the second quotation mark will move 
right. Now type the [DELETE] key several times. Delete characters, appearing as 
reversed Ts, fill the space. Press Return, the type RUN Return, to see the effect of 
these characters. LIST will redisplay the line. 

(iv) Shift-Return and the ESCape key. Return moves the cursor to the next 
line and causes the edited line to be processed - i.e. incorporated into BASIC or ex­
ecuted in direct mode. Shift-Return moves the cursor without causing processing. The 
ESCape key (12-inch scr.een machines only) has an analogous effect from within quotes, 
turning off the quotes mode and the reverse mode, so the effect is identical to that 
obtained from Shift-Return combined with cursor moves back to the original line. 

(v) BASIC editing. LIST displays a line, or range of lines, from BASIC. Any 
line may be edited in any way; for example, if the linenumber is changed and Return 
pressed, a duplicate line is produced within the program. An isolated number erases 
the corresponding BASIC line, if there is one. 

*In most of this book I have conventionally represented the special characters by a 
name in capitals within square brackets. (Chapter 13 has a routine which lists pro­
grams in this way). This is far more readable than a single graphics character which 
is its equivalent. 
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LIST appearance of CBM special characters: 

Mode JI, 1t ~ ~ RVS RVSO HOME CLR TAB DEL INS 
Lower case .. DI II M • .. - .. .. U U 
Upper-case ... a I. b .. • .. c u u •• 
2.2 Entry and storage of BASIC BASIC can run in either of two modes: direct (or 
immediate or 'calculator' mode) or program ('stored') mode. If a line begins with a 
number, it is treated as a program line, and stored in memory with other program lines 
until it is run. If a line does not start with a number it is executed immediately Return 
is pressed. The principles on which immediate mode runs are identical to those which 
apply to stored programs; in this and the following sections we shall therefore mainly 
consider BASIC programs. 

A program may be examined with the LIST command. However, this provides no 
clue to the way BASIC is organised in RAM, since it involves an elaborate process of 
decoding. (See Chapter 13). We can look at BASIC in situ using either BASIC or the 
machine-code monitor in these ways: 

(i) X=O: FOR J=1025 TO 1200: POKE 32768+X, PEEK (J): X=X+l: NEXT is a simple direct 
mode line which displays several hundred bytes of BASIC at the top of the screen. 
(Lower-case mode - POKE 59468,14 - gives the clearest representation). The bytes are 
not easily deciphered, although text (in quotes) is clear enough. In the two examples, 
the first has more text (including REMs) than the second. 

::. ROM4 RELOCATING 'PRINT USING' ROUTINE ".T , I 
~JDSmI 5~46S, 12 I • " II I. UNOERLI NE (SH I FT -$) TI 0 I ES T ITLEl!IIlIT:I!:lII "ll;J""" 
• "ma.c.hine code is now loaded ir.to sys 826 and sys SSl. H "!llo,;;.,d the r:w'ogr.am to 

1022,128!m"IMa£lUM 3.4l!JS!lTlI."RICK LEONN·II....aFROMINICO LTO.:qJ'!la!J."VANCOUVER 
7" ......... -11' ..... 15,8, 15~$..,.1 (13)g .!J:$a5$," ___ ...L. L6$," al !J3a7$," 
__ I BL8$..,." liIlIl..IIL~$," • VLB$..,." 'm'. al$..,." + 

(ii) After entering the monitor (SYS 4 is easiest) we can display bytes in hexa­
decimal form from $0400 onwards. With the program 10 PRINT"HELLO" in memory, we 
get this: • I 0400 00 (eE e4] leA 00) ~~ 22 48 -q\4-<,ZjE = N6(( \\~ ... s \,,,k f'OM.fw- (¢ hH~l • 

• I 0408 45 4C 4C 4F 22 ~ (00 ·00J 'f-........¢¢¢A ~ SI'\$\C. u~ (t(6 \..-.) • 

• I 0410 AA AA AA AA AA AA AA AA ¢/ll"'End-of-li"~; Ql;p'0-=-Ii:"A '* p,...Sfa",. 

The ASCII characters for "HELLO" are visible in there, but so is much else. 
The table on the following page gives a complete breakdown of the storage of 

lines of BASIC, excluding the linenumbers and connecting details. All the components 
are stored in ways which exclude ambiguous interpretation. Literals are held within 
quotes, or after REM or DATA, and are not treated like the remaining BASIC. Numb­
ers, as in GOTO 1000 or X=89.8, are also held as ASCII strings, so that the 1000 of 
GOTO 1000 occupies 4 bytes. Punctuation (commas, colons, semicolons, but not full 
stops which are used as decimal points) is held as single bytes; so are the special 
BASIC characters of %, $, (, and ). Variable names use alphanumeric characters; the 
initial is always alphabetic, to avoid confusion with numerals. Finally, the keywords 
themselves are held in compact form, as single bytes; see the table. These are called 
'tokens'. Slightly confusingly, single-byte keywords like <, =, * and / are also tokenised 
into alternative single bytes. Tokens always exceed 127; the high bit of the byte is on, 
and this enables machine-code to immediately recognise a token. This feature is common 
to Microsoft BASICs. 

A BASIC program is a 'linked list' or 'chain' of individual program lines. Unless 
specially modified, BASIC starts at $0400 with a zero byte and is held in consecutive 
locations up in memory. Each line starts with a 2-byte link address, which is an ab­
solute address pointer to the link address starting the next line. This is followed by 
the linen umber , also in 2 bytes. In each case the low byte is first. Each line is term­
inated by a zero byte, and in addition 2 more zero bytes mark the end of the pro­
gram, so a link address of zero denotes the end. As we shall see, BASIC is support­
ed by a set of pointers which monitor important features as a program runs. If these 
are modified, various non-standard effects can be realized. 

The link addresses, linenumbers, tokens and so on can be identified with pract­
ice quite easily; the one-line program above has had its marked to show how they are 
arranged. Again, this is standard Microsoft, as is the use of the zero byte to mark 
the end of a line. (It is not universal; Apple Integer BASIC uses 1 to mark ends of 
lines, and has an offset pointer, with maximum 255, to the next line). 
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PET ]CBM INTERNAL STORAGE OF BASIC 

32 20 sp 64 40 @ 128 80 END 160 AO CLOSE 192 CO TAN 
33 21 ! 65 41 A 129 81 FOR 161 Al GET 193 C1 ATN 
34 22 II 66 42 B 130 82 NEXT 162 A2 NEW 194 C2 PEEK 
35 23 # 67 43 C 131 83 DATA 163 A3 TAB( 195 C3 LEN 
36 24 $ 68 44 D 132 84 INPUn 164 A4 TO 196 C4 STR$ 
37 25 % 69 45 E 133 85 INPUT 165 A5 FN 197 C5 VAL 
38 26 & 70 46 F 134 86 DIM 166 A6 SPC( 198 C6 ASC 
39 27 ' 71 47 G 135 87 READ 167 A 7 THEN 199 C7 CHR$ 
40 28 ( 72 48 H 136 88 LET 168 A8 NOT 200 C8 LEFT$ 
41 29 ) 73 49 I 137 89 GOTO 169 A9 STEP 201 C9 RIGHT$ 
42 2A * 74 4A J 138 8A RUN 170 AA + 202 CA MID$ 
43 2B + 75 4B K 139 8B IF 171 AB- 203 CB GO* 
44 2C , 76 4C L 140 8C RESTORE 172 AC * 204 CC CONCAT* 
45 2D- 77 4D M 141 8D GOSUB 173 AD I 205 CD DOPEN 
46 2E • 78 4E N 142 8E RETURN 174 AE 206 CE DCLOSE 
47 2F I 79 4F 0 143 8F REM 175 AFAND 207 CF RECORD 
48 30 0 80 50 P 144 90 STOP 176 BO OR 208 DO HEADER 
49 31 1 81 51 Q 145 91 ON 177 B1 > 209 D1 COLLECT 
50 32 2 82 52 R 146 92 WAIT 178 B2 = 210 D2 BACKUP 
51 33 3 83 53 S 147 93 LOAD 179 B 3 < 211 D3 COpy 
52 34 4 84 54 T 148 94 SAVE 180 B4 SGN 212 D4 APPEND 
53 35 5 85 55 U 149 95 VERIFY 181 B5 INT 213 D5 DSAVE 
54 36 6 86 56 V 150 96 DEF 182 B6 ABS 214 D6 DLOAD 
55 37 7 87 57 W 151 97 POKE 183 B7 USR 215 D7 CATALOG 
56 38 8 88 58 X 152 98 PRINT# 184 B8 FRE 216 D8 RENAME 
57 39 9 89 59 Y 153 99 PRINT 185 B9 POS 217 D9 SCRATCH 
58 3A : 90 5A Z 154 9A CONT 186 BASQR 218 DA DIRECTORY 
59 3B ; 91 5B [ 155 9B LIST 187 BBRND 219 DB 
60 3C < 92 5C \ 156 9C CLR 188 BCLOG 220 DC ---See 
61 3D = 93 5D J 157 9D CMD 189 BDEXP 221 DD Notes---
62 3E > 94 5E l' 158 9E SYS 190 BE COS 222 DE 
63 3F ? 95 5F f- 159 9F OPEN 191 BF SIN 223 DF 

Notes: (i) Valid BASIC bytes from 0-127, in bold type, are space, " # $ % ( ) , and 
in order, followed by 0-9, : ; and A - Z. The zero byte is valid as an and-of-line 

and end-of-program marker. On LIST, bytes from 96-127 appear as duplicates of the 
characters 32-63, but, like the italicised characters above, cause ?SYNTAX ERROR. 

*(ii) Valid bytes from 128 - 255 are BASIC tokens; and GO is omitted from 
BASIC 1, while CON CAT and the following keywords are omitted from BASIC<4. 
Bytes beyond the end of the table list as apparent duplicates of keywords in BASIC<4, 
and as error messages and garbage in BASIC 4. Note that Shift-K (BASIC 1), Shift-L 
(BASIC 2), and Shift- [ (BASIC 4 - may not be on the keyboard!), all cause LIST to 
stop with ?SYNTAX ERROR. Spurious keywords can LIST but will not run. 

(iii) The quotation mark, CHR$(34), can of course legitimately precede any 
character. 

When a BASIC program is entered at the keyboard, the contents of the line in 
which Return is pressed are transferred to a buffer. This is 80 characters long, and 
can hold one line; BASIC 1 's buffer was in the zero-page ($OA - $5A), but later BASIC 
versions moved it to $0200 - $0250. After the line has been moved, it is scanned for 
keywords; any that are found are converted into tokens. The tokenised line is then 
merged into the program in memory, its position determined by its linenumber. The 
tokenisation process can be watched (see Chapter 13) with the aid of a machine-code 
routine which displays the input buffer at the top of the screen. In direct mode, the 
line is executed in the input buffer; this enables a line like PRINT "[CLEAR]HELLO" to 
run from the start to the end, even though it is erased from the screen as it runs. 
40-column BASIC has provision in it to distinguish 40-character lines from 80-character 
lines; a screen-line table of 25 bytes holds a value for each line to indicate whether 
two lines have been conceptually connected by the screen editor. Note also that short 
forms of keywords are acceptable. These are listed in Chapter 5. They provide a way 
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to enter lines which otherwise might be overlength. Provided that the line doesn't 
exceed 80 characters, this is acceptable, although when LISTed the same line will be 
hard to edit, since it will overflow the end of the80-character line. The order of the 
keywords in the table determines whether an abbreviation is possible; if there is any 
ambiguity, the interpreter picks the first in the table. So E shift-N enters END, and 
F shift-O enters FOR; but R shift-E is READ, RESTORE needing RE shift-A. INPUT # 
can be entered as I shift-N, but INPUT cannot be abbreviated by this method. PRINT 
is only available in a short form because '?' is specially written in to the interpreter. 

2.3 Variables, variable storage, and pointers A 'variable' is an algebraic idea: a 
symbol stands for a quantity (or string of characters). Microsoft BASICs have three 
variable types: numeric, integer, and string. The interpreter distinguishes between 
them by testing for a character after the alphanumeric characters which make up the 
name. '$' and '%' represent string and integer variables respectively. If there is no 
special character, the variable is numeric or 'real'. The presence of '(' denotes that 
the variable is subscripted. CBM BASIC allows multi-dimensioned arrays; the individ­
ual arguments are separated by commas. Three array types exist, distinguished by the 
same type declarators as simple variables. 

Interconversion between variable types is automatic as far as numerals are con­
cerned; string-to-numeric conversion and vice versa requires special functions. For 
example, L%=L/256 automatically rounds L/256, and checks that the result is in the 
signed, 2-byte range (- 32768 to 32767) to which CBM integers are confined. And 
L$=STR$(L) and L=VAL(L$) or L%=VAL(L$) convert numerals to strings and vice-versa, 
subject to certain rules (see Chapter 5). Two other interconversion functions are 
CRR$ and ASC, which operate on single bytes and enable expressions which would other­
wise be treated as special cases to be processed. Q $=c R R $ (34) assigns the quote to 
variable Q $; and 10 GET X$: IF X$="" GOTO 10 / 20 IF ASC (X$) = 13 GOTO 100 / ETC. 
tests for Return, which is only possible with the aid of these byte-level commands. 

Variables' names are subject to these rules: 
1. The first character must be alphabetic. 
2. The next character may be alphanumel'ic. 
3. Any further alphanumerics are valid, but not considered part of the name. 
4. The next character may be % or $, denoting integer or string respectively. 
5. The next character may be (, denoting a sub scripted variable. 
6. A name cannot include reserved words, as the translater will treat them as 

keywords and tokenise them. Note that reserved variables (TI, ST, DS, DS $) 
can be incorporated in names, as they are not keywords. 

All these rules simply have the purpose of removing ambiguity and making storage 
convenient and fast. If (say) 1A were a valid variable name, 100 1A=1 would require 
special syntactical treatment to distinguish it from 1001 A=1. And if other symbols than 
alphanumerics were permitted, so that B= were a valid name for instance, again this 
could cause problems. We shall see very shortly why names of length 2 are used. 

The next page has a table of names; some are valid, others are not. Italicised 
text indicates the presence of a keyword, making the name unacceptable. All those 
names without italics are perfectly usable; but care has to be taken to avoid using 
what is in fact one variable under the impression that it is two or more; for example, 
NUMBER and NUMERAL are legitimate variables, but both could be replaced by NU, and a 
program which 'thinks' they are different will give surprising results. 

Even with valid names, some ambiguity is possible, particularly if a program is 
'crunched' so that all spaces are removed (except in quotes). The next section has 
examples. 

Variables, in either direct mode or program mode, are stored after the program 
currently in memory; the space is known to be there, and as a program runs variables 
are created and modified in this area. Strings, because of their dynamic nature, do not 
fit tidily into this scheme, and are stored in two parts, a name with a pointer, and 
the string pointed to; with most variables' manipulations involving strings, RAM has to 
be checked to ensure there is room to store the next string. Chapter 5, in DIM and 
FRE and elsewhere, discusses storage. Before looking at the system of pointers, let's 
examine the RAM storage of each type of variable. These can be peeked in exactly the 
same ways that BASIC programs can be. There is a complication that the actual values 
stored may vary; a BASIC program peeking values which follow itself may produce 
different results at different times. Provided we avoid minor confusions of this sort we 
can investigate the way in which BASIC variables are stored. 
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EXAMPLES OF LONG NAMES FOR VARIABLES 

ADD DOLLAR LIMIT PENCE 
AGE END LINES PERCENT 
AMOUNT ESCAPE LOA D PIA 
ANSWER ESTIMATE LOCATION PLACE 
ARRAY EVAL UATION LOW POSITION 
AVAILABLE EXTENT LOWER POUND 
AVERAGE FILE MACHINE PRICE 
BAD FIN AL MARGIN PRIMARY 
BEST FINISH MARK PRINT 
BETTER FIRST MARKUP PRODUCT 
BIT FLASH MASS PROFIT 
BLOCK FORM MEAN QUANTITY 
BRANCH FORMULA MEASURE RATE 
BYTE FORWARD METER RECORD 
CALCULATION FOUND METRE REFERENCE 
CALENDAR FRACTION MINUTE REORDER 
CANCEL FUNCTION MONEY REVERSE 
CATA GOOD MONTH RIGHT 
CENTER GUESS NEVER ROOT 
CENTRE HEX NEW ROUNDING 
CODE HORIZONTAL NOTE SALARY 
COMMAND HOUR NOW SALES 
COMMENT IEEE NUMBER SEARCH 
CONTENTS IN NUMERAL SECOND 
CONTROL INCOME NUMERATOR SECONDARY 
CORRECT INDEX OFF SECTOR 
COST INPUT OK SKIP 
DATA INTEGER OLD SOLUTION 
DATE INTEREST ON STANDARD 
DAY INVENTORY ORDER START 
DECIMAL INVESTMENT OUT STATEMENT 
DEFAULT INVOICE OUTPUT STOCKS 
DENOMINATOR ITEM OVER STRING 
DERIVATIVE KILO PACK SUBSTITUTE 
DEVIATION T,.ABOR PAGE SUB TOTAL 
DIAMETER f'ABOUR PARAMETER SUM 
DIFFERENCE LAST PARTS SURPLUS 
DIVIDE LEFT PAUSE TABULATE 
DISCOUNT LENGTH TIME 

TITLE 

TOP 
TOTAL 
TOWN 
TRACK 
TYPE 
UNDER 
UNIT 
UPPER 
VALUE 
VARIABLE 
VARIATION 
VARIETY 
VERTICAL 
VIA 
WAGE 
WEIGHT 
WORD 
WORST 
YEAR 

2: BASIC 

Simple variables Every non-array variable occupies 7 bytes of RAM following its pro­
gram, or, in direct mode with no stored program, in BASIC's RAM space starting at 
$0401. In addition, strings occupy the top of RAM. BASIC 4 strings are stored with a 
2-byte pointer back to their names. Of the 7 bytes, the first two hold the name. The 
high bit of each may be set or unset, giving 4 permutations of effectively the same 
name; in this way, the variables A, A %, A $, and FN A are distinguished by the inter­
preter. At run time, an expression like A=4 causes the entire table of variables to be 
searched, if A is not present, and A to be set up at the end of the current table. For 
this reason, BASIC may be noticeably faster if variables are defined in order of im­
portance. Note that all four types of variable are stored together; there is no separ­
ation of strings from real numbers, for example. Note also that arrays are stored after 
the simple variables; their range is defined by an extra pointer. This is necessary 
because arrays would slow variables' search times by spoiling the consistency with 
which 7 can be added to each simple variable's pointer to find the next. At any rate, 
this is standard Microsoft. Consequently, new variables, defined after arrays, cause 
the entire array structure to be moved 7 bytes up RAM, which may generate strange 
delays, and is a further reason to define variables at a program's start. The storage 
system is rather wasteful: 3 bytes are unused with integer-type variables, 2 with 
strings, and 1 with function definitions. 
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Subscripted variables These are segregated from simple variables, and constructed 
differently: each array has an offset pointer to the next array, since obviously all 
arrays are not the same length. Microsoft's system saves space compared with simple 
variables: integer arrays, in particular, are very efficient in space usage. It also 
avoids the possibility of confusion between simple variables and arrays, which other­
wise could arise. 

Storage of CBM variables 

Variable type: Name: Detai I s of storage: 

Floating-point 

Integer o o o 
Sign bit 

String 

Function def'n 

The table shows all four types of simple variable. The name carries an implicit type 
declaration; thus a name consisting of the values 71 and 199 (decimal) is GG$, and a 
name consisting of 65 and 0 is A. Taking these in turn, note that a floating-point 
number's value is SIGN * 2EXP-129 * (1 M1 M2 

+ 128 + 128*256 + ... ) 
which can be expressed in various ways. (See e.g. Chapter 16, and Chapter 5 on 
VARPTR). This is a standard floating-point format. Integers are held in signed,2-byte 
form, with range -32768 to 32767. The value may be found from this formula: 

(HI AND 127)*256 + LO + (HI>127)*32768. • 
For example, HI=O and LO=100 stores an integer variable of value 100; HI=255 and LO= 
156 stores -100. (The two expressions add to 0 with overflow). 

The string name is held with a pointer to the start of the string, which contin­
ues up memory for length LEN. (See LEN in Chapter 5). BASIC 4 differs from earlier 
BASICs in that each string has a pointer, which points to the string's name lower in 
RAM. This is to facilitate memory freeing; see Chapter 5 on FRE for this. 

S T R I N G POINTER ~ 
BASIC 4 STRINGS: 10 HI \ 

Main ointer Pointer back to LEN of itself in low RAM 
A function definition has two pointers; one to the definition in the body of the 

BASIC program, and one to the floating-point dependent variable. They point just 
after the '=' sign and to the exponent byte respectively. The final byte is garbage, 
generated when the definition is set up, and is not used. 

Strings and function definitions, unlike numeric variables, can be defined so 
that their pointers indicate some point within BASIC. If a new program is loaded and 
run, retaining these values (i.e. by LOAD from within a program), the pointers will 
no longer indicate correct values, so a string of this sort will be garbage, and a 
function is likely to give a ?SYNTAX ERROR message. Strings can be moved into high 
RAM using X$=X$+'''' and the equivalent for other strings, but functions must be re­
defined as a rule. 

Subscripted variables (arrays) 

~:":'::::":""=~=:-i ••••••• DATA 

The diagram shows the layout of all three array types. The high-bit conventions for 
type are identical to those for simple variables (there is no equivalent to the function 
definition). The 'offset' figure is the total length of the low-RAM part of the array; 
we shall see how this is calculated. The 'number of dimensions' figure is 1 for a one­
dimensional array, e.g. A(x); 2 for a two-dimensional array like C(x,y) and so on. 
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A set of pairs of bytes holds the value of DIM+1; since dimensions are counted from 
the zeroth element. Finally, we have the data. This is held in 5-byte batches (reals), 
3-byte batches (strings) and 2-byte batches (integers). It is exactly similar to that 
for simple variables, except that spare bytes are not wasted. For example, the string 
array data consists of sets of 3 bytes, consisting of the length of each string in the 
array and its pointer. Strings are, of course, held in high RAM or in the body of a 
BASIC program. The variables, or pointers, are held in strict sequence, which is 
ascending order of argument, with the lattermost variables changing least frequently. 
For example, DIM A (1,2) stores its variables in the order 

A(O,O) A(1,O) A(O,l) A(l,l) A(0,2) A(1,2), and DIM X(1,1,2) in the 
order 

(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1) (0,0,2) (1,0,2) 
(0,1,2) and (1,1,2). The position of anyone item of an array can be calculated; 
X(a,b,c) is at a + b*(1+dim1) + c*(1+dim1)*(l+dim2) for instance. 

All of the above can be checked using simple BASIC; a program of this sort both 
sets up a variable and prints RAM contents: 

10 BB%=100 
20 FOR J=1084 TO 1090: PRINT J;CHR$(PEEK(J»;" ";PEEK(J): NEXT 

Line 10 can define any variable; the values of J in line 20 will need juggling unless J 
is defined in terms of the end-of-program pointer. 

The length occupied by an array is easy to calculate (the figure is identical to 
that of its own offset pointer). The number of bytes is: 

5 + 2*NUMBER OF DIMENSIONS + (DIM1+1)*(DIM2+1)* ... *(DIMN+1)*2,3, or 5, 
the figure depending on the array type (integer=2, string=3, real=5). In addition, the 
strings of a string array must be included, and, in BASIC 4, 2 bytes for each string. 
Examples: X$(1000), defined so that each X$(n) string has length 10, occupies 

5 + 2 + 1001*3 + 1001*10 = 13020 bytes, plus 2002 bytes = 15032 in BASIC 4. 
A%(50, 50), which holds about 2500 integers, occupies 

5 + 2*2 + 51*51*2 bytes = 5211 bytes. 

BASIC pointers There are seven principal pointers in Microsoft BASIC. PET /CBM has: 

START OF BASIC (usu. 1025) ($2$) (40 dec) ($7A) (122) 
END OF BASIC/ START OF VARIABLES ($2A) (42 dec) ($7C) (124) 
END OF VARIABLES/ START OF ARRAYS ($2C) (44 dec) ($7E) (126) 
END OF ARRAYS ( $2E) (46 dec) ($80) (128) 
START OF STRINGS ( $30) (48 dec) ($82) (130) 
END OF STRINGS ( $32) (50 dec) ($84) (132) 
TOP OF MEMORY ( $34) (52 dec) ($86) (134) 

The bold figures apply to BASICs 2 and 4; the order of these pointers is low byte 
followed by high byte, following the 6502 itself. Knowledge of these locations enables 
the top of memory (normally fixed when the machine is turned on) to be lowered, thus 
creating extra RAM space protected from BASIC. See HIMEM " LOMEM in Chapter 5. 
Arrays can be erased by changing the pointers: see the 'Scatter Sort' in Chapter 5. 
BASIC can be made to start at other locations than 1025, and so on. This program, for 
BASIC>l,reports the current values of these pointers within a program. As it stands, 
two simple variables (X and FN DE(X» exist, but others may be added earlier in the 
program and the results watched. The right-hand column of the table is BASIC 1. 

5000 DEF FN DEEK(X) - PEEK(X) + 256 * PEEK(X+l) 
5010 PRINT " START OF PROGRAM"; FN DEEK{ 40) 
5020 PRINT "END OF PROGRAM/START OF VARIABLES"; FN DEEK{ 42) 
5030 PRINT" {LENGTH OF PROGRAM -"; ( FN DEEK(42) - FN DEEK(40) 
5040 PRINT 
5050 PRINT" END OF VARIABLES/START OF ARRAYS" ; FN DEEK(44) 

"BYTES )" 

5060 PRINT "{NUMBER OF VARIABLES -"; ( FN DEEK(44) - FN DEEK(42) ) / 7 ; ")" 
5070 PRINT 
5080 PRINT" END OF ARRAYS/START OF FREE RAM"; FN DEEK(46) 
5090 IF FN DEEK(44) - FN DEEK(46) THEN PRINT" (NO ARRAYS EXIST)" 
5100 PRINT 
5110 PRINT" 
5120 PRINT" 
5130 PRINT " 
5140 PRINT 

START OF STRINGS"; FN DEEK(48) 
END OF STRINGS"; FN DEEK(50) 

TOP OF MEMORY"; FN DEEK(52) 

5150 PRINT "DATA STATEMENT POINTER"; FN DEEK(62) 
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Because these pointers mark the boundary between one set of data and another, it 
follows that the upper limit over a range is exclusive, not inclusive. A 32K machine 
has a top-of-memory indication of $8000 on switchon, but this means that $8000 is an 
upper limit which is not reached, so characters don't appear in the top left of screen. 
These pointers can all be seen by entering SYS 4 and displaying bytes from 0028 on, 
with .M 0028 0030. 

By defining the variables' area to coincide with the screen, we can watch var­
iables being set up in real time. The program prints the current operation on the top 
line of the screen, and awaits a keypress before each piece of processing: 

100 POKE 42,40: POKE 43,128 :REM START OF VARIABLES = $8040 (2ND LINE) 
110 POKE 52,207: POKE 53,135 :REM TOP OF MEMORY = $83E8 (BTM RIGHT OF SCREEN) 
120 CLR :REM MAKES POINTERS ALL SELF-CONSISTENT 
130 PRINT "[CLEAR]": POKE 59468,14: REM LOWER-CASE MORE READABLE 
200 DIM VA(20) : GOSUB 1000 :REM SUBROUTINE AWAITS KEY (E.G. SPACE BAR) 
210 A=1234 : GOSUB 1000 :REM WATCH ARRAY MOVE, 'A' APPEAR 
220 DIM ST$(20): PRINT [HOME] "ST$(20)": GOSUB 1000 :REM PRINT TO SCREEN TOP 
230 ... ETC ... 

1000 GET X$: IF X$='''' GOTO 1000 
1010 RETURN 

80-column CBMs require a slightly modified program if the full screen is to be used; 
and BASIC 1 requires different POKEs in lines 100 and 110 - see table. 

The dimensioning of arrays, and filling with null variables, can be watched; so 
can assignments of all types of variables. Strings fill down from the top of memory, 
and start again near the top when space temporarily runs out. If several different 
strings are assigned to the same string variable, FRE can be watched as it moves the 
most up-to-date value into as high RAM as can be managed. 

2. Ii BAS Ie syntax 

BASIC is sometimes described as 'English-like'; in fact the resemblance is tenuous. Its 
syntax has to be learnt, like that of any other computer language. BASIC is a rather 
ad hoc language, and a comprehensive account of its syntax is made difficult because 
the interpreter allows great latitude in a program. For example, is RETURN or GOTO 
10 valid, if there is no subroutine or no line 10 respectively? How can the correct 
syntax of READ ... DATA ... RESTORE be defined? Is NEW:!*? valid? The usual 
approach is to define the individual components of BASIC using some form of the Back­
us-Naur notation, but I shall spare my readers this experience. The account following 
outlines the major features of BASIC in a purely descriptive way. 

Numerals and literals These are actual numbers and strings, not variables. Examples 
of the first are 0,2.3 E-7, 1234.75, and -744; examples of the second are "hello", 
"ABC123", and "%! £/" where the quote symbols are delimiters (not part of the literal). 
The rules which determine the validity of these forms are complex; generally, numbers 
are valid if they contain 0- 9, +, -, E and . in certain combinations. Thus, imaginary 
numbers (e.g. 2i+3j) are not accepted, and 3E 2E 1 (Le. 3 * 1020 ) and 1.2.3 are not 
accepted. The only point likely to cause difficulty is the use of E to mean '10 raised 
to the power ... '. Strings can include any CBM ASCII character; tricky characters 
can be manipulated with the CHR$ function. However, some characters - 13 (Return) 
and 0 (null) for example - produce unusual side-effects. 

Variables At any moment, a variable must equal a numeral or string; the default val­
ues are 0 and the null character respectively. (See Chapter 5 on CHR$ for a discuss­
ion on CHR$(O) and "", each of which can be considered a null string). A variable, 
as the name is supposed to imply, can be changed to other valid values. 

Operators (or 'connectives') Binary operators connect two items of the same type, giv­
ing a single new item; unary operators operate on a single item, generating a new one 
of the same type. The CBM numeric operators are completely standard, and are ident­
ical in type and hierarchy to those of FORTRAN. The string operators and logical 
operators are less standard:-

Binary Numeric + - * / 
String + 
Logical AND OR < = > 

Numeric 
String 
Logical 

+-

.. none .. 
NOT 

'Dyadic', 'monadic', and 'Boolean' are synonyms for 'binary', 'unary', and 'logical'. 
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Parentheses Parentheses (round brackets) signal the translator to process the follow­
ing data as a unit, completed only when the corresponding right parentheses have been 
found. Intermediate calculations are stored on the 6502's stack. 

Functions Some of the BASIC keywords are valid only when followed by an express­
ion in parentheses; they may be used on the right of assignment statements or as part 
of an expression under evaluation. Numeric functions include SQR, LOG, EXP, and 
SIN; string functions include LEFT $, MID $, and RIGHT $. PEEK, although not a func­
tion in the usual deterministic mathematical sense, has the syntax of a numeric function 
and is considered to be one. 

Expressions An Arithmetic expression is a collection of numeric functions, numerals, 
real and integer variables, connected with operators and parentheses, and always used 
in an assignment statement or with PRINT, PRINT#, or CMD. For example: 

SQR(VAL(Q$(2,3» + M%) + SGN(Z)*(X>4) 
A String expression is a collection of string functions, literals and 

string variables, connected (optionally) with parentheses andlor the only string oper­
ator, which is '+'. For example: 

STR$(25) + MID$("HELLO" + Y$,3,4) + CHR$(N) 
A Logical expression evaluates to 'true' or 'false'; it may contain relat­

ional operators «,=,» and/or logical operators. For example: 
(A=4) OR NOT (21=X) 

There is not a sharp distinction between this type of expression and an arithmetic 
expression. The same routine evaluates them both, which makes possible constructions 
like PRINT 1>2 and ON 2 + (P=Q) GOTO 100,200. See Chapter 5 on AND, NOT, and OR. 

Statements A statement is a syntactically correct portion of BASIC separated by an 
end-of-line marker or a colon from other statements. All statements begin with a BASIC 
keyword. or, where LET has been omitted. with a variable. There are some peculiar 
cases; for example. IF A=B THEN is a statement because its syntax is accepted. (N ote: 
keywords are sometimes called 'statements '). Types of statement include: 

Assignment statement LET variable = expression. LET is optional. Here, the '=' 
symbol is used differently from the relational operator '=', and it is distinguished in 
some computer languages (e.g. ALGOL) by being written ': =' and read 'becomes ... '. 

Conditional statement IF condition THEN ... . See Chapter 5 on IF. 
Control (or 'sequential ') statement Alters the program's flow of control. GOTO, 

GOS UB, RETURN, STOP are examples of keywords. 
Input statement fetches data from a device or from a DATA statement. INPUT, 

INPUT#. GET, GET#, and READ are the relevant keywords. 
Loop (or 'block' or 'compound') statement enables many statements to be exec­

uted in a block; this is really a structured programming concept, only applicable to 
CBM BASIC in a loose sense to FOR ... NEXT loops and subroutines. 

Output ('print') statement sends data to tape, disk, screen, or other output 
device. See PRINT and PRINT # in Chapter 5 for an account of formatting, tabulation, 
evaluation of functions, and so on. 

Remark (or 'comment') statement In BASIC, REM followed by any information, 
which is ignored by the computer but useful from the point of view of documentation 
of the program. Lines which are never executed perhaps come into this category: 
o GOTO 1001 1 VERSION #11 100 REM BODY OF PROGRAM never executes line 1. * 

Type conversion statement converts between string variables and literals I real 
variables and numerals! integers and numerals, using such functions as ASC, CHR$. 
INT, STR$. VAL. 

Program lines are made up from statements. Each line is preceded by a zero byte, a 
link address, and a line number, and terminated by a zero byte. The line itself may 
contain tokenised keywords (all with their high bit set), double quotes, literals within 
the quotes, screen editing characters with the high bit set, $, %, or ( type declarators, 
variables, parentheses, numeric strings in ASCII, punctuation (;:,), ASCII strings in 
comment statements and DATA statements, and other items, for example 'I' as part of 
GET # and non-standard BASIC used with a modified GET CHAR routine, typically !, or 
$. 

*The slash symbols (I) are a space-saving device, enabling several llnes of BASIC or 
machine-code program to be printed as though only one line were occupied. When this 
sort of program is keyed in, obviously Return takes the place of 'I'. 
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2.5 Manipulating BASIC and its variables 

Pointers, link addresses and linenumbers An ordinary BASIC program is stored as 
this diagram indicates. The starting address is $0400 (=1024), each line has a 2-byte 
link pointer and 2-byte linen urn ber, and is terminated by a zero byte. Normally, no 
zero bytes appear within a BASIC line, and the linenumbers are all different, in as­
cending order, and less than $FFOO (=65280). Each link pointer points to the next link 
pointer in memory, and the chain proceeds regularly upwards, until a zero link sig­
nals the end of the program. Any of these features can be modified, either in BASIC 
or machine-code, enabling non-standard results to be achieved. Conversely, such 
functions as renumbering, searching BASIC and compressing BASIC can be written 
when the storage mechanism is understood. Modified BASIC is likely to be more-or-less 
unstable; it may be difficult to edit, for example. 

START END 

LINE 

END 

BASIC 

The link addresses and linenumbers are quite easy to locate in either BASIC or mach­
ine code; they can also be examined by entering the monitor and reading the memory 
dump from $0400 onward. This BASIC routine illustrates the principles: 

10 A=1025 
20 L=PEEK(A) + 256*PEEK(A+l): IF L=O THEN END 
~ PRINT ~INK WINTER IS "L; 
40 PRINT" LINENUMBER IS " PEEK(A+2) + 256*PEEK(A+3) 
50 A=L: GOTO 20 

When RUN, A=current link, L=next link; the program prints both items for every line. 
The machine-code equivalent, illustrated by this 
outline routine, uses an intermediate double-byte 
address to store link addresses. In ROM, the 
routines at C522/ C52C/ B5A3 for BASICs 1/2/4 
search BASIC for a given linenumber, typically 
when executing GOTO. The short program here 
carries out a small part of that operation, skipping 
through the link pointers to the end of the pro­
gram. 

Chapter 5 has several examples of this. See 

LDA 28 
LDX 29 

Ll LDY #01 
STA 5C 
STX 5D 
LDA (5C),Y 
BEQ L2 
TAX 
DEY 

;A AND X HOLD 
;START-OF-BASIC 
;Y IS OFFSET 
;(5C) IS A TEMP. 
; POINTER 
;IF LINK'S 2ND 
; BYTE=O, EXIT 
;GET NEW X ... 

for example the 'tiny renumber' routine, which LDA (5C), Y ; ... AND NEW A 
changes all linenumbers which lie within a requested JMP Ll ;AND CONTINUE 
range, by poking the new values for the linenumbers L2 RTS 
directly into RAM. As another example, look at 
this BASIC search routine, which prints the linenumbers of all lines which contain 
the contents of the first line (e.g. line 0) of the program. 

62000 A=1025: B=256: J=1029: X=PEEK(J): REM X IS FIRST CHARACTER OF LINE 0 
62010 P=PEEK(J): IF P=X THEN GOSUB 62500 
62020 IF P<>O THEN J=J+l: GOTO 62010 
62030 IF PEEK(J+2)=O THEN END : REM END OF PROGRAM FOUND 
62040 J=J+4: A=PEEK(A) + B*PEEK(A+l):' GOTO 62010 : REM UPDATE LINK AND J 
62500 K=1 :REM TEST REST OF LINE 0 FOR MATCH 
62510 Y=PEEK(1029+K): IF y=o THEN PRINT PEEK(A+2) + B*PEEK(A+3): RETURN 
62520 IF Y=PEEK(J+K) THEN K=K+1: GOTO 62510 
62530 RETURN 

This routine is written without loops, in a form suited to direct conversion into mach­
ine code, which is enormously faster than BASIC in this case. The point of the rout­
ine is to scan only the BASIC line, while keeping track of the link pointers; line 
62510 prints out a linenumber when all the characters in line 0 match some part of 
BASIC. It is necessary to remember the way in which BASIC is stored in routines like 
this one; for example, 0 PEEK (1025) will cause all occurrences of PEEK (1025) to be 
recorded, but 0 EEK (1025) is not tokenised and will probably find nothing. 

The actual contents of BASIC may be changed in a systematic way. The short 
BASIC routine on the next page inserts carriage return characters into REM state-
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ments, when REM is the first keyword in a line. 

50000 A=1025: B=256 
50010 IF A=O THEN END 
50020 IF PEEK(A+4)<>143 THEN A = PEEK(A) + B*PEEK{A+1): GOTO 50010 

2: BASIC 

50030 POKE A+5,13: POKE A+6,13: A=PEEK(A)+B*PEEK(A+1): POKE A-2,13: GOTO 50010 

It operates by searching for the tokenised form of REM (=143 in decimal), and putting 
three Returns into the REM line. 

Note that arrays in memory can be scanned in a similar way. The only differ-
ence is that an offset, not an absolute pointer, is used: 

10 DIM N(7),MM(50),X1$(200),JJ%(6),Q$(19) 
20 S=PEEK(44)+256*PEEK(45): E=PEEK(46)+256*PEEK(47): REM START, END FOR BASIC>l 
30 PRINT "NAME OF ARRAY: " ;CHR$(PEEK(S»; CHR$(PEEK(S+l» 
40 0=PEEK(S+2)+256*PEEK(S+3): S=S+O: REM O=OFFSET 
50 IF S<E GOTO 30 : REM S POINTS TO NEXT ARRAY 

SORT in Chapter 5 uses a machine-code version of this. 
The following pair of BASIC subroutines changes the link addresses of lines in 

their own programs. The first alters a pointer so that a line is skipped; that line is 
also renumbered O. It is likely to become visible on editing. When RUN, the hidden line 
is processed normally, although LIST and GOTO cannot find it. 

50000 A=1025: B~256 
50010 INPUT "CONCEAL LINE AFT£R""fX 
50020 FOR R=1T01E8:IFPEEK(A+2i ... S*PEEK(A+3)(XTHEN A=PEEK(A)+B*PEEK(A ... l):NEXT 
50025 IF PEEK(A+2) + B*PEEK(A+3»X THEN PRINT "NON EX ISTEN1' LINE": END 
50030 XS=A: REM START LOCN OF LINE X 
50040 YS=PEEK(A) + B*PEEK(A+1); REM START OF fOLLOWING LINE 
50050 Xl:PEEK(YS): X2=PEEK(YS+l): REM LINK ADDRESS BYTES Of NEXT LINE 
50060 POKE XS,X1 : POKE XS+l,X2 t REM LINK ADDRESS STRADDLES LINE AFTER X 
50070 POKE YS+2,0; PDKE VS+3tO : REM AND PREVIDIJU LINE IS NUMBERED 0 

This second routine demonstrates how CRUNCH can compress BASIC lines together, 
making them longer than the normal maximum of 80 characters. It must be positioned 
at the start of BASIC; when it runs, a range of linenumbers is asked for, and these 
lines are combined into one longer line by deleting link addresses and pointers, put­
ting in colon separators, and adjusting the initial link address to span the entire line. 
If the line's length exceeds 251, it will be difficult to edit; it will run, however, in 
most cases, though not if REM is. too far from the end of the line. 

o INPUT "C(JIIHNE LINES FROM,TO";L,U: C=1025: B=256: E=PEEK(42)+B*PEEK(43)-4 
1 LT=PEEK(C+2)+B*PEEK(C+3): PRINT LT; 
2 IF LT<L THEN C=PEEK(C)+B*PEEK(C+1): GOTO 1 
3 IF LT>L THEN PRINT "LINE NOT FOUND": END 
4 LINK=C: C=C+4 
5 Q=PEEK(C): IF Q<>O THEN C=C+1: GOTO 5 
6 IF PEEK(C+1)+PEEK(C+2)=0 THEN END 
7 LT=PEEK(C+3)+B*PEEK(C+4): PRINT LT; 
8 IF LT>U THEN C=C+1: POKE LINK,C-INT(C/B)*B: POKE LINK+1,C/B: GOTO 4 
9 POKE C,ASC(":"): FOR J=C+1 TO E: Q=PEEK(J+4) 

10 POKE J,Q: NEXT: E=E-4: GOTO 5 
11+ --REST OF PROGRAM--

If the pointers to the start of BASIC are altered, BASIC can be stored in other places 
than the usual $0400; for example, it could start at $1000, leaving a large amount of 
RAM free for other purposes. Similarly (see HIMEM 1& LOMEM in Chapter 5) the point­
ers to the top of memory can be changed. 

POKE 40,1: POKE 41,16: POKE 4096,0:NEW 
Sets BASIC>1 to start at $1000. The zero byte at the very start is necessary; without 
it, ?SYNTAX ERROR will be generated. 'Ib return to normal, enter 

POKE 40,1: POKE 41,4: POKE 1024,0: NEW 
(NEW, or CLR, is the easiest way to ensure the pointers are consistent). A program 
of this sort may be saved, with its machine-code, by moving the start pointers back 
to the normal value; the first line of the 'normal' program must be something like 
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o POKE 41,16:RUN 
which will run the main program correctly. 

The variables themselves may be manipulated: see e.g. VARPTR in Chapter 5. 
The entire collection of RAM variables can be saved as a RAM image; for example, a 
large integer array may be saved and later reloaded, providing rapid access to a lot 
of numeric data. Strings are less easy to handle, because they are not held in the fix­
ed way in which numerals are. This technique is not very easy, since any change in 
the program length or in the number of variables will cause the data not to match its 
pointers. Reloading is also made more difficult than it might be by CBM BASIC's tend­
ency to restart programs which use LOAD. 

When a program is edited, CBM BASIC always resets the pointers relevant to the 
variables. In fact the variables are still present, if the new program is shorter than 
the old; so if the pointers are poked with their previous values, all the variables will 
be recovered; the only exceptions may be strings held within the program and func­
tion definitions. 

2.6 LOADing and RUNning BASIC 

LOAD or DLOAD followed by RUN is the normal method of running CBM BASIC; the 
only automatic RUN facility is provided by Shift-Stop, which LOADs and RUNs the 
first program on tape or CBM disk depending on the version of BASIC in ROM. Both 
LOAD and RUN are covered in detail in Chapter 5, and DLOAD is explained in Chap­
ter 7. The overlay feature of each load command, when in program mode, is also out­
lined. RUN executes some initialisation before entering a loop which processes state­
ments consecutively. Before every statement, the Stop key is tested, and the end-of­
program byte is checked for (without this, each program would need END) at the end 
of each line. By dropping some of these subroutines, the execution time of BASIC can 
be improved; this requires a RAM routine, probably called by a SYS command, to per­
form the functions of RUN. 

Numeric routines are mostly carried out using two 'floating-point accumulators' 
of 6 bytes each, and some other RAM storage areas in the zero-page. Strings are 
constructed in the top of memory. The 6502 stack is used by GOSUB and FOR, each 
of which puts several bytes of data in store on the stack; see Chapter 5. Also, eval­
uations which include parentheses for priority put intermediate results on the stack. 
An unexpected ?OUT OF MEMORY ERROR can result if the stack is asked to hold too 
much data. 

1 PRINT (1+(2+(3+(4+(5+(6+(7+(8+(9+(10+(11+(12»»»»»» 
causes such an error. The limits of the stack are determined by a combination of the 
number of GOSUBs, FOR loops, and parentheses at anyone time. 

As each statement is executed, the CONT pointer is updated. In this way, when­
ever Stop is pressed, CONT can resume the program, since a record is kept of the 
statement last executed. 

2.7 Optimising BASIC 

The principal optimisation problem likely to be met with in BASIC is making a program 
run as fast as possible. (The other problem - shortage of space - I am assuming to be 
a matter of correct initial design). Input! output, to disks and especially to tape, is 
slower than processing in RAM; slow printers can also impose a drag on a system. The 
BASIC program itself can be accelerated using the methods in CRUNCH (see Chapter 
5), and the subroutine management techniques in GOS UB (Chapter 5). These rely on 
knowledge of the way BASIC works to avoid small cumulative losses of time. GOTO can 
be optimised ensuring that the destination line is as near the start of the program as 
possible, or has a linenumber whose high byte exceeds that of the GOTO line. Some 
CBM manuals have a section on this subject (almost word-for-word identical to a simi­
lar section in Apple manuals). Apart from the routine compression methods of CRUNCH, 
the most significant time savers are (i) the use of variables, not constants, and (ii) the 
delibera te setting up of variables in the best order (i. e. most popular first) at the 
start of a program. As a simple example, 

10 FOR A=O TO 5000: B = B + 1: NEXT takes about 15% longer than:-
10 B=O:L=1:FORA=OT05000:B=B+L: NEXT 

The point about using variables is that the numerical value is already stored in float­
ing-point form, so the time spent in the conversion process is saved. Generally, loops 
are likely to make the most difference to running-time, and one-off routines such as 
exit routines and error messages the least. This program enables single BASIC state-
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ments to be timed, so the reader can experiment in this area: 

PROGRAM TO MEASURE PROCESSING TIME WITH BASIC-

10 N = 100: Tl=0: T2=0 
20 Tl = TI :REM STORE THE TIME ••• 
30 FOR I = 1 TO N 
40 
50 NE)<:T 
70 T2 = TI - Tl 
80 Tl = TI 
90 FOR I = 1 TO N 
100 ,X=123.456 
110 NE)<T 

: REM ••• SO NOW T2 I S THE TI ME TAKEt-l BY LOOP 30 - 50. 
:REM STORE THE TIME ••• 

120 T2 = TI - Tl - T2 :REM T2 = TIME TO EXECUTE LINE 100 AFTER THE COLON. 
130 PRIt-lT 100~~ * T2 / <60*N) "MILLISECONDS" 
1000 REM ******************************************************************* 
1001 F::EM * E)':ECUTE At-lD TIME COMMAND(S) IN LINE 100 * 
1002 REM * * 
1003 REM * t"OTE THE LEADIt"lG COLON .• TO ALLOW CORRECTIOt" FOR LOOP PROCESSING *-
1004 REt'1 * * 
1005 REM * CHECK:- ZERO MILLISECot-lDS SHOULD APPEAR WITH 100: ALONE * 
1006 F.:EM * * 
1007 REM * ItKREASE THE VALUE OF N IN LI NE 1130 I F THE I NSTRUCTI ON I S FAST * 
10('18 REt'! * t-lB: SEVERAL LINES OF CODE CAt-l ALSO BE TESTED \·HTHOUT DIFFICULTY * 
1009 REt'! * NB: DEFItHt-lG VARIABLES AT START AIIOmS SEARCH TIt1E ERRORS * 
1010 REM ******************************************************************* 

BASIC<4 has a well-known drawback in the long time spent freeing strings in memory. 
This means that large arrays (e.g. X$(500», however convenient for storage of easily 
recovered data strings, are prone to cause prolonged delays; FRE takes about 1 second 
with 100 strings, 10 seconds with 350 and 100 seconds with 1100 - see Chapter 5 for a 
formula. Chapter 4 has details on minimising these delays. 

2.8 Differences between ROMs 

The major differences between ROMs are listed below. Generally, later ROMs can run 
all earlier programs, but earlier ROMs may not have some features assumed in later 
programs. Programs using machine-code calling ROM routines or specific RAM locations 
are unlikely to transfer between machines. BASIC 4's two versions, 40- and SO-column, 
are dissimilar in some ways, the 40-column version retaining some features of BASIC 2. 

Di fferences: BASIC 1 BASIC 2 BASIC" 

RAM map Input buffer in zero-page Input buffer $0200 - $0250; more 0-page pointers 

ROM map COOO-FFFF COOO-FFFF 
I Tape buffer #2 partly used 

BOOO-FFFF 
Apart from kernel addresses, almost all ROM entry points differ (Ch. 15). 

Monitor RAM only (see manual) I Machine-language monitor present in ROM 
Interrupt 60 Hz 60 Hz I 50 Hz (12-inch models) 
Other General improvements (e.g. LIST). 

Differences which ma~ affect BASIC Erograms: 

Keywords GO GO, DS ,DS $, & disk commands 
Syntax Spaces in keywords valid * 
Arrays See DIM (Ch. 5) for bugs 
IEEE Improved 
Screen Fast screen; more editing chrs. 
Strings FRE slow FRE fast (see Ch. 5) 
Tape Data file bugs (Ch. 8) Data file handling improved 

*In BASIC 1, 'IF 10=LE THEN PRINT "10'" and 'IF FOR G GOTO 100' generate ?SYNTAX ERROR 
as 'LET' and 'FOR' respectively are assumed. BASIC>l does not scan tokens in the same 
way (hence the need for GO). However, in all BASICs there is scope for ambiguity: 
, IFY=GORXTHENPRINT"ERROR'" , 'IFS=TANDUGOT050', and 'Y=TORU' illustrate this. 
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CHAPTER 3: PROGRAM AND SYSTEM DESIGN 

3. 1 General introduction 

This chapter explains some of the techniques and thought-processes required to write 
programs and systems. Chapter 4 provides examples, mostly in BASIC. Chapter 17 
has examples and suggestions involving actual systems; the intermediate chapters deal 
with the hardware and software knowledge required to actually do the job. 

Designing a system is a tricky process which is unlikely to be successful with­
out a considerable amount of experience, unless a system is fairly small and informal, 
and either unimportant or easy to reconstruct in the event of disruption. The differ­
ence between small systems and those consisting of many programs operating on a large 
database, with full validation and crashproofing, and with checking and recovery pro­
cedures, is enormous. Obviously it is necessary to assess whether a proposed system 
is feasible at all, and the optimum amount of work to put into it. Since this book is 
largely about the PET ICBM, we can leave aside the difficult problems of deciding 
between rival machines. We can also ignore the special problems of programming ex­
ternal hardware, for example in process control, which is a minority interest. By and 
large our concern is with a computer, tape and/or disk storage, and probably a print­
er. What o.an such a combination of hardware do? Experienced programmers, naturally, 
already know. For those less experienced, we can subdivide the replies into three cat­
egories: results which can be achieved easily, those which are difficult, and those 
which are impossible. In the first category we have standard packages, if they exist. 
Sometimes several packages may be able to share data. The absence of programming 
effort does not, of course, guarantee success. Programs requiring calculations, when 
the formulas are known, are usually fairly easy; anything from architecture to zoo 
nutrition might be required. Any type of alphanumeric data can be stored and retriev­
ed, though not necessarily rapidly; dictionaries, tables, price-lists, technical words, 
names, can be filed and recovered, provided the storage capacity of tape or disk is 
allowed for. Small business programs, with reasonable crash-proofing, are possible if 
the processing demands aren't large: invoices and mailing-lists for example. Payroll 
programs are possible in 4K, in some developing countries. Tidy formatting and out­
put is not a big problem. Nor are slowish graphics. 

The second category includes anything really fast. Graphics; fast searches in 
memory; rapid updating, input, formatting, and output usually require machine-code, 
which is more difficult than BASIC. Any disk reading or writing which uses a key 
other than the record number, and is fast, will need to be thought out carefully. 
Completely crashproof and validated input is not easy. Data may be coded, abbreviated 
and packed in many ways to save storage space, and so store more data than may 
seem to be possible at first sight. Where many programs operate on the same data, the 
order in which they are run may need internal checking. Data checking programs may 
be needed which provide an assurance that the data on a disk is self-consistent. Some 
programs may require annual updates, or need to be easy to modify. All these things are 
comparatively time-consuming and difficult to write. As the workload increases, the 
viability decreases: sorting the names in a telephone book, performing simulations of 
atmospheric physics, calculating the payroll of thousands of people, may be impossible. 
The machine cannot program itself, understand English, correct errors in a specific­
ation of a system, or work while switched off in a corner. 

Typical complaints (about computer systems generally) are illustrated by these 
quotations from a medical man: 'They lead to more clerical work, not less... produce 
sheaves and sheaves of that printout stuff. .. VDUs are very slow; you can't just read 
a patient's record, you have to type it in ... you could lose all the data! The whole 
lot! '. And an export manager: 'The biggest disaster is the so-called informal specif­
ication. We assumed we were speaking the same language ... the program takes days. 
We'd seen programmes on television where the results come up instantly ... '. Retailers 
are often asked for their 'standard stock control package and PAYE payroll package'; 
often these do not exist. I have stressed the possibilities of failure, because it is im­
portant to realise that this can occur. In practice, the direr prophecies of mass busi­
ness failures due to microcomputers have not come true: systems which are clearly 
useless remain unused, and the risks inherent in risky systems are not taken. I don't 
want to imply, by my mention of this topic, that CBM hardware is unreliable; comparative 
figures are unavailable, and all computers are liable to hardware problems and software 
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bugs, and these may be an unpleasant shock to those accustomed to the facade of 
smooth-running efficiency presented by data processing departments. 

3.2 Designihg programs 

The general idea of BASIC is simple: the program does what it's told, starting at the 
beginning and continuing to the end, occasionally encountering a GOSUB and execut­
ing a subroutine, or encountering a GOTO and jumping to a program line. The con­
ceptual difficulty with programming is the need to understand what the separate comm­
ands do. Only when they are more-or-less grasped is it possible to tell the computer 
what to do. As a simple example, consider a set of short reports being printed by an 
ordinary computer printer; at the end of each one, a 'top of form' command has to be 
issued, whereupon the paper is shifted in preparation for the start of the next report. 
Suppose some reports take several pages, and the printer has no automatic facility to 
leave a few lines at preset intervals. Then it is necessary to keep a running total of 
the number of lines printed, and to check this number after printing each line; if the 
total equals a preset value, 'form feed' is issued, and the total reset to zero, to be 
used for the next page. Typical complications include lines which belong in batches, 
and are not to be separated, page numbers, running totals, and titles dependent on 
the last line of the previous page. In this way, an apparently straightforward task of 
programming can become complex. 

There are many theories on the 'best' programming methods. For example, 'top­
down' programming designs the main flow first, then the subsidiary routines, while 
'bottom-up' programming starts with the subroutines. But 'structured programming' is 
undoubtedly the major buzzword. There are several versions of this, ranging from the 
avoidance of 'GOTO', through the use of nested routines, to the attempt to match the 
structure of the data, as it is filed, with the program. CBM BASIC lacks the syntax to 
apply such techniques directly, but they can be simulated. The object is to produce 
programs which are easily read, so that in turn they can be changed or reused with 
little difficulty. In practice (in my opinion) programmers' methods are always ad hoc 
and chaotic, and maintainability of programs is possible (if at all) only because pro­
grams are tidily arranged in routines with heavy commentary. Similarly, flowcharts, 
once regarded as highly scientific, are widely regarded as obsolete, replaced for the 
most part by pseudo-programming languages. But it is not obvious why one form of 
notation should be superior to another; the sad fact is that any complex program will 
remain complex in whatever way it is written down. For these reasons, I suggest that 
the reader treats 'definitive' announcements on these subjects with scepticism. 

There are two types of non-linear program flow: a loop (when the program jumps 
back repeatedly to an earlier point in the program; forward jumps are essentially still 
linear), and a branch (when differing parts of a program are selected according to the 
results of some test. Several flowchart representations are:-

yes 

i 
Flowcharts of loops Flowchart of branch / casentry 

There is a British Standard on flowcharting. For our purposes it is sufficient to de­
note branches by a diamond (or similar) shaped box, usually containing the condition 
as a question, and processing by a rectangular box in which are written details of the 
processing. Arrowed lines indicate the direction of flow of control. Detail may be at 
the level of single instructions, or at almost any level of vagueness, depending on 
whether the Object is to present a detailed or overall picture of the program. In CBM 
BASIC, a loop is usually of the form FOR A=B TO C STEP D ••• NEXT A with an implied 
count from B to C in steps of D. Changing the variables within the loop is apt to 
prove confusing. The orthodox structured forms of DO WHILE and DO UNTIL do not 
count, but wait until a condition is no longer true and a condition becomes true re­
spectively. These forms can be simulated easily in BASIC; for example, a construction 
like:-
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DO WHILE LINECOUNT<50 
PERFORM ROUTINE TO PRINT LINE AND INCREMENT LINECOUNT 

ENDDO 

can be written in this way (or many others):­

FOR A=1 TO 1000 
LINECOUNT=LI+1 
IF LI=50 THEN A=1000: GOTO x 

GOSUB Y TO PRINT LINE 
x NEXT 

And the casentry construction can be written as a series of IF statements or, in situa­
tions where a variable takes values 1,2,3,... , as ON ..• GOTO or GOS VB. With a 
little practice, all this becomes straightforward. When flowcharting, to avoid tangling 
of lines it is usual to adopt a direction convention. Typically, the general direction is 
down the page, with loops branching back anticlockwise and forward jumps clockwise 
to avoid clashes. The diagram below gives typical extra symbols which may be included 
in this sort of chart. 

~ 
TITLE 

Subroutine 
or Module 

These symbols are based on notation for large computers; the disk isn't very like a 
floppy disk, and the tape is a spool rather than a cassette. But the general idea is 
clear enough. Other types of chart include those with subprograms connected by ref­
erence labels, rather than lines. A page number and label marks each jump and branch. 
This technique is suitable for machine-code flowcharts, which are unlikely to have tidy 
loop structures. The 'Nassi and Schneiderman' notation is topologically identical to a 
flowchart, but is rearranged to increase the space for explanatory detail. It has 'pro­
cess boxes' of four types: condition (normally binary); loop with test after processing; 
loop with test before processing. and a plain processing box. 

Enter Surname 

'Not found' Print name, add­
ress, comment 

Until no more 

There are innumerable techniques, each with local 
variants and modifications, and the purpose of this 
section is to give some idea of the appearance of 
the resulting documentation. Any sizeable program 
will be far more complex than the simple examples 
presented here, and may occupy several pages of 
'text' . 

The internal detail of a program may be doc­
umented and clarified in various ways. Firstly, 
subroutines may be handled in a systematic way: 

they can be documented (see Chapter 4) and arranged within the program to maximise 
efficiency (see GOSVB in Chapter 5). In principle, standard subroutines are a possib­
ility *. Variables' names can be selected in some systematic, meaningful way, within the 

*MUSE (Micro Users in Secondary Education) has standards intended to enable easy inter­
conversion of programs between machines. (See e.g. Ed'l Comp'g,July 'SO). N Hampshire 
has a book of 'Standard Subroutines' for PET/CBM, using linenumbers 10000-30000. A 
McGraw-Hill book has 'BASIC scientific subroutines for all computers'. 
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limitations inposed by the fact that only the two leading characters distinguish between 
names. (See Chapter 2). Line-number maps, including subroutines, can be useful in 
navigating long BASIC programs; and conversely, intricate programs with many GOTOs 
may be deciphered in extremis by simply writing down all the linenumbers in execution 
sequence, perhaps revealing islands of code which are never used. The logical process 
which a program carries out is also depictable in many ways. A condition table is one 
method (see diagram) which in principle can be drawn up without any programming 
knowledge, to be turned into a program as a routine task. The patterns ofYs and Ns, 
which should cover all possible combinations of the conditions, correspond to one or 
more actions, marked with 'x'. 

Conditions: Stock > reorder level? Y Y Y N N 
Stock minus stock out> reorder level? Y N N N N 

Stock out> stock? N N Y N Y 

Actions: Issue stock x x - x -
Issue reorder request - x x - -

Part issue stock / increase commitments - x x 

'Data-structured design' is another methodology, associated, particularly in the 
U. K., with Michael Jackson. Its object is to simplify matters by matching file structure 
to program structure. If BASIC compilers come to be widely used, techniques of this 
sort will become more applicable to BASIC than they are at present. Before describing 
(in outline) the tenets of this school of thought, we must clarify the idea of a comput­
er 'file'. CBM disk and tape files are described in detail in Chapters 6 and 8 respect­
ively, but a few words of introduction are necessary. In the usual office sense of the 
word, 'opening a file on Mr Smith' means either looking at Mr Smith's records or start­
ing a new folder of details on him. This is not a computer 'file'. In the computing 
sense, a 'file' is a collection of many records, which for convenience have a name ass­
igned to them, and which are more-or-less similar in content. A 'name-and-address 
file' contains details not only of Mr Smith, but of many other people. 'Opening a file' 
means preparing the computer to read or write individual records from or to the file. 
A simple example might consist of a file with (a) a header record, i.e. a single record, 
holding perhaps the date on which the file was last used; (b) a consecutive set of re­
cords, of which some are to be printed, and others are not. These would be distinct 
in some way; for example, items might be marked as deleted, or as having fallen below 
the reorder level. (c) A trailer record might mark the end of the file, typically hold­
ing totals. The diagram shows the structure of this file, with a standard box notation: 

A structured program to process this file is 
illustrated in the second chart, which gives 
a general picture of the processing without 
much detail. The modules and subroutines, 
if they are sufficiently commented and REM'd 
within the program, ought to make detailed 
processing fairly easy to follow. Note the 
correspondence between the program and the 
da ta structure. 

OPEN 
FILES 

READ READ 
HEADER UNTIL 

END 

READ 
TRAILER 

CLOSE 
FILES 

HEADER 'LIVE' 
RECORD 

CONTROL LEVEL 

MODULES 

SUBROUTINES 

'DEAD' 
RECORD 

TRAILER 



Programming the PET ICBM -21- 3: Program and system design 

Algorithms An algorithm is a set of rules which (if the algorithm works!) generate a 
solution to a problem. Taking care with algorithms will improve the logical accuracy of 
programs and probably their speed and efficiency. Typical algorithms deal with sort­
ing, merging, and similar large-scale processing, down to the details of rounding, page 
throws, and date processing. As concrete examples, let's briefly consider five types: 

(i) Linear programming. This is a technique for maximising a linear combination 
of variables subject to certain restrictions. It is not easy, or necessary, to under­
stand the steps involved, which slowly but surely grind out the solution. 

(ii) Warnsdorf's Rule provides a means to generate complete knight's tours round 
a chessboard. The rule is: move the knight to the square with the fewest exit squares. 
This often (not always) gives a solution. There is no real justification for the rule; it 
gives an attack on the problem, without an indication of whether its solutions are only 
a subset of the total of solutions, or of the procedure to follow when the rule finds 
several squares which are equally legitimate. 

(iii) Decision-tree pruning is a technique used in the analysis of games (e. g. 
chess) by computer, where the 'tree' of moves and replies has a colossal number of 
'branches'. When any 'branch' is assessed as 'worse' than some other branch, no fur­
ther time is spent on that 'branch'. (The 'alpha-beta algorithm' is an example). 

(iv) Sorting. Dates stored in the form DDMMYY or MMDDYY may be sorted three 
times, by year, month and day. Y YMMDD requires only one sort. 

(v) 3-Dimensional 'tic-tac-toe' or (U. K.) noughts and crosses has a variation in 
which the first player to make a line loses. An algorithm for the first player is: start 
at the centre, then make all moves exactly opposite to the opponent's. This ensures 
that the first player cannot lose. (It doesn't prove that a draw is impossible). 

Formal logic is sometimes helpful in simplifying complex conditions which have to 
be met: see Chapter 5 on AND, OR, and NOT. 

3.3 Designing systems 

'Systems Analysis' has no necessary connections with computers. The approach is to 
examine exactly what you'd want a computer to do, taking particular note of the 'odd 
10%', or whatever figure applies, of oddments, exceptions, and special cases. Useful 
clarification may result irrespective of computers, the mental effort producing results 
which are unexpected, economical, and neat (in the words of Prof. Parkinson). Trans­
lation of the result to a computer may nevertheless be unsuccessful. Typical mistalres 
include allocating insufficient space for data, so some figures are too large to fit into 
a file; failure to test the timing of a system, in which case the performance may fall 
off dramatically as data is added; adding new features during development, of a type 
likely to increase the number of bugs in the system. (For example, an 'escape' key 
migh t be introduced to take the operator back to the start of the system, if the wrong 
part of a program has been inadvertently called. The incomplete data already set up 
may cause unforeseen errors). File layout is important if any sort of elaborate tech­
nique is to be used (Le. anything other than sequential access or, with disks, access 
of relative records by record number). Once a database is set up, apparently simple 
operations like sorting on some unusual field, not allowed for in the design, or delet­
ing or inserting records, may simply take too long to be workable. The aim must be to 
achieve a flexible design, since it is all but impossible to think out all the implications 
of a system beforehand, and in any case may not be cost-effective with cheap comput-
ers. 

A complete system typically has a menu of options; entering a numeral or letter 
at the keyboard calls either a new program from disk, or enters a subprogram within 
the program which holds the menu and some program responses. In this way, functions 
of the system can be partitioned up in discrete, tidy units. A separate routine may 
handle each of the three operations of adding records, deleting records, and amending 
records, for example; another batch of programs might handle inventory reports, in­
voicing reports, outstanding orders, and so on. Microcomputer systems are usually 
interactive. This means that files are modified at the time data is keyed in. The alter­
native type of design is that of batch systems. These are common in mainframe (i.e. 
big computer) environments, the idea being to store data on file, and later run a pro­
gram to check this data and add it to the current file, updating it by the batch of 
new data. In the same way, output can be 'spooled', saved on a file for later printing 
in mass. This is an efficient way to use a big machine, since successions of jobs can 
be run, and the computer doesn't waste time awaiting input from terminals. There may 
be insufficient tape or disk storage space with small machines to make batch process­
ing possible. Note however that from the security point of view, running separate 



Programming the PET ICBM -22- 3: Program and system design 

batches may be preferable to direct updates, because, if a check shows that the files 
contain 'corrupted' (i.e. wrongly written, scrambled) data, the previous copy of the files 
and the new data can be re-run. 

The relation between data storage - in RAM, tape or disk - and the frequency 
with which it is accessed is one of the main features of system design: see Chapter 17 
for examples of this and the related problems of the use of printers for 'hard copy'. 

Specific computer techn iques (i) Data compression and codes. It is possible, and may 
be necessary, to save storage space by encoding data. The following chapter has rout­
ines to compress integers to half their length, and to combine many on-off flags into a 
single number. 

(ii) Checkletters and checkdigits. These guard against wrong input by providing 
a test for self-consistency, typically for use with a reference number of a client or 
item. Chapter 4 has examples. 

(iii) Sorting. The capacity to sort data and store it in sorted order is important 
in large-scale data processing for two reasons. First, reports, printouts, and lists may 
be required in order - typically alphabetic. Secondly, the knowledge that data is sort­
ed enables much faster processing to be possible than would otherwise be the case. 
Merging new data with old typically requires the matching of two sorted files; in this 
way, at any moment only two records need to be compared to determine whether the 
new record is to be inserted into the file, used to update its existing equivalent, or 
ignored temporarily while the main file is read again. And searching data by the 
'binary chop' method - equivalent to opening a telephone book in the middle, checking 
the name sought against the middle name, and continually halving the size of the chunk 
of text which must hold the target name - needs sorted data. Chapter 4 outlines some 
important aspects of sorting. 

3.4 Timing, 'sizing', and checking systems 

When considering the practicability of a large system, it is often worthwhile to write 
programs to generate 'dummy' data, to simulate a full file. This data can be generated 
with the help of RND, with which both numbers and alphabetic strings of data can be 
constructed. (With CHR$ in the case of strings). By testing for inequality, strict 
ascending or descending sequences are easy to simulate. In the light of tests on this 
data, improvements in the logic or file-structuring may be suggested. 

Estimating the storage capacity to run a system is relatively straightforward: in 
the simplest case, all records are the same length, so the product of the maximum 
number of records and the record-length gives the solution. This figure can usually 
be reduced by data-compression techniques, at the cost of extra programming time. 
Sequential files, in which records can differ widely in length, obviously occupy space 
in proportion to the average record length. Disk systems usually reserve some storage 
for their own operating system, to hold directories and so on, and this must be taken 
into account if space is short. In addition, the pair of disk drives in most systems are 
operationally distinct, so that the data may have to be held in a subdivided form on 
two (or more) disks. When this happens, it is of course important to ensure that each 
disk independently has sufficient room for its own quota of information. 

Testing systems is not particularly easy. (See Chapter 17 on this subject). The 
writer, however, does at least have informed knowledge which should ease the pin­
pointing of likely errors. On the other hand such knowledge may simply result in un­
conscious or conscious avoidance of areas known to be suspect. For this reason, the 
user is often asked to supply test data and try it in the system, and to check that its 
results are correct. This process will often expose assumptions which the programmer 
has wrongly made, but it is unreasonable to expect such testing to be thorough. There 
may be parts of programs which are not tested; and systematic errors may not be re­
vealed, because the combinations of data which show up the error happen not to be 
entered. Systematic errors, in which, for example, every 44th record is lost, or rec­
ords of length 254 are corrupted, or items on an invoice after the tenth are duplicated, 
are nearly always caused by programming errors. Unfortunately the triggering combin­
ations of circumstances may be sufficiently complicated to produce errors apparently at 
random. Apart from testing every part of each program at least once, and ensuring 
that test data gives consistently correct output, commercial programming practice is to 
try to minimise program errors by insisting on standard methods, heavy documentation, 
and 'walkthroughs'. The latter are a kind of group criticism of a programmer's design, 
as a result of which the programmer is supposed to improve his or her program. The 
effectiveness of such methods remains in some doubt. 
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CHAPTER 4: EFFECTIVE PROGRAMMING IN BASIC 

4.1 Specific BAS IC problems and solutions 

This section deals with the following topics: 
4.1.1 Subroutines and documentation 4.1.2 Checkdigits and checkletters 
4.1.3 Codes 4.1.4 DATA: processing steps; relocation 
4.1.5 Date processing 4.1.6 Error messages 
4.1.7 Hard and soft coding 4.1.8 INPUT 
4.1.9 The keyboard buffer 4.1.10 Numeral packing and unpacking 
4.1.11 Rounding 4.1.12 RAM data storage 
4.1.13 Searching 4.1.14 Sorting 
4.1.15 String handling 4.1.16 Validation 
4.1.17 Arrays 

4.1.1 Subroutines and documentation Subroutines are used to handle an enormous 
variety of processing tasks: setting scrolling windows on the screen, printing error 
messages, inputting and formatting data, reading passwords, reading a record from a 
disk file, and so on. If they are to be usable as standard subroutines, a certain 
amount of documentation is helpful. The example converts a hexadecimal number into a 
decimal, and prints the answer. All the variables used by the subroutine are listed, 
with an example or two to illustrate the method of use. If the subroutine itself called 
other subroutines, these too would be listed. Note that the documentation occupies far 
more space than its routine. 

550 REM*** 
555 REM 
560 REM 
565 REM 
570 REM 
575 REM 
580 REM 
585 REM 
590 REM 
595 REM 

ONE LINE HEXADECIMAL TO DECIMAL CONVERTER *** 

CONVERTS STRING OF 4 HEX DIGITS INTO DECIMAL NUMBER AND PRINTS RESULT 
USES J, L, L%, L$ 
ALL THESE ARE ALTERED BY THE ROUTINE 

'EXAMPLE OF USE: 
L$-"ABCD" : GOSUB 600 PRINTS 43981 

600 L-0:FORJ-1T04:L%-ASC(L$):L%-L%-48+(L%>64)*7:L$=MID$(L$,2):L-16*L+L%:NEXT:PRINTL:RETURN 

A similar decimal-to-hex conversion routine follows; this uses the same four variables, 
but the relevant variable on entry is L, not L$. 
500 L-L/4096:FORJ-1T04:L%-L:L$-CHR$(48+L%-(L%>9)*7):PRINTL$;:L-16*(L-L%):NEXT:RETURN 

4.1.2 Checkdigits and checkletters are (usually) suffixes, computed by an algorithm, 
which are appended to important alphanumeric data. Typically, the data involved is a 
reference number or some key number in a system. The composite data is made intern­
ally consistent, so that keying-in errors can be detected. As an example, consider 
International Standard Book Numbers (lSBNs) .. These consist of 9 digits followed by a 
checkdigit of 0-9 or X. The 9 digits are codes for the publisher and the title; the 
checkdigit is computed by multiplying each numeral in turn by 10,9,8, .. ,4,3,2 and 
adding the result. The remainder after division by 11, when subtracted from 11, is the 
checkletter (except that 10 becomes X, and 11 becomes 0). It is true that any ten 
random numerals have 1/11 chance of forming a valid ISBN, so the system is not fool­
proof. But the point is that the most common input errors are protected from entry to 
the system, if the computer is programmed to test the checkletter. There are two 
common typing errors: the first is the entry of a completely wrong single value (e.g. 
7 instead of 1), and the second is the transposition of two adjacent keys. Because of 
the system of weighting, and the use of the prime number divisor, either of these mis­
takes is entirely preventable. Another algorithm assigns 23 characters, A-W, as check­
letters, depending on the result of division by the prime number 23. As a refinement, 
'0' becomes 'X' and 'I' becomes 'Y'. 

Because this form of validation is easy to implement with computers (it is too 
arduous for human operators) a checkdigit system may be well worth implementing; 
without it, whole sets of data may be miskeyed because of some misunderstanding about 
the layout of an item number or customer number. 
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If ISBN $ is a string of nine numerals (without spaces), this routine computes the ISBN: 

10 CT=O: FOR L=l TO 9: CT = CT + (ll-L)*VAL(MID$(ISBN$,L,l»: NEXT 
20 CD$=STR$(ll - CT + INT(CT/11)*11): REM 11 MINUS REMAINDER OF CT DIVIDED BY 11 
30 IF VAL(CD$)=l1 THEN CD$=" 0" REM ALLOWS FOR CBM'S STRANGE STR$ 
40 IF VAL(CD$)=10 THEN CD$=" X" 
50 PRINT ISBN$ + CD$ REM FULL ISBN 

11.1.3 Codes. BASIC logical functions use 16 bits in all. If we forget the negative first 
bit, we can hold up to 15 on-off flags in a single real or integer variable. We can test 
any single bit with: 

IF FL AND 21'N THEN... :REM WHERE N = 0 TO 14 

And we can reverse any bit, leaving the rest untouched, with: 

FL = FL - 2tN *(2*«FL AND 2tN)=0) + 1) 

This technique is useful in storing, in a compact form, data which might otherwise be 
written to a file as Iy I or 'N I, or some other pair of alternatives. 

11.1.11 DATA: processing steps; and relocating DATA subroutines. The following coin 
analysis program, which converts a number of wages/ salaries into their breakdown by 
notes and coin, shows one method for dealing with irregular steps: the values, of 
which there are seven here, are stored in an array: 

10 DATA 7,10,5,1,.5,.1,.05, .01 :REM 7 U.K. DENOMINATIONS 
20 READ NUMBER OF DENOMS: DIM CN (NU), QU (NU) : REM COINjNOTE DENOMS AND QUANTITIES 
30 FOR J=l TO NU: READ CN(J): NEXT :REM READ DENOMINATIONS INTO ARRAY 
40 INPUT "NUMBER OF EMPLOYEES"; EMPLOYEES: DIM SALARIES OF (EMPLOYEES) 
50 FOR J=l TO EM: INPUT SALARY OF (J): NEXT 

100 FOR J=l TO EMPLOYEES 
110 FOR K=l TO NUMBER OF DENOMS 
120 X%=SAL(J)/CN(K): SAL(J)=SAL(J)-X%*CN(K): QU(K)=QU(K)+X% 
130 NEXT: NEXT 
200 FOR J=l TO NU: PRINT CN(J) "=" QU(J): NEXT 

Strictly, to avoid any possibility of rounding error, line 50 could include 
:SA(J) = SA(J) + CN(NU)/2: NEXT, adding in this example !p to each salary. Line 

10 can be replaced by any currency combination, provided the denominations are in 
order, and the first DATA value is the total number of denominations. Note that DATA 
statements can be made relocatable; this avoids problems which can arise when new 
DAT A statements are inserted before existing ones. READ operates purely sequentially, 
so the introduction of new data may spoil previously correct routines. One method is: 

10000 REM STANDARD SUBROUTINE WITH 'DATA' 
10010 RESTORE 
10020 FOR L=l TO 1E10: READ X$: IF X$<>"SEARCH MjC" THEN NEXT:REM READ 'TIL NAME 
10030 REM *** READ DATA HERE *** 
10040 RETURN 
10050 DATA SEARCH M/C,100,O,45,34,66: REM ETC. 

11.1 .5 Date processing. We have three date routines here: the first calculates the day 
of the week given the date, the second calculates days-between-dates, and the third 

1 REM **-11*********i:*** ZEI.LER'S CONGRUENCE ***************************** 
2 REM * FINDS DAY OF WEEK FOR ANY DATE * 
3 REM ************-11*****************-11*********************************** 
4 REM * 'CENTURY' IN ITALIAN SENSE: 19 FOR 20TH CENTURY * 
5 REM .* IF WE ASSUME 19, LINE 50 BECOMES: * 
6 REM * 50 J = INT(2~6*M - .19) + D + Y +XNT(Y/4) - 34 * 
7 REM * * 
8 REM * DATES MAY BE TESTED FOR IMPOSSIBILITY BY AN ADDITIONAL ROUTINE * 
9 REM ************.****************************************************** 
10 DATA SUN,MON,TUE,WED,THU,FRI,SAT 
20 FOR J = 0 TO 6: READ D$(J): NEXT :REM TABLE OF DAYS OF WEEK 
30 INPUT "DAY, MONTH, YEAR, CENTURY", D,M,Y,C 
40 M M-2; IF M<1 THEN M=M+12: Y=Y-l; REM LEAP YEAR ALLOWANCE 
50 J = INT (2.6*M - .19) + D + Y + INT(Y/4) + INT(C/4) - 2*C 
60 J = J - INT(J/7)*7 
70 PRINT D$(J) 
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is a short validation routine, which checks that a combination of day, month and year 
is valid, allowing for leap years (but not for 1600, 2000 etc. not being leap years). 

ROUTINE TO CALCULATE NUMBER OF DAYS BETWEEN DATES 

10 DATA 0,31,59,90,120,151.181,212,243,273,304,334: REM DAYS ELAPSED 
15 DIM (1(12) 
20 FOR .J=! TO 12: READ D(J): NEXT: REM DAYS ELAPSED BY MONTH; NOT LEAP VEAR 
99 REM *** NOTE U.S. USAGE IS M,D,Y BUT U.K. USAGE IS D,M,Y *** 
100 INPUT "DATE1"; n.M,V: CaSUB 2000 
10~> [IX = DE 
110 INPUT "DATE2"; D,M,Y; GOSUB 2000 
115 DV = DE 
116 PRINT DY-DX 
120 GOTO 100 
19QO REM ***«~************************************************************* 
1991 REM * DAYS ELAPSED BETWEEN DATES SUBROUTINE. THIS FUNCTION COMPUTES * 
19?2 REM·~ DAYS SINCE AN ARBITRARY I::AI~LY DATE IN THE CENTURY, USING * 
1993 REM * DAY OF MONTH + DAYS ELAPSED DURING YEAR + DAYS IN CENTURY * 
1994 REM!!- WITH CDRF:ECT I ON FOR PAST, AND pass t BLE PRESENT, LEAP YEARS. * 
1995 REM ******~*********************************************************** 
2000 DE : D + D(M) + 365*Y + INT (Y-l)/4) - «INT(Y/4)*4=Y) AND (M}2» 
2010 RETURN 

6200 OK=-l AND Y>81 AND Y<85 AND M>O AND M<13 AND D>O :REM Y,M,D INTEGERS ONLY 
6210 OK=OK AND D<32+(M=4 OR M=6 OR M=9 OR M=11)+(M=2)*(3+INT(Y/4)*4=Y» 

Line 6200 tests for a year of '82 to '84; obviously other values may be substituted. 

4.1.6 Error messages are used to signal to the operator that an error has b-een made. 
This short routine prints the message in reverse at the bottom of the screen, then 
deletes it after a short delay. EM$ holds the message, (e.g. 'IN SALES CODE' or 
'INV ALID DATE'), which is preceded by *** ERROR on the screen: 

12000 rem ** error message (max. length 19) with delay loop and remove ** 
12005 pr I nt" [home I [down I [down I [down I";: for I =ltol0: pr I nt" [r Ightl [down I [down I"; :next: pr I nt 

"[revsl*** ERROR "em$" [rvsol"; 
12010 for 1=1 to 2500:next 
12020 for 1=lto len(em$)+11 :pr I nt" [Ieftl [Ieftl "; : next 
12025 retur n 

4.1.7 Hard and soft coding. 'Hard coding' means that important parts of a program use 
constants; 'soft coding' means variables are used. Soft coding is usually easier to mod­
ify, but slightly more trouble to write. See the second example under MID$ in Chapter 
5 as a specimen. Section 4.1.4's coin analysis program, in which a simple change in a 
DATA statement can convert a program to run with any set of currency denominations, 
illustrates the same lesson. 

4.1.8 INPUT of data. Chapter 5 (under INPUT) and Chapter 2 outline the problems of 
the ordinary INPUT statement, and include cures, notably for the crash when Return 
alone is pressed. (The easiest solution is POKE 3,1 or POKE 14,1 or POKE 16,1 for 
BASICs 1,2, and 4 respectively). 

In order to input commas within strings, elaborate techniques using GET are 
necessary, of which the following is an example. When GOSUB 70 is called within a pro­
gram, a reasonably crashproof input results (with a flashing cursor), returning the 
string as ZZ $. Line 76 allows for the 'delete' key. As we shall see on the next page, 
this subroutine is a very small-scale version of a completely watertight INPUT. 

69 REM ** SPECIAL INPUT ROUTINE FOLLOWS, WHICH RETURNS STRING ZZ. ** 
70 ZZ. = .... : POKE 548,0: R£M LOcATIOI\l:=11.7 WI114 SASIC.2.&~!E.'C.4a(fu\S."£SCJJ.1Is~). 
72 GET lA.: IF lA.="" THEN 72 
74 IF ASC(ZA$) = 13 THEN PRINT" ";: POKE 548tl: RETURN 
76 IF ASC(ZA.) = 20 THEN GOTO 84 
78 ZZ$ = lZ$+ZA. 
80 PRINT lA$; 
82 GOTO 72 
84 IF LEN(ZZ$) 1 THEN ZZ.=LEFT.(ZZ.,LEN(ZZ.)-l): GOTO 80 
86 IF LEN(ZZ$) = 1 THEN ZZ.= .... : GOTO 80 
88 GOTD 72 
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The BASIC routine on the next page (not for the faint-hearted!) is a successful input 
routine which is fully parameterised and has the following characteristics: 

VARIABLES 'F' prefix refers to screen format: 
FT=TOTAL NUMBER OF ITEMS TO BE INPUT FROM THE SCREEN 
FC=NUMBER OF CURRENT ITEM; ALWAYS <= FT & FL=LOWEST ITEM INPUT 
FH%(), FV%(), FL%() , and FS$() hold horizontal position and vertical 
position of start of item/ maximum length/ type of field. The 'type' 
may be a string ("S"), integer ("I"), or 2-decimal point number ("N") 
'J' prefix refers to input from screen: 
JH, JV, JL, and J$ = current horizontal, vertical, length, and type. 
Jl$ is a single character, J1 its ASCII value, and JS$ the current 
input being built up. J$() holds the array of FT inputs from the 
screen. Finally, JD is a decimal-point counter. 

SUBROUTINES 100 HTAB & VTAB USING JH & JV COORDINATES; SEE CHAPTER 5 
120 GET NON-INITIAL CHARACTER WITH FULL VALIDATION 
140 NUMERAL PROCESSING ROUTINE (ENSURES DEC. PT. CORRECT) 
160 GET INITIAL. PERMITS USE OF '<' AND '>' FOR BACK/FORWARD STEP 
190 REPRINT 2 D.PT. NUMBER, ADDING '.' AND ZEROES IF ABSENT 
200 PRINT 'CURSOR', A SINGLE GRAPHICS CHARACTER 
220 DELETE SINGLE CHARACTER, REPLACE WITH SPACE 
250 ** INPUT ROUTINE ** 
300 PROCESS STEPS: '<' BACK, '>' FORWARD, WHERE POSSIBLE 

The length of each variable is defined, so screens of the sort illustrated in section 
9.3 can be used - there is no need to follow each input by a blank line. Short dem­
onstration routines (below) show how the routine is used. Unfortunately, flexibility in 
input is not very easy to achieve. The routine ignores characters which are not num­
erals, alphabetics or punctuation. The double-quote (") is ignored, and must be re­
placed by the single quote ('), because of problems which may arise in strings which 
contain a quote. All upper-case keys are ignored, except for alphabetics; shift-space 
is converted to space, and shift-return to return. In this way, fields which are to be 
compared or searched, which may appear different to the computer because space (AS­
CII 32) is held differently from shift-space (ASCII 160), are held correctly, and shift­
return, which typists naturally regard as identical to return, is treated as a normal 
return. The 'cursor' is a static graphics character, which does not flash. It can be 
controlled by the keys '<' and '>', which step through the fields on the screen either 
back or forwards. The cursor control keys are not used, since they are unfamiliar to 
typists. The previous values entered in each field are displayed, to be overwritten by 
new values if desired (but not otherwise), which speeds input. Finally, input of integ­
ers allows only 0-9; input of strings allows all alphanumerics and punctuation marks; 
and input of real numbers assumes two decimal places, and will not allow input which 
infringes this. For example, if the length of a number is specified as 6, 999.99 is the 
largest number which may be input; the attempt to enter 9999 will be disallowed. The 
decimal point, followed by 00, is automatically inserted if omitted. 

The first part of the example program defines six inputs; these are (i) a single 
letter, which must be A or B; (ii) three integers of maximum length 2, which make up 
a date; (iii) a string of length 25, perhaps a name or comment; (iv) a string of max­
imum length 3, which, if 'YES', causes the screen of data to be accepted, and process­
ing to continue. (Otherwise, '<' is used to go back to amend some entry). In practice, 
thirty or so separate entries can be made easily from a single screen. 

10000 DATA S,I,I,I,S,S :REM TYPES. NOTE THAT N=2 DECIMAL PLACE NUMBER. 
10010 FOR J=O TO 5: READ FS$(J): NEXT :REM FILL ARRAY OF TYPES 
10020 DATA 1,2,2,2,25,3:REM LENGTHS OF EACH INPUT 
10030 FOR J=O TO 5: READ FL%(J): NEXT :REM FILL ARRAY OF LENGTHS 
10040 DATA 20,10,13,16,4,3 :REM HORIZONTAL START POSITIONS - TYPICAL VALUES 
10050 FOR J=O TO 5: READ FH%(J): NEXT :REM FILL ARRAY OF HORIZONTAL POSITIONS 
10060 DATA 2,5,5,5,10,24 :REM VERTICAL START POSITIONS - TYPICAL VALUES 
10070 FOR J=O TO 5: READ FV%(J): NEXT :REM FILL ARRAY OF VERTICAL POSITIONS 

This routine must be run before any input takes place. A further subroutine prints 
the screen details from which the input will be made: again, see section 9.3 for a 
screen layout, which incorporates variables. Assuming the strings are stored in the 
array J$(), as in the example following, the screen printing subroutines looks like 
this: 
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100 REM HTAB, VTAB USING JH AND JV COORDINATES; THEN RETURN 
120 GET J1$: IF J1$="" THEN 120 
122 J1 = ASC(J1$) 
124 IF J1>127 THEN IF J1<193 OR J1>218 THEN J1=J1-128:J1$=CHR$(J1) 
126 IF J1 = 13 OR J1=20 THEN RETURN 
128 IF J$="S" THEN IF J1<32 OR J1=34 THEN J1$='''' : RETURN 
130 IF J$="I" THEN IF J1<48 OR J1>57 THEN J1$="":RETURN 
132 IF J$="N" THEN GOSUB 140 
134 RETURN 
140 IF J1<46 OR J1>57 OR J1=47 OR (JD>OANDJD=LEN(JS$)-2) THEN J1$ 
142 IF JD>LEN(JS$) THEN JD=O 
144 IF J1=46 AND JD<=LEN(JS$) AND JD>O THEN J1$="" 
146 IF J1=46 AND JD=O THEN JD=1+LEN(JS$) 
148 IF J1=46 AND JD>JL-2 THEN J1$="" 
150 IF J1<>46 AND JD=O AND LEN(JS$»JL-4 THEN J1$="" 
1;;2 RETURN 
160 GET J1$: IF J1$="" THEN 160 
163 J1=ASC(J1$):IF J1>127 THEN IF J1<193 OR J1>218 THEN J1=J1-128:J1$=CHR$(J1) 
166 IF J1=13 OR J1=20 OR J1=60 OR J1=62 THEN RETURN 
169 IFJ$="S"THEN IF J1<32 OR (J1>127ANDJ1<160) OR J1>223 ORJ1=34THEN J1$ = '''' 
172 IF J$="I" THEN IF J1<48 OR J1>57 THEN J1$="" 
175 IF J$="N" THEN IF (J1 <> 46 AND J1<48)OR J1>57 THEN J1$ = '''' 
178 IF J$="N" AND J1=46 THEN JD= 1 
181 IF J1$="" THEN 160 
184 RETURN 
190 IF JD=O THEN JS$=JS$+".":PRINT".";:JD=LEN(JS$) 
192 IF JD>LEN(JS$)-2 THEN JS$=JS$+"O":PRINT"O";:GOTO 192 
194 IF LEN(JS$)<JL THEN FOR L = LEN(JS$)TOJL-1:JS$=" "+JS$:NEXT 
196 RETURN 
200 PRINT" [LEFT] [REVS] 4 [RVSO] ";:RETURN 
220 GOSUB 100: PRINT"[LEFT] ";: RETURN 
247 REM 
248 REM ** INPUT ROUTINE FOR STRINGS, INTEGERS, & 2 D.P. NUMERALS 
249 REM 
250 JS$="": JD=O: JH=FH%(FC): JV=FV%(FC): JL=FL%(FC): J$=FS$(FC) 
253 GOSUB 100: GOSUB 200: GOSUB 160 
256 IF J1=13 AND JS$= .... THEN GOSUB220:GOT0250 
259 IF J1=60 OR J1=62 THEN GOSUB300:GOT0250 
262 IF JS$= .... THEN FOR L = 1 TO JL:PRINT" ";:NEXT 
265 IF JS$="" THEN FOR L = 1 TO JL:PRINT" [LEFT] ";:NEXT 
268 IF J1=13 AND J$="N" THEN GOSUB 190: GOTO 277 
271 IF J1=13 AND J$="I" THEN GOSUB 194: GOTO 277 
274 IF J1=13 AND LEN(JS$)<JL THEN FOR L = LEN(JS$)TOJL-1:JS$=JS$+" ":NEXT 
277 IF J1=13 THEN GOSUB 220: RETURN 
280 IF J1 = 20 THEN IF LEN(JS$) < 2 THEN PRINT "[LEFT] [LEFT]": GOTO 250 
283 IF J1 = 20 THEN JS$ = LEFT$(JS$, LEN(JS$) -1): PRINT" [LEFT] [LEFT]";: GOTO 295 
286 IF LEN(JS$»=JL THEN J1$='"' 
289 JS$ = JS$ + J1$ 
292 PRINTJ1$; 
295 GOSUB 120: GOTO 268 
300 GOSUB 220 
305 IF (FC=FL AND J1=60) OR (FC=FT AND J1=62)THEN RETURN 
310 IF J1=60 THEN PRINTJ$(FC):FC=FC-1 
315 IF J1 =62 THEN PRINTJ$(FC): FC=FC+1 
320 RETURN 

Parameterised crashproof 'INPUT' routine 

2000 PRINT "[CLEAR][RVS] TITLE [RVSOFF] 
2010 PRINT PRINT" ENTER TYPE (A or B): If; J$(O) 
2020 PRINT: PRINT: PRINT" DATE: "; J$(l); J$(2); J$(3) 
2030 PRINT: PRINT: PRINT "[RVS] ENTER FULL NAME:- [RVSOFF]": PRINT" 
2040 PRINT" [DOWN][DOWN] .. , [DOWN] Check: Entry OK? " 

"J$(4) 

This method is useful where repeat entry of data is wanted. If the data is one-off, or 
the previous values aren't carried over from entry to entry, the screen will be similar, 
but the expressions in J$() will be omitted, as J$(5) is here (because its only function 
is to wait for 'YES '). 

Finally, in addition to these preliminary routines, the actual input itself is made 
by a loop; this is necessary to permit free movement between fields during input. The 
example should make the process, and the inbuilt possibility of extra validation in add­
ition to that by type, reasonably clear:-
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1000 GOSUB 2000 
1010 FC=O: FT=5 
1020 GOSUB 250: OK=-l 

-28- 4: Effective BASIC 

:REM PRINT SCREEN 
:REM SET LOW/HIGH LIMITS 
:REM GET INPUT FROM SCREEN 

1030 IF FC=O THEN IF JS$<>"A" AND JS$<>"B" THEN OK=O:REM VALIDATE FIRST ITEM 
1040 IF FC=l 
1050 IF FC=2 
1060 IF FC=3 

THEN DD$=JS$ 
THEN DM$=JS$ 
THEN DY$=JS$: 

:REM DDMMYY ASSUMED HERE 
:REM VALIDATION ROUTINE CAN 
:REM BE USED (SEE 4.1.5) 

1070 
1080 

IF FC=4 THEN GOSUB 500 
IF NOT OK THEN GOTO 1020 

:REM SOME SORT OF VALIDATION, SETTING OK=O OR -1 
:REM REINPUT IF NOT OK 

1090 IF FC=FT AND JS$="YES" GOTO 1500 
1100 IF FC=FT THEN GOTO 1020 
1110 J$(FC)=JS$ 
1120 FC=FC+1: GOTO 1020 
1500 REM CONTINUE PROCESSING WITH FULLY-CHECKED DATA 

:REM EXIT AT BOTTOM OF SCREEN 
:REM CARRY ON IF NOT "YES" 
:REM STORE VALUE IN J$() 
:REM CARRY ON WITH NEXT ITEM 

Single-character input fills RAM remarkable rapidly, so BASICs earlier than 4 will give 
trouble with memory-freeing if there are many strings in use. (See FRE, and Chapter 
2). Suppose we input ABCD. Two sets of strings build up in memory, so RAM looks 
like this: ABCDDABCCABBAA, where each individual GET takes one byte, and each 
composite string takes up one more byte than it did previously. A little algebra gives 
In(n+3) bytes for a string of length n. So a 25-byte entry uses 350 bytes. At this 
rate, automatic FRE in memory occurs often. If this is a problem, as it may be when 
using BASIC <4, palliatives vary from restructuring the program so that data is held in 
RAM by poking and peeking, to holding several strings as one, separating out the 
individual strings with MID$ when they're needed. (If the number of strings is reduc­
ed to one-third of its previous value, garbage collection is about nine times faster).An 
alternative is to temporarily dissociate the bulk of string variables: In BASIC 2, this 
means the contents of ($34) are replaced temporarily by those of ($30), moving the 
'top of memory' to the 'bottom of strings'. Only those variables used in the routine are 
affected by FRE, which is usually much faster. To recover the remaining strings, the 
original top of memory pointers must be replaced. The addresses in decimal are 52 and 
53 ('top of memory') and 48 and 49 ('bottom of strings'). BASIC l's pointers are diff­
erent (see Ch.15). NOTE: see Ch, 77 for Commodore IS IStandard data entry environment l • 

4.1.9 The keyboard buffer is dealt with in Chapter 8, section 8.8. Chapter 5 also 
has some examples: see AUTO and DEL, amongst others. This example is a routine to 
convert machine-code into DATA statements, for later use as part of a machine-code 
loader. After the input of the start and end addresses - obviously necessary - and 
the starting linenumber, data statements are printed on the screen and incorporated 
in BASIC in direct mode. The key to the program is to note that line 60030's END does 
not actually end the program; a [HOME 1 and two Returns are forced into the keyboard 
buffer, and since the screen holds something like this: 

63000dA169,0,133,148,169,32,133,2,165,0, 
201,80,176,86,165,1,201,50,176,80,169 
1= 63000+1: s= 847: E=903: goto 60000 

on END, the cursor is homed and two returns entered; the effect is identical to that 
achieved by entering these three keys at the keyboard. Values are for BASIC>1. 

1 prlnt"[clearJDATA STATEMENT GENmATOR 
10 i np ut"start I ocat ion" ; 5 
20 input"end locatlon";e 
30 I np utili i nenumber" ; I 
60000 pr I nt" [clear J "mi d$ (str$ ( I ), 2)"dA"; :g=peek( 54 )+256*peek (55) 
50010 forj=s to e 
60020 i fpos (O)+peek ( 196»77thenpr i nt" Ileft J ": pr i nt" [home J [down J [down II ="1 "+1 : 5=" j" :e="e 

":goto"g . 
60030 Ifpos(0)+peek(196»77thenpoke623,19:poke624,13:poke625,13:poke158,3:end 
60040 pr i ntmid$(str$(peek(j» ,2)","; 
60050 next 
60060 print"lleftl ":poke623,19:poke624,13:pokeI58,2:end 

4.1 .10 Numeral packing and unpacking is a space-saving measure, sometimes useful 
when disk space is limited. It is also rather time-consuming to implement, and slows 
down the program's running to some extent. Two complementary subroutines (next 
page) convert a numeral string (e.g. "12345"), held as NS$, into a packed form NP$, 
and vice-versa. In effect the number is stored to base 100. Lines 80 and 410 contain 
32; the Object of this is to avoid some codes, e.g. CHR$(O) and CHR$(13), which may 
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not store successfully. 

1. UNPACK PACKED STRING NP$ INTO INTEGER NS$: 

BO NS$ = .... : FOR L = .1 TO L.EN (NP$): NI$:: STR$(ASC(MID$(NF'$,Ltl»--32) 
82 IF LEN(NI$){3 THEN NI$=" 0" + RIGHT$(NI$,LEN(NI$)-l': GOTD 82 
84 NS$ :: NSS + RIGHT$(NI$,2): NEXT L: RETURN 

2. PACK INTEGER STRING NS$ INTO PACKED STRING NP$: 

400 NP$="": If INT(LENCNS$)/2)*2 () LEN(NSS) THEN NS$=CHR$(32) + NSS 
405 FOR L = 1 TO LEN(NS$) STEP 2 
410 NP$ = NP$ + CHRS(VAL(i'110S(NS$,L,2) )+32) 
415 NEXT L 
420 RETURN 

DEMONSTRATION ROUTINE: 

1000 INPUT NS$: GOSUB 400: PRINT"PACKED VERSION IS "NP$ 
1010 GQSUl:! 00: PRINT"UNPACKCD VERSION IS "NS$ 
1020 GOTD 1000 

PACKS NUMBERS OF FORMAT 99999,99 WITHOUT THE DECIMAL POINT: 
480 NS$= LEFT$(ND$,5) + RIGHTS(ND$,2) 
484 GaSUe 400 
4BB RETURN 

4.1.11 Rounding is the process of converting and representing a number in a less 
accurate, but more convenient, form: $10 plus 15% is $11.50; $10.45 plus 15% is 
$12.0175; to two decimal places these are 11. 50 and 12.02 respectively. (I have not 
considered the question of relative accuracy here, i.e. accuracy to a certain number 
of significant digits). A good rounding routine may format the number to a known 
length with leading spaces, insert (for example) '.00' after a plain integer, and put in 
a leading zero in the case of numbers less than 1. Poor routines may put the decimal 
point in the wrong place, produce spurious values, or print characters like 'E', on 
occasion. Alignment may be difficult, and zeroes not treated as a special case. 

DEF FN P{X) = INT(LOG(ABS(X)+.OOl)/LOG(10» 

is intended to calculate the number of places before the decimal point; but there may 
be very occasional errors in the calculations of the logarithms. This expression: 

DEF FN R(X) = INT(100*X + .5)/100 

rounds X to the nearest 2 decimal places: adding .5 has the effect of converting a 
number with decimal component greater than .5 into the next highest number on INT. 
This, on PRINT X, gives the usual 1. 3 (not 1. 30) for 1. 3, and 1 (not 1. 00) for 1. 

The following more comprehensive routine is intended to round and format numb­
ers as suggested above. Apart from intermediate variables, the routine uses L to store 
the number to be rounded, RQ ('rounding quantity') as a measure of accuracy, and 
L2 to determine the type of rounding. RQ=100, for example, rounds to 2 decimal places, 
and RQ=1000 to 3. When RQ=100, L2=.005 rounds to the nearest; L2=O rounds down; 
and L2=.995 rounds up. 

92 L=INT{L*RQ+L2)/RQ: JS$=STR$(L): JS$=MID$(JS$,2) 
93 JL=LEN{JS$): IF JL>2 THEN IF MID$(JS$,JL-2,1)="." GOTO 96 
94 IF JL>l THEN IF MID$(JS$,JL-1,l)="." THEN JS$=JS$+"O": GOTO 96 
95 JS$=JS$+".OO" 
96 IF LEFT$(JS$,l)="." THEN JS$="O"+JS$ 
97 IF LEN(JS$)<l1 THEN FOR J=LEN(JS$) TO 10: JS$=" "+JS$: NEXT 
98 RETURN 

Line 92 computes a rounded string, without a leading space. 
Line 93 branches on numbers like 123.45, 9999.99, 1.23, and .67. 
Line 94 adds a zero to numbers like .5, 123.4, and 99999.9. 
Line 95 converts integers to 2 dec. pt. form, e.g. 1234 into 1234.00. 
Line 96 adds a leading zero to numbers like .5, .12. 
Line 97 adds leading spaces up to a predetermined length (11 characters here). 
The routine is intended for positive numbers> .01, 
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BASIC rounding routines always have a residual uncertainty about them, because the 
effects of rounding by the calculation routines aren't certain. Chapter 5's PRINT 
USING avoids this difficulty, since it edits the number before output; it is also faster. 
Whenever a rounding routine is to be used, unless it has been previously tested, it is 
good practice to write a test routine to generate numbers to be rounded; either at 
random or in a sequence. It is usually impossible to test each individual value. 

11.1. 12 RAM data storage has two forms: data may be poked and peeked in some fixed 
part of RAM, typically near the top, or it may be processed by arrays in the normal 
way, but differ from normal file-handling in being loaded and saved directly from RAM. 
The first method is useful in association with machine-code: a set of names, key numb­
ers or indexes can be searched in RAM virtually instantaneously, cutting down on disk 
or tape use. The second approach also cuts down on input/ output, and, provided 
that the whole of a batch of data fits RAM, can lead to very efficient processing; for 
example, a 10K program can coexist with (say) 10000 integers stored in 20K of arrays, 
and both the program and data could be loaded from tape, providing economical pro­
cessing of quite a large amount of data. The technique is fairly tricky. As we saw in 
Chapter 2, the program starts in RAM at $0400 and is followed by a block containing 
all the variables, string pointers, and function definitions so far encountered in the 
running of the program; after this comes a block of arrays and string array pointers. 
If we have integer arrays only, and if every variable is set up already, the position 
of the integer arrays is known, so that they can be saved and reloaded freely. Pro­
grams using this method will have a layout of this sort: 

Set (or LOAD) pointers to the correct pOSitions for variables and arrays 
LOAD stored arrays of data 

Menu 

Menu option to save stored data to disk/ tape 

The first time round, with no variables in memory and no data yet on disk, a starting 
up procedure is necessary. This involves (a) entering all the variables in direct mode 
in optimum sequence, e.g. J=O:KK=O:IN$="". (b) Dimensioning all arrays. (c) GOTO 
the line after 'LOAD stored arrays of data'. The menu will be displayed, and all the 
variables are in place. The program must be STOPped to peek the pointers needed to 
save and to reload. If the program is edited, this process will have to be repeated, 
since the position of the data varies with the program length. 

Section 4.1.17 has an example of this method in use. 

4.1.13 Searching is necessary whenever a file structure provides no way of calcul­
ating the position of a record. Chapter 6 has a long section on disk files, which looks 
at this problem. With CBM disks, 'relative files' (accessed by record number) or dir­
ect access files (which must be specially written) enable a record to be found very 
rapidly; sequential files of any length are much slower. But often the record number 
of a relative file may not be known, or may be less convenient than (say) entering a 
name or phone number and waiting for the corresponding record to be read. Chapter 
6 explains how such files may be subdivided, so the searching process is accelerated. 

We may distinguish between searches in RAM and those which read data from 
disk. In the first type, machine-code searches are so fast that the data need not be 
ordered or arranged in any way. It is fast enough, normally, to scan from the start 
to the finish, without elaboration. Section 6.7 has a fairly long example, including both 
BASIC and a machine-code subroutine. However, when searching from disk, this may 
be too slow. As we saw in Chapter 3, under these circumstances a search which con­

ver.ges on the sought value is usual. The 'binary chop' is the best-known, and is easy 
to program. (The 'Fibonacci search' is faster, but less easily programmed). It requires 
that its data be in sorted order. This diagram shows how the convergence takes place: 

ITEM NUMBER IN SEQUENCE: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
NUMBER OF SEARCHES TAKEN: 4 3 4 5 2 5 3 4 5 1 4 3 4 5 2 4 5 3 4 5 

using the algorithm on the next page, and applying it to 20 items of data. We can cal­
culate the average number of searches used by the binary chop, by amount of data: 

NUMBER OF ITEMS OF DATA: 200 2000 9000 
AVERAGE NUMBER OF SEARCHES: 
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x Input and validate item to be searched for (say, K$ = key item). 
NI and N2 set to current low and high record numbers 

y R = INT«NI+N2)/2) :REM CALCULATE NEW MID-POINT 
Read the appropriate field of record no. R; say R$ 
IF R$=K$ GOTO z :REM FOUND IT! 
IF Nl>=N2 THEN PRINT "RECORD 
IF R$>K$ THEN N2=R-l: GOTO y 
Nl=R+l: GOTO y 

NOT ON FILE": GOTO x:REM NON-EXISTENT 
:REM REVISE UPPER LIMIT DOWN 
:REM REVISE LOWER LIMIT UP 

z Continue processing the record 

This schematic program of the binary chop search is, I hope, self-explanatory. N! and 
N2 converge, sandwiching the correct value of R between them. Note that records 
needn't be disk-based; they could as easily be a sorted array in RAM, in which case 
the test line would read IF R$(R)=K$ GOTO z. Tryout this technique before implem­
enting a large system, generating test-data with a program, and timing the result. It 
may be too slow, depending on the disk sy stem and size of file. 

4.1 .14 Sorting is an important operation in commercial data processing. (COBOL has 
a SORT verb). Chapter 5 has a collection of routines, mostly in BASIC, with notes. 
The first example, the 'tournament' sort, is unlike all the others in computing individ­
ual results singly, so that results can be printed continually, before all the values 
are ordered. Most sorts wait until the entire batch of data has been ordered, and 
this can be irritating to wait for and slightly worrying, as the machine may appear to 
do nothing for long periods. The 'bubble' sort has achieved fame through being very 
slow. It operates by checking neighbouring values in the array, interchanging those 
which are out of sequence, and repeating this process until the sort is guaranteed, or 
until any pass takes place without a transposition, depending on the algorithm. That 
in Chapter 5 (section 5.3) has a test in line 620 which uses a 'finished' flag. The sort 
is assumed to be in ascending order, and after every pass another value is positioned 
at its correct value at the 'top' of the heap, unless, with a partly-sorted set of data, 
many items are simultaneously sorted. To illustrate the idea, seven figures in the left­
hand column are shown sorted (in five passes) in the right-hand column. 

4 
7 
1 
3 
5 
2 
6 

7 
4 
6 
1 
3 
5 
2 

7 
6 
4 
5 
1 
3 
2 

7 
6 
5 
4 
3 
1 
2 

7 
6 
5 
4 
3 
2 
1 

Starting at the bottom of the set of data, each 
item is compared with its immediate neighbour 
and interchanged if it is out of sequence. The 
process is repeated to a distance up the data 
which depends on the previous number of 
passes; the underlined digit represents the top 
limit in each pass. With n items of data, a 
maximum of n + (n-l) + (n- 2) + ... passes is 

required, making about in 2 in all. On this basis it is often said that the bubble sort 
takes time proportional to the square of the number of items to be sorted. However, 
the correct time is very sensitive to partial ordering of the data. The graph at the 
end of SORT shows that new items, added to an already sorted array, then bubble 
sorted together, is very fast; in fact, under these circumstances, the bubble sort is 
one of the fastest possible, since it does little more than check that each item is corr­
ectly related to its neighbour, which is necessary in any sorting system. The machine­
code sort operates on string arrays, changing the pointers where appropriate, and 
using the identical comparison to that of BASIC, for consistency. It does not sort the 
zeroth element, which can therefore be used as a title or reminder. If new items are 
to be sorted in, keep a number of null or blank elements at the start of the array. 
As the diagram illustrates, high values (e. g. 6) can rise quickly from the bottom, but 
low values (e. g. 1) are slow in descending. Note finally that the machine-code can be 
made to sort from the second, third, ... , characters of the string, rather than the 
first, by changing $FF in $032E (BASIC 1), or $7FB6 (BASIC>!) to 0 (second), ! 
(third), ... A demonstration BASIC routine is provided with the machine-code. Of the 
other sorts, the Shell-Metzner and Quicksort are well-known; the former performs many 
small bubble sorts on longitudinal subsets of the data; the latter compares data with a 
'pivot value', putting the result into one or other 'stack' depending on the result. It 
may run out of space; if so, dimension the array in line 40 with a larger value. The 
'scatter' sort is an attempt to mimic human sorting: a subsidiary array is used, into 
which data is first roughly sorted, on some a priori basis, for example with the As at 
the beginning, Zs at the end, and others in between. Then this array is sorted thor­
oughly. Its use of RAM is too great to permit the method to be very useful on micros. 
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4.1.15 String handling. CBM BASIC has three closely related string functions, LEFT $, 
MID$, and RIGHT$, each of which extracts a substring from a string. Chapter 5 has 
examples of the use of each function, and an additional function INSTRING$, which 
helps illustrate machine-code string handling. Strings can be represented by variables 
or literals (e.g. X$ or "XYZ"), and also by the type-conversion functions CHR$ and 
STR$. Substrings can be concatenated (=chained) together with the binary operator 
'+', and in fact any conceivable rearrangement of strings is possible with + and the 
LEFT$, MID$, and RIGHT$ commands. In many cases, MID$ alone can be used. Note, 
however, that a string's length cannot exceed 255 bytes, because of the storage method 
used by BASIC. Typical string processing includes the following: 

(i) The use of extended, composite strings. The components need not be the 
same length, but for ease of programming this is usual. 

x$="J6J6J6SundayJ6)IS)IMondayJ6J6Tues dayWednesday)frhursdayJ6J6J6Fri dayJ6Sa turday" 
print mid$(x$,(d-1)*9+1,9) 

Each substring is 9 bytes long (16 represents one space character), because the long­
est component is "Wednesday". The second expression prints a substring of length 9 
corresponding to the d'th day's name, where d=1 to 7. 

(ii) Padding a string with leading or trailing spaces, so that alignment is auto­
matic on printing out. The obvious way is to add individual spaces: 

FOR J=LEN(S$) TO 19: S$="J6"+S$: NEXT :REM PADS STRINGS OF LENGTH <20 TO 20 
A quicker and more elegant way (which also uses less RAM, and is therefore better 
with BASIC<4) is to add the entire substring in a single chunk: 

S$ = LEFT$("J6J6J6J6J6J6J6J6J6J6J6J6J6J6J6J6",20-LEN(S$» + S$: REM PADS STRING TO LENGTH 20 
(iii) Scanning a string for certain alphanumerics. In such activities as checking 

a response for accuracy in foreign-language (or English!) teaching, and playing hang­
man, a FOR ... NEXT loop can examine the string. Let's consider hangman, the word':' 
matching game, where W$ is the target word, L$ a guessed letter, which, if it exists 
within W$, appears in the display D$. Typically, W$ will be selected by some such 
routine as this: RESTORE: FOR J=lTO RND(l)*201: READ W$: NEXT: REM ASSUMES 200 WORDS 
Then D$ is generated with: D$=LEFT$("----------------------",LEN(W$». This gives a 
string of hyphens of the same length as the target word. We now put: D$="J6"+D$+"J6", 
which is a slight subtlety, enabling us to use only single-line processing, without 
having to take account of special cases when the first or last letter has been selected. 
Now, for each letter L$, 

FOR J=l TO LEN(W$) 
IF L$=MID$(W$,J,l) THEN GOSUB x: PRINT "[HOME]D$ :REM ASSUMES DISPLAY AT TOP 
NEXT 

W$ is scanned from beginning to end; if a match is found, the string D$ is revised and 
printed over its previous value. If a letter occurs several times in W$ the process re­
peats, but is fast enough for the process not to be visible. The subroutine which up­
dates D$ has to insert L$ within D$ at the correct position defined by variable J: 

x D$=LEFT$(D$,J) + L$ + RIGHT$(D$,LEN(D$)-J-1): RETURN 
(iv) Note on BASIC 4: A rare bug may occur when concatenating more than two 

strings, and when fewer than $300 bytes of RAM are free; the string is corrupted. 

4.1.16 Validation is the process of checking that data is of the correct type, without 
necessarily guaranteeing the actual value. A date 19/19/82 is invalid, but if it is accept­
ed may cause processing errors, and so will be rejected by most systems. The date 
3/5/82 is valid, but may not be correct. Similarly, '20' may be an acceptable entry for 
a sum of money, but 'twenty' may not. 

The simpler forms of validation repeat the request for data in the event of an 
incorrect entry: 

100 INPUT "DISK DRIVE NUMBER"; D$ : REM D$ WILL ACCEPT ANYTHING 
110 D=VAL(D$): IF D<>INT(D) OR D<O OR D>l GOTO 100 :REM INTEGER 0 OR 1 ONLY. 

More sophisticated checking may include error messages (see 4.1. 6) and soft-coding to 
enable acceptable entries to be modified. This batch of subroutines has tests for four 
variables, and was used with a crashproofed INPUT routine: 

500 If js$="Y" or js$="N" then return 
503 ok=O:em$=" Y or N only" :gosub 800: return 
510 nl$="ABCXlEFGJKMPTVWX": for 1=1 to len(nl$):lf js$=mld$(nl$,I,l> then return 
513 next: ok=O:em$="ln sales code":gosub800:return 
520 nl$="04123": for 1=1 to len(nl$): If js$=mldS(nIS,I,1) then j5=1: return 
523 next: ok=O: em$="ln VAT code":gosub800: return 
530 If (asc(js$»192 and asc(js$)<219) or asc(jsS)=32 then return 
533 ok=O: emS="ln Foreign code":gosub800: return 
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4.1. 17 Arrays (subscripted variables) provide a powerful extension to the usual sys­
tem of simple variables, and are well worth mastering for any serious application. The 
principle is to provide a whole series of strings or numbers with a single name, using a 
subscript to distinguish the separate elements. Chapter 5 (see DIM) has information on 
the use of arrays; Chapter 2 explains their storage methods and the pointers which 
keep track of the data. Arrays of numbers, subject to their own rules of addition, sub­
traction and multiplication, are called 'matrices': see Chapter 16 on this. We can think 
of arrays as belonging to one of two classes: 'one dimensional' and 'multi-dimensional'. 
The latter are conceptually more difficult, so it makes sense to start with the first type:-

One-dimensional arrays are variables with a single subscript, which may take any value 
from 0 to the dimension of the array in DIM. (If no DIM statement was used, a default 
value of 10 is assigned). Unless an item is specifically assigned a value, it will be 
stored as 0 (numeral) or the null character (string array). The array can be visualised 
as a set of consecutively-numbered pigeon-holes, which are filled with a data-item, num­
eric, integer, or string, by the usual methods of assignment. 

10 INPUT N: DIM A$(N): FOR J=O TO N: INPUT A$(J): NEXT 
inputs the size of the array, then a series of elements to fill it, and can be regarded 
as the array version of INPUT. Similarly the stored results can be output by 

20 FOR J=O TO N: PRINT A$(J): NEXT 
A typical application of these arrays is the look-up table. For example, an array might 
hold opcodes for machine-code: A$(O)="BRK", A$(1)="ORA", and so on. Then there is 
a simple relationship between a peeked value of a location (say, P) and the string A$(P). 
A numeric array could hold the values of the locations of the start of each line on the 
screen; DIM L(24) could hold each value from 32768 up. Then the location of the ninth 
character along line fifteen is L(15)+9. A fifty-two element array might hold all the 
cards in a pack. As mentioned in Chapter 5, the zeroth element can be reserved for 
special purposes, typically for averages or totals _ Other uses inel ude the storage of 
values for sorting. The sorts in Chapter 5 all operate on string arrays, which could 
consist of a key (name, catalogue number, reference) followed by a relative-file record 
number. An array variable is slower to process than a simple variable, because of the 
processing overhead associated with its subscript. Nevertheless, access is faster than 
some calculations and function evaluations, so look-up tables are sometimes used to speed 
up programs which contain repetitive calculations on a limited range of arguments_ For 
instance, it may be worthwhile to set up a table holding present values of money over a 
number of years, or of square roots from 1 to 100. 

Arrays are useful in games and problems of the board-game or rectangular grid 
type, and we can use this topic as a bridge to multi-dimensional arrays. Ingenious 
applications of single-dimension arrays where more dimensions appear appropriate include 
the '8 queens' problem, where the object is to arrange 8 chess queens on a chessboard 
so that none attacks any other. An array of only 8 numbers can represent the board; 
each value must be different, and from 1- 8 to denote the position of that column's 
queen. Diagonals are tested by a difference method which the diagram illustrates, the 
first example passing all tests and the second having two attacking queen pairs: 

1641582731 1473815621 
'E==:3C 'CJ' 

Another ingenious algorithm is that for assessing card strengths in five-card poker: the 
hand is sorted, and the four consecutive differences evaluated. Of these, there are only 
three of importance: 0,1, and any other value, corresponding respectively to pairs (or 
threes or fours), straights, and others. The 34 (=81) possible values can be assessed 
by an array. Chess games are usually stored as an 8 by 8 array, pieces being rep­
resented by a positive or negative number (representing colour) of value related to 
the importance of the piece. 

Multi-dimensional arrays have more than one subscript; the maximum is 255_ It is al­
ways possible, though inconvenient, to simUlate such arrays by partitioning single-dim­
ension arrays, so there are BASICs which permit only one subscript. A simple two-dim­
ensional example shows how the contents of the array dimensioned by DIM A$(1,7) 
might be stored: A$() 0 1 2 3 4 5 6 7 

0 "POSITIVE" "HOT" "ON" "LARGE" "HIGH" "WARM" "CALM" "WELL" 
1 "NEGATIVE" "COLD" "OFF" "SMALL" "LOW" "COOL" "ROUGH" "ILL" 

So that INPUT A$(O,3) had taken ill LARGE from the keyboard, or been asslgned ill a 
program, and PRINT A$(1,7) prints the word "ILL" _ Note that an array with n dimen­
sions usually requires n nested loops to input or output all its data. 
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These arrays are valuable for storing data for business reports, as the example shows. 
The schematic BASIC routine demonstrates the logic which was used to generate the 
reports (which are incomplete here, for reasons of space restriction). It should be self­
explanatory. The only subtle point is the use of an additional code of each type; this is 
an overflow or 'wastebasket', into which unrecognised items are put. In each case the 
contents of this extra, non-existent code should be zero. For example, if a sales code 
had somehow been recorded as "%", J would take the value 15 on leaving line 100. 

FOR ALL RECORDS: READ SALES CODE S$, ORIGIN CODE 0$, AGE CODE A (1-8), VALUE V 
100 FOR J=l TO 14: IF S$<>MID$("ABCDEFGJKMPTVX",J,l) THEN NEXT 

NEXT 

110 SA(J,A) = SA(J,A) + V 
120 FOR J=l TO 10: IF O$<>IIID$("BCFGHOPQSU",J,l) THEN NEXT 
130 O(J) = O(J) + V: O(~)=O(~) + V 

FOR J=l TO 15: FOR K=l TO 9: SA(J,O)=SA(J,O) + SA(J,K): NEXT: NEXT 
At the end of this process, array SAO holds values by sales code and age code, and 
o () holds the same values by origin code. Totals are held in the zero elements. 

TOTALS BY SALES CODE A~D AGE mDE 

SALES CODE: A 10343.00 SALES CODE: 8 15275.71 SALES CODE: C 38916.11 SAl.ES melE: c 798.42 
Ago Code: 1 8152.35 Ano Conc: 1 10720.77 A9" Code: 1 28721.49 Age Codo: I 507.24 
Age Codo: 2 1256.08 A[jo Code: 2 3128.44 Ago Code: 2 5296.83 Ar:;fJ CoJo: 2 152.Ci8 
Age Code: 3 )37.19 Age Code: 3 541.57 t\:y:: Code: 3 3025.52 AO'" f;DrlC: 3 139.10 
Ago Code: 4 150.49 A~·jH Coce: 4 365.40 /,')0 COd3: 4 662.1.6 A~~(~ Code: " 0.00 
/'90 Code: 5 388.40 AJo Cod,,: 5 490.01 ".Jo r.ode: 5 1111.06 F,rvJ Code: c 0.00 .J 

Age Code: 6 50.49 Age Code: 6 ;'9.52 Aoo Coda: 6 913.75 "go Code: 6 0.00 
Ago Code: 7 0.00 Ago Code: 7 0.00 Age Code: 7 0.00 A~9 Code: 7 0.00 
Age Codo: g 0.00 I'.go Code: 8 0.00 A.tjr, Code: 8 0.00 o\JG Code: 8 0.00 
Agn Code: ') 0.00 Age Coda: 9 0.00 Ago Codo: 9 0.00 A~o Coda: 9 0.00 

SALES CODE: E 0.00 SALES CO[)E: F 20185.51 SALES CODE: G 1513.80 SALES OJDE: J ;3237.6n 
A,]" Code: 1 O.OC Ago Code: 1 15037.31 Agr. Code: 1 1592.flO t'\~]e Code: 1 123U3.31 
Age Code: 2 0.00 Ago Code: 2 3302.80 Age Co~o: 2 21.00 AQe Code: 2 3232.12 

SUMI·1ARI ES BY SALES CODE,ORiGIN CODE & AGE mOE 

SALE S mOE: A 10343.00 ORI GIN m[)E: 8 157.01 AGE CODE: 1 8<l536.'IS 
SALES CODE: B 15275.71 ORIGIN ()):JE: C 223.715 AGE CODE: 2 19006.55 
SALES CO[)E: C 38916.11 ORIGI'J CODE: F 2527.49 AGE CXlOE: 3 8255.23 
SALES CODE: [) 798.42 ORIGI'J CODE: " 0.00 AGE COflE: 4 '092.1)6 
SAL[S CODE: E 0.00 ORIGIN CODE: H 0.00 AGE CODE: 5 .3473.'jf} 
SALES CODE: F 20185.51 ORIGIN COr)E: 0 59 n'5.17 AGE CODE: f) 317.53 
SALES CODE: G 1613.110 ORI SI \I CODE: P 36286.15 AGE CODE: 7 0.00 
SALES ceDE: J 13237.68 ORI·JI'J CODE: 0 238.1)0 AGE CXlDE: 8 0.00 
SALES COnE: K 173.60 ORIGI', CODE: S 13666.17 AGE mOE: <) 0.00 
SALES mOE: '., 16313.35 ClHGI N CODE: U 9518.18 AGE mOE: o.co 
SALES COOE: p 546.59 ORI GIN CODE': 0.01 
SALES CODE: T 0.00 
SALES CODE: V 0.00 
Sf,Lr S CODE: X 78.17 
Sf.LES CODE: 0.01 
HlT"L flY SI,L E S mDE: 122481.95 TOTAL BY OOIGHJ C,)::>E: 1224Bl.95 TOTAL BY AGE moo:: 1?'?41l1.95 

Two-dimensional arrays may be used to store quite large quantities of data (about 32K 
less the space occupied by BASIC) very efficiently. Integer arrays, which store numb­
ers from -32768 to 32767 in only 2 bytes, are particularly efficient. They can be saved 
and reloaded en bloc to disk, providing rapid access to a lot of data with little disk 
drive use. To understand the approach, read the next few paragraphs carefully. 

The example we'll consider is a garment inventory system. Its volumes of data 
are: 50 cloth types, identified by a four-digit number. 

Each cloth is available in 1 to 12 colours; the average is about 4. 
Each cloth / colour combination has 1 to 8 styles of garment; that is, a cloth in 

blue may be made into only one type of jacket; the same cloth in brown may be made 
into two other designs. 

Each garment is produced in six sizes. 
At each level of complexity, details about the cloth or the clothes are stored; for 

example the cloth width is recorded for every cloth type, and, at a more detailed level, 
the quantity in stock of every size of each garment is required. 

We can store the data in arrays like this: 
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C%(SO,4) 

o 
o 3 
1 1101 
2 149 
3 065 
4 0 

5 0 

1 2 
o 0 
2 1 
5 12 
3 10 
o 0 

o 0 

3 4 
o 0 

60 2 
36 7 
60 10 
o 0 

o 0 

C%(O,O)= Total number of 
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M%(200,3) 

o 1 
o 0 
3 200 
4 50 
1 100 
2 200 
3 250 
7 800 

100 

2 
o 
2 
3 
1 
1 
4 
6 
3 

3 
o 
2 
5 
6 
7 

11 
17 
20 

6 200 2 22 
6 200 2 24 

20 0 0 0 0 

5 %( 800,2) 

o 1 
o 0 

99 121 
210 
022 
220 
004 

50 001 

2 
o 
6 

12 
18 
24 
30 
36 
42 
48 
54 

001 60 

o 0 
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SZ%( 4800) 

o 
1 

9 
10 
11 

o 
44 
17 

8 
23 
90 
12 
10 
10 
10 
12 
25 

12 23 

0 ..... . 
4800 0 

cloths entered 
C%(n,O)= Cloth number 
C%(n,l)= No. of colours 
C%(n,2)= Delivery date 
C%(n,3)= Cloth width 
C%(n,4)= Cumulative no. 

M%(n,O)= Colour codes 
M%(n,l)= Length stored 
M%(n,2)= No. of styles 
M%(n,3)= Cumulative no. 

S%(n,O)= Telephone 
of colours orders SZ%(n)= 

of styles 
S%(n,l)= Style code inventory+ 
S%(n,2)= Cumulative some other 

no. of sizes data 

Together, these arrays occupy 16160 bytes (including the array overheads. See Chap­
ter 2). The brackets show the way in which one array is dependent on the earlier 
array. The details, once set up, are difficult to alter, because all the subsequent 
details are stored immediately after, leaving no room for manoeuvre. C%(O,O) currently 
holds 3, showing that only three cloths' data has been keyed in so far. When the next 
cloth is entered, the fourth row of C %() will fill, 1 - 12 rows of M%() will depend on 
this, and a maximum of 96 rows in S %() may be filled in turn. Finally, SZ %0 has from 
1 to 576 elements filled. The cumulative frequency pointers (which are not strictly 
necessary) make this scheme fairly easy to implement. However, BASIC programs which 
store data like this are amongst the most difficult to decipher of any BASIC, the prob­
lems increasing with the number of arrays. Whether this is undesirable depends on 
one's point of view. Some short extracts from programs show the type of program to 
expect: 

S%«M%«C%(N-l,4) + M - 1),4) + K),O) = P : REM TELEPHONE ORDERS 
SZ%(S%(J + K - 1,1) + U) = SZ%(S%(J + K - 1 ,1) + U) + S REM UPDATE STOCK POSN 
PRINT M%(C%(N-l,4) + M ,1) : REM PRINTS AVAILABLE STOCK 

Multi-dimensional arrays with more than two dimensions 
are not used much, probably because of the difficulty of 
visualizing the data's storage pattern within its arrays. 
The diagram (right) illustrates a three-dimensional array, 
set up by the statement DIM X(15,20,3). Since zero ele­
ments are allowed, the array's 'pigeonholes' occupy 16 by 
21 by 4 locations. Assuming a conventional order or rows, 
then columns, then depth, leads to the diagram, in which 
for instance X(O,O,O) is the top-left element in the 2-dim­
ensional array on top of the heap, and X(1, 2, 3) occupies 
row 1 and column 2 of the array at the bottom of the heap. 
Four-dimensional arrays can be pictured as several stacks 
of three-dimension arrays arranged side-by-side. After 
this, depiction becomes progressively more com plica ted. 
The maximum number of dimensions is 255 (see Chapter 2). 
In practice, shortage of RAM will make this figure, or anything like it, impossible. 
Section 2.3 of Chapter 2 explains the calculations necessary to determine the total 
number of bytes taken up in RAM by any array. 
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4.2 Debugging BASIC programs 

This section lists common faults in BASIC programming. While such a list cannot hope to 
be exhaustive, it should help in pinpointing errors. 

Peculiarities of BASIC. These include a few bugs. 
ASC of a null character doesn't evaluate as 0, but crashes. 
CLOSE doesn't properly close an IEEE file without PRINT # to the file. 
DAT A statements may give trouble if new DATA statements are inserted before them. 
FOR ... NEXT occasionally behaves oddly: see Chapter 5 on this. 
FRE may be slow in BASICs 1 and 2. See for example Chapter 2. 
INPUT crashes on Return; also input from a file prints no warning message if extra 

data (e.g. separated by commas) has been read in. 
LEFT$, RIGHT$ may crash if the numeric part of the argument is o. 
PRINT attempts to print anything it is given; a stray '.' appears as 0, for instance . 
. S saves machine code, omitting the final byte; so add 1 to the end address. 
STR$ introduces a leading space into positive numbers. 
TAB and SPC have some quirks carried over from CBM BASIC's ancestors. 

Numerals are held and formatted to a certain degree of accuracy; see Chapter 13. 
Strings have a maximum length of 255; attempts to exceed this give ?string too long. 
Some mathematical functions will not accept certain values without error. 
CBM disks: see the end of Chapter 6 for a summary of possible bugs. 
Differences between BASIC ROMs are outlined in Chapter 2 and explained elsewhere in 

detail. BASIC 4 disk commands, and SYS calls to ROM, are nearly always 
incompatible between BASICs. 

Syntax errors are usually fairly self-explanatory. These cases may be difficult: 
(i) Included keywords. Misprints are particularly easy with logical constructions, 

because these are largely alphabetic. IF A=B OF C=D reads IF A=BO=D for example. 
(ii) ?OUT OF MEMORY has diverse causes:-

i. Too many levels of brackets, especially within loops and subroutines. 
ii. Absence of POP causing RETURNs to build up on the stack. See Chapter 

5. Example: IF ASC(IN$)=27 THEN POP:GOTO MENU correctly aborts input. 
111. Insufficient RAM, especially with large arrays. 
iv. Can occur when start and end of program pointers are altered. 

Incorrect processing, without Syntax error indication is often caused by one of these:­
(i) Variable name repeated by mistake. See Chapter 2's variable name list. 
(ii) Variable value changed in error. Typically FOR L=l TO 10: GOSUB 100: NEXT 
(iii) Wrong meaning of a statement. Very common with logical expressions. 
(iv) Subroutines may be poorly structured, so program flow drops through. 
(v) Omission of 'FN' will cause a function to be read as an array. Example: PRINT FN 

DEEK(X) mistyped as PRINT DEEK(X) is interpreted PRINT DE(X). 

Errors caused by assuming a software setup appear when a program is re-run but not 
preceded by a setting-up program; examples include failure to specify the screen char­
acter set, failure to change memory pointers, failure to send control commands to the 
printer, and sometimes the use of LOAD within a program. Operators accustomed to a 
rigorous input validation may not adapt to the oc;:casional use of INPUT. 

Systematic, recurrent errors are usually caused by faults in the logic of programs: 
(i) The zeroth or last entries in buffers may be omitted or misplaced. 
(ii) Graphics or data-storage POKEs may change strings, variables, BASIC, or 

machine-code. 
(iii) Keyboard entries at the wrong time or of the wrong sort may corrupt data, for 

example where an ESCape key allows exit from any routine back to the menu. 
(iv) The logic of (say) a merge may be faulty in special cases. Identifying these 

may be difficult, requiring a painstaking dry run through the code. 

Hardware problems can be detected by test programs. But during the course of run­
ning programs, trivial hardware problems may be overlooked: 

(i) Shift-lock on causes the screen appearance of inputs to be odd, and may cause 
apparently valid key entries to be rejected. 

(ii) A printer may lack paper or ribbon, or not be online, and so fail to function. 
It may be wrongly set. 

(iii) Disk drives may be off or disconnected. 
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CHAPTER 5: ALPHABETIC REFERENCE TO BASIC KEYWORDS 

This chapter lists all CBM BASIC keywords with explanations, examples, notes, and 
details of their operation at machine-code level. It should be useful to the learner, and 
also provide a convenient source of reference to experienced programmers who wish to 
check up on programming queries of the sort which inevitably arise in the course of 
writing programs. I have occasionally drawn attention to differences between CBM 
BASIC and other dialects of BASIC. The format of the explanations is roughly consist­
ent for each keyword, which appears in bold type at the top of the page. Normal type 
indicates 'keywords' which are not present in CBM BASIC, but which can be written 
for it or adapted from other sources, or obtained in software form or as plug-in 
EPROMs. BASIC 4's specifically disk oriented keywords are listed in Chapter 7. 

Note on BASIC operators. 

When a string expression or arithmetic expression is evaluated, the result depends on 
(a) the priority assigned to each operator, and 
(b) the presence of parentheses. 
Parentheses, in either string or arithmetic calculations, have the effect of ensuring 
that the entire expression within parentheses is evaluated as a unit. In the absence 
of parentheses, priority is assigned to operators in this order, starting high: 

; 
+ -

* / 
+ -

< > 
NOT 
AND 
OR 

Power 
Unary plus and minus 
Multiply and divide 
Binary plus and minus 
Comparisons less than, equal 
Logical NOT - unary operator 
Logical AND - binary operator 
Logical OR - binary operator 

to, greater than 

The arithmetic operators are relatively familiar and straightforward. Note the high 
priority of unary plus and minus; the point of this is illustrated by expressions like: 

2;-4*3 and 6 + - 3 and -1234 * - 2345 , 

which otherwise are meaningless. CBM BASIC evaluates a 'true' statement as -1, and 
a 'false' statement as O. These are not standard between computers; Apple for example 
has true = 1, and other differences in interpretation. CBM comparisons are straight­
forward with numerals, but less so with strings, which are compared as far as the 
shorter string. So "1" as a string is < "10", but also "5" is > "449". CBM BASIC's 
logical operators use a 16-bit, 2-byte system; this means that 'true', which is printed 
as -1, is held as #FFFF. The maximum range of arguments for logical expressions is 
therefore -32768 to 32767. PRINT NOT 32768, for example, gives an error. Because 
NOT flips the 16 bits of the argument, X plus NOT X always add to -1, so NOT 10 is 
-11. 

It is important to realise that the lower priority operators have the largest 
sphere of influence, as it might be called. Ordinary arithmetic illustrates this in many 
ways: 2x + 1 is immediately seen to be twice x, plus 1. With the less common logical 
and comparison operators, this is rather easier to forget. See for example note 13] 
to AND. 
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ABS 
BASIC arithmetic function 

PURPOSE: Computes the absolute value of the arithmetic expression in parentheses 
following ABS. In other words, ABS makes a negative number or expression 
positive. This function has some applications in programming with numbers; 
it is not a major feature of BASIC. 

Syntax: ABS (arithmetic expression). A string expression, or incorrect arithmetic 
expression, will generate one of a number of errors, including syntax, type 
mismatch, and division by zero errors. An expression which, when evaluated, 
is too large, causes an overflow error. Like all functions, ABS can appear 
on the right of an assignment statement, within a PRINT statement, and as 
part of a logical expression, for example after IF. 

Modes: Both direct and program modes are valid. 

Examples: IF ABS (QTY) > 10000 THEN PRINT "*": REM PRINT WARNING ASTERISK 
X = -12.5 + .5: PRINT ABS(X) : REM PRINTS 12 
1000 IF ABS(X - X1)< 1E-6 THEN PRINT "FINISHED": END 
2000 Z% = ABS(10*SIN(X»: REM Z%=INTEGRAL PART OF ABSOLUTE VALUE 

10220 IF ABS(AX%-BX%)<4 AND ABS(AY%-BY%)<4 GOTO 10200: REM FETCH BETTER START POSNS 

The first example prints an asterisk if variable QT exceeds 10000, or if QT 
is negative with magnitude larger than 10000, such as -25342.3. -

The third example shows how to test for approximate equality; this may be 
very useful when allowing for rounding errors and when performing iterative 
calculations which converge to some correct value. In this example. the value 
is accepted if the maximum error is lE-6 (.000001). Typically, the more exact 
the precision, the longer such a program will take to run. 

Fourthly. Z % in line 2000 takes integer values 0-10 only, in a pattern resembling 
a rectified sine curve. The very last line is taken from a game in which each 
player has a 'worm' to control on the screen; this line ensures that the 
starting positions of player A and player B. which are generated by the RND 
function, are not too close together. 

Abbreviated entry: aB 

Token: $B6 (182) 

Operation: The expression in parentheses is evaluated and checked, and. if valid 
put into floating point accumulator #1. ABS operates only on the SIgn .byte 
of this accumulator. In fact ABS does less work than any other functIOn. 

ROM 

The sign byte (location $63. or $B5 in BASICl) is shifted right, so that the 
negative (high) bit is not set. It does this whether or not the byte w~s. neg­
ative. As far as further calculations are concerned, the number IS posItIve. 
There is no loss of accuracy in this conversion inside the accumulator. but 
as with all numerical expressions, there may be a loss so far as the initial 
evaluation process is concerned. That is. ABS(-l234567890l2) and 
ABS(l234567890l2) are identical, but don't retain all the figures of the 
original arguments. 

entry points: 

BASIC 1: $DB2A 
BASIC 2: $DB64 
BASIC 4: $CD8E 

(56106) 
(56164) 
(52622) 
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AND 
BASIC binary logical operator 

PURPOSE: Calculates the logical AND of two expressions which are first converted 
into 2-byte integers. The result is itself a 2-byte integer. If the expressions 
were logical, the values 0 ('false') and -1 ('true') obtain, so the truth-value 
of a multiple condition can be found. 

Syntax: Arithmetic or logical expression AND arithmetic or logical expression. 
Both expressions must be integers within the range -32768 to 32767, or 
floating point numbers which round down to within this range. Logical 
expressions invariably fall within this range, since they take values of -1 
or 0 only. Out of range values, string expressions, and syntax errors in 
either of the two expressions will cause an appropriate error message to be 
printed to the screen. 

Modes: Direct and program modes are both valid. 

Examples: PRINT 380 AND 75 
100 IF D'J,>O AND D'J,<100 THEN PRINT "WITHIN RANGE 1-99" 
6260 OK = -1 AND Y>79 AND Y<90 AND M>O AND M<13 
146 IF J1=46 AND JD=O THEN JD=l+LEN(JS$) 

The first example is a straightforward 16-bit AND between two numerals. 
The values and their bit equivalents are 380 (=%00000001 01111100) and 
75 (=%00000000 01001011), so 380 AND 75 is evaluated by CBM BASIC as 
%00000000 0100100 or 72. 

The second example shows AND used in a composite test; both parts of the 
test must be true to print the message. 

The third example is a simplified part of a date validation subroutine. The 
object is to check that the decade is the 80s and the month within the u.sual 
range. OK is set to 'true', ANDed with four separate tests, each of which 
must be true if OK is to remain true. 

Finally, another example of a composite test: this line, from a very long 
input routine, accepts decimal numbers which it build into a string JS$. 
Jl is the ASCII value of the last key pressed; JD is the position of the 
decimal point, or zero if no decimal point has yet been input. The example 
tests for the truth of two conditions: if the decimal point (ie full stop, with 
ASCII value 46) has been typed at the keyboard, and also this key is an 
acceptable one, then the decimal point's position in JS$ is fixed. 

Notes: [ 1] The truth table for AND is:-
AND T F AND 1 0 Where 1='true' or 'bit set on', 

T T F 1 1 0 O='false' or 'bit set off'. 
F F F 000 

Note that when stored as 2-byte signed integers, false =0 =$0000, whereas 
true =-1 =$FFFF'. (To convert $FFFF into its positive equivalent, flip the 
bits and add 1. This method gives $0000+1, so $FFFF is -1). This is why 
AND with a false expression is always false, while AND with a true ex- . 
pression leaves the value unaltered. It is also the reason that NOT-l is 0 
and vice versa. 

[2] Hierarchy. BASI C order copies FORTRAN and ALGOL. NOT then AND 
then finally OR have the lowest priority of all the operators. AND is 
therefore processed last in many cases. 

[ 3] Common bugs: logical expressions are quite tricky; errors are compar­
atively easy to overlook. Because of this four examples of typical wrong 
statements follow: 

[1] DE = D + DM + 365*Y + INT(Y/4) - (INT(Y/4)*4=Y) AND M>2 

This is taken from a routine to find the weekday. The day, month and year 
are combined mathematically into a parameter taking only the values 0-6. 
In the example, the final expressions are intended to subtract 1 should the 
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year be a leap year and the month be March to December. But because of 
the low priority given to AND, if M is 1 or 2, the entire expression eval­
uates as O. Everything after '=' and before AND is calculated, but this re­
sult is then ANDed with O. This shows the power of a low priority command 
which could be compared - perhaps a little fancifully - to a recessive gene. 
The correct version has the joint expression enclosed in another set of 
parentheses. 

[ii] IF INT(Y/4)*4=Y AMD M>2 THEN DE=1 

Logical operators have relatively few syntactical requirements and so, if mis­
typed, are difficult for the translator to distinguish from variables. The line 
when run will not, as might be expected, cause a ?SYNTAX ERROR message. 
Instead it is interpreted like this: 

IF INT(Y/4)*4=YA>2 THEN DE=1 

and its run-time behaviour will depend on whether YA exists. 

[iii] IF PEEK(C+1) AND PEEK(C+2)=O THEN END: REM END OF PROGRAM REACHED 

Failure to fully specify all the conditions is a source of bugs; the example 
is· supposed to find two zero bytes at the end of a BASIC program stored in 
RAM. What is needed is this: 

IF PEEK(C+1)=O AND PEEK(C+2)=O THEN END 
or: 

IF PEEK(C+l) + PEEK(C+2)=O THEN END 

The incorrect version will stop whenever PEEK(C+2) is zero and PEEK(C+1) 
is non-zero. 

[iv] IF J<1 AND J>8 THEN 

Never happens! 

Abbreviated entry: aN 

Token: $AF (175) 

Operation: Binary operators are evaluated with the first argument in floating point 
accumulator #1, and the second in accumulator #2. AND uses exactly the same 
routine as OR, except that on entry a test location is loaded with zero. (OR 
loads it with #$FF). This is the only difference between these routines. Each 
accumulator in turn is converted into a 2-byte integer. and the low and high 
bytes are processed separately. Using 'TEST' to refer to the byte in the 
test location, the routine computes this function: 

TEST EOR ( (TEST EOR A) AND (TEST EOR B». 
When TEST is #$00, EOR TEST has no effect, so 

A AND B = ( A AND B) 
A OR B = NOT( NOT A AND NOT B) 

All ROMs process this instruction in the same way. 

ROM entry points: 

BASIC 1: $CED9 (52953) 
BASIC 2: $CECB (52939) 
BASIC 4: $C089 (49289) 
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APPEND 
System command unavailable directly in CBM BASIC 

PURPOSE: Links two programs end-to-end into a single program. This can be 
very helpful in adding standard subroutines or BASIC utilities such as 
cross-referencers onto a BASIC program. 

NOTE: APPEND in the sense used here applies to BASIC programs only, not 
files of data, and may be run on any CBM machine, irrespective of whether 
or not it is equipped with disks. 

Versions: Appending one program onto another requires that the linenumbers do 
not overlap; if they do, a program with lines 10 20 30 and 50, say, which 
has another program with 40 50 and 60 appended to it will appear as one 
program linenumbered 10 20 30 50 40 50 60. If the routines aren't too long, 
they can be listed on the screen and incorporated into the main program by 
loading it, homing the cursor, and entering the lines remaining on the 
screen. Longer routines would require a boring, but reliable, process of 
repeatedly loading the routine to be appended, loading the program, adding 
new lines, and saving the result so far. This process gives a MERGE, not 
an append; a merge is often potentially more use than an append, but is 
harder to implement. 

Amongst the versions that have been written are several for tape: Jim Russo 
and Henry Chow's 'Merger' (Pet User Notes, Nov-Dec '78) and Roy Bus­
diecker 'Universal Tape Append' (Compute! Mar '81) are two. They use 
the same method, namely loading the second tape to start at the end address 
of the first program. From the users's point of view this is fairly nice and 
easy; all you do is press 'play' twice. The routine to be appended must be 
at the start of another tape, or at a known position. Between these two 
versions' publishing dates, a lot has happened, and much of Busdiecker's 
article is concerned with variations between ROMs. Disk versions are less 
sophisticated usually, because the header is more difficult to get at. For 
example CPUCN 2#5 has a 30-line program which reads a program, writes 
it as data, reads the nexts program, and writes it to the same file. See 
Chapter 6 for details. 

The version below uses a different principle, and will append programs 
from different sources and recorded on different machines. The program 
to be appended - i.e. added onto the end - is loaded first. Then a SYS 
command moves the entire program up memory into the high end of RAM, 
as indicated by the pointer; so protected machine-code is untouched. Then 
the main program is loaded, and a second SYS command shifts the first 
program back to connect with the second. The program also rechains the 
BASIC lines, so that the link addresses are correct. I have included an 
?OUT OF MEMORY indication if the programs together are too large. The 
USR locations 1 and 2 store temporary pointers, so if you're using USR, 
these will need resetting. 

Examples. 

[1] Load the append program, then run it, so that cassette buffer #1 
holds the machine-code. Now enter SYS 634. This moves the append 
program itself into high memory. 

Type NEW and enter 100 PRINT "HELLO". 

This short program is held in the ordinary BASIC part of RAM 
starting at $0401. 

SYS 673 will move APPEND down again from its position higher in 
RAM. It will be positioned correctly and chained, so that on LISTing 
you'll see line 100 at the start of the program, which runs normally, 
apart from briefly printing "HELLO". 

Don't RUN a: program between the two SYS commands, as strings may 
corrupt the part of memory storing the program to be appended. 
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[2] Load any program; type SYS 634. (Both SYS commands can be 
used repeatedly without reloading). Now load any other program 
(or the same one again!) and enter SYS 673. The new composite 
program should be correctly linked and should run as one pro­
gram. If you type SYS 634 again, the new program will move 
up memory and a further program can be inserted at the start. 

Notes: [1] ROMs. The BASIC loader is set up for the upgrade ROM (BASIC 2). 
BASIC 4 shares pointers with BASIC 2, and is therefore an identical 
routine, except for two absolute addresses. The data statements finish 
with two jumps ($4C = 76 decimal); one rechains the appended programs, 
the other prints the out-of-memory message when an append is impossible. 
BASIC 4 requires JMP $B4B6 and JMP $B3CD in place of the upgrade ROM 
routines. So 80 DATA •••• 76,182,180,76,205,179 is correct for BASIC 4. 

BASIC 1 ('Old ROM') needs pointers from 40-53 decimal to be changed to 
122-135. 

[2] Cassette Buffers. With BASIC 4 in mind, I've written the routine to 
load into cassette buffer #1, which is untouched by BASIC 4's disk hand­
ling. If loading is to be done from cassette #1, this buffer will of course 
be overwritten, so the machine-code must be loaded elsewhere, the obvious 
place being buffer #2. The code relocates, so substitute 826-864 for 
634-672, and 865-934 for 673-742. 

BASIC 2 APPEND ROUTINE:-

o POKE 59468,12: PRINT "[CLEAR]$$$$$$" :REM UNDERLINE (SHIFT-$) TIDIES TITLE 
1 PRINT "[REVS]APPEND": PRINT "[DOWN]MACHINE CODE IS NOW LOADED INTO SYS 634 AND SYS 

673. 
2 PRINT "[DOWN]LOAD THE PROGRAM TO BE APPENDED; ENTER [REVS]SYS 634[RVSO] "; 
3 PRINT "TO STORE IT HIGH UP IN MEMORY. 
4 PRINT "[DOWN] LOAD THE MAIN PROGRAM AND ENTER [REVS] SYS 673 [RVSO] , TO "; 
5 PRINT "MOVE THE FIRST PROGRAM DOWN AGAIN, ONTO THE END OF THE PRESENT ONE. 
6 PRINT "[DOWN] LINES ARE AUTa.ATICALLY LINKED. 
10 DATA 165,53,133,2,165,52,133,1,160,0,165,1,208,2,198,2,198,1,177,42 
20 DATA 145,1,165,42,208,2,198,43,198,42,208,234,165,43,201,4,208,228,96 
30 FOR L = 634 TO 672: READ M: POKE L,M: NEXT: REM SYS 634 MOVES PROGRAM UP 
50 DATA 160,0,56,165,1,229,42,165,2,229,43,144,54,165,42 
60 DATA 208,2,198,43,198,42,177,42,208,244,56,165,42,233,1,176,2 
70 DATA 198,43,133,42,177,1,145,42,230,42,208,2,230,43,230,1,208,2,230,2 
80 DATA 165,53,197,2,208,234,165,52,197,1,208,228,76,66,196,76,85,195 
100 FOR L = 673 TO 742: READ M: POKE L,M: NEXT: REM SYS 673 APPENDS PROGRAM 

READY. 

10 PROGRAM2 0001 

Top of RAM pointer 

I 
$8000 

Iwu 
0 PROGRAII2 000 PROGRAM2 000 

Temporary pointer 

10 PROGRAM1 <f0 PROGRAM2 0001 
~ . IVDU I } 

out of memo test 

10 PROGRAM1 PROGRAM2 0001 Ivnu I $ 
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ASC 
BASIC arithmetic function of string argument 

PURPOSE: Computes the Commodore ASCII value of the initial character of a 
string expression. ASC is essential when testing individual characters, for 
example screen formatting characters from the keyboard, and generally 
whenever the numerical equivalent of an ASCII character is more easily 
handled than the character itself. 

Syntax: ASC(string expression). The string expression can be any valid express­
ion of literals, string functions and the '+' concatenator, with the single 
exception of the null character "". Any string whose length is 0 elicits an 
?ILLEGAL QUANTITY ERROR message; in practice the null character as 
defined by"" is the only easy way to generate such a string. The CBM 
ASCII value as returned by ASC can take any value from 0- 255; a table in 
the appendices shows the relationships between characters and their ASCII 
values. Note that ASC(X$)=O when X$=CHR$(O); this is not the same as "" 
in Commodore's BASIC. 

Modes: Direct and program modes are both valid. 

Examples: 160 GET J1$: IF J1$='''' GOTO 160 
163 J1=ASC(J1$): IF J1=13 THEN: REM PROCESS CARRIAGE RETURN 
166 IF J1=20 THEN: REM PROCESS DELETE KEY 

This incomplete program extract shows how keyboard entries can be process­
ed; line 160 GETs a key, avoiding the ?illegal quantity trap by testing for 
the null character. When a key has been entered, it is converted to itsASCII 
value for processing. Complete validation of keyboard entries in BAS IC can 
be carried out in this manner, with the exception of the STOP key only. 

1340 FOR L=l TO 6: POKE 799+L, ASC(MID$(TEST$,L»: NEXT 

This example shows the method to move a string into RAM: the string TE$ 
of length 6 is POKEd into locations 800 to 805, for use in a machine-code 
comparison routine, from BASIC, in six separate pokes. 

22000 IF PEEK(QQ)=ASC("*") THEN ERR$=" * SET" 
PRINT ASC(MID$(S$,L» - 192 : REM CONVERTS UPPER CASE A-Z TO 1-26 

Finally, the third example shows how readability can be improved by using 
the ASCII function itself, rather than its value - 42 in the case of "*". 
The fourth example prints the Lth letter of string S $ as a number from 1 to 
26, so if S$="HELLO" and L=2, the value 5 appears. This type of routine is 
useful when computing check digits, enciphering data, and so on. 

Notes: [1] The converse function to ASC is CHR$. PRINT ASC(CHR$(N)) prints 
N. STR$ is not the converse: STR$(42) is not an asterisk, but" 42". 

Abbreviated entry: as 

Token: $C6 (198) 

Operation: After the function's string expression has been evaluated, it is set up 
in RAM with its 3 parameters (length and 2 byte pointer) on the stack. ASC 
recovers these parameters. It tests the length, and if this is zero exits 
with ?illegal quantity. This is surely a bug; there is no problem in making 
the value O. However, now the accumulator is loaded from memory, using the 
string's pointers, so whatever the length of the string, its initial is fetched. 
This value is the ASCII value: there is no conversion carried out on the byte. 
A standard ROM routine turns it into the floating point equivalent in accum­
ulator #1. 
All ROMs process this function in this way. 

ROM entry points: 

BASIC 1: $D663 (54883) 
BASIC 2: $D665 (54885) 
BASIC 4: $C8C1 (51393) 
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ATN 
BASIC arithmetic function 

PURPOSE: Calculates in radians the principal value of the arctangent of the argu­
ment; this can be any arithmetic expression irrespective of sign. Thediagram 
illustrates the relationship between two sides of a right-angled triangle, and 
the ang Ie calculated by A TN. 

NOTE: This function has no connection with A TN on the IEEE bus, which is 
the 'attention' line. 

Syntax: ATN (arithmetic expression). The expression must be syntactically correct 
and within the range acceptable to the floating point logic (±1. 7 E38 approx). 

Modes: Direct and program modes are both valid. 

Examples: 1100 ALPHA = -ATN (YV/ZV9: BETA = -ATN(XV/ZV): 
2130 LET R=ATN( (E2-E1)/(N2-N1) ):REM COMPUTE BEARING AND DISTANCE 

Both examples, as might be expected, are related to trigonometry; one is 
from a perspective plotting program, the other from a two dimensional pro­
gram for surveyors in which coordinates easting and northing are input. 
In each case the assigned variable, ALPHA, BET A, and R, takes the value 
of an angle in radians, which therefore is in the range -pi! 2 to +pi / 2. 

Notes: [1] The diagram shows the connection between X and ATN(X),for those who 
are unused to geometry; a right angled triangle is a convenient standard to 
demonstrate geometrical ratios, but has no particular significance beyond its 

ea.e of use.~x 

[2] See the appendix on trig. functions for general solutions. 
[3] To convert radians to degrees, multiply by 180/pi. This changes the 
range of values of ATN from -pi! 2 - pi / 2 to -90° - 90°. 
[4] In some cases, ATN(X) is a useful transformation to apply, since it 
condenses almost the entire number range into a finite set from about -1. 57 
to +1. 57. 

Abbreviated entry: aT 

Token: $C1 (193) 

Operation: The actual evaluation uses a 12-constant series summation. The argument 
(after validation) is converted into the range 0-1: if negative, the sign is 
stored for later recovery, but the calculation is carried out on the absolute 
value. And if the argument is greater than 1, the reciprocal is used in the 
series, and the result subtracted from pi/2 (90°). 

All ROMs process this instruction in the same way. That is to say, the logic 
is identical, even though the entry points, absolute addresses, and (with 
BASIC 1) zero page locations vary. 

ROM entry points: 

BASIC 1: $E048 (57416) 
BASIC 2: $E08C (57484) 
BASIC 4: $D32C (54060) 
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AUTO 
BASIC system command not available directly in CBM BASIC 

PURPOSE: Utility to generate linenumbers when entering BASIC program lines. 

Versions: Typically these generate linenumbers starting at 100 and incrementing 
in steps of 10. The usual implementation is a BASIC routine to print numb­
ers and to input an entire line when return is pressed, using the keyboard 
buffer to accept two carriage return characters. One of these causes the 
line to be incorporated into the program; the next runs the prog-ram again. 
This is also a favourite machine-code command on EPROMs from 'Toolkit' through 
to 'Power'. 

The following routine has these features: 
[1] Optional flashing cursor; omit the POKE in 60010 if this is not needed. 
[2] Check for premature return, so that a linenumber is not wasted, 
[ 3] Lines up to length 80 are accepted 
[ 4] Press S TOP to stop. 

60000 INPUT "AUTO: ENTER START,INCREMENT"; S,I 
60010 PRINT "[CLR] [DOWN] [DOWN] [DOWN]"; S;: POKE 167,0 
60020 GET A$: IF A$="" GOTO 60020 
60030 PRINT A$;: IF ASC(A$)<>13 THEN 60020 
60040 P = PEEK(32889 + LEN(STR$(S»): IF P=32 OR P=160 GOTO 60010 
60050 PRINT "S=" S+I ":1=" I ":GOTO 60010[HOME]" 
60060 POKE 158,2: POKE 623,13: POKE 624,13 
60070 END 

Note that line 60040 checks the location just after the linenumber; if it finds 
either a space or a shift-space, clearly nothing has been entered in the line 
so far. The routine therefore prints the same linenumber again. The value 
32889 is 32768 + 121, which is appropriate to 40-column screens. With the 
8032 this must be replaced by 32768+241 = 33009. 

BASIC 1 PETs have the keyboard buffer(and much more) differently arrang­
ed. Line 60010 requires POKE 548,0 and line 60060 becomes 
60060 POKE 525,2: POKE 527,13: POKE 528,13 
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CHR$ 
BASIC string function of numeric argument 

PU RPOSE: Converts any numeric expression in the range 0- 255 into a string with 
length 1 consisting of the CBM ASCII equivalent character. This is the only 
convenient method to print and manipulate special characters like carriage 
return and", which are CHR$(13) and CHR$(34) respectively. 

Syntax: CHR$(numeric expression). The expression in parentheses must evaluate 
to 0-255. If the number is non-integral, it will be rounded down, and this 
rounded value must be in the correct range. So CHR$(-.OI), CHR$(500) and 
CHR$(X$) cause error messages. 

Modes: Direct and program modes are both valid. 

Examples: A$ = CHR$(34) + CHR$(18) + "NAME" + CHR$(146) + CHR$(34) 
NS$ = CHR$(160) + NS$ 
PRINT CHR$(7) 
3300 PRINT#4,CHR$(27)"E08"CHR$(27)"L06" 

The four examples above illustrate the use of this function to construct in­
dividual characters which are otherwise difficult to deal with. The first puts 
a string within quotation marks, and adds the [RVS] and [RVSOFF] charact­
ers. The second adds a leading shifted-space to a string; this is more read­
able than the alternative NS$ = " " + NS$. CHR $( 7) is the 'bell', and this 
command will make appropriately equipped CBM's tinkle and printers beep. 
The final example shows a command typical of non-IEEE, non-Commodore 
printers; CHR$(27) is 'Escape' and the string sets horizontal and vertical 
spacing on a Qume daisywheel printer. 

PRINT CHR$(34);: FOR J = 1025 TO 1100: PRINT CHR$(PEEK(J»;: NEXT 
C$="": FOR J = 1 TO 6: C$ = C$ + CHR$(PEEK(KT + J»: NEXT 

Conversions of the contents of RAM into strings can be performed in BASIC by 
combining CHR$ with PEEK. The first example, in direct mode, prints a line 
or two of BASIC as it is stored in RAM. (This is not the best method). The 
second recovers a string which has been poked into RAM; C $ is built up one 
character at a time until a 6-character long string is formed. 

Notes: [1] CHR$ is the converse function to ASC. A particular application of these 
functions is conversion from one character set to another, for instance screen 
dumping to a printer, where the PEEKed value needs a fairly elaborate routine 
to ensure that it PRINTs the way it looks on the VDU. See DUMP. 
[2] CHR$(O) represents a null character, but has length 1. This may result 
in some anomalies; X$=X$+CHR$(O) adds a trailing null character to X$, the 
length of which is also incremented by 1, but the nulls do not print; so X$'s 
length appears to be longer than X$. Embedded null characters can beinsert­
ed into strings: Y$="123" + CHR$(O) + "45" prints 12345 but returns VAL 
of 123 and LEN of 6. If sorted, Y$ precedes 123*5, 12344, and so on. Note 
that ""<CHR$(O) is 'true', rather oddly. 

Abbreviated entry: cH (includes the $) 

Token: $C7 (199) 

Operation: First, the contents of the parentheses are found and checked for range 
0-255. Provided this is correct, a string of length 1 is set up at the current 
string pointer position, and the single byte value stored in this location. If 
the string is assigned - X$=CHR$(123) say - this string is permanent; if the 
string is used as an intermediate only, as in PRINT CHR$(123), the pointers 
are not reset and the next string will overlay the character. 

ROM 

All ROMs process this function in this way. 

entry points: 

BASIC 1: $D5C4 
BASIC 2: $D5C6 
BASIC 4: $C822 

(54724) 
(54726) 
(51234) 



Programming the PET ICBM -47- 5: BASIC keywords 

CLOSE 
BASIC input/output command 

PURPOSE: Completes the processing of a file and deletes the file and its details 
from the three file tables. Files opened to the keyboard or the screen are 
deleted from the tables with no other action. Cassette files opened for 
reading are dealt with in the same way. But cassette files which write data 
also write a zero byte to denote end-of-file; and if the secondary address 
was 2, a tape 'header' is also written holding the end-of-tape value of #5. 
IEEE files with secondary address zero - usually, non-CBM hardware - again 
are simply removed from the tables; other IEEE files are sent commands to 
close files, and this function is carried out by the receiving hardware. In 
the case of CBM disks, an end-of-file: indicator is put into the last sector 
of the file, so that the chaining sequence of tracks and sectors for that 
file is complete and up-to-date and terminates correctly. 

Syntax: The syntax is identical to that of CLOSE; however, any parameters 
following the logical file number are subsequently over·.vritten by CLOSE, 
so for practical purposes CLOSE arith. expr. is the correct syntax, where 
the expression must evaluate, after rounding down, to 1-255. If the file 
does not exist, no error message results. 

Modes: Direct and program modes are both valid. 

Examples: OPEN 4,4: PRINT#4, "HELLO!": CLOSE 4: REM MESSAGE TO PRINTER 
OPEN 1,1,1,"FILE": PRINT#l, "HELLO! ": CLOSE 1: REM MESSAGE TO TAPE 
100 CLOSE 1,2,3,"4": REM SAME EFFECT AS CLOSE 1 
1000 PRINT#8,CHR$(~3);: CLOSE 8: REM BASIC<4 DISK FILE CLOSE 
1100 PRINT#4: CLOSE 4: REM CLOSE PRINTER, WHEN CMD HAS BEEN USED 

CLOSE is a straightforward comnand, made more complicated than need be 
the case by the behaviour of CMD and PRINT#. The former leaves output 
devices still listening, and needs a final PRINT # to unlisten the bus; the 
latter, on CBM disk drives using BASIC<4, prints extra linefeed characters 
(ASCII character 10) after the carriage returns which mark the end of 
adjacent records. BASIC 4 also has the DCLOSE command. 

Notes: [1] RAM Tables. CLOSE deletes three entries from these tables (see OPEN 
for illustrations) unless the entry happens to be the last of the files, by 
overwriting its three parameters by those of the last entry, then reducing 
the number of files open by 1. This of course is designed so that the ten 
files maximum may be efficiently used. Sometimes, notably after editing a 
program, the number-of-open-files parameter is set to 0, leaving the tables 
in RAM. If a file has not been closed, due to Stop or perhaps a syntax 
error, it may still be possible to close it by poking in the number of open 
files (or 10) and closing the file in direct mode. The location is 174 (610 
in BASIC 1). Alternatively, OPEN15,8,15: CLOSE 15 is suggested in a manual. 

[2] Disk Files. Files opened for read need not be closed except to make 
space for more files. CBM disk files opened for write must always be CLOSEd 
correctly. Otherwise, the track Isector pointer in the final sector will point 
to a usable area on the disk; sooner or later two files will become interlocked 
and the data on one corrupted. See COLLECT for more on this subject. 

Abbreviated entry: clO 

Token: $AO (160) 

Operation: Parameters are fetched by the identical routine used by OPEN. The 
logical file is looked for, and, if found, its parameters are taken from the 
tables are overwrite any other values. The device number determines which 
branch is now taken: cassettes, screen, and keyboard are processed as 
described above; IEEE devices also call a 'Clear Channel' ROM routine. 

ROM entry points: CLOSE is a 'kernel' command. Its address is $FFC3. It calls: 
BASIC 1: $F2C8 (62152) LDA file no. then: $F2CD (62157) CLOSEs. 
BASIC 2: $F2A9 (62121) "$F2AE (62126) 
BASIC 4: $F2DD (62173) $F2E2 (62178) 
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CLR 
BASIC command 

PURPOSE: Appears to erase all BASIC variables currently in memory, leaving the 
BASIC program, if there is one, unchanged. Any machine code routines in 
RAM are left unaltered. 

Syntax: CLR. CLR has no parameters. It may be followed by spaces, but must 
be followed by a colon or and end-of-line zero byte. (Some versions of BASIC 
use a parameter with CLEAR to allocate specially reserved RAM: this cannot 
be done directly with Commodore's CLR). 

Modes: Direct and program modes are both valid. 

Examples: CLR 
50000 CLR: ?"VARIABLES ALL ERASED": REM ALL RESULTS SO FAR ARE LOST. 
10 POKE 52,0: POKE 53,48: CLR: REM TOP OF MEMORY IS NOW $3000 
10 POKE 134,128: POKE 135,48: eLR: REM OLD ROM: TOP OF RAM=$3800 

This command operates by moving pointers about; it does not erase variables 
in the sense of, say, putting null characters in all the locations which pre­
viously held data. The first two examples are straightforward; in direct 
mode, if X perhaps was 1. 414 and S $ was "J. Smith", then after CLR both 
variables will return 0 or null, as appropriate to the variable type. And in 
program mode the same effect obtains. Program running is not changed; so 
the program carries on as before, except that its variables, which presum­
ably aren't wanted, are cleared. Also references to subroutines and loops 
are lost. For a complete description of this command, read the detailed ex­
planations which follow. However, it is not necessary to fully understand its 
operation. The final two examples, which are alternative program lines, one 
for BASIC 1, show how CLR can be exploited for useful purposes, given an 
understanding of its modus operandi. A pair of zero-page pointers hold the 
location of top of RAM; this is not set by hardware, but by the machine itself 
on switch on. If new, low values are poked in the machine acts as though its 
RAM storage had been reduced; strings which normally fill RAM to its limit 
now limit themselves to the new value. In this way, free RAM is made avail­
able to the programmer for machine code routines and general storage. CLR 
ensures consistency between all the pointers. 

Notes: [1] Simple variables (integers, strings, floating-point variables and function 
definitions) and arrays (integer, string, and floating-point) are deleted.In 
addition the DATA pointer is RESTOREd and the stack pointer reset, losing 
all FOR .. NEXT and GOSUB .. RETURN references. $FFE7 in ROM is called 
to abort input /output activity: files are aborted and the screen and keyboard 
are restored to primacy. 

[ 2] There is no easy way to erase strings only, for example, or just integ­
ers. It is possible to erase arrays; their pointers are held differently, as is 
necessary to avoid ambiguity. After CLR, variable and array pointers are not 
distinguishable, so recovering the lost values is difficult. 

[3] As with NEW, CLR generates anomalous error messages if a machine-code 
program has been loaded or the BASIC pointers are abnormally set for some 
other reason. Poking values for the start and end of BASIC, then CLRing, 
is one possible cure. 

Abbreviated entry: cL Token: $9C (156) 

Operation: The 'limit of RAM' pointer, as we've seen, is stored in the 'bottom of 
strings' pointer; this means that new strings will be stored in the top of mem­
ory, overwriting the old ones. The 'end of BASIC' pointer is stored in the 
'end of variables' and 'end of arrays' pointers. This loses both variables 
and string pointers. When the stack is reset, the top two values are retain­
ed, so RTS continues the program running at the same place. In addition to 
the changes listed in note [1] a few flags are reset. 

ROM entry points: BASIC1: $C770 (51056) BASIC2: $C577 (50551) BASIC4: $B5EE (46574) 
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CMD 
BASIC output command 

PURPOSE: CMD combines two entirely distinct functions. (i) It prepares an output 
device, typically a printer, to receive subsequent PRI NTed data until the 
device is unlistened. (ii) It then prints whatever string follows CMD to the 
printer or other device. In essence it allows a program with many PRINT 
statements, which would normally appear on the screen, to be diverted to 
some other output device. 

Syntax: CMD arithmetic expression: 
CMD arithmetic expression, printable expression including , and lor ; 

The arithmetic expression must evaluate to 1-255. A logical file number of 
zero is disallowed. The comma separator, for example in CMD5, "HELLO", 
appears with INPUT# too, but not with PRINT. This is because PRINT 25 
is syntactically correct, but CMD 5 25 is ambiguous. 

Modes: Direct and program modes are both valid. 

Examples: Assume OPEN 5,4 has opened a file to a printer. (OPEN 4,4 may well be 
used in practice: I've put 5 purely to make clear which parameter is which. 

CMD 5 
CMD 5,; 

switches further output to printer. Then prints crlf. 
Without crlf. 

CMD 5, "HELLO" & prints "HELLO" 
PRNT=5: CMD PRNT is syntactically valid. 

Notes: [1] If we compare PRINT #5, "HELLO" with CMD 5, "HELLO" it is clear that 
these instructions are rather similar; however, the puzzling feature of the 
commands is that PRINT #5,; which unlistens the device does exactly the 
opposite of CMD5,; which causes it to listen. This confusing aspect of CMD 
is the result of its combining two disparate instructions. 

[ 2] Problems: CMD often gives rise to minor bugs. 

[i] OPEN 4,4: CMD 4: INPUT "NAME";N$ :REM "NAME" IS PRINTED 
[ii] GET turns off CMD; only one line appears on the printer: 

10 OPEN 4,4: CMD 4,; 
20 PRINT "LINE" :REM PRINT LINE REPEATEDLY ... 
30 GET X$: IF X$="" GOTO 20 :REM IF NO KEY IS PRESSED? 
40 PRINT#4,;: CLOSE 4: END 

[iii] Commodore printers (not others) somehow tend to make CMD fail 
to operate. GOSUB for example has this effect. 

[3] To summarise, CMD seems to be, in the US phrase, a kludge to enable 
a program full of print statements to be easily diverted from the screen to 
some other device. It is easier than replacing all PRINTs with PRINT #. 
When developing a new program, PRINT # is likely to be a better choice: it 
lends itself better to CLOSE and will not lose its effect erratically. Also 
Commodore (cf. their printers) seem to support PRINT# in preference. 

Abbreviated entry: cM 

Token: $9D (157) 

Operation: The parameter following the CMD token is checked. It must evaluate 
to 1-255. The device number corresponding to this file number is looked up 
in a table of up to 10 values, and the output device set. ?FILE NOT OPEN 
or ?DEVICE NOT PRESENT errors may greet the user while this is being 
attempted. The syntax is checked after CMD's parameter. Either an end-of­
statement (colon or new line) or comma followed by printable expression is 
accepted. Finallt, the PRINT routine in ROM is entered. 

ROM entry points: 

BASIC 1: $C985 (51989) 
BASIC 2: $e991 (51601) 
BASIC 4: $BA8E (47758) 
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CONT 
BASIC command 

PURPOSE: Resumes BASIC program running after encountering STOP or END in 
the program, or after the STOP key had been pressed, or after a null input 
crash on INPUT. In this way not only can breakpoints be put into BASIC, 
but a program can be stopped and restarted at any point. (Well ... nearly 
any point. The STOP key will abort files, so that its message and READY 
will appear on the VDU; in some cases therefore CONT does not completely 
resume operation). 

Syntax: CONT. No other parameters; may be followed by spaces, but must be 
followed by a statement terminator - a colon or end of line. 

Modes: Direct mode only. (In program mode CONT goes into an infinite loop which 
continually jumps to itself). 

Notes: [1] As a BASIC program runs, a record is kept of current and previous 
linenumbers, and a pointer is kept which indicates where the next state­
ment is. All this is part of the overhead which helps to make translators 
slower than compilers. It also makes useful commands like CONT possible. 
The HELP command, implemented on some toolkits to point to the error in 
a line which has caused a syntax error, uses the linenumber and pointer; 
the routine cannot be in BASIC, which would change the pointer, but must 
LIST a single line in machine-code and then calculate where in the LISTed 
line the error was located. 

[2] While the program is stopped, any of its variables may be examined by 
PRINTing; their values can also be changed in direct mode. With CBM BASIC 
new lines can't be added if CONT is to work. A ?CAN'T CONTINUE ERROR 
is also caused after CLR or NEW or if exit from the program was by way of 
a syntax error. In such cases, GOTO a convenient linenumber may serve 
the same purpose. 

[3] The principal locations are: ($3A) holds 'previous linenumber', 
($38) holds the pointer into BASIC. 

The high byte of ($38) is made zero if exit was by syntax error; by POKE­
ing these locations, CONT can be made to work, and jump to anywhere in 
BASIC, although there's little practical value in doing this. 

Abbreviated entry: cO 

Token: $9A (154) 

Operation: First the syntax is checked. Then the pointer into BASIC used by 
CONT (not the same as CHRGET) is tested for high byte zero, which is a 
standard test for a syntax error exit. Obviously a valid pointer into BASIC 
must be $0400 or greater, so the zero byte never leads to ambiguity. If a 
zero byte is found, therefore, the routine branches to print the can't cont­
inue message. Otherwise, and let us hope usually, the routine puts the 
stored previous linenumber into the 'present linenumber' slot, sets GETCHR 
to the pointer to the next statement, and runs. 

ROM entry points: 

BASIC 1: $C745 (51013) 
BASIC 2: $C76B (51051) 
BASIC 4: $B7EE (47086) 

Unvalidated: $C747 
$C76D 
$B7FO 
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cos 
BASIC arithmetic function 

PURPOSE: Evaluates the cosine of the argument, which is assumed to be in 
radians. The cosine is a ratio which is constant for an angle; the diagram 
illustrates this. 

Syntax: COS (arithmetic expression). The expression must be syntactically correct 
and within the range acceptable to the floating-point logic (±1. 7 E 38 approx). 

Modes: Direct and program modes are both valid. 

Examples: PRINT COS (1) prints cosine of 1 radian = .54 approx. 
PRINT COS(45 * [PI]/180) prints cosine of 45 0 = .707 approx. 
1000 Y=EXP(-K*T) * (A*SIN(W*T) + B*COS(W*T» 
2000 X=ALPHA+SIN(ALPHA): Y=l-N*COS(ALPHA) 

The first examples show COS used in direct mode (sometimes called 'calcul­
ator mode'!) performing direct calculations. The conversion between degrees 
and radians has to be performed by the user. The second examples are 
typical formulas using trigonometrical functions; the first is the equation 
of a damped sine curve. The second calculates two coordinates, X and Y, 
on a cycloid. 

Notes: [1] The diagrams show the cosine's ratio in terms of a right angled triangle, 
and the concept of a radian. 'A' and 'H' conventionally represent sides ad-

~ (~gonM). reG\~ 

COS (X) = A /H Angle = 1 radian 

[2] Accuracy is not greatly affected by the size of the angle: this function 
operates by dividing the argument by 2*pi and taking the remainder, so 
there is no series approximation error related to the size of the argument, 
only the error caused by the limited precision to which the argument can 
be held. 

[3] See the appendices for the inverse function ARCCOS. 

Abbreviated entry: None 

Token: $BE (190) 

Operation: The argument is evaluated, and the result put into floating-point accum­
ulator #1. Pi/2 is added and the routine then drops into SIN, so COS(X) is 
avaluated as SIN(X + pi/2). 

ROM entry points: 

BASIC 1: $DF9E (57246) 
BASIC 2: $DFD8 (57304) 
BASIC 4: $D282 (53890) 
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CRUNCH 
BASIC system command unavailable directly in CBM BASIC 

PURPOSE: Improves the speed of BASIC execution by deleting as much of the 
program as is considered redundant. 

Versions: Quite a number have been issued; some, in BASIC, are only suitable 
for preparation of a 'fast' version of the program; some machine code 
versions may be used at run-time. The routine is also called 'compactor'. 
Uncrunch programs, which present each instruction spaced out on its own 
individual line, are possible too. 

The rationale is that REM statements, spaces, short lines and so on, while 
helpful to an investigator into a program, slow the translator by wasting 
time jumping past spaces, switching to new lines and so on, and indirectly 
by slowing up GOTOs and GOSUBs, lengthening the program and thus 
causing more garbage collection, and so on. Unfortunately, it must be 
said that such mechanical ways of speeding up program execution do not 
have a great effect, even with specially constructed programs; their appeal 
is really of the 'every little bit helps' type. 

Various points of attack are:-

[1] Elimination of all REM statements and lines. If they are referenced by 
GOTO or GOSUB or THEN the REM statement only may be retained, or, 
better, deleted but with its reference changed to the next line. 

[2] Elimination of all spaces which are not within quotes. (Some BASICs, 
e.g. Apple's, do this anyway). A program modified in this way sometimes 
gives problems; X =T AND U will think it contains the function TAN. 

[3] Elimination of lines by conflating as many together as possible. Lines 
spanning more than 255 bytes are unreliable, however, since pointers for 
DATA for example are single-byte only. Also the program won't LIST. So 
the maximum linelength is usually limited to 250 BASIC characters. Also, 
of course, a line may be referenced, say by GOTO, and therefore not be 
conflatable with the previous line(s). 

[4] Renumbering the program with lines starting at 0 and increment of 1 
makes line references as short as possible: processing 'GOTO 53' is faster 
than 'GOTO 12000' 

[5] Systematic changes of variable names to 1 character names only, where 
possible, speeds up variable processing. 

[6] Spare semi-colons can be removed from PRINT statements. 

[7] Since the program has no spaces, the CHRGET routine may be modified 
to exclude the check for spaces. 

[8] A trace or shadow routine might be able to count the frequencies with 
which variables are used during an actual program run; an initialisation 
routine could be added to the program to assign the variables in their 
optimum order. 

For further discussion on these points, see Chapter 2. 
[9] Where a 'wedge' is in use, which intercepts the GETCHR routine, 
considerable timesaving is often possible by deleting it with a short 6502 
routine, if it is not required at run-time. 

See Chapter 14 for details. 

[10] Finally, the interrupt sequence can be shortened. Since the keyboard 
buffer will not work if this is done, its use is limited to programs which 
perform prolonged processing without intervention by an operator. 
See Chapter 13 for details on this point. 
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The BASIC routines on this page illustrate the sort of methods by which BASIC 
programs may be compressed. They are far slower than the machine-code 
equivalents but nevertheless have some interest. The first, longer subroutine, 
to be appended on or near the end of a BAS1C program, deletes all spaces not 
within quotes from the program, and deletes all REM statements from lines 
unless the entire line is a REM statement. In this case, only REM is left in 
place of the original REM line; it is not completely erased, since it may be the 
destination of a GOTO or GOSUB. Note that abbreviated forms of keywords 
appear on the screen; this prevents over-long lines from overrunning the 
standard 80 character linelength. (Because of the way the listing has been 
printed, the abbreviation of 'END' has appeared 'En'. This means unshifted 
E followed by shifted N. The same sort of thing is true for the other abbreviat­
ions, which are, of course, identical to those printed in the BASIC keywords 
reference section). 

63000 POKE59458,62:A=1025:B=256:GOSUB 63100:GOTO 63003:REM *** AS STARTER 
63002 B=256:A=B*PEEK(826)+PEEK(827):A=PEEK(A)+B*PEEK(A+1):GOSUB 63100 
63003 L=PEEK(A+2)+B*PEEK(A+3): IF L>62999 THEN PRINT"FINISHED":END 
63004 PRINT" [CLEAR] [DOWN] [DOWN] [DOWN] "L" [LEFT] "; : Q=O: REM PRINT LINENUMBER, SET QUOTES 
63006 FOR K=A+4 TO A+93: P=PEEK(K): REM NOW LOOP THROUGH LINE 
63008 IF P=O THEN 63050:REM END OF LINE 
63010 IF P=143 AND K<>A+4 THEN PRINT"[LEFT] ";:GOT063050:REM DEL 'REM' UNLESS AT S 
63012 IF P=143 THEN PRINT"REM";:GOT063050:REM LEAVE 'REM' IF AT START 
63014 IF P=34 AND Q THEN Q=0:PRINTCHR$(34);:NEXT:REM END OF QUOTES 
63016 IF P=34 AND NOT Q THEN Q=-1:PRINTCHR$(34);:NEXT:REM START OF QUOTES 
63018 IFNOTQANDP>127ANDP<203 THEN PRINTT$(P-127);:NEXT:REM PRINT EXPANDED TOKEN 
63020 IF P=32 AND NOT Q THEN NEXT:REM IGNORE SPACE 
63022 PRINTCHR$(P);:NEXT:REM PRINT VARIABLES,INTEGER,$,% ETC 
63050 PRINT:PRINT"GOT063002":REM PREPARE FOR NEXT LINE 
63052 POKE 826,A/B: POKE 827,A-INT(A/B)*B:POKE 158,2:POKE623,13:POKE624,13 
63054 PRINT" [UP] [UP] [UP] [UP] [UP] [UP] [UP]" : END 
63100 DATA***,"En","Fo","Ne",IIDa l1 ,"In","INPUT","Di","Re",LET,"Go","Rull,"IF","REs" 
63101 DATAIIGOs '1 , "REt",REM,"St" ,ON, "Wa","La", "Sa" I liVe II ,"De", "Po" ,"Pr",?, "Co", IILin 

63102 DATA"Cl","Crn","sy ","0p ","CLo","Ge",NEW,"Ta",TO,FN,"Sp","Th","NolI,"STell ,+ 
63103 DATA-,*,/,',"An ll ,OR,>,=,<,IISg ll,INT,"Ab","Us","Fr ll ,IIPo ll,"Sq",IIRn",LOG,IIEx" 
63104 DATACOS, "Si",TAN, "At", "Pell,LEN, "STr","Va","As" ,"Ch ll ,IIL Ef","Rill,"Mi" 
63108 FOR K=1 TO 1E5: READ X$:IF X$<>"***" THEN NEXT: REM READ DATA UP TO * 
63110 DIM T$(75):REM ARRAY FOR TOKENS 
63112 FOR K=1 TO 75:READ T$(K):NEXT:RETURN:REM FILLS ARRAY WITH EXPANDED TOKENS 

This second subroutine belongs at the start of BASIC and has the function of 
combining several lines into one. The composite line consists of the original 
lines separated by colons. The maximum linelength resulting must not exceed 
251 characters, since the ROM rechaining routine (amongst others) cannot 
then operate properly. 

o INPUT "COMBINE LINES";L,U: C=1025: B=256: E=PEEK(42}+B*PEEK(43}-4 
1 LT=PEEK(C+2}+B*PEEK(C+3}: PRINT LT;: REM PRINTS LINENUMBERS 
2 IF LT<L THEN C=PEEK(C}+B*PEEK(C+1}: GOTO 1: REM FIND LOWER LINE 
3 IF LT>L THEN PRINT "LINE NOT FOUND": END 
4 C=C+4: REM START EXAMINING BYTES IN THE PROGRAM LINE 
5 Q=PEEK(C}: IF Q<>O THEN C=C+1: GOTO 5: REM FIND END OF LINE ZERO 
6 LT=PEEK(C+3}+B*PEEK(C+4}: PRINT LT;: REM PRINT LINENUMBER 
7 IF LT>U THEN SYS 46262: END: REM RECHAIN. (NOTE** BASIC 4 VERSION) 
8 POKE C,ASC(":"}: FOR J=C+1 TO E: POKE J,PEEK(J+4}: NEXT: E=E-4:GOT05 

** BASIC 2: Line 7 contains SYS 50242, but is otherwise identical. 
** BASIC 1: Line 0 has E=PEEK(124}+B*PEEK(125}-4. Line 7 uses SYS 50227. 
And line 8 must be spread over 2 lines, 8 & 9, because POKE of PEEK fails. 

Chapter 2 explains the working of these routines and others like them. 
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DATA 
BASIC data marker 

PU RPOSE: Enables data of any type, alphabetic, numeric, or ASC II to be stored 
within a program, without being read from disk or tape or being keyed in. 
The data is retrieved by the READ statement which assigns each item of 
data to a variable in the same order that the data is stored. Originally, 
BASIC accepted data from punched cards, not from keyboards, so READ 
statements appeared throughout programs in the way INPUT and GET do 
now. 

Syntax: DATA is followed by ASCII characters interpreted like this:­
" delimits a literal, which is READ as a single string 
, outside of quotes separates one DATA item from the next 
: outside quotes, or a new line, ends the DA T A statement. 

Other characters are treated as data. Note that the position within a pro­
gram of DATA statements is irrelevant, but the order is important. 

Mode: Program mode only is valid. (The data pointer starts at BASIC, and cannot 
reference data in the input buffer). 

Examples: 100 DATA "Al,Aluminum,24.6","Cu,Copper,136.2","Fe,Iron,35.1" 
12000 DATA MACHINECODE,120,169,46,133,96: PRINT "STARTING .. " 
50000 DATA 27,14,27,9,22,9,22,9: REM HORIZONTAL 
50010 DATA 3,4,5,8,8,9,9,10 : REM VERTICAL 
50020 DATA 1,20,2,6,6,6,6,6 : REM LENGTHS OF INPUTS 

The first example shows three strings held as data; READ X$ takes in the 
entire string within quotes, so READ X$: PRINT X$ repeated three times 
prints each string. The second example shows data with a special marker; 
a block of DATA beginning in this way can be made relocatable, using a 
loop to read all the data until, in this example, X$ say = "MACHINECODE". 
Finally, three lines show how data can be structured. Three sets of eight 
parameters hold details relevant to a screen input format. 

Notes: [1] DATA is used for repetitive work: sometimes there is no need for DATA 
e.g. PU$="EachPackUnitTubeReelSet Pair" holds information as a string. The 
command is processed by the same routines that INPUT and GET use, which 
explains the punctuation by " and , and :. Also the variables must be of 
the same type as the data. Read X$ is always safe, but READ Y may not 
be. See READ for full explanations of these points. Note also that RESTORE 
sets the pointer to DATA back to start, so data is always rereadable. 

[2] DATA statements can be forced into a program using the keyboard buff­
er to simulate keyboard entry of a line. 

[3] Bugs: (i) DATA uses INPUT's routines, so some peculiarities of INPUT 
affect READ. Unshifted leading spaces and some graphics are lost. 
(ii) Syntax error reported in a valid DATA line in fact means that there is 
an error in the READ statement. You'll have to search to find which one. 
(iii) Unnoticed commas can introduce baffing bugs. The statement 
DATA 31, 28,31,30, has 5 data items, including a null string. 
(iv) Take care when introducing more DATA into a program which has some 
al-ready. READ will impartially treat information in the wrong sequence as :::I 

though it were correct. This can create problems, especially with 6502 code. 
(v) A variable cannot be input: DATA 1,2, 3,X treats X as a string. 

Abbreviated entry: dA Token: $83 (131) 

Operation: When a data statement is found, it is ignored, just like a remark 
statement except that the next statement, not the next line, is jumped to. 
The routine hunts for a : or zero byte, the Y register holding the offset; 
this is added to CHRGET's address so the effect is to skip the data. 

ROM entry points: 

BASIC 1: $C7FO (51184) BASIC 2: $C800 (51200) BASIC 4: $B883 (47235) 
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DBL 
Command unavailable directly in CBM BASIC 

PURPOSE: increases the accuracy of calculations by increasing the storage space 
of floating-point numbers. 

Versions: Some BASICs (IBM, Tandy) have commands of this type, in which space 
allocated for the storage of floating-point numbers is, for example, doubled. 
Longer numerals are slower to process, but more accurate. Commodore (and 
Apple, which has nearly identical number processing routines) are designed 
around their standard five byte storage system, and it is impossible to extend 
the processing capability of the current routines. (There are rumours that 
BASIC 5 will include BCD arithmetic, enabling great accuracy to be obtained). 
It is certainly possible to reach the point at which numerals are no longer 
processed accurately. Thus 999 999 999.1 is printed as 999999999, and any 
values much larger are converted so they appear in scientific notation. There 
is of course an element of spurious 'accuracy' in many figures of this magnit­
ude. Not many measurements are correct to one part in a thousand million. 
There are few routines available, as a result of this, to process long numerals. 
Osborne/Donahue has 25 pages on the subject. * The best approach is to use 
fixed-point numbers; in this way all the difficulties associated with floating­
point accumulators are abolished. A usable format might be 15 figures before 
and after the decimal point, plus extra space to allow the output to be group­
ed in sets of three digits separated by commas or spaces. Fifteen figures 
after the decimal may seem excessive; but some calculations, for instance 
overnight interest on bank deposits, need considerable precision. The BASIC 
translater could be programmed to intercept and process (say) A$=Al$*A2$. 
But this would be ambiguous in the case A$=Al$+A2$. So the best routine is 
likely to use syntax like this: !A$+B$ or this: SYS 700: A$+B$, and, to 
avoid having to peek the answer byte by byte, to assign the result to 
another string. 

*This book has BASIC programs which add, subtract, and multiply (not divide) 
integers only. The relevant chapter is 'Making the most of CBM features' which 
appeared in the earlier edition as 'Overcoming the limitations of PET BASIC'. 
The multiply routine has bugs: the first item must have an even number of char­
acters, and embedded zeros may crash the program. To remedy this, add: 

1160 GOSUB 3000 
2150 RETURN 
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DEF FN 
BASIC command 

PURPOSE: Assigns a numerical function, which can be called by FN. The function 
definition has a name (of the usual BASIC type) and a dependent variable. 

Syntax: DEF FN real variable (real variable) = arithmetic expression. The variable 
in brackets is the dependent variable. If the arithmetic expression does not 
include it. it's called a 'dummy variable'. The definition has to fit into one 
line of BASIC. After the function has been defined. it can perform calculations 
on its argument: PRINT FN name (arith. expr.) for instance prints the value 
taken by the function. There may be run time errors if the function cannot 
be evaluated, typically ?DIVISION BY ZERO ERROR. 

Mode: Program mode only; direct mode produces an ?ILLEGAL DIRECT ERROR. 

Examples: 10 DEF FN DEEK(X)=PEEK(X) + 256*PEEK(X+1):REM SETS UP FN DE(X) 
100 DEF FN MIN(X)= -(A>B)*B - (B>=A)*A :REM RETURNS SMALLER 
1500 DEF FN Y(X)=A*X*X + B*X + C :REM CALCULATE AX2+BX+C 
527 DEF FN L(QQ)=QQ*(B=10):RIM ALWAYS 0; OR -QQ WHEN B=10 

Line 10 defines DEEK (X) as a double-byte peek. The result is much easier to 
read than a subroutine; PRINT FN DEEK(1) prints the current USR address 
which is stored in bytes 1 and 2. If X is negative. or exceeds 65535, the 
program will of course crash, with an error. The second example uses X as 
a dummy variable. In the same way that FRE(O) and FRE(99) return the same 
value. FN MIN(1) and FN MIN(9) take the identical value, which is A if A is 
smaller. B if B is smaller. Line 1500 is a mathematical function: the example 
is a quadratic expression; it could be a financial calculation, a scientific 
formula, a commercial cost expression. Note that line 1500 includes three 
variables, A, B, and C, which are included in the evaluation of the quadratic. 
The function can of course contain constants: 

inition: 
10 DEF FN Z(X)=5*(1+TAN(X», and it can include a function def-
15000 DEF FN P(P) = 1 + 2*(1-P) + 3*(1-P)A2 + ... +FN PP(P) 
15005 DEF FN PP(P)= 6*(1-P)A7 + 7*(1-P)A8: REM 2 LINES FOR DEF 

The high bits in the name, which are on and off respectively, ensure there 
will not be confusion with other variable types, so DEF FNX (X) =X%+X$ is valid. 
[2] Bugs. 1. FN called before the equivalent DEF FN gives ?UNDEF'D FUNC­
TION ERROR, because it is unable to find, and can't set up. the function. 
ii. An error in the function definition causes ?SYNT AX ERROR in the line 
using FN, even if the line is valid. (READ does the same thing). 
iii. If a new program is loaded from within an old one, unless it has an 
identical definition in the identical place in RAM, any function definitions 
which existed will no longer work correctly, and should be redefined. 
[3] Note that the dependent variable does not change when a function definitio) 
is used. So. in the very first example above. X=100: PRINT FN DEEK(1000) leave 
X unchanged, although FN DEEK uses X. The value of X is in fact temporarily 
stored in the area reserved for the function definition itself. 

Abbreviated entry: dE (fn has no short form) Tokens: DEF $96 (150), FN $A5(165) 

Operation: DEF checks FN token, mode, variable types, brackets. and '=', but not 
the expression. then sets the name and pointers. FN has no action address; 
it is searched for during expression evaluation and has its own ROM routine. 

ROM entry points: 
DEF: BASIC 1:$D295 (53909) BASIC 2:$D28D (53901) BASIC 4:$C4DC (50396) 
FN: BASIC 1:$D2D6 (53974) BASIC 2:$D2CE (53966) BASIC 4:$C51D (50461) 
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DEL 
BASIC command not available in CBM BASIC. 

PURPOSE: DEL deletes BASIC program lines; typical syntax is DEL a - b where 
a and bare linenumbers. This command removes test routines and driver 
routines to clean up a program when testing is over, or removes particular 
features of a program to leave a core of reusable standard routines. 

NB: DELETE is sometimes a disk command to remove a file; 'SCRA TCH' is 
Commodore's version. 

Versions: In view of the simplicity of programming and usefulness of this command 
it is remarkable how few versions exist. In Microsoft BASIC DEL can only 
be supported in direct mode, because the program shrinks, and the storage 
of variables has to be revised. Validation of DEL a - b is similar to LIST, 
and the operation of the routine would be to search for the two lines, then 
memory move the upper part of the program to the end of the lower part, 
and rechain the result. 

The version below is in BASIC, in the form of a subroutine which sits at 
the end of the program. RUN 61000 inputs the linenumber limits, and the 
routine proceeds to print on the screen all the linenumbers which the pro­
gram has between (and including) the limits. It relies on the well-known 
keyboard buffer trick of putting in carriage returns from the program. 

61000 A=1025: B=256: INPUT "DELETE FROM,TO";L,U 
61010 IF PEEK(A+2)+B*PEEK(A+3) < L THEN A=PEEK(A)+B*PEEK(A+l): GOTO 61010 
61020 POKE 828,U-INT(U/B)*B: POKE 829,U/8: GOTO 61040 
61030 B=256: A=PEEK(826)+B*PEEK(827): U=PEEK(828)+B*PEEK(829) 
61040 IF PEEK(A+2)+B*PEEK(A+3) > U OR PEEK(A)+B*PEEK(A+l)=O THEN END 
61050 PRINT "[eLR] [DOWN] [DOWN] [DOWN]" PEEK (A+2)+B*PEEK (A+3) : 

PRINT "GOTO 61030": PRINT "[UP] [UP] [UP] [UP] [UP] [UP] [UP] 
61060 POKE 826,A-INT(A/B)*B: POKE 827,A/B: POKE 158,2:POKE 623,13:~OKE 624,13 
61070 END 

Comments: 

A=first byte of link address; so its initial value is 1025, and the pointer to 
the next line, and the current linenumber, are stored in locations AIA+l, 
and A+2/A+3. 
B=256 is a convenient constant. 

61000 inputs L,U = lower and upper linenumbers 
61010 scans the line numbers until one is found which is not less than L 
61020 stores the upper linenumber in cassette buffer #2 
61030 Loop to print linenumbers: A recovers link, U recovers upper line 

61040 ends if upper linenumber exceeded, or program's end reached. 
61050 clears screen, prints linenumber, prints GOTO 61030, moves up 
61060 saves link address and puts two returns into the buffer. 

61070 END causes the loop to delete one line. 
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DIM 
BAS Ie command 

PURPOSE: Allocates space in memory for an array of specified name, type, and 
dimensions. The name has two significant characters, the type may be real, 
integer or string, and multiple dimensions are accepted. Array elements are 
numbered from zero. On setting up, every element of any array is made 0 
if numeric or null if string. 

NOTE: Strings do not need to be individually dimensioned for length; the 
system takes care of this. So X$(20) is a string array holding 21 strings; 
not a single string of length 20. 

Syntax: DIM name(arith.exp.1, arith.exp. 2, ... ,arith.exp.n1) [, name 2(arith.exp. 
, ... )] where the square brackets indicate optional repetitions. Each 
arithmetic expression is evaluated and rounded down if non-integral. The 
permitted range of values is 0-32767. High values will generate ?OUT OF 
MEMORY ERROR. See note [3] for information about BASIC l's peculiarities. 
The syntax is not checked thoroughly. DIM T for example does not give 
any error indication. 

Modes: Direct and program modes are both accepted. 

Examples: 12000 DIM P%(18),L'J,(8),Al(18),SG$(2) 
540 DIMS(B*N + 20): REM B= 2 TO 4. 
50 DIM A(10,lO,10),T(24),POSN(X,Y,Z): DIM LOCATE (2*Y),Q(X,10) 

FOR J=OT010: X$(J)=STR$(J): NEXT: FOR J=10 TO 0 STEP -1: ?X$(J): NEXT 

DIM is a straightforward command: the problems associated with it mainly 
derive from the difficulties associated with processing large amounts of data. 
Arrays can be 'dynamically' dimensioned with Microsoft BASIC. This means 
lines like 540 are valid, where an arithmetic expression has been used to 
compute the array subscript size, as well as lines like 12000, in which 
absolute values are used. Line 540 assigns an array S () a dimension which 
is B times as large as another array of dimension N, and adds another 20 
spare elements. In this way, arrays can be assigned by soft-coding to be 
a suitable size for the work in hand. Line 50 dimensions three multi-dimension 
arrays. Note that DIM must be repeated at the start of each new DIM 
statement. Finally, the direct mode example shows an implicit dimensioning of 
the array X$(). Although DIM X$(10) is not included in the line of coding, 
the first time it is met during running the translator searches for X $( 0), and 
when it doesn't find it, sets up the array. The default value of DIM is always 
10; larger arrays therefore must be dimensioned to avoid ?BAD SUBSCRIPT 
ERRORs. 

Notes: [1] Some general notes on arrays. These notes are long and comprehensive; 
don't be put off DIM and arrays because of this detail and apparent complex­
ity. The basic idea of giving a whole batch of data just one name is simple, 
and the method of numbering the separate items isn't too hard either. 
i. Since computers start counting at zero, it is not surprising that Microsoft 
have allowed zeroth elements in their arrays. Some people *consider that 
these elements should not be used, because of possible compatibility problems 
between other versions of BASIC. In any program developed for subsequent 
mini or mainframe use, or with portability in mind, this is likely to be true. 
On the other hand, this may be unimportant; certainly there are plenty of 
other potential conversion problems. The zero element, because of its 
uniqueness, may hold averages, totals, comments, or any other summary item 
about the array. This example line shows how a total might be built up: 

DIM A(20): FOR X=lT020: INPUT N: A(X)=N: A(O)=A(O)+N: NEXT 

ii. ?REDIM'D ARRAY ERROR will occur if DIM is inadvertently included within 
a loop. Move it to an earlier part of the program. 

*see for instance Donald Alcock's 'Illustrating BASIC'. 
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iii. D 1M X (5, 0) is syntactically correct but adds nothing extra to the array X ( 5) 
except the additional effort of incorporating ',0' to the subscripts. DIM C( 7,2) 
sets up a three-column array, with a choice of C(M, 1) or C (M, 2) for M = 1 to 7. 
(And the zero elements may also be used). Two-dimensional arrays, like this one, 
are usually visualised as rows followed by columns: A(R,C). 

iv. CLR seems to delete all variables and all arrays, an effect produced by the 
shifting of several pointers. (See diagram). Because of the way variables are 
partitioned into simple and subscripted types, it is easy to erase all the arrays 
from memory, whilst leaving all the simple variables untouched. We can achieve 
this in BASIC>1 with: POKE 46, PEEK(44): POKE 47, PEEK(45) and in BASIC 1 
with: P=PEEK(126): POKE 128,P: P=PEEK(127): POKE 129,P. Large arrays consume 
a lot of RAM; this manoeuvre may therefore usefully eliminate a redundant array 
from memory. The 'Scatter Sort' (q. v.) provides an example. 

[2] Array dimensioning by default doesn't only occur when an assignment 
statement refers to a non-existent array value. It happens also when such an 
array is present in an expression. This program: 0 X=Y=Z: END when run, 
sets up variable X and assigns it the value -1, because Y and Z are both zero. 
Although X is present after the program, neither Y or Z is. But this: 
o X=Y=Z(3): END not only sets up X, but array ZO, which is given the 
default dimension of 10. This may lead to unexpectedly small reserves of RAM. 

[3] BASIC 1. This ROM has a serious bug, causing an array to remain empty 
from its 255th element on. Items out of this range are written wrongly (the 
260th as the fourth) and read back wrongly. This error applies to multi­
dimension arrays, and causes bugs which can be hard to detect. For example, 
remembering to allow for the zeroth element, X(4,50) has 5*51=255 elements, 
and Y (9,24) has 10*25 = 250 elements. Both of these will process successfully. 
But Z(16,16) has 17*17 = 289 elements and will not be reliable. 

[4] String Arrays. Any previously undefined variable will cause all the arrays 
held in RAM to memory-move up, to create the necessary space. This is time­
consuming and especially so with BASIC 4 string arrays. This is because BASIC 
4 strings each have their own pointer, and these all need updating. To see this 
effect, try DIM X$(1000):A=I:B=2:C=3:D=4:PRINT A. If this once-only delay 
is important - often it won't be - set up most or all variables before large 
arrays are dimensioned. For the connection between string array dimension and 
memory-freeing time, see Chapter 2 and the section on FRE. Finally, note that 
DIM can be absurdly high with strings, because all the pointers can point to 
the same string: FOR J=O TO 1000: X$(J)="ELEPHANTINE": NEXT uses 3K bytes. 

BASIC<4: 

BASIC 4: 

[5] Storage Space. Space taken up in RAM can be found with the aid of FRE. 
F=FRE(O): DIM Z%(500): PRINT F-FRE(O) shows the method. It can be found 
by the formula, for any n-dimensional array: 
Bytes=5 + 2*n + (dim1 + 1)*(dim2 + 1)* ... *(dimn + 1)*2,3 or 5 for integer, 
string, or real number arrays respectively. Example: PQ (100, 4,2) occupies 
5 + 6 + 101*5*3*5 bytes = 7586 bytes. 

Abbreviated entry: dI (this is why DIRECTORY needs diR!) 

Token: $86 

Operation: The first character of the array name is stored in X. Most of the work 
is done by the next routine, which searches for the variable, and by another 
routine which it calls, and which is extremely long, 'find or create array'. 
After this, if the statement hasn't ended, DIM loops back to check for a comma 
and repeat the operation with the next array to be dimensioned. 

ROM entry points: BASIC1:$CF71 (53105) BASIC2:$CF63 (53091) BASIC4:$C121 (49441) 
Find/create array:BASIC1:$DOB9 (53433) BASIC2:$DOAC (53420) BASIC4:$C2FC (49916) 
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DUMP 
Utilities unavailable directly in CBM BASIC 

PURPOSES: (1) A screen dump prints a duplicate of the screen onto paper. 
A printer may, of course ,be unable to reproduce the full range of Commodore 
characters. Routines of this sort are valuable for record-keeping purposes. 
If the screen is built up with POKEs or machine-code a special routine is 
necessary. With output which is simply PRINTed to the screen it is usually 
quicker to direct the output to the printer. 
(2) A dump of variables prints out current variable names and values. 
This is of some use when debugging BASIC. 

Versions: (1) Screen Dumps. Many versions, both BASIC and machine-code, 
exist. Before looking at these, let's consider the problems that can arise. 
Firstly, some characters may be unprintable. Secondly, a printer may not 
use CBM'S version of ASCII. Thirdly, the upper and lower case alternate 
character sets have to be allowed for. Fourthly, some screens have 80 
columns, others 40. None of these is a real problem. (If however some 
non-standard screen display is used, for example a high-resolution graphics 
hardware unit, completely new routines will be needed to dump their screen 
output) • 

Early versions, in BASIC,*were concerned with non-CBM printers, which 
did not exist. They convert the screen memory characters into outputtable 
equivalents. (See appendix for screen memory and ASCII). Graphics were 
ignored or printed as (say) *. This program, including allowance for 
either graphics mode, shows the type of thing necessary: 

40000 REM *** 40 COLUMN SCREEN DUMP *** 
40010 OPEN 4,4: CMD 4: IF PEEK(59468)=14 GOTO 40200 
40100 FOR J=O TO 24: FOR K=O TO 39: X=PEEK(32768 + J*40 + K) 
40110 IF X<32 THEN PRINT CHR$(X+64) ,. GOTO 40160 
40120 IF X>31 AND X<65 THEN PRINT CHR${X) ,. GOTO 40160 
40130 IF X>128 AND X<160 THEN PRINT CHR$(X-64) ,. GOTO 40160 
40140 IF X>159 AND X<f93 THEN PRINT CHR$(X-128);: GOTO 40160 
40150 PRINT "*"; 
40160 NEXT: PRINT: NEXT: PRINT#4: CLOSE4: RETURN 
40200 FOR J=O TO 24: FOR K=O TO 39: X=PEEK(32768 + J*40 + K) 
40210 IF X<32 THEN PRINT CHR$(X+96) ,. GOTO 40160 
40220 IF X>31 AND X<91 THEN PRINT CHR$(X) ,. GOTO 40160 
40230 IF X>128 AND X<160 THEN PRINT CHR$(X-32) ,. GOTO 40160 
40240 IF X>159 AND X<219 THEN PRINT CHR$(X-128);: GOTO 40160 
40250 PRINT "*";: GOTO 40160 

This routine separates lower-case mode (40200 ff.) from upper-case, and 
is therefore a general purpose routine. Changing the range of K from 
0-39 into 0-79 makes this usable for an SO-column machine. Note, though, 
that BASIC 1 in lower case has its upper and lower cases reversed, so 
programs written in BASIC 1 tend to yield odd displays, and odd dumps, 
when run on other ROM machines. Note that the BASIC subroutine above 
can be compressed, with loss of clarity. Lines 40110 to 40140 can be 
replaced by: 

40110 IF X<65 OR (X>128 AND X<193) THEN PRINT CHR$(X-(X AND 128) 
-2*(X AND 32)+64);: GOTO 40160 

and lines 40210 to 40240 by: 

40120 IF X<91 OR (X>128 AND X<219) THEN PRINT CHR$(X-(X AND 128) 
-96*«X AND 96)=0»;: GOTO 40160. 

*CPUCN nos. 6 & 7 for example have a routine (lower-case mode only) by J Allason 
and M,Bennet. 
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Screen dumps in machine code are newer. K Finn, ('Micro', Aug '80) has 
a CBM printer version for BASICs 1 and 2. C Brannon ('Compute!' Nov/Dec 
'80) and E Brannon ('Compute! Mar '81) have versions for BASIC 2 and 1 
respectively. The first uses SYS to print the screen; a variable number of 
lines may be selected. The second changes the interrupt, so a simple key­
stroke will print the screen. This is valuable if for some reason (e.g. a 
program in machine-code) a SYS command can't be issued, or if, in direct 
mode, the SYS command spoils the screen's appearance. 

My routine below (see elsewhere for rationale) is a short relocatable dump 
for any printer; graphics characters*are treated as '#'. Upper and lower 
case settings are allowed. It saves temporary values in RND's workspace. 
It is often helpful to have such a routine available, perhap s in a cassette 
buffer. To use it, open the printer: OPEN 4,4: CMD 4: SYS 826: PRINT#4: 
CLOSE4 is an example, when the routine starts at $033A (=826). Three 
locations are marked; these are all user-modifiable. 

This routine calls one ROM address, which prints carriage return and line 
feed. It is written for BASIC 2. There is no serious difficulty in writing it 
to run on either machine ... however, as it stands, BASIC 4 requires the 
following substitute lines: 

6020 A9 01 85 89 20 DF BA A2 
6060 8C DO AD 4C DF BA. 

B* RELOCATABLE BASIC 2 SCREEN DUMP. 

PC IRQ SR AC XR YR SP 
0401 E62E 32 04 5E 00 F8 

6000 A9 00 85 89 85 8A 85 
6008 A9 80 85 8C A9 40 85 

8B 
88 

6010 E6 89 A5 89 C9 29 DO OF 
6018 E6 8A A5 8A C9 19 FO 43 
6020 A9 01 85 89 20 E2 C9 A2 
6028 00 A1 8B 29 7F 24 88 DO 
6030 06 24 7E FO 13 DO 21 24 
6038 7E DO 09 48 A9 02 2C 4C 
6040 E8 DO OD 68 A9 23 DO 10 
6048 48 A9 02 2C 4C E8 DO 05 
6050 68 09 40 DO 03 68 09 60 
6058 20 D2 FF E6 8B DO B1 E6 
6060 8C DO AD 4C E2 C9 

$29 = Max.Cols. + 1 
$19 = Max.Lines to be output 

$23 = Default character (#) 

(2) Variable Dumps. The best known implementation is the Toolkit's 
version; it and related routines dump ordinary (string, integer, and 
floating-point) variables, but not arrays, which are thought to be too 
difficult. There is no difficulty writing such routines in BASIC; and in 
any case values can simply be printed. Generally dumps are designed to 
print to the screen; diverting output to a printer may produce oddities. 
There is a published example of this type of dump in Compute! (3#1, Jan 
'81) by F Levinson. This works by putting 12 bytes into the output buffer: 

" A =" A ; 0 (the zero is intended to represent a null character). 
The variable names are changed in cyclical sequence, through A,AO-A9, 
AA-AZ,B, BO-B9, BA-BZ, ... A%,AO%-A9%,AA%-AZ%, ... , and at each loop the 
variable is sought, using the ROM routine for the purpose. When a variable 
is found, the buffer is printed; the print routine determines the value of 
the variable, and the name in quotes is printed verbatim. 

An alternative type prints the variables in the order in which they 
are stored in RAM, in other words in their order of first use by the program. 

*Inc1uding the shifted space character. 
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END 
BASIC command 

PURPOSE: Causes a program to exit to immediate mode. The Ready message is 
printed. This command may be used to set breakpoints in BASIC programs. 
CONT causes a program to continue at the next instruction after END. 

Syntax: END has no parameters. It may be followed by spaces, and must be 
followed by an end of statement byte - either a colon or a zero byte at 
the end of the line. 

Modes: Direct and program modes are both valid. 

Examples: 20000 PRINTII4. CHR$ (12): CLOSE 4: SYS 45056: SYS 739: END 
855 IF PEEK(32766)<>TR THEN PRINT ,,* .. TRACK READ ERROR": END 
5000 GOSUB 51000: END: GOSUB 58000: END: GOSUB 15000: END 
59999 END 

Several related facets of the END command are shown here. The first 
program line is part of an exit routine, which tidies up the program before 
ending; a control character resets the printer which is then closed, and 
the disk unit is reconnected and a RAM routine called. (None of this is 
standard to Commodore). The second example shows an error-trapping 
line of BASIC which stops the program if a condition is not met: in the 
actual example, a test location which holds an incorrect track number 
causes execution to end. The third example is not from a finished program, 
but illustrates a way to use breakpoints. Each subroutine performs some 
initialisation function: lowering the top of memory, allocating variables in 
memory in an efficient order, poking machine code. In the final version 
no ENDs will be present here, but during testing each routine can be 
separately checked, using CONT to continue with the next. The last 
example uses END to ensure that subroutines - located at 60000 and after­
are not inadvertently entered. 

Notes: [1] Some BASICs require an END at the physical end of a program, even 
if it ends invariably somewhere else. (The last line might be GOTO 1, say). 
This is carried over from the days when programs were held as stacks of 
cards, and it was important to separate the programs in a box of cards. 

[2] END leaves the program in memory: other exits, such as calling ROM 
routines to clear RAM, can be employed, if for example it is feared that 
lines from the program might be accidentally deleted in direct mode. 

Abbreviated entry: eN 

Token: $80 (128) 

Operation: This routine is shared with STOP; the only difference is that the 
carry bit is set on entry to the routine by STOP or by the stop key, but 
is cleared for END. This flag (the carry bit) determines whether the 
message "BREAK IN" plus linenumber is printed. With END, of course, it 
isn't. After the usual syntax check, the routine tests the mode: if it is 
direct mode it skips past several instructions which save two parameters 
for CONT, the linennumber and the current CHRGET address pointer. 
The routine now throws away two bytes from the stack, since it wishes to 
enter direct mode, and does not need the return address. In the case of 
END it prints "READY." after loading pointers to the BREAK IN .. text 
stored in memory, which of course are unused. Early BASICs set the I/O 
device to 0, or keyboard, but BASIC 4 does not, so presumably CONT may 
be entered from non-CBM devices. 

All the ROMs process this instruction in similar ways; the test used in 
BASIC 1 for direct mode is different, though, because the input buffer is 
in its zero page. 

ROM entrypoints:BASIC 1: $C71E (50974) 2: $C741 (51009) 4: $B7C8 (47048) 
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EXP 
BASIC arithmetic function 

PURPOSE: Calculates e (2.718281828 ... ) raised to any power within the range 
-88 to +88 approximately. The result is always positive, approaching zero for 
large negative powers, and increasing indefinitely for large positive powers. 
EXP(O) is 1. 

Syntax: EXP(arithmetic expression). If the expression evaluates to a value larger 
than about 88, ?OVERFLOW ERROR will result and the program will end. If the 
expression is a large negative number on evaluation, there is no equivalent 
underflow error message; the value is simply set to zero. 

Modes: Direct and program modes are both valid. 
Examples: PRINT EXP(10): REM PRINTS 22026.44 ... 

Y=EXP(l): REM ASSIGNS Y VALUE OF E = 2.7182818 '" 
PRINT EXP(LOG(N»: REM PRINTS N (POSSIBLY WITH ROUNDING ERROR) 
100 FOR N=O TO 20: P(N)=(M N)*EXP(-M)/FACT(N): NEXT: REM POISSON 
200 NT = NE * EXP(-B*EXP(-K*T»: REM GOMPERTZ 

Like SQ R, this function is a special case of the power function, and therefore 
is strictly speaking unnecessary. EXP(Q) can be replaced by 2. 7182818AQ. 
But like SQR it is more easily recognisable in its familiar form EXP; familiar, 
that is, to the mathematically-minded. 

The two first examples are straightforward evaluations. The third reveals 
or underlines the fact that EXP is the converse function to LOG, which is 
calculated to base e. Whenever a logarithmic transformation has been used, 
perhaps to reduce the magnitude of the numbers being dealt with, EXP can 
reconstruct the solution, provided that it is within the limits accepted by 
the PET's floating-point logic. 

The final examples are both formulas; EXP invariably is used in scientific or 
statistical calculations. The first such example is a statistical one; the 
Poisson probability distribution deals with randomly occurring, rare events. 
Given the mean number M of such events (misprints per page, say) line 100 
computes the probabilities of 0,1,2, ... ,20 such events happening. It uses a 
function definition FACT(N) which is N! or N*(N-1)*(N-2)* ... *1. Chapter 
16 has more on this topic. Finally, we have a growth curve of the so-called 
'logistic' or 'ogive' shape. This sort of thing turns up in population models. 

Notes: [1] The number e has a large number of special properties. The rate of 
growth of EXP(X), for example ,equals EXP(X),so for small DX, 
(EXP(X+DX)-EXP(X»/DX is about equal to EXP(X). Malthus' population 
theory gives a result involving e, which accounts for the popular meaning of 
'exponential growth'. The infinite series 1+x+x2/2+x3/6+ ... converges to 
EXP(x). It (e) is irrational; only the first few terms appear to recur. * 

Abbreviated entry: eX 

Token: $BD (189) 

Operation: Rather unexpectedly, this function does not call the power routine in 
ROM, but uses its own series evaluation method. This involves the following 
steps: (i) The argument is multiplied by lIloge2. (ii) The result is tested for 
range. (iii) The result is normalised into the range 0-1, saving the exponent 
on the stack. (iv) The accumulators are interchanged. (v) The series routine 
is called; this computes 2A(X /loge2). (vi) The power of 2 is added back; the 
result is now eA(argument). All ROMs process this instruction similarly. 

ROM entry points: 

BASIC 1: $DEAO (56992) 
BASIC 2: $DEDA (57050) 
BASIC 4: $D184 (53636) 

*'Irrational' means, mathematically, 'not expressible as a ratio'. 
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FOR .. TO .. [STEP] 
BASIC loop command 

PURPOSE: Permits repetitive processing of all BASIC between a FOR variable ... 
TO ... [STEP] statement and the corresponding NEXT. When NEXT is 
encountered, the loop variable is checked and, if it matches NEXT, added 
to the value originally assigned to STEP. If the result falls within the 
limits specified by FOR and TO, the loop continues with the statement 
following the FOR statement. Otherwise, BASIC continues linearly with 
the statement following NEXT. 
The loop variable may be used as a counter, pointer, or subscript, and 
may be changed within the loop. Step size defaults to 1. 

Syntax: The full syntax is: FOR real variable = arithmetic expression TO arith­
metic expression [STEP arithmetic expression]. Constructions such as 
FOR I UNTIL and DO / WHILE are not obtainable directly in BASIC, but 
can be simulated by programming. Many FOR loops can coexist while the 
program runs, and they are called 'nested' loops, unless NEXT doesn't 
match FOR, in which case either a loop variable or variables will be lost, 
or ?NEXT WITHOUT FOR ERROR appears. 

NEXT, the end of the loop, has syntax: NEXT [real variable [, real var­
iable] [,real variable] ... ]. Square brackets denote optional variables. 

Modes: Direct and program modes are both valid. 

Examples: FOR J=l TO 1000: PRINT ".";: NEXT: REM J USED TO COUNT TO 1000 
FOR J=l TO 1000: PRINT J;: NEXT : REM ACTUAL VALUE OF J USED 
FOR J=l TO 1000: NEXT: REM DELAY LOOP; ABOUT 1 SEC 

These three simple loops illustrate loop processing with about the minimum 
possible code. In each case J is the loop variable, and in neither case is 
it modified within the loop. Therefore, unless the Stop key is pressed, 
each loop continues 1000 times. Whenever NEXT is met, J is incremented by 
1, since 1 is the default value of STEP. On leaving the loop, J equals 100l. 
Loops are often used in benchmarks, which provide some indication of the 
speed of execution of a computer language. The third example takes about 
a second; the same BASIC operating with the 6502 at a different clock speed 
will take a proportionally longer or shorter time. 

100 K=O: FOR J=32768 TO 32768+255: POKE J,K: K=K+l: NEXT 
200 FOR J=33768 TO 32768 STEP -1: POKE J+1, PEEK(J): NEXT 

Screen peeks and pokes are the subject of the next couple of loops; the 
first puts 0 to 255 directly into screen memory, starting at the top of the 
screen, so all 256 ROM characters appear. They appear differently in upper 
and lower case modes, of course. The inclusion of K within the loop shows 
one method by which variables can be made to change in step with each 
other. This principle is quite useful. Line 100 can in fact be simplified, 
eliminating K, by writing 100 FOR J=O TO 256: POKE 32768+J, J: NEXT. 
Line 200 is a memory-move routine, which shifts 1000 bytes of the screen 
forward by one location. To do this successfully, it is essential to begin at 
the top end and work back, since otherwise each byte will be obliterated by 
the previous byte. This is the reason for the negative STEP parameter. 
Try the routine omitting the negative step if you don't yet see this. 

1000 FOR J=l TO LEN ("ABCX£$"): IF IN$<>MID$("ABCX£$",J,l) THEN NEXT: 
IN$="!" 

1010 REM J NOW EQUALS 1-6, THE POSITION OF 1$ WITHIN THE STRING OF 
CHARACTERS WE'RE TESTING, OR J EQUALS 7 AND IN$ = "!" 

2000 FOR Y1 = Y1 TO 9E9: IF Y1-Y>1 THEN PRINT#5,SOUTH$: NEXT 
Two program extracts show how IF statements within loops can be dealt 
with. The first tests input IN $ against the contents of a string. If IN $ 
is not found in the string, it's reset to a warning value. Otherwise, J now 
equals IN $'s position within the test string; this may be useful in extracting 
other substrings. Line 2000 is part of a graph plotting program: steps are 
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drawn southward, from Y to Yl, incrementing Y1 until the condition fails. 
Finally, we have an example of nested loops, in which J controls the step size 
between a 2-dimensional plot on the screen. I have assumed (see SET) that a 
function to draw single 'points' exists: 

FOR J=60 TO 2 STEP -1: FOR X=O TO 79 STEP J: FOR Y=O TO 49 STEP J: 
POKE O,X: POKE 1,Y: SYS 826: NEXT Y,X,J 

Notes: [1] Loops in practice are quite easy to use; don't let the rather long list 
of notes efface this fact from your mind. 

[2] Syntax. (i) A loop variable must be a simple real variable: FOR X% = 1 TO 9 
and FOR X(5)=O TO 10 both cause ?SYNTAX ERROR. (ii) A loop is always 
executed at least once, even though strictly, in standard BASIC, a loop like 
FOR V=10 TO 1: ... :NEXT should be ignored. Apart from taking time to test, and 
thus slowing down benchmarks, the corresponding NEXT has to be found, and, 
in unstructured BASIC, this is impossible. So the example sets V to 1, then 
executes the contents of the loop once. (iii)Inclusive limits apply, so that: 
FOR J=O TO 9: causes J to take values 0,1,2, ... ,9 and execute the loop ten 
times. (iv) for j=l to 1E4: in lower-case mode is treated as 1 to 14. 

[3] Accuracy. If the loop variable and the step size are each stored exactly, 
there will be a rounding error only with extreme values, so a loop will execute 
precisely under these conditions. Generally, integers and binary decimals are 
stored exactly, including the default step value of 1. For this reason, both 
FOR Q=l TO 1000000: and FOR J=.5 TO 1000000 STEP .0625 execute perfectly,but 
FOR M=l TO 1000: STEP 1/3 doesn't, as can be seen by including PRINT M 
in the loop. FOR M=l TO 1000.1 will ensure the count is correct. 

[ 4] Speed. When fine-tuning a program to run with as little delay as is 
possible, the contents of loops are an obvious candidate for examination. 
Firstly, the variables: the loop variable itself is held by the stack as a 
pointer, so if it is used merely as a counter there is no point in putting it 
early on into the RAM variables. The rule should be to order variables in 
RAM according to their presence inside the loop. When loops are nested, 
the innermost variables obviously should have priority over those within 
fewer loops. The more variables a program has, the more difference this 
will make. Time-saving can be more spectacular with the second approach, 
rewriting the loop(s) to use fewer instructions, or fewer redundant oper­
ations such as assignments, calculations, or conditions. It is easy to compose 
examples showing many faults, and a large speed increase when these are 
removed, but again, in practice, factors of the order of five or six times 
the original speed are not very likely to occur. Let's consider an example 
incorporating both these factors: 

7600 REM DATA IS STORED IN RAM IN BATCHES OF 116 BYTES, STARTING AT $6COO. 
7610 REM SO RECORD NO. R% STARTS AT 27648 + 116*(R%-1). 
7650 0$(1)="":0$(2)="":0$(3)="": ... :REM O$() HOLDS OUTPUTS 
7660 FOR J=O TO 27: 0$(1)=0$(1)+CHR$(PEEK(27648)+ 116*(R%-1) + J»: NEXT 
7670 FOR J=28 TO 47:0$(2)=0$(2)+CHR$(PEEK(27648)+ 116*(R%-1) + J»: NEXT 
7680 ... 

This program extract is perfectly good and workable, but, owing to BASIC's 
restrictions, the decision to rewrite it to run faster may be worthwhile. If 
so, we see that each loop holds a considerable amount of calculation, which 
can be moved out of the loop, and performed once only. We can use a 
temporary string in place of the arrays, which will process faster; and we 
can ensure that the variables are arranged in the optimum order. We get:-
7650 RS=27648 + 116*(R%-1): S$="" :REM RECORD START POSITION AND STRING 
7660 S$="": FOR J=O TO 27: S$=S$+CHR$(PEEK(RS+J»: NEXT: O$(l)=S$ 
7670 S$="": FOR J=28 TO 47:S$=S$+CHR$(PEEK(RS+J»: NEXT: 0$(2)=S$ 
7680 ... :REM BEST ORDER FOR THIS CODE IS S$="" :RS=O:J=O WITH O$() 1ST ARRAY 

S$ is the most important variable in the rejigged code, because it occurs 
twice as often as any other variable. R%, which was very influential in the 
original, now is unimportant as far as this part of the program goes. 
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[5] Nested and structured loops. A nested loop has an appearance which 
may be represented diagrammatically like this: 
And in a program like this: 

FOR X = Xl TO X2: .. . 
FOR Y = Y1 TO Y2: .. . 

FOR Z = Zl TO Z2: .. . 

NEXT Z 
NEXT Y 

NEXT X 

~ 
First variable 

~
second variable 

[T~~~d variable 

NEXT 
NEXT 

NEXT 

Each depth of nesting puts 18 bytes of information on the stack, and each 
NEXT moves the stack pointer back 18 bytes. FOR and GOSUB share the 
stack; there are limits on the ways they can be used together. Every new 
FOR variable is checked against the current stack contents, and, should an 
active FOR loop exist already with that variable, the stack pointer is reset 
to that previous loop, erasing subsequent loops in effect. Several 'nests' 
can be built within a larger loop, and this is perfectly legitimate and should 
give no bugs: 
FOR X=X1 TO X2: FOR Y=Y1 TO Y2: FOR Z=Zl TO Z2: NEXT Z,Y: FOR A=A1TOA2: 
FOR B=B1 TO B2: NEXT B,A,X 
Omission of the loop variables from NEXT (Le. NEXT :NEXT and so forth) 
guarantees correct nesting. Structured programming has several things to 
say about loops; one is that there should be one exit point only, and not 
jumping from the middle of a loop to another part of the program. Another 
is the requirement for an explicit exit condition at the start of the loop, to 
make it more readable. The following skeletal loop shows how both of these 
ends can be achieved. It is a 
DO ... UNTIL loop, starting 
with its loop variable set to 
BEGIN and with an arbitrary 
upper limit. 

100 OK=-l: FOR J=BEGIN TO 9E9 
110 IF NOT OK THEN J=9E9: GOTO 200 

... PROCESSING ... 
150 IF •.. THEN OK=O: REM TEST 

. .. PROCESSING 
200 NEXT J 

[6] Bu~s. (i) Omission of a negative step: FOR J=100 TO 0: A(J)=J: NEXT 
(ii) Omission of NEXT. There is no 'next omitted' error. FOR H=l TO HRIZ: 
FOR V=l TO VERT: GOSUB 1000: NEXT. Both these errors cause loops to end 
much more quickly than in the correct version. This may also happen with 
(iii) Inadvertent change in the loop variable; this is particularly liable to 
happen with subroutines in the loop - see GOSUB for examples. 
(iv) The loop variable(s) may be omitted by mistake: FORI=O TO A: FOR J=O 
TO B: X(A,B)=A*B: NEXT J,I needs X(I,J)=I*J in place of the expressions in 
A and B if the object is to fill the array with the product of row*column. 
(v) An incomplete GOSUB (Le. with RETURN not yet made) will give ?NEXT 
WITHOUT FOR, for example: 10 FOR J=l TO 10: GOSUB 20: END / 20 NEXT 
(vi) The upper limit of the loop is stored in the stack; therefore the attempt 
to vary the exit from the loop by controlling it will fail (unless the stack 
itself is altered). Example: 100 A=10: FOR XX= 1 TO A: REM i.e. 1-10 

110 INPUT A: PRINT A : REM CHANGE A •.. 
120 NEXT: REM BUT LIMITS REMAIN 1-10. 

(vii) Use of nonexistent loop variable will give ?NEXT WITHOUT FOR; so 
will NEXT without a loop variable if previous loops do not exist any longer 
or never existed. 0 FOR 1=1 TO 10: NEXT II uses a non-existent variable; 
o NEXT has no corresponding FOR; and 0 FOR 1=1 TO 10: FOR J=l TO 10: 
NEXT I: NEXT eliminates J by its reference to I, so nothing is left for NEXT. 

[7] Logical variables. DO WHILE loops can be simulated like this: 
FOR J = -1 TO 0: ••• : J = TEST EXPRESSION: NEXT 

Where the omitted processing is performed until J becomes false. 

Abbreviated entry: fO stE. There is no short form of 'TO'. NEXT has nE. 

Tokens: FOR $81 (129) TO $A4 (164) STEP $A9 (169) NEXT $82 (130) 

Operation: See NEXT for operation of the stack and ROM entry points. 
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FRE 
BASIC arithmetic function 

PURPOSE: Computes the number of bytes available to BASIC between the end of 
the array storage and the start of strings. FRE fi rst performs the 
so-called 'garbage collect' routine, which rearranges all the strings held in 
upper RAM into one consecutive block. This is useful when dealing with 
strings and string arrays, because (unlike numerals) they occupy variable 
space in RAM. This function measures the free memory. 

Syntax: FRE(expression). FRE is a function in the sense that it returns a value. 
However, its expression is a dummy. Typically, PRINT FRE(O) or F=FRE(1) 
may be used. But FRE(X), FRE(X$), or FRE(A%(5)) are syntactically 
correct versions of the function. 

Modes: Direct and program modes are both valid. 

Examples: PRINT FRE (0) 
1000 PRINT FRE(O) "BYTES AVAILABLE AT PRESENT" 
200 X=FRE(O): DIM Q$(75): PRINT (X-FRE(O» "BYTES USED BY POINTERS" 

The first two examples, in direct and program mode respectively, simply 
print the free memory. The third is a more elaborate piece of code which 
demonstrates the use of FRE to measure the differences before and after 
some memory-using statement(s). This example prints the amount of RAM 
taken up with the pointers for a string array of dimension 75. 

Notes: [1] This diagram illustrates the situation. If a new string is defined 
which, even after garbage collection, is too long to fit into RAM, an ?OUT 
OF MEMORY ERROR message is printed. 

5 GET X$: IF X$="" GOTO 5 
10 I$=I$+X$: GOTO 5 

part of 
greater 

Each X $ takes one byte, and each I $ occupies one more byte than it did 
previously. A string of length n takes In(n+3) bytes, using a little alg­
ebra. So for example a 20-character input occupies 230 bytes. 

[2] With no program in memory, FRE returns the number of bytes after 
the end of the program; so after Commodore's BASIC message, and (say) 
31743 bytes free, PRINT FRE(O) prints 31740 or 31741 depending on the 
ROM. Lowering the top of memory by POKEs will reduce the number of 
bytes returned by FRE. 

[3] Timing. This is a well-known problem associated chiefly with BASIC 2. 
A program using D 1M X $( 512) will intermittently stop to garbage collect, 
whenever string space is short, not only on executing FRE, and the process 
is slow. (BASIC 1 has the same problem; but people were cautious of large 
arrays, which didn't work correctly). The time taken to free memory is a 
function of the number of strings in upper RAM; it is a surprisingly precise 
relationship, and is about .00008 * (N+ll)2 seconds with BASIC<4. See 
Chapter 4 on ways of minimising this delay. One of the features of BASIC 
4 is that the strings are held differently and freed more quickly. Chapters 
2 and 4 give details. The following program, which can be entered in 
direct mode, is about the worst case with BASIC 2, and runs in 83 minutes: 
DIM A$(7900):FORJ=OT07900:A$(J)=CHR$(1):NEXT:T=TI:J=FRE(O):?(TI-T)/60 "SECS" 

Operation: The function firstly frees memory by calling the garbage collect sub­
routine. It then subtracts the pointer to the end of the arrays from the 
pointer to the bottom of the strings, and converts the result into floating 
point in accumulator #1. 

ROM entry points: BASIC1:$D264 (53860) BASIC2:$D259 (53849) BASIC4:$C4A8 (50344) 
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GET & GET=tf 
BAS IC input command 

PURPOSE: GET and GET# read a single byte from the keyboard and from any 
device, respectively. In the case of the keyboard, if there is no character 
in the keyboard buffer a null string or numeric value zero is returned. On 
entering GET or GET#, the status byte ST is set to zero; the end of a 
correctly CLOSEd tape file sets ST to 64, and the end of a correctly CLOSEd 
CBM disk file sets ST to 64 and in addition sets the byte read by GET# to 
Carriage Return. 

Syntax: GET [# arith. exp. ] var. name [, var. name] [ , var. name] ... 
GET may optionally be followed by # with a logical file number which must 
evaluate to 1-255. At least one variable name must follow. The processing of 
GET resembles INPUT (q. v.) in its use of the input buffer, but no extra 
parsing is carried out on G.ET's single byte, so this command may be used to 
input any data, unlike INPUT which presumes certain formatting conventions. 

Mode: Program mode only. Direct mode generates ?ILLEGAL DIRECT ERROR. 

Examples: 5 GET X$: IF X$="" GOTO 5 
10 PRINT "[UP] "X$" [LEFT][LEFT][LEFT]" ASC(X$): GOTO 5 
200 GET A$.B$.C$: PRINT A$B$C$: GOTO 200 

If you're uncertain about the function of GET, these examples, when RUN, will 
soon give you the idea. The first prints X$ and its ASCII value at a fairly fixed 
position on the screen, where X$ is the single byte returned by GET. You will 
be able to observe how GET can accept a carriage return, for instance, which 
has the ASCII value 13. This is an infinite loop which Stop can terminate. Line 
100 is a similar loop. The syntax is more appropriate to GET#; however, if you 
are quick, more than one variable will be set from the keyboard. The method of 
line 5 is necessary if a keypress is awaited. It is the starting-point for 
crashproof input routines; see Chapter 4 on this topic. 

55 GET A is valid. However, apart from 0-9 which set A=0-9 as expect­
ed, ?SYNTAX ERROR is printed, or ?EXTRA IGNORED with, and:. Also, 
space,+,-, and E return O. It's usually best to GET a string variable. 

2000 GET#8,X$: IF ASC(X$)=13 GOTO 3000: REM STRING IN$ IS COMPLETED 
2010 IN$=IN$+X$: GOTO 2000 : REM BUILD STRING IN$ 

This example shows how a string is built up from successive bytes. 

Notes: [1] The Keyboard Buffer. GET (provided that an input device number is not 
found by $FFE4) takes one character from the keyboard buffer. (Characters 
are put there during IRQ servicing). This buffer occupies 10 bytes from $026F 
(623 ff. dec.), and $9E (158 dec.) indicates how many characters are present; 2 

if 0, the null character is assigned to a string variable. BASIC 4 has a variable 
length buffer: $E3 holds its greatest length. LINENO GET X$: IF X$>""GOTOLINENO 
empties the buffer. So does POKE 158,0 although this is reversible: POKE 158 
with some non-zero number revives characters in the buffer. In fact, poking 
158 with 200 in direct mode prints the entire contents of cassette buffer #1. 
Apple has a different and inferior GET which waits for a keypress. The short 
routine which follows can be used to test any BASIC for keyboard buffering: 

10 FOR J = 0 TO 3000: NEXT: FOR J = 1 TO 20: GET X$: PRINT J;X$: NEXT 

When RUN, this delays for a few seconds, then GETs and prints out characters. 
If several keys are pressed in turn during this delay, they will, with CBM 
machines, be printed later, showing that a buffer exists. The buffer can hold ten 
keys, and it it easy to demonstrate that BASIC<4 erases the buffer and starts 
over if more keys than this number are pressed. This has a practical effect 
on crashproof input routines. Note that BASIC 4 retains earlier keys, and 
its buffer need not be 10. POKE 227,0 for example locks out the keyboard 
altogether. 

*Unlike INPUT# and PRINT#, GET# has no separate token, so I've treated it with GET. 
2BASIC 4's keyboard buffer is set to 10 characters on power-up. but it can be changed 
by a poke. BASIC l's buffer begins at $020E. and contains $020D bytes at any instant. 
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[2] Tape. The tape reading routine is part of $FFE4. It can be recognised 
in ROM after the point where the input device number is compared with #3. 
After this point, the carry bit is clear for both tape devices, which are 
numbered 1 and 2 by Commodore. The character is taken from the cassette 
buffer (i. e. 192 bytes from $027A and $033A). When the buffer has been 
read, everything pauses while the next block from tape is read into the 
buffer, and its pointer reset to start. The end-of-file marker is a zero byte, 
which will cause ST to be set to 64 as the last character is read. If this is 
not detected, the next GET# (or any other input/output command) resets ST 
to zero, so the cassette will keep reading further data. 

[3] Disk. Whenever ST is set non-zero, a carriage return character is sent, 
except with BASIC 1, which sets ST but returns the previous byte. It is 
not only EOI (end of file, in effect) which sets ST; time out on read has the 
same effect, so slow devices may send only carriage returns. The time-out 
feature can be disabled in BASIC 4 (by POKEing $03FC with a negative 
amount, e. g. POKE 1020 ,128). Typically, therefore, this type of routine is 
used with GET#: 

2000 IN$="" 
2005 GET#8,X$: IF ST=64 OR ASC(X$)=13 GOTO 3000: REM EXIT WITH IN$ 
2010 IN$=IN$+X$ 
2015 GOTO 2005 

[4] Since GET# takes in colons and commas and so forth, it can be used to 
check a file's contents in a way impossible with INPUT#. Moreover there is 
no limitation to 80 characters length, although a built-up string like the one 
in the earlier example cannot exceed 255 characters in length. BASIC<4 
include carriage returns when using GET# from the screen; each GET# which 
was a multiple of 40, e.g. the 40th, 80th, etc., became CHR$(13). But GET# 
from the screen is rarely used. Note also that the difference between GET 
and INPUT as regards cursor flashing is determined by the number of bytes 
in the keyboard buffer, but this may be overridden by POKEing the cursor 
flash location with the value zero. This location is $A 7 (167) in BASIC>1, 
and $0224 (548) in BASIC 1. 

Abbreviated entry: gE & gEl 

Token: $A1 (161) 

Operation: GET and GET# use the input buffer, but place a zero byte into $0201 
so that a single character only is taken. The 'get' part of the routine uses 
the kernel routine at $FFE4, which returns with a character in A and with 
ST possibly set. There is also an assignment part to the routine, which 
shares ROM with READ and INPUT. If the '#' symbol is found, the number 
or expression after it is worked out and this logical file number is stored 
for future use in $03 (BASIC 1), $OE (BASIC 2), or $10 (BASIC 4). When 
the byte has been fetched, normal device input/output is restored. 

ROM entry points: 

GET:BASIC 1:$CA9F (51871) KEYBOARD BASIC 1:$E2B7 (58039) 
BASIC 2:$CA7D (51837) FETCH: BASIC 2:$E2B8 (58040) 
BASIC 4:$BB7A (47994) BASIC 4:$E003 (57347) - NEEDS SEI. 
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GO 
BASIC dummy command 

PURPOSE: Sole function is to look for a matching TO, and, if found, to perform 
GOTO. The rai son d 'etre is to provide GO TO as well as GOTO in BAS I C. 

Syntax: GO must be followed by one or more spaces, TO, and a linen umber. 

Notes: [1] BASIC 1. This token is not present in BASIC 1; this early version had 
the facility to eliminate spaces on tokenisation, so that GO TO converted 
itself to GOTO. This method of forming tokens leads to more ambiguities 
than the later method. Possibly for this reason, it was changed, so that a 
line like: 

10 IF 256=LE THEN PRINT "HIGH" 

no longer appeared to contain LET. However, GO TO was also eliminated, 
and a patch put in, consisting of the token GO and a special routine to 
check that it was followed only by TO. 

It follows that programs developed on later machines, using GO TO, will 
not LIST properly with BASIC 1; GO produces ?SYNTAX ERROR. 

[2] BASIC 4. GO is no longer a patch, but processed along with other 
tokens. Some versions appear to bo defective. An early manual for this ROM 
states that an extra byte or token must appear between GO and TO to 
compensate for a bug: GOXTO for example, or GO TO TO. 

[3] GO can be intercepted by a wedge and used perhaps as a command in 
a computed GOSUB or GOTO routine. See Chapter 14, section 14.3.2 . 

[4] GO causes problems with some renumber utilities, which haven't allowed 
for the existence of this token. 

Abbreviated entry: None 

Token: $CB (203). Not present in BASIC 1. 

Operation:In BASIC 2 the routine to execute a BASIC statement is at $C700. 
The patch to process this command is at $C 721. 

In BASIC 4, the entry point for GO is $B7AC (47020). 
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GOSUB 
BASIC command 

PURPOSE: Performs a jump to any line in a program. The target line is identified 
by its linenumber. When RETURN is next encountered, control is transferred 
to the statement following COSUB. In association with IF or ON, conditional 
calls to subroutines may be made. 

Syntax: GOSUB linenumber. The linenumber must be ASCII numerals (e.g. 1234), 
and, like GOTO, the first character outside the range 0-9 marks its end. 
Computed GOSUBs of the type GOSUB x need to be specially written. If 
the line doesn't exist within the program, a run-time error will occur. 

Modes: Direct and program modes are both valid. A subroutine in a BASIC 
program in memory can be tested in direct mode. 

Examples: ! FOR V=O TO 24: FOR H=O TO 39: GOSUB 1000: NEXT: REM HORIZ & VERT POSNS 
1000 POKE 245,V: POKE 226,H: SYS 58843: RETURN: REM FOR BftSIC 1 

.!.!. 2024 IF RIGHT$(JS$,l)<>CD$ THEM EM$="IN CHECKLETTER": GOSUB 12000 

iii 12000 PRINT "[HOME] [23 DOWN] [10 RIGHT] [RVS]*** ERROR" EM$ " [RVSO]"; 
12010 FOR J=OT02000: NEXT: : REM DELAY LOOP 
12020 FOR J=l TO LEN(EM$)+l1: PRINT "[LEFT] [LEFT]";: NEXT 
12030 GOSUB 100: FOR J=l TO JL: PRINT " ";: NEXT: RETURN 

iv 500 GOSUB 510 
510 REM ** SUBROUTINE TO BEEP BELL ONCE ** (Detail omitted) 

i. This first example shows how a subroutine may be called in direct mode. 
Line 1000 is a subroutine which positions the cursor, using 2 parameters, 
H and V. The direct mode line performs an exhaustive test on it. 
ii. The same piece of code may be required in many different places within 
aprogram. This use of subroutines - one of the most important - is 
exemplified by line 2024: on discovery of an error in a check digit, the 
parameter EM $ is set to a suitable value, and the subroutine called. In 
other parts of the program the identical subroutine is called, but EM$ takes 
other literal values: "IN SALES CODE", "- NOT ON FILE", and so forth. 
iii. This four line routine prints an error message in reverse on the bottom 
or-the screen, and erases it after about 2 seconds. Then, in line 12030, it 
calls another subroutine, which in fact moves the cursor to the position on 
the screen which the operator is using for input. The erroneous string, of 
length JL, is erased ready for reinput. 
iv. This is a simple example of the use of subroutines with multiple entry 
points. GOSUB 510 beeps the speaker; GOSUB 500 beeps it twice. 

Even when code is used by only one part of a program there are many 
situations in which subroutines improve the total program. Here are some 
examples: 

v. Programs written in a structured or semi-structured fashion can have 
controlling routines written like this: 

7000 IF JS$="S" THEN GOSUB 2000: GOTO 6000: REM SKIP TO NEW ITEM 
7010 IF JS$="B" THEN GOSUB 3000: GOTO 6000: REM BOOK STOCK IN 
7020 IF JS$="E" THEN GOTO 4000: REM EXIT AND CLOSE DOWN 

vi. Any routine which is too long for one line, or requires multiple IFs or 
Otner confusing constructions, may be easier to deal with as a subroutine. 

vii. Batches of similar routines may be clearer when written as subroutines, 
s<>that a block of the program collects together in one place a set of 
closely related procedures. 

600 PRINT "(";: GOSUB 400: PRINT ")": RETURN. REM INDIRECT JUMP 
610 GOSUB 500: PRINT ",Y": RETURN: REM ZEROPAGE,Y 
620 PRINT "(";: GOSUB 500: PRINT ",X)": RETURN: REM (ZEROPAGE,X) 
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Notes: [1] Linenumbers following GOSUB are dealt with by the scanning routine 
which GOTO also uses. The effect is similar to the VAL function. This 
incomplete validation allows ON ... GOSUB to function, since a comma has 
to be treated as a marker for the end of linenumber. It permits some odd 
anomalies, which also occur with GO TO . For example, all the following 
commands are interpreted GOS UB 0:-

GOSUB GOSUB REM NEW GOSUB Oxxx GOSUB [PI] 
and 

GOSUB 1000NEXT GOSUB 50*2 

are interpreted GOSUB 1000 and GOSUB 50 respectively. 

[2] Timing: Since sUbroutines can be called from any part of the program, 
it is desirable from the speed point of view to put the most commonly used 
of them at the start of the program. This minimises search time for the 
linenumber. (RETURN stores a pointer to the original GOSUB, so there is 
no search time spent in of this type is RETURNinlt) . Proltram structure 
therefore common: 0 GOTO 5000 

100+ Standard subroutines 
1000+ Menu options 1,2 3, ... 
5000+ Initialisation 

Menu for all options 
Closedown and end 

50000+ Initialisation, closedown, 
and utility subroutines. 

[3] Note that GOSUB 500: RETURN has the same effect as GOTO 500. 

[4] See text for computed GOSUB routines. 

[5] It is sometimes useful to escape from a subroutine without returning 
to the previous GOSUB. See POP in this reference section for details. 

[6] A program with subroutines is inevitably fragmented into discrete 
chunks, so subroutines may need to be isolated from the remaining program 
to prevent dropping-through and execution of subroutines at the wrong 
time. For example, with subroutines starting at 60000 the line 59999 END 
guards against this eventuality. Subroutines can call themselves, but an 
exit mechanism of some sort is necessary. 100 GOSUB 100 for example will 
generate an ?OUT OF MEMORY ERROR as the stack fills up with return 
addresses. When handled correctly, this technique is called 'recursion'. It 
is used widely in translaters and compilers. Incidentally, the claim that 23 
levels of subroutine can be handled by CBM BASIC should be treated with 
caution. All intermediate results, and loops, are pushed on the stack, so 
a subroutine with loops and many parentheses may unexpectedly run out of 
memory with far fewer than 23 subroutine levels. 

Abbrev iated entry: goS Token: $8D (141) 

Operation: The stack is tested. If there is not room for 6 bytes an ?OUT OF 
MEMORY ERROR message appears. (Although it only uses 5). Assuming 
this test is passed, 5 bytes are pushed onto the stack: the current CHRGET 
address, the current linenumber, and a GOSUB token ($8D). After this its 
operation is identical to GOTO. It scans linenumbers in the same way as 
GOTO, either from the start of the program or from its current position, 
depending on the linenumber. Finally it carries out a BASIC warm start. 

Stack use demonstration program:-
10 P=512: GOSUB 20 
20 PRINT PEEK(P),: P=P-1: IF P=500 THEN END 
30 GOTO 20 

Gives:-
o 0 198 238 

~ 16):=3: 141, 
~ Loc.~oT\ Li .J,t.r 

ROM entry points: 

BASIC 1: $C780 (51072) BASIC 2: $C790 (51088) BASIC 4: $B813 (47123) 



Programming the PET ICBM -73- 5: BASIC keywords 

GOTO & GO TO 
BASIC command 

PURPOSE: Performs a jump to any line in a program. The target line is identified 
by its linenumber; not, for example, by a label. In association with IF or 
ON , conditional jumps may be made, selecting which part of the program 
to go to. 

Syntax: GO TO or GOTO followed by a linenumber. The linen umber must be in 
ASCII (e.g. GOTO 1234). Computed GOTOs of the type GOTO x need to 
be specially written. Note that the linenumber is processed in a similar way 
to the VAL function; the first character not 0-9 is deemed to be the final 
character in the linenumber. Nonexistent lines cause ?UNDEF'D LINE ERROR. 

Modes: Direct and program modes are both valid. Direct mode will cause a jump 
to the program in memory, and, provided the target line number exists, 
will execute the program from the point of entry. Since CLR isn't performed 
the variables set up by the program are unaltered: this command therefore 
resembles CONT and is usable after STOP, END, and the STOP key. 

Examples: D$="022983": GOTO 12000 
100 GET X$: IF X$= .... GOTO 100 
GO TO 100 

The first example shows a direct mode GOTO statement. Before executing 
GOTO, a variable is set; in the example, with an invalid date, to test the 
operation of the program. Any line may be jumped to, including itself. The 
second example is a conditional loop which, until a key is pressed, loops 
indefinitely. Without the condition, line 100 will constitute an infinite loop, 
from which only the stop key will rescue the program. The third example 
illustrates that GO TO is an acceptable variant of GOTO. 

Notes: [1] On the subject of the differences between GOTO and GO TO, see the 
reference page dealing with the GO token. Generally, GOTO is better. 

[2] Some apparent anomalies result from the translator's method of dealing 
with the linenumber following GOTO. GOTO 101 0, with I erroneously keyed 
in place of the numeral 1, does not produce a syntax error message, but 
is treated as GOTO 10 would be. The mistyped GOTOT10 is interpreted 
GO TO O. And the solitary statement GOTO is taken to mean GOTO O. By 
poking a null character into a linenumber, GOTO 200 may be made to LIST 
as GOTO 20 but act like GOTO 2. 

[3] Timing: the time spent searching for the target linenumber is not on the 
whole large. (Some BASICs, notably Sharp, are far slower). However, to cut 
this time to a minimum, it's necessary to know how GOTO is processed. This 
is done as follows: 
(i) The high bytes of the line numbers (and only the high bytes) are 
compared; (ii) if the target linenumber is larger by this test, lines after 
the current line are scanned; (iii) if the target linenumber is not larger -
by the test - lines from the program's start are scanned. To take a concrete 
example: 25600 GOTO 0, 25600 GOTO 10000, and 25600 GOTO 25825 all have 
to scan BASIC from the beginning. 25600 GOTO 25856 and 25600 GOT043000, 
on the other hand, scan forward from their current position. 

[ 4] See the text for computed GOTO routines. 

Abbreviated entry: gO (=GOTO) Token: $89 (137) 

Operation: The linenumber is fetched one character at a time and converted into 
a 2-byte integer. The process stops when a non-numeric character is found. 
The location of the next line is calculated. Now, in x GOTO y, the- high 
byte of y is compared with the high byte of x: if larger, lines are sought 
from the next line. Otherwise, they are sought from the start of BASIC. If 
the line wasn't found, ?UNDEF'D LINE is branched to; otherwise, CHRGET 
is pointed to the zero byte just before the target line. RTS executes it. 

ROM entry points:BASIC1:$C79D (51101) BASIC2:$C7AD (51117) BASIC4:$B830 (47152) 
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HTAB &VTAB 
BASIC commands unavailable directly in CBM BASIC 

PURPOSE: Moves the cursor to any position on the screen, as specified by 
horizontal and lor vertical parameters. This is sometimes called PRINT @. 

Versions: This type of function is easy to write in CBM BASIC. All that is needed 
is a print statement including [HOME] and a suitable number of cursor down 
and cursor right characters. Machine code routines can also be written; they 
are faster than the BASIC equivalent, which may be important in some 
circumstances. For example, a formatted screen which inputs intensively 
validated information may well be improved by such a routine. It is quite 
easy to find the ROM routines responsible for handling this, since the 
reset routine, used at switchon, must format the screen at some stage. The 
drawback of machine dependence, though, has to be taken into account, 
because each ROM has its routines in a different place, set in silicon. BASIC 
4 has two versions! 

BASIC 1: POKE 226,H: POKE 245,V: SYS 58843: RETURN 
BASIC 2: POKE 198,H: POKE 216,V: SYS 57949: RETURN 
BASIC 4 
(40 COL): POKE 198,H: POKE 216,V: SYS 57471: RETURN 
BASIC 4 
(80 COL): POKE 226,H: POKE 224,V: SYS 57439: RETURN 

Note that the 8032 is more difficult to deal with because it has several 
types of screen editing. This version resets the top left corner of the 
scrolling window. 

Demonstration: A demonstration program in BASIC follows. Line 1000 holds the 
machine-code subroutine, and corresponds to BASIC 2, but any of the 
routines listed previously can be SUbstituted for it. 

5 REM 
6 REM **** RUN 10 USES SYS COMMAND TO POSITION CURSOR AT H,V **** 
7 REM 
8 REM **** RUN 20 PRINTS CURSOR CONTROL CHARACTERS **** 
9 REM NOTE THE DIFFERENCE IN SPEED 
10 FOR V=O TO 24: FOR H=O TO 39: GOSUB 1000: PRINT "[shift &]";: 

NEXT H,V: END 
20 FOR V=O TO 24: FOR H=O TO 39: GOSUB 1001: PRINT "[shift &]";: 

NEXT H,V: END 
1000 POKE 198,H: POKE 216,V: SYS 57949: RETURN 
1001 PRINT "[HOME]";: FOR J=O TO H: PRINT "[RIGHT]";: NEXT: 

FOR J=O TO V: PRINT "[DOWN]";: NEXT: RETURN 
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IF 
BASIC conditional command 

PURPOSE: Allows (i) Conditional branch to any program line, 
(ii) Conditional execution of statements following IF. 

Syntax: IF arithmetic or logical expression THEN linenumber or statement(s) 
GOTO linenumber 

THEN may be followed by a null statement: IF X=l THEN: is valid. 
On execution, if the expression evaluates to 0 it is treated as 'false' and no 
further part of the line is executed; if it evaluates to any non-zero value 
it is regarded as 'true'. This fact enables the conditional expression to be 
arithmetic. not just logical with alternatives 0 and -1. See also note [1]. 

Modes: Direct and program modes are both valid. 

Examples: FOR N=l TO 1000 STEP .01: GOSUB 100: IF VAL (N$) =N THEN NEXT 

This direct mode example is being used to test a rounding routine; if the 
condition fails, the loop ends and PRINT N displays N's final value. 

500 IF P=60 THEN P=O: GOSUB 30000: GOTO 600: REM PAGE THROW 
700 IF X=l THEN IF A=4 AND B=9 THEN PRINT"*";:REM SPECIAL VALUES 
800 IF 7+6 GOTO 900 
1000 IF 8 AND 7 THEN THIS IS NEVER REACHED! 
1200 IF YN$="Y" THEN: $D,l : REM BASIC WEDGE IN USE 

This batch of examples illustrates most points relevant to IF. Firstly, its use 
in conditional execution of BASIC: if 60 lines have been printed, the counter 
is reset to 0, a subroutine to call form feed and print a new heading is run, 
and the processing resumed. N one of this is done if the condition was not 
true. Line 700 contains a composite IF; this is entirely valid since THEN may 
be followed by any statement. Note that 'IF X=l AND A=4 AND B=9 THEN' is 
exactly identical in its effect (but slightly slower). Line 800 causes an 
unconditional branch to 900. This is because 7+6 evaluates to 13, which is 
non zero. Line 1000 is the opposite; anything after THEN cannot be reached 
by BASIC running normally. Finally, line 1200 demonstrates a point which is 
sometimes important with wedges in BASIC which add extra commands. Here, 
'$' signals a special instruction (disk directory with Compu/think disks) which 
if intercepted by the wedge will carry out the command. even when the IF 
condition is false. The colon, starting a new statement, prevents this. 

Notes: [1] IF ., GOTOn is of course redundant; it can always be replaced by IF .. 
THEN n. However, it is slightly faster. Note that IF .. GO TOn is not valid, 
while IF .. THEN GO TOn is! IF ., GOSUB n is not allowed, and must have 
THEN. On the subject of syntax, note finally that GOTO doesn't validate the 
linenumber fully, so that IF A=B GOTO 10XX will branch to line 10. 

[2] IF X THEN... is the same as IF X <>0 THEN ... and vice versa. 

[3] Rather strangely, a condition may include strings, which on 'evaluation' 
may not use the floating point accumulator, so that the previous calculation 
determines the 'truth' of the condition. Q$='''': IF X$ THEN: is false, while 
Q$=CHR$ (I) : IF X$ THEN: is true. 

[4] Some BASICs, notably IBM's 8100 series, allow only IF .. GOTO, resulting 
in exceptionally spaghettied programs. Apple integer BASIC skips to the next 
statement, not line, after a false condition. 

Abbreviated entry: None Token: $8B (139) 

Operation: This short routine evaluates the expression after IF, then checks for 
GOTO or THEN. If one of these is found, the exponent of accumulator #1 is 
examined. If zero, i.e. 'false', the next line is jumped to, using a routine in 
conmon with REM. If non-zero, i.e. 'true', the next character is checked; if 
it's a numeral, GOTO is called; if not, the next statement is executed. 

ROM entry points:BASIC1:$C820 (51232) BASIC2:$C830 (51248) BASIC4:$B8B3 (47283) 
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INPUT 
BASIC input command 

PURPOSE; Provides users with an easily-programmed method to key in data from 
the keyboard to the CBM. INPUT accepts data from the keyboard and 
echoes it as output to the screen, unless the input/output devices have 
been changed, for example by CMD. INPUT# is an alternative form which 
is designed for input from tape or disk file storage. Input is terminated by 
the 'Return' key or by the ASCII character for 'Return'. 

Syntax; The INPUT statement itself has this syntax;-
INPUT [string literal within quotes;] var. name [, var. name] [, var. name] •.. 
When RUN, this statement prints a question mark followed by a flashing cursor 
to prompt the user. The optional string is printed before the question mark 
onto the screen. Thus, INPUT X$ and INPUT "CODE"; X$ are each valid. The 
first prints? with the cursor, the second CODE? and the cursor. Subject to 
the rules which follow, the variable X $ will be assigned, on Return, the data 
typed after the cursor. Note that the optional string must be within quotes 
and is not a string expression. If X$="NAME", nevertheless INPUT X$;N$ 
generates ?SYNTAX ERROR, presumably to avoid confusion with INPUT X$. 

The keyed-in data is processed according to these rules:-
(i) Alphanumerics are dealt with straightforwardly, but many characters are 
not, notably " , : Return and the screen editing characters. The quotes mark 
" sets a flag causing subsequent input to appear as a literal, so that Home and 
Delete for example appear as they would within a literal, without homing the 
cursor or deleting the previous entry. Other special characters, such as 
and : may be incorporated into string input in this way. Carriage return, 
however, always terminates INPUT and turns off quotes mode. An opening 
quote, with or without a later closing quote, is therefore a valid entry in 
response to INPUT's prompt; but quotes in the middle of a string entry gener­
ate ?FILE DATA ERROR (or ?BAD DATA ERROR in BASIC 1). INPUT shares 
routines with GET and DATA and, like them, relies on the comma as a separ­
ator and the colon to mark the end of a statement. These are treated as 
separators with INPUT. ?EXTRA IGNORED will result if the separators seem 
to indicate that there are more strings of input than corresponding variables 
to assign them. The double prompt ?? is printed when INPUT has had fewer 
strings of input than it has variables. Leading spaces are ignored. 

(ii) When the input doesn't match the type of variable to which it is assigned, 
?REDO FROM START appears and the input is repeated. There are minor 
exceptions to this. An integer variable may be assigned a non-integer value 
without an error message, and a real variable may be assigned data in scientific 
format. 

(iii) INPUT takes in all the characters following the prompt to the end of the 
line. Consequently it is difficult to use INPUT with a screen neatly boxed 
with graphics. (It can be done by editing the resulting graphics input out of 
the string). And the total length of the string is limited by the screen width 
to 39 or 79 characters, when a prompting string isn't used. 

(iv) Finally, CBM's notorious input crash, which alone is sufficient to make an 
unmodified INPUT unsuitable for many applications. If 'Return' only is pressed 
in response to INPUT's? BASIC prints 'READY.' and stops. It can be 
revived by CONT without loss of data. Actually, this is true only if no file 
appears to be open to INPUT, and like SPC( and TAB(, this feature can be 
changed by POKEs. See note [2]. Note: VIC has no input crash! 

Mode: Program mode only. Direct mode generates ?ILLEGAL DIRECT ERROR. 

Examples: 100 INPUT "NAME"; N$ 
110 INPUT "ADDRESS LINE 1 (NO COIlllAS!)";A1$ 
120 INPUT "ADDRESS LINE 2 (NO COMMAS!)";A2$ 

These are typical elementary input statements, easy to program but subject to 
serious drawbacks. 'Home' will home the cursor; 'Return' will crash the pro­
gram; Shift-Stop will attempt to load a new program; the screen can be filled 
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with unwanted characters; commas or colons cause some of the string to be 
lost. See the notes for cures for these problems. 

1000 INPUT AA$,BB,C'J, :REM INPUTS MUST MATCH 
2000 FOR J=O TO 10: INPUT X$(J): NEXT :REM INPUT 10 STRINGS ••• 
2010 FOR J=O TO 10: PRINT X$(J): NEXT :REM ••• AND CHECK THEM 

Line 1000 expects three inputs. This is a valid response: 
HELLO! ,-123.45,7.1 

After Return, AA $= "HELLO! ", B B =-123.45, and C %=7 . Integer assignmen ts 
follow the normal rules as to range and rounding. -1.2 would be assigned - 2. 
This response will produce ?EXTRA IGNORED:-

HELLO,12,-123.45,7 
And this will produce ?REDO FROM START, because of the type mismatch:-

ABCDEF,19*12,4 
One or two entries only will be accepted, if they're valid, and the double 
prompt of ?? will be printed on the next line, awaiting complete input. 
Lines 2000-2010 show how array variables may be used for input too. 

Further examples showing use of (i) String literal, (Ii) Keyboard buffer. 
The following examples show some of the ways in which INPUT can be modified. 
The first four use screen editing characters to produce interesting variations 
on INPUT, including positioning on the screen, underlining, and reversed 
text. The fifth is a typical 'crashproofing' routine; sometimes * is used in 
place of upper-case (Le. shifted) space. The sixth shows how characters may 
be inserted into the keyboard buffer, which is equivalent to keyboard entry 
after the prompt and cursor are printed. They offer the possibility of erasing 
the prompt and - as here - automatically entering " at the start of the input 
in order to force acceptance of strings with commas, etc. Where constructions 
like "LDA $8000,X" are common, this is quite useful. The extra" turns off 
quotes mode, so the screen editing facilities will operate. 

10 INPUT "[CLR] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [RIGHT] [RIGHT] 
[RIGHT] [RIGHT] [RIGHT] [RIGHT] [RIGHT]";X$: PRINT X$ 

20 INPUT "HELLO [DOWN] [DOWN] [DOWN] [DOWN] [RVS]";X$: PRINT X$ 
30 INPUT "[DOWN][DOWN]TEXT[UP][LEFT][LEFT][LEFT][LEFT]";X$: PRINT X$ 
40 INPUT" --------- [LEFT] [LEFT] [LEFT] [LEFT] [LEFT] [LEFT] [LEFT] [LEFT] 

[LEFT][LEFTlILEFT] ";X$: PRINT X$ 
50 INPUT "CRASH PROOF NAME [USPC] [USPC] [USPC] [LEFT] [LEFT] [LEFT]"; X$: 

PRINT X$ 
60 POKE 158,3: POKE 623,34: POKE 624,34: POKE 625,20: REM 3 ITEMS IN 

KEYBOARD QUEUE, WHICH ARE 2 QUOTES AND A DELETE.(BASIC1:525 & 527ff) 
70 INPUT X$: PRINT X$: REM X$ MAY INCLUDE, AND/OR :. 

Notes: [1] See Chapter 4 for methods of foolproofing input using GET. Because 
INPUT can occur with screen scroll, if for instance many wrong entries cause 
the bottom of the screen to be reached, it's wOl'lth checking the result of an 
overflow: use, say: 10 INPUT" VERY LONG MESSAGE ";X$/15 PRINT X$/ 
20 GOTO 10. BASIC 4 is different from BASIC<4. 

[2] When CMD is in force, INPUT "MESSAGE" ;M$ will print the string to the 
device, so that MESSAGE may appear on a printer. ?FILE DATA ERROR means 
that INPUT is attempting to get data from a listener, such as a printer. When 
a file is open like this, the 'Return' crash won't happen: OPEN 1,0:INPUT#1,X$ 
for example inputs from a file to the keyboard. POKEing the device number 
location with a pseudo-file number has similar effects: try POKE 3,1 with 
BASIC 1, POKE 14,1 with BASIC 2, or POKE 16,1 with BASIC 4. 

[3] Direct mode is prohibited because the buffer which holds the direct-mode 
commands is the same as that in which input characters are stored. You can 
however try direct mode: use SYS 51956 X$, SYS 51925 X$, or SYS48080 X$ 
with BASIC 1/2/4. This will attempt to assign X$ to your input. It misses the 
test for direct mode. SYS of the ROM addresses below works exactly like 
INPUT, except that it will not print a string; try e. g. SYS48062X $, Y %, Z. 

Abbreviated entry: None Token: $85 (133) 

Operation: See INPUT# 
ROM entry points: BASIC1:$CAEO (51936) BASIC2:$CAC1 (51905) BASIC4:$BBBE (48062) 
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INPUT# 
BASIC input command 

PURPOSE: Provides users with an easy method to read back data from a storage 
device, normally tape or disk. The input which is read by the CBM is 
processed in the same way as INPUT processes it; this means that data sent 
to the storage device by PRINT# will be recovered intact. The format is 
consistent with that of PRINT# for strings and numerals, which are written 
as individual ASCII characters with carriage returns as separators. However 
some characters aren't recognized by INPUT # and are ignored; these include 
the screen editing characters, unless the quote character, CHR $( 34), was 
written at the start of the string. Note also that 80 characters is the max­
imum length of a record recov.erable with INPUT#. 

Syntax: INPUT # arith . expr. ,var. name [, var. name] [ , var. name] .. , 
As with PRINT#, a space between the two parts of the keyword's name causes 
the interpreter to see two tokens instead of one (except in BASIC 1!). The 
arithmetic expression is the logical file number of the input file, and must 
evaluate to 1-255 with rounding down. The comma and at least one subsequent 
variable are also compUlsory. No optional string exists, as it does with INPUT 
since a prompt is out of place when reading from tape, say. 

The data which is read in is processed according to these rules:-
(i) Alphanumerics are dealt with straightforwardly, and Return, when it is 
read, i.e. as CHR$(13) or SOD, terminates a record, in exactly the same way 
that the Return key sends data from the keyboard. In an analogous manner 
commas or colons, if they were not preceded by a quote mark, are treated as 
separators, and the subdivisions of data which they separate are all assigned 
their own variables. There is no equivalent to ?EXTRA IGNORED, but none­
theless data will be lost if an INPUT # statement takes in data to the buffer 
which is subdivided into more parts than there are variables; this can only 
happen if commas and/or colons are used carelessly, e.g. with PRINT#1,CHR$(44) 
or PRINT#8,CHR$(58). 

(ii) Most other errors cause the program to crash with ?FILE DATA ERROR or 
?BAD DATA ERROR in BASIC 1. For example, this occurs with INPUT#l,X$ 
when X$=CHR$(32), because leading spaces are ignored. Similarly, when the 
data doesn't match its assigned variable, this error occurs. 

(iii) The maximum string which may be input is constrained by the input buffer 
to 79 bytes (89 in VIC). BASIC 4 signals this condition with ?STRING TOO 
LONG ERROR and crashes the program; earlier BASI C shang. 

Mode: Program mode only. Direct mode generates ?ILLEGAL DIRECT ERROR. 

Examples: 10 OPEN 10,2,1, "TEN NAMES": REII OPEN TAPE FILE FOR WRITING TO CASS.#2 
20 FOR J=l TO 10: INPUT X$: PRINT#10,X$: NEXT': REM WRITE TAPE FILE 
30 CLOSE 10: REM CLOSE FILE, I.E. WRITE FINAL BUFFER OF DATA. 
100 OPEN 5,2,0,"TEN NAllES": FOR J=l TO 10: INPUT#5,X$: PRINT X$: NEXT 
110 CLOSE 5: REM INPUT# HAS EFFECT LIKE PRINT#, SO CLOSE IS NO PROBLEM 

The above example shows a simple write-then-readback program, omitting tape 
rewind details and ST checks on INPUT#. The logical file numbers are arbit­
rary and different from each other to make things clearer. INPUT # is far less 
trouble than INPUT to use, because its data is already formatted in a known 

way. 10 OPEN 1,0: REM OPEN FILE #1 TO THE KEYBOARD 
20 OPEN 3,3: REM OPEN FILE #3 TO THE SCREEN 
30 INPUT#l,X$:REM INPUT FROM KEYBOARD IS SIMILAR, NOT IDENTICAL, TO INPUT 
40 PRINT#3,X$:REM PRINT TO SCREEN FILE 
50 GOTO 30 

This next example shows how files can be opened to the keyboard and the 
screen. Because an input file (logical file #1) is open, the input crash on 
pressing 'Return' alone doesn't happen. A screen file is useful sometimes if 
CMD is being used; PRINT #3 sends output to the screen only. Input from the 
screen is similar to normal input, but the string may wrap round to the next 
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line, depending on the entry in the screen line table, with 40-column screens. 
The string length may be 39 or 79. If this interests you, replace line 30 with 
30 INPUT'3,X$ and add 45 PRINT "LENGTH="; LEN(X$). 

5 SCRATCH "SEQ FILE",D1: DOPEN,2,"SEQ FILE",D1,W: REM OPEN FOR WRITE 
10 FOR J=l TO 10: X$="RECORD NUMBER" + STR$(J) REM MAKE UP DATA 
15 PRINT'2,X$: PRINT DS$ ST: REM WRITE DISK + SHOW BOTH STATUSES 
20 NEXT: DCLOSE : REM 10 RECORDS WRITTEN 

1000 DOPEN'l,"SEQ FILE",D1 : REM OPEN SAME FILE ON DRIVE 1 FOR READ 
1005 FOR J=l TO 10: INPUT'l,X$ :REM READ BACK WITH INPUT' COMMAND 
1010 PRINT DS$ ST; X$ : REM PRINT RESULT + STATUSES 
1015 NEXT: DCLOSE 

This pair of programs is the BASIC 4 disk equivalent of the earlier tape pro­
gram. Again, ten records are written with PRINT# and read back with INPUT #. 

Notes: [1] How INPUT and INPUT# work. The buffer used by INPUT in CBM comp­
uters starts at $0200, immediately above the stack, and extends 81 bytes to 
$0250. This short routine enables you to see the buffer: 

FOR J=511 TO 592: PRINT CHR$(PEEK(J»;: NEXT * 
and typically there will be many fragments of lines, new and short lines over­
laying earlier long ones. Each input chunk is terminated by a zero byte, which 
the little routine above won't show. When INPUT or INPUT # is running, each 
successive byte is put into this buffer. Eventually, carriage return is input, 
whereupon a zero terminating byte is put in and the buffer parsed by INPUT 
for commas and colons separating the buffer: each chunk is assigned a variable 
and numerical variables are processed in accumulator #1 before being stored 
further up in RAM. The 81st byte therefore may contain a zero. BASICs 
prior to 4 could write into RAM above $0250. This region holds the three 
tables of logical files. devices and secondary addresses, so overwriting them 
(unless by coincidence the data were identical) removed the record of live files 
and so crashed the program. Location $1FF holds a comma: this is to ease the 
task of the parser by making each chunk start in the same way, as BASIC is 
started with a zero 'end-of-line' byte. Taking an example from INPUT, we may 
have something like this: * 

From which AA$, BB and C% are assigned. 

[2] Disk files may sometimes have data stored with a leading linefeed char­
acter; this is typical of pre-BASIC 4 files written without the precautionary 
PRINT#N ,X$;CHR$(13); but with PRINT#N, X$: which sends Carriage return 
with the line feed. This is not a great problem; if records sometimes print 
a line below their expected place, put in a test-with -correction like this: 

1005 IF ASC(X$)=10 THEN X$=MID$(X$,2) 
Line-feed is ASCII 10; when found. X $ is stripped of its initial. 

Abbreviated entry: iN Token: $84 (132) 

Operation: This is similar to INPUT, except that the input device as specified by 
logical file number is first set, then unset, on either side of INPUT. The actual 
INPUT is complex: a flag, $OB 2 holds 0 to signify INPUT (#$98 means READ, 
#$40 GET); another flag, $032 holds the quotes mode on-off byte; two more 
flags, $07 and $082 are used in type matching, holding respectively #$FF or #0 
for string Inumeral, and #$80 or #0 for integer Ireal. With BIT and branch, 
the routines are elaborately negotiated. 

ROM entry points: 

BASIC 1: $CAC6 (51910) 
BASIC 2: $CAA7 (51879) 
BASIC 4: $BBA4 (48036) 

*BASIC l's buffer extends from $OA-$59. $5A is used for working storage. $09 holds 
the initial comma. So J=9 TO 89 is the correct PEEK loop with BASIC 1. 
2In BASIC I, these are, in order, $62,$5A,$5E, and $5F. 
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INSTRING$ 
BASIC string function unavailable directly in CBM BASIC 

PURPOSE: This version of INSTRING$ inserts one string within another, without, 
however, overrunning the end of the reipient string. It is modified from a 
routine by W Maclean, quoted by Jim Butterfield in CPUCN v2#8, who says 
that this type of routine is useful for 'manipulating data records in disk 
files and setting up formatted printer or screen outputs'. The routine is 
relocatable; location 0 holds length, ($Ol) pointer, to the string, so USR 
(if any) will have to be repoked. The demonstration program sets up a 
few adjacent strings in memory; this is a check to ensure that overlap from 
INSTRING $ doesn't corrupt the next string. 

Machine code: This version is BASIC 2; see appendices for other ROMs. 
1 826 20 F8 CD $033A J8R $CDF8 Check for comma. Error message if absent. 
2 829 20 9F CC $033D J8R $CC9F Input expression. Error message if absent. 
3 832 20 90 CC $0340 J8R $CC90 Check it's a string. Error massage if not. 
4 835 AO 02 $0343 LDY #$02 Loop inputs LEN of string into location $00. 
5 837 B1 44 $0345 LDA ($44).Y and stores pointer to the start of string 
6 839 99 00 00 $0347 STA $OOOO.Y into indirect &ocation ($Oll. 
7 842 88 $034A DEY 
8 843 10 F8 $034B BPL $0345 
9 845 20 F8 CD $034D J8R $CDF8 
10 848 20 9F CC $0350 JSR $CC9F 
11 851 20 90 CC $0353 JSR $CC90 
12 854 AO 02 $0356 LDY #$02 
13 856 Bl 44 $0358 LDA ($44).Y 
14 858 99 88 00 $035A 8TA $0088.Y 
15 861 88 $035D DEY 
16 862 10 F8 $035E BPL 
17 864 20 F8 CD $0360 J8R 
18 867 20 9F CC $0363 J8R 
19 870 20 8E CC $0366 J8R 
20 873 20 D2 D6 $0369 JSR 
21 876 18 $036C CLC 

$0358 
$CDF8 
$CC9F 
$CC8E 
$D6D2 

22 877 AS 11 $036D LDA $11 
23 879 C5 88 $036F CMP $88 
24 881 BO 1B $0371 BC8 $038E 
25 883 65 89 $0373 ADC $89 
26 885 85 89 $0375 STA $89 
27 887 90 02 $0377 BCC $037B 
28 889 E6 8A $0379 INC $8A 
29 891 AO 00 $037B LDY #$00 
30 893 BIOI $037D LDA ($Ol).Y 
31 895 91 89 $037F STA ($89).Y 
32 897 C8 $0381 INY 
33 898 98 $0382 TYA 
34 899 18 $0383 CLC 
35 900 65 11 $0384 ADC 
36 902 C5 88 $0386 CMP 
37 904 BO 04 $0388 BCS 
38 906 C4 00 $038A CPY 
39 908 DO EF $038C BNE 
40 910 60 $038E RTS 

BAS IC demonstration: 

o INPUT "NUMBER (N)"; N 

$11 
$88 
$038E 
$00 
$037D 

Check for comma. Error message if absent. 
Input expression. Error message if absent. 
Check it's a string. Error message if not. 
Loop inputs LEN of second string into loca-

tion $88. and stores pointer to start of 
second string in indirect location ($89). 
[This is in the RND work area]. 

Check for comma. Error message if absent. 
Input expression. Error message if absent. 
Check it's numeric. Error message if not. 
Convert Fl Pt AccDI into integer. 
Check that the numeric value does not exceed 
the end of the stting into which it is to 
be inserted. Exit if it is. 

Increment the second string pointer by the 
low byte of the numeric value. so the 
pointer points inside the string. 

Load a byte from the first string 

& put it into the second. 
Increment the position counter Y. 
Now check that the new value of Y doesn't 

point outside the second string; if it 
does. some other string will be corrupted. 

Check whether we've now moved every byte 
of the first string - if so. exit. 

1 A$="AAAAAA": X$="123": B$="BBBBBB": Y$="ABCDE": C$="CC": D$="DDDDDDDDDD" 
2 A$=A$+'tt': X$=X$+"": B$=B$+"": Y$=Y$+"": C$=C$+"": D$=D$+"": REM IN BIMEM 
3 SYS 826,X$,Y$,N: PRINT A$" "X$" "B$" "Y$" "C$" "D$: REM DISPLAY VALUES 
4 GO TO 0 

(NB: line 2 by calculating the strings, leaves them unchanged, but in high RAM. 
If this isn't done - try deleting line 2 to see the effect - the actual strings 
in line 1 are changed, so the loop in line 4 won't work as might be expected) 

The program run as it stands gives: 
NUMBER (N)? 0 
AAAAAA 123 BBBBBB 123DE CC DDDDDDDDDD 
NUMBER (N)? 1 
AAAAAA 123 BBBBBB A123E CC DDDDDDDDDD etc. 
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INT 
BAS IC arithmetic function 

PU RPOSE: Converts the argument into the nearest integer which is less than 
(01" equal to) the argument. 

Syntax: INT (arithmetic expression). The argument must be a valid arithmetic 
expression; the limit is not the range for integers, but is the range for 
floating point numbers, approximately ±1. 7 E 38. For this reason the 
statement L=INT(1234567.8) is valid. However, L%=INT(1234567.8) generates 
an error, since the result is too large for an integer variable. 

Modes: Direct and program modes are both valid. 

Examples: 100 PRINT INT(X+.5) : REM ROUNDS TO NEAREST WHOLE NUMBER (+ve and -ve) 
PRINT INT (1234567.8) : REM 1234567 
PRINT INT (-123.4) : REM -124 
1000 PR= INT(.Ol+ P*(1+MU/I00) ): REM PRICE (PENNIES) AND MARKUP 
50 IF D<> INT(D) GOTO 40 : REM GO BACK FOR RE-INPUT 

Most rounding routines in BASIC use INT. The first and fourth examples 
illustrate simple rounding; for commercial use such routines must be more 
elaborate, so that 1 appears as 1. 00 and so on. The principle on which 
the first example relies is that the entire range from X. 000 to X. 999 is 
converted to X by INT. Obviously to round to the nearest number, and 
not just drop the decimal portion , .5 must be added, shifting the range up 
to X. 500 to X+1. 499, so the lower half are rounded down by INT, but the 
upper half of the range are rounded up. Line 1000 is a similar example, 
where P is a price and MU a markup percentage. The value PR is rounded 
down. However, there is a small item (.01) also included. This is often 
useful with INT, because this function occasionally will round down a value 
when this appears unnecessary. In the illustration, P may be 1000 and MU 
25; if the outcome of the calculation is held in floating point as 1249.9999, 
PR takes the 'wrong' value of 1249, and this may be noticeable. 

The second and third examples are straightforward examples; the fifth is 
a simple test for integer input. 

Notes: [1] Integer expressions in brackets may need to be kept there. Zeller's 
congruence for finding the weekday uses INT(Y/4) + INT(C/4) + OTHERS 
which is easily 'simplified' into the incorrect INT(Y/4 + C/4) + OTHERS. 

[2] 'INT' is the same function as 'ENTlER' in ALGOL. 'FIX' is an alter~ 
native which rounds negative numbers up. This is equivalent to 
SGN(X)*INT(ABS(X», which separates outthe sign. 

Abbreviated entry: None 

Token: $B5 (181) 

Operation: The argumented is evaluated and validated and put into floating-point 
accumulator #1. The function's objective is to leave the accumulator with 
the rounded down equivalent of the same number, again in floating-point 
form. It accomplishes this by converting the entire number into its 4-byte 
integer equivalent, then converting this back into floating-point format. 
There is also a test on entry of the exponent; if this exceeds or equals 
160 no conversion is carried out. The number (>= 251) is too large to have 
any decimals. 

ROM entry points: 

BASIC I: $DB9E (56222) 
BASIC 2: $DBDS (562S0) 
BASIC 4: $CE02 (52738) 



Programming the PET ICBM -82- 5: BASIC keywords 

LEFTS 
BASIC string function 

PURPOSE: Extracts a substring from a string, consisting of the leftmost char­
acters from the string. This function, in association with MID$ and RIGHT $ 
and the string concatenation operator +, is used in text and string 
processing in BASIC. 

Syntax: LEFT $( string expression, arithmetic expression). The string expression 
must be valid, i.e. made up from string functions and/or literals and/or 
string variables only. Its length cannot exceed 255. The maximum value 
of the arithmetic expression is 255. Its minimum depends on the ROM: 
BASIC<4 will not accept a value of zero, corresponding to a null character, 
but BASIC 4 will. 

Modes: Direct and program modes are both valid. 

Examples: PRINT LEFT$( "HELLO"+"THERE! ",3) : REM RESULT IS HEL 
PRINT LEFT$("HELLO"+"THERE!",50): REM RESULT IS HELLO THERE! 
10 PRINT LEFT$(X$+" ",10);: REM A FORM OF TAB( 
3010 PRINT LEFT$(STR$(L)+" ",10);: REM ANOTHER TAB( 
3010 PRINT L; LEFT$(SP$,10-LEN(STR$(L»);: REM ... AND ANOTHER! 

LEFT$ is closely related to RIGHT$. Further examples of string manipul­
ations are given there. These five lines of code demonstrate some rather 
basic points. The first two direct mode statements show how the function 
works; its parameter is simply applied to the string, which may be any 
expression, and measures off a length from it. Rather than print an error 
message if the original string is not long enough (see the second example) 
the length parameter is not allowed to exceed the length of the string. 

The final three program lines demonstrate methods of formatting strings 
for output to a printer; this can be a problem when TAB( doesn't work. 
Line 10 shows how X$, a string assumed shorter than 10, can be printed 
and also leave the output pointer waiting at a constant position in spite of 
differences in individual X $s. The first line 3010 uses exactly the same 
construction, but applied to a number. The alternative line 3010 achieves 
the same effect, with SP$ defined to be a string of spaces, but it is a less 
elegant construction. 

Notes: [1] This diagram should make the operation of this function clear: 

String position: 1 
~~L-L-~~~~-L-L~~~~L-~ 

PRINT LEFT$(X$,6) prints ORIGIN. These are the six leftmost characters. 
PRINT LEFT$(X$,3)+"GAMI" prints ORIGAMI. 

[2] LEFT$(X$,N) can be replaced by MID$(X$,l,N). With BASIC 4 ROMs 
this has no effect, but earlier BASICs reject LEFT$(X$,N) when N is zero. 
The MID$ version is preferable therefore when older ROMs are used and 
when a null character may be legitimately returned. 

Abbreviated entry: leF (includes $) Token: $C8 (200) 

Operation: The pointer to the string, and its parameter, say N in LEFT$(X$,N), 
are recovered from the stack, where they are put by normal string function 
processing. The length of the string is found - the pointer points at it -
and compared with N; the smaller of the two is taken. #0 is pushed onto 
the stack, followed by the smaller parameter (in the process, X, Y , and A 
are swapped around in a byte-saving but confusing way). Finally, the 
routine which LEFT$, RIGHT$ and MID$ all share is dropped into, and the 
new string is set up for printing or assignment. 

ROM entry points: 

BASIC 1: $D5D8 (54744) 
BASIC 2: $D5DA (54746) 
BASIC 4: $C836 (51254) 
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LEN 
BAS Ie arithmetic function 

PU RPOSE: Determines the length of a string or string expression. 

Syntax: LEN (string expression). This is an arithmetic function of a string argument. 
The string expression must be valid; it can consist only of literals, string 
variables, and string functions concatenated by +. Its maximum permissible 
length is 255 characters. If spaces are included when using BASIC>1, for 
instance LE N("D"), an array LEO will be assumed, and a ?TYPE MISMATCH 
ERROR generated whenever the code is encountered. 

Modes: Direct and program modes are both valid. 

Examples: PRINT LEN("HELLO") REM RESULT IS 5 
X$=" SAILOR": PRINT LEN ("HELLO"+X$)+3 REM RESULT IS 15 

330 FOR J=1 TO 10 
340 PRINT SPC(19 - LEN(MSG$(J»/2); MSG$(J) 
350 NEXT 

IF LEN(IN$)<>L THEN PRINT "*** MUST BE" L "DIGITS" 

250 X$=" *&#" : REM LIST OF SPECIAL CODES TO BE CHECKED 
260 FOR J=1 TO LEN(X$) : REM NOTE THAT THE LIST IN LINE 250 CAN BE 
270 IF G$=MID$(X$,J,1) THEN RETURN: REM CHANGED; THIS ROUTINE WILL 
280 NEXT: PRINT "NOT RECOGNISED": REM STILL WORK CORRECTLY. 

The first two examples in our illustrative batch are straightforward direct 
mode arithmetic calculations. The first simply measures the number of char­
acters in the string; the answer is obviously five. The second is more complex 
and shows how LEN, being an arithmetic function, can be used as part of an 
arithmetic expression. Again the answer is obvious - the combined string 
"HELLO SAILOR" is 12 characters long; 12+3 is 15. 

The short routine in lines 330 - 350 is a formatting routine, which prints the 
ten strings held as MS$(1) to MS$(9) one after the other, centred on the 
screen (change the parameter to 39 for an SO-column screen). It does this 
by printing sufficient spaces to print half the string before the midpoint of 
the screenline. The other half of the line is therefore printed symmetrically. 

The next line of code is a simplified fragment of an input validating routine, 
which tests the length of an input string against its correct value. 

Finally, lines 250 & 260 show between them how LEN can assist in soft-coding 
and make a program more easily modifiable. Had the loop variable in line 260 
been 4, program maintenance would have been a little harder. 

Notes: {l] LEN cannot return a value outside the range 0-255 (see diagram). The 
length isn't actually measured; only the parameter is taken, and anomalies 
can result from this, e.g. when CHR$(O)s are concatenated onto a string, 
or the parameters are altered by direct poking. 

Abbreviated entry: None Token: $C3 (195) 

Operation: The ROM has only one subroutine followed by a jump. The subroutine 
(which is shared by ASC and VAL) sets pointers to the string and also loads 
its length into both A and Y. This part has been slightly rewritten in BASIC 
4. The mode flag is changed from string to numeric; this is necessary to 
avoid ?TYPE MISMATCH ERRORs. Now a fixed-to-floating point conversion 
routine is jumped to; this one is in POS, which puts zero into A, and in 
effect converts the length in Y only into floating-point. 

ROM entry points: 

BASIC 1: $D654 
BASIC 2: $D656 
BASIC 4: $C8B2 

INAME:NAMEILENGTHI POIrTERI 0 I 0 

(54868) 
(54870) 
(51378) 
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LET 
BASIC command 

PURPOSE: Assigns a value or a string to a variable. The variable's name causes 
an integer, real number, or string to be allowed by the assignment. 
If the types don't match - if a variable with a string name is assigned a number 
or a numeric variable assigned a string - then ?TYPE MISMATCH ERROR is 
printed. Interconversions between integers and reals are allowed, subject to 
the condition that integers be within the range -32768 to +32767. 

Syntax: LET is never needed with CBM BASIC. If the first item in any statement is 
not a token, LET is assumed by default; the parsing process looks for a name, 
the '=' sign, and a matching arithmetic or string expression. With square 
brackets representing the optional command, the syntax is:-
[LET] Real variable name = arithmetic or integer expression, or 
[LET] Integer variable name = arithmetic or integer expression, or 
[LET] String variable name = string expression. 
Variables can be either simple variables (e.g. X, C %,A1$) or subscripted 
variables like A(7) ,JK%(100) ,M$(Z). If the variable doesn't yet exist, it is 
set up in one of the two RAM areas used for the purpose. Subscripted 
variables are put into the second of these areas, with dimension(s) set to the 
default value of 10, if a prior DIM statement hasn't been used. An integer 
variable is assigned the rounded-down value of the arithmetic expression on 
the right of '=', but if the value is too extreme ?ILLEGAL QUANTITY ERROR 
results. 

Modes: Direct and program modes are both valid. 

Examples: LET B=45056: LET RQ=. 005: REM SAME AS B=45056: RQ=. 005 
LET Q%=Q/256: LET A1%=12.3: LET B%=10000: REM SAME AS Q%=Q/256 ETC. 
LET S$="BCFGHPQSU": LET DO$="WRITE":REM OR S$="BCFGHPQSU":DO$="WRITE" 

100 FOR J=l TO 50: READ X$: LET Y$(J)=X$: NEXT 

142 IF JD>LEN(JD$) THEN LET JD=O 

The three direct-mode examples show real, integer, and string assignments. 
Note that the expressions assigned to integer variables need not themselves be 
integral, but will be rounded down. A1% takes the value 12, and Q% is set equal 
to the higher byte of Q, assuming Q is in the range 0-65535. The fourth line 
is a composite LET statement which assigns fifty subscripted variables with 
strings read from data statements. As with all the other examples, LET may be 
omitted. Finally, we have a conditional assignment (taken from a decimal point 
processing routine). Note [5] enlarges upon this topic. 

Notes: [1] Some BASICs require LET in their assignment statements. 

[2] The assignment routine can be called in machine-code, and used to set up 
special user-defined variables. See VARPTR for an explicit example. 

[3] Variables can be assigned and re-assigned with complete freedom. This 
can cause problems: a variable may be changed or reused without its previous 
use being remembered. This is particularly a hazard with subroutines, and is 
the reason that tables of variables ought to be kept with large programs. There 
are computer languages which possess both 'local' and 'global' variables: FOR­
TRAN and PASCAL do; COBOL doesn't. As an illustration of the type of trap 
which may occur, consider this subroutine, which prints the value of L as a 
hexadecimal number, so that L=52000:GOSUB 600 prints $CB20: 

600 L=L/4096:FORJ=lT04:L%=L:PRINTCHR$(48+L%-(L%>9)*7);:L=16*(L-L%):NEXT: 
RETURN 

The subroutine uses, in addition to L, variables J and L%. The values of each 
of these are changed by the subroutine. Suppose a table of hexadecimal values 
is wanted corresponding to 52000 - 52020. This loop: FOR K=52000 TO 52020:L=K: 
GOSUB 600: NEXT will work correctly. This one: FOR L=52000 TO 52020: GOSUB600: 
NEXT will not, since L is changed by the subroutine. 
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[4] String Assignments. String variables hold their strings in two distinct ways 
and this peculiarity of Microsoft BASIC needs to be borne in mind in several 
circumstances, the most common being the situation when a program is loaded 
from within another program, but uses the first program's variables. (The LOAD 
command of course is specially designed to permit this in CBM's BASIC). 

10 REM *** DEMONSTRATION PROGRAM TO SHOW VARIABLE SHARING *** 
20 A$="HELLO": B$="STRING EXPRESSION"+"" 
30 LOAD "2ND PROGRAM" 

10 REM 2ND PROGRAM 
20 PRINT "A$=" A$ 
30 PRINT "B$=" B$ :REM ABCDEFGHIJKLMNOPQRSTUVWXYZ 

These demonstration programs (written for tape - the disk version is similar) 
show the problem. SAVE program 1 on tape, then SAVE "2ND PROGRAM". 
Rewind and LOAD the run program 1. This puts two string variables after the 
program, A$ and B$. But (see diagram) the pointers to A$ point within the area 
which program 1 occupied; in fact they point to the position in memory where 
"HELLO" originally started. The second program therefore prints A$ as a string 
of the correct length but starting somewhere in the REM statement in line 30. 
The exact position depends on the number of spaces inserted into the programs. 
Variable B $, on the other hand, appears correctly as "STRING EXPRESSION". 
This is so because all evaluated strings need to be processed, and have to be 
stored in the next available space in RAM. (Again, see the diagram). Chapter 
2 has a longer explanation of this and similar phenomena. 

~ r / 1 B$ STRING I 

2ND PROGRAM 1 B$ STRING I 
[ 5] When LET is not used, it becomes easy to forget the distinction between 
'=' as an assignment, and '=' as a comparison operator. The statement: 

IF X=O THEN X=12345 or IF X=O THEN LET X=12345 
uses '=' in both senses; the first use does not, obviously, set X=O. When LET 
is compulsory, the distinction is retained. The language 'C' uses '==' as its 
assignment operator. One practical effect of this occurs where dummy variables 
are set up at the start of a program. This statement: A=B=C=D=E looks as if 
it will initialise these five variables in the correct order; in fact, the statement 
is parsed A=(B=C=D=E), and the bracketed expression evaluated. Only A is set 
up, so the hoped-for speed improvement may not materialise. Rather confusingly 
this isn't true of arrays. A=B=C=D(5) sets up A and D with the default dimen­
sion of 10 if it doesn't exist already. 

Abbreviated entry: IE (or nothing) 

Token: $88 (136) 

Operation: Variables are assigned like this: first, the variable is sought in RAM and 
set up if it does not yet exist. (This can be a longish operation if arrays have 
to be moved to accommodate simple variables). Its location is saved. Now, the 
token for '=' ($B2) is checked; if something else is present, ?SYNTAX ERROR 
is printed. Two variable-type flags are saved on the stack; these were set by 
the original search routine. Location 7 holds #0 if the variable was numeric, 
#FF if it was a string, and 8 holds #80 for an integer, #0 for a real variable. 
Now the expression is evaluated; a general-purpose routine exists for this 
purpose. The result is checked for type match with the variable name, giving 
?TYPE MISMATCH ERROR when appropriate. Finally, the routine branches to 
three places, to process integers, reals, and strings respectively. A special 
check for TI$ is included in the string processing. All the ROMs are similar, 
but BASIC 4 has extra string processing to handle its complement of pointers. 

ROM entry points: 

BASIC 1: $C89D (51357) 
BASIC 2: $C8AD (51373) 
BASIC 4: $B930 (47408) 
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LIST 
BASIC system command 

PURPOSE: Displays part or all of a BASIC program in memory in a readable form. 

Syntax: LIST LIST linenumber LIST linenumber-linenumber 
LIST - linenumber and LIST linenumber - are all accepted. LIST 0 is 
interpreted in the same way as LIST. The actual linenumbers need not exist 
in the program to be specified as parameters. 

Modes: Direct and program modes are both valid. In program mode, however, 
this command will stop the program when the lines have been listed. 

Examples: LIST : REM LISTS ENTIRE PROGRAM 
LIST 1000 
LIST 60000-
LIST 70-200 

:REM LISTS LINE 1000 (IF IT EXISTS) ONLY 
:REM LISTS EVERYTHING ON AND AFTER 60000 
:REM LISTS ALL LINES FROM 70 TO 200 INCLUSIVE 

555 PRINT "~ INSTRUCTIONS II 

560 PRINT "~'y'!=;"" PUTS TRACE ON,..·OFFt'·ON 
4390 PRINTL9$R$"DISK TYPE2 = "DT$: PRINT "C2HECK HISTORY" 
57055 print "+@@@@@@@@@@@@@@@1@@@@@@@@@@@@@@1@@@@@@@@."; 

10000 LIST 400: REM LINE 400 HOLDS DATA RELEVANT TO THE PROGRAM 

The first four examples illustrate, with comments, various permutations of 
this command. Often the output will appear on the screen. When this is 
the case, screen scrolling may be slowed with the RVS key, or, with the 
8032's revised keyboard, ~. BASIC 4 also has a pause feature, activated 
by either : or * , and cancelled by any of a number of keys. 

LIST can be made to print to other peripherals. If it is directed to a 
printer, typically by OPEN 4,4: CMD 4: LIST a hardcopy will be generated 
on paper. It can also print to a cassette or disk file; in this case the file 
contains the program as listed, with PRINT for instance stored in 5 bytes 
instead of the usual tokenised single byte. The three examples of hardcopy 
program listings show the output produced by a Commodore printer, which 
is very similar to the way the screen displays it, although some of the dot 
patterns are not identical. Non-Commodore printers don't usually have the 
special characters of CBM's set, and in some cases, for instance daisywheel 
printers, can't have. The two lines 4390 and 57055 are typical examples of 
this sort of thing. Most of the listing is intelligible, but strings within 
quotes may produce anomalies. Line 4390 includes some RVSOFF characters 
which obviously are there to help with the screen appearance. Line 57055 
holds a string of graphics characters which in fact are the top line of a 
box used in inputting data. Although tiresome, this is not usually much of 
a problem. Commodore tend to view all this as a reason for buying only 
CBM printers. 

The last example shows LIST in program mode. It acts rather like STOP, 
except that CONT won't work, but it also lists the lines requested. There 
is an application of this in the relocatable loaders for LIST (q. v. ). 

Notes: [1] REM, quotes, and POKEs. Shifted characters after REM, unless enclosed 
in quotes, are interpreted as tokens, and printed out in their expanded 
forms. See the notes under REM on this subject. REM is also capable of 
holding carriage returns, form feeds, screen clears and so forth, and these 
are sometimes used to improve the hardcopy appearance or provide a rudi­
mentary UNLIST. LIST does not provide a one-to-one conversion of program 
information into listing. By POKEing, lines can be generated which LIST 
apparently perfectly but produce ?SYNTAX ERROR on running. An appendix 
on internal storage of BASIC gives details. Strings can be made to list oddly 
by inserting unusual characters: For instance, DEL keys can make parts of 
a listing invisible, on the screen at least: 10 ?"GO AWAY" can be edited by 
moving the cursor back over the second quote, inserting eight spaces with 
the insert key, putting in eight deletes (which appear as reverse T) and 
erasing the final quote. This lists as 10 PRINT. 
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[2] LIST is upward compatible, but not downward compatible, between CBM 
BASICs. BASIC 4 disk commands (CONCAT, DOPEN, etc) don't exist as 
keywords, and therefore can't be listed, on earlier ROMs. And BASIC 1 
cannot list GO TO (with a space) since it lacks the GO token. 

[3] BASIC 1 list has a bug, corrected in later ROMs, which causes a line 
of apparent length > 255 to list in an infinite loop. If a link address is 
faulty for some reason - perhaps a bad load - there is no way to stop the 
loop apart from switching off or using some hardware reset. Lines like: 

49087 SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN .... 
43690 +++++++++++++++++++++++++++++++++++++++++++++++ •... 

manifest an analogous bug; perhaps the end of program bytes have been 
changed, so LIST continues past the end. The line of SINs is an attempt 
to interpret a collection of $BFs in memory. ($BF=191, and 191 + 191*256= 
49087). The line of plusses is a similar effect, but this time is caused by 
$AA in memory, probably left from switchon. ($AA=170, and 170 + 170*256= 
43690). 

[ 4] Curiosity seekers migh t like to note the following: 
1. 0 LIST is the shortest self-replicating program (unless, as once 
suggested in a letter to'Byte', the 'null program' is permitted). 
ii. The longest listable valid line is a five digit linenumber followed 
by 251 RESTOREs or CATALOGs, depending on the ROM version. 

[5] LIS T happens to be a relatively compact command in ROM, and is quite 
easy to move into RAM and modify. The TRACE routine printed elsewhere 
and relocating loaders for user-defined LIST show this. Other modifications 
include list routines which scroll down the screen (e.g. in 'Disk-o-Pro'), 
lower-case listings for CBM printers which print a cursor down after each 
new line, and routines to convert single characters into more readable 
forms. Cursor control characters, pi, and tokens corresponding to those 
of upgraded ROMs are likely to be useful, so that [HOME], [RVS], [PI] 
and DOPEN replace nonsense characters, blanks, ?SYNTAX ERROR. Yet 
another possibility is the substitution of graphics characters by their 
keyboard equivalent; programs using graphics are difficult to enter from 
hardcopy by the keyboard, because they are printed in a run-together 
form which is painful to read. The only other programs on these 
lines that I'm aware of are by Gregory Yob; see e.g. Printout, April '81, 
for a routine, with comments. The article is a reprint from 'Creative Comp­
uting' . 

Abbreviated entry: 11 

Token: $9B (155) 

Operation: This routine uses many zero page locations; this is one reason why 
a program can't CONT if LIST is used from within it. Another is that the 
return address to BASIC is pulled from the stack. The first thing to happen 
is the validation: ASCII numbers, -, or end-of-statement / end-of-line are 
permitted. If the syntax was correct, the BASIC addresses are pulled by 
PLA/ PLA and the linenumber limits set, defaults being $0000 and $FFFF at 
the ends of the range. Now there is the start of a loop to print a new 
line: it tests the S TOP key, prints carriage return-line feed, checks the 
current line against the upper limit, and (if it's still in the loop!) prints 
the linenumber. Now a second loop starts: this one processes individual 
characters. If it has a quote character ($22), it reverses its quotes 
flag. If it finds a zero, it uses the link address to loop to the next line 
or to exit, when the link is O. It prints the character, unless it is a 
token, and the quotes flag is off, and it isn't pi; in this case, yet another 
loop is entered and the Nth token is turned into the Nth reserved word by 
looping until N-l high bytes of the reserved words table have passed. 

ROM entry points: 

BASIC 1: $C5A8 (50600) 
BASIC 2: $C5B5 (50613) 
BASIC 4: $B630 (46640) 
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63499 REM *** LISTING ROUTINE INCLUDING CURSOR CONTROL CHARACTERS *** 
63500 A=1025: B=256: GOSUB 63600: INPUT "LIST FROM,TO"jF,T: INPUT "TITLE"jT$ 
63501 INPUT "LINES PER PAGE"jLP: INPUT ''MAX.CHRS.PER PRINTED LINE"jCM: OPEN4,4: 

CMD4, ; 
63502 PP=PP+1: IF PP>LP THEN PP=l: PRINT CHR$(12): REM FORM FEED 
63503 L=PEEK(A+2)+B*PEEK(A+3): X=PEEK(A)+B*PEEK(A+1): Q=O: IF X=O OR L>T THEN 

PRINT#4,;: CLOSE4: END 
63504 IF L<F THEN A=X: GOTO 63503: REM LOOP FINDS LOWER LINE NUMBER, L 
63505 IF PP=l THEN N=N+1: PRINT T$ " PAGE" N: REM TITLE &: PAGE 
63506 PRINT RIGHT$(" "+STR$(L),5)" It;: CC=6: REM CHARACTER COUNT=6 SO FAR 
63507 FOR K=A+4 TO A+93: P=PEEK(K) REM LOOP TO PROCESS CHARACTERS 
63508 IF CC>CII-7 THEN PRINT: PRINT" ";: REII CHARACTER COUNT=6 AGAIN 
63509 IF P=O THEN PRINT: A=X: GOTO 63502: REM END OF LINE ENCOUNTERED 
63510 IF P=34 THEN Q=NOT Q: REM REVERSE QUOTE FLAG 
63520 IF Q THEN GOSUB 63700: NEXT: REM INSIDE QUOTES 
63530 IF NOT Q AND P>127 THEN PRINT T$(P-127);: CC=CC+CC%(P-127): NEXT 
63540 PRINT CHR$(P);: CC=CC+1: NEXT: REM PRINT ORDINARY CHARACTER 
63600 DATA ***,END,FOR,NEXT,DATA,INPUT#,INPUT, DIM,READ,LET, GOTO,RUN,I F,RESTORE 
63601 DATA GOSUB,RETURN,REM,STOP,ON,WAIT,LOAD,SAVE,VERIFY,DEF,POKE,PRINT#,PRINT 
63602 DATA CONT,LIST,CLR,CMD,SYS,OPEN,CLOSE,GET,NEW,TAB(,TO,FN,SPC(,THEN,NOT 
63603 DATA STEP,+,-,*,/,A,AND,OR,>,=,<,SGN,INT,ABS,USR,FRE,POS,SQR,RND,LOG 
63604 DATA EXP,COS,SIN,TAN,ATN,PEEK,LEN,STR$,VAL,ASC,CHR$,LEFT$,RIGHT$,MID$ 
63605 DATA GO,CONCAT,DOPEN,DCLOSE,RECORD,HEADER,COLLECT,BACKUP,COPY,APPEND 
63606 DATA DSAVE,DLOAD,CATALOG,RENAME,SCRATCH,DIRECTORY 
63608 FOR K=l TO 9E9: READ X$: IF X$<>"***" THEN NEXT: REM MAKES RELOCATABLE 
63610 DIM T$(~28): FOR K=l TO 91: READ T$(K): NEXT 
63620 DATA 3,3,4,4,6,5,3,4,3,4,3,2,7,5,6,3,4,2,4,4,4,6,3,4,6,5,4,4,3,3,3,4 
63630 DATA 5,3,3,4,2,2,4,4,3,4,1,1,1,1,1,3,2,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3 
63640 DATA 4,3,4,3,3,4,5,6,4,2,6,5,6,6,6,7,6,4,6,5,5,7,6,7,9:REM KEYWORD LENGTHS 
63650 DIM CC%(128): FOR K=l TO 91: READ CC%(K): NEXT: RETURN 
63700 IF P=17 THEN PRINT "[DOWN]";: CC=CC+6: RETURN 
63702 IF P=18 THEN PRINT "[RVS]";: CC=CC+5: RETURN 
63704 IF P=19 THEN PRINT "[HOOE]";: CC=CC+6: RETURN 
63706 IF P=29 THEN PRINT "[RIGHT]";:CC=CC+7: RETURN 
63708 IF P=145THEN PRINT "[UP]";: CC=CC+4: RETURN 
63710 IF P=146THEN PRINT "[RVOFF]";:CC=CC+7: RETURN 
63712 IF P=147THEN PRINT "[CLEAR]";:CC=CC+7: RETURN 
63714 IF P=157THEN PRINT "[LEFT]";: CC=CC+6: RETURN 
63716 IF P=255THEN PRINT "[PI];: CC=CC+4: RETURN 
63750 RETURN 

This list routine is written as an appendable subroutine. It searches only for 
those characters within quotes, although this feature can be rewritten if this is 
felt important. Any BASIC program can be listed with any ROM using this. The 
comments make it, I hope, fairly self-explanatory. 
RUN 63500 will ask for the linenumbers between which to list, a title, the number 
of lines per page, and the maximum line length on printing. I have assumed the 
printer will move to the correct postion on receiving form-feed. Some printers 
don't automatically line feed when the end of line is printed j this is the rationale 
behind the process of keeping count (with CC) of the characters on the line so 
far. Machine-code routines run much faster than BASI C . Details of these are 
presented elsewhere in this text; see section 13.4.2 in Chapter 13. 

Variables: A=current link address; X=link address of next line, and if zero 
denotes the end of the program. L is the current linenumber, K a loop variable, 
and P the ASCII value of the character being processed, or simply the value, in 
the case of a token. Q is the quotes flag j with each new line it is reset to o. 
CC is the count of characters printed on the current line; CMAX the largest 
permitted number. When a line overflows to a new line, it is inset by 6 spaces 
in line 63508. 
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LOAD 
BASIC system command 

PURPOSE: Enables a stored memory dump to be reloaded into RAM from external 
tape or disk storage. Usually this will be a program in BASIC; it might 
alternatively be machine code, a dump of the VOU screen, BASIC with its 
stored variables, or any other set of contiguous RAM address contents. 
Any of these less common fonns of LOAD may require special techniques to 
prevent the CBM attempting to process the data as if it were BASIC. 

Syntax: Tape has this syntax: LOAD [string expo ['arith.exp. [,arith.exp.]]]. 
All the parameters are optional, because there is no ambiguity with tape in 
deciding on the next program. The first is the program name, the second 
the device number, and the third the secondary address. The secondary 
address has no effect whatever on LOAD; it is only possible to include it 
because SAVE shares the same validation routine. In all ROMs these para­
meters default to the null string (of length 0) and device #1, so the first 
program on cassette #1 will load. 
Disk has slightly different syntax: the string expression holding the name 
of the routine and its drive number is compulsory. 
Note that the string expressions are processed differently: in tape loading, 
only the characters specified need match those on tape, so LOAD "HE" loads 
HELLO or HEX - whichever is first - but rejects HIGHRES and "". 
CBM disks have a more sophisticated matching system in which every char­
acter of the name must be given, unless an asterisk is present, in which 
case any subsequent characters are permitted, as with the tape system; or 
one or more question marks appear in the string; these require a character 
to be present, but don't care what it is. Thus, LOAD "HE*", 8 has the same 
effect as the tape command above; it searches both disk drives for a prog­
ram with a name that fits its description. LOAD "0:HE???*",8 will load 
HELLO but not HEX. 

Note that BASIC 4, and BASIC 2 with certain 'toolkit'-type ROMs, has the 
DLOAD command (q. v.) for disk loads. Also, CBM's monitor has a load 
command: .L "NAME",Ol and .L "0:NAME",08 for tape loading from cassette 
#1 and from disk drive 0 respectively. After loading, control returns to the 
monitor: these routines are not treated as BASIC but as machine code. 

Modes: Direct and program modes are both valid. Their effects, however, are 
different. Early CBM manuals include a flowchart which explains how they 
differ. 
Direct Mode: messages are printed to the screen; when the LOAD is com­
plete the program is ready to RUN, LIST, and so on; it displaces any 
previous program. Anyone using a CBM is familiar with this. The sequence 
of screen messages appears like this, where square brackets indicate the 
optional program name allowed by tape load syntax: 

Tape: LOAD ["PROGRAM" [,1 or 2]] 
PRESS PLAY ON TAPE #1 or 2 
OK 
SEARCHING [FOR PROGRAM] 
FOUND OTHER PROGRAM 
FOUND [PROGRAM] 
LOADING [PROGRAM] 
READY. 

Disk: LOAD "0 or 1:PROGRAM",8 
SEARCHING FOR PROGRAM 
LOADING PROGRAM 
READY. 

I n each case I've assumed that the named program file does actually exist; 
if not, ?FILE NOT FOUND ERROR will appear, or, with tape, the recorder 
may continue right to the end of the tape (when no end-of-tape header has 
been written to tape). 
Program Mode: LOAD within a program-line prints no screen messages, leaving 
the screen appearance intact, but loads and runs the new program, retaining 
the values of the earlier program's variables, subject to some qualifications. 
Chaining many short programs is a relic of the old 8K PETs. 
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Examples: LOAD :REM LOADS FIRST PROGRAM FOUND ON TAPE #1 
LOAD "CALCS" :REM SEARCHES CASSETTE #1 FOR CALCS, CALCS COPY, ..• 
LOAD "PROG",2 :REM SEARCHES CASSETTE #2 FOR PROG, PROGA, PROGRAM, ... 

LOAD "*",8 : REM LOADS FIRST PROGRAM ON DEFAULT DRIVE 0 
LOAD "1:*",8 :REM LOADS FIRST PROGRAM FROM DRIVE 1 
LOAD "0:ASSEM*",8:REM LOADS ASSEM, ASSEMBLER, ... FROM DRIVE 0 
LOAD X$,8 eREM X$ INTERPRETED AS STRING WITH PARAMETER & NAME 
LOAD "HEL?*",8 :REM LOADS HELLO, HELP, OR WHICHEVER IS FIRST 

10000 PRINT "PLEASE WAIT ..... : LOAD "NEXT": REM PROGRAM LOADS "NEXT" 
1235 LOAD "0: ANALYSE", 8 : REM "ANALYSE" IS NOW LOADED AND RUN. 

The above examples are, I hope, self-explanatory. With any input/output 
operation, there is a chance of error; ?FILE NOT FOUND and ?DEVICE NOT 
PRESENT are two 'fatal' errors which will stop BASIC. Other possible load 
errors include (with disk) ?FILE TYPE MISMATCH and (with tape) ?LOAD 
ERROR. Checking DS $ (disk error message) and ST respectively will show 
up errors. In the case of tape, ST is tested for only one bit after a LOAD, 
so a checksum error may show up in ST, but not be reported by LOAD. 

Notes: [1] Loading from BASIC. This is perfectly successful provided that: 
(i) The newly loaded program is not longer than the older one, and 
(ii) The new program doesn't use function definitions or non-computed 
strings from the old program. All of its other variables may be taken over 
with unchanged values; these need to be redefined. This pair of short 
programs demonstrates the use of chaining programs with LOAD; this is a 
tape version: 10 REM THIS (LONGER) PROGRAM SETS VALUES, LOADS PRINT PROG. 

20 A=l: B'J,=2:C$="3": 0$="4"+'''': DEF FN E(X)=5: F(0)=6 
30 LOAD "NEXT PROGRAM" : REM 'END' IS AUTOMATIC 

Save this first, then save, as "NEXT PROGRAM", this: 
10 PRINT A,B'J"C$,D$,FN E(O),F(O) 

Rewind,LOAD and RUN. The earlier program sets up variables with their 
values, then loads the second. This is automatically run, without resetting 
the variables, in effect performing GOTO the earliest linenumber. You will 
see that all the variables still exist, except C $ and FN E. See Chapter 2 
for the reasons: they are in fact fairly straightforward. 

[2] OLD at the start of a newly-loaded program will enable it to run correctly, 
irrespective of the length of the loading program, but variables' values are lost. 

[3] A cassette cannot detect if 'Record' is pressed with 'Play'. If it is, the 
tape will not LOAD, but be erased as long as the machine continues. 

[4] Automatic RUN routines on load can be written for both tape and disk; 
see Chapter 14. LOAD can be relocated into RAM, so that non-standard 
loaders can be written. One very useful ROM routine is the load routine 
which is used by both LOAD and the monitor's .L and omits all the resetting 
of BASIC. In this way, machine-code or a screen dump or whatever can be 
loaded from within BASIC, leaving BASIC running. Compu /think disks have 
this available as an option, with syntax $L ;Drive, liN arne". With CBM equip­
ment the following are the relevant locations: 
$D4 holds device number; $D1 holds length of string parameter; if this is 
non-zero, ($DA) points to its start. (BASIC 1: $F1, SEE, and($F9». Also 
the load/verify flag must be set to 0, for load: this is $9D (BASIC 1: $020B). 
Finally, call the second LOAD routine listed below. Example: In BASIC 4, 
POKE 157,0: POKE 209,0: POKE 212,1: SYS 62294 Loads next program on tape #1. 

Abbreviated entry: 10 Token: $93 (147) 

Operation: The principal load routine has two parts, one for devices 1 and 2 (tapes), 
the other for IEEE devices. The IEEE routine takes in 2 characters which it 
presumes to be the start address; subsequent bytes are stored there and at. 
subsequent locations. A separate end address is not stored. LOAD itself sets 
the load flag, checks the parameters, and saves the present pointers before it 
calls the load routine; afterwards it checks ST then cold or warm starts. 

ROM entry points: LOAD is a 'kernel' command; its jump address is $FFD5. 
BASIC1: $F346 /$F369 BASIC2: $F3C2 /$F322 BASIC4: $F401 /$F356 
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LOG 
BASIC arithmetic function 

PURPOSE: Computes the logarithm to base e of any positive arithmetic expression. 
It may be positive, zero, or negative. This function is the converse of EXP. 

Syntax: LOG (arithmetic expression). Negative or zero arguments will cause an 
?ILLEGAL QUANTITY ERROR. There is no upper limit on the argument except 
that imposed by the floating-point evaluation of the expression. 

Modes: Direct and program modes are both valid. 

Examples: PRINT LOG(10) REM ABOUT 2.3026 
PRINT LOG(2.7182818) REM ABOUT 1 
PRINT LOG(X)*.434294482 REM LOG OF X TO BASE 10 
PRINT LOG(X)*1.44269504 REM LOG OF X TO BASE 2 
PRINT LOG(EXP{N» REM PRINTS N (POSSIBLY WITH ROUND ERROR) 
PRINT EXP( LOG(A)+LOG(B» REM PRINTS PRODUCT A*B 
DEF FN P(A)=TEN-INT(LOG(INT(ABS(A»+(INT(ABS(A»=O»*LT) 

The two first examples show straightforward calculations u sing this function. 
A logarithm is a transformation that converts multiplicative relations (and 
division) into additive relations (and subtraction). The logarithm of ratios is 
constant; the logarithm of 1 is zero, since multiplying or dividing by 1 has 
no effect on a number. Slide-rules have their sides marked out logarithmic­
ally. These facts are illustrated in various ways in the examples. The last­
but-one shows the transformation from a multiplication into an addition, and 
the use of EXP to find the antilogarithm. Generally, this function is used in 
statistical and scientific work, either analytically, because its algebraic 
properties are known, or simply to perform calculations in which very large 
numbers are combined to give a reasonably-sized result; this sort of thing 
can happen in statistics. 

The final example shows a less desirable application of LOG; the function 
definition is part of a rounding routine, to be used in a business program. 
The rationale is that (for example) the logarithm to base 10 of numbers from 
100-999.99 starts with 2; the logarithm of 1000-9999.99 starts with 3; and so 
on, suggesting that a decimal point can be positioned after taking the logar­
ithm of a computed value. Unfortunately, this routine itself is subject to a 
rounding error; it is possible that 999.9999 may emerge as 100.00, a rather 
large error. 

Abbreviated entry: None 

Token: $BC (188) 

Operation: Negative and zero arguments are tested for, and if found, the routine 
exits with ?ILLEGAL QUANTITY ERROR. The series evaluation routine in 
ROM is used; this calculates log x to the base 2. It is a remarkably short 
series, of 4 terms only. The argument goes through a series of conversions: * 
it is put into the range .5-.99999, the remaining exponent being saved on the 
stack. Then l/SQR (2) is added; the result is divided into SQR (2); the result 
is subtracted from 1. These transformations turn x into: 
(1.414x - 1)/(1.414x + 1), and log2x of this quantity is found. Then the 
result is subtracted from .5, renormalised and multiplied by log 2 to base e. 
The routine appears to be based on the standard expression for logarithms, 
the series !log(x) = (x-1)/(x+1) + 1/3*(x-1)3/(x+1)3 + ... 

ROM entry points: 

BASIC 1: $D8BF (55487) 
BASIC 2: $D8F6 (55542) 
BASIC 4: $CB20 (52000) 

*1 believe the following details are correct. However, there may be errors. 
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LOMEM & HIMEM 
BASIC system command unavailable directly in CBM BASIC 

PURPOSE: Reserves a part only of the normal BASIC RAM for BASIC and its 
variables, freeing RAM for other purposes; these include storing machine 
code and storing graphics pages to be moved into screen RAM. 

Versions: Some micro BASICs have this instruction (Apple, ITT; Tandy has 
CLEAR n). I n general no larger machines have this sort of command. So 
far as I'm aware, no one has written explicit routines to perform this sort 
of memory allocation with BASIC; usually, ad hoc pokes do the job. There 
are several possibilities which we can distinguish with the aid of diagrams: 

This is the normal memory map of BASIC: 

$0400 Top of RAM (eg $8000 with 32K) 

I Vars IArrayS I I Strings 1/ 1 BASIC 

(i) We can lower the pointers to top of memory, creating a spare block of 
RAM at the high end, where strings would otherwise be formed. 

$0400 TOr 

I BASIC 'vars 'ArrayS' I Strings I *SPARE* 

This is easily done, in either direct or program modes. The resulting block 
will be completely secure from BASIC, unless the locations are poked or 
corrupted. 

POKE 52,0: POKE 53,48: CLR: REM SETS TOP OF MEM=$3000 FOR BASIC>l 
POKE48,0:POKE49,48:POKE50,0:POKE51,48:POKE52,0:POKE53,48 

Both these versions have similar effects. Note that $30=48 in decimal, so 
$3000 has high byte 48 and low byte 0 when using decimal pokes. 

(ii) We can raise the end-of-program pointers, generating space after the 
BASIC program in memory. This happens automatically when one program 
loads another from disk or tape. Some BASIC loaders of long machine code 
routines like Extramon use this method. 

$0400 Top 

I BASIC I*SPARE* IvarslArrayS Strings I 
POKE 43, PEEK(43)+4: CLR: REM RAISES VARIABLES BY 4*256 1024 BYTES 

This simple routine adds 4 to the high byte of the pointer to the end of 
program. The program will still stop running when it encounters three null 
bytes; the unusual positioning of its variables is not relevant to its running. 

(iii) We can generate space before BASIC by adjusting the start of BASIC 
pointers. Some proprietary software has a 'Memfix' routine which does this. 

$0400 Top 

J *SPARE*\ BASIC I varsl Arrays I \ Strings 

This technique is trickier than the others; it cannot for example be per­
formed from within BASIC. A program modified in this way will SAVE in 
a non-standard way and LOAD again from its modified starting address. 

POKE 40,LO: POKE 41,HI: POKE 256*HI+LO-1,0: NEW 

In direct mode only prepares memory for the keying in of BASIC, where 
LO and HI (default values 1 and 4) can be user-selected). 

(iv) There are other possibilities. Chapter 2 has demonstration programs 
in which variables (or variables plus their program) are confined to the 
screen RAM. POKE 41,128: POKE 53,131: NEW: REM DISPLAYS 768 BYTES BASIC>l 

(v) Corresponding locations for BASIC 1, the oldest ROMs, are listed in 
the appendix of ROM and RAM addresses. 
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MERGE 
System command unavailable directly in CBM BASIC 

PURPOSE: merges two BASIC programs together into a single program. 
Unlike APPEND the ranges of linenumbers within the two programs need not 
be mutually exclusive. In this way, standard subroutines may be inserted 
into programs without the need for keying-in. 

Versions: The usual method involves storing the subroutine(s) on disk or tape as 
sequential files - not as tokenised programs - then reading them back by a 
routine similar to that used when adding lines from the keyboard. In this 
fashion individual lines, one at a time, are merged into the initial program in 
memory. Keyboard buffer poking keeps the routine working until an invalid 
piece of BASIC is found. Normally, this is'REAlDY.', written conveniently by 
LIST at the end of the sequential file. As I say, this is the usual method. It 
is possible, as with APPEND, to merge entirely in memory, but here we will 
look at two well-known methods, for tape and for CBM disk respectively. * 
r1] Tape Merge. 

Use this routine to save the subroutine on tape as a sequential file: 

OPEN 1,1,1,"NAME OF SUBROUTINE": CM» 1: LIST [LOW - HIGH] 

Where the square brackets denote optional linenumbers, when only a subset 
of a program is wanted for future merges. The program lists onto tape. 

PRINT'I: CLOSE 1 

Close the file with these instructions when the cursor returns. This com­
pletes the first part of the operation; the named subroutine is stored. 

Merging can be carried out now whenever you have a suitable program in 
memory; the result is a fully merged program, as if the lines had been 
separately typed at the keyboard. 2 Follow these instructions fairly closely 
(i. e. get the pokes and cursor movements right!):-

Starting with a program in memory and the tape in cassette #1, 

BASIC 1: POKE 3,1: OPEN 1,1,0, "NAME OF SUBROUTINE" 
BASIC 2: POKE 14,1: di tto 
BASIC 4: POKE 16,1: ditto 

This will read the tape until the correct header has been found; now it 
will wait for the tape to be read. 

[CLEAR] and type [DOWN] [DOWN] [DOWN] then: 
BASIC 1: POKE 6U,I: POKE 525,1: POKE 527,13: PRINT" [HOME] "[RETURN] 
BASIC 2: POKE 175,1: POKE 158,1: POKE 623,13: PRINT"[HOME]"[RETURN] 
BASIC 4: ditto 

The tape file is now read and merged correctly, subject to the provisos in 
footnote 2. Eventually, ?SYNTAX ERROR or ?OUT OF DATA ERROR appears 
depending on whether the program or the merged subroutine had the highest 
linen umber. This means the merge is finished. 

*The tape routine is the work of Brad Templeton and Jim Butterfield. Various versions 
exist of which this is the best. Several disk versions exist; this one is based on 
Mike Todd's (see IPUG newsletter, May '80). Brad Templeton's 'Power' EPROM uses an 
analogous technique to construct files like Apple EXEC files, enabling stored commands 
to control the machine as though from the keyboard. The merging process can be rout in­
ised: see e.g. 'PET's Librarian' by D J David, kb-Microcomputing, April '80. 
28ecause the input buffer is 80 characters long, lines with abbreviated input (e.g. ? 
for PRINT) may not merge correctly if they LIST with overlength lines; if this happens 
the relevant lines must be separated into shorter lines. 
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[2] Disk Merge. 

-94-

LDA #$08 
STA DEVICE NO 
JSR IEEE TALK 
LDA $63 
STA SEC ADD 
JSR OUTPUT IT 
LDX #$00 
JSR INPUT IEEE 
ClIP #$OA 
BEQ -7 
CMP #$OD 
BEQ +10 
STA $0200,X 
INX 
CPX #$51 
BEQ ERROR 
BNE -21 
STA KEYBD BUFF 
JSR PROC 
LDA #$13 
JSR $FFD2 
LDA #$01 
STA NO CHRS 
JMP TOKENISE 
JMP ERROR 

SET DEVICE to 8 (I.E. DISK) 
SET IEEE UP FOR TALK 
3 ORJD WITH #$60 
SECONDARY ADDRESS 3 
OUTPUT TO IEEE 
COUNTS BUFFER CHARACTERS 
GET CHARACTER FROM IEEE 

LINEFEED? 
IF SO, IGNORE IT 
CARRIAGE RETURN? 
IF SO, WHOLE LINE INPUT 

STORE PROGRAM LINE CHR. 
INCREMENT COUNTER 
80 CHARACTERS? 
IF SO, LINE IS TOO LONG 

INPUT NEXT CHARACTER 
STORE CARRIAGE RETURN 
PROCESS LINE IN BUFFER 
[HOME 1 
OUTPUT IT TO SCREEN 
1 CHAR IN KEYBOARD BUFFER 

TOKENISE AND INCORPORATE LINE 
LINE TOO LONG 

5: BASIC keywords 

This rather schematic machine code illustrates the procedure by which disk 
merging can be made to take place. Characters are read into the buffer, 
just as though keyboard entry was being used, and the line is processed 
and tokenised in the same way. After each line, [HOME] is forced so the 
routine is called again. The concept is similar to the tape merge. The test 
for lines of length 80+ protects the tables of file numbers, device numbers 
and secondary addresses if these are in use; if, as is likely, they aren 't, 
a larger number than 8t may be used. 

The routine is relocatable, but not transferable between BASICs. The 
versions below start at $027A (cassette #1 buffer) for compatibility with 
BASIC 4. 

Instructions. 

Where F is Logical file number, S is Secondary address, D is drive number, 

Save a subroutine with: 

OPEN F,8,S,"D:NAME OF SUBROUTINE,SEQ,WRITE":CMD F: LIST [LOW - HIGH] 

Where the linen umbers are optional. When the file is written, close it with 

PRINT#F~ CLOSE F 

Merge this subroutine with a program in memory by: 

OPEN F,8,3,"D:NAME OF SUBROUTINE,SEQ,READ" then 
enter [CLEAR]SYS 634 [RETURN] 

BASIC 2 BASIC 4 

.. 027A A9 08 85 D4 20 B6 FO A9 
" 0282 63 85 D3 20 28 F1 A2 00 
.. 028A 20 8C F1 C9 OA FO F9 C9 
.. 0292 OD FO OA 9D 00 02 E8 EO 
.. 029A 51 FO 14 DO EB 8D 6F 02 
.. 02A2 20 D5 C9 A9 13 20 D2 FF 
.. 02AA A9 01 85 9E 4C 95 C3 4C 
.. 02B2 23 D1 

· :027A A9 08 85 D4 20 D2 FO A9 
.:02826385 D3 20 43 F1 A2 00 
.:028A 20 CO F1 C9 OA FO F9 C9 
.:0292 OD FO OA 9D 00 02 E8 EO 
.:029A 51 FO 14 DO EB 8D 6F 02 
· :02A2 20 D2 BA A9 13 20 D2 FF 
.:02AA A9 01 85 9E 4C 09 B4 4C 
· :02B2 73 C3 
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MID$ 
BASIC string function 

PU RPOSE: Extracts a substring from a string expression. The substring 
consists of consecutive characters from the original string expression, and 
may contain zero characters, all the characters, or (usually) some inter­
mediate number of characters from the string. BASIC 1 will not permit a 
substring of length zero to be taken. 

Syntax: MID $( string expression, arithmetic expression [, optional arithmetic 
expression]). Neither parameter may take a value greater than 255. If 
the second parameter is omitted, the substring continues by default to the 
end of the string expression, like RIGHT$. The first parameter determines 
the starting point of the substring. See the diagram. 

Modes: Direct and program modes are both valid. 

Examples: 200 N$=MID$(STR$(N), 2) : REM REMOVES LEADING SPACE FROM +VE NUMERAL 

620 ni$="EachPackUnitTubeReelSet PairRollMtr " 
623 for j=1 to len(ni$) step 4: if js$=mid$(ni$,j,4) then return 
626 next: ok=O: em$="in Price Unit": gosub 800: return 

1530 MO$=MID$("JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC",3*M-2,3) 

A$="ABRACADABRA": FOR J=l TO 6:?SPC(J)MID$(A$,J,12-J): NEXT 

These examples illustrate typical uses to which this substring function may 
be put. Firstly, line 200 uses the default option in which the second 
parameter is omitted. This means that the string function, STR$(N), is 
converted into N$, starting at the second character of STR$(N) and cont­
inuing to the end. So if N=23, STR$(N)=" 23" and N$="23". 

The program extract (lines 620-626, listed in lower case) is one of a set 
of input validation subroutines. It checks that the string js$ which has 
been typed into the machine is one of the four-letter substrings held by 
ni$. If it is not, an error message routine is called. 

Line 1530 converts month number M (1-12) into a 3-letter equivalent. 

Lastly, a loop prints symmetrical portions of the string A$ . 

Notes: [1] This diagram should make the operation of this function clear: 

A 
Position in string: 1 

~~~-L~ __ ~~-L~~~~~ __ ~ 

PRINT MID$(X$, 3, 6) prints MPLE S which starts at 3 and has length 6. 
PRINT MID$(X$,5) prints LE STRING which starts at 5 and ends at 13. 

[2] The three functions MID$, LEFT$ and RIGHT$ resemble SIN, COS and 
TAN in that they are closely related. LEFT$ contains the main processing 
for all three functions. In BASIC, both LEFT$ and RIGHT$ can be put in 
terms of MID $, although the result is not very readable: 

LEFT$(X$,N) is the same as MID$(X$,1,N) 
RIGHT$(X$,N) is the same as MID$(X$,LEN(X$)-N+1). 

Abbreviated entry: mI (includes $) Token: $CA (202) 

Operation: Sets the default for the second parameter to 255. Then, if there is 
not a right-hand bracket, checks and inputs the comma and the second 
parameter (overwriting 255). The string parameters corresponding to the 
first two parameters (string and starting position) are pulled from the 
stack. If the string has length zero, ?ILLEGAL QUANTITY ERROR appears. 
From this data, the true start position and length of the substring are 
calculated; and LEFT $ is entered to set the new string up. BASIC 2 is 
logically identical to BASIC 4, but the old ROM differs in several respects, 
mostly connected with validation. 

ROM entry points:BASIC1:$D60F (54799) BASIC2:$D611 (54801) BASIC4:$C86D(51309) 
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MOD 
BASIC arithmetic function unavailable directly in CBM BASIC 

PU R POSE: Calculates the remainder when an integer is divided by another. 
Whenever a fixed numerical cycle occurs, a function equivalent to this is 
likely to be needed;examples include 12-hour clocks, date processing where 
weekday is represented by 0-6, conversions between number bases, and 
check digit s and check letters. The word 'mod' is an abbreviation of 
'modulo'; this is a mathematical term, used in sentences like '4 = 19 modulo 5'. 

Examples: DEF FN MOD(N) = N - INT(NjD)*D : REM D=DIVISOR; RESULT IS MODULO D 

D=12: H=FN MOD(16): 
D=4 : L=FN MOD(Y) : 
D=7 : WD=FN MOD(2173): 
D=256: PRINT FN MOD(50000): 

100 ISBN$="095076500" 
110 T=O: FOR J=l TO 9 

REM CONVERTS 16 HOURS TO 4 O'CLOCK 
REM RETURNS 0 FOR LEAP YEAR Y. 
REM RETURNS 3; EG DAY IS WEDNESDAY 
REM LOW BYTE OF 50000 IS 80. 

120 T = T + VAL(MID$(ISBN$,J,l»*(ll-J): REM CALCULATE CHECKTOTAL 
130 NEXT J 
140 D=ll: T = FN MOD (T): 
150 T=l1-T: 
160 PRINT T: 

REM FIND REMAINDER AFTER DIVN BY 11 
REM SUBTRACT RESULT FROM 11 
REM NOW RESULT IS 1 - 10. 

The function definition is, I hope, fairly clear: it subtracts the nearest 
multiple of the divisor from the original number N which leaves a positive 
answer. It returns 0 if the number is an exact multiple of the divisor. 
Positive numbers are assumed throughout. Four examples follow, all of 
which use this function. The fourth must be a familiar one to any program­
mer using an eight bit microprocessor. 

I've included a demonstration program which uses mod to calculate the 
checkletter of an International Standard Book Number. Checkletters and 
checkdigits are an interesting aspect of computerology which hardly existed 
before computers; see Chapter 17 for more on the subject. Briefly, an 
ISBN has 9 numerals followed by a check digit of 0-9 or X. The value of 
the digit is computed as follows: weights of 10,9,8" .. ,2 are assigned to 
the numerals in the ISBN. Each numeral is multiplied by its weight, and 
the results added. Finally, this number is forced into the range 0-11 by 
taking the remainder when divided by 11. (Then it is subtracted from 
11, an extra, unnecessary step). Try the program with other ISBNs. You 
will find that the final digit agrees with the printed value of T, or is X 
when T is 10. 

Note: [1] Generally, integers are held exactly by the machine. All the routines 
on this page produce exact values. If there is a possibility of rounding 
errors, when using for instance expressions like 3 * .33333333, the 
evaluation can be foolproofed by adding in a small value: 

DEF FN MQD(N) = INT (.1 + N - INT(.l + N/D)*D) , 

where both .1s are necessary to ensure accuracy at every stage. 
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NEW 
BASIC system command 

PURPOSE: Appears to erase any BASIC program currently in memory, together 
with all its variables, so that a completely new program may be entered 
from the keyboard. The effect is similar to turning on the machine anew; 
LIST shows nothing. NEW however leaves machine code intact in RAM. 

NB: This instruction is not a formatting command for CBM floppy disks. 
See 'HEADER' in the disk commands reference section. 

Syntax: NEW has no parameters; it may be followed by (optional) spaces, but must 
be followed by a colon or an end of line zero byte. 

Modes: Direct and program modes are both valid. 

Examples: NEW 
50000 PRINT "GOODBYE": NEW: THIS WILL NEVER BE REACHED 

In either direct or program mode the effect of this command is similar; the 
program will no longer list, and the programmer is returned to direct mode; 
'READY.' is printed. 

Notes: [1] Everything in the cassette buffers, program variables, screen RAM, 
stored machine code, and most of BASIC, is untouched. Because the memory 
still holds most of what it did before NEW, an inadvertently erased program 
can be recovered completely, except for the values of variables: see OLD. 

[2] Syntax or out of memory or other errors and anomalous results occur 
if the start of BASIC pointers don't point to $0401, or if $0400 does not 
contain the normal 0 byte. EXample: a machine code routine loaded from 
disk or tape sets the start and end pointers as for BASIC; the same point­
ers are shared. NEW does not hardcode the value $0401 into RAM, but 
relies on the accuracy of the pointers to BASIC. The solution, apart from 
switching off or LOADing a BASIC program, is to set the pointers: 

POKE 40,1: POKE 41,4: POKE 1024,0: NEW 

Operation: First of all the syntax of NEW is validated; this simply uses a branch 
which ensures that NEW is a statement on its own. Now the following 
changes are carried out: Zero bytes are put at the link address at the 
start of BASIC, in $0401 and $0402. The end of BASIC pointer is replaced 
by start of BASIC+2. CHRGET's address is made equal to start of BASIC-I. 
These changes are all that are needed to make the translator regard the 
program as non-existent. Finally, things are tidied up with CLR: 
the variables' pointers are made consistent with a new program;I!O activity 
is aborted; the DATA pointer and several flags are set to their default 
values. READY is printed, and the machine is prepared for a fresh pro­
gram to be keyed in and run. 

~ BASIC ~ars~rrays I 
~ I I 

Abbreviated entry: None 

Token: $A2 (162) 

ROM entry points: 

BASIC 1: $C551 (50513) 
BASIC 2: $C55B (50523) 
BASIC 4: $B5D2 (46546) 

I Strings I 
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NEXT 
BASIC command 

PU RPOSE: Changes prog ram flow of control to the statement immediately after the 
matching FOR loop. If no loop variable is specified, the most recently en­
countered FOR loop is taken. In this way, loops may be automatically pro­
cessed with relatively less programming effort. 

Syntax: NEXT [real variable [,real variable][, real variable] .•. ]. Square brackets 
denote optional variables, which must be separated by commas. 
?NEXT WITHOUT FOR ERROR is generated whenever the loop variable does 
not match that currently in the stack, or if there is no active FOR loop on 
the stack. See the notes for an explanation of this term. 

Modes: Direct and program modes are both valid. 

Examples: NEXT, like RETURN, operates on the 6502's stack, and can appear 
anywhere in a program. This type of 
structure, therefore, is possible:-

But, even with its processing omitted, 
it is difficult to read. Straightforward 

10 FOR J=l TO 3: GOTO 100 
20 NEXT I: 
30 NEXT J: END 
100 FOR 1:=1 TO 2: GOTO 20 

nested loops are therefore normal. Inclusion of the loop variable has a small 
slowing effect on a loop, but on the other hand makes a loop more readable 
since the corresponding FOR can be more easily found. Whenever the loop 
variable exists on the stack, but not at the most recent level, one or more 
loops will be lost; this is the source of some fairly obvious bugs. For 
example, this short program executes 
correctly, but the J loop is aborted 
repeatedly. Processing of this type 
has one practical use, which is when 
a loop is left prematurely, without 

10 FOR 1=1 TO 10 
20 FOR J=100 TO 120 
30 IF 1<6 THEN NEXT I 
40 NEXT J,I 

completion of the entire range of values. As far as BASIC is concerned, the 
loop is still usable and active. Another NEXT will cause the loop to be re­
entered. Given a stacked FOR structure, with free-format NEXTs allowed, 
this is inevitable. Active FOR loops can cause trouble; this program line 

100 FOR J=l TO 10000: GET X$: IF X$="" THEN NEXT: REM 50 SECS DELAY 

delays until a key is pressed, or for about 50 seconds, before continuing 
with the next line. If this line is within a loop, a keypress causes early exit 
so that J replaces the other loop's variable as the most recent loop. (Try it­
it's hard to describe). 101 FOR J=O TO 0: NEXT cures this bug. 

Notes: [1] How the stack works. For those interested, the following short BASIC 
program shows what FOR does:-

10 FOR PQ=512 TO 480 STEP -1 
The output includes 18 bytes, like this: 20 PRINT PEEK(PQ), 
L~ l 24 4 '--- P",i,,-rel -to. ¢ by~ 30 NEXT 
~_..L.( --:-.,..,,' ,at' f::VI<l. of {,~ lp. 
(0 10) / 0 ~V2ll.\e.. of- f'I'\!l.L ua .... iable. 11'\ floa-t;~-po"r;t foT\'I,at (:;4~¢ hefi.). 
(0 112 137/ @§'T-Si9" of st£.p (\'\I!;!!~ille. hue. \. ro:o 0 ~51EP 5"7L \" fI01rl-i~-po\d' ~",t {::. -L hL-n.). 
~C4 49)' ciW-FO'R. -tokE'll. /'PDlrItU -ttl VD..o{"\ab\Q.. oi- LDOf \ ... Rf\t1. 

Operation: FOR checks the syntax, and assigns its variable, setting it up if need be. 
The stack is searched, and variable mismatches rejected. If it's a new variable 
the stack is tested for at least 18 bytes' space. All the parameters are pushed 
on the stack while checking the syntax of TO and the arithmetic expressions. 
STEP is assigned 1, then overwritten if a STEP exists. Finally, it drops through 
to RUN and continues with the next statement. NEXT, if followed by variables, 
searches for the first, later reading its list. The FOR byte is checked, then 
STEP is added to the loop variable in acc .#1. The result is compared with the 
upper limit, and if less (or, with negative step, greater) CHRGET reset. 
FOR: BASIC 1:$C649 NEXT: BASIC 1:$CC36 STEP: BASIC 1:$C69C 

BASIC 2:$C658 BASIC 2:$CC20 BASIC 2:$C6AB 
BASIC 4:$B6DE BASIC 4:$BD19 BASIC 4:$B731 
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NOT 
BASIC unary logical operator 

PURPOSE: evaluates the complement of any arithmetic expression (within the valid 
range). In the case of truth values, this has the effect of converting true 
to false and vice versa. This second case is by far the most commonly used. 

Syntax: NOT must be followed by an arithmetic or logical expression. An arithmetic 
expression must evaluate to within the range -32768 to 32767. Non integral 
values will be rounded down. 

Modes: Direct and program modes are both valid. 

Examples: 5 IF PEEK(X)=34 THEN Q= NOT Q: REM SWITCH QUOTES FLAG ON CHR$(34) 
PRINT NOT 23456 
70 IF NOT OK THEN EM$="- pack type": GOSUB 20000: RETURN 
1000 IF D=l OR 0 AND NOT T$="TAPE" THEN OPEN 15,8,15:PRINT#15,"IO" 

The first example shows how NOT can be used to switch the values of a 
flag; in this example, Q true means that the quotes flag is set; when the 
next quote mark is peeked, it is unset. This has application when writing 
special LIST routines in BASIC. The second, direct mode example, illustrates 
the numerical effect of NOT. The value is converted into a 2-byte integer 
and the bits all reversed: in this example, 23456=$5BAO, so NOT 23456 is 
computed to be $A45F, which in signed integer terms = -23457. This adding 
of 1 is general, and is because the bytes are complemented, but not 2' s 
complemented. The third example is a program line which tests the flag OK; 
if this has been set false, the error message routine prints a warning to 
the operator. Finally, an example shows NOT in a logical expression. 

Notes: [1] A fuller explanation of 2's complement numbers appears under AND. 

[2] NOT has a higher position in the hierarchy of logical operators than 
OR and AND. NOT therefore takes precedence if there would otherwise be 
ambiguity. NOT A AND B is effectively identical to (NOT A) AND B. 

[3] The usual rules of logic apply to NOT, OR, and AND, and may help 
when attempting to decipher elaborate expressions. Three of these are: 

A=NOT (NOT A) 
NOT (A AND B) = NOT A OR NOT B 
NOT (A OR B) = NOT A AND NOT B. 

The second and third of these are sometimes called d'Alembert's rules. 
These relationships can be demonstrated in many other ways, e.g. Venn 
diaO'r!~s. 

"t1@. I 
NOT ( A AND B) 

Abbreviated entry: nO 

.tlill 
NOT A OR NOT B 

Token: $A8 (168) 

Operation: The expression following NOT is evaluated, and if valid, converted to 
a fixed point number in floating-point accumulator #1. The diagram applies 
to BASIC>l: 

$5E $5F $60 $61 $62 $63 
I I I I A I y I I 

Fixed-point here 

The contents of $62 are reversQdand transferred to the Y register; the 
contents of $61 are reversed in the accumulator. A standard routine which 
converts A low and Y high into floating-point form is called finally. 

ROM entry points: 

BASIC 1: $CDE8 (52712) BASIC 2: $CDCF (52687) BASIC 4: $BECC (48844) 
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OLD 
BASIC command unavailable directly in CBM BASIC 

PURPOSE: Restores a BASIC program which has been inadvertently erased by 
NEW. It does this by resetting zero-page pointers to the start of BASIC 
and the end. This has a further effect: a program LOADed from another 
program can have its pointers set correctly, so that (for example) a small 
menu program can safely LOAD a much larger program. 

Versions: Several have been published: Practical CompJ.lting (Feb. 81) has a 6502 
routine, which, however, does not set end-of-program pointers. Printout 
(Jan. '81) had several using Toolkit calls with BASIC; Compute! had an UN-NEW. 

My version below is relocatable and may be called from within a program. 
In direct mode the program will LIST and RUN as usual. 

Operation: To decide what OLD is to do, we can start by examining NEW; this 

1 

[1] Puts zero bytes at the link address at the start of BASIC, $0401 & $0402. 
[2] Changes end-of-BASIC pointer to $0403. 
[3] Sets GETCHR address to $0400. 
[4] --- Enters CLR routine at this point ---

Current string pointer is set to point to the very top of RAM. 
[5] I/O activity is aborted and files closed. 
[6] End of variables and end of arrays pointers are set to end of BASIC. 
[7] DATA pointer is restored I some flags are resetl the stack is reset. 

There is an inherent problem in distinguishing simple variables from arrays; 
this version therefore does not attempt this. The reversible steps are 1,2 
and 6. Therefore OLD needs to:-
[ 1] Replace the link address in bytes $0401 and $0402, 
[2] Recover the end of program pointer, 
[6] Set the variable and array pointers to the end of BASIC. 

[1] is carried out on the assumption that the next zero byte found marks 
the end of line; [2] assumes that three consecutive zero bytes mark the 
end of the program. I have also assumed that BASIC starts at $0401, and 
included this value explicitly; this clears up some problems when machine 
code has been loaded, so the starting address is assumed, by its pointers, 
to be somewhere else in RAM. 

This is a flowchart of the part of the routine which searches for the end 
of program: 

NO 

NO 

PINI !:,\'i. 
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OLD ... BASIC 4.0 

634 $027A A9 01 LDA #$01 
636 $027C AO 04 LDY #$04 
638 $027E 85 1F STA POINTRL iLOAD UTILITY POINTER 
640 $0280 84 20 STY POINTRH i WITH $0401 
642 $0282 AO 03 LDY #$03 
644 $0284 C8 FINDO INY 
645 $0285 B1 1F LDA (POINTRL), Y 
647 $0287 DO FB BNE FINDO 
649 $0289 C8 INY 
650 $028A 98 TYA iRESTORE LINK ADDRESS 
651 $028B 18 CLC IN ($0401) 
652 $028C 65 1F ADC POINTRL BY FINDING THE NEXT 
654 $028E AO 00 LDY #$00 ZERO BYTE 
656 $0290 91 28 STA (BASICL),Y 
658 $0292 A5 20 LDA POINTRH 
660 $0294 69 00 ADC #$00 
662 $0296 C8 INY 
663 $0297 91 28 STA (BASICL),Y 
665 $0299 88 DEY i Y NOW HOLDS #$00 
666 $029A A2 03 TESTO LDX #$03 
668 $029C E6 1F TEST30 INC POINTRL 

iFIND 3 CONSECUTIVE ZEROS 670 $029E DO 02 BNE NOINC 
672 $02AO E6 20 INC POINTRH MARKING PROGRAM END 

674 $02A2 B1 1F NOINC LDA (POINTRL),Y i (SEE FLOWCHART) 
676 $02A4 DO F4 BNE TESTO 
678 $02A6 CA DEX 
679 $02A7 DO F3 BNE TEST30 
681 $02A9 A5 1F LDA POINTRL 
683 $02AB 69 02 ADC #$02 ADD #2 TO POINTER TO 
685 $02AD 85 2A STA PROGENL 3 ZEROS AND STORE RESULT 
687 $02AF A5 20 LDA POINTRH IN END-OF-PROGRAM 
689 $02B1 69 00 ADC #$00 
691 $02B3 85 2B STA PROGENH 
693 $0285 4C FO B5 JMP CLEAR i CLR AND READY. 

Notes:: [1] BASIC 2 is identical except that the last line must be replaced by: 

693 $0295 4C 79 C5 JMP $C579 ; BASIC 2 CLR AND READY. 

[2] SYS 634 calls the routine as written; it is relocatable, however. 

[3] The start address of $0401 need not be hard coded in: if your BASIC 
is written to start elsewhere, use LDA $28/ LDY $29. 

[4] The original ROM (BASIC 1) equivalent is this: 

OLD - ORIGINAL ROM 

826 S033A AS 7A A4 7B 85 71 84 72 
834 S0342 AO 03 C8 B1 71 DO FB C8 
842 $034A 98 18 65 71 AO 00 91 7A 
850 $0352 AS 72 69 00 C8 91 7A 88 
858 S03SA A2 03 E6 71 DO 02 E6 72 
866 S0362 B1 71 DO F4 CA DO F3 AS 
874 S036A 71 69 02 85 7C AS 72 69 
882 $0372 00 8S 7D 4C 6A C5 
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ON 
BASIC conditional command 

PURPOSE: Branches to one of a list of linenumbers, depending on the value of 
the variable following ON. ON ... GOTO and ON ... GOSUB are valid. 
This provides a readable method for programming multiple IF statements 
of the CASE type, particularly if the variable takes values 1, 2,3, 

Syntax: ON arithmetic expression GOSUB linenumber,linenumber, .. . 
or ON arithmetic expression GOTO linenumber,linenumber, .. . 
Note that ON ... GO TO is disallowed. 
If the expression, on evaluation, is outside the range 0-255, the message 
?ILLEGAL QUANTITY ERROR is generated. 
If necessary the value is rounded down. When the value =1, the first line 
in the list is the branch; when 2, the second, and so on. 

Modes: Direct and program modes are both valid. 

Examples: 1000 ON SGN(X)+2 GOTO 2000,3000,4000: REM FORTRAN CONVERSION 
60 ON 1 + 10*RND(l) GOTO 100,200,300,400,500,600,700,800,900,1000 

6240 ON X GOSUB 400,410,420,430,440,450,460,470,480,490,500 ... 
6250 ON X-20 GOSUB590,600,610,620,630,640,650,660,670,680 

200 ON Q GOSUB 100,,200,300 

The first example shows a three way branch, depending on the sign of the 
argument. When X is negative, SGN(X)=-l so SGN(X)+2=1. So if X is a 
negative quantity, the first of the three linenumbers obtains. In the same 
way, if it has zero or positive sign, the second or third linenumber is 
chosen respectively. The language FORTRAN ('FORmula TRANslation') has 
this test; sample line 1000 shows the method of conversion to BASIC. 

The second example is taken from a game. The random number generating 
function RND returns numbers in the range 0.000001 to .999999 (roughly!) 
so the argument evaluates, after rounding, to 1,2,3, ... , 10. Each of the 
routines has an approximately equal chance of running. 

If all the options cannot be fitted on one line, they may overlap onto the 
next line, as the third example shows. See note [1] for explanation. 

ON does not share the peculiarity that GOTO and GOSUB share, of allowing 
non-numeric characters in linenumbers. However, it does treat null line 
numbers, as in line 200, as if they were line O. 

Notes: [1] If the variable is 0, or 5,say, when only 4 linenumbers exist, there 
is no error message; the program merely begins on the next line. This is 
the reason why lines 6240-6250 in the examples work correctly if X is 
between 1 and 30 or whatever. The reason for this behaviour is explained 
below in the section on machine code operation. 

Abbreviated entry: None 

Token: $91 (145) 

Operation: Firstly, the argument following ON is evaluated and validated. If, as 
it should be, the result is a single-byte numeral, this value is stored (in 
$62 with BASIC>l). Next, ?SYNTAX ERROR is printed if the following 
token is neither GOTO nor GOSUB. (This is the reason for ON .. GO TO's 
unacceptability). The token is stored on the stack: on exit it is pulled 
back into the accumulator, so the routine knows which of the two commands 
to execute. Before this, however, the list of linenumbers is processed. 
This is done in a loop. The first thing is to decrement the stored value of 
the parameter; if the result is zero exit occurs to either GOTO or GOSUB. 
If the result was not zero, CHRGET gets the next fixed-point linenumber 
and stores it in ($11) with BASIC>!. Provided a comma follOWS, the loop 
continues. So a variable value of zero is treated in effect as 256. 

ROM entry pointS:BASIC1:$C843 (51267) BASIC2:$C853 (51283) BASIC4:$B8D6 (47318) 
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OPEN 
BASIC input/output command 

PURPOSE: Enters a file's 'logical file number' in a table, together with the device 
number and secondary address. When BASIC refers to a logical file, for 
example with PRINT#, the device and its secondary address are taken from 
the tables and used in processing. Also, where necessary, the device is 
prepared for input or output. Tape files have a header either read or 
written; disk files' parameters are sent on the IEEE bus to the disk unit. 

Syntax: OPEN arith. expr. [,arith.expr. [,arith.expr. [,string expr.]]]. The 
first parameter is compulsory and must evaluate to 1- 255 after rounding down. 
The second parameter is the device number, which must be 0-15, and is a 
hardware feature; see the table for CBM equipment's device numbers. The 
third parameter is the secondary address, which again is a hardware feature, 
and may not be present on non-CBM equipment. The string parameter is a 
file name, plus, in the case of CBM disks, other parameters giving drive 
number and so on. ?SYNTAX ERROR, ?DEVICE NOT PRESENT ERROR, and 
?FILE OPEN ERROR return to direct mode, aborting files which are already open. 

Modes: Direct and program modes are both valid. 

Examples: Note that, while a logical file number is compulsory, the remaining para­
meters are optional. The device number, secondary address, and string are 
assigned 1 (i. e. cassette #1), 0, and null string respectively, in all versions 
of BASIC. All the parameters are evaluatable expressions. 

Tape: OPEN 10:REM =OPEN 10,1,0, .... WHICH OPENS FILE #10 TO READ #l'S HEADER 
OPEN 1,1,0, "TAX":' OPEN 2,2,1, "TAX UPDATE": REM SYSTEM WITH 2 CASSETTES 

Disk: OPEN 15,8,15: REM OPENS ERROR CHANNEL TO CBM DISK AS LOGICAL FILE #15. 
OPEN 1,8,4,"#": REM OPENS A CHANNEL TO A DISK BUFFER FOR B-R, B-W, ETC 
OPEN 2,8,4, "O:ORDINARY FILE,SEQ,READ": REM OPEN CBM FILE FOR READING 
FILE$="l:FILE A": OPEN 3,8,10,FI$+"SEQ,W": REM OPEN FILE FOR WRITING 

Other: 10 INPUT "OUTPUT TO DEVICE #"; D: OPEN D,D 
20 PRINT#D, ... :REM PRINT OUT TO SCREEN OR PRINTER ETC, DEPENDING ON 

D - E.G. 3=SCREEN. CONTROL CHARACTERS MUST WORK WITH BOTH DEVICES 
30 CLOSE D 

Tape files always start by reading or writing a header. So two files to the 
same cassette are impossible. Our examples show a header being read into its 
buffer (where incidentally it may be examined by PEEK) and OPEN statements 
for a 2-tape system, where data input from #1 may be processed and output to 
#2. The disk examples (BASIC 4 has DOPEN, which is slightly easier) open 
files numbered 15,1,2, and 3, all to device 8, the normal disk device number. 
It is sometimeswOIthwhile to open files to the keyboard and/or screen. 

Notes: [1] CBM Equipment and its Secondary Addressing. 

Device: pevice #: Secondary Address: 
0 1 2 3-14 15 

Keyboard 0 
Cassette #1 1 Read Write file+ Write file + 

file end-of-file eof + end of 
Cassette #2 2 marker on tape marker 

CLOSE on CLOSE 
Scr:een 3 
Prmter 4 """--- Varies with type of printer* ---

IModem 5 
Unassigned 6,7 
Disk Drivej 8 Directory IEr~r 

Read I Write Channel 
Unassigned 9-15 

*Models 4022/3 used 6, and model 4022 10, secondary addresses, for example. 
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As the table shows, many primary and most secondary addresses are unused 
so that secondary addresses may be picked at random in most cases. With 
disks, secondary addresses 3-14 may be used freely. The parameter can't 
simply be ignored, since the default value of 0 prevents a string being sent 
on the IEEE and anyway is compulsory before the string. This is why the 
examples of OPEN involving disks have rather miscellaneous third paramet­
ers. The keyboard, screen, and non-CBM printers can be opened as files 
simply with OPEN 1,0: OPEN 3,3: OPEN 4,4 or with whichever logical file 
numbers you like. Cassette files are, on the other hand, entirely dependent 
for their correct operation on the secondary address. The default value of 
zero is (sensibly) equivalent to reading a file; 1 causes a normal write; and 
2 causes an identical write, plus, at the end, a 'header' holding a value 
which is interpreted as 'end of tape'. 

CBM printers are designed with many secondary address features, many of 
which, unfortunately, don't work correctly or are absurdly complicated to 
use. Output to these printers is consequently often formatted in ways not 
compatible with output to the screen or to other printers. The 4022 has the 
following secondary addresses: O=print 'as received'; l=print in format; 2= 
store format; 3=lines/page; 4=error messages on; 5=define own character; 
6=set linefeed space; 7=upper case; 8='lower case'; 9=error messages off; 
and 10=reset. Some models of printer have 4 and 6 transposed. 

[2] RAM Tables. Three tables of ten entries each hold logical file numbers, 
device numbers, and secondary addresses as they are used by the IEEE bus 
or cassettes. They start, and may be peeked, at 593, 603, and 613 decimal 
respectively. (578,588,598 in BASIC 1). The number of entries in the table 
is stored in another location (174 or $AE; 610 or $0262 in BASIC 1). The 
overall effect is as shown in the diagram: 

Any new OPEN has its logical file number 
checked against those already present, and 
?FILE EXISTS ERROR reveals duplication. 
BASIC 1 is inedequately protected against 
OPENing more than 10 files. Later BASICs 
print ?TOO MANY FILES ERROR. POKEs 
into these tables can cause problems, as 
spurious 'files' may apparently exist. 

OPEN 4,4: OPEN 5,4,1: OPEN 15,8,15: 
OPEN 8,8,8, "O:DATA,S,R" gives the tabled 
values. 

593 4 
594 5 
595 15 
596 8 

603 4 
604 4 
605 8 
606 8 

LOGICAL FILE 
NUMBERS 

DEVICE NUMBERS 

613 255 SECONDARY ADDRESSES 
614 97 
615 111 
616 104 

[3] BASIC 4 has DOPEN; it also has a modification of earlier BASIC s: PRINT # 
followed by a logical file number with bit 7 low (Le. 1-127) does not send a 
linefeed character with a carriage return. Earlier versions did. This was a 
result of the fact that PRINT referred to the screen at first; later, the tape 
processing system was arranged to omit linefeeds, but the IEEE bus still trans­
mitted them to disk. On this subject, see PRINT#. 

[4] Other locations. OPEN sets these locations: $D2=logical file; $D4=device; 
$D3-secondary address; $D1=length of string and, if this is non-zero, 
($DA) points to the start of the string. 

Abbreviated entry: oP Token: $9F (159) 

Operation: Chapter 13 has a schematic disassembly of this command. The version 
is BASIC>l; BASIC 1 is written less concisely, but is otherwise logically 
similar. Firstly, parameters are fetched from BASIC by a single ROM sub­
routine. This part can be skipped in machine-code programming, by setting 
the variables directly. ST is set to zero and the file table entries made, if 
there's room. The IEEE bus, as usual, is processed differently from the screen, 
keyboard, and cassettes. The string is sent to the IEEE device only if the 
secondary address is non-zero, and the string is not the null string. 

ROM entry points: OPEN is a 'kernel' command. Its address is $FFCO. 
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OR 

Abbreviated entry: None Token: $BO (176) 

Operation: Identical to AND (q.v.) except for the use of a location holding #$FF 
which the ROM routine uses to reverse bytes. 

ROM entry points: 

BASIC 1: $CED6 (52950) 
BASIC 2: $CEC8 (52936) 
BASIC 4: $C086 (49286) 
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PEEK 
BASIC arithmetic function 

PURPOSE: Computes the decimal value of the contents of any memory location. 
PEEK, in conjunction with SYS and POKE and, to a lesser extent, USR, 
allows free access to RAM and ROM. Uses include: examination of ROM, 
of BASIC, and of variables and pointers; examining hardware locations; 
examining machine-code; and performing memory moves. 

Syntax: PEEK(arithmetic expression). The range is 0-65535. 

Modes: Direct and program modes are both valid. 

Examples: PRINT "[CLR]" CHR$(34);: FOR J=1024 TO 1100: ?CHR$(PEEK(J»;: NEXT 
100 FOR J=1024 TO 1100: POKE 31744+J, PEEK(J): NEXT 
7675 FOR LS=49T054: 0$(7)=O$(7)+CHR$(PEEK(LT+LS»:NEXT: REM SIZE 
2000 IF PEEK(152)=1 THEN PRINT "SHIFT KEY IS PRESSED" 

The two first examples, apart from the minor diff erence of mode, carry 
out similar functions. Each displays about 1000 bytes of a BASIC program 
directly on the screen, so that literals, tokens, linenumbers and so on are 
all made visible. The main difference is that the first example prints the 
characters, and so may fall foul of Commodore's special characters. The 
quote mark at the start prevents this, at least until a second byte holding 
34 is found. The second example doesn't have this problem, and is a 
routine to memory-move the program into the screen area. Try them both. 

The third example is a line from a program, in which information stored as 
a file in RAM is now PEEKed out again. 0 $( 7) is the 7th string to be 
output, has length 6, and is the size description of the item. 

The final example shows how knowledge of the system may be used in a 
program. When the keyboard scanning routine finds the shift key depressed 
it sets a flag which affects the character printed. The actual figure applies 
to BASIC 2 and BASIC 4. (BASIC 1 uses 516). 

Notes: [1] BASIC 1. This ROM contains a test ensuring that addresses from COOO 
to EOFF have a PEEK of O. This protection has been dropped in all later 
ROMs. BASIC 1 also has a bug, caused by the fact that a pointer it uses 
is shared by the function processing routine. Line 100 in the examples, and 
rou tines generally with several different PEEKs in a statement, don't work 
in BASIC 1. For both of these reasons PEEK may well be replaced by USR 
with this ROM. 

DATA 165,8,72,165,9,72,32,208,214,160,0,177,8,168,104,133,9,104, 
133,8,76,135,210: REM BUG-FREE PEEK FOR BASIC 1 WITH USR. 

The 23 bytes above give a peek routine for BASIC 1 JSR D6DO 
which is bug-free, so that PRINT USR(50000) prints LDX #00 
208, and POKE C, USR(D) transfers the contents of LDA (08,X) 
D to C. The 12 byte version to the right removes TAY 
the COOO-EOFF protection, but doesn't correct the bug TXA 
concerned with function processing. JMP D278 

[2] A double-byte peek or DEEK is often convenient and can be written as 
a function definition: DEF FN DEEK(X) = PEEK(X) + 256*PEEK(X+l) 

Abbreviated entry: pE Token: $C2 (194) 

Operation: BASIC>1 saves the contents of ($11) on the stack. (The omission of 
this step from BASIC 1 causes its bug). The routine to validate and con­
vert a floating point number from 0-65535 is called; this also stores the 2 
byte address in ($11), or ($08) with BASIC 1. It is a straightforward 
matter to load the accumulator from the address pointed to, restore the 
original contents of ($11), and jump to the ROM routine which loads the 
accumulator with #0 and converts Y to floating-point. BASIC 2 has 8 NOPs 
left from BASIC l's protection routine, which are dropped with BASIC 4. 

ROM entry points:BASIC1:$D6E6 (55014) BASIC2:$D6E8 (55016) BASIC4:$C943(51523) 
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POKE 
BASIC command 

PURPOSE: Each POKE replaces one RAM location with the byte value specified by 
the second parameter. With PEEK and S YS and to a lesser extent USR, 
POKE enables RAM to be freely accessed from BASIC. It is useful when 
entering machine code from BASIC, modifying pointers, programs, variables 
and files in RAM, and putting characters directly onto the screen. 

Syntax :POKE arithmetic expression, arithmetic expression. The two parameters 
refer to the location and the byte. Their values must be within the ranges 
0-65535 and 0-255. A POKE into ROM or into an area not occupied by RAM 
or ROM does not print an error message, and has no effect. 

Examples: i. FOR J=O TO 255: POKE 8*256*16+J,J: NEXT 
ii. 10 DATA 162,0,138,157,0,128,232,208,249,96 

20 FOR J=826 TO 835: READ X: POKE J,X: NEXT 
iii. 10 REM ************************** 

20 INPUT Y: FOR x=o TO 9: POKE 1032+X, X+Y: NEXT 
iv. FOR J=2000 TO 9E9: POKE J,170: IF PEEK{J)=170 THEN NEXT 

The four examples don't cover specific aspects of CBM BASIC operation, 
of which there are innumerable possible variations. See for example the 
notes in this section on HT AB /VT AB for zero page pokes, on DEL for pokes 
which control the keyboard buffer, and V ARPTR for hunting variables in 
order to modify them by POKE. 

Example! is a simple loop which pokes to the screen. Since this starts at 
$8000, the values 0-255 are taken and poked into the screen starting at its 
top left corner. (The calculation computes $8000 in decimal each time round 
which is slow but easy). Example .li. illustrates how machine code routines 
may be poked into memory. The loop reads data one item at a time and 
pokes it into consecutive locations. SYS 826, executed after this short 
program has been run, produces in machine code the same effect that the 
BASIC routine achieved. The speed increase is considerable. 
Example iii is a self-modifying BASIC program in which 10 consecutiv'a bytes 
are POKEd into a REM statement. It provides an easy way to discover 
which tokens correspond to which values in BASIC. 
The last example is a RAM test in BASIC. It performs a similar checking 
function that BASIC>l executes when switched on. Locations 2000 and over 
are poked with 170 (bit pattern %10101010) and read back; this is repeated 
until the PEEKed value is no longer 170, marking either the end of RAM or 
a defect in a location. This process is far slower than machine-code. 

Notes: [1] This command is not part of standard BASIC, and is missing on most 
larger machines to avoid the risk of changing other people's work. It is 
sometimes given other names, for example STUFF, on microcomputers. 

[2] A double-byte POKE or DOKE cannot be implemented as a function 
definition, but requires a subroutine. DOKE Zl (0-65535), Z2 (0-65535) is 

POKE Zl, Z2-INT(Z2/256) *256: POKE Zl+l, Z2/256: REM LOW THEN HIGH 

[3] This command is one of the few with a very simple machine-code 
equivalent, which examples i and ii illustrate. POKE 8*256*16,0 and 
LDA #$00/ STA $8000 each put a zero byte in the top left of the screen. 

Abbreviated entry: pO Token: $97 (151) 

Operation: The parameters are evaluated by a subroutine shared with WAIT which 
evaluates and checks the first parameter, and converts this into a fixed 
point number which is stored in ($11) with BASIC>1. The comma and next 
parameter are checked, and if the parameter is within the range 0-255 it is 
put into the X register and stored in the address in ($11) without a 
readback check. All the ROMs process this command similarly. 

ROM entry points:BASIC1:$D6F9 (55033) BASIC2:$D707 (55047) BASIC4:$C95A (51546) 
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POP 
BASIC command unavailable directly in CBM BASIC 

PURPOSE: POP discards the last RETURN address from the BASIC stack. This in 
effect makes the previous COSUB no longer effective, so that, if a RETURN 
is encountered, the address returned to will be the COSUB before last's. 
This is useful in escaping from subroutines. For example, suppose a user 
is to be allowed to exit from a subroutine directly back to a menu, perhaps 
if the wrong routine is entered by mistake. It can often happen that a 
direct GOTO leaves the subroutine still active. Or imagine a game, written 
so that a long sequence of games can be played, and containing a routine 
to test for end of game: the test may check whether one player has collided 
with the board edge. If the test routine jumps straight to the routine which 
prints the score, after 24 or so games the program will stop with an ?OUT 
OF MEMORY ERROR. 

Note that from the point of view of structured programming, this command 
ought to be unnecessary: such program demands the use of subroutines 
with one entry point, one exit, and no irregular exits with GOTO or POP. 

Versions: The only previously published version I've seen is by Tom Mead, in 
the Liverpool Software Gazette (Oct. '80). My routine which follows is based 
on the RETURN command in BASIC and mimics this in all respects, except 
for the actual change in program control. So the address is erased but the 
program continues with its next statement, without a change in the flow of 
control. If there's no address on the stack to be popped, ?RETURN WITHOUT 
GOSUB is printed. 

POP DEMONSTRATION (ALL ROMS) 

OAt· .... 
1 GET X$: IF X$· .... GOTO 1 
2 IF ASC(X$)=13 THEN PRINT: PRINT AS; RETURN 
3 IF X$="X" THEN SYS 634; SYS 634; GOT020 
4 PRINT X$f. A$=A$+X$t GOT a 1 
10 FOR I = 1 TO 41 PRINT If. GOSUB O. NEXT. RETURN 
20 PRINT. PRINT "MENU", GOSUB 10. PRINT "END", END 
50 FORI = 634 TO 6571 READ X; POKE I,X.NEXTt GOTO 20 
52 DATA 169,255,133,152,32,172,194,154,201,141,240,5,162,22 
54 DATA 76,89,195,232,232,232,232,232,154,96 
990 REM 
1000 REM ****************************************************************** 
1010 REM * 'RUN 50' DEMONSTRATES POP AS AN ESCAPE KEY, TAKING USER BACK * 
1020 REM * TO MENU WHEN HE'S SELECTED A WRONG OPTION, X USED AS ESCAPE. * 
1030 REM * NOTE THAT POP WITHOUT COSUB GIVES ?RETURN WITHOUT COSUB ERROR.* 
1040 REM ****************************************************************** 
1990 REM 
1995 REM 
2000 REM ****************************************************************** 
2010 REM * BASIC 3 VERSION IS VERY SIMILAR; * 
2020 REM * 52 DATA 169,255,133,71,32,170,194,154,201,141,240,5,162,22 * 
2030 REM * 54 DATA 76,87,195,232,232,232,232,232,154,96 * 
2040 REM * AS IS BASIC 4 VERSION: * 
2050 REM * 52 DATA 169,255,133,71,32,34,179,154,201,141,240,5,162,22 * 
2060 REM * 54 DATA 76,207,119,232,232,232,232,232,154,96 * 
2070 REM ****************************************************************** 
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P~S 
BASIC arithmetic function 

PURPOSE: Computes the position of the cursor on its current screen line. 
The range is 0- 255. This is not the position on the screen line, but a 
measure of the distance the cursor has moved along its present line: some 
PRINT statements can return a value up to 255; more usually, when 
keying - in program lines for example, the maximum is 80. 

Syntax: POS (expression) . Like FRE, POS uses a dummy variable, the sole point 
of which is to make POS behave like a function. POS(O), POS(X), POS("") 
are all valid options which yield identical results. 

Modes: Direct and program modes are both valid. 

Examples: 61540 IF POS (0)+PEEK(196) >74 THEN PRINT CHR$(34);" [HOME][DOWN][DOWN] 
L=" L "+l:S=" J ":E=" E ":GOTO" G 

PRINT TAB(10)POS(0): PRINT SPC(10)POS(0) 
100 PRINT LEFT$(" ",12-POS(0» ;X$ 

POS is arguably the least useful of all the BASIC keywords. Nevertheless 
it performs some useful services: the first example is taken from a routine 
which automatically writes the contents of RAM as DATA statements. If a 
system has no facility for dumping memory, as a RAM image, or if RAM 
has a relocatable routine, handling it as DATA may be convenient. The 
program line checks whether the data so far printed to the screen is in 
danger of reaching the end of the line. (In BASIC>1, location 196 holds 
40, with a 40-column screen only, if printing is on the line one down from 
the top of the screen). 

The second example is a direct mode line. The third figure printed 
depends on LEN(X$). If LEN(X$)=200, PRINT POS(O) returns 200. 

The third example illustrates the close connection between POS and TAB (. 
If POS (0) is confined to the range 0-12, line 100 is equivalent to TAB (12) . 
Suppose that the cursor is at position 4: then 8 spaces will be printed 
before X$, so the effect is the same as TAB(12). 

Notes: [1] POS uses the same parameter as TAB (. Consequently POS cannot be 
used with printer commands unless the identical line is printed on the 
screen. Its usefulness is in practice limited to the screen. 

Abbreviated entry: None 

Token: $B9 (185) 

Operation: Loads the Y register from the zero-page location storing the position 
of the cursor on its 'line'. This location is $C6 (198 decimal), or in the 
case of BASIC 1, location 5. The accumulator is loaded with #0 and a 
ROM routine entered which converts A and Y, as high and low bytes, into 
floating point form in accumulator #1. 

All ROMs use identical logic to process this function. (The absolute 
addresses differ). 

ROM entry points: 

BASIC 1: $0285 (53893) 
BASIC 2: $D27A (53882) 
BASIC 4: $C4C9 (50377) 
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PRINT 
BASIC output command 

PURPOSE: Evaluates and prints string expressions and numeric expressions to an 
output device, usually the screen. The appearance of the output is to some 
extent controllable by the punctuation of the statement, and also depends 
on the special graphics and screen editing characters of CBM BASIC. 

Syntax: PRINT followed by arithmetic and/or string expression(s), separated from 
each other by one or more of: SPC(arith. exp.), TAB(arith. exp.), space, 
comma, semicolon, or no separator where this causes no ambiguity. 

Each string and arithmetic expression must be valid and also evaluate within 
acceptable limits when the PRINT statement is run. The parameter for TAB 
and SPC must evaluate to within the range 0-255, after rounding down. 

The statement terminates when a colon or end-of-line zero byte is found as 
part of the punctuation (Le. not within quotes). See also the flowchart. 

Modes: Direct and program modes are both valid. 

Examples: FOR J=O TO 255: PRINT CHR$(J);: NEXT: REM PRINT EVERY CHARACTER 
FOR J=O TO 100: PRINT J,t NEXT: REM SHOWS USE OF ',' 
PRINT X+Y; 124; P*Q*(l+R%/100): REM ARITHMETIC EXPRESSIONS 
PRINT "HELLO"; A$B$C$; LEFT$(nABCD",l):REM STRING EXPRESSIONS 
100 PRINT TI;TI$;ST;DS;DS$: REM SPECIAL VARIABLES 

These five print statements illustrate most of the major features of PRINT 
except TAB( and SPC(, which are explained elsewhere. The first is a loop 
which uses PRINT to output all 256 individual characters. The effect of the 
loop varies with the ROM; SO-column CBMs have a tremendous range of screen 
editing characters, so characters shift about and disappear, eventually, as 
the scrolling window becomes set, confining themselves to a small rectangle on 
the screen. Other CBMs are more sedate, merely clearing the screen and 
homing the cursor. The semicolon ensures that alphanumerics print next to 
each other; in the next example, the comma tabulates numbers into every 
10th column. The third and fourth examples show typical arithmetic and string 
expressions respectively. Each expression is evaluated and printed from left 
to right, taking account of punctuation. Note that the arithmetic expressions 
are printed in the standard Microsoft format explained elsewhere. Semicolons 
have been omitted from the string output example; in fact, A$B$C$ prints the 
three strings one after the other exactly as A$;B$;C$ would. This is because 
the '$' symbol is recognised as a terminator. Similarly, a semicolon is not 
necessary after an integer's '%' or an array's ')'. Numeric variables require 
more careful punctuation, since their names allow a mixture of alphabetic 
characters and numerals. PRINT X+Y 124 is interpreted as PRINT X+Y1, as 
an example. This sometimes causes wrong output, but errors in PRINT 
statements are easy to correct. Finally, note that PRINT has routines within 
it to check for special values, including pi, the status indicator ST, TI and 
TI$, and (BASIC 4 only) the disk status variables DS and DS$. 

PRINT (7)(7) :REM PRINTS 7 7 
PRINT 1.2 .. 3 :REM PRINTS 1.2 0 .3 
PRINT READY. :REM PRINTS 0 0 [i.e. 
PRINT ;,LK4*R6R;4 :REM PRINTS 
PRINT 1/3(5*+--2).51 :REM PRINTS 

o 4 
.333333333 

['.' appears' 0 '] 
value of RE then 0] 
[i.e. ',' ,LK*R6,then 4] 

10 .51 

Graphics. PET graphics characters are usually printed to the screen from a 
string in quotes. (Tney can also be poked directly into screen RAM). [RVSl 
is necessary to complete the character set, and doubles the number of available 
graphics. This extract from a program listing (in upper case mode) shows 
the type of thing: 

leSe PRINT II r-Iliil 1..-.... --. I[]f-------," 
1055 PRINT" IIiMIT COST: "~T$(5) '" L. ------," 

1060 PRINT" 1)9 lOME: ".J$(6)"::Jlm FIXED? "J$(7)"::JI" 
1065 PRINT" 1)9 4<PORT: "J$(S) "::lIm FIXED? "J$(9) "::J r" 
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Notes: [1] The screen appearance is controlled by three factors: (i) The character 
generator ROM, (ii) Programmable hardware features, and (iii) The screen 
hardware. Taking these in order:-
(i) The oldest PETs use a character generator with upper and lower case 
transposed, a transitional feature from the days when upper-case was normal, 
so it seemed natural to produce lower-case with a shift key. All subsequent 
ROMs use the normal typewriter convention. The ROMs are incompatible. 
(ii) POKE 59468,12 and POKE 59468,14* switch between upper case and 
graphics (no lower case obtainable) and lower case with upper case (losing 
all the QWERTY graphics, such as the card suit symbols). Try 

o POKE 59468,12: POKE 59468,14: GOTO 0 
to see the effect of this on a screenful of characters. 

POKE 59458,62 is one of several equivalent fast-screen pokes, which 
cause a large and useful speed increase when printing to the screen. 
CAUTION: BASIC 'I CBMs have improved screen printing speed; this POKE 
wi/I not work, and can cause damage to the machine. 
With early PETs and CBMs, this is perfectly safe and necessary if you wish 
to avoid slow screen printouts. The rule is: if the picture on the screen 
collapses, don't risk it again. 

Wide-screen CBMs have a CRT (cathode ray tube) controller chip. This 
is programmable; see Chapter 9 for details. 
(iii) The oldest PETs used a blue-white phosphor. All recent machines use 
green. Since about mid-1981, 12" screens only have been fitted, on 40 column 
and 80 column models. There is some incompatibility, as might be expected, 
between 40 column and 80 column PRINT statements. A program designed for 
40 columns typically looks similar on an 80 column machine, but uses only the 
leftmost 40 columns - unless PRINT statements have been terminated with semi­
colons, in which case the top half of the 80 column screen will be filled with 
double lines. Also of course BASIC 4 cursor control characters will not work 
on other ROMs, so scrolling windows, line erase characters and so forth 
cannot be downward compatible. 

[2] The reverse key is necessary to obtain some characters:-

PRINT n[RVS] [DOWN] [DOWN] n 
PRINT n[RVS] .[RVSO] n 

:REM REVERSE SPACE IS A SQUARE 
:REM PRINTSP 

This means that it is not always easy to convert a picture on the screen into a 
set of PRINT statements. Homing the cursor, then typing linenumbers followed 
by?" and RETURN doesn't accept reversed characters; a tedious procedure 
of inserting [RVS] and [RVSO] will need to be used. 

Abbreviated entry: ? 

Token: $99 (153) 

Operation: The flowchart, which applies to all the ROMs, outlines the way PRINT 
works. It is not a particularly long routine - a page or two of listing paper­
but calls half a dozen or so other ROM subroutines. 

ROM entry points: 

PRINT: [SYS of this BASIC 1: 
address-6 has the. same BASIC 2: 
effect as PRINT] BASIC 4: 

SUBROUTINE TO PRINT ONE STRING: 
Accumulator holds low byte, 
Y-register high byte, of start 
of string; terminated by null. 

$C99F (51615) 
$C9AB (51627) 
$BAA8 (47784) 

BASIC 1: $CA27 (51751) 
BASIC 2: $CA1C (51740) 
BASIC 4: $BB1D (47901) has some changes 

OUTPUT ROUTINE FOR SINGLE CHARACTER: 
Controls which character, if any, 
will be printed: has 5 entry 
pOints. 

BASIC 1: $CA44 (51780) 
BASIC 2: $CA39 (51769) 
BASIC 4: $BB3A (47930) 

*59500, which is easier to remember, may be used instead. Nick Green of Commodore 
UK pOinted this out. 
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PRINT 

REGET 
current 
char. 

SPC( 

Validate parameter (0- 255) 
Put into the X-register. 
Check for parenthesis 1)1. 

Subtract 
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position 

Get 
next 
char. 

End of print 
statement? 

Cancel buffer. 

Get 
next 
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5: BASIC keywords 

Subtract 10 
repeatedly 
from cursor 
position till 
negative. 

Change sign 
(i .e. 21s comp­
lement) 

Print CRLF and 
return to BASIC 

End of print 
statement? 

FLOWCHART OF CBM BASICIS PRINT STATEMENT PROCESSING 

Notes: [1] After a colon or end of line, CRLF is always printed by BASICs 1 and 2. 
BASIC 4 however uses the other exit point, checking for device number; 
so that if location $10 (16) is < 128, C.Rtn. is output alone, without 
Line Feed. This was introduced to simplify writing to disks and tape. 
Previously, PRINT#8,X$;CHR$(13); was necessary. With BASIC 4, PRINT#8, 
X$ is fine (and is also compatible with the earlier form). 

[2] TAB(, SPC(, and comma have slightly different effects when printing, 
depending on the contents of 3 (BASIC 1), 14 (BASIC 2), and 16 (BASIC 
4). If this location holds zero, the skip effect is achieved by CBM 
cursor right characters, and CRLF is printed at the end of the line; 
a non-zero value prints spaces instead, and no automatic CRLF, so non­
CBM eqUipment may be used. In quotes mode, skip shows as reverse ]. 
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PRINT:ft: 
BAS IC output command 

PURPOSE: Evaluates and prints string expressions and numeric expressions to an 
output device, usually printer, disk, or tape. The appearance of the output 
is identical to that produced by PRI NT, except for possible differences in 
interpretation of special CBM editing characters. 

Syntax: PRINT # arithmetic expression [, expressions to be printed in format 
identical to PRINT]. The comma is a separator to make unambiguous such 
statements as PRINT#3,3 and PRINT#33. There must be no space between 
'PRINT' and '#', because this will interpret into two bytes ('PRINT' and '#' 
separately, not the single 'PRINT #' token.) - Except in BASIC 1! 
Finally, the expression immediately following '#' must conform to two criteria: 
after evaluation and rounding-down if non-integral its range must be 1-255; 
secondly, a file with this number ('logical file number') must b~ open. 

Modes: Direct and program modes are both valid. 

Examples: 100 OPEN 4,4 : REM CHANNEL 4 TO PRINTER OPEN; NON-CBM PRINTER ... 
1000 PRINT#4,CHR$(12) "PRICE LIST no."N$" page"P% 

100 OPEN 1,4,1: OPEN 2,4,2: REM 2 CHANNELS TO SAME CBM PRINTER ... 
110 PRINT #2,"$$$$$9.99" REM CBM PRINTER FORMAT USES SEC.ADDR.=2 
1000 PRINT#l,DOLLARS REM OUTPUTS IN DESIRED FORMAT (EG.$24.00) 

2000 PRINT#4,;: CLOSE4 REM CLOSES WITHOUT C .RTN. (WITH PRINT ,CMD) 

10 OPEN 5,8,5,"1:FIRST FILE,SEQ,W" :REM CBM DISK EXAMPLE 
20 FOR J=l TO 20: PRINT#5,"RECORD NUMBER"J: NEXT :REM BASIC 4 

5000 PRINTI4,X$Y$Z$; CHR$(13);: REM BASICS 1 AND 2 NEED THIS 

These examples are confined to printers and disks only, but in practice of 
course files can be opened to tape, screen, or any IEEE device, CBM or 
otherwise. The first sets of examples contrast the way a non-IEEE printer 
(e.g. Qume) is controlled with CBM's IEEE device. Assuming a hardware 
interface exists to convert IEEE to (say) RS232, the file can be opened as 
usual, and control characters sent to the printer to alter its spacing or line 
separation or other feature, or, here, send a form feed command. CBM 
printers rely on the IEEE's secondary address feature to control the printer 
in addition to control characters, and the example shows how PRINT# can 
distinguish between several files open at one time. Line 2000 shows how a 
file is closed if CMD and PRINT were used: see note [1] on this. The 
final examples show another complication involving disk files (not tape, and 
not BASIC 4). The earlier ROMs wrote linefeed characters to disk, after the 
carriage returns which are used as record separators. Consequently, data 
when read back from disk started with an unwanted linefeed character, and 
this CHR$(10) could be suppressed only by printing CHR$(13), Le. return, 
at the end of a record. Footnote 1 of the PRINT statement flowchart amplifies 
this is somewhat greater detail. 

Notes: [1] PRINT #, PRINT, and CMD are intimately related: 
PRINT# = SEND 'LISTEN'/ PRINT/ SEND 'UNLISTEN' 
CMD = SEND 'LISTEN' / PRINT 
PRINT = PRINT 

This is why PRINT #n, ;: and CMDn,;: are opposites. Each prints nothing, 
then PRINT# unlistens the device, while CMD leaves it listening. It is also 
the reason for line 2000 in the examples; before closing the file, if CMD was 
used, PRINT#,;: has the function only of unlistening the disk or printer. 
Note that PRINT# is better than CMD and PRINT with CBM printers, which 
are apt to turn the 'listen' off. In practice all this is easier than it may appear 
to be; it is not essential, in getting data stored and printed, to appreciate 
all the fine points of these commands. 

[2] Some printers (not CBM) won't print out their internally stored buffer 
until a carrage return (CHR$(13» has been received. Earlier data is thrown 
away While it waits for this to happen. OPEN 4,4: FOR J=14 TO 255: PRINT#4, 
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CHR$(J);: NEXT may simply do nothing. An apparently unresponsive printer 
may owe its impassivity to oversight of this simple fact. 

Another potential problem if carriage returns are omitted is that INPUT#, 
which is the mirror-image of PRINT # as far as individual records are con­
cerned, can safely accept strings of only 80 characters or less. PRINT#n, X$; 
prints fields strung together, so INPUT# will take in a composite string, 
possibly with a ?STRING TOO LONG ERROR. 

Abbreviated entry: pR (includes #) * 
Token: $98 (152) 

Operation: The ROM entry for this command has only two machine code instruct­
ions. The first calls CMD, which carries out the validation for parameter 
and comma, sets the output device, and performs PRINT. When it returns 
from PRINT the second routine unlistens the file and restores the normal 
devices of keyboard and screen. All of this helps explain the interconnect­
edness between PRINT #, PRINT, and CMD. 

ROM entry points: 

PR INT #: BASIC 1: $C97F (51583) 
BASIC 2: $C98B (51595) 
BASIC 4: $BA88 (47752) 

CRLF BASIC 1: $C9CE (51662) 
ROUTINE: BASIC 2: $C9DE (51678) 

BASIC 4: $BADB (47835) 

RESTORE BASIC 1: $CAD6 (51926) 
DEFAULT BASIC 2: $CAB7 (51895) 
DEVICES: BASIC 4: $BBB4 (48052) 

*If the abbreviation ?# is used, on listing the line will show PRINT# but give 
?SYNTAX ERROR on running, because the interpreter 'sees' PRINT #, which means 
nothing. BUT if the cursor is positioned on such a line and Return pressed, the 
correct meaning of PRINT# is taken in with the line. P shift-R is simpler. 
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PRINT USING 
Output command unavailable directly in CBM BASIC 

PURPOSE: Prints data, often numeric, in a format specified by the program. 
Currency signs, trailing zeros, + or - signs, commas, 'CR' if a quantity is 
negative: these are all typical features of formatting commands. Strings 
usually pose less of a problem than numerals. 

Versions: COBOL, a major business language, set a standard which most other 
formatting commands derive from. Its 'picture' clause enables the programmer 
to position the decimal point and insert spaces and commas within numerals, in 
addition to the features already mentioned. Thus, PIC $ZZZ,ZZ9.99CR causes 
-1234.5 to be printed as $ 1,234.50CR. The IBM 8000 series of desk-top 
machines and the TRS-80 use a similar notation, except that 9, which in 
COBOL prints a compulsory numeral, is replaced by #. Commodore's printers 
enable one (only) format to be pre-defined, and the formatting field is nearly 
pure COBOL. * 

Users of CBM printers apart, there is a constant demand for routines to format 
the output both onto the screen and to hardcopy and disk file. Both 'Diskpro' 
and 'Commando' include a formatting command. It does not validate its input 
completely; it is possible for oversized strings to be printed wrongly. BASIC 
versions have been published, some of them ludicrously long. For such a 
useful command, this can be rather discouraging. In the hope of improving 
the situation I present on the next few pages details of a relocatable machine 
code formatter which is relatively bug-free. 

Notes: The print routine can be called by SYS 47778 in BASIC 4 (and SYS 51621 
in BASIC 2, SYS. 51609 in BASIC 1). This allows for string and numeral ex­
pressions, TI, TAB( and SPC( and so on. For example, we may set PR=47778 
so SYS (PR) 8*9"HeUo" prints '72 Hello'. In fact this entire routine, the main 
parts of which are very compact, can be moved into RAM and modified there. 
This is not however the way the following routine operates; it uses a SYS 
call followed by the numeric expression to be printed. This one value alone 
is formatted and output. II The central piece of code is this (BASIC 4): 

JSR 
JSR 
JSR 
JSR 
RTS 

$BD98 ; 
$CF93. ; 
$xxxx 
$BBID 

Input and evaluate any expression from BASIC 
Convert contents of accumulator#1 into ASCII string 
Code which processes the string, held in $0100 ff. 
Print string using A (low), Y (high) pOinters 
Return to BASIC 

The idea is simply to print the number in the way it would in any case be 
printed, but in addition to insert a piece of code to edit the output buffer 
from which the string is printed. The actual processing is controlled by 
several pokes, to control the type (decimal/integer), the desired string 
ou tput length, the number of decimal places (where applicable), and filler 
characters. A leading character is selectable for positive numerals only. All 
this should be made clear by the examples. 

*CBM printers are noted for bugs in their ROMs, so the actual output may not 
always be as expected. 

2The parentheses are used purely to separate SYS (PR) from the subsequent data. 
It is perhaps worth pointing out that misunderstanding of the syntax can cause 
bugs. Thus: SYS (PR) 45 prints a formatted version of 45; but SYS PR45 inputs and 
evaluates PR45 , which the translater considers to be the same as PR, so zero will 
be printed. And SYS PR(45) evaluates the 45th element of array PR(), if this array 
exists; if not, ?BAD SUBSCRIPT ERROR will be printed. 
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RELOCATABLE BASIC LOADER FOR ' PRINT USING' TYPE ROUTINE (NUMERAL FORMATTER). 

o DATA 1,8,2,32,162,0,221,0,1,240,6,232,224,12,208,246,24,96,169,69,32,-162 
1 DATA 176,90,173,-166,240,94,173,2,1,208,11,172,-165,169,48,153,2,1,136 
2 DATA 208,250,169,46,32,-162,168,144,2,160,48,169,0,32,-162,152,157,0,1,169 
3 DATA 46,32,-162,172,-164,232,136,208,252,236,-165,176,33,172,-165,169,0 
4 DATA 153,1,1,189,0,1,201,32,208,3,169,32,234,153,0,1,202,16,6,173,-163,136 
5 DATA 16,244,136,16,231,169,0,133,97,160,1,132,98,96,169,0,32,-162,144,240 
6 DATA 138,168,173,2,1,240,9,169,46,32,-162,144,2,138,168,152,170,202,16,181 
7 DATA 0,32,159,204,32,233,220,32,-148,32,28,202,96 
8 REM 
9 REM 
10 PRINT" [CLEAR] [REVS] ROM2 RELOCATING 'PRINT USING' ROUTINE" 
20 T - PEEK (52) + 256*PEEK (53) : REM T IS CURRENT TOP OF BASIC MEMORY 
30 L - T - 166 : REM PROGRAM IS 166 BYTES IN LENGTH 
40 FOR J - L TO T-l : REM LOOP PLACES ROUTINE IN TOP OF AVAILABLE MEMORY 
50 READ X%: IF X%<O THEN Y - X% + T: X% - Y/256 : Z - Y - X%*256 : POKE J,Z: J-J+l 
60 POKE J , X% 
70 NEXT 
100 X% = L/256 : Z - L - X%*256 : REM WILL BE HI & LO BYTES OF NEW TOP OF MEMORY 
110 POKE 48,Z : POKE 50,Z : POKE 52,Z : REM SET LO BYTES OF MEMORY AND STRINGS 
120 POKE 49,X%: POKE 51,X%: POKE 53,X%: REM SET HI BYTES OF MEMORY AND STRINGS 
123 REM 
124 REM 
125 REM III NOW PRINT OUT INSTRUCTIONS FOR USE, WITH ADDRESSES, ONTO SCREEN nil 
130 PRINT "[DOWN] SYS (" ; L+153 ; ") FOLLOWED BY ANY NUMERIC 
131 PRINT "EXPRESSION PRINTS THE FORMATTED VALUE, 
132 PRINT"KEEPING THE CURSOR ON THE SAME LINE. 
133 PRINT"DECIMALS ARE TRUNCATED; ROUND TO NEAREST"; 
134 PRINT"WITH +. [0] [0] ••• [0]5 IF REQUIRED 
140 PRINT"[DOWN]POKE" ; L ; "[LEFT], 1 FOR DECIMAL,O FOR INTEGER 
150 PRINT"POKE" ; L+1 ; "TOTAL LENGTH OF OUTPUT - 1 
160 PRINT"POKE" ; L+2 ; "NUMBER OF DECIMAL PLACES 
170 PRINT"POKE" ; L+3 ; "FILLER CHARACTERS 
180 PRINT"POKE" ; L+98; "LEADING CHARACTER WHEN +VE 
190 PRINT"[DOWN]SAVE FROM"L"TO"T-l 
200 PRINT" ($";:GOSUB500:PRINT" TO $";:L=T-l:GOSUB 500:PRINT")" 
210 PRINT"[DOWN]SET UP WITH LENGTH 9, 2 DECIMAL PLACES, AND LEADING SPACES. 
250 END 
497 REM 
498 REM 
499 REM nun ONE LINE DECIMAL TO HEX CONVERTER III 
500 L-L/4096:FORJ=lT04:L%-L:L$=CHR$(48+L%-(L%>9)*7):PRINTL$;:L-16*(L-L%):NEXT:RETURN 

READY. 

******* BASIC 4 ******* 
7 DATA 0,32,152,189,32,147,207,32,-148,32,29,187,96 
10 PRINT "[CLEAR][RVS] ROM4 RELOCATING 'PRINT USING' ROUTINE" 

******* BASIC 1 ******* 
7 DATA 0,32,184,204,32,175,220,32,-148,32,39,202,96 
10 PRINT "[CLEAR][RVS] ROM1 RELOCATING 'PRINT USING' ROUTINE" 
20 T = PEEK(134) + 256*PEEK(135) : REM T IS CURRENT TOP OF BASIC MEMORY 
110 POKE 130,Z : POKE 132,Z: POKE 134,Z 
120 POKE 131,X%: POKE 133,X%:POKE 135,X% 
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r---------------------------------, 

R0II4 RELOCATING 'PRINT USING' ROUTINE 

SYS ( 32755 ) FOLLOWED BY ANY NUMERIC 
EXPRESSION PRINTS THE FORMATTED VALUE, 
KEEPING THE CURSOR ON THE SAME LINE. 
DECIMALS ARE TRUNCATED; ROUND TO NEAREST 
WITH +.[0][0] ..• [0]5 IF REQUIRED 

POKE 32602,1 FOR DECIMAL,O FOR INTEGER 
POKE 32603 TOTAL LENGTH OF OUTPUT - 1 
POKE 32604 NUMBER OF DECIMAL PLACES 
POKE 32605 FILLER CHARACTERS 
POKE 32700 LEADING CHARACTER WHEN +VE 

SAVE FROM 32602 TO 32767 
($7F5A TO $7FFF) 

SET UP WITH LENGTH 9, 2 DECIMAL PLACES, 
AND LEADING SPACES. 

This example shows the effect of running the routine with a 32K machine 
containing no machine-code in the top of memory. The screen output should 
appear exactly as shown. The routine occupies 166 bytes just below the 
screen RAM. Instructions, with the relevant memory locations, are shown, 
and may be noted by the programmer for future use. Note that this routine 
is protected in memory by the loader; if the program is stored and reloaded, 
it will need to be memory-protected, and also of course must not overwrite 
other routines. It is set up to print a string of length 9, in decimal format, 
(so integers appear with '.00' at the end) and with leading spaces. So:-

SYS(32755) 1/3 prints .33 
POKE 32604,4 sets the number of decimal places to 4; now 

SYS(32755) SQR(12) prints 3.4641 
POKE 32700,ASC("$") makes the leading character for positive numbers the $: 

SYS(32755) 123+10 prints $133.0000 

Demonstration program: To make the POKEs more comprehensible, I have used 
meaningful variable names. The actual POKE values will differ for non-32K 
machines. Note the last line of formatted printout, which is exactly what will 
appear on a screen or any printer. If an 'E' is present in the output, this 
rou tine does not attempt to process it, but prints it verbatim. 
o PRNT=32755:SWITCH=32602:LNGTH=32603:DECPTS=32604:CHAR=32605:LDGCHAR=32700 
5 FOR J = -10 TO 100 STEP 10: PRINT 
10 POKE SWITCH,O: POKE LNGTH,4: POKE CHAR,42: POKE LDGCHAR,42: SYS(PR)J 
20 POKE SWITCH, 1: POKE LNGTH, 7: POKE CHAR, 32: POKE LDGCHAR, 32: 

POKE DECPTS,4: SYS(PR)l/(l+J) 
30 POKE DECPTS,2: POKE LDCHAR,ASC("$"): SYS(PR)100*(1+J/100)+.005 
40 POKE SWITCH,O: POKE LDGCHAR,32: POKE LNGTH,7: SYS(PR)J*J*J 
50 PRINT" ";: POKE SWITCH,l: POKE LDGCHAR,4S: POKE CHAR,4S: 

SYS(PR)SQR(ABS(J» 
60 NEXT 

**-10 - .1111 
****0 1.0000 
***10 .0909 
***20 .0476 
***30 .0322 
***40 .0243 
***50 .0196 
***60 .0163 
***70 .0140 
***SO .0123 
***90 .0109 

$90.00 
$100.00 
$110.00 
$120.00 
$130.00 
$140.00 
$150.00 
$160.00 
$170.00 
$lS0.00 
$190.00 

**100 9.9009901E-03 

READY. 

-1000 00003.16 
0 00000.00 

1000 00003.16 
SOOO 00004.47 

27000 00005.47 
64000 00006.32 

125000 00007.07 
216000 00007.74 
343000 0000S.36 
512000 0000S.94 
729000 00009.4S 

$200.00 1000000 00010.00 
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READ 
BASIC program data input command 

PURPOSE: Reads data stored In DATA statements. Each READ fetches one item 
of data and assigns it a variable name. Originally this command was the 
primary means by which a program obtained its data, which the machine 
accepted from punched cards. 

Syntax: READ must be followed by a variable, or a list of variables separated by 
commas. These may be integer, string, or numeric, and can be arrays. If 
the type of variable does not match the corresponding DAT A, this can be 
detected only at run time, and will cause a type mismatch error. 

Modes: Direct and program modes are both valid. Direct mode requires the 
presence of a program containing data statements in memory, otherwise an 
?OUT OF DATA ERROR message appears. (This is what happens when 
'READY.' is under the cursor and return is pressed). 

Examples: 0 DATA 154: READ X: DrM X$(X): FOR J=l TO N: READ X$(J): NEXT 
Where the total amount of data is not fixed, a routine like this may be 
valuable: the first item of data, which will require periodic updating, holds 
the number of current data items; an array is dimensioned with this number 
and therefore capable of holding all the items; finally, the data is read 
directly into the array in a loop. 

50 READ MC%: IF MC%<O THEN ADDRESS=MC%+T: HI%=AD/256: LO%=AD-256*HI% 

This example also shows how special values can be used as indicators that 
special processing is required. I n relocating loaders, most machine code 
bytes are straightforward POKEs; only absolute addresses vary with the 
situation of the code. A minus sign, holding the difference between (say, 
as here) the top of memory after relocation and the position within the 
code, is a signal to compute the low and high bytes needed. 

FOR L=l TO 10: READ X$: PRINT X$: NEXT 

This direct-mode line reads the next 10 data items from the stored program 
and prints them in a column on the screen. 

Notes: [1] This routine shares the ROM routines of INPUT and GET, and has a 
lot in common with them. The statement READ AA%,B,N$(6),C(20) is valid, 
and provided that the DATA is stored to correspond, will execute success­
fully. If it is not, a type mismatch error will be printed; this is caused by 
something like READ X when the data pointer indicates, say, NW 3. READ 
with an integer variable rounds down floating-point numbers. Generally, 
READ X $ will give no trouble, and will read any data; but it can be good 
to check the number of numeric data items by reading into a numeric 
variable. No evaluation is carried out by this routine, any more than GET 
or INPUT; DATA 15*1. 25 can be read only as a string. 

[2] Mismatches cause ?SYNTAX ERROR, but in the DATA statement line. 
A similar bug occurs when a function definition is incorrect; in this case 
too the associated line is wrongly flagged as containing the error. 

Abbreviated entry: rE Token: $87 (135) 

Operation: The elaborate routines shared by GET, GET#, INPUT, INPUT# and 
READ are distinguished within the routine by flags: a special location 
($OB; $62 in BASIC 1) holds #$98 for READ, #$40 for GET, #$OOfor INPUT. 
Thus READ is signalled by the N bit, GET by the V bit, and INPUT by 
the Z bit. Also two variable locations check for mismatches: $07 has #$FF 
for a string, #$00 if numeric; $08 has #$80 for an integer, #$00 for floating 
point. ($5E, $5F in BASIC 1). READ uses a routine which scans BASIC state­
ments - not lines - searching for DATA tokens. All the ROMs process 
this routine in roughly the same way. 

ROM entry points: BASIC1 :$CB24 (52004) BASIC2: $CB07 (51975) BASIC4: $BC02 (48130) 
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REM 
BASIC remark command 

PURPOSE: Permits comments to be included in BASIC programs. These comments 
can in general be LISTed with the program, but are ignored by the program 
during execution. 

Syntax: REM may be followed by any characters, including:, which in this case 
does not function as a statement separator. Everything after REM and before 
the next line is ignored. 

Modes: Direct and program modes are both valid. 

Examples: 7000 REM *** MAIN CONTROL LOOP *** 
7003 GOSUB 51000: REM LOWER MEMORY TO ALLOW ROOM FOR 2 BUFFERS 
7006 GOSUB 59000: REM PRINT INSTRUCTIONS AND AWAIT SPACE BAR 
7009 GOSUB 50000: REM SET UP NUMERALS, ARRAYS, STRINGS, VARIABLES 
7012 GOSUB 57000: REM PRINT SCREEN FOR PARAMETER INPUT 

30000 REM 

** MOVE TO TOP OF NEW PAGE AND PRINT TITLE ** 

NP$='rt' :FORLS=59T062 : NP$=NP$+CHR$ (PEEK(LT+LS) ) :NEXT:REMSUB90 :0$(1)=NP$ 

The first example shows the most common use of remark statements, making 
the functions of a program clearer than they would otherwise be. A block 
of REM statements may be written before a program or subroutine, giving 
very detailed explanations of the working. See elsewhere in this book for 
examples. Line 30000 illustrates one of the many tricks available with REM, 
which rely on the fact that syntax after the REM is unimportant. Here, 2 
carriage return characters have been POKEd into the comment statement, 
which therefore prints its message onto a new line. REM is sometimes usable 
in direct mode; the last example is a line taken from a program, with its 
linenumber erased so it will run in direct mode; the REM near the end of 
the line prevents execution of an unwanted part of the code. 

Notes: [1] LIST may produce strange effects with REM. Un shifted alphanumerics 
after REM appear as ordinary text, but shifted characters (unless within 
quotes) are interpreted as tokens and converted into reserved words ,of ten 
expanding the LISTed line a great deal. Other characters - clear screen, 
form feed, cursor down, and so on - can, as we Ive seen, be incorporated 
into comments: for programs to do this, see Chapter 2. ?SYNTAX ERROR 
is caused on LIST, and the listing will stop, if shift-K (BASIC 1), shift-L 
(BASIC 2), or. CHR$(219) in BASIC 4, are included in a REM statement. 
The 8032 keyboard does not possess chr$( 219), which is shift- [ . 

[2] If your intention is to remove remarks from the finished program, it 
may be worth reserving linenumbers (say) ending 6-9 for REMs, and never 
branching to these lines with GOTO or GOSUB. 

Abbreviated entry: None 

Token: $8F (143) 

Operation: This routine scans for an end-of-line zero byte; when this is found, 
the Y register holds the number of bytes offset from the current CHRGET 
position. Y is transferred to the accumulator and added to CHRGET, so 
program control is transferred from REM to the next BASIC line. 

This routine is embedded in the middle of IF, so that, should a condition 
be false, the equivalent of REM is carried out - i.e. the remainder of the 
line is ignored. DATA is a similar routine, except that, in addition to the 
end-of-line byte, it accepts a colon; so it skips to the next statement, not 
the next line. 

ROM entry points: 

BASIC 1: $C833 (51251) BASIC 2: $C843 (51267) BASIC 4: $B8C6 (47302) 



Programming the PET /CBM -720- 5: BASIC keywords 

RENUMBER 
BASIC system command unavailable directly in CBM BASIC 

PURPOSE: Changes linenumbers of a BASIC program non-manually, either to give 
an improved appearance or to permit additional lines to be inserted. Other 
reasons may exist, too: a range of linenumbers (say, all over 60000) may be 
required to permit successful appends; a program containing very low line 
numbers runs (slightly) faster than otherwise; and so on. 

Versions: Many versions of RENUMBER exist. At the time of writing none has all 
the features required by a professional utility. This is odd, since for 
example Apple has had a good renumber routine for years. The earliest 
versions include J Butterfield's BASIC program and Bill Seiler's machine 
code routine. * Later, Toolkit included a routine similar in effect to Seiler's 
which renumbers only in constant increments. (So lines typically emerge as 
100,110,120, ••• ). Eventually, so-called '4-parameter' renumbers were 
written, to use a format like this: 

RENUMBER 999,1500,1000,10 
which would convert lines 999-1500 into 1000,1010,1020, ... Ideally a renumber 
should also resequence, so that for example a subroutine could be shifted 
to a new position in a program. None seem to be available that do this. 

Operation: This command is more difficult to program than may appear at first 
sight. The problems lie in modifying the references within lines. As this 
short program shows, there is no problem in changing the linenumbers 
themselves: 
59999 REM*** TINY RELOCATABLE RENUMBER ** 
60000 A-1025:B-256:PRINT"LO/HI LINES, NEW START & INCREMENT:":INPUT L,H,S,I 
60005 FOR R-O TO 5E4:IF PEEK(A+2)+B*PEEK(A+3)<LTHENA-PEEK(A)+B*PEEK(A+l): NEXT 
60010 FOR R-OT05E4: X-S+R*I: IF AaO OR PEEK(A+2)+B*PEEK(A+3»H THEN END 
60015 POKEA+3,INT(X/B): POKEA+2,X-(INT(X/B) )*B: A"'PEEK(A)+B*PEEK(A+l): NEXT 

BASIC holds linenumbers as ASCII strings, so these have to be sought and 
changed. A t least two passes are necessary, the first to store current 
linenumbers, the second to change references. Since GOTO 5000 may be 
renumbered GOTO 10000, lines must be expanded to accommodate extra 
bytes. (Some inferior routines require lines all to be written with five 
figures, GOTO 01000 style). The syntax generally has to be assumed to 
be correct. IF X =0 THEN 10=X is syntactically wrong, but might be renumb­
ered as though 10 were a linenumber. Some instructions may contain line 
references which only the programmer can deal with; for example, SYS or 
USR commands I functions, or DATA statements, or computed GOTOs and 
GOSUBs written to include true computed destination lines. 

These esoteric problems aside, all renumbers need to deal with: 
i. IF ... THEN linenumber. 
ii. GOTO linenumber and GO TO linenumber. (In BASIC>1 these differ). 
iii. GOSUB linenumber. 
iv. ON ••• GOTO and ON ... GOSUB have a list of lines to be changed. 
v. LIST with optional linenumbers and RUN with optional number are the 

only other commands which include linenumbers among their parameters. 
RUN linenumber is more important than LIST. 

vi. If the destination line doesn't exist, this must be flagged as an error. 
vii. The renumbered lines must be checked for overlap with original lines. 
viii. The renumbered lines may be outside the valid range. 
ix. Possibly the new program or one of its lines may become too long. 

Fortunately this is very unlikely. 

*Slightly lIisprinted in lIicro (first line should hold T=O), and in PET User Notes 
(Nov-Dec.'78), respectively. Others, e.g. IPUG, have their own versions. Power, 
Disk-O-Pro, etc. have four-parameter renumberers. 
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RESTORE 
BAS I C data command 

PURPOSE: Resets the data pointer within a program so that data stored in the 
program is READ from the earliest DAT~ statement. Data will then be 
READ sequentially until a further RESTORE. 

Syntax: Restore has no other parameters. 

Modes: Direct and program modes are both valid. 

Examples: 15000 REM RELOCATABLE DATA ROUTINE FOR HASHTOTAL 
15010 DATA HASHTOTAL,169,0,141,202,3,162,1,160,20 

15050 RESTORE: FOR L=OT09E9: READ X$: IF X$<>"HASHTOTAL" THEN NEXT 
15060 FOR L=971 TO 1016: READ LS: POKE L,LS: NEXT 

2000 READ X$: IF X$="END" THEN RESTORE 

Program lines 15000-15060 demonstrate a method to ensure that DATA and 
READ routines always correspond correctly. All that's needed is a name 
for the routine, included at the start of the data, which acts as a label 
and can be searched for. With only a few routines, this method is not 
necessary. But with a great many it may be valuable. 

Line 2000 is an analogous, but different, situation where there is DATA 
which is required to be recirculated: perhaps in a games program with 
stored 'random' names or objects. If the last item of data is END, and 
each READ tests for it as line 2000 does, there will never be an ?OUT OF 
DATA ERROR. 

Notes: [1] NEW, RUN, and CLR call RES TORE as an automatic part of their 
functioning. RESTORE in direct mode followed by RUN therefore does 
nothing which RUN on its own would not do. However, RESTORE in direct 
mode followed by GOTO linenumber allows separate control of DATA and 
program variables, and can be useful sometimes. 

[2] It is possible to set the pointer, not to the start of BASIC, but to 
point at other items of DATA. See G.Yob's Creative Computing article on 
this theme, also in Printout of Oct. 1980. 

Abbreviated entry: reS 

Token:$8C (140) 

Operation: Decrements and stores the contents of ($28) - start of BASIC -
into ($3E) - DATA pointer. In BASIC I, from ($7A) into ($90). 
Connoisseurs of small programming points might like to compare this with a 
routine to reset GETCHR. This routine, just after CLR, adds $FFFF to the 
start of BASIC, saving 1 byte over RESTORE, which subtracts 1. 

ROM entry points: 

BASIC 1: $C70D (50957) 
BASIC 2: $C730 (50992) 
BASIC 4: $B7B7 (47031) 
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RETURN 
BASI C command 

PURPOSE: Changes program flow of control to the statement immediately after the 
most recent COSUB statement. These two commands therefore permit sub­
routines to be automatically processed without the need to keep a note in 
the program of the return addresses. 

Syntax: RETURN stands alone with no parameters. It may only be followed by 
spaces (these are optional) and must be followed by either a colon or an 
end of line. If no GOSUB corresponds to a RETURN - for example, when 
o RETURN is RUN - the error message ?RETURN WITHOUT GOSUB appears. 

Modes: Direct and program modes are both valid. 

Examples: 10 INPUT L: GOSUB 10000: GOTO 10: REM TESTS SUBROUTINE AT 10000 

10000 L=(INT«L-.005)/RQ)+1)*RQ: REM RQ=ROUNDING QTY: .01, .05, .50 &c 
10010 PRINT L:: RETURN 

This example shows a test routine which allows the user to input any number 
and responds with the result of the subroutine's processing. Here, we have 
the first stage of a BASIC round-and-format routine which rounds up by an 
amount varying with parameter RQ. The next stage adds decimal points to 
integers, and generally tidies up, but the point here is that the subroutine 
is tucked away in a completely different part of memory, but the RETURN 
automatically transfers control back, to line 10 in this case. 

50 GO TO 1000 
100 REM *** MORE PROGRAM *** 
270 GOTO 1000 
300 REM *** MORE PROGRAM *** 
1000 REM SUBROUTINE WITHOUT A 'GOSUB' 
1010 REM *** PROCESS DATA WITHIN THE ROUTINE *** 
1100 REM GOTO 100? GOTO 270? GO ELSEWHERE?? 

This second example is an attempt to explain the difficulty of having no 
GOSUB / RETURN commands. What is handled effortlessly with these comm­
ands becomes a problem without them. 

Notes: [1] GOSUB and FOR share the same method of using the stack: data is 
pushed on the stack in either case, and the stack pointer is left pointing 
to a token, which may be either FOR or GOSUB. This double use doesn't 
cause conflict unless certain combinations of BASIC are tried. This for 
instance causes ?NEXT WITHOUT FOR ERROR: 

10 GOSUB 1000: NEXT J 
1000 FOR J=O TO 10: RETURN 

Occasionally, a FOR variable may be erased like this: but it is an easy 
programming error to avoid. 

[2] RETURN can sometimes be used in direct mode; for example: 
10 GOSUB 100: PRINT "RETURN" / 100 END. This is not often useful. 

[3] This command has no connection with the carriage return key. 

Abbreviated entry: reT Token: $8E (142) 

Operation: After validating the command, the routine to check FOR and GOSUB 
tokens is called: a flag is set before entry to show that RETURN is the 
command, not NEXT. FORs are removed and $8E tokens looked for; if none 
is found, ?RETURN WITHOUT GOSUB is printed. When found, the BASIC 
linenumber and CHRGET pointer are recovered, as they were left by GOSUB. 
The routine now merges with DAT A. So it searches for the next statement 
after the pointer: thus, ON X GOSUB 10,20, 30:PRINT X •.. RETURN causes 
the remaining list of variables to be ignored; the colon, or if no colon the 
end of line zero byte, marks the point at which execution recommences. 

ROM entry points: BASIC1:$C7CA (51146) BASIC2:$C7DA (51162) BASIC4:$B85D (47197) 
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RIGHTS 
BASIC string function 

PURPOSE: Extracts a substring, consisting of the rightmost characters, from a 
string. This function, with MID$, RIGHT$ and the string concatenation 
operator +, is used in text and string processing in BASIC. 

Syntax: RIGHT $(string expression, arithmetic expression). The string expression 
must be valid, i.e. made up from string functions and/or literals and/or 
string variables. Its length cannot exceed 255. The maximum value of the 
arithmetic expression is 255; the minimum value depends on the ROM. 
BASICs prior to 4 will not accept a value of zero. BASIC 4 has been 
modified to accept zero, returning the null string with RIGHT$(X$,O). 

Modes: Direct and program modes are both valid. 

Examples: PRINT RIGHT$("REAGAN",2) :REII RESULT IS AN 
10 PRINT RIGHT$(" "+STR$(N),10) : REM ANOTHER TAB( 

99 REII ** W$ BOLDS TARGET WORD; G$=GUESS LETTER; S$=STRING SO FAR 
100 FOR J=l TO LEN(W$): S$=S$+"-": NEXT: RBII IF W$=HELLO, S$=-----

200 FOR J=l TO LEN(W$): IF G$=IIID$(W$,J,l) THEN GOSUB 1000 
210 NEXT 

1000 S$=LEFT$(S$,J-1) + G$ + RIGBT$(S$,LEN(S$)-J): RETURN 

51220 CC$=" [DOWN] [RIGHT] [DOWN] [RIGHT] [DOWN] [RIGHT]" 

The first example shows astraightforward application of this function. The 
second is another version of a TAB ( style routine to help align printed 
output. 

The object of the third example, taken from a word game ('Hangman'), is 
to illustrate complicated string handling. It is fairly obvious that any new 
string can be built up from existing strings by subdividing as far as is 
necessary using MID$ (or the related LEFT$ and RIGHT$ functions) and 
putting the bits together with +. Line 1000 is a subroutine which does 
this, breaking S$ into two parts and connecting them with the correctly 
guessed letter in between. If G$="L ", the loop in line 200 calls subroutine 
1000 twice, when J=3 and J=4. The result is to convert "-----11 into "--LL-" 
or "H----" into "H-LL-" or whatever. A similar scanning process can be 
applied to many problems in word guessing, multiple-choice questions, 
foreign language quizzes, and so on. See Chapter 4, section 4.1.15. 

Lastly, since string functions may be used in PRINT statements, PET's 
screen formatting characters can be processed in this way too; line 51220 
defines CC$ so that PRINT RIGHT$(CC$,2*N) moves the cursor diagonally 
down the screen when N>O and N<4. (It's only a very simple example!). 

Notes: [1] This diagram should make the operation of this function clear: 

X$=" ~ T I R I I I N I G I" 
Position from right: ~I 5 4 3 2 ~ 

PRINT RIGHT$(X$,4) prints the four rightmost characters: RING. 

[2] RIGHT$(X$,N) can be replaced by MID$(X$, LEN(X$)-N+1). A special 
case is the expression RIGHT$(X$, LEN(X$)-l) which removes the leading 
character from a string; MID$(X$,2) performs the same function. BASIC<4 
rejects a zero length parameter; this conversion therefore can be useful in 
avoiding clumsy code. Line 1000, which fails withBASIC<4, shows this. 

Abbreviated entry:rI (includes $) Token: $C9 (201) 

Operation: The string parameters are recovered from the stack. Then a 2's 
complement routine computes the length of the (original) string minus the 
parameter. This value (one byte) is held in A. Now LEFT$ is entered and 
processing proceeds as for LEFT$, except that A does not contain #0. 

ROM entry points:BASIC1:$D604 (54788) BASIC2:$D606 (54790) BASIC4:$C862 (51298) 
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RND 
BASIC arithmetic function 

PURPOSE: Generates a pseudo-random floating-point number in the range 0-1 
excluding the limits. RND can mimic statistical data in simulations, help 
generate test data, and introduce unpredictability generally. 

Syntax: RND (arithmetic expression). The arithmetic expression may take any 
value within the valid range of floating-point numbers (±1. 7 E 38 approx.). 
Only the sign influences the result, not the magnitude. 

Examples: 100 FOR J=O TO 3000*RND(1) : NEXT: REM DELAY OF 0 TO THREE SECONDS 
100 N=70: FOR J=O TO N*RND(l): READ X$: NEXT: REM READS 1 DATA ITEM 

100 FOR J=l TO 9: P= PEEK(32809 + RND(1)*920):IF PEEK(P)=32 THEN 
POKE P,176+J : REM IF A SCREEN LOCATION IS EMPTY, PUT RVS 1-9 IN 

110 NEXT 

100 IF RND(1)<.l THEN PRINT "A VERY GOOD MORNING TO YOU" 

o PRINT "[CLEAR]": 1=33228: GOTO 10 
1 J=-41:RETURN/2 J=-40:RETURN/3J=-39:RETURN/4J=-1:RETURN 
5 J=l: RETURN/6 J=39:RETURN/7 J=40:RETURN/8 J=41:RETURN 
10 ON RND(1)*8+1 GOSUB 1,2,3,4,5,6,7,8 
20 M=I: I=I+J 
30 IF 1<32768 THEN 1=1+1000 
40 IF 1>33767 THEN 1=1-1000 
50 POKE 1,81: POKE M,32: GOTO 10: REM 'BALL' AND BLANK POKED IN 

The first and second examples use a loop in which the final value varies 
with the random number selected: this causes a random delay in the first 
example (usable perhaps in a reaction-time game) and the selection of a 
random string in the second, assuming a list of 70 data items exists in the 
program. (Usable in a foreign-words quiz or guessing game). The next 
example is a short program, designed to place 9 values onto a 40-column 
screen, at random, but ignoring the top and bottom lines. Still another 
line 100 follows, and this one has a one in ten chance of printing its greet­
ing. Finally, we have a comparatively long program, which relies on RND 
to pick one of eight subroutines. (The slash marks are there to save space). 
It is a simple version of a 'random walk'. 

Notes: [1] RND generates determinate numbers, not 'random' numbers, if indeed 
these can exist. The sign of the argument (+,0, or -) affects the numbers 
computed. A special location holds the last random number: at switch on 
this has a constant put into it, and every subsequent call of RND resets it. 
Any constant value is called a 'seed'. RND(+ve) computes the next value in 
an infinite sequence. It is like taking the remainders after dividing 10 by 7; 
the pseudo-random sequence 3,2,6,8,5,7,1, ... is formed and continues 
indefinitely. After about 45000 repetitions I have the impression that the CBM 
series lose their 'randomness' and become more predictable. If the seed is 
fixed, the subsequent random numbers can be repeated; and RND(-ve) puts 
a function of the accumulator into the seed area. So X=RND(-1): PRINT 
RND(1): always prints the same value, and is the start of a repeatable 
sequence. RND(O) loads the floating-point accumulator from the VIA timers, 
two of which change at the same frequency as the chip (1 MHz). RND(O) 
therefore is not repeatable, and makes a good seed value. However, it may 
not be suitable for repetitive programming: try it in the random walk. Also 
BAS I C 1 doesn't work correctly with RND (0). RND (-TI) therefore is a good 
function to use when a non-repeatable sequence is aimed at. 

[2] A random number in the range A-B, excluding the exact end limits, is 
generated by: A + RND(1)*(B-A). A special case is 1 + RND(1)*2 which 
generates random numbers from -1 to +1. For integers from A% - B%, 
A% + INT(RND(1)*(B-A+1»COvers the range, including both limits. 

ROM entry points:BASIC1:$DF45 (57157) BASIC2:$DF7F (57215) BASIC4:$D229 (53801) 
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RUN 
BAS IC system command 

PURPOSE: Executes a BASIC program in memory either from the beginning or 
from any linenumber. Previous values of variables are all lost on RUNning. 

Syntax: RUN [linenumber]. The linenurnber is optional. See also note [1]. 
If a line of the specified linenumber doesn't exist, ?UNDEF'D STATEMENT 
ERROR is printed and nothing more happens. 

Modes: Direct and program modes are both valid. 

Examples: RUN :REM CLEAR VARIABLES AND RUN 
RUN 1000 :REM CLEAR VARIABLES AND RUN FROM LINE 1000 

These direct mode commands, as typed at the keyboard, execute BASIC. 

5000 INPUT "RETURN TO START";YN$: REM APPEARS AS 'RETURN TO START?' 
5010 IF LEFT$(YN$,l)="Y" THEN RUN 
10000 LOAD "NEXT TAPE PROGRAM": REM RUN IS IMPLICIT IN THIS 

RUN may be called within a program; all variables and arrays are cleared, 
so this is useful if restarting BASIC from scratch. Line 10000, which uses 
LOAD from within a program, implicitly RUNs the new program too. 

Notes: [1] When RUN is not followed by a colon or end-of-line, it is presumed to 
be followed by a line number which is evaluated by a part of the GOTO 
routine. The linen umber is therefore not completely validated (it need not be 
an arithmetic expression). Consequ.ently, RUN X and RUN "PRG" are both 
equivalent to RUN O. And RUN 25QQ is equivalent to RUN 25. 

[2] RUN does not load and run, like (say) Apple. The shift-stop key has 
this function. In BASICs 1 and 2, this key inserts the string "LOAD[RET­
URN ]RUN [RETURN]" into the keyboard buffer, which causes the usual tape 
loading sequence to be activated, starting with the request to 'PRESS PLAY 
ON TAPE#'. BASIC 4 uses the string "dL"*[RETURN]run[RETURN]" which 
loads and runs the first disk program. 

[3] Not all RUNs share Microsoft's conflation of CLR with RUN. Some Sharp 
BASICs, when RUN, retain their old variables, so that CLR:RUN would be 
their equivalent of Microsoft's RUN command. Conversely, to run Microsoft 
BASIC without resetting all the variables requires GOTO linenumber. 

[4] If location 1024 (and end of line bytes generally) hold some non zero 
byte, RUN will stop with a ?SYNTAX ERROR. 

[5] If the end-of-program pointers are wrong, typically through loading one 
program from within another, RUN, either implicitly on loading or explicitly, 
may corrupt the program as soon as variables are given values. See OLD. 

Abbreviated entry: rU Token: $8A (138) 

Operation: RUN alone sets GETCHR's pointer to the start of BASIC-1, then drops 
into CLR, which erases data, resets the DATA pointer, aborts open files, and 
resets the stack; it saves the top return address on the stack, which points 
to the RUN routine itself. RUN linenumber also CLRs, but without resetting 
GETCHR; then finds the line, and enters the RUN routine as before. 

Programs are executed by a loop which performs single statements. The loop 
has this structure: (i) Test stop key, (ii) Store CONT pointer, (iii) Test 
for zero byte: if found, either end the program, or update the stored current 
linenumber and CHRGET, (iv) Get the current character, (v) Execute one 
statement, (vi) Start over at the beginning of the loop. 

The routine can be rewritten by a programmer, excluding, for example, the 
testing for the stop key which is otherwise performed before each statement. 
Some timesaving is possible in this way. A few fast RUN programs are on sale. 

ROM entry points: 
RUN KEYWORD:BASIC1:$C775 (51061) BASIC2:$C785 (51077) BASIC4:$B808 (47112) 
EXECUTION: BASIC1:$C6B5 (50869) BASIC2:$C6C4 (50884) BASIC4:$B74A (46922) 
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SAVE 
BASIC system command 

PURPOSE: Writes a consecutive block of RAM to an output device, usually disk 
or tape. Normally this is a BASIC program, which is saved with a name for 
easy retrieval, although a name is optional with tape. The converse process 
to SAVE is LOAD. 

Syntax: Identical to LOAD, including the difference between tape and disk SAVE, 
where a name is compulsory with disks. UnlikeLOAD,the secondary address 
has a purpose: a tape program, saved with secondary address 2, writes an 
end-of-tape block so the cassette won't read past it. If the device number 
is 0 or 3 (keyboard or screen) ?DEVICE NOT PRESENT, rather oddly, appears. 
If a file of the same name exists on disk, ?FILE EXISTS ERROR will result. 

Modes: Direct and program modes are both valid. When using tape, SAVE ["NAME"] 
is followed in both modes by PRESS PLAY AND RECORD ON TAPE#1 or 2. 
WRITING [NAME] also appears in direct mode only. (Unless the cassette was 
already running). 

Examples: SAVE REM SAVES THE BASIC IN MEMORY ON TAPE 1 (NO NAME) 
SAVE "PROG006",2,2: REM SAVE BASIC AS 'PROG006' ON CASSETTE #2 WITH EOT 

SAVE "",8 REM NO NAME ... GIVES ?SYNTAX ERROR 
SAVE "0:PROG=5",8 : REM SAVE 'PROG=5' ON DRIVE 0 
SAVE "00:PROG",8 REM SAVE-WITH-REPLACE 'PRoo' ONTO DRIVE 1* 
SAVE CBR$(8)+"TEST RATE"+CHR$(146), 1 :REM NAME APPEARS IN REVERSE 
12000 SAVE "1:TEST"+TI$,8: REM NAME SAVED WITH UNIQUE TIME ATTACHED 

These CBM tape and disk examples are (I hope) reasonably easy to follow. 
The tape examples show a full default (equivalent to SAVE "",1,0) and an 
example which writes end-of-tape after saving the program. The disk examples 
show the slightly more complex syntax needed, including the optional disk 
drive number and the mandatory device number 8. The string is also mandat­
ory. The third disk example shows the 'save-with-replace' variation of disk 
save, which avoids the ?file exists error. This form of SAVE is however 
suspected to contain a bug; use it at your own risk. The final examples are 
intended to emphasize the fact that the string parameter is computed: the 
first example has its name saved in reverse text, the second is a program­
mode SAVE which may be used to store successive versions of BASIC during 
development of a program; the time parameter shows when SAVE occurred. 

Notes: [1] .S "NAME",01,027A,0300 and .S "1:NAME",08,027A,0300 are cassette #1 and 
CBM disk drive 1 versions of machine-code saves from the monitor. These 
use almost exactly the same routine as SAVE and in fact the same result can 
be achieved within BASIC. Cornpu/think uses $S,1, "NAME", "027A", "0300". 
With CBM BASIC, this routine is necessary: 

SYS (62526) "0:HELLO",8: REM GETS THE PARAMETERS FOR NAME .. DEVICE 
POKE 251,LO-INT(LO/256)*256: POKE 252,LO/256: REM LOW ADDRESS IN (FB) 
POKE 201,HI-INT(HI/256)*256: POKE 202,HI/256: REM HIGH ADDRESS IN (C9) 
SYS 63140 : REM ENTER 'SAVE' SLIGHTLY LATER THAN USUAL. 

This version is BASIC 2: for BASIC 4, SUbstitute 62589 and 63203 for the 
SYS addresses. Remember to make the end address a byte longer than it 
should be: CBM's save excludes the final byte. BASIC 1 needs 62515 and 
63153 as SYS addresses, and (F7) and (E5) for its low and high addresses. 

Chapter 13 discusses other modifications of SAVE and LOAD. 

[2] There is no readback check with tape. If 'Play' is pressed, but not 
'Record', SAVE appears to operate correctly, but in fact nothing is written. 

[3] BASIC 4 and BASIC 2 with 'Disk-o-Pro' have DSAVE too (q. v.) 

*There seems to be no definitive statement available on the bugs in SAVE with 
replace, which saves to disk and erases the previous file of the same name, using 
the extra parameter '0'. Some commercial software does use it; some people swear 
by it, others swear at it! SCRATCH then SAVE is safest. 
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Operation: The outline that follows explains how SAVE works. BASIC 1 is similar 
to this schema, but its detailed arrangement, and its working storage areas 
differ. ' 

GET PARAMETERS FROM BASIC. ST is set to zero. Locations $D1, $D3, $04, 
and ($DA) hold string length, secondary address, device number, and, if 
the string is not null, a pointer to the start of the string in BASIC. Where 
these parameters aren't specified, string length defaults to 0, secondary 
address to 0, and device number to 1. 

MOVE BASIC START AND END POINTERS TO (FB) AND (C9). BASIC's 
pointers in ($28) and ($2A) usually hold $0401 and some higher value; the 
contents of RAM will be SAVEd between these two locations. The monitor's 
save with . S carries out the identical functions to these two routines, then 
enters SAVE at the next point: 

DEVICE NUMBER CHECK. A device number of zero or three generates a 
?DEVICE NOT PRESENT ERROR. SAVE "HELLO"" 2 for instance does this. 
(These devices - in case you've forgotten - are the keyboard and screen). 

SEPARATION INTO CASSETTE AND IEEE PROCESSING. Devices numbered 
1 and 2 are cassettes, and are processed by a separate routine from IEEE 
deiVices 4-15. 

I EEE PROCESSING. 

SECONDARY ADDRESS/ NAME CHECK. Secondary address is set to #$61, 
equivalent to 1, to enable writing to the disk directory. A string parameter 
of: zero length is rejected with ?SYNTAX ERROR. (This provides incomplete 
validation, because a string "1:" or ":" may still be sent). 

WRITE NAME AND START ADDRESS TO IEEE BUS. Firstly, the string is 
seilt character by character down the bus, after handshaking has been 
es~blished. LISTEN plus the secondary address (overwritten so that it is 
al wlitys 1) are sent. (FB) is moved to (C 7); this address is used to load, 
compare and increment from now on. (C7) points to the current RAM location 
being sent, (C9) holds the final location which is not sent. The low and high 
bytes of the start address, C7 and C8, are sent on the IEEE. (Then, when 
LOAD reverses this process, it knows which RAM address to store the bytes 
from) . 

LOOP, SENDING SINGLE CHARACTERS ALONG IEEE BUS. The sequence of 
activities here is: (i) Compare address (C 7) with (C 9); if they are now 
equal, exit without sending the final character. (ii) Load the accumulator 
with the byte and send it; (iii) test the Stop key; (iv) increment the address 
in (C 7); (v) continue with loop - provided that (C 7) did not increase from 
$FFFF to $0000. 

EXIT. Finally, LISTEN, the secondary address, and UNLISTEN are sent. 

CASSETTE TAPE PROCESSING. 

PREPARE TO WRITE TO TAPE. This sets (D6) to $027A or $033A depending 
on the device number, prints PRESS PLAY AND RECORD ON TAPE# 1 or 2, 
and, if in direct mode, WRITING plus the optional program name, when a key 
on the cassette is detected down. 

TAPE WRITE. The accumulator is loaded with #1 and the ROM routine to write 
a block (a 'header') called. #1 denotes a program. Then the tape write routine 
is called, and finally, if the secondary address was 2, another 'header' is 
written, this time with the type character #5, indicating an end-of-tape block. 
See Chapter 8 for more detail on the actual writing to tape. 

ROM entry points: SAVE is a 'kernel' command; its jump address is $FFD8. 
BASIC1::$F69E (63134) BASIC2: $F69E (63134) BASIC4: $F6DD (63197) 
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SET 
BASIC graphics command unavailable directly in CBM BASIC 

PURPOSE: Plots a 'point' (in fact a small square) on the screen at a position 
determined by two parameters, which represent horizontal and vertical 
distances or X and Y coordinates from some starting point. 

Versions: Both BASIC and machine code versions of this routine exist for the 
CBM. BASIC usually is too slow. Some versions include straight-line plotting 
algorithms so that lines can be drawn without further calculation. The 
resolution is SO by 50 for 40 column machines, 160 by 50 for SO columns; 
this is useful, but not 'high resolution'. (Many other machines have rather 
similar displays: the TRS-SO has 12S by 4S, Sharp MZSOK SO by 50, Sinclair 
ZXSI 64 by 4S). Higher resolution in one direction can be achieved, for 
bar charts and similar diagrams, very simply by plotting solid blocks and 
adding a final part of a block, which has a resolution of one part in eight. 
And approximations to sloping lines can be made with line segments, so a 
curve will appear as a series of steps. (There is for example a ROM chip 
called 'PicChip' which does this from BASIC). For more detail on this, see 
Chapter 9. The SET here is designed to plot double-density squares only 
with a fast machine-code algorithm. When called from BASIC it is still slow. 
This is because of the computing time which BASIC takes. However, it is 
perfectly usable. * 

Algorithm: 'Micro' had an early version of this. Other publications, such as the first 
issue of 'Printout', followed. The basis of the method is as follows: 
Suppose we use the convention that horizontal (X) coordinates start at the 
bottom left of the screen with 0, and vertical (Y) cordinates also start at 
the bottom left, with 0, so 0-79 or 159 is the range of X values, and 0-49 
is the range of Y values. Taking a concrete illustration, suppose we wish 
to plot a white square at (1,1). The complicating factor is that there will 
be squares already plotted in the vicinity of (1,1), and since the character 
generating ROM only allows one entire character to be changed, the plot 
has to take account of the character already present. In our example, this 

is the character in the bottom left of the 
screen. We can do this with a look-up 
table which arranges the screen graphics 
characters (16 of them are relevant to our 
purpose) in order determined by whichever 
quadrants are turned on: we assign an 

.1.,:1 arbitrary bit position to each quadrant. The 
diagram shows how the quadrants are numbered, and the corresponding 
order, from lowest to highest, which the graphics characters take . 

• a~~~~~~~~~~U~~D 
All we have to do is find the screen ASCII value, find its position in the 
table, and ORA with 1,2,4 or S; the result, looked up in the table, gives 
the new character to be poked to the screen. Overleaf is a 40-column, and 
an SO-column, routine to do just this. Its operation is explained elsewhere. 
To use it, POKE O,X coordinate: POKE 1, Y coordinate: SYS 634 will plot 
a square. POKE 729,0 for a black square; any non-zero value gives a white 
square. The zero-page locations used are these: 

$OO=X coordinate; overwritten by X coordinate of screen, 0-39 or 0-79. 
$OI=Y coordinate; replaced by screen pointer's low byte. 
$02=screen pointer's high byte. 
$94=remainder after halving both X and Y coordinates. The conflated 

remainders are overwritten by 1,2,4 or S. 

Note that $94 is used by the NMI line; if you're using non-maskable int­
errupts you'll need another zero-page (or other) location. BASIC 1 can 
substitute $59 near the end of the input buffer. 

·SET is not op~imised for speed: a lookup table of screen-line start positions, for 
example, could improve the running time. But with BASIC, the difference isn't great. 
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This monitor listing is appropriate for a 40 column machine running either 
BASIC 2 or BASIC 4. See below for (i) 80 column modifications, (ii) BASIC 
1 modifications, and (iii) relocation. 

Incidentally, it is worth mentioning that the cheapest method of increasing 
the dot density - if you know someone with an EPROM blower - is to use a 
character generating ROM containing the entire 256 2 by 4 characters. In 
association with a hardware device to switch between ROMs, this gives with 
an 80-column CBM a resolution of 160 by 100, about 1/3 of Apple's dot 
density. Since the 80-column characters are somewhat elongated upwards, 
this ought to improve the appearance too. The graphics character set does 
include a 4 by 4 character, CHR$(222) in one of the graphics modes. But 
it is easy to see that its entire character set equivalent can't be displayed, 
because 21\16=65536. 8 on/off alternatives is the maximum obtainable. See 
Chapter 9 for further explanation. 

PC IRQ SR AC XR YR SP 
8780 E455 2C 34 3A 9D FA (i) 80-COLUMN MODIFICATIONS: 

Replace the two 
•• 027A A9 00 85 94 A9..,c@.:.:.:;0 ... 8;;5:o..-::0:.:2:...-___ -'$10 and '$AO. 

• • 0282 A5 00 C9l5Ol.BO 38 A5 01 ~ce the 
•• 028A C9 32 80 32 A9 32 E5 01 OA 26 02. 
• • 0292 46 00 26 94 6A 26 94 85 

indicated bytes by 

three NOPs by 

• • 029A 01 OA OA 65 01 OA OA 26 
•• 02A2 02 OA 26 02 EA EA EA 5 

(ii) BASIC 1 MODIFICATIONS: 

., 02AA 01 A6 94 BD~85 94 
• • 02B2 A4 00 B1 01 A2 OF DD (rE~l-¢:-2.....,1 

Replace all .$94s with '$59s. 

., 028A 02 FO 04 CA 10 F8 60 AD (iii) RELOCATION: 

• • 02C2(DC 02) FO 06 8A 05 94 AA ~ The three double-byte pOinters marked 
•• 02CA DO 08 SA 49 FF 05 94 49 • - on the listing point to the tables at 
• • 02D2 FF AA 8D~ A4 00 91 Ii the end of the routine. The fourth 
" 02DA 01 60 (Q]) W1 02 04 081 .f1 w s...t-tth, pointer loads the character which 
•• 02E2 7E 78 61 7C E F 6C Q~ll'M"(a~, determines the black/white switch. Each 
" 02EA 7F 62 FC E1 Fa FE AO ~.cs. must be changed on moving this code. 

This short demonstration program wlll plot a Lissajou figure. Note that non­
graphics characters are ignored - i.e. no plot takes place there. 

1000 INPUT "TWO NUMBERS, E.G. 4,7";A,B: FOR J=O TO 9E9 STEP. 2 
1010 X= (l+SIN(A*J» * 40: Y= (1+COS(B*J»*25: REM OR 80 FOR X 
1020 POKE O,X: POKE l,Y: SYS 634: REM OR OTHER SYS VALUE 
1030 NEXT •• MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMM ~M. MM ~ MM .M. .M. .~ ••• MM M. M. .M •• MMM ••••• .M .M MM M. M. ••• •• 

l.r·.dM~MdM .~. d·· ~M .r· .~. MI·· ~ •••• M~r ·:.r'1.1 •••• •• M. .M M. .M •• •••• =1 M~. .I·~. d·~. MM.:'. d· M M .r·:. .• r M• .r:. rl 
i:l: :Ii: :I=:. ':=1: :it :F: Fi: .E ·r i •• M ••••• M •• M M M M MM ••••• ~. 
~ ••• M •• M •• M •••• M.. M ...... . ••• ~ ~ M •• M M •• M ... M ••• 
•••• •• ~ .M ... .M •• •••• 

i'i=r~v.' ~ir.r ~==urr ·=====r~ ~==urr .===r =r~i~ri= 'i 

~)f;00<XX)~=01 
i i::a Ii: :s: :a: :s: :I: Ii::r ! F v= ~.rr .. ~:., ~==dr· .==:.rr' ~== .. .::. =:..::r' ==j ~i 
.. ... M. ~ .M ... ~ ..... ••• 
~ •••• M ... M M ...... M .. M ..... . •• M ••••• M •• M M MM •• M ........ . 
=~. .=r' ~... Md· ~r ·lo" ".r T ~ I 
=.r':' .r'~. .r'MM ..... :. ..r.... d"~ M~. .~ .. ':'1.: ........ M .... M.. .... .... MM ~ .. . .... .. ~ ~ ~ ... .. " .. . 
i~·"'.:r~~..r ~~.:" .:.:...:~ "l.:'r'r' ••• :.rr'M'1..rV! 
==.H.=:'U':UMU':=:'':=:''=:'':UMU..u:.U:''':=::.uuu 
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SGN 
BASIC arithmetic function 

PURPOSE: Computes the sign of an arithmetic expression. SGN returns the value 
-1 if the expression is negative, 0 if zero, and +1 if positive. * 

Syntax: SG N (arithmetic expression). The arithmetic expression must be valid and 
must evaluate to an acceptRble value. 

Modes: Direct and program modes are both valid. 

Examples: 10 IF SGN (X) > 0 THEN PRINT Xi "IS POSITIVE" 
20 IF ABS(SGN(X»<>OTHEN PRINT Xi "IS NON ZERO" 

FOR J=-100 TO 100: PRINT J, SGN(J), SGN(J)*J, SGN(J)*ABS(J): NEXT 

DEF FN A(ZZ) = INT(ZZ*100 + SGN(ZZ)*.5) 
ON SGN (X) + 2 GOSUB 100,120,140 

SGN is one of the less exciting BASIC functions. It is closely related to 
ABS ,<,=, and >, in the sense that these functions and operators can, when 
permuted, produce identical results. SGN(X-Y) for instance returns zero if 
X=Y, +1 if X>Y, and -1 if X<Y. The two first examples show how SGN may 
be used. Although the logic is correct, the function is entirely redundant. 
Usually therefore this function needs to make use of the fact that explicit 
values of 0 or ±1 are returned if it is not to be superfluous. The third 
example is a direct mode loop showing some possibilities in this direction. 
The separation of sign from magnitude is illustrated. 

Of the remaining examples, one is a function definition which I've quoted 
from someone else's program. It is intended as a rounding routine, in which 
a sum of money, either positive or negative, is converted into the same 
amount in cents/pence, but rounded to the nearest cent /penny. Again it 
shows how the value of ±1 may be used; unfortunately, in the case of neg­
ative numbers, it rounds down too far. A sign that the programmer was 
trying to be over-clever? The other example, which is quoted under ON, 
converts -1,0, and 1 into 1,2, and 3, the range required by ON ... GOSUB 
in our example. This is equivalent to the FORTRAN construction 

IF (X) 100,120,140 

and is sometimes useful when converting engineering-style programs for such 
purposes as pipe diameter calculations to run on microcomputers. 

Abbreviated entry: sG 

Token: $B4 (180) 

Operation: Firstly, a short subroutine is called which loads the accumulator with 
0, I, or $FF depending on the sign of the contents of accumulator #1. This 
is determined firstly by the exponent: a zero exponent conventionally denotes 
a zero result in the accumulator. If this is non-zero, the high bit of the 
sign byte is tested; if set, the number is negative. The accumulator is 
loaded according to these tests. Just after SGN is a routine which converts 
integers to floating-point values, and this is simply dropped into, after the 
low byte has -1/0/1 put in it, and the high byte O. The exponent is set 
at #$88 since the maximum is 255. (Other entries from the main fixed-to­
floating point routines load #$90 into the exponent). 

ROM entry points: 

BASIC 1: $DBOB (56075) 
BASIC 2: $DB45 (56133) 
BASIC 4: $CD6F (52591) 

*Aside from the identical pronunciation, this function has little in common with 
SIN. 
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SIN 
BASIC arithmetic function 

PU RPOSE: Evaluates the sine of the argument, which is assumed to be in radians. 
The sine is a ratio which is constant for any angle; the diagram illustrates 
this ratio. 

Syntax: SIN (arithmetic expression). The expression must be syntactically correct 
and within the range accepted by the floating point logic (±1. 7 E38 approx). 

Modes: Direct and program modes are both valid. 

Examples: PRINT SIN(l) prints sine of 1 radian = .842 approx. 
PRINT SIN(360 * [PI]/180) prints sine of 360 0 = O. 
10 Q=180/[PI]: FOR J=O TO 90: PRINT SIN(J*Q): NEXT 
120 X=A+SIN(A)/2: Y=A+ SIN(A)*3/2: REM TROCHOID 

The first examples show SIN used in direct mode calculations. The third 
example is a loop which prints out the value of sine, as calculated by the 
CBM, for angles from zero to ninety degrees. Example four calculates two 
coordinates which depend on a single parameter A. Innumerable formulas of 
this type exist. 

Notes: [1] The diagrams show the sine in terms of the sides of a right-angled 
triangle, and the concept of a radian. '0' and 'H' by convention represent the OPd3:g1e and the hypo7'0yspeCtiVelY, 

SIN(X) = O/H Angle\2ian 

[2] Accuracy is not greatly affected by the size of the angle: this function 
operates by dividing the argument by 2*pi and taking the remainder, so 
there is no series approximation error related to the size of the argument, 
only the error caused by the limited precision to which the argument is held. 

[3] See the appendices for the inverse function ARCSIN. 

Abbreviated entry: sl 

Token: $BF (191) 

Operation: The argument is evaluated and stored in both floating point accumulat­
ors. Accumulator #1 is divided by 2*pi (6. 283 .. ), and this result moved to 
accumulator #2. The integer value of accumulator #1 is generated, and the 
difference between accumulator #2 and accumulator #1 stored in accumulator 
#1. This completes the processing of the argument. Its sign byte is pushed 
onto the stack, and on exit recovered; if negative, the sign of the result 
is made negative. The calculation has five constants and an additive con­
stant; powers up to and including the fifth are therefore used. 

ROM entry points: 

BASIC 1: $DFA5 (57253) 
BASIC 2: $DFDF (57311) 
BASIC 4: $D289 (53897) 
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SORT 
System command unavailable directly in CBM BASIC 

PURPOSE: Arranges data in alphabetic, alphanumeric, or ASCII order. ASCII 
order is the most common, since it corresponds directly with the way data is 
stored, but any other sort criteria may be used. Generally, computer-sorted 
data will not always correspond exactly with data sorted by manual means, 
because some of the underlying conventions may differ: for example, 'Mc' or 
'Mac' unless specifically checked will not precede all other 'M's. 

Versions: Sorting (of cheques &c) is in widespread use on large computers, often 
with merge routines, by which daily transactions update master files. This is 
a ponderous technique which is rather rare on micros. IBM's 8100 machines are 
fully equipped with the necessary commands of this type, but this is unusual. 
Some multi-key sorts have been written for CBM hardware including a Compu /­
think disk version. There is a sort-merge in Nick Hampshire's 'Library of PET 
Subroutines'. The easiest sorts to write are for 1-dimensional arrays, and 
BASIC versions embodying all the common algorithms exist. (Knuth's many­
volume work is a source of algorithms). Some machine-code hardware sorts 
are available. M Lake's bubble sort (Practical Compllting, Apr. '80) is in 
machine-code; CCN, Oct. '81, has a Shell-Metzner sort - for integers only. 

In any but the most trivial applications, sorting tends to come to grief on the 
twin prongs of space and time. If the whole of a batch of data cannot be fitted 
into RAM, subsets must be sorted individually, and the resulting files merged. 
The necessary disk (or tape) manipulations are likely to be slow. In practice, 
this may be tolerable, since long processing times may nevertheless compare 
favourably with the time needed to type data in. Section 4.11. 4 has more on the 
subject, including descriptions of the merits of the sorts presented here, of 
which there are seven, including one in machine-code. A graph (on the final 
page of this section) shows the approximate range of timings to be expected. 

Notes: [1] ORDER. Numerals are especially liable to be sorted into what appear to 
be strange sequences. String comparisons in most micro BASICs compare 
successive characters until either a string comes to an end, or one character 
differs from the other and the 'smaller' is found. So "49" is less than "5", and 
"5" is less than "51" in CBM BASIC. The strings 0 to 25, sorted like this, 
emerge: 0,1,10,11,12,13,14,15,16,17,18,19,2,20,21,22,23,24,25,3,4,5,6,7,8,9. 
If the sort deals with numbers only, they can be output in numeric order, but 
many sorts deal with string data because of its universal applicability. 
[2] SORT FIELDS. It follows from note [1] that programming can often be 
simplified by careful choice of the way in which items to be sorted are arranged. 
For instance, a date held in the format DDMMYY may need three separate 
comparisons, of year, month, and day, But YYMMDD automatically sorts into 
the correct order, because years are more significant than months, and months 
than days. Similarly, the fact that the comma has a lower ASCII value than any 
letter ensures that names, held with commas, sort correctly - "Williams,P.R." 
when sorted on Commodore's criteria comes before "Williamson,A. B. ". 

1. The Tournament Sort. 

10 INPUT "SORT HOW MANY ITEMS"jN: B=N-1: DIM N$(B),I(2*B) 
20 FOR J=O TO B: INPUT N$(J): NEXT: REM SETS UP DEMONSTRATION DATA 
200 X=O: FOR J=O TO B: I(J)=J: NEXT:REM INDEX ARRAY SET UP WITH 0,1,2,3, ... 
210 FOR J=O TO 2*N-3 STEP 2: B=B+1: REM ORDERS INDEX ARRAY IN PAIRS 
220 I(B)=I(J): IF N$(I(J+1»<N$(I(J» THEN I(B)=I(J+1): NEXT 
250 X=X~1:C=I(B): IF C<O THEN END: REM SORT FINISHED 
260 PRINT N$(C) " "j: REM PRINT ONE SORTED ITEM OF DATA 
270 I(C)=X: REM SORT LOOP IS HERE 
280 J=2*INT(Cj2): C=INT(Cj2)+N: IF C>B GOTO 250 
300 IF I(J)<O THEN I(C)=I(J+1): GOTO 280 
310 IF I(J+1)<0 THEN I(C)=I(J) : GOTO 280 
320 I(C)=I(J): IF N$(I(J+1»<N$(I(J» THEN I(C)=I(J+1) 
330 GOTO 280 
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2 & 3. The Exchange Sort and the Bubble Sort. 

o REM ####,#""""",#### 
1 REM ### EXCHANGE SORT ### 
2 REM ###",####"""",,# 
3 REM 
4 REM ## SORTS N STRINGS OF 21 CHARACTERS LENGTH; AND PRINTS TIME TAKEN. 
5 REM ## RUN 0 • •• EXCHANGE SORT 
6 REM ## RUN 500 • •• BUBBLE SORT 
7 REM ## GO TO 50 ••• RE-SORT SAME DATA BY EXCHANGE SORT 
8 REM ## GO TO 550 ••• RE-SORT SAME DATA BY BUBBLE SORT 
9 REM 
10 INPUT "NO. OF STRINGS";N 
20 DIM A$(N) 
21 REM 

II 
II 
UU 
HI 
#U 

22 REM #O######U####,####U#,#,##,#######'##I'#UUUI'#'U###,#U####,######,#,#### 
23 REM ## FILL THE ARRAYS WITH FAIRLY LONG STRINGS; INCLUDING RANDOM LETTER ## 
24 REM ########################################UUUUU##U##################UU### 
25 J g RND(-I) : REM NOTE: THIS SEEDS A CONSTANT RANDOM NUMBER 
30 FOR J - 1 TO N: A$(J) - CHR$(65+RND(1)*26) +"**********1111111111" 
40 NEXT: REM THE SEEDED VALUE ENSURES IDENTICAL STRINGS IN THE BUBBLE SORT 
50 T - TI REM STORE CLOCK TIME 
95 REM 
96 REM 
97 REM 
98 REM 
99 REM 

####I######I####U#UI####U#U# 
#1# PERFORM EXCHANGE SORT ### 
#,########U###U#UUU########U 

100 FOR J ~ 1 TO N-l 
110 FOR K = J+l TO N 
120 IF A$(J) > A$(K) THEN TEMP$ = A${J): A$(J) = A$(K): A$(K) = TEMP$ 
130 NEXT K 
140 NEXT J 
145 REM 
146 REM 
190 PRINT(TI-T)/60 "SECS" 
200 REM FOR J~1 TO N: 1 A${J);: NEXT: REM OPTIONAL PRINTOUT OF SORTED STRINGS 
300 END 
305 REM #####'####I####I'#I#####U# 
310 REM ## END OF EXCHANGE SORT ## 
315 REM ########1#1##1###1##1##### 
320 REM 
500 REM ##I#I#I####I#I#####UU 
501 REM n## BUBBLE SORT #U# 
502 REM #III#UII##U##I#III##U 
503 REM 
510 INPUT "NO. OF STRINGS";N 
520 DIM A$(N) 
525 J - RND(-l) 
530 FOR J = 1 TO N: A$(J) = CHR$(65+ RND(1)*26 ) + "**********1 I 11111111" 
540 NEXT 
550 T = TI 
595 REM 
596 REM 
597 REM 
598 REM 
599 REM 

U#U##U######I##IU#III#####UU 
#1# PERFORM BUBBLE SORT 1111# 
#######U##U#UUUU#UU#UU###UU# 

600 FOR J - N-l TO 1 STEP -1: FIN=-1 
610 FOR K - 1 TO J 
620 IF A${K) > A$(K+l) THEN FIN=O: TE$ = A${K): A${K) = A$(K+l): A$(K+l) = TE$ 
630 NEXT K: IF NOT FIN THEN NEXT J 
645 REM 
646 REM 
690 PRINT (TI-T)/60 "SEeS" 
700 REM FOR J=1 TO N: ? A${J);: NEXT: REM OPTIONAL PRINTOUT OF SORTED STRINGS 

READY. 
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4 & 5. The Shell-Metzner Sort and Quicksort. 

5: BASIC keywords 

4 REM #############################################11###########1#1###### 
5 REM ## SORTS STRINGS USING SHELL-METZNER SORT AND PRINTS TIME TAKEN ## 
6 REM H# RUN • •• PERFORMS SHELL-METZNER SORT ## 
7 REM ## GO TO 50 ••• RE-SORTS ARRAY A$() ## 
8 REM ############111############11#########1####1##########1##1##11##1## 
9 REM 
10 INPUT "NO. OF STRINGS";N 
11 DIM A$ (N) 
12 J = RND(-I) 
13 FOR J-l TO N: A$(J) = CHR$(65+RND(I)*26) + "**********1 II I I I I II I" 
14 NEXT : REM WE USE SAME STRINGS AS OTHER PROGRAMS TO TEST SORTING 
50 T - TI :REM STORE CLOCK TIME 
59000 REM 
59001 REM 
59002 REM 
59003 REM 
59004 REM 
59005 M = N 

############HH############H################ 
1## START OF SHELL-METZNER SORT 1## 
1##############1###########1#1############# 

59010 M = INT(M/2): IF M = 0 THEN 59200: REM SORT COMPLETED 
59020 J = 1: K = N - M 
59030 I = J 
59040 L = I + M 
59050 IF A$(I»A$(L)' THEN TE$=A$(I): A$(I)-A$(L): A$(L)=TE$: I=I-M: IF 1>0 THEN 59040 
59060 J = J + 1: IF J > K GOTO 59010 
59070 GOTO 59030 
59200 PRINT (TI-T) I 60 "SECS" 
59210 REM FOR J = 1 TO N: ? A$(J);: NEXT:REM OPTIONAL PRINTOUT OF SORTED STRING 
59220 END 

4 REM 
5 REM 
6 REM 
7 REM 
BREM 
9 REM 

################################1##################### ############# 
## SORTS STRINGS USING 'QUICKSORT' AND PRINTS TIME TAKEN #1 
## RUN ••• PERFORMS QUICKSORT ## 
## GO TO 50 ••• RE-SORTS ARRAY A$() ## 
########1###############################1############1############# 

10 INPUT "NO. OF STRINGS";N 
11 DIM A$(N) 
12 J = RND(-l) 
13 FOR J=l TO N: A$(J) '" CHR$(65+RND(1)*26) + "**********1111111111" 
14 NEXT REM WE USE SAME STRINGS AS OTHER PROGRAMS TO TEST SORTING 
30 REM 
31 REM 
32 REM 
33 REM 
34 REM 

############################ 
1## PERFORM 'QUICKSORT' ### 
############################ 

40 DIM ST (LOG(N)/LOG(2) + 4) ,1 ): REM THIS ARRAY HOLDS LEFT AND RIGHT STACK 
50 T - TI :REM STORE CLOCK TIME 
100 S = 1: ST(l,O) '" 1: ST(l,1) = N 
110 L = ST(S,O): R = ST(S,l): S - S - 1 
120 J '" L: K = R: X$ '" A$( (L + R)/2 ): REM PIVOT VALUE TAKEN TO BE MIDWAY 
124 REM 
125 REM NOTE THAT LINES 130 AND 140 ARE VARIATIONS OF EACH OTHER; ACTUAL SPEED 
126 REM OF RUNNING DEPENDS ON LENGTH OF PROGRAM AND NUMBER OF VARIABLES IN IT, 
127 REM SO SELECT THE APPROPRIATE FORMAT FOR BOTH LINES EXPERIMENTALLY. 
128 REM MANY SIMILAR ALTERATIONS MAY BE TRIED WITH THE PROGRAM. 
129 REM 
130 IF A$(J) < X$ THEN J = J + 1: GOTO 130 
140 FOR V '" 1 TO 1E6: IF A$(K) > X$ THEN K = K - 1: NEXT 
150 IF J = K THEN J= J + 1: K = K - 1 :GOTO 130 
160 IF J < K THEN TEMP$ = A$(J): A$(J)=A$(K):A$(K)=TEMP$: J=J+1:K=K-1 :GOTO 130 
170 IF J < R THEN S = S + 1: ST(S,O) = J: ST(S,l) - R 
180 R = K 
190 IF L < R THEN 120 
200 IF S > 0 THEN 110 
240 REM 
241 REM 
242 REM 
243 REM 
244 REM 

############HH##H######### 
### END OF 'QUICKSORT' H#H 
##II########HH###HH#H##### 

250 PRINT (TI-T) I 60 "SECS" 
260 REM FOR J = 1 TO N: ? A$(J);: NEXT:REM OPTIONAL PRINTOUT OF SORTED STRINGS 
300 END 
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6. 'Scatter Sort '. 
o REM 
1 REM 
2 REM 
3 REM 

111#11111111##1#11#1## 
### 'SCATTER SORT' III 
#,########,,,",,",,# 

-135- 5: BASIC keywords 

4 REM 1111111#1###########1##1#1111##111##1111##############11#1#11######1#1### 
5 REM I VERY RAPID SORT USING A SUBSIDIARY ARRAY FOR A PRELIMINARY ROUGH SORT.# 
6 REM IASSUMES FAIRLY EVEN DISTRIBUTION OF STRINGS' INITIALS FROM A THROUGH Z.# 
7 REM I 'RUN' RUNS SCATTER SORT; 'GOTO 50' RE-SORTS; 'GOTO 230' BUBBLE SORTS.I 
8 REM ###############1#1##1#11##11#111111#1#11#######111#1##HI#IUI#I#II#II#UI## 
9 REM 
10 INPUT "NO. OF STRINGS";N 
12 INPUT "APPROX. AVERAGE LENGTH" ;LE 
14 LE .. LE + 3: REM HOLDS LEENGTH OF STRING AND ITS POINTER 
16 J - RND(-I): REM SET SEED 
20 DIM A$(N) 
30 FOR J .. 1 TO N: A$(J) - CHR$(65 + RND(1) * 26) + "**********1111.111111" 
40 NEXT 
50 T .. TI : REM STORE CLOCK TIME 
90 REM 
91 REM 1##U#II#####I########II#II####UI#I###III######II##II#1I#II#UIUIUU#UU#UUUU 
92 REM # EXAMPLE ASSUMES (ASSUMPTION CAN BE CHANGED) THAT EVERY STRING BEGINS # 
93 REM # WITH AN ALPHABETIC CHARACTER: HENCE VALUES IN LINE 100 FOR LOWER AND I 
94 REM # UPPER LIMITS. THE SIZE OF A SUBSIDIARY ARRAY IS DETERMINED IN 110-140 # 
95 REM # AND IS LARGE ENOUGH TO ENSURE A REASONABLE ROUGH SORT:- I 
96 REM #I##I###I##I#I#II#II##I##UUUIUUIU#####I##II#IIIII#I#I#UUU####I##UUUUUI### 
97 REM 
100 L c 64: U .. 91: Z"O: K-O :FI-O:TE$-"": PL .. 0: PH .. 0 
101 REM PREVIOUS LINE SETS UP ALL VARIABLES BELOW THE ARRAY, SO IT'LL STAY PUT 
110 B = FRE (O)/(LE * N ):REM B-NUMBER OF DUPLICATE ARRAYS WHICH COULD FIT MEM. 
120 IF B < 2 THEN PRINT "INSUFFICIENT MEMORY": END 
130 IF B > 4 THEN B .. 4 
135 PL .. PEEK(46) : PH .. PEEK(47): REM STORE CURRENT END OF ARRAY POINTER 
140 DIM B$( B*N + 30 ) : REM SUBSIDIARY ARRAY; MOST OF IT WILL REMAIN NULL. 
142 REM I#IIUIU##UU#I########IIIII##I#IU#I#I##UU#UUUUUUU#UU###U##IU#UUU##II#IIU 
143 REM III CALCULATE APPROXIMATE POSITION IN B$() TO WHICH EACH ELEMENT FROM I 
144 REM 1# A$() SHOULD PROPORTIONALLY BELONG; FILL IN SOME OF B$() WITH THESE # 
145 REM #1 VALUES, SO THAT B$() IS SPARSELY FILLED WITH ROUGHLY SORTED STRINGS I 
146 REM ##########IIII##########I####I#I##U###################UI#IIIIII#III#1I1I11IIIIU# 
147 REM 
150 Z .. B * N / ( U - L ): REM Z IS A SCALE FACTOR COMPUTING THE LIKELY PLACE •• 
160 FOR J - 1 TO N: K .. ( ASC(A$(J» - L ) * Z: REM •• OF THE STRING IN B$(). 
170 IF B$(K) .. III' THEN B$(K) .. A$(J): NEXT: GOTO 190 
180 K = K + 1: GOTO 170 
182 REM 
183 REM IIIUUIU#U#UUUIUIIUUUI#####I###I#IU##IIUUUIUIIUUUU#IU#IIUU###U#IUIUIIIUIU### 
184 REM IU PUT B$() BACK INTO A$(), IGNORING NULL STRINGS; SO THAT A$() NOW UI 
185 REM IU CONTAINS ITS OWN ELEMENTS AGAIN, BUT ROUGHLY SORTED:- UI 
186 REM UUUUUUUUUU####U#UU##UUUUIUUUUUUUUIUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUIUU 
187 REM 
190 J .. 1: FOR K .. 1 TO B*N + 29: IF B$(K) = "" THEN NEXT: GOTO 210 
200 A$(J) .. B$(K): J .. J + 1: NEXT 
210 REM 
211 REM ##U######I####II#IIIIIUIIUIUUUIUUIII#IIIUUUUIUUUIIIUUUUUIUUUUUUUUUU 
212 REM U RESET OLD POINTERS TO END OF ARRAY - ERASING SUBSIDIARY ARRAY:- U 
213 REM IUIIII#IIIU#UUUI##UUUUUUUUUIU#UU#UIII###I#I###IUIIUUUUUIUUUUUIUUUUUU 
220 POKE 46,PL: POKE 47,PH: REM THE SUBSIDIARY ARRAY B$() NO LONGER EXISTS. 
222 REM 
223 REM IIIUIIIU########I#####UIUIU#UIIIIUI##UII##########IU#U##UIU#U#UUUUU 
224 REM #1 FINALLY, USE THE BUBBLE SORT TO COMPLETE THE SORTING PROCESS: UU 
225 REM #1######III#I#####I#UUI#UIU#UIII##U###I##U#I#U###I#I###I#UUIIUIIIIUUU 
226 REM 
230 FOR J .. N-l TO 1 STEP -1: FIN = -1 
232 FOR K = 1 TO J 
234 IF A$(K) > A$(K+l) THEN FIN=O: TE$=A$(K): A$(K) .. A$(K+l): A$(K+l) = TE$ 
236 NEXT: IF NOT FIN THEN NEXT 
272 REM 
273 REM 
274 REM 
275 REM 
276 REM 

UIIUU#UII##UI#II#IU#IIUIUUU 
UUU END OF SCATTER SORT UIII 
UUUIUIIU#IIIIIII'IUUUIUI#UUU# 

280 PRINT (TI-T) / 60 "SECS" 
290 REM FOR J - 1 TO N: ? A$(J);:NEXT :REM OPTIONAL PRINT OF SORTED STRINGS 
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7. Mach ine-code Bubble Sort. 

634 
642 
650 
658 
666 
674 
682 
690 
698 
706 
714-
722 
730 
738 
746 
754 
762 
770 
778 
786 
794 
802 
810 
818 
826 
834 
842 
850 
858 
866 
874 

$027A 
$0282 
$028A 
$0292 
$029A 
$02A2 
$02AA 
$02B2 
$02BA 
$02C2 
$02CA 
$0?D2 
$02DA 
$02E2 
$02EA 
$02F2 
$02FA 
$0302 
$030A 
$0312 
$031A 
$0322 
$032A 
$03:32 
$033A 
$0342 
$034A 
$0352 
$035A 
$0362 
$036A 

20 C2 00 8S 10 A9 80 8S 
11 20 C2 00 FO 07 09 80 
85 11 20 C2 00 A5 7E 85 
12 A5 7F 85 13 AO 00 AS 
10 01 12 DO 07 C8 AS 11 
01 12 FO 16 18 AO 02 B1 
12 65 12 85 1B C8 B1 12 
6S 13 85 13 A5 1B 8S 12 
90 DB AO 05 B1 12 85 15 
C8 B1 12 85 14 DO 02 C6 
15 C6 14 18 AS 12 69 07 
85 12 AS 13 69 00 85 13 
AS 14 DO 02 C6 1S C6 14 
DO 04 AS 1S FO 12 8S 18 
A2 00 86 16 86 17 AS 12 
8S 19 AS 13 8S 1A FO EO 
FO 72 18 AS 19 69 03 85 
19 A5 1A 69 00 85 1A E6 
16 DO 02 E6 17 AO 02 B1 
19 99 BO 00 8B 10 FB AO 
05 B1 19 99 B7 00 BB CO 
02 DO F6 AA 38 ES BO 90 
02 A6 BO AO FF E8 C8 CA 
DO 08 AS BA CS BO 90 OA 
BO 22 B1 BB 01 B1 FO EE 
BO 1A AO 02 B9 BA 00 91 
19 88 10 F8 AO OS B9 AD 
00 91 19 B8 CO 02 DO F6 
A9 00 85 18 A5 14 C5 16 
DO 98 AS 15 CS 17 DO 92 
AS 1B FO 8A 60 

· : · ; · : · ; · ; · : 
• 0 · ; · : 
· : , ; · : · : · : · ; · : · ; · ; · ; · ; · : 
• I · : · : · : · : · : 
• 0 · ; 
• t 

7F02 20 70 00 BS SE A9 BO 85 
7faA SF 20 70 00 FO 07 09 80 
7F12 85 SF 20 70 00 AS 2C BS 
7F1A 60 AS 20 85 61 AO 00 AS 
7F22 5E 01 60 DO 07 CB AS SF 
7F2A 01 60 FO 16 18 AO 02 B1 
7F32 60 65 60 8S 69 C8 B1 60 
7F3A 65 61 85 61 AS 69 85 60 
7F42 90 DB AO 05 B1 60 85 63 
7F4A CB B1 60 BS 62 DO 02 C6 
7F52 63 C6 62 18 AS 60 69 07 
7F5A 85 60 AS 61 69 00 85 61 
7F62 AS 62 DO 02 C6 63 C6 62 
7F6A DO 04 AS 63 FO 12 BS 66 
7F12 A2 00 B6 64 86 65 AS 60 
7F7A 85 67 AS 61 85 68 FO EO 
7FB2 FO 72 18 AS 67 69 03 85 
7F8A 67 AS 68 69 00 85 68 E6 
7F92 64 DO 02 E6 65 AO 02 B1 
7F9A 67 99 6A 00 88 10 F8 ACI 
7FA2 05 B1 67 99 6A 00 B8 CO 
7FAA 02 DO F6 AA 38 E5 6A 90 
7FB2 02 A6 6A AO FF E8 CB CA 
7FBA DO OB AS 60 C5 6A-90 CIA 
7Fe2 BO 22 B1 6E 01 6B FO EE 
7FCA 10 1A AO 02 B9 60 00 91 
7FD2 67 B8 10 FB AO 05 B9 67 
7FDA 00 91 67 B8 CO 02 DO F6 
7FE2 A9 00 BS 66 AS 62 C5 64 
7FEA DO 9B AS 63 CS 65 DO 92 
7FF2 AS 66 FO 8A 60 

BASIC 1 ('OLD ROM') BASIC 2 ('UPGRADE ROM') AND BASIC 4 

Both these routines are freely relocatable; the old ROM version has been put into 
cassette buffer #1; the BASIC 2 or 4 version is positioned in the top of 32K memory, 
where POKE 53,127:CLR will protect it from BASIC. The syntax needed to run the 
sort is shown by this demonstration program:-

o INPUT "NUMBER OF STRINGS";N: DIM A$(N): REM ARRAY A$O IS SET UP 
2 FOR J=l TO N: A$(J)=STR$(INT(RND(l)*lOOOO): NEXT: REM FILL ARRAY 
4 SYS 32514:A: REM THIS SORTS ARRAY A$(). BASIC 1 VERSION IS SYS 634. 
6 FOR J=O TO N: PRINT "STRING NUMBER" J " IS " A$(J): NEXT 

These routines operate in program mode only. The string array must exist a.nd be 
1-dimensional. The sorted order is the same as BASIC; for example, null strmgs 
come first. The strings need not be sorted from their initial ch~ract~r: a sort key 
can be defined starting within a string. See elsewhere for detaIls. Fmally, note the 
syntax is SYS 634:A to sort A$(), and SYS 634:PQ to sort PQ$O, and so on. 

10000 

1000 

100 

10 

TIllE 
(SECS) 

---­Bu~e (BASIC) 

Exchange __ -------------=================~ 
-t 
Bubble (machine-code) 

Bubble re-sort (m/code) 

250 500 750 1000 
--- NUMBER OF STRINGS TO BE SORTED ---
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spec 
BASIC format function 

PURPOSE: Prints a number of spaces or cursor-right characters on the screen 
or to a printer. The number depends on the parameter in brackets. This 
instruction is normally only used within a PRINT statement. 

Syntax: PRINT ... SPC(arithmetic function). The arithmetic function must take, 
after rounding down, a value in the range 0-255. No spaces may appear 
between SPC and (, except in BASIC 1. The interpreter will treat such a 
construction as the array SPO. 

Modes: Direct and program modes are both valid. 

Examples: 20 PRINT "[CLR]": FOR J=OT020: PRINT "[SHIFT-&]" SPC(38) "[SHIFT-&]": 
NEXT 

30 FOR J=O TO 19: PRINT SPC(J) "*" SPC(38-J*2) "*": NEXT 

These examples show how SPC may be used within a loop to print certain 
repetitive types of design on the screen. The first provides a border down 
each side of the screen; the second a V-shaped pattern. 

765 PRINT SPC (10) "The PET can run while the disk is processing" 

This program line illustrates the typical use of SPC in the straightforward 
printing of literals. Since SPC( when tokenised occupies 1 byte, line 765 
is six bytes shorter than PRINT " The ... ". This mayor may 
not be a worthwhile saving. And the appearance on listing mayor may 
not be improved by the function. 

Notes: [1] SPC( and TAB( share a peculiarity concerned with printers. The 
point is that SPC( and TAB( are processed in virtually identical ways by 
PRINT, sharing the bulk of the same routine. In addition, the earliest 
BASIC, presumably with screen PRINTing in mind, uses PET's cursor right 
characters to generate 'spaces' in each of the commands. These characters 
are not of course universal; BASIC 2 and 4 were modified so that spaces 
(#$20 characters) are sometimes produced by SPC( and TAB(. In this way 
other printers could be used with these functions without printing spurious 
information. The following short program illustrates the difference, and 
the location to poke if either command is giving trouble. * Its effect is clear 
when the program is run: in one case (when the device is 0, i.e keyboard) 
SPC( does not print 'spaces', but skips right, leaving the previous screen 
contents as far as possible unchanged. But the poke, which is interpreted 
as a change of device, causes exactly the same instruction to print spaces. 

10 INPUT X 
20 POKE 14,X 
30 PRINT "[HOME)";: FOR J=O TO 30: PRINT "X";: NEXT 
40 PRINT "[HOME]**" TAB(10) "**" SPC(10) "**,, 

READY. 

**XXXXXXXX**XXXXXXXXXX**XXXXXXX 
** ** **XXXXXXX 

Top line when X=O; bottom line when X=l. 

Abbreviated entry: sP (includes left parenthesis) 

Token: $A6 (166) 

Operation: See PRINT. If SPC ( is found in a print statement, the expression in 
parentheses is evaluated and validated as usual. (The right hand bracket 
has its own check). The resulting single byte is held in the X register 
and counts the characters as they are singly output. 

ROM entry_p'oints: BASICl:$CAlB (51739) BASIC2:$CAOD (51725) BASIC$:$BBOE(47886) 
*The poke is helpful in other ways: e.g. when printing a toolkit Dt~ or FIND. 
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SQR 
BAS IC arithmetic function 

PU RPOSE: Calculates square roots. 

Syntax: SQR(arithmetic expression). The expression must be valid and evaluate 
to a non-negative quantity which is within the range accepted by the floating 
point logic. A negative argument yields an ?ILLEGAL QUANTITY ERROR. 

Modes: Direct and program modes are both valid. 

Examples: PRINT SQR(2) : REM 1. 4142 ... 
PRINT SQR(9) :REM 3 

1000 Xl = (-B + SQR(B*B - 4*A*C» / (2*A) 
1010 X2 = (-B - SQR(B*B - 4*A*C» / (2*A) 

1240 D = SQR(X*X + y*y + z*Z) 

SQR, like EXP, is not really needed in BASIC; either function can be 
obtained using the ordinary power (upward arrow) evaluation. The first 
examples can be replaced by 21'.5 and 91'.5, for instance. It is generally 
included because square roots occur more often than most other powers, and 
because in any case it looks better to have more functions. SQR is faster 
than raising a number to the point five, and is also more readable, and is 
perhaps justifiable on the latter ground alone. At any rate, the two first 
direct mode examples print the results of typical calculator-style square root 
evaluations. Only the positive root is printed: the two-line program embody­
ing the solution to the 'general' quadratic equation has a repeat line in which 
the negative root is processed. The final example is another formula having 
a square root within it: this is an extension of Pythagoras' theorem to find 
the diagonal within three planes at rightangles (i. e. a room or box etc.) 

Notes: [1] A square root, as those people who have forgotten may like to be 
reminded, when multiplied by itself gives the original number, of which it 
is the square root. Thus, 3 is the square root of 9, because 3*3=9; and 
(more debatably ... ) 1. 4142135 ..• is the square root of 2. Early computers 
worked this out by iteration: the relation 

x 1 = x~ + Y provided continually better estimates for SQR(Y). 
n+ ~ 

n 

[2] Other powers can be set up in machine code by imitating the SQR mode 
of operation. In BASIC 4, this routine, called by USR, will return fourth 
roots instead of square roots: 

JSR $CD42 
LDA #$08 
LDY #$D3 
JMP $D10F 

(Decimal equivalents: 

32,66,205,169,8,160,211,76,15,209) 

A and Y point to an address in ROM holding .25; more generally, the value 
won't exist in ROM and will have to be put into RAM. 

[3] In lower-case mode, shift-colon prints a square root symbol. (Or a tick?) 

Abbreviated entry: sQ 

Token: $BA (186) 

Operation: SQR is positioned immediately before the power routine which computes 
xY. It moves the argument up into floating point accumulator #2, then loads 
accumulator #1 with the floating point form of .5. Then it drops into the 
power function, so that xY is evaluated as the special case x' 5. 

ROM entry points: 

BASIC 1: $DE24 (56868) 
BASIC 2: $DE5E (56926) 
BASIC 4: $D108 (53512) 
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ST 
BASIC reserved variable 

PURPOSE: provides a record of the status of the system after any read or write 
operation to tape, printer, disk, or other peripheral. I n this way, an error 
condition can be noted without stopping BASIC. The variable ST is reset to 
zero at the start of each input/ output process. 

Syntax: ST resembles a real variable, and may be assigned, printed, and used in 
tests with a conditional statement. ST is not stored in the RAM area which 
holds other variables; it is generated when needed from a single byte. For 
this reason ST is not a keyword and is not tokenised. BEST therefore is a 
legitimate variable name, equivalent to BE. STATUS is equivalent to ST. 

Modes: Direct and program modes are both valid. 

Examples: The table shows the possible meanings of ST, with notes on interpreting 
them. In each case ST takes the value of a power of 2 (1, 2,4, 8, etc.) when 
it is non-zero; each errol'-type ORs the byte holding ST with #1, #2, or which­
ever is the conventional value. Note that cassette processing, which does not 
use the IEEE bus, has a different set of meanings from those returned by all 
devices 4 and upward, Le. printer, disk units, modem. 

ST ST Cassette #1 or #2 IEEE (e.g. all CBM peripherals) 
(hex) (dec) Read Write Read Write 
01 1 Print time out * 
02 2 Input time out * 
04 4 Short block on input 2 
08 8 Long block on input 2 
10 16 Misma tch on checking 3 None 
20 32 Checksum error3 
40 64 End of file on input** End of file (EOI) ** 
80 -128 End of tape marker *** Device not present *** 

*Means that after PRINT#4, "MESSAGE" ST takes the value of 1, implying that 
the device responded in a longer time than 65 milliseconds, or may not have 
responded at all. Some CBM printers return 1 even when working perfectly. 
This is more important with modems than printers, where it is usually obvious 
if the device isn't printing correctly. Error ST =2 means the device is slow, 
and has responded too slowly or not at all. Typically, a statement like this: 
100 INPUT #5,M$: IF ST=2 GOTO 100 uses ST with a slow peripheral. Note that 
in BASIC 4, the time out feature may be disabled: see Chapter 15's RAM map. 
2Tape data files are read into the cassette buffer. One block occupies 192 
bytes. If a program file is read instead, one of these errors will occur, since 
the anticipated separation into blocks won't be present. 
3Either or both of these errors may occur on reading tape, with INPUT# or 
GET #, or LOAD, or VERIFY. They are part of the tape security system. 
On LOAD, for example, if the inconsistencies between the two programs which 
are recorded on tape are too great, ST is set to 16 and ?LOAD ERROR stops 
BASIC. (A checksum error doesn't generate this message, because ST is 
ANDed with #$10, which is why tape loads can be faulty but nevertheless seem 
to be OK). Note that VERIFY can be run in program mode, L e. from within 
a program, so self-checking of a program load is possible, though time-con­
suming, with tape. 
**A file, if it has been CLOSEd correctly after being written, has a marker 
to indicate end-of-file. So BASIC like this: 100 INPUT#2,X$: IF ST=64 GOTO 
1000 provides a typical means of checking for end-of-file. Since files may 
be of any length, some such method is necessary, of course, but often it is 
easier to write one's own marker, or keep a record of the number on file at 
the start of a file. 
***An end-of-tape marker is simply a block on tape holding a special number. 
The tape need not, in fact, end there; its function is purely to stop the tape 
recorder from attempting to read blank tape or tape holding unwanted data. 
This will cause BASIC to crash with a ?FILE NOT FOUND ERROR. The 
corresponding IEEE status means device doesn't respond; if the entire IEEE 
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bus is unresponsive, again BASIC will crash, in this case with ?DEVICE NOT 
PRESENT ERROR. But if the bus is partly active, ST is set to -128 without 
a program crash, so that a program loaded from disk can use this test to 
determine whether a printer is turned on and, in the event that ST returns 
set to -128, print a warning message to the screen. 

OPEN 5,5: PRINT#5: PRINT ST : REM GIVES ST=-128 IF DEVICE 5 DOESN'T EXIST 

Notes: [1) ST is set to zero by GET, INPUT, and PRINT in addition to the inputl 
output commands CMD, GET#, INPUT#, and PRINT#. The information within 
ST therefore must be tested after every input or output, if you are using 
ST. This ephemerality does not apply to the disk status variables DS and 
DS$. When both are in use, test ST first, with, for example: 

IF ST OR DS THEN: REM ERROR OR END OF FILE PROCESSING ROUTINE. 

[2] Limitations of ST. This variable illustrates one of the dilemmas which face 
anyone attempting to design a good computer system. If the hardware is 
reliable, but not infallible, how can errors be signalled to the computer? The 
program may simply stop, or alternatively some indicator can be used, but this 
may be ignored. Either way has its drawbacks. The status byte, used from 
BASIC, combines a bit of each. Some errors, those which are more difficult to 
detect, are not implemented. For example, there is no facility to read back tape 
immec!ia tely after writing to it, so tape write errors are undetectable, except 
for programs which may be VERIFYed. Many of ST's messages can be prog­
rammed around, notably the end-of-file status. It is, in fact, entirely feasible 
to ignore ST altogether. 

[3] BASIC>1 holds ST in location $96 (130 decimal). BASIC 1 uses $020C 
(524). When reading files in machine code it is common practice to check 
for end-of-file by reading ST, which is a simple operation. Chapter 14 has 
details with examples. This method is not always usable, because some 
devices don't set EOI true on the last byte of data, but send carriage return 
and line feed instead. 

[4] Like TI, ST can be set up as an ordinary numeric variable. If a variable 
is assigned a value from BASIC, found with V ARPTR, and altered to ST, you 
will have an assignable ST which can be given values like 999 at will - to the 
considerable surprise of some other programmers. 

Abbreviated entry, Token: Neither of these are applicable. 

Operation: A special ROM routine performs an inclusive OR with the location which 
holds ST whenever an error is found. The accumulator is loaded with #80 or 
whatever and the routine called to enter it. For this reason it may be possible 
that several errors simultaneously are included in ST. Apart from this side 

ROM 

of things, several routines exist in BASIC to watch for ST and process it 
if found; PRINT has a subroutine to evaluate variables in which ST is checked 
and this is used by assignments too ('X=ST' say). The routine to create a 
new variable tests for all the reserved words, rejecting attempts to set ST. 

entry points: 

Flag in error: Look for ST, process it: 

BASIC 1: $FBE5 BASIC 1: $CE82 
BASIC 2: $FB7F BASIC 2: $CE75 
BASIC ,4: $FBC4 BASIC 4: CO OF 
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STOP 
BASIC command 

PURPOSE: Causes a program to exit to immediate mode and print a message 
indicating the line at which STOP was encountered. Like END, this command 
may be used to set breakpoints in BASIC programs. CONT causes a pro­
gram to continue at the next instruction after STOP. 

Syntax: STOP has no parameters. It may be followed by spaces, and must be 
followed by an end of statement byte - either a colon or a zero byte at 
the end of the line. 

Modes: Direct and program modes are both valid. Direct mode is of little use. 

Examples: STOP is not often used in finished programs, since users of a program 
are unlikely to want information about esoteric matters like the internal 
workings of BASIC. Its importance lies in this fact: since the line on which 
it was found is printed, breakpoints can be scattered throughout programs, 
and particularly in difficult parts of a program with bugs. 

1901 IF X<> VAL(X$) THEN PRINT"ROUNDING ERROR": STOP 
510 J$="£$#& ": FORJ=lTO LEN(J$): IF IN$<>MID$(J$,J,l) THEN NEXT: 

PRINT "**VALIDATION WRONG" :STOP 

Both these examples illustrate the use of STOP as a temporary measure, 
put in to trap errors which may occur through faults in other parts of a 
program or subroutine. In the first case, X$ is supposed to have value 
equal to X; in the second, only characters in the string J$ are supposed 
to be present as IN$. 

Notes: [1] When a program exits to direct mode, any variable can be printed and 
changed without effect on the program. CONT will still operate. If entirely 
new variables are input, CONT usually still operates. 

[2] Editing a program will cause CONT to reply with ?CAN'T CONTINUE 
ERROR. Some BASICs (eg Sharp) permit a shortened, edited program to 
retain its variables, and machine code routines to do this can be written 
for Commodore BASIC. Usually though editing loses the variables, so the 
program must be run again to reach the same position as obtained before. 

Abbreviated entry: sT 

Token: $90 (144) 

Operation: This routine is virtually identical to END, except that on entry, the 
carry bit is set, so that the final branch near the end of the routine prints 
"BREAK IN" followed by the linenumber. 

Note that FFE1, the ROM routine to test the stop key, calls this routine; if 
the stop key was pressed, this sets the zero bit and STOP is entered as 
though the command STOP had been encountered. 

Rom entry points: 

BASIC 1: $C71C (50972) 
BASIC 2: $C73F (51007) 
BASIC 4: $B7C6 (47046) 
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STR$ 
BASIC string function 

PURPOSE: Converts a number, or numeric expression, into a string. When held 
in string form a number cannot be added to or multiplied, but is instead a 
string literal, which can be edited, formatted, and modified like other 
strings. 

Syntax: STR$(arithmetic expression). The arithmetic expression can take any 
value accepted by the floating-point accumulators (up to about ±1. 7 E 38). 
However, not all the accuracy of the original is necessarily retained. This 
function uses the same buffer as PRINT, and its results are held in exactly 
the same way. Thus, STR$(.005) is not ".005" but as II 5E-03". 
There must be no space between STR and $ unless you wish array ST $() 
to be understood. (BASIC 1, however, allows this space). 

Modes: Direct and program modes are both valid. 

Examples: PRINT STR$(123) + ".00" : REM RESULT IS 123.00 
1210 N$=MID$(STR$(N) ,2) : REMOVES LEADING SPACE FROM +VE N 
PRINT "$" + STR$(DOLLARS) + " =TOTAL." 

The major uses of this function are probably routines to round and edit 
numerals, and routines to compress numerals for storage when disk space 
is limited. Both these techniques are too elaborate to discuss here: see 
PRINT USING and Chapter 4 respectively for programs. 

The first of the three examples above is a small scale editing program. 
PRINT 123 simply prints 123, and so does PRINT 123.00. Trailing zeros 
can be introduced in BASIC only by use of STR$. The second example 
is another editing routine; the leading space which CBM BASICs introduce 
in positive numbers (this space holds the minus sign with negatives) can 
be unwanted. Suppose you wish to edit numbers less than 1 to appear as 
0.05, 0.36, etc. "O"+STR$(N) for small N gives 0 .05 which of course is 
the wrong format. Line 1210 removes the space, and will also remove a 
minus sign if there is one; I'm assuming all the quantities are positive. 
(Incidentally, not all BASICs do this. Apple BASIC hasn't the space). 
The final example shows that STR$ is a genuine string function, and can 
be concatenated and processed like other strings and literals. 

Notes: [1] Summary. For numbers in the everyday range, this function is fine. 
The most likely bug is caused by the conversion routine mentioned already. 
STR$(1234000000000) is not "1234000000000" but "l. 234E12". Many rounding 
routines fall into this trap at the low end of the scale. A number supposed 
to be zero may accumulate rounding errors and appear as 1E-9. 
The leading space feature can be demonstrated like this: 

PRINT "*"STR$(24)"*" prints * 24* , while 
PRINT "*"STR$(-24)"*" prints *-24*. 

Abbrev iated entry: stR (includes $) 

Token: $C4 (196) 

Operation: This function is a good example of a string assignment and would be 
helpful if a string USR function or string function definition existed with 
BASIC. First of all, the numeric mode flag is checked; if location 7 (in 
BASIC>1) has its high bit not set, indicating that the expression was 
numeric, this is accepted. So STR$("ONE") is rejected. Now the ROM 
routine, shared with PRINT, is called which puts the ASCII equivalent of 
the number into $OOFF - $010F. A subroutine return address is popped 
from the stack, pointers are set to $OOFF, and the string set-up routine 
processes the string expression of which STR$ is a part, perhaps giving a 
? FORMULA TOO COMPLEX ERROR, but probably, we hope, not. 

ROM entry points: 

BASIC 1: $D349 
BASIC 2: $D33F 
BASIC 4: $C58E 

(54089) 
(54079) 
(50574) 
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SYS 
BASIC system command 

PURPOSE: Transfers control to the address following SYS. This is executed as 
6502 machine code until an RTS instruction or equivalent is encountered 
which corresponds to the SYS command; at this point control is resumed 
by BASIC. This command is essential in running machine code subroutines 
and is often used to run large machine code programs. Some knowledge of 
6502 programming is necessary to understand this command. 

Syntax: SYS arithmetic expression. The expression must evaluate to a numeral 
within the range 0-65535; non-integers are rounded down. This is a 
command, not a function: X=SYS 634 is invalid. Brackets are not needed. 

Modes: Direct and program modes are both valid. 

Examples: SYS 11*4096: REM THE EFFECT IS IDENTICAL TO SYS 45056 (OR SYS 45056.4) 
1230 SYS CH: REM CH HAS BEEN ASSIGNED 826 
12500 SCROLL=57377: SYS SC: REM SCROLL UP WITH 8032 

These three lines of code show typical SYS calls: the first enters a routine 
at $B 000, perhaps a Toolkit. The second and third show algebraic addresses 
where the SYS call may be varied: the effect of the first depends on the 
code contained at address CH; the second is an actual entry point for the 
8032. SYS of a ROM routine is of course always reliable - provided that 
the address is right and the ROM set hasn't been changed - whereas RAM 
routines must always be loaded or poked into memory. Readers not yet 
familiar with machine code might try thp. following short demonstration: 
POKE the values 162,0,138,157,0,128,232,208,249,96 into 900 to 909. These 
numbers correspond to this machine code: 

SYS 900 displays all 256 VDU 
characters on the screen. The 
routine can also be called at 
other entry-points: SYS 902 
for instance has results depending 
on the entry value of X. 

900 $0384 LDX #$00; Load X with zero 
902 
903 
906 
907 
909 

$0386 TXA 
$0387 STA 
$038A INX 

; Transfer X to A 
$8000,X; Put A into VDU 

Increment X 
$038B BNE $0386 
$038D RTS 

Branch if X<>O 
Return 

The routine can itself be modified from BASIC; this direct-mode line calls 
the routine 256 times, modifying the screen address each time:-

FOR J=O TO 255: POKE 904,J: SYS 900: NEXT 

Examples in ROM: BASICs 1 and 2 extend from $COOO to $FFFF; BASIC 4, with 
added disk instructions, is longer and occupies $BOOO-$FFFF. Each BASIC 
has ROM missing from $E800-$EFFF; so early BASICs occupy about 14000 
locations, while BASIC 4 takes up 18000. There is about an evens chance 
of a location taken at random will directly enter ROM as BASIC runs it; 
there is a high chance that SYS of such a location will either go into some 
variety of loop, or change some of the locations and variables used by 
BASIC. Machine code may become corrupted. Because of these uncertainties 
it may be advisable to reset the machine if a SYS has been wrongly run. 
This can happen inadvertently: SYSS826 if entered by 'return' will be 
interpreted as SYS S8. This is likely to be zero, and if so SYS 0, having 
the same effect as USR(O), will be performed; but S8 could take any value. 

Two short demonstration programs follow, illustrating strange effects which 
may occur with indiscriminate SYSing. The cure generally is to switch off, 
or, what is better from the hardware point of view, call the routine to set 
up BASIC. 

[i1 POKE 634,248: POKE 635,96: SYS 634 

This short routine sets a flag in the 6502 known as the decimAl bit, D. Now 
BASIC tries to do its calculations in packed decimal mode. The attempt is 
not a success. Exit to the monitor will clear the decimal bit, if you can get 
to it. 
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[ii] 50 REM *** JOKE WHICH LEAVES MEMORY IN A STRANGE STATE *** 
100 POKE 52,255: POKE 53,255: POKE 40,0: POKE 41,0 
110 PRINT "[CLEAR]" 
120 SYS 57757 : REM BASIC 2; BASIC 4 IS SYS 54321. 

(BASIC 1 VERSION: POKE 134,255:POKE 135,255:POKE 122,0: POKE 123,0: 
PRINT " [CLEAR]": SYS 57690) 

Examples. A small selection: 
BASIC 1 BASIC 2 BASIC 4 

RESET BASIC AS IF SWITCHON: $FD38 (64824) $FCD1 (64721) $FD16 (64790) 
PRINT "? OUT OF MEMORY ERROR": $C357 (50007) $C355 (50005) $B3CD (46029) 
PERFORM NEW (I.E. ERASE BASIC): $C553 (50515) $C55D (50525) $B5D4 (46548) 
ENTER MONITOR BY 'CALL' ENTRY: not applicable $FDll (64785) $D472 (54386) 
SCROLL SCREEN: $E559 (58713) $E53F (58687) $E3E8 (58344) 
i SECOND DELAY LOOP: $E5C8 (58824) $E5A8 (58792) $E412 (58386) 
SCROLL SCREEN DOWN: not applicable $E3C8 (58312) 
TINKLE THE BELL: not applicable $E6A4 (59044) 
SWITCH TO LOWER! TO UPPER CASE: not applicable $E07A (57466) 

$E082 (57474) 

Notes: [1] Although usual, it is not necessary to end machine code with an RTS. 
An RTI can be used, provided an extra byte has been pushed onto the 
stack to be treated as a processor status register. It is common for 
JMP $ABCD to replace JSR $ABCD/ RTS. Commodore's BASIC is full of 
jumps where the return is stored on the stack: the point is that the RTS 
of the called routine is used, saving one address on the stack. 

[2] It is often easier to use SYS rather than a wedge when writing routines 
to be used by BASIC. The wedge will probably need to coexist with other 
wedges, and a lot of checking for symbols like ! or @ may be required. 
SYS is also easier to handle from the point of view of returning control to 
BASIC. The drawback is that a large number of SYS addresses may be an 
irritant. 

[3] Some BASICs use 'CALL' for this command, for instance Apple, which 
also uses (rather clumsy) signed integers. 

[4] The fact that SYS computes its destinations can be used to access 
jump tables; SYS 826 + 3*A for example with $033A JMP $ABCD/ JMP $1234 ... 

[5] Some SYS commands (e.g. of VIC) allow A,X,Y, and perhaps SR to be 
set from BASIC, and this is often convenient. This type of SYS begins with 
something like this: LDA SR-STORE! PHA! LDA A-STORE! LDX X-STORE! LDY Y-STORE 
! PLP before jumping to the SYS address specified from BASIC. 

Abbreviated entry: sY Token: $9E (158) 

Operation: The expression is input, validated, and converted into a 2-byte 
integer which is stored in ($11) in BASIC>1 in the normal 6502 way, with 
the low byte first. An indirect jump is made to this address, and since 
it holds the address after SYS, the correct machine code is executed. (An 
indirect jump is represented JMP ($0011); the destination address is loaded 
from ($11». 

NB: the argument is converted into two bytes, of which the high byte is 
held in the accumulator and the low byte in the Y register, in addition to 
the special zero-page locations. For example, SYS 1024 shows A=4 and Y=O 
on entering the monitor. SYS therefore does not behave in the same way as 
BASIC when entering ROM routines; the address in the table above for 
NEW is not quite the same as that given under NEW itself, because the 
validation process of BASIC doesn't apply to SYS. 

ROM entry points: 

All ROMs use the Kernel jump table entry of $FFDE, from which is called: 
BASIC 1: $F695 (63125) 
BASIC 2: $F684 (63108) 
BASIC 4: $F6C3 (63171) 
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TAB( 
BAS Ie format function 

PURPOSE: Prints spaces or cursor-rights to the screen, if the TAB parameter in 
brackets exceeds the current cursor position. This instruction is normally 
only used within a PRINT statement. The function is not usable with a 
printer. 

Syntax: PRINT ... TAB (arithmetic expression). The expression must take, after 
rounding down if necessary, a value in the range 0-255. No spaces may 
appear between TAB and (, except in BASIC 1. The interpreter will treat 
such a construction as TA(x), an element of an array TAO. 

Modes: Direct and program modes are both valid. 

Examples: 3020 IF OP$(P)="" THEN L=P: PRINT TAB(15);: GOSUB 200: 
PRINT TAB(25) "???": NB=l: GOTO 3065 

20 PRINT "[HOME]"TAB(120) "[RVS][40 or 80 SPACES]" 
30 FOR X=40 TO 79: REM OR 80 TO 159 WITH 80 COLUMNS 
40 PRINT "[HOME]" TAB(X) "[RVS] " TAB(X+40) "[RVS] " TAB(X+120) 

"[RVS] " TAB(X+160) "[RVS] " 
50 PRINT "[HOME]" TAB(X-l) " " TAB(X+39) " " TAB(X+119 " " 

TAB(X+159) " ": NEXT 

The first example is a typical print-to-screen statement, in fact part of a 
disassembler in BASIC which prints '???' if an unrecognised opcode has 
been found. The effect is similar to that achieved by SPC(, except that 
TAB ( enables easier left-justification. The second example is a small program 
in which the argument of TAB( runs across three lines. It draws a bar 
across the screen and walks a cross-piece along it (rather slowly). 

Notes: [ 1] TAB ( can be made to print spaces - not ju st cursor rights - to the 
screen, erasing the matter over which it prints. See note 1 of SPC( for 
information and for a demonstration program including both functions. 

[2] TAB( works by subtracting the current cursor position from the TAB( 
parameter, and, if the result is positive, dropping into the SPC( routine to 
print that number of characters. Consequently, it will not work properly 
with a printer, unless the duplicate information is printed onto the screen. 
The same considerations apply to the TAB key as implemented on the 8032. 
For these reasons, there is a lot to be said for avoiding TAB ( and SPC ( , 
unless you are certain to be using screen output only for the PRINT state­
ments involved. And when modifying programs for other machines to run 
on a PET some conversion routine may be needed; typically, 

SP$=" ": REM SPACES 
PRINT LEFT$(SP$, 10-LEN(E$» ; E$ 

might be used to right-justify, in this example spanning 10 columns. 

Abbreviated entry: tA (includes left parenthesis) 

Token: $A3 (163) 

Operation: See PRINT. IF TAB( is found in a PRINT statement, the expression 
in parentheses is evaluated and validated as usual. (The right hand bracket 
has its own check). The processor status flags are pushed onto the stack; 
carry bit set distinguishes TAB( from SPC( within the routine.* Now the 
current cursor position (as in HTAB/VTAB) is subtracted from the eval­
ated parameter, and, if the result is non-negative, characters, either space 
or cursor right, are printed singly by the SPC( routine. 

ROM entry points: 

BASIC 1: $CA13 (51731) .Processed slightly differently. 
BASIC 2: $CA07 (51719) 
BASIC 4: $BB08 (47880) TAB KEY: $E2AO (58016) 
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TAN 
BASIC arithmetic function 

PU RPOSE: Evaluates the tangent of the argument, which is assumed to be in 
radians. The tangent is a ratio which is constant for an angle; the diagram 
illustrates this. Note that this function has nothing to do with the tangent 
to a circle. 

Syntax: TAN (arithmetic expression). The expression must be syntactically correct 
and within the range acceptable to the floating-point logic (± 1.7 E 38 approx.) 

Modes: Direct and program modes are both valid. 

Examples: PRINT TAN ( [PI]/2) prints tan of 90 0 ; ?OVERFLOW ERROR 
PRINT TAN(45 / 57.29578) tangent of 45 0 = 1 
100 X= (TAN(A) + TAN(B» / (1 - TAN(A) * TAN(B» 
500 A = ATN( TAN(A) ) : REM CONVERTS TO RANGE -900 to +900 

The first two examples show the use of radians and of degrees; a radian 
is 57.29578 0 , so this value may be used to interconvert between the two 
measures. 90 0 (pi/2 radians) and all the cyclically repeating equivalents 
like 270 0 and -900 yield an overflow error; if such values are not tested 
for, the program, although otherwise perfectly correct, will crash if such 
a value is generated in the course of processing. 

The third example is one of the very many functional relationships which 
hold between trigonometrical ratios; in this case, the value of A is made 
equal to TAN(A+B) by the use of the standard formula. 

Fourthly, program line 500 demonstrates the connection between the arctan 
function and the tangent. A function can only return a single value. For 
this reason ATN(A) returns only the principal value of angle A, not an 
infinite sequence of alternative solutions. So line 500 converts angles out of 
the normal range into their principal value equivalents. 

Notes: [1] The diagrams show (i) the sides of the right-angled triangle from which 
the tangent is computed, and (ii) how a radian is related to a circle. 'Oland 
'A' conventionally represent the sides opposite and adjacent, respectively, 

to the a .. ne;g.l"e •• ~ 0 G~r 

~ A I TAN (x)=O/A r """-......... ~ __ -J 

[2] Another measure of angles sometimes used is the grad, where 100 grads 
make up a right angle. Pi radians therefore = 200 grads, and the conversion 
figure is 63.6620. 

[3] This function is evaluated by calculating the sine of the angle, and 
dividing by the cosine. Its speed and accuracy therefore are not so good 
as these other functions. 

Abbreviated entry: None 

Token: $CO (192) 

Operation: The argument is evaluated and checked, then goes through these 
stages: 
The argument in stored in the temporary storage area starting $54 (BASIC>1) 
Sine is evaluated / 
The result is stored in the temporary storage area starting $4B (BASIC>1) / 
The argument is retrieved from temporary store/ 
Cosine is evaluated/ 
A pointer is set to the area holding sine; and the division routine entered. 

ROM entry points: 
BASIC 1: $DFEE (57326) 
BASIC 2: $E028 (57384) 
BASIC 4: $02D2 (53970) 
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TI & TI$ 
BAS IC reserved variables 

PURPOSE: Gives BASIC access to the internal clock. This is updated at each 
interrupt by software. It can be used to keep time, display the time, 
calculate elapsed time, and perform processing for timed intervals. 

Syntax: TI and TI$ resemble variables, and may be accessed by PRINT or in 
assignments, as in PRINT TI$ or TX=TI. In each case the name TI or TI$ 
is specifically looked for, and, if found, processed by a set of special 
routines. TI and TI$ are not stored in the usual RAM area for variables. 
Instead, they are generated when required from three bytes which make 
up the jiffy clock storage area. For this reason TI and TI$ are not 
keywords, and ANTIC for instance is a legitimate BASIC variable. The 
enclosed TI is ignored. ST,DS and DS$ are processed similarly. 

Modes: Direct and program modes are both valid. 

Examples: TI$="130500" 
100 TI$=H$ + M$ + S$ 

200 T=TI 
210 IF TI-T<120 GOTO 210: REM 2 SECOND DELAY LOOP 

1000 PRINT LEFT$(TI$,2) ":" PRINT MID$(TI$,3,2) ":" RIGHT$(TI$,2) 

5260 TI$="OOOOOO": FOR J=O TO 9E9: IF TI=600 THEN J=9E9: GOTO 6000 

6000 NEXT 

TI$ can be assigned a value; TI cannot. The value must be within the 
24 hour range (and "240000" is accepted). The first two examples show 
this. The string must be of length 6, and leading zeros must be included 
if necessary, to conform to the hhmmss format. The time is set to five 
past one in the afternoon in the first example; in the second, each part 
of the time should be a two digit number. 

The third example shows a two second delay loop. (120 jiffies is 120/60 
seconds which gives 2 seconds). Some CBM manuals have an obscurely 
worded warning against this construction, which is repeated more 
comprehensibly in Osborne/Donahue. The point is that TI is not a 
monotonic increasing function. If you're very unlucky it may just happen 
to change from the equivalent of, say, "235940" to "000130", so the delay 
loop will be rather longer than intended. 

The fourth example prints the time in hours, minutes, and seconds in 
this format: hh : mm: ss. Many routines have been written to present 
attractive graphics versions of the time, almost always as digital clocks. 

Finally we have an example of the clock timing a loop. At the start the 
clock is reset, to avoid any possibility of the twenty-four hour trap 
occurring. We set up a huge loop with an arbitrary terminating value, 
and with a test-and-exit routine which is called each time the loop repeats. 
It is set for 10 seconds in the demonstration line; of course if the contents 
of the loop process slowly this time may well overrun. 

Notes: [1] Three bytes hold the jiffy clock: 141-143 in BASIC>1. These locations 
are all set to zero on switching on the machine. 

PRINT 256*256*PEEK(141) + 256*PEEK(142) + PEEK(143) is the same as 
TI. TI$ is evaluated from TI by a long routine involving a table of values 
in ROM. It is related to TI by the following formula, which converts TI$ 
to jiffies: 

PRINT 60*(3600*VAL(LEFT$(TI$,2» +60*VAL(MID$(TI$,3,2» +VAL(RIGHT$(TI$,2») 

BAS I C 1 uses locations 200- 202 for its jiffy clock. 
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[2] The clock update routine is called from the interrupt routine. All ROMs 
use $FFEA in the 'kernel' jump table as the clock update routine, so if this 
is repeatedly called the clock will advance at an abnormal rate. There is a 
software 'correction clock' included in the implementation on all ROMs. Two 
locations, treated as 16 bits, are successively incremented at the same time 
as the clock itself; however, when it has counted to a certain point, it is 
reset to zero, and the clock is not, on that occasion, incremented. Every 
623rd interrupt does not increment the clock; the interrupts happen about 
1/6% more than 60 times per second. The routine has a further feature, 
connected with the STOP key. Obviously, to implement a key which is able 
to stop a program at any time, it is not sufficient to leave the key's ASCII 
value in the keyboard buffer, because until there is a GET or equivalent, 
it will be ignored. It would be possible to cause a stop key to generate an 
interrupt of its own. But since the PET has interrupts continuouslyoccur­
ring, $FFEA not only updates the clock but also, in a short piece of code 
near the end, stores the keyboard PIA contents in zero-page ($9B in 
BASIC>l). Now $FFE1,the routine to test the stop key, simply has to look 
at this location to determine whether STOP has been pressed. This is the 
reason that a change of IRQ address can turn off the clock and the stop 
key simultaneously. 

[3] If the interrupt disable flag is set for any length of time (the 6502 
command is SEI) the clock will lose time. Compu /think disks and the screen 
scroll with BASIC<4, for example, both do this. The clock cannot therefore 
be assumed to be completely accurate; in any case, because 1/60th second 
is the smallest quantum of time that TI can deal with, decimal points beyond 
the second are meaningless. 

[4] TIME and TIDE and TIMER$ are a few of the many possible equivalent 
names of these variables. 

[5] With a little jiggery-pokery we can assign any value to TI, and any 
string to TI $, by evading the normal mechanisms for checking these 
variables. (The same trick can be done with ST, DS, and DS $). 

10 TJ$="AHA!" 
20 POKE 1084, ASC("I")+128 
30 PRINT "TI$="; TI$ 

Spacing is important with this program, which does not use a V ARPTR type 
of function. Old ROMs will require POKE 1085. (Line 20 pokes ASCII of 
I to replace J. The extra 128 sets the high bit, to distinguish TI$ from 
TO. 

Abbreviated entry, Token: Neither of these are applicable. 

Operation: There are three fragmented parts to the operation of TI and TI $. 
[1] The routine to assign TI $ checks that the string contains only ASCII 
numerals and is six of these characters long. If these constraints are 
satisfied, the value of the string is calculated, and the result left in 
accumulator #1. The most significant three bytes are transferred into the 
clock area, where they are incremented with every interrupt. 

[2] & [3] A routine is needed to assign the value of TI$ to a new string, 
to accomplish T $=TI$ for example; another routine allows numeric assign­
ments, for example T=TI+60. When these deta:ils are correct, TI$ is "AHA!". 

ROM entry points: 

[1] Assign TI$: 

BASIC 1: $C8DC (51423) 
BASIC 2: $C8EF (51439) 
BASIC 4: $B972 (47474) 

[2] Assign string to time: 2 [3]Assign numeric var: 

$CE43 (52803) 
$CE2E (52782) 
$BFAD (49069) 

$CE71 (52849) 
$CE60 (52832) 
$BFF3 (49139) 

The clock update routine, $FFEA, calls these ROM subroutines:­

BASIC 1: $F736 (63286) BASIC 2: $F729 (63273) BASIC 4: $F768 (63336) 

*The interrupt routine which tests Stop, checks the keyboard, and updates the clock 
occurs 60 times/second with 8" screen machines, 50 times/second with 12" machines. 
The latter have a software cheat which increments the clock twice every 5 interrupts. 
2E.G. JSR CE2E/ JSR CAlF (BASIC 2) prints TI$. See IPUG newsletter, July '81. 
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TRACE 
BASIC utility unavailable with CBM 

PURPOSE: a TRACE is a diagnostic routine which provudes information on the 
way a program runs; this information is collected during an actual program 
run. The facilities provided by trace routines vary; some print only 
linenumbers, some list lines during execution, some monitor particular 
variables or commands only. 

Versions: Brett Butler's relocating loader is a well-known trace; it appears to be in 
the public domain, and is listed in 'Pet Revealed' and elsewhere. It displays 
statements in reverse at the screen-top. Several traces display linenumbers 
only. Brad Templeton's Power chip has a routine somewhat similar to the foll­
owing, which uses the CBM's own LIST function to print lines. Readers may 
° DATA 169,0,133,48,133,50,133,52,169,0,133,49,133,51,133,53 
1 DATA169,76,133,129,169,35,133,130,169,64,133,131,96 
2 DATA 169,56,133,129,169,233,133,130,169,48,133,131,96,0,0,0,0,0,0 
3 DATAO,255,0,141,-572,142,-571,140,-570,174,18,232,224,254,208,13,236 
4 DATA18,232,240,251,173,-569,73,255,141,-569,173,-569,240,119,224,253,208 
5 DATA127,236,18,232,240,251,160,0,140,-568,140,158,0,32,228,255,240,251,24 
6 DATA105,198, 141,-565,165,54, 164,55,205,-567,208,5,204, -566,240,77,172 
7 DATA-568,208, 184, 174,-565,142,-564, 169,255,32,163,229, 238,-564,208,246 
8 DATA162,0,181,0,157,-256,202,208,248,32,87,226,162,79,169,32,157,0,128 
9 DATA202,16,250,165,54,164,55,141,-567,140,-566,133,17,132,18,32,44,197 
10 DATA32,-374,162,0,189,-256,149,0,202,208,248,32,93,226,173,-572,174,-571 
11 DATA172,-570,76,10,225,224,127,208,149,142,-568,236,18,232,240,251,120 
12 DATA174,158,0,169,0,157,111,2,88,240,164 
30 T=PEEK(52) + 256*PEEK(53) 
40 L=T-614 
50 FOR J = L TO L+239 
60 READ X%: IF X%<O THEN Y=X%+T: X%=Y/256: Z=Y-X%*256: POKE J,z: J=J+1 
70 POKE J,X% 
80 NEXT 
230 X = ° 
240 FOR J = L+240 TO L+357 
250 POKE J , PEEK (X+50658) 
270 X=X+1: NEXT 
280 FOR J=L+251 TO L+253: POKE J, 234: NEXT 
290 POKE L+315, 96 
310 X% = L/256: Z = L - X%*256 
320 POKE 48,Z: POKE 50,Z: POKE 52,Z 
330 POKE 49,X%:POKE 51,X%:POKE 53,X% 
340 X% = (L+51)/256: Z = (L+51)-X%*256 
350 POKE L+21, Z: POKE L+25, X% 
360 X% = L/256: Z = L - X%*256 
370 POKE L+1. Z: POKE L+9. X% 

TRACE FOR BASIC 2 

( • UPGRADE ROM') 

500 REM 
501 REM ******************************************************************* 
502 REM * FINALLY, PRINT ON~OFF ADDRESSES IN DECIMAL AND HEXADECIMAL * 
503 REM * AND I NSTRUCT IONS FOR USE * 
504 REM ******************************************************************* 
505 REM 
510 PRINT "~ BASIC <4 'TRACE' BY RAY WEST " 
520 PRINT "JIENABLE: SYS";L 
530 PRINT "l!J)ISABLE: SYS";L+29 
540 PRIt..fT "If3AVE FROM" ; L ; "TO" ; L+360 
550 PRINT" ($";: GOSUB 60121: PRINT" TO $";: L=T-25e: GOSUB 6121121: PRINT" 

)" 

555 PRIt..fT flU INSTRUCTIONS " 
56121 PRINT "~""'S!!!! PUTS TRACE ON .... OFF~ON 
565 PRINT "ta=!!!! SINGLE STEPS UNTIL 1-

57121 PRINT "AlC!!!! THEN Ai0-9!!!! SETS SPEED FOR STEPPING. 
575 PRINT "AlSPACE!!!! FOR FAST TRACE. 
58121 END 
598 REM 
599 REM DECIMAL TO HEXADECIMAL CON ..... ERSION ROUTINE FOLLOWS: 
60121 L=L .... 4e96:FORJ=1T04:L%=L:PRINTCHR$(48+L%-(L~>9)*7)'IL=16*(L-L%):NEXTIRETURH 



Programming the PET ICBM -750- 5: BASIC keywords 

Like to try the new trace, which I've listed here as relocating loaders for 
BASICs 1 and 2. It is controllable from the keyboard and also uses the PET's 
own list subroutines, so lines appear on the screen top just as they do when 
LISTing. In addition there is a single-step feature. The program is discuss­
in Ch. 13, section 13.4.3. Note that the instructions are shown on the screen 
by the same routine in each version, so I've printed them once only. 

RELOCATING LOADER FOR BASIC 1 TRACE 

o DATA169,O, 133, 130, 133,132,133,134,169,0,133, 131,133,13 3,133,135 
1 DATA 169,76,133,211,169,35,133,212,169,64,133,213,96 
2 DATA 169,56,133,211,169,233,133,212,169,48,133,213,96,0,0,0,0,0,0 
3 DATA 0,255,0,141,-570,142,-569,140,-568,174,18,232,224,254,208,13,236 
4 DATA 18,232,240,251,173,-567,73,255,141,-567,173,-567,240,119.224,253,208 
5 DATA 127,236,18,232,240,251,160,0,140,-566,140,13,2,32,228, 255,240,251,24 
6 DATA 105,198,141,-563,165,136,164,137,205,-565,208,5,204,-564,240,77.172 
7 DATA -566,208,184,174,-563,142,-562,169,255,32,195,229,238, -562,208,246 
8 DATA 162,0,181,0,157,-256,202,208,248,32,105,226,162,79,169,32,157,0,128 
9 DATA 202,16,250,165,136,164,137,141,-565,140,-564,133,8,132,9,32,34,197 
10 DATA 32,-372,162,0,189,-256,149,0,202,208,248,32,219,229,173,-570,174,-569 
11 DATA 172,-568,76,198,224,224,127,208,149,142,-566,236,18,232,240,251,120 
12 DATA 174.13,2.169,0,157,14,2,88,240,164 
20 REM 
21 REM ********************************************************************** 
22 REM *THESE DATA STATEMENTS SET UP THE CONTROL PART OF TRACE (NO LIST YET)* 
~~* * 
24 REM *AND LINES 30-70 POKE MEMORY, RELOCATING ADDRESSES MARKED BY NEGATIVE* 
25 REM ********************************************************************** 
26 REM 
30 T - PEEK(134) + 256*PEEK(135) 
40 L = T - 612 
50 FOR J = L TO L+239 
60 READ XS. IF XS(O THEN Y=XS+Tc 
70 POKE J,XS 
80 NEXT 
200 REM 

• REM T = CURRENT TOP OF MEMORY (OLD ROM) 
• REM ENTIRE TRACE IS 612 BYTES LONG. 
• REM DATA STATEMENTS OCCUPY 239 BYTES. 
XS=Y/256, Z-Y-XS*256. POKE J,ZI J=J+1 
• REM POKE DATA (OR HIGH BYTE, IF -VE.) 

201 REM ******************************************************************** 
202 REM * OLD ROM. MOVE .C5D5-.C648; NEEDS USR ROUTINE TO PEEK (BORING!) * 
203 REM * THIS ROUTINE WILL LIST 1 LINE WHEN MODIFIED SLIGHTLY.* 
204 REM ******************************************************************** 
205 REM 
208 REM *** USR SET UP IN CASSETTE BUFFER £2 (ROUTINE IS RELOCATING) *** 
209 REM 
210 DATA32,109,219,165,180,133,178,160,O,177,178,168,169,O,32,120,210,96 
220 FORI=826T0843cREADX.POKEI, X.NEXT.POKEO,76.POKE1, 58.POK E2,3 
230 X = 0 
240 FOR J - L+240 TO L+356 
250 POKE J , USR (X+50645) 

.REM X COUNTS POSITION OF PEEK IN ROM 270 X=X+1. NEXT. 
280 FOR J-L+251 TO 
290 POKE L+313, 96 
300 REM 

L+253. POKE J,234 ,NEXT. REM 3 NOP OPCODES ERASE CRLF 
I REM FROM 'LIST'. THEN RTS. 

301 REM *************************************************************** 
302 REM * SET END-OF-MEMORY POINTERS BELOW 'TRACE' TO ENSURE NEWLY * 
303 REM * LOADED MACHINE-CODE DOESN'T GET OVERWRITTEN. * 
304 REM *************************************************************** 
305 REM 
310 XS = L/256. Z • L - XS*256. REM HIGH AND LOW BYTES OF END OF MEMORY 
320 POKE 130,Z. POKE 132,Z. POKE 134,Z 
330 POKE 131,XS. POKE 133,XS. POKE 135,XS 
340 XS =(L+51)/256, Z • (L+51)-XS*256, REM HIGH, LOW BYTES OF WEDGE 
350 POKE L+21, Z. POKE L+25, XS, REM PUT WEDGE ADDRESS INTO ENABLE. 
360 XI • L/256. Z - L - XS*256. REM HIGH AND LOW BYTES OF NEW MEMORY TOP 
370 POKE L+1, Z, POKE L+9, XS I REM PUT NEW MEMORY TOP INTO ENABLE. 
500 REM 
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UNLIST 
System command unavailable directly on CBM BASIC 

PURPOSE: To prevent LiSTing and editing of BASIC programs to reduce the risk 
of unauthorised copying or modification. 

Versions: Some microcomputers (e.g. IBM's) include commands of this sort. Their 
success lies in the relative inaccessibility of systems software and operating 
system knowledge generally. It seems unlikely that foolproof protection is 
possible with any widely-sold microcomputer; it is only possible to go some 
way towards it, relying on temporary expedients and perhaps legal measures. 
Many BASIC programs on sale make no attempt to conceal their inner workings 
but nonetheless methods have been tried; * a collection of suggestions 
follows, arranged roughly from simple to complex. 

[1] Inclusion of characters which stop the LIST or clear the screen or affect 
the printer, in either REM statements or dummy lines, gives some minimal LIST 
protection. A program loaded from another, with the stop key disabled may 
be made tiresome to get at, by including screen editing characters in its name 
so that it takes some effort to load directly. In this way, a directory (or line 
of a program) can be made rather misleading; parts of the name may appear 
on different screen lines, say. Unfortunately, even if a program were made 
completely anonymous, hardware reset methods (see Chapter 13) may be able 
to break into the program: the IRQ and NMI vectors therefore need to be 
changed to prevent this. 

[2] A promising approach is to modify BASIC as it runs. A self-modifying 
program might change its own link addresses or linenumbers or zero page 
pointers. Practical Computing had some correspondence on the idea of making 
the first line, numbered 0, point to itself. POKE 1025,1: POKE 1026,4 does 
this. 
Another idea is to change the link address of the first line; LIST therefore 
will go astray on the second line, the first still listing normally. Unfortun­
ately, the link addresses are also used by GOTO and GOSUB when searching 
for earlier lines, so these commands need prefacing by a correcting POKE, 
like this: 75 POKE 1025,0: GET X$: IF X$="" THEN POKE 1025,34: GOTO 72 
where 34 (or whatever) is the correct link value. The drawback is of course 
that peeking or using the monitor soon enables anyone familiar with the idea 
of link addresses to calculate the correct poke or pokes. 
A modification of this idea is to include zero bytes within lines so that 
invisible bits of BASIC can (say) call machine-code hashtotal routines to 
detect any changes in the program. Hidden BASIC though is rather vulner­
able to editing and tends to reappear. 

[3] Overlong program lines (length exceeding 255) can be used, and the 
resulting program is genuinely unlistable; LIST can't handle it. Some other 
commands will also come to grief, e. g. READ; the ideal candidate for such a 
line is a full screen of data printed by a huge line. Such a line at the start 
of a program will stop LIST, unless zero bytes are reinserted with links. 

[4] A method reportedly present in a prototype 'Toolkit' works as follows: 
(See Liv. Soft. Gaz. Dec '80): Each line begins with 5 colons, like this: 
10: :: : :A=5. Or in fact any five characters or tokens will do. The UNLIST 
puts a zero byte after each linenumber; LIST stops at the zero byte, so only 
linenumbers list; but RUN interprets the zero as end-of-line, and continues 
4 bytes on, so the program runs successfully. This BASIC subroutine will 
put in the zeros; it assumes that 5 characters are present, unlike UNLIST as 
quoted which puts these in for YOIl: 

50000 : ::::A=1025: FOR J=l TO lE8: IF PEEK(A+4»4 THEN POKE A+4,0: 
A=PEEK(A)+256*PEEK(A+l): NEXT 

50010 :::: END 
This is however very simple to re-list; this direct-mode line will POKE 
colons back again: A=1025:FORJ=lTOlE8:POKEA+4,58:A=PEEK(A)+256*PEEK(A+l): 
IF A< >0 THEN NEXT ,so the method is not a great success. The best you can 

*Hardware protection includes the 'dongle', plugged into the back of the PET, and 
periodically checked by the software. Such protection is often easy to remove. 
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is to set a few traps in the hope they won't be noticed, such as including 
spurious BASIC in the four ignored bytes which are revived by relist. For 
instance, 100::: :AA=50, when 'UNLISTED', is translated as A=50; on relist, 
unless the A is edited out, the program will run incorrectly. 
200:ANEWBCA=50 is another version of A=50, since it is preceded by four 
bytes, one of them a token. On relist and RUN, this line will of course erase 
the program (or at least its pointers). 

[5] Compu /think disks have a security device which works like this: to use 
these disk units, an initial SYS call changes the CHRGET routine so that 
BASIC is intercepted by the 'Diskmon' ROM. Additional commands are then 
iden tified by a leading '$' - $D ,1 for instance is the directory command. The 
extra commands include load - $L,l, "PROG" typically. Throughout this process 
CHRGET remains modified. Now, if an asterisk is found in location 1034, just 
after the start of BASIC, (=$040A), only three commands are allowed, RUN, 
and two special commands which clear the memory and run machine-code. * 
LIST or SYS or any other direct command returns only READY. Moreover, 
linenumbers cannot be erased or edited: typing 100 Return wun't delete line 
100 when the machine is set as described. Setting the BRK vector to print 
READY makes this system, so far as memory storage is concerned, pretty 
foolproof. All that's needed is a REM statement in the first line, so an extra 
asterisk won't matter, then POKE 1034,42: $S,l,"PROG" and the unlistable 
program is saved on drive 1. (42 is ASCII for '*'). When this program is 
loaded, the intercepting routine tests direct-mode commands and rejects all 
except the three mentioned. This process is adaptable to other systems, but 
only with hardware add-ons, or with some software method for ensuring that 
a modified CHRGET is obligatory, since otherwise a program can simply be 
loaded and listed, asterisk and all, as usual. The weak point of such methods 
is located in the disk storage, rather than RAM storage. If the disk storage 
system is understood, it is possible to load a relevant part of a program, 
mOdify it, and replace it on the disk. See Chapter 6 for concepts and methods 
applicable to Compu /think.. 

[6] The most thoroughgoing systems for concealing BASIC rely on machine 
code routines. Disk-based BASICs, which are loaded into RAM, can of course 
be modified in situ; LIST can simply be deleted, or the operating system 
changed. In CBM BASIC this would require a change of ROM. Instead, let's 
consider ways of scrambling BASIC so that it will run, but not LIST. Each 
line may be written like this: LINENUMBER SYS X: BASIC LINE: SYS Y , where 
everything after SYS X is stored in coded form, including SYS Y. In this 
way each line can be decoded before execution, and encoded on leaving, with 
some exceptions like GOTO statements. An encoding algorithm has to be fairly 
subtle: adding 1 to each character would be easily undone. Typically, EOR 
of several variables gives a repeatable offset. More elegantly, this scrambling 
and unscrambling process can be carried out by rewriting RUN. The ma.jor 
loop controlling RUN processes single statements individually, and schemat­
ically looks like this:-

JSR CLR A similar routine may be put into 
LOOP TEST STOP RAM where a SYS call will run 

LOAD CURRENT CRR. BASIC. One is then free to insert 
BNE NEXT ST'IIENT decoding/ coding routines before 
TEST FOR END; IF NOT, and after the statement-processing 
UPDATE CRRGET Be call. This isn't very easy: colons 
LINENUMBER ETC. and zeros in the original must be 

NEXT ST'IIENT JSR GET CBR FETCHES TOKEN preserved as special cases, and 
JSR ACTION TOKEN (OR 'LET') a record must be kept of the num­
JMP LOOP PROCESSES : OR 0 ber of bytes altered by decoding. 

A test for direct-mode, with a system reset if found, can be put into the IRQ. 
There are, of course, many other possible attacks on this problem. Perhaps 
the last word should go to Tommy Turnbull: 'We've had all kinds of protection 
here. The longest took an hour ..• ' 

*$0, which should run machine-code, contained a bug which often caused return to 
the monitor. Adjusting the program's length until PEEK(42)=96 prevents this. 
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USR 
BASIC arithmetic function 

PU RPOSE: Arithmetic function calling user-written machine code. Some knowledge 
of machine code is necessary to understand this function. 

Syntax: USR(arithmetic expression). The expression, when evaluated and,if need 
be, rounded down, must fall within the range 0-65535. In addition,locations 
0- 2 must contain valid machine code: usually, because of the small space in 
zero-page, a JMP to the user's own routines. This is a function, and may 
be used validly in such statements as PRINT USR(345), X=USR(2), Y=USR(X). 

Modes: Direct and program modes are both valid. 

Examples: [i] See PEEK for details of a USR function which acts like PEEK in 
BASIC 1. It can be used in statements like: POKE X, USR (X-I) which 
are not valid in BASIC l's implementation of PEEK, due to a bug. 

[il] The machine code routine listed here and 
called by USR displays the contents of floating 
point accumulator #1 at the top left of the VDU. 
6 bytes are poked directly to the screen, so 0 
appears as @, 1 as a, 2 as b, and so on, when 
in lower case mode. Since USR, in common with 
all functions, puts the argument into this 
accumulator, its contents and method of storage 
can be examined. For example:-
USR(O) gives @@@@@@ or 0 0 0 0 0 O. 
USR(1) givesIA@I@@@@ or 129 128 000 O. 

$0000 JMP 

$027A LDX 
$027C LDA 
$027E STA 
$0281 DEX 
$0282 BPL 
$0284 RTS 

[iii] $0000 JMP $CD6F ; THIS EXAMPLE IS SGN IN BASIC 4 

$027A 

#$05 
$5E,X 
$8000,X 

$027C 

If you have BASIC 1, the USR replacement for PEEK is very useful. The 
second example (BASIC>1 only) displays the contents of accumulator #1 in 
separate bits, which is of interest to those readers who want to learn how 
floating point numbers are processed. The final example is a special case 
of a function, and shows how USR can access routines in ROM; in the given 
case, USR (X) returns the same value as SON (X). Experienced machine code 
programmers may be able to write their own mathematical routines along the 
same lines as those of Microsoft; if so, they will be callable from BASIC by 
USR. It is a safe bet that this is not done often. 

Notes: [1] Bytes 0-2 are initialised on switchon to print ?ILLEOAL QUANTITY 
ERROR, so USR without a modified instruction in 0-2 gives this message. 

[2] SYS 0 carries out the same instructions as USR(O), but is a command, 
not a function, and so cannot be assigned or printed. 

[3] Locations 0-2 need not contain a JMP. An RTS (=$60, 96 decimal) for 
example gives USR(N) the value N. (Or to be exact, INT(N». An indirect 
jump is valid. BRK (=0) in location 0 will cause the monitor to display the 
contents of its registers when executing a function. 

Abbreviated entry: uS 

Token: $B7 (183) 

Operation: The value of the argument is computed and validated and put into 
floating-point accumulator #1. This is normal behaviour on encountering a 
function. The difference is that the address now jumped to is $0000. This 
is an easy function to add to BASIC, since once the function-handling 
routines are written, hardly any more work is needed to incorporate USR. 

ROM entry points: 

All ROMs jump to $0000. 
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VAL 
BASIC arithmetic function 

PURPOSE: Computes the 'value' of a string or string expression: the entire string, 
or as much as is syntactically acceptable, is converted into a number. 
This function is an important converse of STR$, enabling calculations to be 
performed on a quantity which, perhaps for formatting reasons, is held as 
say" 123.45" or as "1. 23E04". 

Syntax: VAL (string expression). This is an arithmetic function of a string argument. 
The string expression must be valid; it can consist only of literals, string 
variables, and string functions concatenated by +. Its maximum permissible 
length is 255 characters. If spaces are included, when using BASIC>l - for 
instance V AL(Q$) - an array VAO will be assumed, and a ?TYPE MISMATCH 
ERROR generated whenever this code is encountered. 

Modes: Direct and program modes are both valid. 

Examples: PRINT VAL(nI23.456") :REM RESULT IS 123.456 
PRINT VAL(n-127n) :REM -127 
PRINT VAL(n1.2 E2n) :REM 120 
PRINT VAL("E") :REM 1 (Le. 1 EO) 
PRINT VAL("1000000000000") :REM IE 23 
PRINT VAL(LEFT$(TI$,2» :REM 0 TO 24 (i.e. the hour) 
PRINT VAL("150+200") :REM 150 
PRINT VAL("1.2.3") :REM 1.2 
PRINT VAL("") :REM 0 
PRINT VAL("123" + CHR$(O) + "456"):REM 123 

405 J=VAL(IN$): IF J<82 OR J>90 THEN MS$="WRONG YEAR":GOSUB300:GOT0400 

Any string, including the null string, which evaluates as zero, is accepted by 
this routine, but validation is only implicit, and no error message is printed 
if a string has non-numeric characters in it. This can be very convenient, 
but equally may be a source of bugs. For this reason most of the examples 
are direct mode print statements. But, like ASC and LEN, VAL may be used 
freely in arithmetic expressions; the validation line from an input routine is 
an illustration. VAL will accept spaces,+,-,E (unshifted only), the decimal 
point . ,and of course 0-9. The validation process is intricate and flowcharts 
for it have not been published; it is not particularly important to know the 
precise method of validation, though. The most significant fact is that the 
first unacceptable character terminates the VAL. There are three lines in 
the demonstrations which are actually terminated like this, ending when + 
and . and CHR$(O) are encountered, respectively. Remember that E refers 
to a power of 10, so 1. 2E2 is the same as 1. 2 * 102 or 120. 

Abbreviated entry: vA 

Token: $C5 (197) 

Operation: Most of the processing is carried out by a general routine to scan a 
string and convert it into a floating-point number in accumulator #1. The 
remainder is housekeeping: the mode is changed to numeric, and a length 
of zero causes exit, with VAL assigned zero. If, as is usual, the string has 
non-zero length, the current CHRGET address is saved, and a pointer to 
the string put in its place. This is because the conversion routine scans 
the string using CHRGET. A pointer to the end of the string is set up too. 
Both accumulators and 10 bytes of additional storage are used by the main 
routine; this uses CHRGET to ignore spaces and fetch 0-9 (This is signalled 
by a clear carry bit after CHRGET). E and decimal point are looked for; so 
are + and -, in both their ASC II form and as tokenised keywords. The 
routine calls extra routines to perform such tasks as multiply the accumul­
ator by 10, and add the contents of A to the floating point accumulator. 

ROM entry points:BASICl:$D685 (54917) BASIC2:$D687 (54919) BASIC4:$C8E3 (51427) 
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VARPTR 
BASIC arithmetic function unavailable directly in CBM BASIC 

PU RPOSE: Finds the actual location of any variable in memory, after it has been 
set up in the normal way on running. 

Versions: Although BASIC's routine to seek variables is well known, there have 
been few attempts to write actual routines embodying it. V ARPTR is Tandy's 
name, and their BASIC is the only popular one with this command. My 
routine points to the name of the variable, so that the location indicated 
for AA$(6) is the start of AA$(), and is the same value as that returned by 
AA$(10). To make the routine usable from within BASIC, the value must be 
assignable, rather than accessible only by printing, say. It therefore uses 
not only the variable search routine but part of LET. 

The syntax is: SYS start address: sought variable: numeric variable. 
The routine is relocatable; typically, SYS 634: AB $: X illustrates the syntax. 
X holds the value of AB $'s starting point in memory, at the time the routine 
was run. Array variables of course may move up memory when new simple 
variables are defined, but this cannot happen with simple variables. 

Example: 10 L%=15 
20 SYS 634:L%:X: REM X NOW EQUALS RAM LOCATION OF L% 
30 FOR J = X TO X+6: PRINT PEEK(J);: NEXT 
40 END 

When run, this program prints out: 

204 128 0 15 0 0 0 
(L 0 15 holds the name and the value of this integer variable) 

Machine code: 

BASIC 1: JSR $00C2 BASIC 2,4: JSR $0070 BASIC 2:- BASIC 

JSR $CF7B 
LDY $AE 
LDA $AF 
JSR $0278 
JSR $00C2 
JSR $CF7B 
STA $98 
STY $99 
LDA $5F 
PHA 
LDA $5E 
PHA 

JSR SEARCH $CF6D 
LDY $5C 
LDA $5D 
JSR FXFLT $D26D 
JSR $0070 
JSR SEARCH $CF6D 
STA $46 
STY $47 
LDA $08 
PHA 
LDA $07 
PHA 

JMP $C8B2 JMP ASS IGN $C8C2 

Notes:[1] This routine won't find TI,TI$,ST, or (in BASIC 4) DS 
these do not exist in RAM as ordinary variables do. 

$C12B 

$C4BC 

$C12B 

$B945 

or DS$, 

4:-

since 

[2] A shorter routine can be written which prints the values without the 
additional assigning; this can be valuable when inspecting variables in 
direct mode. Replace JSR FXFLT, which converts a 2-byte number into 
floating point form, by a print routine. In this way only 13 bytes is 
enough for the routine - everything after the fifth instruction can be 
ignored. The replacement is: 

BASIC 1: JMP $OC9F / BASIC 2: JMP $DCD9 / BASIC 4: JMP $CF83 
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VERIFY 
BASIC system command 

PU RPOSE: Compares a stored memory dump on disk or tape with the equivalent 
contents of RAM. If they are not identical, ?VERIFY ERROR results. 
Usually VERIFY checks BASIC programs which have been SAVEd; but 
other memory dumps, e.g. machine code routines, may be VERIFY'd. 

NOTE: VERIFY reads the program or dump specified, and compares it with 
the contents of RAM, without loading it into RAM. Consequently, VERIFY 
only applies to programs and other memory dumps: it cannot be used with 
any form of data file which is output from a buffer. 

Syntax: The syntax is identical to that for LOAD, including all the differences 
between tape and disk syntax. 

Modes: Direct and program modes are both valid. VERIFY from within a program 
may be used to check a save to tape or disk; a message requesting the tape 
be rewound is necessary with cassettes. Unlike LOAD, the operation of 
BASIC is not reset; after 'OK' the program continues normally. 

Examples: 10 SAVE "THIS PROGRAM": REM TAPE UNIT '1 ASSUMED 
20 PRINT "REWIND FOR VERIFICATION - ANY KEY TO CONTINUE" 
30 GET X$: IF X$='''' GOTO 30 
40 VERIFY 
50 REM ... REST OF PROGRAM ... 

SAVE "0:5TH VERSION",8 :REM TYPICAL DISK SAVE 
VERIFY "0:5TH*",8 :REM TYPICAL DISK VERIFY 

PRINT'15,"VO": REM THIS IS ANOTHER DISK FORMAT. V IS 'VALIDATE', 
OR 'COLLECT' (q.v.); THIS IS NOT THE SAME AS VERIFY. 

Notes: [1] If you examine the ROM routines you'll find that VERIFY is largely 
identical to SAVE. However, if a flag ($9D BASIC>1, $020B BASIC 1) is set 
non-zero, the program is read but the bytes which are input are compared 
with RAM contents; if they differ, ST is set to #$10 (16) and ?VERIFY 
ERROR printed. Otherwise, OK appears. When using ROM routines it is 
good practice to set the flag, otherwise a 'SAVE' may only be VERIFYing. 

[2] Some BASICSs, e.g. Apple, have a verify statement which applies both 
to data files and programs, but Commodore's doesn't. 

[3] VERIFY, like LOAD, defaults to cassettE) #1, or disk unit O. 

Abbreviated entry: vE 

Token: $95 (149) 

Operation: See note [1] 

ROM entry points: VERIFY is a 'kernel' command; its jump address is $FFDB. 

BASIC 1: $F4BB (62651) 
BASIC 2: $F4B7 (62647) 
BASIC 4: $F4F6 (62710) 
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WAIT 
BASIC command 

PURPOSE: Causes BASIC to wait until the memory location specified by its first 
parameter has one or more bits configured in a way specified by its other 
parameter( s). Any combination of bits within the location can be tested; 
when any of these bits takes the sought value, the wait is over. 

Syntax: WAIT arithmetic expression 0-65535, arithmetic expression 0-255 with 
optional third parameter ,arithmetic expression 0-255. The optional third 
parameter defaults to zero, as might be guessed. If the expressions do not 
yield integral results on computation, they are rounded down. 

Modes: Direct and program modes are both valid. 

Examples: WAIT is intended for such uses as handshaking, where some signal is 
awaited. If a program WAITs for a ROM location to change, or a RAM 
location which is not accessible to hardware or not updated by the 1/ 50th 
1/60th second interrupt, then it will either wait indefinitely, or not at all. 
WAIT should be used only with locations whose contents vary, therefore; 
the examples show this: 

WAIT 59410,1,1 : REM WAITS FOR RVS OR RVSOFF 
WAIT 59410,4,4 : REM WAITS FOR SPACE OR SHIFT-SPACE 
1000 POKE 158,0: WAIT 158,1 : REM CLEAR BUFFER/ AWAIT KEY 
WAIT 152,1 : REM WAITS FOR A SHIFT KEY 
2210 WAIT 142,1: REM RANDOM DELAY OF 0-8 SECONDS 

Because of the hardware-related aspect of this command, an instruction which 
is successful with one hardware configuration may work differently with 
another. The examples all work for BASIC 2, but the 8032 keyboard causes 
the first two instructions to respond to different keys, and BASIC 1, with 
a different zero page allocation, can't run the last three. Numbering bits 
as usual 7 to 0, this is what these commands do: i. Waits until bit 0 of 
location 59410 is O. ii. Waits until bit 2 of location 59410 is zero. iii. Waits 
until bit 0 of location 158 is 1. iv. Waits until bit 0 of location 152 is 1. 
v. Waits until bit 0 of location 142 is 1. The first two commands' location 
is controlled by the keyboard PIA; the next location holds the number of 
characters in the keyboard buffer; this is updated during interrupts. The 
fourth again uses the PIA, and the fifth the jiffy counter for the clock. 

Notes: [1] WAIT is a little-used command and not a very useful one, except maybe 
for people with their own hardware add-ons. It is also rather difficult to 
explain. Consider WAIT address, a, b. WAIT peeks the contents of address, 
performs exclusive-or with b, then AND with a. If the result is non-zero, 
BASIC continues; otherwise, the loop goes on. What is the reason for this? 
To see the answer, let's consider an example: suppose we wish to wait for 
bit 4 of address to be off, or bit 2 on. In either case we are happy for the 
program to continue, but otherwise we still wish to wait. The first thing is 
to use parameter b to switch bit 4, which it does by EOR with %0001 0000. 
So with b=16, bit 4 is switched: now, when the desired condition occurs, 
bit 4 will be turned on. If parameter a is %0001 0100, the result of the first 
bit manipulation is ANDed, leaving a result which can be non-zero only if 
bit 4 was off, or bit 2 on. So WAIT address,20,16 is the solution.--
So, WAIT address,8,8 waits until bit 3 is off; WAIT address,48 waits for 
bit 4 or bit 5 to be set to 1; WAIT address, 1 waits for bit 0 to turn on. 

[2] WAIT 6502,n is Microsoft's joke in BASIC 2 only. n=O to 255. 

Abbreviated entry: wA Token: $92 (146) 

Operation: The parameters are computed and validated; the optional parameter is 
checked for; then the address is stored in ($11) in BASIC>1 and the para­
meters in $46 and $47 respectively. The stop key is not tested for ($FFE1) 
so the routine cannot be interrupted by pressing STOP. 

ROM entry points: BASIC1: $D702 (55042) BASIC2: $D710 (55056) BASIC4: $C963 (51555) 
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CHAPTER 6: DISK DRIVES 

6.1 Hardware 

Disk drives The disk drives we shall consider in this chapter use so-called 'floppy 
disks' as their 'media'. (Like 'data', in computing circles 'media' is optionally singular 
or plural). Alternative bulk memory-storage devices, notably sealed 'hard disks' or 
'Winchester disks', named after an IBM project, are coming into greater use, and CBM 
have announced and shown a model; nevertheless floppies are by far the most popular 
storage system apart from tape. Originally introduced as an alternative method of data 
entry to punched cards, by IBM in the mid-70s, the techniques were taken over and 
used by microcomputers a few years later. In the process, IBM's carefully thought out 
standards were modified and to some extent dropped. For those not familiar with the 
concepts of floppy disks, there is an outline in the next section of this chapter. But 
the basic idea is similar to that of multi-track tape, arranged radially on a disk, like a 
gramophone record, so that any track can be selected without the long time delay in­
evitable when searching tape. The disks are often called 'diskettes', and the units to 
read to and write from them are called 'diskette drives', though in practice it is usual 
to talk of the units as 'disks' - 'Have you got disks?' These drives are made by spec­
ialist manufactures, for example Shugart and Micropolis, and require fairly careful 
handling. They are usually packaged by the computer manufacturers, and end up in 
boxes and machines of widely differing sizes and shapes - Apple disk drives and 
Commodore's may contain the same units. All these drives, when looked at without 
their external cases, are quite similar. 

Typically, a drive unit has a read/write head mounted on rails, and a stepper 
motor which positions it opposite tracks on the diskette. The head is usually a ferrite 
and ceramic mixture bonded in glass; the step size is of the order of 1/ 40th of an inch. 
To clean the recorded track there are 'tunnel' or 'straddle' erase heads to delete any 
recording within a short distance from the track. The actual width of the recorded 
zone is something like 1/80 th of an inch. Whel1 a diskette is inserted into a drive, the 
clutch mechanism which grips the central hole has to position the diskette consistently 
to within this sort of tolerance; if the disk is also to be used with other drives, these 
too must be equally precise, or alignment errors will cause failure to read correctly. 
The drive's spindle motor rotates the disk, which, because of centrifugal force, loses 
some of its floppiness and may be read, sandwiched between a pressure pad and the 
read/write head. The rate of revolution is usually 300 r.p.m. within one or two per­
cent. Presumably it is possible to mount 40 or so heads next to each other, reducing 
head seek time at the expense of disk wear (and cost), but invariably a head seek 
mechanism is used. The outside track (track zero) may be fitted with a light sensor 
and a stop, to give a fixed starting reference point - the stepper motor moving the 
head out until track 0 is signalled, then stepping in, perhaps to the directory track. 
Other sensors may detect index hci>les in the diskette and the presence or absence of 
the write-protect tab. The head has an 'actuator' which moves the head in contact 
with the disk when reading/writing, and away otherwise. The door of the drive also 
moves the head away from the disk, to avoid 'glitching' (Le. magnetic damage) to the 
data near the head on power-on or off. This mechanism also clamps or unclamps the 
disk. Double-sided disk drives have two heads, mounted on opposite sides of the disk; 
they have to be offset so that each can have a pressure pad. Most microcomputer 
equipment has drives mounted horizontally, or vertically with front loading, but top 
loading is used with some desk-style equipment. Drives are often paired so backup 
copying (from one drive to the other) is easy; a whole disk can be duplicated onto 
another, for security purposes. This is not necessary, although it's very convenient. 
Single-drive copying can be done by loading a part of a disk into memory, copying 
this by switching disks, re-entering the original di.sk and reading more of it, and so 
on. 

Disk drives are controlled by control circuits, usually controller boards which 
include a special disk-controller chip, with functions to turn the motor on or off, read 
a specified sector of a specified track, seek a track, and many more. These chips have 
RAM and ROM and perform a lot of error checking, returning bit patterns indicating 
what (if anything) is amiss. The translation of magnetic patterns into bytes is a hard­
ware function, relying on assorted crossover detectors, amplifiers, and pulse shapers. 
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Some chips are programmable to return not only bytes on the data bus, but also sync 
marks and address markers and other housekeeping paraphernalia. Commodore have 
preferred to use their own chips to control the drives. Information sheets, supplied 
by disk drive manufacturers, provide interesting information on timing and on expect­
ed reliability of their products. This is important when writing controlling programs, 
but otherwise can be assumed to be taken account of in the disk operating system. 
For example, the time for the motor to reach a stable running speed is usually about 
1 second, and the average time to move to another track about! second, depending 
on the number of tracks on a disk; in either case the operating system software ought 
to take these delays into consideration. Other 'soft' errors - wrong track found, or 
byte misread, but re-readable - should be incorporated in DOS. This is done by 
checking the status indication from the controller, and re-reading data, perhaps by 
moving the head to track zero and retrying. This may be done ten to fifty times be­
fore the error is considered 'hard'. The data sheets provided by controller chip 
makers include flowcharts of recommended practice, in the hope of preventing the more 
subtle mistakes. Commodore fell foul of one typical mistake when designing the write­
protect software, where the write-gate is kept on when it should be off. 

The diagram shows some of the components of a Commodore drive as it appears 
unscrewed, with the lid propped up. Note the position of DOS ROM chips (most of 
them), and that drive 'zero' is on the right, drive 'one' on the left, with the heat 
sink and printed circuit board above. Drive 1 tends to run hotter than drive 0. 
Both the on/off switch and IEEE connecting 
cable are at the back of the machine. Units 
vary in small details; the 2040 controller 
board has different ROM slots and is not 
compatible with the 3040. The 3040 and 4040 
models are very similar, with upgradable 
ROMs available for the 3040. It is worth 
noting, with your unit, which way the on / 
off rocker switch operates, so that you can 
check whether it's actually on. Many units 
work like this: 

c--:------... 
OFF: 1 ION: 

But the 4040 has the opposite arrangement: 

r::--------,. -------------== ON : I I OFF: I I. 
Because of the nature of the IEEE bus, 
several PETs can be connected to the same 
disk unit (and printer too), but the users 
will have to be careful not to use the disks 
together; if they aren't sure enough to be 
able to guarantee this, commercial products 
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of the 'Mu-Pet' and 'Regent' type are available. (I suggest that anyone considering the 
purchase of such a system should first ask the opinion of a current user). CBM disks 
are not the only storage units around. Compu/think have sold many units; Novapac, I 
believe, sold fewer; 'Byte' magazine of June '81 and following editions has articles on 
controlling disks; R. Freeman (Kbaud-Microcomputing, Jan. '80) explained how he added 
an S-100 disk system to an early PET. Other systems continue to arrive on the scene. 

The final point I want to make in this section - it is repeated here and there in 
the next chapter on BASIC disk commands - is that the CBM disk units are largely 
autonomous and independent of the PET /CBM which controls them. DOS is held in the 
disk ROM, not in BASIC. So changing the disk unit, or swapping the ROMs in it, will 
cause it to act differently - for example, to be able to process relative files, where 
before it couldn't. The PET /CBM can drive any disk unit; BASIC 2 for example can 
run an 8050 or 4040 disk unit, although the BASIC 4 commands hav~ to be transposed 
into their more ancestral form. See Chapter 6 for examples. 
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Diskettes ('floppy disks') The diagram, which is approximately to scale, shows the 
typical features of a diskette. Bold lines indicate the outline of the envelope and the 
notches and windows in it; thinner lines mark the position of the magnetic surface 
itself. The diskette is square (like the sleeve 
of a record). It has a write-protect notch; if 
cut out, the disk can be written to; if it is 
not cut out, or if an adhesive tab is stuck 
over it, a disk is write-protected, provided 
the disk drive is designed to sense the notch 
and process the resulting message. Most drives 
have this feature; the idea is to prevent in­
advertent erasure of important programs or 
data. Two stress-relieving notches are cut 
near the read-write window, the elongated 
slot along which the read-write head moves. 
The entire disk is spun within the protective 
envelope; part of it is visible as an annular 
region, which is gripped by the clamp and 
rotated by the spindle motor. The small hole 
nearby enables index markers and sector 
markers to be sensed; the diskette may be 
perforated by one or more small holes, which 
are inside the region used for reading Iwriting, 
and through which light can be detected. The 

READ- ITE~ DIRECTOR [JTRAC ERO 

SLOT INNER TRAC 

physical orientation of the disk, at least as regards CBM drives, is as shown, when 
the disk is inserted into the drive. The label side is uppermost, and the read-write 
slot forward. The label is deliberately positioned a way from the sensitive recording 
surface; this reduces the chance of fingerprinting, and also enables the diskette to be 
put into its outer dustcover with the label visible and the read-write slot hidden. CBM 
equipment, and much other, uses disks which are 5 1/4" square (the disk surface is 
5 1/8" in diameter). These represent a fair compromise between the size of the complete 
unit and quantity of storable data. 

The recording surface is usually a polyethylene derivative, coated on both sides 
with magnetic recording emulsion. Single-sided disks are tested (I'm told) on one side 
only, or, if the test fails, flipped over and tested on the other. This process also 
tests double-sided disks, which are otherwise similar or identical to those labelled 
'single-sided'. When a production run has made its quota of double-sided disks, some 
of the remainder may still be usable as double-sided disks, in spite of their labelling. 
The magazines regularly have 'new' articles explaining how to double your disk capac­
ity by cutting new index holes and write-protect notches, so that the other side of 
each disk is usable. The standard argument against is that small dirt particles, trapp­
ed by the self-cleaning wiper lining the diskette, become dislodged and spread across 
the disk surface when the direction of rotation of the disk is reversed in this way. Of 
course, double-sided drives don 't have this problem, as the direction of rotation is 
constant. The lining of a diskette depends on its quality, but is often a slippery 
plastic (e. g. PTFE) woven in a loose texture, like a small-scale string vest. Small con­
taminating particles, smoke, dust, and so on, become trapped there and don't interfere 
with the read-write head, or scratch the medium. A track's useful life is typically 
quoted as 3x 106 passes per track. This sounds a colossal figure, but in fact, at 300 
revolutions per minute, represents about 7 days' continual running. Disks containing 
important data should of course be copied and the master disks replaced at intervals. 
It's difficult to make useful remarks on diskette quality: it is impossible for anyone 
outside the manufacturing business to know whether the labels represent genuine diff­
erences, or whether the same item is repacked I relabelled and lor mixed with other 
batches. The magnetic properties of retention and sensitivity alone are very com plex . 
In practice people rely on advertising and on price as criteria. Some brands (Dysan, 
Scotch) advertise their reliability; Verbatim more recently has done the same thing, 
perhaps in response to criticism; others (3M, BASF, CDC) seem to rely on their gen­
eral reputation. In any case, a programmer producing systems for anything approach­
ing a serious use must have a rigorous program to test diskettes by writing and read­
ing to the entire disk surface. 

How is all this actually implemented on the PET ICBM's systems? Much, but not 
all, is standard practice. The outer track, usually called track zero, and the inner 
track are arranged as the diagram shows, with the directory held on a central track 
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(or two tracks with the 8050, because of its larger capacity). The directory track(s) 
contain (see 6.4) the directory, with associated pointers and flags, and the block 
allocation map, or BAM, which lists the available sectors for future use, so that new 
data can be stored in unallocated sectors, and scratched data can be redefined as free 
for use. The general principle is fairly standard. Apple disks for example have a 
'volume table of contents' or VTOC and a 'track bit map' which have similar functions 
to the directory and BAM. The actual diskette may be either hard-sectored or soft­
sectored, despite CBM's claim that only soft-sectored disks should be used. The light 
sensing system appears to be absent, so the index marker and sector holes are not 
relevant. (A hard-sectored disk can be identified by careful manual rotation of the disk 
in its envelope; if there is one hole only, the disk is soft-sectored; if there are many, 
for example eight, the disk is hard sectored. Hard sectors rely on light sensing to 
position and read individual sectors; soft sectoring uses software). We shall see in 6.5 
how to program CBM drives to read or write to any track, and to any sector within 
that track. But first let's consider the rationale behind sectoring tracks. 

The point is that small variations in the spindle motor speed cause data being 
written at a constant rate to vary in its physical length. Sectors are separated by 
gaps, and these gaps allow for speed differences between machines; a slower machine 
writes longer sectors, and vice versa. (There is a curious passage in Osborne­
Donahue on this subject). Sectors usually hold 256 or 512 bytes of data; there may be 
from about 8 to about 30 sectors per track, depending on the recording method. For 
example, double and quad density recording stores respectively twice and four times 
the normal amount of data, by doubling the number of sectors or doubling each sect­
or's contents or both. (The number of tracks varies too, of course). A diskette's 
total storage capacity is tracks x sectors per track x bytes per sector ... usually. 
Commodore uses an unorthodox and rather horrendous system in which the number of 
sectors increases as a track is further from the centre. This allows about 20% more 
data to be stored than would otherwise be available with their single-sided, single­
density systems (double-density with the 8050). It means that the rate at which data 
is written is faster at the edge of the disk than the centre. Usually the rate is fixed, 
so all sectors occupy the same angular distance. Commodore's technique takes advant­
age of the fact that greater resolution is possible at the edge of a disk. (For the same 
reason, records reproduce sound better at the start than the end, and have large 
labels in the middle). 

The diagram that follows illustrates the way in which data is stored on these 
disks. It is recovered by a decoding process, and synchronisation fields and clock 
pulses are detected by their bit patterns, which are not data bit patterns. Much of 
the reading and checking is on time, and not on counting. The 'cyclic redundancy 
check' is a form of hash total which follows the data. It is read from the disk only 

after the 256 bytes or so of data are in their RAM buffer. Incomplete use of the error 
detecting software here, and in many other cases, may permit spurious data to enter 
the system. 

Soft errors may be caused by physical contaminants, and by electrical noise, 
sta tic electricity, defects in the disk surface, speed variations and so on; these are 
curable by repeat re-reading of the disk. Hard errors can be minimised by care of the 
system, and also by careful backup procedures. The error-checking mechanisms, if 
they are used, are pretty formidable, and correctly-adjusted hardware with well-des­
igned software should be extremely reliable. Hard error rates of 1 bit in 1011 give an 
idea of the reliability attainable; this figure is quoted in a disk drive's specification 
sheet. Section 6.8 of this chapter summarises the care and maintenance which it is 
prudent to apply to drives and diskettes. However, it is worth remembering that the 
reliability of data transfer between a computer and disks is nowhere near that of data 
transfer within RAM and ROM, where several hours' running time may reach this 
figure (10 11 bits transferred). 
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What is a file? This concept is quite difficult to grasp; only with practice and exper­
ience does it appear a self-evident and obvious idea. Data when stored in some device 
external to the computer (tape, disk, another computer, etc) has to be arranged in 
some sort of logical way, to be accessible again; any collection of accessible data may 
be called a file. The operating system usually enables files to be named, so that they 
are easily identifiable, and adds housekeeping features to the data which, by standard­
ising the input and output routines, allow the use of relatively easy commands, like 
INPUT# and PRINT#. Housekeeping with CBM disks includes such features as the 
special treatment of [Return] as a record separator, the special treatment of the comma 
and colon as 'field' separators, and the automatic generation of header or directory 
records in which the file's name, type, starting address or buffer position are stored 
for later recovery. When the file is read back, this information is used to process it 
correctly. For example, programs and data are held rather similarly, as bytes in 
blocks on tape or disk, but a program has a different value in one of its header bytes 
which causes the operating system to carry out the load routine into RAM, rather than 
prepare a data buffer for reading, which is what happens with a file. At first sight, 
this seems extremely involved, but with practice and thought it soon becomes fairly 
easy to guess what parameters will be needed to make a file system operable. Large 
computers use a variety of file organisations, many of them unavailable on small mach­
ines. (In fact, people who have worked for years with mainframes or large minicomp­
uters are often unable to understand the difficulties of working with the more restrict­
ed operating systems of microcomputers). The summary that follows describes these 
file organisation methods. All of them can be implemented with CBM machines in prin­
ciple, but learners will be well advised to use only those systems that are supplied 
by Commodore, or which are available as extras with the use of other manufacturers' 
firmware. The names of the methods aren't standard, so I've referred to CBM file 
types in block lettering in the hope of reducing confusion. 

Sequential files. These files are one of the simplest types in concept. The only file 
construction which is simpler is (I suppose) simply a file containing consecutive bytes 
of data with no special characters, a long list of data with a method to indicate where 
it ends. Most microcomputers, apart from the very cheapest with no file-handling at 
all, implement this system. It is very suitable for tape storage, because tape reading 
and writing is almost invariably linear because of the difficulty of winding tape at high 
speed to read different records. It is also suitable for records of variable length, be­
cause there is no need, as there is with some other methods, to ensure that all the 
records are the same length. CBM, and most other micros, use the system in which 
the [Return 1 character acts as a record separator. A 'record' may be made up of 
'fields'; the record is a complete entity, perhaps name, address, and several other 
details, in which case there is a 'field' corresponding to name, address, and so on. 
In practice each record is usually designed with the same number of fields to each 
record, so that every record can be read in the same way. COBOL is particularly 
well-adapted to explicit handling of fields and records and file definitions like this one 
appear at the start of all COBOL programs: 

01 LOGFILE-HEADER. 
03 DOCUMENT-NUMBER PIC 9(4). 
03 VDU-NUMBER PIC 99. 
03 VDU-RETURN PIC 9(4). 
03 TRANS-STATUS PIC S9(4). 
03 TRANSACTION. 

05 TX-NAME PIC X(10). 
05 TX-IO PIC X(2). 

This means that the record called 'LOGFILE-HEADER' is 27 bytes long, made up of the 
fields named as above, and with the format specified, where 9 means a numeral, S a 
sign, and A an alphanumeric character. (This notation has been used in CBM printers 
with little change). BASIC has carried over from FORTRAN the habit of not defining 
files at all rigorously. Rather than use the formatted layout of the type above, BASIC 
separates records by [Return] and fields, where the distinction is kept, with commas 
or colons. This is because PRINT# always sends a [Return] at the end of its current 
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output string. This is sent to the tape or disk, and stored there, so it may as well be 
put to use as a separator. Similarly, INPUT # is designed to take in a set of characters 
up to the next [Return]. If this set of characters includes one or more commas or 
colons, an input statement of the form INPUT#X, X$, Y$,Z$ will assign X$, Y$ and so 
on to fields within the record. All this is quite straightforward (when you've grasped 
the idea!) and section 6.3 has demonstration programs. There is one complication 
peculiar to Commodore: PRINT and PRINT# each follow [Return] with linefeed (this is 
ASCII character 10 decimal), originally so that the next line on the screen would be 
moved to, whenever Return was pressed. This character is filtered out of cassette tape 
files but, with BASIC<4, left to print to disk. To get rid of it a construction like 

PRINT#8,X$;CHR$(13); or PRINT#8,X$CR$; 
had to be used. BASIC 4 has a patch in its print routine which deletes this character 
if the file number is less than 128. For chapter and verse, see PRINT and PRINT# in 
Chapter 5. 

The diagrams which follow are an attempt to explain the layout of sequential files. 
I have used [R] to mean Return, which is #OD (13 decimal). The first shows a file of 
this type in which only records have been written (i. e. there are no subdividing fields 
within a record). 

1 1 1 1 1 1 1 1 1 122 2 2 222 2 2 2 333 3 
Byte: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 
File: I JI OIHIN I [R] I SIM II ITI H I [R] I AI LI AI NI [R] I CIAI R!T!EI R! [R]! E! Vi E I [R] I B IA I RI OIN I [R] I 

In this case, a program to read the file will have input statements of the following type 
within it at some stage:-

100 INPUT CN$: INPUT SN$ 
200 PRINT "FULL NAME IS "; CN$; " "; SN$ 

This format is obviously dictated by the structure of the file, where Christian names and 
surnames alternate. The second example shows a file where separate fields have been 
used, a technique which calls for the use of statements like PRINT #X, I $ "," N $ "," M:-

--~) ~ i2.e.c..cl"d.* 2. ) ~'Re.c.c..d.. 4P:3 .--~ 

File: C . , B R I S K , 5 5 [R] D . F . , B R 0 AD, 1 5 8 [R] M . , B ROD Y 

Here, because of the separators, we have the option of using either of the following 
types of input statement to read the data from the file. Note that again the file is 
written in a regular way, with equal numbers of fields in a record, so that any record 
may be processed in the same way as all the other records. This is not necessary, but 
it does simplify programming. Alternative techniques include the use of a number in the 
first field which counts the total number of fields in that record. 

100 INPUT 1$, SN$, M : PRINT "NAME, SCORE = " 1$ SN$ M 
or 100 INPUT 1$: INPUT SN$: INPUT M 

CBM eqUipment is designed so that PRINT and PRINT# send to tape or disk the same 
characters as they would have sent to the screen, so that if PRINT and INPUT match 
there should be no problem. The last example, where two strings are followed by a 
number, illustrates this. As long as 1$, N$ and M are written to the file, they can be 
read back by the same variables. There is a passage in Osborne-Donahue (p.300 app­
rox.) which seems to suggest, erroneously, that there is some difference between 
number and strings in this respect. 

Relative files. These are sometimes called 'random access' files. Each record is the 
same length; any record can be called by number, without, as with a sequential file, 
having to wait while the entire file is read from the start. The organisation of the 
records is identical to that for sequential files, except that each record is the same 
length, or at least not longer than the predefined length of a full record. (Some may 
be exceptionally short, but as long as the number of fields is correct, an early [Ret­
urn] character will not disturb the file). However, in addition to this file, there must 
also be a subsidiary file which enables the position of any record to be computed. CBM 
equipment with DOS 2+ uses a chain of so-called 'side-sectors' for this purpose. DOS 
1+ has a very long program to achieve the same effect with 'User files'. The algorithm 
which determines the data position may in fact be external: using the sector-writing 
capability of many disk-drives makes possible the construction of files in which the 
nth. record is simply the nth. sector of the disk. Record number 0 might be track 0, 
sector 0; record 1 in sector 1 of track 0; record 2 in sector 2 of track 0; and so on. 
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Direct Access Files. This file access system, like the last, is sometimes called random 
access, because a file on the disk can be read or written 'at random'. It is a version 
of relative access in which records are not called by number, but by some key. This 
key is encoded, converting it into a record number, and the resulting record read. 
To clarify this, suppose we have the facility to write relative files (e. g. via DOS 2+), 
but we wish to be able to retrieve records using telephone numbers (or names, or part 
numbers ... ) as the key. One method might be as follows: store in RAM a table of 
each phone number, in order. Then when an enquiry is to be made, this table could 
be searched, using perhaps a binary chop search, to convert the phone number into 
a number within the range of record numbers on file. This would be quite fast. The 
drawback is that new records could only be inserted into the file by rewriting all the 
file above the new record, moving it up one place. An alternative approach, direct 
access codes the key using a 'randomising algorithm', positioning the record according 
to the resulting value. Records are held in a completely jumbled sequence, but the 
point is that the algorithm enables any of them to be quickly located from the key, 
without any disk overhead. A file of this type must be larger than the anticipated 
number of records; at least 30% more space must be provided so that new records can 
be placed without too much difficulty. Suppose we open a direct access file with space 
for 1500 records of length 50 each, anticipating about 1000 records in the complete 
file. We devise an algorithm which converts any telephone number into an integer in 
the range 1-1400. (The extra 100 allows for 'consecutive spill' forward). A good algo­
rithm will spread the resulting numbers evenly. We may be able to improve on this 
using known facts about distribution of such numbers; if for example the final digits 
are evenly spread, 1400/9 * final digit will ensure that ten equal chunks of data are 
produced by the algorithm. Another expression evaluating to 0-150 or so must be 
added to give the randomising formula. Other methods include: taking the remainder 
after division by a prime number; using RND (key) after RND (-1) to generate repeat­
able random decimals from 0-1; splitting the key into parts and addi:t:lg. 

The outcome of this will be the sort of situation shown in the diagram. Three 
telephone numbers have been processed by our algorithm, and yielded the values 
shown. The records are therefore written into the file: 

765-4321 becomes 752; 741-0123 becomes 53; 300-3000 becomes 297: 
~ ~ ~ 

Now, when we wish to read the record corresponding to 765-4321, we perform the same 
encoding process, and read record 53. What happens if an algorithm generates syn­
onyms (strictly, the original keys are 'synonyms'). We store it further up the file, as 
near as possible to its originally computed position. This implies that each record must 
store its key as well as the associated data, or have some other means of distinguish­
ing a 'home key' from a 'synonym'. 

If all the records are stored in the file as they are processed, and the algorithm 
is truly 'random', the proportion of synonyms expected is half the packing density. In 
our example, 1000 of 1400 records, about 71%, will be utilised. So about 35% of keys 
will be synonyms. If synonyms aren't entered immediately, but are stored in another 
file for later entry, the proportion of synonyms drops by about 25%. So, in this case, 
about 25% of keys will be synonyms; but the number of records which need to be read 
when a synonymous record is read is higher. 

This is a fascinating system on which to organise files, and is quite an easy one 
to implement. It has the serious drawback of making a sorted sequential read of the 
file difficult, because of the randomised order. To do this, another file, holding all the 
keys to date, is required. This will need to bp sorted or merged at intervals. Then it 
can be read sequentially, and the corresponding records calculated and read. Another 
drawback is the wasted space, a necessary concomitant of the technique. 

To summarise: if this look-up method appeals to you, follow these steps: 
(i) Decide whether it will, in fact, do what you want. 
(ii) Experiment with 'randomising' techniques, taking account of regularities in the 

key field. Find one with a good spread. 
(iii) Make an estimate of the optimum file size. 
(iv) Enter the most frequently used records first; many will become 'home' records, 

faster to retrieve and rewrite. 
(v) Don't write synonyms until the second pass, to maximise the number of 'home' 

records which the file will contain. 
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Indexed sequential files. IS or ISAM files are one of the most popular types of file in 
commercIal use. They are unobtainable on most microcomputers as standards, although 
some firmware (e.g. EPROMs) has been produced and advertised with this type of 
feature on it. These files are readable sequentially in sorted order - for example by name 
or by customer number, but in any event by a range of possible keys. Any individual 
record is also readable or writeable at will. This can be accomplished only with sub­
sidiary files, holding keys and pointers to their records. Any new record needs to be 
merged and sorted into this index, perhaps on five to ten different keys. A self-main­
taining system of this kind is not easy to write. Some small computers - the IBM 5100 
series, and 'Microstar' - do have this facility or something like it. 

The example which follows is a small-scale version of the real thing, but shows 
the general principle. I've assumed a rather short file is set up, which is accessed by 
a single key, expressed as two letters. The index file, which has the same number of 
records, stores each key used so far, together with a pointer. Now, when the file is 
to be read in sequence, this index file is read first: record AA is to be found in the 
main file as record 1, then record AB as record 2, and so on. If a record is to be 
read at random, say DG, the index is searched, perhaps by a binary chop, since it's 
in sequence, and when DG is found, its pointer is read and the corresponding main 
file record read. This of course is slower than any non-indexed method which reads 
its main record directly. Relative records for example are faster to read, but can only 
be regarded as 'indexed' if for example a client number equals his record number. 

Record #1 Record #2 Record #3 Record #4 
MAIN FILE: !AA detail I AB detail! DG detail! QR detail! 
INDEX FILE: IAA1IAB2!DG3IQR4! 

Suppose two new records, ZZ detail and FF detail are to be entered into the indexed 
sequential system. First, we append the new records onto the main file as it exists at 
present. This expands the main file like this: 

Record #1 Record #2 Record #3 Record #4 Record #5 Record #6 
MAIN FILE: \ AA detail I AB detail I DG detail I QR detail I ZZ detail I FF detail I 
The index file needs two records added to it, viz. ZZ5 and FF6. These, however, 
cannot simply be appended to the index file, since then the sequence of records is no 
longer maintained. Instead, they are sorted, and merged into the index file. (The sort­
merge is a universal technique for incorporating new data into an already sorted file: 
after sorting, each record is compared with the file records until a position is found 
into which it fits the correct order). The resulting index file is: 

This, of course, is only an outline of one method of many by which this system can 
be put into operation. 

Inverted files. This file organisation method is used in data-base processing, where a 
file of data is read and the entire file is potentially a source of information; the data 
base is interrogated using keys, which typically may be combined using AND, OR, NOT 
and other Boolean operators. The object is not to read an entire file, checking on each 
single record, but instead to cut down the number of possible records as rapidly as 
possible. This means the construction of a number of key files. Every new record is 
entered in the main file, and its record number has to be appended, or preferably 
merged, into each key file for which its details are relevant. This process is likely to 
be quite slow, but increased efficiency subsequently may make it worthwhile. The 
example, I hope, speaks for itself. 
MAIN FILE: Record # rI1-2-3-4-5-6-7-8-9-1-0-1-1-l2-1-3-1-4-15-1-6-1-7-18-1-9-2-0-2-1-2-2-2-3-. -. <.~ 

PRICE RANGE 1: 11 2 3 8 15 16 20 22 33 54 56 ... ~ 
PRICE RANGE 2: 1467 12 1317 1824 26 27 29 ... ~ 
PRICE RANGE 3: 15 9 10 11 14 151921 25 28 30 •.. ~ 
AREA 1 !5 6 10 11 13 15 18 24 25 26 ... ~ 
AREA 2 13 4 7 8 9 12 20 21 22 23 33 ... 5 
AREA 3 \129 14 16 17 192728 30 ..• ~ 
ROOMS TYPE 1 14 57 8 12 14 16 17 18 20 .. ~ 
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Direct track-and-sector access methods. Many very efficient systems for the use of 
disk data are hybrid systems in which data is loaded into a buffer and processed 
there. An entire track of data may be loaded into memory and searched while in RAM, 
for example, A sector may correspond to several records, which can be poked into the 
sector and written back to disk. Searches for Boolean matches can be carried out with 
machine-code routines on data in RAM. It is possible to save the entire set of BASIC 
variables on disk and reload them later; when used with integer arrays this can be a 
very powerful method for storing a great deal of arithmetic information in RAM, where 
recall is fast. 

'Opening' and 'closing' files The following statements are taken from a variety of 
computers. They all open one file. Through the idiosyncrasies of syntax a few prin­
ciples underlying this process may, I hope, shine through:-

OPEN FILE FL2, 'D40',3, 'MASTIND',IN,KEY 
OPEN 1,1,1,"TAPE SEQ.RECORDS" 
PRINT D$"OPEN MAIL LIST,L200,DO" 
SELECT LOGFILE ASSIGN TO EDS ACCESS IS SEQUENTIAL 
DOPEN#6,"REL DATAFILE",Dl, 

All these include: 
(i) Some future reference for the file - a name or number. 
(ii) Request to use the file for writing, or reading, or both. 
(iii) Reference to the device or drive to be used, unless this is implicitly given. 
(iv) Description of the type of file, at least if the file is a new one. 
(v) Some internal system to assign a buffer for storage of data, which has been read 

from the device but is currently stored awaiting processing; or which is to be used 
to store data before it is written to disk; or both. 

(vi) An implicit requirement that the file be closed at some future time, whereupon the 
final buffer of a write file can be processed, and the directory or header details 
of the file updated. 

6'.3 Commodore disk drives and file handling 

The 2040, 3040, 4040 and 8050 drives At the time of writing, these drives are the 
most widely available CBM drives. The 8060, using 8 inch floppy disks and IBM format, 
and a winchester unit with a single drive, have been announced, but are not widely 
available. A single, shoe-box sized drive for the VIC, called the 4020, also exists. 
(Note: CBM's disk units are assigned numbers ending with 0, except the 8061 and 8062 
where single and double sided disks are distinguished. The -0 suffix contrasts with 
the CBM machines, where -08, -16, or -32 records the RAM installed at the time the 
computer is sold. Most printers end with -2. Clear? It all started with 2001 ... ) 

The four drives are similar in appearance. * The 2040-4040 sequence represents 
continued improvement within the limitations imposed by single-sided, single-density 
5 1/4 inch disks. Several physical changes have been introduced: the 2040, of which 
there are a number still around, was notoriously prone to heating and other problems. 
It is not particularly easy to upgrade, as its internal main printed circuit board has to 
be changed. The 3040 avoided some of the problems of its ancestor, while retaining 
others: for example the diskette clamp seems to lack the normal precision centring 
mechanism, so that it is widely recommended to close the disk drive door only when the 
disk is revolving. Initialisation of the disk (see INITIALISE in Chapter 7) is still ob­
ligatory in this model. Finally, the 3040 used DOS 1. 2, which, while an improvement 
on DOS 1 in its error-trapping, still only provided sequential files! All these objections 
were removed by DOS 2.1 and the 4040 drives. The remaining difficulties are summar­
ised in section 6.8 at the end of this chapter. The 8050 has more than twice as many 
tracks, and about 40% more sectors, on the same size disk. The diskettes therefore are 
entirely non-interchangeable. The disk doors and disk retaining mechanism are differ­
ent, presumably better, and the central warning LED signals green and red - not just 
red! No doubt there are production-line changes of a highly technical type which are 
not widely known. This then is the evolutionary history of CBM's disk drives to date. 

*The steel casings are made by Canada's largest barbeque-equipment factory. If there 
is any symbolic significance in this I've been unable to find it. 
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The drives were issued contemporaneously with the 2000, 3000, 4000, and 8000 models 
of the PET ICBM respectively, and are therefore often seen together, because they were 
bought that way. As mentioned before, the capabilities of the disk drive lie within the 
disk unit itself, so it is more important to select the correct disk unit - or to be prec­
ise the correct ROMs - than the appropriate version of BASIC. The single most import­
ant feature of a system is the storable amount of data; if a user wants a program to 
access 2 million bytes, obviously the programmer will be in trouble with a small capacity 
disk unit unless space-saving data-packing techniques are used. 

How can the different drives be distinguished? The obvious way is to read the 
Commodore labels on them, if they aren't ob scured by dealers' logos, but this is not 
always reliable, because of the possitility of updating the ROM sets in the 3040 and 
8050 series. For example, a 3040 unit may have been upgraded from DOS 1.2 to DOS 
2.1. The infallible way is to peek the disk ROMs themselves; a location which has 
the required power of discriminating between disk ROMs is $FFFF in the IRQ vector. 
Thus 

OPEN 15,8,15: PRINT#15,"M-R" CHR$(255)CHR$(255): GET#15,X$: CLOSE 15: 
PRINT ASC(X$) 

Prints the decimal value of this location, which = 213 with 4040 drives, and 242 with 
8050 drives. At the time of writing, there are at least two DOSs for the 8050; these 
can be identified by CHR$(195)CHR$(251), which returns 32 with DOS 2.5 and 170 with 
the newer DOS 2.7 . 

And this table summarises the main characteristics of CBM drives: 

DISK - - - CAPACITY - - - DOS Upgrade- Relative Initialise Diskettes 
UNIT Tracks Total bytes Free bytes fitted able? files? needed? compatible? 

[ 2040 35 2x 176 640 2x 171 520 1 Yes (with Noo Yes* Yr ]2 
pcb change 

3040 35 2x 176 540 2x 171 520 1.2 Yes (to Noo Yes* Y;s 
4040) read only 

'1' 

4040 35 2x 174 748 2x169 728 2.1 No Yes No 
..... 

Yes, but 
read only3 

8050 77 2x 533 248 2x518 400 2.5+ No Yes No No 

°A very long demonstration program may be used to construct files like these; or user 
written direct-access techniques may be used. Neither comes with DOS. 
*When initialising a disk, if the disk doors aren't closed while the disk is spinning, to 
help centralise the disk, the directory may not read, and you will have to try again. 
The message 20, READ ERROR, 17,0 is typical. 
2 This drive is the oldest and least reliable. 
3When (say) a 4040 writes to a disk formatted by DOS 1. 2, an error message like this 
will occur: 

73, CBM DOS, 19, 07 
and the disk will become unreadable. The same thing happens if DOS 1 writes to DOS 2. 
Recovery techniques are known (e.g. Harry Broomhall has programs called 'Lazarus') 
but they are hazardous and success cannot be guaranteed. Therefore, take care not to 
write with DOS 2+ onto DOS 1+ disks, or vice versa. Sometimes this happens out of the 
blue. A CBM games disk has a concealed game, which only appears if a score on one 
other game exceeds a certain value. To cause this to happen, the directory is modified 
on the disk, possibly damaging it. 
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CBM file types: Sequential, program, relative, and user A directory or catalog of any 
CBM diskette ( see Chapter 7, CATALOG) lists files on disk with a three-letter code to 
indicate the file type. The possible codes are SEQ, PRG, REL, and USR. Occasionally 
DEL (deleted) makes an appearance, and sometimes *EL or other anomalous code. These 
latter are connected with the problems of scratching unclosed files, which are discussed 
elsewhere, and with bugs in the COpy command as applied to relative files. Apart from 
malfunctions of this sort, the four file types (or three in DOS 1, which has no REL 
files) are recorded in the directory at the time the file is written, as a flag: if the flag 
is #$00, a scratched file is (or was) present; if it is #$81, #$82, #$83, or #$84, the 
directory translates the value into SEQ, PRG, USR or REL respectively. A file opened 
as a sequential file lists on the directory with SEQ; a BASIC program saved to disk 
lists with PRG, not surprisingly. Machine-code also lists with PRG, so there is no way 
to tell from the directory whether a PRG is BASIC or machine-code. Saving with names 
like 'OLD. 033A' is the usually recommended practice for the metiCUlous programmer. 
As we'll see, program files can be opened for reading and writing as though they were 
sequential. This is useful in the compilation of certain types of utilities for programs, 
such as cross-referencers for variables. 

User files (USR) are, so far as I'm aware, identical to sequential files. Their 
sole purpose seems to be to give the impression that the subsidiary files which are 
opened by the relative file demonstration program in DOS 1, are notably different from 
the main data file, and from other sequential files on the disk. 

Section 6. 4 of this chapter explains how each file type is stored on the disk. It 
is not necessary for comparative beginners at programming to understand minutiae of 
this sort, and the remainder of this section explains file-handling from BASIC. 

Files and BASIC: (i) Formatting new diskettes A box of diskettes which haven't yet 
been used ought to be dealt with in a standard way, so the status of any diskette is 
fairly self-evident. CBM disks may be formatted with a two-character Ld. It is a good 
idea, in principle, to ensure that each disk has a different Ld., so there will be no 
chance of DOS garb aging the data on a disk by confusing it with another of identical 
L d. This will only be possible with backup disks. Typically. the labels supplied by 
the disks' manufacturers will be stuck to the disks and filled in (with a felt-tip pen!). 
The process of writing a name onto a blank disk, and recording Ld. markers on all 
its tracks and -sectors ,is usually called 'formatting'. Without it, a diskette cannot be 
written to or read from. The pattern is characteristic of a particular disk unit; most 
disk drives can't read disks written by other brands of machine, because the number 
and position of the tracks and sectors is not the same. When carried out on a diskette 
which holds data, the rewriting process can be considered to erase all the previous 
information, so it is rather important to take care with it. Just to be confusing, this 
is often called 'initialising', the name CBM use to refer to the process of reading a 
disk's directory and BAM into memory. a non-destructive operation. If you switch from 
one computer to another, it may be necessary to remember this fact; 'initialise' may 
delete all your data if tried on another machine. Conversely, in CBM BASIC, HEADER 
or the non-BASIC 4 command Disk NEW, format disks. These are discussed in Chapter 
7 under HEADER, but here are four examples of the commands. 

The two first examples have the effect of formatting an entire disk, giving it 
the name DISK RW and the Ld. V6. HEADER can only be used by BASIC 4-earlier 
BASICs don't recognise the word. But Disk NEW can be run with any BASIC. 

HEADER D9, IV6, "DISK RW" :REM DISK ASSUMED TO BE IN DRIVE !1 
OPEN 15,8,15: PRINT#15,"NEWl1:DISK RW,V6" 

The next examples retain the previous Ld. and simply reformat the directory. This 
does no t forma t th e en tire disk. 

HEADER Dl1,"DISK RW" :REM DOESN'T FORMAT THE WHOLE DISKETTE 
OPEN 15,8,15: PRINT#15,"N!1:DISK RW" 

Files and BASIC: (ii) Channel lS, the 'error' channel Channel 15- secondary address 
15 in an OPEN statement - is specially reserved for use by IEEE equipment, of which 
CBM disk drives are an important example. Its function is to act' as a buffer for DS 
and DS $ messages about the disk status. (See Chapter 7 on DS and DS $ for more on 
these reserved variables). Most of these messages aren't really 'errors'. but the name 
is a convenient one to use. It also enables commands to be transferred from BASIC, 
such as PRINT#15, "NEW0:DISK RW", as we've just seen. With BASICs before BASIC 4 
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programmers had no option but to get in the habit of opening this channel and print­
ing to it or reading messages from it; BASIC 4 has automated this process, so that it 
needs to be done only at the start of a session. Chapter 7 lists all the BASIC 4 comm­
ands which perform disk file operations, along with their channel 15 equivalents, all 
of which, incidentally, work in BASIC 4 too, so that it is possible to write disk-file 
handling programs which will run on any version of CBM BASIC. When reading Chap­
ter 7, remember that the statement OPEN 15,8,15 is assumed to have been executed, 
to open file 15 to the error channel. Other file numbers are often used in the literat­
re, for example OPEN 1,8,15 which is followed by PRINT#1 or INPUT#1- It makes no 
difference, except that consistency is helpful, and 15 is mnemonically good. 

Files and BASIC: (iii) DOS support and DUM These prdgrams are supplied on the 
test disks which Commodore issue for use with their machines. The first is machine­
code, with a BASIC loader. Its full title is 'Universal DOS Support' but this is too long 
for the disk directory, so it appears instead as 'Universal Wedge'. Its purpose is to 
extend BASIC's direct mode to include several disk handling commands. These include 
initialisation, sending a directory directly to the screen (leaving BASIC intact), and 
loading disk programs. BASIC 4 needs this program far less than BASIC<4, because 
many of its commands already handle PRINT#15 automatically. Chapter 7 notes when 
DOS Support is useful, for example when reading a directory with BASIC<4. The 
symbols @,>,t, and\are intercepted by DOS Support from BASIC. Since some of them 
are also valid in BASIC expressions, DOS Support has an elaborate built-in routine to 
ensure that direct-mode commands are accepted, but program-mode is rejected. (Old 
versions may have this test missing). Although I haven't repeated a comment on DOS 
Support in every command in Chapter 7, every command listed there of the form 
PRINT #15, " ... " may be simplified with DOS support, in direct mode. For example, 

@N~:DISK RW,V6 

formats a new disk with the name 'DISK RW' and Ld. 'V6'. 

DUM is a BASIC program by R Leon of Prominico Ltd., Vancouver, which carries 
out disk maintenance for people who haven't puzzled out the operation of CBM disks, 
or who like a program to run things. This again was more necessary with BASIC<4 
than it now is with BASIC 4, which has easier commands. Nevertheless this utility, or 
others like it, remains valuable because of the effortlessness it brings to disk handling. 
It operates in direct mode only, and is not a file-handling utility. Instead, it prompts 
the user, with a menu, to choose options like 'Copy', 'Backup', and 'New', which carry 
out these operations only after asking the operator to check that the relevant disks 
are correctly in place. This, of course, reduces the chances of a blunder. The pro­
gram includes a special feature, a 'history file', which is a sequential file called 'DISK 
DA TA' or something similar, and which stores several dates, for example the date of 
the last backup, and comments. 'Filemaster', by L Sasso, is a newer disk utility. 

Files and BASIC: (jv) PRINT# and INPUT# and GET# These BASIC commands send 
output to a file and read it back, either as a batch or characters (INPUT #) or as 
individual characters (GET#). We shall see in the specimen programs how these comm­
ands operate with each type of file. Meanwhile, in outline, the important features of 
them are as follows (more detail is given in Chapter 5 about each of these BASIC key­
words) . 

PRINT# outputs strings, variables, expressions and literals to the file in the 
same way that the output is sent to the screen. For example, PRINT#8, 
"HELLO"; X; Y$; 23+34 sends HELLO, the current value of X, the string 
Y$, and the number 57 to the same line of the screen. However, it also 
sends a carriage return + line feed at the end of the line, which is why 
the cursor is now positioned at the beginning of the next line. This is the 
major tricky point about PRINT#. BASIC 4 contains a patch which avoids 
sending a linefeed character if the file number is < 128. If the file number 
is 128 or more, BASIC 4 behaves like BASIC<4, and the resulting records 
on file will begin with linefeed characters. This is not a disaster; it means 
only that the records will mysteriously print one line below their expected 
place, and will be one character longer than expected. The cure is to use 

PRINT#8,"HELLO";X;Y$;23+34;CHR$(13); 
or PRINT#8,"HELLO";X;Y$;23+34;CR$; :REM WHERE CR$=CHR$(13) 

when using BASIC<4. The same trick may also be used with BASIC 4. 
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INPUT# behaves in a very similar way to the screen input statement. It is a 
simple command to use, provided only that the programmer remembers to 
match the format of PRINT# with that of INPUT#. Often, of course, this 
happens automatically, because a programmer will naturally tend to use 
identical variable names when writing to a file with PRINT#, as when read­
ing back the same data. I have explained this before in section 6.2, with 
reference to sequential files; it is also explained in Chapter 5 under INPUT 
and INPUT#. For those new to programming, the point to understand is 
that PRINT# and INPUT# are mirror-image commands - what one of them 
writes, the other will read. Generally, it is not necessary to know about 
the special characters which make this possible, beyond being careful with, 
or avoiding altogether, the use of commas and colons. 

GET # reads individual characters from a file, including all the special characters 
like quote marks (ASCII 34), carriage returns (ASCII 13), linefeed char­
acters (ASCII 10), plus all the punctuation symbols and screen editing 
characters which CBM machines have at their disposal. This makes it far 
more versatile than INPUT#, if you are interested in the complete contents 
of a file. If you're not, the 'intelligence' of INPUT#, which assigns var­
iables for you, is a better command. 

Files and BASIC: (v) The status variables ST, OS and OS$ This last subsection of 
our summarising trot provides a brief revision (or prevision) of the functions of the 
status variable ST and the disk status variables, given the names, in BASIC 4, of DS 
and DS$. The method of operation of ST is outlined in Chapter 5 under the heading 
ST. (Strictly, it's not a reserved word, but that chapter seemed the best place for it). 
DS and DS $ are described in Chapter 7; they are not, strictly speaking, reserved 
words either. What is the purpose of these variables? The difference is quite subtle. 
ST is concerned with input /output processing from the PET iCBM's point of view, so 
if a device isn't there, or doesn 'trespond cor~ectly, S T becomes changed from its 
initial value of zero to 1,2,4,8,16, ... depending on the error condition. Thus, eight 
different conditions at most can be signalled by ST. The most used in practice is 
probably the end-of-file condition. ST = 64 signals that the computer has not received 
a byte from the peripheral, so the end-of-file flag in ST is set, on the theory that the 
programmer will check this and do something about it. It is always possible to write 
one's own end-of-file markers. In commercial computing, terminal records containing 
say ****T are used. When this record is read, the file is closed without attempting to 
read further. However, because of the possibility that a file isn't correctly closed, in 
which case the marker will be absent, the use of ST is still useful, particularly with 
other peoples' files. 

DS and DS$ are generated internally by the disk DOS, and are only available to 
the computer when specially read. In BASIC 4 this is easy: commands of this type 

10 INPUT#5,X$: IF DS>19 GOTO 50000: REM 50000 PRINTS ERROR MESSAGE, AWAITS ACTION 
or 100 INPUT#8,X$: PRINT DS$: REM CHECK UTILITY BY PRINTING DISK STATUS EACH TIME 

mean that the status of the disk unit after performing its operation can be readily 
checked. Note that DS, the error number, which equals the first numeral in DS $, can 
equal 0-19 without being counted as an 'error' - see the table under DS$. BASIC<4 is 
more trouble; in program mode, a subroutine of this sort must be used: 

10000 OPEN 15,8,15: INPUT#15,X: IF X<20 THEN CLOSE 15: RETURN 
10010 INPUT#15, Y,ER$,Z: PRINT X"," Y "," ER$ "," Z 
10020 PRINT "DISK ERROR***": END 

and in direct mode the .subroutine may be called, or this line entered: 

oP 15,8,15: iN15,e,e$: ?e,e$ 
where I've used standard abbreviated forms of the commands to ease the effort of 
typing them in at the keyboard. 

This checklist of points which are relevant to CBM disk files may seem rather 
daunting, and I suppose actually is rather daunting! However, it is a fact that these 
disk drives are no more difficult to program than many others. The short demonstrat­
ion programs in the next section should enable anyone with en,thusiasm to get the feel 
of these various commands and practical requirements. Longer demonstration routines 
are available on Commodore's demonstration disks; I have tried to keep these short so 
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that they may be keyed in without too much effort. 

Demonstration programs: (i) Sequential files 

DEMONSTRATION OF SEQUENTIAL FILE - WRITING TO DISK. (BASIC 4) 

5 SCRATCH "SEQ FILE",D1 
10 DOPEN#l,"SEQ FILE",D1,W 
20 FOR J = 1 TO 10 
30 X$ = "RECORD NUMBER" + STR$(J) 
40 PRINT#l,X$ 
45 PRINT X$ DS$ ST 
50 NEXT J 
60 DCLOSE 

6: Disk drives 

This specimen program writes 10 records, which consist of 'RECORD NUMBER l' 
through 'RECORD NUMBER 10'. They are held in a file called 'SEQ FILE' which is on 
drive 1; I've assumed a test diskette is loaded into that drive. Drive 0 is, of course, 
just as good! The program works in this way: 

Line 5 erases the previous file (if any) of the same name. The program can thus be 
run repeatedly without ?file exists error. Alternatively, line 10's file name in 
quotes can be preceded by '@', which opens the file, replacing any previous 
file as though it were scratched. This construction may be risky to use. 

Line 10 opens a disk file, on drive 1, for writing. It is a sequential file called "SEQ 
FILE". How is the Disk Operating System able to know the file is not relative? 
As we'll see, a newly created relative file has a length-of-record parameter, 
which is absent here. So a sequential file is assumed, and 'W' tells the system 
that it is open for writing. So the necessary buffers are opened in the disk's 
internal RAM, the name is recorded in the directory, and pointers are set which 
will enable the new file to be PRINTed to, in sequential order. 

Lines 20 - 50: the loop, with its variable J, controls the disk write operation. The 
figures in the example cause 10 records only to be written. Line 30 assembles 
an individual record, X$. It's exact form is not important to the demonstration, 
but I've made each record different from the others, so that on reading the file 
it's easy to check whether the records are, in fact, in the right sequence. 

Line 40 prints X$ to file number 1, which was the number assigned in line 10 to our 
file 'SEQ FILE'. Just as though the record were printed to the screen of the 
CBM, a carriage return follows PRINT#l,X$, so the records are correctly sep­
arated. (If line 40 is rewritten PRINT #1, X $; with a semi-colon, carriage return 
is not sent, and the records will be concatenated in a long string. The result 
will be too long for INPUT # to cope with; but GET # will successfully read the 
string character by character). 

Line 45 is part of the demonstration, and would not normally appear in a finished pro­
gram, except perhaps a utility routine to check the operations involved in file 
handling. It prints the record, the disk status string DS$, and the CBM status 
variable ST to the screen, where they appear in ten rows. These rows should 
be practically identical, showing DS$ as OO,OK,OO,OO and ST as 0, only X$ vary­
ing between its limits of RECORD NUMBER 1 and RECORD NUMBER 10. 
NOTE: Channel 15, to read DS $, is opened by the system, and need not be 
explicitly used in a program run by BASIC 4. 

Line 60 closes file(s). DCLOSE#l in this example has the same effect. 

DEMONSTRATION OF SEQUENTIAL FILE - READING FROM DISK. (BASIC 4) 

100 DOPEN#l,"SEQ FILE",D1 
110 FOR J = 1 TO 11 
120 INPUT#l,X$ 
125 PRINT X$ DS$ ST 
130 NEXT J: DCLOSE 

Line 100 opens "SEQ FILE", on drive 1, for read, as 'W' and 'L' are both absent. 
Lines 110-130 perform a loop which inputs records. Each is printed to the screen, with 
both status variables. Note the effect on DS$ and ST of reading an '11th record'. 
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DEMONSTRATION OF SEQUENTIAL FILE - WRITING TO DISK. (BASIC<4) 

5 OPEN 15,8,15: PRINT#15,"SCRATCH1:SEQ FILE" 
10 OPEN 1,8,2,"1:SEQ FILE,SEQ,WRITE" 
20 FOR J = 1 TO 10 
30 X$ = "RECORD NUMBER" + STR$(J) 
40 PRINT#l,X$; CHR$(13); 
43 S=ST 
44 INPUT#15,E1,ER$,E2,E3 
45 PRINT X$ E1 "," ER$"," E2 
50 NEXT J 
60 CLOSE 1: CLOSE 15 

It It , E3; S 

6: Disk drives 

This program has the same effect as the earlier (BASIC 4) version to write to disk, 
and sends the same information to the screen. BASIC 4 can run this program, or the 
other, rather simpler, version, but BASIC<4 cannot run that version because it is not 
equipped with the disk command keywords. The line-numbering in each program is 
similar; lines 43-44 above are concerned with (i) saving ST, (ii) reading the four 
messages which correspond to the parts of DS$. ST could be printed in line 43; the 
sole reason for preserving it till later is to format line 45 in the identical way to that 
of the other line 45. 

Line 5 opens the command channel, and sends a 'scratch' command to delete 'SEQ FILE' 
from drive 1. The abbreviation PRINT#15, "Sl: SEQ FILE" is equally correct. 

Line 10 opens 'SEQ FILE' on drive 1 for write. Note that the secondary address may 
be any value from 2-14 which isn't yet allocated. Again, the abbreviated form 
OPEN 1,8,2, "l:SEQ FILE,S,W" is as good (and corresponds more accurately to 
what is sent on the IEEE bus to the disk). BASIC 4 sends the same messages 
as BASIC<4; the syntax is easier because some of the operations, like opening 
the command/error channel, and finding an unused secondary address, are 
built into BASIC 4. 

Line 40 illustrates the anti-linefeed manoeuvre necessary with BASIC<4. The character 
with ASCII value 13 is, of course, carriage return. 

Lines 43-45 have the same effect as PRINT X$ DS$ ST in spite of their more formidable 
appearance. The four 'error' parameters are read from the 'error channel'. 

Line 60 No DCLOSE exists in BASIC<4, so all the files must be separately closed. 

DEMONSTRATION OF SEQUENTIAL FILE - READING FROM DISK. (BASIC<4) 

100 OPEN 15,8,15: OPEN l,8,2,"1:SEQ FILE,SEQ,READ" 
110 FOR J = 1 TO 11 
120 INPUT#l,X$ 
123 S=ST 
124 INPUT#15,E1,ER$,E2,E3 
125 PRINT X$ E1 "," ER$ "," E2 "," E3; S 
130 NEXT J: CLOSE 1: CLOSE 15 

Again, this program is identical in its effect to the BASIC 4 version. 

Line 100 opens the command channel and also opens file number 1 to the sequential 
file 'SEQ FILE' on drive 1 for reading. The secondary address, and device number, 
are chosen subject to the same restrictions as outlined above in the paragraph on line 
10. Device number 8 has been assumed throughout. 

The screen appearance of the file as it's read should, as in BASIC 4's version, 
consist of 11 lines, the first ten made up of 'RECORD NUMBER1' to 'RECORD NUMBER 
10', each followed by disk status values O,OK, 0, 0 and CBM status of O. The very last 
record (10) has ST set to 64, which shows that a record is the last record in the file. 
The attempt to read beyond the end of file has effects which vary slightly with the 
system in use; BASIC 1, for example, appears to return the last record, whereas 
later BASICs return the carriage return character instead. 
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Demonstration programs: (in Relative files 

DEMONSTRATION OF RELATIVE FILE - WRITING TO DISK. (BASIC 4 AND DOS 2+) 

1 REM NOTE "\,-1" FOR SEQUENTIAL WRITE Ot-lL'~; GIVES ?S'mTAX ERROR WITH REL 
2 REM NOTE OPEN FOR BOTH READ AND WRITE IF RELATIVE FILE 
3 REM NOTE USE OF 'RECORD*', AND ITS SYNTAX 
4 REM NOTE GET ERROR 50 DURING WRITE AS EACH BLOCK OF 256 BYTES IS USED 
5 REM NOTE LENGTH OF 21:: RECORDS ARE 213 LONG + CARRIAGE RETURN 
6 REM NOTE 'RANDor·V ORDER OF READBACK IN LIt-lE 210 
7 REM NOTE IF LINE 220 IS OMITTED ... FILE \'-HLL BE READ SEQUENTIALLY 
10 DOPEN*2 ... "REL FILE" .• D1 ... L21 
20 FOR S = 1 TO 30 
30 X$ = "RECORD NUMBER"+STR$(S) 
40 X$ - X$ + LEFT$("***************" ... 20-LEN(X$» 
50 RECORD*2,(S) ... 1 
60 PR I t-lT*2 ... X$ 
70 PRINT X$ OS$ ST 
80 NE(~:T 

90 OCLOSE 

The program is quite similar to those which write sequential files: the file is created, 
thirty records (in this case) are written to it, and the records, together with the disk 
status variables DS $ and ST, are printed to the screen. 

Line 10 opens a file called 'REL FILE' on drive 1. Its record length is specified as 21. 
The file is opened for write, but 'WI as a parameter generates ?SYNTAX ERROR 
because of the implicit confusion between a relative file (signalled by L .• ) and a 
sequential file. 

Lines 20 - 80 comprise the loop which controls the way records are written to disk: 

Lines 30 ~ 40 generate a string variable X $ of length exactly 20 bytes. (The twenty­
first is a carriage return). Leading asterisks pad X $ to the correct length, like 
this: ****RECORD NUMBER 1 . (It is not necessary to fill the record space in this 
way; shorter - but not longer - records may be used). 

Line 50 uses RECORD# to postion the relative file pointer of file number 2 to the Jth 
record's first byte. J is bracketed, as required by BASIC 4 syntax. Thus as 
the loop executes, RECORD#2,I,1 then RECORD#2,2,1 then RECORD#2,3,1 ... 
set the pointer to records 1,2,3, ... and so on. 

Line 60: in this way, record number J is printed into the space allocated for it by DOS. 

Line 70 prints the record, the disk status variable DS $, and ST to the screen in 30 
rows (the first few will be lost as the screen scrolls). This behaves almost 
identically to the sequential demonstration. However, at intervals, error 50 is 
signalled in DS $. This is not a serious error, but means only that the relative 
file is being expanded to incorporate its new data. (See the entry in Chapter 7 
under DS$). Since one sector stores 254 bytes, and our records occupy 21 bytes, 
message #50 is generated about every 254/21 = 12 or so records. 

Line 90 closes the file. 

DEMONSTRATION OF RELATIVE FILE - READING FROM DISK. (BASIC 4 AND DOS 2+) 
200 DOF'EN#2,."REL FILE" ,.01 
210 FOR S = 30 TO 1 STEP -1 
220 RECORD*2,. 0:: J:> , 1 
230 It..jPUT#2 " )<:$ 
240 PRINT X$ DS$ ST 
250 NE)<:T 
260 OCLOSE 
This example should be self-explanatory. However, note the non-sequential order in 
which records are retrieved. If line 210 is replaced by 210 INPUT "RECORD NUMBER"; J 
and line 250 by 250 GOTO 210 true relative or 'random' access can be demonstrated. 
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DEMONSTRATION OF RELATIVE FILE - WRITING TO DISK. (BASIC<4 AND DOS 2+) 

The following example duplicates the effects of the BASIC 4 programs which we have 
just looked at. The only difference lies in the fact that the version of BASIC in use 
doesn't have the special disk-controlling keywords of BASIC 4. Apart from this, things 
are much the same: DOS still has to be version 2 (or presumably later versions when 
these arrive on the scene), not DOS 1.x which hasn't the required relative file capac­
ities. 

10 OPEN 2,8,2,"1:REL FILE,L" + CHR$(21): OPEN 15,8,15 
20 FOR J = 1 TO 30 
30 X$ = "RECORD NUMBER" + STR$(J) 
40 X$ = X$ + LEFT$("***************",20-LEN(X$» 
50 PRINT#15,"P" + CHR$(2) + CHR$(J) + CHR$(O) + CHR$(1) 
60 PRINT#2,X$: S = ST 
65 INPUT#15,E1,ER$,E2,E3 
70 PRINT X$ E1 "," ER$ "," E2 "," E3 , S 
80 NEXT 
90 CLOSE 2: CLOSE 15 

Each line duplicates the corresponding line of BASIC 4's version, with the exception 
of the additional line, 65. This is interpolated purely to fetch the messages from the 
command channel which correspond to those of DS$. 

Line 10 may need some explanation: OPEN, with the format listed here, opens for rel­
ative access with DOS 2+. BASIC 4 sends exactly the same string to the IEEE bus, in 
spite of the apparent differences in syntax. The same thing is true of line 50, which 
is equivalent to RECORD. The secondary address of the relative file (Le. 2, here), 
the low and high bytes of the record number, and the byte position, are understood 
by DOS to be the four bytes after P. 

DEMONSTRATION OF RELATIVE FILE - READING FROM DISK. (BASIC<4 AND DOS 2+) 

200 OPEN 2,8,2,"1:REL FILE": 
210 FOR J = 30 TO 1 STEP -1 

OPEN 15,8,15 

220 PRINT#15,"P" + CHR$(2) + CHR$(J) + CHR$(O) + CHR$(l) 
230 INPUT#2,X$: S = ST 
235 INPUT#15,E1,ER$,E2,E3 
240 PRINT X$ E1 "," ER$ "," E2 "," E3 , S 
250 NEXT 
260 CLOSE 2: CLOSE 15 

This program reads back the records in the reverse order to that in which they were 
written, to demonstrate the 'random access' permitted by this type of file structure. 
The record numbers vary between 1 and 30, so there is no possibility of attempting 
to read non-existent records. However, as suggested in the last example, modifying 
line 210 to 210 INPUT "RECORD NUMBER"; J and line 250 by 250 GOTO 210 enables the 
user to call up any of the records, in the same manner that a record is retrievable by 
a database system. Because of the structure of line 220, the maximum value of the 
record number is 255. To increase this to the allowable maximum of 65535, lines like 
these need to be introduced, so that the RECORD statement in line 200 has both low 
and high bytes programmable: 

215 JH = J/256: JL = J AND 255: REM JH=HIGH, JL=LOW, BYTES OF J. [JH IS ROUNDED 
220 PRINT#15,"P" + CHR$(2) + CHR$(JL) + CHR$(JH) + CHR$(l): REM IN THIS LINE] 
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Demonstration programs: (iii) Program files 

Program files are not data storage files in the same way that sequential and relative 
files are: they do not hold potentially enormous amounts of data in a convenient form 
for reading, processing, and output. Instead they store consecutive bytes directly 
from memory, together with the information required to reload the same part of RAM 
with the identical data. In the CBM system this is accomplished by storing two bytes 
at the start of the file which hold the load address. Subsequent bytes are read and 
stored into this address and its following locations, until the file ends. The very last 
byte is not stored into RAM. (VERIFY uses exactly the same procedure, except that 
the bytes are compared, not stored, with RAM locations). Both BASIC programs and 
machine-code programs and routines are stored like this. Consequently, 

DSAVE "BASIC TEST PROG",D1 
SAVE "1:BASIC TEST PROG",8 

:BASIC 4 
:BASIC<4 

write a program file to disk called 'BASIC TEST PROG'. The program written is the 
one which is currently in memory. (If the start-of-BASIC and/or end-of-BASIC point­
ers are altered, other consecutive RAM will be saved under that name. See SAVE in 
Chapter 5 and DSAVE in Chapter 7 for more on this subject. As a further example, 
the SUPERMON and EXTRAMON programs look like BASIC, but include a long chunk 
of machine-code, which the program causes to relocate into the high end of memory. 
It is only possible to SAVE or DSAVE such a composite program by altering the end­
of-BASIC pointers so that they also include the machine-code) . 

• S "1:MjC PROO",08,033A,037F 

is a typical command to save a program-file called 'M/C PROG' onto drive 1 of disk 8. 
All the code between $033A and $037E is saved. 

Files of this sort can be read and written almost like sequential files. In fact, 
some proprietary software (e.g. 'Wordpro')stores its files as program files, and these 
can be examined and written or rewritten in this way. Similarly BASIC programs and 
machine-code routines are readable and writeable at will. The OPEN command must be 
the BASIC<4 type, since BASIC 4's file-handling hasn't concerned itself with these 
comparatively advanced techniques. All that is required is the use of 'P' as a paramet­
er, when opening the file for reading or writing. Let's look at a few examples of the 
kind of thing that can be done. 

(a) Finding the load address of program files. This is helpful with some types of mach­
ine code, and can be useful with unusual BASICs where the normal $0401 start has 
been overridden. All that is needed is something like this: 

10 INPUT "FILE NAME, DRIVE NUMBER"; N$,D$ REM E.G. MjCODE#1 ON DRIVE 0 
20 OPEN 1,8,2,D$ + ":" + N$ + ",P,R" 
30 GET#l,X$: IF X$="" THEN X$=CHR${O) 
35 X=ASC(X$) 
40 GET#l,Y$: IF Y$="" THEN Y$=CHR$(O) 
45 Y=ASC(Y$) 
50 PRINT "LOAD ADDRESS IS " X + 256*Y 

REM E.G. "O:MjCODE,P,R" 

REM X=LOW BYTE OF LOAD ADDRESS 

REM ... AND Y=HIGH BYTE 

(b) Writing loadable machine-code or other routines directly onto disk. An assembler, 
for example, might be required to assemble code into an area of RAM already occupied 
by code. The normal process of putting the code into RAM, then saving the result, is 
in this case unworkable. However, by writing the load address to disk, followed by 
bytes of machine-code, any area of RAM can be made the subject of a loadable file, 
even tricky areas like the zero-page (well, up to a point!) and also into areas like 
screen RAM. 

OPEN 1,8,2,"0:CODE,P,W" 
PRINT#1,CHR$(1)CHR$(4); :REM LOAD ADDRESS IS $0401 
PRINT#1,CHR$(162)CHR$(O)CHR$(138)CHR$(157)CHR$(0)CHR$(128)CHR$(232)CHR$(208) 

CHR$(249)CHR$(96) 
CLOSE 1 

This prints a simple machine-code string to a file called 'CODE'. If this is LOADed, 
SYS 1025 will cause the code to execute; it prints 256 different characters on the 
screen. 
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(c) Analysing BASIC programs. As we've seen in Chapter 2, BASIC is a complex 
structure, and a program to deal with it needs to take account of link addresses and 
linenumbers, and within the program itself, tokens, variables, and special characters 
(punctuation, quotes, REM, DATA, and meaningless spaces). Examples may be found 
in Kilobaud-Microcomputing (R W Baker, Sept. '80) and CPUCN (Jim Butterfield, Vol. 2 
#8). When using a program file, in addition the two leading bytes, which almost always 
are 1 and 4, need to be read and subsequently ignored. CATALOG in Chapter 7 has 
a BASIC program, designed to read a disk's directory, which shows the sort of thing. 

(d) Processing BASIC (or other) programs. By opening a program, reading it byte by 
byte, and rewriting the result to another file, a number of editing manoeuvres are 
possible; for example, merging may be accomplished by writing one program up to a 
certain linenumber, then writing in turn whichever linenumber is next. The link add­
resses have to be preserved. Machine-code may be processed in the same way; for 
example, one could read it, replacing predefined combinations of characters by others. 
This may make it possible to painlessly search for identifying messages and so forth. 
The example shows how two programs (BASIC) may be appended, giving a third. Note 
the handling of the final zero terminating byte of the first program. which has to be 
replaced by the first byte of the appending program. I haven't included commands to 
input file names, format the screen, or check DS$, to save space: 

100 OPEN 2,8,2,"0:FIRST PROG,P,R" 
110 OPEN 3,8,3,"0:BOTH PROGS,P,W" :REM THIS IS THE NEW COMPOSITE PROGRAM 
120 GET#2,X$ 
130 Y$=X$: GET#2,X$: IF ST <> 0 GOTO 200 
140 IF Y$="" THEN Y$=CHR$(O) 
150 PRINT#3,Y$; :REM PRINT SINGLE CHARACTERS TO THE NEW FILE 
160 GOTO 130 
200 CLOSE 2 
210 OPEN 4,8,4,"0:SECOND PROG,P,R" 
220 GET#4,Y$: GET#4,Y$ 
230 GET#4,Y$: IF ST <> 0 GOTO 300 
240 PRINT#3,Y$; :REM PRINT SECOND PROG TO NEW FILE 
250 GO TO 230 
300 PRINT#3,CHR$(O); 
310 CLOSE 3: CLOSE 4 

The point of the coding in lines 120-160 is to copy the whole contents of the program 
file called 'FIRST PROG' into the file 'BOTH PROGS', except for the very last byte, 
which is the zero terminating byte. Hence line 130, which continually reads the next 
character X$, testing for end-of-file with ST, while writing only the previous charac­
ter. By line 200 file number 2 is finished with; file number 4 is opened, and the entire 
contents of 'SECOND PROG' written to the end of 'BOTH PROGS', including the end 
zero byte. LOADing 'BOTH PROGS' will reveal a correct append of the programs. Note 
that line 220 throws away the load address of SECOND PROG; this is now subsumed 
under the original program's load address, and is not needed. Note also lines 140 and 
240. These are needed to cure a small bug caused by the CBM's difficulites with the 
null character "" and CHR$(O). The same conversion has to be done when construct­
ions like GET#I,X$: PRINT ASC(X$) are being used. 

Another highly interesting application is in modifying BASIC; the example that 
follows is based on a routine called 'LOCKSMITH', which adds code to the start of 
a BASIC program (not BASIC 1, however) so that on LOAD, the stop key is disabled 
by the usual interrupt address + 3 method (which also turns off the clock, TI), and 
screen-clear, RUN, and carriage return are forced into the keyboard buffer. The 
program is thus made to RUN simply on LOAD. (The process is more complex*than I've 
made it seem here). The program 'protected' in this way is comparatively invulnerable 
to listing, but of course given the correct approach is rather easy to break. The exam­
ple takes a program on drive 0 called 'BASIC PROG' and rewrites it to drive 0 as 
'BASIC PROG AUTO'. These names are used for convenience only; obviously proper 
input and formatting routines enable the program to operate in a user-friendly way. 
The program itself can be locked. Note that the load address is $0100, the bottom of 
the stack. 

*Not only the stack is overwritten, but the IRQ vector is changed (twice), the reset 
vector called on Stop, NMI is used and a routine updates all the BASIC pOinters. 
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100 OPEN 2,8,2,"0:BASIC PROG,P,R" 
110 OPEN 3,8,3, "O:BASIC PROG AUTO,P,W" 
120 FOR J ° TO 1: PRINT#3,CHR$(J)i: NEXT 
130 FOR J = ° TO 255: PRINT#3,CHR$(2);: NEXT 
140 FOR J = 1 TO 3: PRINT#3,CHR$(0)i: NEXT 
150 READ J: IF J = 999 GOTO 200 
160 N = N + 1: PRINT#3,CHR$(J)i: NEXT 
200 FOR J = 1 TO 510-N: PRINT#3,CHR$(0);: NEXT 
210 GET#2,X$: S = ST: IF X$ = "" THEN X$ = CHR$(O) 
220 PRINT#3,X$i: IF S = ° GOTO 210 
300 CLOSE 2: CLOSE 3 

6: Disk drives 

500 DATA 165,144,164,145,16,12,24,105,3,144,1,200,141, 130,2,140,131,2 
510 DATA 162,18,189,84,2,157,111,2,202,16,247,154,169,1,72,72,72,72,72,169,122 
520 DATA 160,2,120,133,144,132,145,88,169,4,133,158,165,40,133,42,165,41,133 
530 DATA 43,160,0,162,3,177,42,230,42,208,2,230,43,201,0,208,242,202,208,241 
540 DATA 108,148,0,147,82,213,13,0,0,0,0,0,0,0,32,234,255,169,255,133,155,76 
550 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,108,252,255,999 

6. q CBM diskette formats 

Overview of data storage on diskette CBM disk drives contain their DOS in ROM 
chips, and so the entire capacity of the diskette is available for files. Except, that is, 
all the housekeeping details which are necessary to a file-handling system. These are 
held on a single track (track 18) in 2040/3040/4040 diskettes, and on two tracks in 
the larger-capacity 8050 (tracks 38 and 39). This is a very standard arrangement. 
The central position is selected to cut down on track seeking time. Note that Commod­
ore documentation numbers its tracks starting from 1, so the first track is track 1. 
This is not universal; it seems to be used because 'track 0' is used as a special end­
of -file indicator. The sectors are numbered from 0, on the other hand. 

There are really only three distinct types of housekeeping information on disk, 
and programmers who are interested in delving into the niceties of disk programming 
can write utilities to examine them. The first, on track 18, sector 0 in the - 40 range, 
and track 38 sectors 0 and 3 in the - 50 machines, holds mainly the block availability 
map, or BAM, of the disk, and the 'directory header', which is the title of the disk 
and its Ld., as written by HEADER or Disk NEW. A BASIC program, 'VIEW BAM', is 
a utility program on most demonstration disks which reads this area and translates the 
bits (which are on /off) into sector (=block) availability (available /used). It reads the 
disk's name and i.d. too, and calculates the number of free blocks on the disk by a 
running calculation. 

The second region is the remainder of the directory; this is a chain of sectors, 
which holds a record of each file, its type, its name, and its position on disk. So far 
as I know, Commodore don't supply a utility to read these sectors. Most of the inform­
ation in any case is visible on the directory. The exception is the pointers to the first 
track and sector of the file, which is the first of what may be a very long chain of 
sectors. With one's own utility program, these details may be displayed on the screen 
or in hardcopy. 'DISPLAY T&S' prints sectors, without following the chain. 

Thirdly, the majority of the disk is occupied by its files. These are generally 
chained together, with a final terminating block. In principle any file can be traced 
from its directory entry through all its sectors. This can often be a valuable exercise, 
and has practical applications in several types of error-correction, error-recovery, and 
disk revival routines. 

Before examining each of these three subdivisions in greater detail, we will look 
at the arrangement of sectors on CBM disks. The arrangement (more sectors at the 
outer tracks, fewer at the inner) is unique to Commodore, to the best of my know­
ledge. This table summarises the current situation: 

SECTORS: SECTORS: 
TRACKS: 20qO & 30qO QOQO TRACKS: 8050 

1-17 0- 20 0- 20 1- 39 * 0- 28 
1 8- 2 Q * 0-19 0-18 QO- 53 0- 26 
25- 30 0-17 0-17 5Q- 6Q O-H 
31- 35 0-16 0-16 65-77 0- 22 

*Includes directory track (s) . 
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The Directory Header and Block Availability Map (BAM). 

2040 I 3040 I 4040 8050 
BYTES: Track 18, sector 0: BYTES: Track 39, sector 0 

0-1 Pointer to directory 0-1 Pointer to BAMl 
2 Format: 1 J 1 I A 2 Format: C 
4-143 BAM: 1 40 bytes in total. 6- 21 Name of diskette + 

Each of 35 tracks has 4 bytes shift spaces 
144-161 Name of diskette + shift spaces 24-25 Diskette's i.d. 

to make length 16 characters 27-28 2C (version) 
162-163 Diskette s 2 character I.d. 33- 255 Not used 
165-166 ---

I 
--- I 2A 

(version) BYTES: Track 38, sector 0 
171-255 Not used 
[180-191 'BLOCKS FREE' may appear here] 0-1 Poi nter to BAM 2 

2 Format: C 
4- 5 Tracks 1 & 51 
6- 255 BAM1: 250 bytes. 

Each of 50 tracks has 
a 5 byte entry. 

BYTES: Track 38, sector 3 

0-1 Pointer to directory 
2 Format: C 
4- 5 Tracks 52 & 77 
6-140 BAM2: 135 bytes. 

Each of 27 tracks has 
5 byte entry. 

141ff Not used 

The left-hand diagram above shows the main features of the BAM and disk identific­
ation in the smaller drive units (2040/3040/4040). The diagrams on the right all obtain 
to the 8050 drives; because of the larger storage capacity, and probably also to allow 
for future expansion, 3 sectors are used for the data which could be held in 1 sector 
only on the smaller diskettes. Most of the first sector is unused; BAM is divided 
into two parts by track, and the first of these sectors holds pointers, a disk format 
byte, the range of tracks for which it holds the BAM, and 250 bytes devoted to BAM. 
This formula may be repeated indefinitely; this makes future expansion possible with 
(some) compatibility. Not all the small detail (e.g. features like shifted spaces, as 
opposed to null characters) appears in these diagrams. For any disk drive, these 
less important features can be checked fairly easily with 'DISPLAY T &S' or some other 
similar utility program. 

What is the structure of entries in BAM? As the tables show, the shorter tracks 
of the smaller disk units have a 4 byte entry in their BAM, while the 8050 uses 5 
bytes to map its tracks. The principle in each case is the same. The BAM is split into 
4s or 5s, so that the 10th track's map starts at the 37th byte or the 46th byte, and 
takes up 4 or 5 bytes. The first byte stores the free sectors in the track. This par­
meter is used when the directory computes the total number of blocks free. The 3 or 4 
remaining bytes, naturally, have 24 or 32 bits in total. Each of these reflects the 
status of the corresponding sector in that track. Since the largest number of sectors 
per track in the 4040 type drive is 21, while the corresponding figure for the 8050 is 
29, it is clear why the 8050 needs the extra byte in each track's map. Extracting the 
relevant bit in a program is a bit tricky. The BASIC below shows the method: suppose 
we are looking at sector number S in a track. We can find the byte which holds the 
relevant bit, by counting the correct number of 4 or 5 byte units, then picking the 
2nd, 3rd, 4th, or, with 8050, perhaps 5th byte. If this byte is B, 

2j(S AND 7) AND B finds the bit value; if this is zero, the sector is allocated; if 

not, it is a free sector. 
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The directory - the list of files stored on a diskette - is contained in a single track, 
following the header details, which occupy 1 sector. Models 2040]3040]4040 use track 
18; the 8050 uses track 39. These tracks respectively contain 20,20,19, and 29 sectors, 
leaving 19,19,18, and 28 after subtracting the header's sector. Each sector has space 
for 8 files, so the maximum file storage of these devices is 152,152,144, and 224 files 
in that order. A diskette can be entirely filled, therefore, if its files average about 
1K bytes with the smaller units, or 2K bytes with the 8050. If the average file size is 
smaller than this, the directory will run out of space before the diskette. 

Directory blocks are chained in the usual way, the first two bytes pointing to 
the track and sector holding the next directory block. The track pointed to is always 
18 or 39 of course, except for the final sector, which has a zero terminator. The order 
of sectors, as with data storage, is not sequential, but, to cut down the time spent 
waiting for the disk to rotate beneath the head, distributed around the disk at about 
180 0 intervals. Each directory block is divided into eight subdivisions of 32 bytes. 
The first two bytes are unused, except in the very first such sabdivision, where they 
are used as the linking pointer. This table shows the overall structure: 

BYTES: 
201J0 and 301J0 I 1J040 , I 8050 

Track 18, sectors 1-20 Track 18, sectors 1-19 Track 39, sectors 1-28 

0- 31 Linking track and sector pointer + file entry 1 in sector 
32 63 File entry 2 in sector 
64 95 File entry 3 in sector 
96 127 File entry 4 in sector 

128 159 File entry 5 in sector 
160-191 File entry 6 in sector 
192 223 File entr~ 7 in sector 
2H 255 File entry 8 in sector 

Each file entry is formatted as in the following table. Note that the relative file bytes 
are used only in DOS 2+, and do not appear in earlier DOSes. 

BYTES: CONTENTS OF A DIRECTORY ENTRY: 

0-1 Track and sector pointer in first entry. Otherwise unused. 
2 FILE TYPE. #O=Scratched I Not yet used. 

#80=DELeted 
#81 =SEQuential file 
#82=PRG, program file 
#83=USR, user file 
#84=RELative fi Ie 

#1 - #IJ signals an unclosed file. Such files are removed by COLLECT. 
#80 is a scratched unclosed file, a type to be avoided. 

3- 4 Track and sector pointer to first block of file. 

5- 20 File name + shifted spaces (#AO characters). 

21-22 Track and sector pointer to relative file's first side sector. 

23 Record size of relative file (i.e. parameter following L on opening file) • 

24- 27 Unused 

28- 29 Replacement track and sector pointer for OPEN@ 

30- 31 Low and high byte of no. of blocks in file, as shown on the directory. 

On the next page we have some actual examples, produced with the utility called 
'DISPLAY T&S', but output to a CBM printer instead of the screen. The features in 
these tables are marked. 
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Sector 0 of track 18 on a DOS 1+ diskette is displayed below. The diskette is nearly 
full; the BAM shows that the outer tracks have 21 + 21 + 5 free sectors, and the 
inner 14 + 17 + 17 + 17 sectors. Note that most of the BAM shows as zero bytes. This 
is because bit 0 is used to indicate that a sector is allocated; and a further byte gives 
the number of free sectors. All four bytes are therefore zero. The directory track's 
BAM entry is visible in the middle of BAM; 11 sectors are free, so the diskette could 
hold another 88 files, although they would have to be rather short. Note also the title 
of the disk and its two-character identifier. 

T'r'P I CAL TRACK/:::;ECTOR CONTENTS OF THE 0 I RECTORY 

68 

15 FF FF 1F 
~~~~~~~05 80 82 0A 

00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 

: 108 68 D8 ( 16) 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
0E 11 FF FF 01 

nn 

1-

n~ ~N6<t J;fe.do-ry .5e.C.to,,­
II. ~Vl2o{!,i<n'\.. I'\u-.b.rr. 

~n 

7~:::1 

78 
80 
88 
90 
98 
A0 
A8 

11 11 FF FF 01 ~~ n~ 
55 45 52 53 41 UN I VERSA 
~~~~~~~4~O~4~F~2~0~27J0 : L DEMO 

20 20 A0 A0 V1 
~~~~~~~00 e0 00 e0 

80 00 00 ee 
88 49 53 20 
CO 20 20 20 
C8 20 20 20 20 
De ee ee eo ee 
08 00 (11) 00 eo 
E0 00 00 00 00 
E8 00 00 0e 00 
F0 : ee 00 00 00 
F8 : 00 eo 00 00 

12 4C 4F 43 LOC 
52 45 45 2E I KS FREE. 
20 20 20 20 
20 20 20 00 
00 00 00 00 
00 00 ~30 00 
00 00 00 00 : 
00 00 00 00 
00 00 00 00 
00 00 00 00 

A typical directory sector is listed on the next page. Note that there are exact­
ly eight file entries. The first two bytes point to another sector on the same track. 
When a directory is read and printed to the screen, these sectors are read in order, 
and the type of rile, file name, and number of sectors occupied are all read from each 
of these eight entries. and converted into readable form. The file-type entry, for 
example, is converted from #81 into SEQ, which is more meaningful to the user. For 
this reason, unless a special array-sorting process is used, the sequence of items as 
displayed by a directory tends to be immutable, so that sometimes it is worthwhile to 
plan the order in which files are recorded. 

Because of CBM graphics conventions, the file-type is displayed as a reverse 
character on the sector listing - the reverse heart is a sequential file, the remaining 
files are all #82 = program files. 
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The first entry in this sector has been marked with 5 boxes; these mean: 
(i) The next directory sector is track 18, sector 10. (18 = hexadecimal 12). 
(ii) The file-type, #82, shows that this is a program file. 
(iii) The program begins at track 22, sector 9. 
(iv) 'DISK COMM2 'is the program's name. 
(v) The program occupies 2 sectors only (i.e. is less than 509 bytes in length). 

(i\. 

e0 II 018 
08 = V COt1M2 
10 

'110 
28 48 2e 43 4F 40 40 :33 R0 
30 RI3 R0 R0 R0 Re e0 00 00 
38 00 00 £1£1 €Ie 00 0e 03 0e 
40 e0 0e 82 eo €Ie 44 49 53 II DI8 
48 48 20 57 52 49 54 45 Re K WRITE 
50 R0 R0 Re Re R0 013 0e €Ie 
58 1313 00 €Ie 00 0e 00 04 00 I 
6e 00 00 92 00 01 44 49 53 II DIS 
68 I 48 20 52 45 41 44 R0 R0 K RERO 
70 Re R0 R0 R0 R0 130 e0 ee I 
79 ee e0 €Ie e0 ee 131.3 134 €Ie I 
80 : €Ie €Ie 82 eo 03 44 49 53 I II 018 
88 48 2e 4F 56 45 52 4C 41 I I< OVERLR 
ge 59 53 Re Re R0 €Ie 00 013 I YS 
98 €Ie 0e 00 00 00 €Ie e2 e0 
R0 €Ie 130 82 00 134 44 49 53 I " DIS 
R8 48 213 44 49 52 Re Re RI3 I K OIR 
B0 R0 R0 R0 R0 R0 0e ~3e 00 
B8 00 00 00 00 00 e0 05 00 I 
ce 130 013 81 00 e9 213 213 513 ~ P 
C8 I 45 54 213 44 41 54 41 20 ET DATA 
00 I 2e R0 R0 Re Re 1313 e0 ee : 
08 00 €Ie ee 00 0e €Ie :38 ee 8 
Ee €Ie e0 82 17 €Ie 52 41 4E II RAt~ 
E8 44 4F 40 20 31 2E 30 30 OCIM 1.00 
Fe I Ae A0 A9 A9 Ae 90 e0 00 I 
F8 013 90 0e 013 00 0e 22 0e I " 

A relative file entry is slightly more complex than the other types of file. The single 
specimen below shows the extra features of 

(vi) Pointer to side-sector chain, which here starts in track 15, sector 2. 
(vii) Length-of-record parameter. The records in the example are 21 bytes long. 
C0 130 1313 ~ (10 0E] 52 45 4C iiREL 
C8; I:: A0 A0 Ae FILE 
[113 ; Ae A0 Ae A0 Ae 0F 132 15 : ~(vi\,(vii) 
08 : 1313 00 00 130 00 00 _0: 

Finally, we leave our tour of the CBM disk system with a few examples of data storage 
on disk. The next page has examples of sequential file storage, BASIC storage, and 
machine-code. From the diskette's point of view, these are all stored in a similar way, 
in chains of sectors in which the first two bytes either point to the next track and 
sector, or contain track number zero, to indicate end-of-file, with the second byte 
holding the number of valid bytes in this final sector. 

Program files are stored with an introductory load address pointer, so BASIC 
begins 01 04 followed by the RAM dump of the program. This consists of lines linked 
by pointers, each line containing a link address, a linenumber, and BASIC, terminated 
by a zero byte. The exception is the very last line, which has a link address of zero 
to show that the program is finished. This pattern can be traced in the BASIC dump 
on the next page. Note that much of BASIC is readable, although the tokens are in an 
unfamiliar form. The program includes machine-code (it is DOS Support, which is a 
BASIC loader for machine-code). Typically, this is rather amorphous. On the other 
hand, files, which use ASCII storage, are usually entirely readable. Note the carriage 
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return characters, which are the record separators in the CBM system. 

90 
08 
19 
18 
29 

: (11 0A)(01 94) ~ ~ 
: 41 82 31 32 AC 31 36IAIE I A~12.16, 
: 33 3A 8F 2121 24 43 30 39 I 3:. $Ca0 

3121 121121 34 94 aA 99 S8 C2 I a 4 UI 

28 
30 
38 
49 
48 
5121 
58 
6e 
68 

I 28 41 29 83 81 37 36 A7 (A)-j.L76 1 
9E 31 36 33 39 3A SF 2121 I m1639:. 
42 41 53 49 43 32 99 59 8ASIC2 P 
94 £IF 99 88 C2 28 41 29: UI(A) 
82 37 36 A7 9E 32 31 35 I ~76 ~15 
31 3A 8F 29 42 41 53 49 1:. BASI 
43 34 09 8F 94 14 99 99 I C4. • 
22 93 11 11 11 11 11 11 "~ 

70 
78 
8121 
88 
9121 

11 11 11 11 11 11 29 29 
29 20 20 2121 55 4E 49 56 
45 52 53 41 4C 20 44 4F 
53 2121 53 55 5121 59 4F 52 
54 2121 4C 4F 41 44 45 44 
11 11 11 11 11 11 11 11 : 
22 99 95 04 1 E £Ie B2 @ I 

9::: I (90 ee/AA AA AA AA AA AA 
Ae AA AA AA AA AA AA AA AA I 

A8 AA AA AA AA AA AA AA AA 
8e AA AA AA AA AA AA AA AA 
88 AA AA AA AA AA AA AA AA 
ce AA AA AA AA AA AA AA AA : 
C8 : AA AA AA AA AA AA AA AA 
De AA AA AA AA AA AA AA AA 
08 AA AA AA AA AA AA AA AA 
E0 AA AA AA AA AA AA AA AA : 
E8 AA AA AA AA AA AA AA AA 
Fe AA AA AA AA AA AA AA AA 
F8 • AA AA AA AA AA AA AA AA 
1210 :(11 14)AA AA AA EA E6 77 
1218 De e2 E6 78 86 83 8A 80 
10 01 91 C9 98 00 3A 80 02 
18 01 C9 C3 00 33 A5 77 De 
20 2C 85 78 C9 02 De 26 B0 

00 84 83 81 77 C9 3E Fe 
11 C9 4121 Fe 90 C8 85 B3 

12113 : ~ 13) 3121 30 3e 31 2(: 513 
1218: 0 3121 3121 3121 32 2C 50 45 
Ie : @ 3121 3121 :313 33 2C 513 45 
18 : 54 @ 3121 3e 30 34 2(: 50 
2121 : 45 54 2121 @ 3121 3121 ~ 35 
28 2(: 5121 45 54 20 44 ~ 30 
3'.::1 3121 3121 @ 2(: 50 45 54 2121 
38 44 49 1210 3e 3121 3121 37 2C 
40 5e 45 54 2e 44 49 53 @ 

3121 3121 :313 :38 2(: 5121 45 54 
2121 44 49 53 4B @ 3e 3121 
:3e 39 2C 5e ~ 54 29 44 
49 53 48 2121 ~ 3e 313 31 
3121 2(: 5e 45 54 2e 44 49 
53 48 213 44 @) :3121 3121 31 
31 2C 5121 45 54 2121 44 49 
53 48 2(1 44 41 @ 3121 3121 
31 32 2(: 5121 45 54 2121 44 
49 53 48 2(1 44 41 54 @ 
3e 3e 31 33 2C 5121 45 54 
213 44 ~ 5:3 48 213 44 41 
54 41 ~3e 3121 3134 2C 

48 
5(1 
58 

68 
7121 
78 

8::: 
ge 
98 
Ae 
H-,;:. '-' 

UHIV 
ERSAL DO 
S SUPPOR 
T LOADED '. . 1 1 1 

1 1 1 
1 1 1 
1 1 1 
1 I 1 
1 I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I .7 

, lIeB-l.J-I 

.... -"1317' 
, I So, "l& 

eeel,p 
ee02,PE 
00e3,PE 

T ee04 .• p 
ET 0095 
,PET 0 I) 

1396, PET 
01 012107 .• 
PET DIS 
BI3B8,PET 

DISK €II) 
B9,PET 0 
ISK 12191 
e .• PET 01 
SI< 0 eel 
l,PET DI 
SI< OA €Ie 
12,PET (I 

lSI( OAT 
ee13,PET 

DISK DA 
TA 12112114, 

<: ~ \Program file. 

\: \ Ne:><.t ~c:ror ::. t>1ld<. 17, se.ciM- 10. 
\ L."",.t AUfV.s!..::: $0,*"01. 

1;-. L.:"k aU/t.5!>::; $0'1-17 jist. lMe.~tr '" 5. 

~ Sequential file. 

I\le:;±:' s<.ct ... is -t-.... c.k 13, SI'.c.{'.,.,.. 1'1. 
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Relative files are more complex than the other types. and are stored in a more elab­
orate manner. Each file is held in two parts: the first is the main data storage. which 
resembles a sequential file. The other part is the chain of side sectors. The starting­
point of each chain is recorded in the directory entry. Let's first look at the data 
storage. The important point to note is that the file is divided. conceptually at least. 
into equal chunks of data. The size of each chunk is determined by the 'L' parameter 
when the file is opened for the first time. It is convenient to refer to these subdiv­
isions as 'records', although by using the byte pointer of the RECORD statement, it's 
possible to write several 'records' into the allocated space. A record may be divided, 
by commas or colons, into 'fields': typically, a name and several lines of address make 
up the fields in a record. In a sense, within each record, the data is read and written 
sequentially, in a statement like PRINT'8,A","B$","C$. Good file-design takes account of 
the speed of access possible with relative files, and also of the different ways in which 
data may be arranged on file. As we have seen, a sequential file is straigh tforward to 
write to: data is written, and finished off with a Return; and subsequent data is added 
to the end of this, so the result is a long file punctuated by Return characters. 

Writing to a relative file isn't quite as simple, because of the fact that at any 
time a record can be accessed and written to. Suppose record #250 holds a name and 
address at present; then the program decides that record #250 should be some other 
name and address, so it calls up this record, and writes the new data into the record. 
If the new address is shorter than the older one, there is a risk that garbage may be 
left in the record. Consequently, any PRINT# statement to a relative file not only 
writes its data, but also fills the remainder of that record, from its position at the end 
of its data to the record end, with null characters (zero bytes). This must be borne 
in mind if several PRINT # statements are made to the same record, using constructions 
like RECORDIl,250,lO to write from byte position 10 in the record. Apart from this 
subtlety, PRINT# is usable exactly like a sequential record's PRINT#, and a Return 
character is written in the same way. For these reasons, the easiest way to use 
relative files is to follow these two rules: 

(i) Test the length of your data before printing it to disk, to check that it'll fit 
the record size; remember the carriage return character. 

(ii) Use a single PRINT# statement for each record, for example: 
PRINT'8,N;"," ;N$;"," ;M;M$ which writes 3 fields to a record, consisting of a 
numeral N, a string N $, and a composite field holding numeral M then string 
M$. 

DATA SECTOR CHAIN: 

SIDE SECTOR CHAIN: 

[NOTE: The chained sectors are not arranged linearly, but scattered about the diskette] 

As the diagram shows, relative files have a chain of 'side sectors', which point to the 
sectors holding the actual data. For example, sector 250 has its own pointer, which is 
in the third side sector, and consists of its track and sector number. When a record 
is accessed, the record length is used to calculate which sector(s) hold the record; 
the maximum length of a relative record is 254, so two sectors at most hold it. The 
appropriate side-sector is loaded into its buffer, and the pointers for two sectors read, 
so the actual data can be loaded next. This is quite an efficient process. To take an 
actual example, suppose we wish to read record #100, and the record length is stored 
as 100. Also suppose that the file is open, and one of its buffers holds a side-sector, 
and the other holds a data sector. (The third holds data for input or output). The 
record starts at the 99*84 = 8316th byte in the relative file of data. In a sequential 
system, we'd have to read consecutive sectors to find this. In our relative file system, 
though, DOS calculates that the 8316th byte is to be found in sector 32 (i.e. 8316 
divided by 254). So sector 32 (and perhaps 33) must be read. Where is sector 32 of 
the data file? It's pointers are held in side sector number 32/240, i.e. O. So the disk 
is searched for this sector, which takes a single disk read unless this side sector is 
in a buffer already, in which case it can perform the next step immediately, which is 
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to calculate the position in the side sector which stores sector 32's pointers, read the 
track and sector from this position, and finally read the disk again. Where necessary, 
the next data sector can be read either from the side sector, or from the prior data 
sector. Three disk reads are therefore the maximum required by this method. 

Each side sector is formatted like this: 

BYTES: CONTENTS: 

0-1 Track and sector pointer to next side sector. 
2 Side sector number, 0-5. 
3 Record length of relative file. 
4-15 6 pairs of pointers to every side sector. 

16- 25 5 120 pairs of pointers to consecutive sectors of data. 

so that a new side sector can be found with a single disk-read only. The first pair of 
pointers is the usual DOS maintenance link pointer set, so that the file can be COPYed 
(in principle) and not COLLECTed. An extra channel needs to be kept open by DOS 
for this type of file; one for the side sector, one for a data sector, and the third for 
the data itself. (A sequential file needs only two, holding a sector and data respect­
ively). Since ten channels is the maximum allowed by the system, apart from channels 
o and 1, the following combinations of open files are the most obtainable (more files 
may be used in a program by closing some while others are open): 

3 Relative files + 0 Sequential fi les 
or 2 Relative files + 2 Sequential files 
or 1 Relative file + 3 Sequential files 
or 0 Relative files + 5 Sequential fi les. 

The first issues of DOS 2.5 (for 8050 drives) permit only a maximum of 6 side 
sectors to exists. This is the same number as is available with the 4040 drives, and 
is something of a restriction; 'The 8050 thinks it is three 4040s', as I've heard it put. 
A single relative file can't fill the whole of an 8050 disk; three can. This restriction 
will be removed with the third set of ROMs for the 8050.* 

Let's look at the restrictions implicit in the relative files' handling. First of all, 
the number of records is held as two bytes, and can't exceed 65535. Secondly, the 
length of a record can't exceed 254. Thirdly, the maximum number of sectors which 
the file can occupy is limited, by the side sector restriction, to 120*6=720 sectors. So 
the maximum data storage capacity of one of these files is 720*254 = 182 880 bytes. This 
is not a great deal, so users of the 8050 may need to separate what could have been 
a single file into several of shorter record-length. Data compression techniques may be 
used, particularly with numerals, and repetitive information should be left out; for 
example, the demonstration programs in section 6.3 of this chapter all write records of 
the form 'RECORD NUMBER x'; in practice, only the x need be stored, as is perhaps 
obvious. To calculate the longest available record-length, when the number of records 
is known, divide 182880 by that number and subtract 1 (for a carriage return); this 
gives the 8050 figure. Commodore documentation puts the length of a 4040 relative file 
as 167 132 bytes maximum (and implies that this is a diskette's maximum, not a file's 
maximum, which is confusing). Thus, 1827 records of length 100 can be fitted into an 
8050 relative file. 

Another approach is the use of a large number of small files. Section 6.2 ex­
plained how 'inverted files' make a suitable structure for a database; a practical 
illustration is the OZZ and the later Silicon Office retrieval system, in which relative 
records are recoverable by a key such as 'SMITH218', which includes both a relative 
record number (218) and its own internal system, in which a series of short files hold 
pointers based on the initial of the field. Thus, a relative file holds the Ss in sorted 
order, from which the corresponding data can be recovered. (Each new entry is added 
to the relative file, and al so merged in to its index file). 

*As it may be important to have the facility to store large relative files, a program 
like this one may be useful. It is one way (of many) to test the upper limit of DOS 
with relative files. Put a formatted empty disk in drive 0: 

10 DOPEN#1,"TEST",L100,DO 
20 FOR J = 1 TO 1E9 : RECORD#l,(J*100): IF DS<>52 THEN NEXT 
30 PRINT "MAX.REL.FILE APPROX.=" lOO*J "BYTES": DCLOSE 
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6.5 Direct access programming to disk 

CBM direct access commands Commodore's motives for introducing these commands, 
whilst supplying very little documentation, seem to have been mixed. Possibly they 
were a temporary measure, designed to suggest that relative files and other convenient 
file-handling techniques were available with DOS 1+, when in fact implementation was 
rather difficult. DOS 2+ does not appear to have been correctly updated, so that the 
'Block-Allocate' function may not work correctly. There were at the time of writing 
persistent rumours (or to be precise, rumors) that new CBM disks will drop these 
commands, switching to others and also being 'more supportive'. This remains to be 
seen. The following summary applies to DOS 1+ and DOS 2+, and consequently to the 
range of 2040,3040,4040, and 8050 drives; it may not apply to later versions of DOS. 

These drives contain two microprocessors; one of these processes the incoming 
data on the IEEE bus, including the command channel strings and the input and output 
of bytes of data. This shares RAM with the other processor, which in effect is a disk 
controller chip, operating the read/write head, the motors, the encoding and decoding 
of bytes, the error handling, and the housekeeping, including such matters as check­
ing clock pulses, and testing cyclic redundancy checks. This processor is less access­
ible than the other; there's a well-known Butterfield program (see e.g. IPVG, Jan. '80) 
which in effect enables either chip's ROM to be disassembled. In its original form it 
is written for the 2040 drive. Some programs make use of these facilities to provide 
a high degree of copy protection. For example, OZZ and 'Silicon Office' have their own 
'V' routines to read and write sectors, which are reputed to be different from the 
normal ones, so that the resulting disks are truly uncopyable with the normal CBM 
instructions. This sort of thing is rather unusual, and tends to require co-operation 
from Commodore to be workable. 

How are direct access commands sent? A special character in the 'open' statement 
signals that this type of processing is to be used, and DOS allocates a buffer. This is 
numbered with a 'channel number' which is identical to the secondary address used in 
the'open' statement. The syntax is: 

OPEN 1,8,2,"#" :REM ASSIGNS A DISK BUFFER TO CHANNEL 2 AND LOGICAL FILE NO.1 
OPEN 7,8,5,"#6" :REM ASSIGNS BUFFER 6 TO CHANNEL 5 (OR ERROR 70,NO CHANNEL) 

DOPEN includes an irrelevant drive number. GET#I,X$ or GET#7,X$ returns the buffer 
number (3-12), in our examples. The first format is less trouble, since it searches for 
a free buffer itself. The channel number occurs in all the commands in which sectors 
are read or written; the BAM instructions (Block-Allocate and Block-Free) don't use 
it, neither do the DOS memory commands. However, the 'V' commands, which jump to 
DOS RAM (and, in the 2040 only, to an expansion ROM socket), also require the 
channel number. Note that secondary addresses 0 and 1 are reserved by DOS for read­
ing and writing. 

The examples that follow assume, for consistency in exposition, that 

OPEN 15,8,15 
OPEN 1,8,2,"'" 

have been performed, opening the command channel as file #15 and a direct-access 
channel as file #1, channel number 2 - the different numbers to emphasise which para­
meter is in use. Some of these commands, those beginning 'B', resemble disk comm­
ands as sent by BASIC<4, in that alternative spellings are accepted; the hyphen is the 
separator between the two parts of the command name. Mnemonically, this can be a 
help. A colon marks the command name's end. The 'M', or 'memory', commands are less 
forgiving in this respect. They are also intolerant of the use of numerals or variables 
in place of strings, while 'B' and 'V' commands are able to deal with numbers as they 
are received. After the alphabetic list, with its short illustrations, I've included fuller 
examples of the use of these direct access commands; looking at examples is probably 
the easiest way to get the feel of them. 

I should perhaps add that these files, like all others, can be closed when they 
are finished with. This may cause the block availability map to be written to the disk, 
to reflect its updated status, and thus make permanent the changes in sectors which 
these routines may have carried out. Conversely, if COLLECT (Disk VALIDATE) is 
carried out at a future time, user-written sectors, even though they've been allocated 
in BAM, will be de-allocated, unless an elaborate system of pointers has been included 
to mimic one of the acceptable file types. Such sectors will then be liable to be over­
written if files are subsequently stored on the disk by DOS. For this reason, direct 
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access files must normally be segregated from files which are maintained by DOS, so 
that an entire disk (or side of a disk, with double-sided drives) may be reserved for 
this form of data storage. 

B-R 
BLOCK-READ command. Replaced by U1. 

This command enables any block on a standard-format disk to be read. The disk must 
be formatted in the same way as the drive which is reading; in particular, the number 
of tracks must match, so that the stepper-motor intervals are equal. 8050 disks cannot 
be read by -40 drives, and -40 disks cannot be read by 8050 drives. U1 is the more 
reliable instruction, and is recommended in place of B-R, which it closely resembles. 
If a sector cannot be read, because of some flaw in the recording process, Block-Write 
can sometimes reconstruct the sector, so (for example) disks which will no longer init­
ialise may be recoverable. 

Syntax: PRINT#15, "U1"; channel number; drive; track; sector or: 
PRINT#15, "U1: string of four characters" where the four bytes are taken to 

be channel, drive, track, and sector. 
Note that commas, instead of semi-colons, may be usable as separators in the 

first form, though semi-colons are the recommended character. 
On executing this command, the sector is read into the channel's buffer, and 

the buffer-pointer set to the start, so that characters input from the buffer will read 
from the beginning. If bytes 144-145 only, say, are wanted, Buffer-Pointer can be 
used to shift this poin ter . 

Examples: The first example is rather rudimentary; it prints 256 characters from any 
sector directly to the screen. If these include screen editing characters, the screen 
will clear, shift, etc. 'DISPLAY T &S' works like this, using a decimal to hexadecimal 
conversion routine on ASC(X$). Remember that X$ must be tested for equality with the 
null string '"', and converted to CHR$( 0) when it is null. 

10 OPEN 1,8,2, "I": OPEN 15,8,15 
20 INPUT "DRIVE, TRACK, SECTOR"; 
30 PRINTI15,"U1";2;D;T;S 
40 GETl1,X$: IF ST=54 GOTO 20 
50 PRINT X$;: GOTO 40 

D,T,S 
: REM 2 IS SECONDARY ADDRESS OF }'ILE NO.1 
:REM END OF BUFFER 
:REM PRINT CHARACTER FROM SECTOR 

The next example shows how a chain of sectors can be followed; all that's needed is to 
read the first two bytes of a sector, and read the corresponding track and sector, 
until eventually the track is recorded as zero, showing that the file has come to an 
end. The routine prints each track-sector pair: 

10 OPEN 1,8,2,"1": OPEN 15,8,15 
20 INPUT "FIRST SECTOR'S DRIVE, TRACK, AND SECTOR"; D,T,S 
30 PRINT "TRACK =" T " SECTOR = "s 
40 PRINTI15,"U1";2;D;T;S 
50 GETl1,T$: GETl1,S$ 
50 IF T$="" THEN PRINT "TRACK = ZERO": CLOSE 1: CLOSE 15: END 
?O IF S$="" THEN S$=CHR$(O) 
80 T=ASC(T$): S=ASC(S$): GOTO 30 

Further examples occur in RANDOM 1. 00, the 8K program to process relative files with 
DOS 1. See linenumbers 410ff. for typical read, update and write disk processing. 

The alternative form of syntax of this command, and of the remaining Block 
commands, is less convenient to use, so I shall only briefly mention it here. (I am 
talking about BASIC programming; in machine-code it is easier to send a command 
string on the IEEE bus in the alternative form). It consists of a string of 7 characters: 

1000 C$ = "U1:" + CHR$(CB) + CHR$(DR) + CBR$(TR) + CHR$(SE) 
1010 PRINTI15,C$ 

3000 PRINTI15,"U1:" CHR$(CH) CHR$(DR) CHR$(TR) CHR$(SE) 
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B-W 
BLOCK-WRITE command. Replaced by U2. 

This command writes the current contents of a specified buffer to any track and sector 
of a disk. Data may be put in the buffer by PRINT #1, in combination with Buffer­
Pointer if the data is wanted in mid-buffer. It may be loaded from another sector, or 
a combination of the two methods may be used to load/ update/ rewrite any sector. 
U2 is recommended in place of B-W. 

Syntax: PRINT#15, "U2"; channel number; drive; track; sector or: 
PRINT#15, "U2: string of four characters" where the four bytes are taken to 

be channel, drive, track, and sector numbers. 
The position of the Buffer-Pointer is not relevant to this commmand; it is used 

by INPUT#1, GET#1, and PRINT#1, when reading from or writing to the buffer, but 
the entire sector is written irrespective of the pointer's position. After this command, 
the pointer is left at the start of the buffer (byte 1). 

Examples: The first example writes to every sector in track 1. This may be used as 
the basis of a test timing program; varying the order in which they are written will 
cause variations in time taken. CBM disks use an algorithm to calculate the position of 
the 'next' sector in a track; the -40 series for example adds about 10 to the previous 
sector. 

10 OPEN 1,8,2,"#": OPEN 15,8,15 
20 DATA 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 
21 REM ORDER IS VARIABLE. NOTE THAT 8050 UNITS HAVE SECTORS 0-28 IN THIS TRACK 
30 FOR S = 0 TO 20 
40 READ SE 
50 PRINT#15,"B-P";2,1 :REM CHANNEL 2 IS SECONDARY ADDRESS. BYTE POSITION=1 
60 PRINT#I,"MESSAGE" + STR$(S) :REM THIS WILL BE WRITTEN TO THE SECTOR 
70 PRINT#15,"U2";2,D,I,SE :REM D = DRIVE NUMBER, I=TRACK, SE=SECTOR 
80 NEXT: CLOSE 1: CLOSE 15 

Note that BASIC<4 will add an extra line feed, CHR$(10), on the end of the message 
in line 60. The next example shows a sector being partly rewritten with PRINT#. Note 
that in BASIC this is accompanied by a carriage return character; this is unlikely to 
be wanted if the sector is part of BASIC or machine-code, but is acceptable with files. 
To avoid the character being sent, simply finish the PRINT # statement with a semi­
colon. 

240 INPUT "INSERT MESSAGE FROM WHICH STARTING-POINT (I=SECTOR START)";P 
250 INPUT "MESSAGE";M$ 
260 PRINT#15,"B-P";2;P 
270 PRINT#I,M$; 

B-E 
BLOCK-EXECUTE command. 

:REM 2 IS SECONDARY ADDRESS = CHANNEL 
:REM WRITE MESSAGE (COULD ALSO CHECK THAT 

P + LEN(M$) < 257). 

Block-Execute is analogous to a program LOAD then RUN. It loads the specified sector 
into its buffer, then jumps, in machine-language, to the start of the buffer. On en­
countering RTS it returns to the BASIC program using it. This command is not often 
used, since there is little advantage in its use unless the programmer has detailed 
knowledge of the DOS ROM in the disk unit. The Memory-Execute command is similar, 
but its machine-code is not kept on a disk sector, but directly PRINTed to memory, 
so it is more widely used in BASIC utilities. 

Syntax: PRINT#15, "B-E"; channel number; drive; track; sector or: 
PRINT#15, "B-E: string of four characters" where the four bytes are taken to 

be channel, drive, track, and sector numbers. 

Examples: Any of the Memory-Execute type of command met with in utilities can be 
written to a sector on disk, but will be vulnerable to overwriting if COLLECTed, so 
that the disk cannot be an ordinary DOS disk. For example, a pair of routines in 
Transactor (reprinted in CCN, July '81) give the whereabouts of DOS' subroutines to 
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compute the number of free sectors in a diskette (the routine is part of the directory, 
and adds the free sectors as they appear in BAM). The information for DOS 2 and 
DOS 2.5 is: 

DOS 2: Put disk drive number (0 or 1) in location $12, 
execute routine $DB34, 
then blocks free are contained in $4377 (low byte) and $4378 (high byte). 

DOS 2.5: Put drive number (0 or 1) into location $12, 
execute routine $D3E7, 
then blocks free are contained in $43AF (low byte) and $43BO (high byte). 

Since the B-E buffer is not fixed, unused RAM locations of DOS are needed; one of 
these is Memory-Written with the drive number, and B-E called, holding this: 

LDA DRIVE/ JSR DB34/ LDA 4377/ STA RAMLO/ LDA 4378/ STA BAMHI/ RTS 

B-A 
BLOCK-ALLOCATE command. 

This is a BAM command which sets a bit in the BAM low, corresponding to a track and 
sector which the parameters specify. This prevents the sector from being overwritten, 
unless COLLECTed, when the BAM bit will be set high again. If the requested block 
is already in use, error 65,NO BLOCK is signalled in DS$ or by GET#15,E. Some DOS 
versions return the next available track and sector with the error string. This makes 
the allocation of new sectors very easy, since the same sector can always be requested 
(e. g. the directory header) which is known to be used, and the next parameters can 
simply be read out. This works with DOS I, but is reported to be unreliable with DOS 
2; this of course makes DOS 2 more unworkable than DOS 1 in this respect. The way 
to get round this bug is to try tracks and sectors in some increasing pattern, until 
error 65 no longer appears. I deally the pattern should be that of the order of sectors 
used by DOS. The 'next' track and sector is evaluated by DOS according to its own 
algorithms. * The syntax is identical to that of Block-Free. 

Examples: With DOS 1, this type of subroutine will allocate a new T and S: 
1000 PRINT#15,"B-A";D;T;S 
1010 INPUT#15,E,E$,ET,ES 
1020 IF E=O THEN RETURN :REM T AND S ALLOCATED SATISFACTORILY 
1030 IF E<>65 THEN GOTO ... :REM ERROR-HANDLING ROUTINE 
1040 T=ET: S=ES: IF T=18 THEN T=19: REM AVOID DIRECTORY TRACK 
1050 GO TO 1000 :REM ALLOCATE THE NEXT TRACK & SECTOR AS RETURNED 

DOS 2 requires a more tedious routine; the following is an outline, omitting the detail 
required to test sectors for validity. See linenumbers 800ff' in 'RANDOM l' for an ex­
ample of the type of test that's needed. Since this routine relies on incrementation of 
the track number, a full diskette can only be ensured by writing from track 0, sector 
0, rather than starting at the directory track's neighbourhood. 

1000 GOSUB •.. :REM INCREMENT SECTORjTRACK; AVOID DIRECTORY 
1010 PRINT#15,"B-A";D,T,S :REM TEST THE BAM 
1020 IF DS=O THEN RETURN :REM T AND S ALLOCATED SATISFACTORILY 
1030 IF DS<>65 THEN GOTO '" :REM ERROR-HANDLING ROUTINE 
1040 GOTO 1000 :REM CONTINUE LOOP 

*The algorithm is required to generate a series of sectors, covering the entire range 
without repetition, with about half a disk's separation between consecutive sectors. 
Typically, it generates even sectors in ascending pairs followed by odd sectors in 
descending pairs. Example: (i) Set a constant = 1 the number of sectors, to the nearest 
integer. (ii) Select two even constants, one greater and one less than the number of 
sectors. (iii) Start with sector 0, adding the constant, subtracting the larger value 
when the sector is impossibly high: when zero, set the sector to 1 and repeat, but 
subtracting the smaller constant on overflow. 

Consider track 1 of the -40 range, with sectors 0-20. Setting our increment to 
10, and our high and low constants to 22 and 18, the following sequence is generated: 

0,10,20,8, (i.e. 30-22),16,4,14,2,12,1, (i.e. in place of 0),11,3,(i.e. 21-18), 
13,5,15,7,17,9,19, exit (as sequence exhausted). 
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B-F 
BLOCK-FREE command. 

This command is the converse of Block-Allocate; it is a BAM command which sets the 
specified track and sector bit in BAM high, so the sector is de-allocated. The sector 
still exists, but is liable to be overwritten. 

Syntax: PRINT#15, "B-F" drive; track; sector 
The syntax is identical to that of 'Block-Allocate'. Note that a channel number is not 
required. 

Example: The routine de-allocates all the sectors of a diskette. The BAM at the end of 
this process consists of 1s only. Routines of this sort may be useful in experiments 
with free-format disks without a directory. Note however that de-allocating sectors 
with this command is not necessary; allocated sectors can be written over, ignoring 
the warning of error 65 that the sector has previously been allocated. 

1000 FOR T = 1 TO 35 :REM 2040,3040 OR 4040 
1010 DATA 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,19,19,19,19 
1012 DATA 19,19,19,17,17,17,17,17,17,16,16,16,16: REM 4040 HAS 18, NOT 19 
1020 READ X: FOR S = 0 TO X 
1030 PRINT/115, "B-F";D;T;S 
1040 NEXT S,T 

B-P 
BUFFER-POINTER command 

Buffer-Pointer controls the pointer to a buffer used by the 'Block' commands. It is 
used both when PRINTing data into a buffer and when reading it out. The rationale is 
similar to RECORD when relative files are used from BASIC. 

Syntax: B-P has only two parameters, the channel number and the byte position. The 
latter normally takes values in the range 1 - 255. 

PRINT#15, "B-P"; channel number; byte position 

Examples: Block-Write includes several examples of this command. To illustrate how 
Buffer-Pointer can be used with read, I've written this short example program; it 
reads a sector from the directory, then reads the requested file details from the 
buffer, using the fact that each file's data occupies 32 bytes. 

10 REM DIRECTORY TRACK = 18 OR 39; SECTORS = 1-20, 1-19, 1-28; DEPENDINGONMODEL 
20 OPEN 1,8,2,"#": OPEN 15,8,15 
30 INPUT "DRIVE, SECTOR"; D,S 
40 PRINT#15,"U1",2,D,39,S 
50 INPUT "WHICH FILE"; F 
60 PRINT#15,"B-P";2;32*F - 31 
70 PRINT CHR$(34); 
80 FOR J=l TO 32 
90 GET#l,X$: PRINT X$; 
100 NEXT J 
110 GOTO 50 

M-R 
MEMORY-READ command. 

:REM OR TRACK = 18 FOR 2040, 3040, 4040 
:REM F FROM 1-8 
:REM POINTER MUST BE 1,33,65,97, ETC 
:REM QUOTE MARK 

:REM PRINT DETAILS OF ONE FILE ENTRY ONLY 

M-R enables the RAM and ROM in DOS to be read, one byte at a time, by the CBM. 
This has applications in disassembling DOS, peeking RAM and zero-page, looking at 
BAM as it is held in memory, and so on. A new M- R command must be issued for each 
new byte. 

Syntax: PRINT #15, ''M - R" followed by two bytes only. These constructions are accept­
able: PRINT#l5, "M-R";CHR$(8)CHR$(0) and PRINT#15, "M-R"CHR$(123)CHR$(7) and 
PRINT#15, "M-R" + "q" + "%" ,among others. The two parameters which follow "M-R" are 
the low and high bytes respectively of the DOS address to be peeked. Note that the 
form "M-R" is the only accepted form in which this command can be issued. The block 
commands allow "BLOCK-ALLOCATE" for example, or other words with the initials B-A. 
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Examples: The first example returns the value of any byte in any location in the 
IEEE part of DOS (Le. not the disk controller's locations). I've written it as a sub­
routine, so that it can be added to a BASIC disassembler and used to disassemble DOS 
ROM in hardcopy form. (This is easier than modifying a machine-code disassembler, 
and not all that much slower with a printer). Assuming channel 15 is open, the byte 
held by DOS in location QQ is returned in QQ. SO, QQ=63030 returns from this routine 
with QQ=PEEK(DOS location 63030), for example. QQ doesn't signify anything particul­
ar; I chose it only because it's unlikely to be a variable used elsewhere in a program. 

10000 REM ON ENTRY, QQ = LOCATION (0-65535); QQ RETURNS AS THE DOS PEEK 
10001 REM 
10010 PRINT#15,"M-R" CHR$(QQ - INT(QQ/256)*256) CHR$(QQ/256):REM LO THEN HI BYTE 
10020 GET#15,QQ$: IF QQ$="" THEN QQ$=CHR$(O) 
10030 QQ = ASC(QQ$): RETURN 

The second example peeks into a region of RAM in which the current disks' directory 
entries are held. (For a memory map, see a few pages forward). This area will of 
course be peekable by the disassembler too, but this program prints it in readable 
form: 

100 INPUT "WHICH BUFFER? (1=$4200, 2=$4300); B 
110 INPUT '~ICH DRIVE? (1= -40 , 2=8050) ; T 
120 IF T=l THEN T=144 
130 IF T=2 THEN T=6 
140 FOR J=O TO 19 
150 PRINT#15,"M-R";CHR$(T+J);CHR$(65+B) 
160 GET#15,X$ 
170 PRINT X$; 
180 NEXT J 

M-W 
MEMORY-WRITE command. 

:REM B SHOULD BE 1 OR 2 
:REM T SHOULD BE 1 OR 2 
:REM STARTING-POINT OF 
:REM NAMES AND IDS 

:REM FETCHES AND PRINTS DISK 
:REM NAME AND I.D. 

M-W enables data to be placed into the disk unit's RAM. This means machine-code pro­
grams can be written to reside within the disk unit. In principle this has many uses, 
including hardware control and alternative software to operate the disk, but in pract­
ice its use is rather restricted, since detailed knowledge of the working of the disk 
units is not widespread. Additionally, the different ROMs are largely incompatible, so 
that general-purpose machine-code is made more difficult to write. And there is not a 
great deal of RAM. Each 'M-W' command can write 34 bytes at most. 

Syntax: PRINT#15 followed by a character string of this form: 
M - W start address (low byte) start address (high byte) number of bytes data. 
For example, the following formats are accepted: 

X$="M-R" + CHR$(O) + CHR$(16) + CHR$(l) + CHR$(O): PRINT#15,X$ 
PRINT#15,"M-R"CHR$(18)CHR$(0)CHR$(1)CHR$(1) 

where the first puts a null byte into $1000, and the second puts CHR$( 1) into the 
zero-page location $12. (This in fact represents a drive number). Like M-R, this 
command has no expanded form. 

Examples: The first example converts an 8050 disk unit number into a new value, by 
poking two zero-page locations. Typically, this is used to copy from a 4040 drive to 
an 8050, by DLOAD "BASIC PROG",D1,U8: DSAVE "BASIC PROG",DO,U9 and other similar 
commands. 

PRINT#15,"M-W"CHR$(12)CHR$(0)CHR$(2)CHR$(9+32)CHR$(9+64) :REM NEEDN'T BE 9. 

The next example is more complicated; it shows how machine-code can be stored in the 
disk buffers. Buffer number 2 is used (0 and 1 are used by DOS) and the code is 
executed by the internal (not IEEE) processor, which peeks 16 bytes from that proc­
essor's addressable memory. The result is stored in the RAM shared between both 
processors. It occurs in 'DISK MEMORY DISPLAY' by Jim Butterfield. 

110 DATA 77,45,87,0,18,16,162,0,189 :REM MACHINE-CODE BEFORE THE ADDRESS ... 
120 DATA 157,64,6,232,224,16,208,245,108,252,255 :REM ... AND AFTER 
130 FOR J = 1 TO 9: READ X: C$ = C$ + CHR$(X): NEXT 
140 FOR J = 1 TO 11:READ X: D$ = D$ + CHR$(X): NEXT 
315 REM U=LOW BYTE, V=HIGH BYTE, OF DISK PROCESSOR LOCATION TO BE PEEKED 
320 PRINT#15, C$;CHR$(U) ;CHR$(V) ;D$ :REM CODE NOW IN PLACE 
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The string C$ contains M-W followed by 0 and #$12, which is address $1200 stored 
with its bytes in reverse order. The next byte is 16 decimal; this is the number of 
bytes to be written to memory. The data statements have only 14 further bytes; the 
remaining two are supplied in program-line 320 by CHR$(U) CHR$(V). The effect of 
the code is as follows: 

$1200 LDX #$00 
$1202 LDA ADDRESS,X 
$1205 STA $0640,X 
$1208 INX 
$1209 CPX #$10 
$120B BNE $1202 
$120D JMP ($FFFC) and this can be checked by looking at the decimal equival­

ents of the hexadecimal listing. This routine can also be written into a BASIC disass­
embler, so the workings of the disk processor can be examined. 

M-E 
MEMORY-EXECUTE 

Jumps to the specified location in the IEEE processor's address space, and executes 
the code it finds there. This may be a standard ROM routine, or user-written code 
which has been stored in RAM with M-W. ROM routines can be found by disassembling 
DOS or by reading other peoples' programs. 

Syntax: M-E has only two parameters, the low and high bytes of the execute location. 
PRINT#15, "M-E" CHR$(231) CHR$(211) is a typical example. There is no alternative 
expanded form of M-E. 

Examples: This command calls the hardware reset address in DOS: 
PRINT#15,"M-W" CHR$(O) CHR$(18) CHR$(3) CHR$(108) CHR$(252) CHR$(255) 
PRINT#15,"M-E" CHR$(O) CHR$(18) : REM PERFORMS INDIRECT JUMP TO ($FFFC) 

As we shall see this is equivalent to PRINT#15, "UJ" . 

The error LED and DS$ are operated by a routine at $D925 (4040) and $EEB3 (8050). 
So PRINT#15,"M-E" CHR$(179) CHR$(238) :REM PROCESS DS$ FOR 8050 

The routine in the directory processing which computes the total number of blocks free 
from BAM, and stores the result in the appropriate position in the directory, is at 
$DB34 (4040) and $D3E7 (8050). So again a routine like the following may be used from 
BASIC to call the subroutine: 

PRINT#15,"M-E" CHR$(231) CHR$(21l) 
This may be followed by the routine in M-R to print the directory, which should be 
updated to reflect the correct total of free blocks. 

The memory-execute command leads naturally to the last (documented) special 
DOS commands, of which there are 10, all beginning 'U', and referred to as user­
commands or user-defined commands. Their function is exactly the same as M-E, except 
tha t no address is specified; it is implicit instead in the command. For example, 

PRINT#15, "U3" and PRINT#15,"M-E" CHR$(O) CHR$(19) 

are identical in their effects; each jumps to $1300 in DOS RAM and executes whatever 
code has been written there. As the table indicates, each address is separated from 
its neighbour by three bytes, so the intention is to use the commands with a jump 
table - e.g. $1300 JMP (FFFC) / $1303 JMP $EEB3/ $1306 JMP $1200 and so on. As 
we've seen already, Ul and U2 are exceptional - they are used in place of B-R and 
B-W, and have channel, drive, track and sector parameters in their command strings. 
Note that some of the jump addresses, in the early disk drives, are to non-existent 
addresses in expansion ROM. This is an error, since these addresses, if required, can 
always be accessed from the RAM jump table, e.g. by $1309 JMP $D008, which keeps 
more options open. Later disk units have a uniform jump table in the third buffer, 
perhaps because the earliest buffer which isn't allocated by DOS, that from $1200-
$12FF, is a popular location for machine-code routines. Obviously, considerable know­
ledge of machine-code, and of the workings of CBM disk units, is necessary to use 
these commands fruitfully. Some commercial software, for example, has several routines 
of this sort to read and write sectors in non-standard ways' to disk, as a security 
measure. 
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UA- UJ 
User-defined jump addresses + NMI and RESET vectors. 

COMMAND FUNCTION 

Ul or UA B-R (BLOCK-READ) 
U2 or UB B-W (BLOCK-WRITE) 

JUMP ADDRESS TABLE 
2040/3040 4040/8050 

U3 or UC $1300 $1300 
U4 or UD $1303 $1303 
U5 or UE $1306 $1306 
U6 or UF $D008 $1309 
U7 or UG $DOOB $130C 
U8 or UH $DOOE $130F 
U9 or UI $DOD5 $10FO (=NMI) 
U: or UJ Power-on Power-on 

Notes on direct-access programming The memory-map of CBM disk units is made more 
complicated by the presence of two processors, a 6502 which handles the IEEE comm­
ands, and a 6504 to control the disk. These have RAM in common, as might be expect­
ed, consisting of 4K in total, or 16 'pages' of 256 bytes. Most of these are buffers for 
input and output to the disk; several hold BAMs and directory information, although, 
because of the varying storage capacities between the units, the number and arrange­
ment of these buffers differs. This diagram shows the main features of the memory 
map, including the differently-numbered RAM as between the two processors. Note the 
way that the same RAM shows itself differently to each of the processors; if you 
refer to the example machine-code under M-W, you'll see that 16 bytes of the disk 
processor's ROM or RAM are put into $640 and the following locations. The memory-map 
shows that $1200, from the disk processor's point of view, is $600, so that the piece 
of code and the transferred bytes both occupy the same buffer of $1200-$12FF or $600-
$6FF depending on the processor. 

IEEE processor 
( 6502) 

$0000 Zero-page 

$0200 PIAs 

$EOOO ROM 

FOOO ROM 

-$FFFF 

---common---
---RAM---

Disk processor 
( 6504) 

$0000 Zero-page 

$0200 PIAs 

$0400 Read buffer 

BAM/directory 

/JJtJt# 

ROM 
-$FFFF 

This diagram is adapted from some comments by Jim Butterfield on the early disk units. 
It is not intended to be to a detailed map, but to give the general layout of the system. 
It is not to scale. 
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The IEEE processor, as we've seen (see M-R), can have its accessible memory disass­
embled very easily; the easiest method is to patch a BASIC disassembler and take a 
hard-copy printout. When exploring RAM, a test program can be used to poke and 
read back memory locations; if the new value is retained, the location must be RAM. 
This is thorough, but painfully slow in BASIC. The Disk processor is less accessible, 
and requires knowledge of the working of the read buffer to extract the information. 
(It is, of course, also possible to disassemble ROM by taking the chip from its socket 
and using alternative hardware). The key to this is location $1004 ($0404 to the disk 
processor itself). If this location has its high bit set, the disk processor goes into 
action, either reading 1 writing the disk or executing code. When the location is reset 
the IEEE part of the operation knows the operation is over, and collects its results 
from RAM or performs the next operation. The following short piece of BASI C, insert­
ed into the routine in M-R, causes BASIC to disassemble the internal, disk, machine 
code. 

10004 PRINT#15,C$;CHR$(QQ - INT(QQ/256)*256);CHR$(QQ/256);D$ 
10006 PRINT#15,"M-W";CHR$(4)CHR$(16)CHR$(1)CHR$(224) 
10008 PRINT#15,"M-R";CHR$(4)CHR$(16): GET#15,QQ$: IF QQ$=CHR$(224) GOTO 10008 
10009 QQ = 4672 

Where C $ and D$ are the machine-code strings in M-W (q. v.). Line 10004 puts the 
machine-code routine into the common RAM; Line 10006 pokes 224 into $1004; line 
10008 waits until that location indicates that the routine has been executed. The 
resulting bytes are deposited in $640ff of the disk processor's RAM; this is the same 
as $1240 ff or the IEEE processor. Hence line 10009 sets address $1240 (=4672) and 
peeks it using the ordinary M-R command. One character only is taken from the buffer 
so the code in C $ and D $ is over-complicated for this routine. Unfortunately, because 
of ROM variations, this routine mayn't operate without some changes: the 2040 unit 
for instance uses JMP $FEC1 in place of JMP (FFFC) at the end of D.$, i.e. the data 
statements end ... ,76,193,254. At the time of writing I don't have a complete list of 
corresponding addresses for all disk ROMs. 

We've seen, in M-R, how to find the buffers which contain the BAMs. Some of 
RAM is mappable as it is with BASIC ROM and RAM; for example location $0282 cont­
rols the LEDs on the disk units, bits 3,4, and 5 determining whether drive 01 drive 1 
1 central LEDs are lit. $12 holds the drive number, $2B the track, and so on. 

Utilities Some disk utilities are obtainable; most of them are rather disappointing. 
Instead of, say, general-purpose disk de-corrupters or index sequential files, they 
tend to perform comparatively trivial operations like reading disks' i. d. s or changing 
names of disks. As an example of the kind of thing that could be done, there is a 
BASIC routine in Compute! (Mar.'81) by D L Cone, printed in that journal's rather 
peculiar typographic style, which has several CBM disk recovery routines, usable even 
if the directory has been erased, relying on the track and sector links. Other maga­
zines (e.g. Liverpool Software Gazette) have had similar things. Track and sector 
routines which interpret what they find aren't hard to write. Routines to find unread­
able seCtors, and rewrite them so as to de-corrupt a disk, are possible, and can be 
useful if for example a diskette won't initialise. There are considerable possibilities 
along these lines; at the most advanced, routines to report the format of non-standard 
disks could be vRI uable. 

There are a number of utilities designed to facilitate operations which ought to 
be automatic with the system, but which have residual bugs or problems, or are simply 
not very easy to carry out. The programs 'COpy ALL' and 'COPY IALL' for instance, * 
available from user groups and some Commodore dealers, are intended as convenient 
alternatives to BASIC 4's COpy command. The latter is designed for all file types, in­
cluding relative files. As new DOS ROMs are issued, such utilities should become out­
dated, and there is a chance that they may cease to work with different configurations. 

The comparatively autonomous 'intelligence' of these units should be borne in 
mind. For example, with several different disk units connected to the same computer. 
copying between units becomes fairly straightforward; the units are r~configured by 
software so that their unit numbers are different (see M-W for an 8050 example), so 
transfer of programs between disks, followed by backups within the units, can be 
performed. The disk drives can be disconnected while a backup is taking place. 

*COPY/ALL (see CCN vol.3 #10, Nov. '81 for listing) replaces the earlier COPY.ALL 
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6.6 Machine-code programming with CBM disk drives * 
Files: opening, reading, and closing Let's start with a fairly simple example, which 
reads sequential files and displays the result by poking it into the screen. 

Suppose drive 0 has a sequential file called 'DATA' on its diskette. 
After OPEN 2,8,3,"0:DATA,S" logical file #2 is open for reading. (Different 

numbers for the logical file and secondary address have been chosen to make the 
machine-code's operation clear). 

$028C LDX #$02 ;LOGICAL FILE NUMBER 
$028E JSR $FFC6 ; SET INPUT DEVICE - ANY BASIC ROM 
$0291 LDY #$00 
$0293 Ll JSR $FFCF ;GET CHARACTER FROM DISK - ANY BASIC ROM 
$0296 STA $8000,Y;POKE CHARACTER TO SCREEN TOP 
$0299 INY 
$029A BEQ OUT 
$029C LDA $96 
$029E BEQ Ll 
$02AO OUT JMP $FFCC 

;256 CHARACTERS DISPLAYED 
;TEST STATUS BYTE (ST) 
;NOT END-OF-FILE 
;RESTORE DEFAULT DEVICES 

028A A2 02 20 C6 FF AO 
0292 00 20 CF FF 99 00 80 C8 
029A FO 04 A5 96 FO F3 4C CC 

.. 02A2 FF 
SYS 652 reads and displays 256 characters from the file on the top of the screen, or 
fewer if end-of-file is found (it is signalled by ST, the contents of $96). Because the 
bytes are poked, carriage return appears as 'm' (the 13th. letter of the alphabet). 

(1) The routine prints ?FILE NOT OPEN ERROR if the file (logical file #2) isn't open. 

(2) Each SYS 652 reads and displays the following 256 characters of the file. 

(3) CLOSE 2 finally turns off the LED and deallocates the channel. 

( 4) DS is not checked. (We'll see later how this is done). 

Note that on branching to OUT, Y holds the character-count; this is usually zero, and 
pokes to the screen as '@'. A holds ST. Either or both these figures can be printed 
as numerals, for example using the routine that prints a line-number, which can be 
found at the end of the reset sequence when it prints '31743 bytes free' or whatever 
figure is its RAM. In BASIC 4, X holds the value, LDA #001 JSR CF83 prints it in 
decimal. 

Many cosmetic improvements can be made to the output; [CLEAR], CHR$( 147), 
can be printed to the screen, for instance. The file may be checked for carriage ret­
urn characters, and output one record at a time. The output routine ($FFD2) can be 
SUbstituted for screen pokes. The stop key can be tested for, and so on. 2 

Can a file be OPENed using machine-code? Obviously this must be possible, since BAS­
IC itself operates exclusively with machine-code. This example is one way of doing it: 

SYS 634 "O:DATA,S" with 

$027A LDA #$02 
$027C STA $D2 ;LOGICAL FILE NUMBER 
$027E LDA #$03 
$0280 STA $D3 ; SECONDARY ADDRESS 
$0282 LDA #$08 
$0284 STA $D4 ;DEVICE NUMBER 
$0286 JSR $F53C ;CHECK COMMAND STRING & PUT IN BUFFER ($F4FD BASIC 2) 
$0289 JSR $F563 ;OPENS FILE WITH THESE PARAMETERS ($F524 BASIC 2) 
$028C LOX #$02 ETC. AS ROUTINE ABOVE 

This routine now opens the file and displays the first 256 characters; subsequent SYS 
calls to 652 continue to read the file . 

.. 027A A9 02 85 D2 A9 03 85 D3 

.. 0282 A9 08 85 D4 20 3C F5 20 

.. 028A 63 F5 

*It seemed best to me to put this section in Chapter 6, although strictly it is out of 
sequence. Programmers not familiar with 6502 code should skip to the next section. 
2There's a good example, using the screen-scroll routine, by R Davis in CCN,Vol.3, #5. 
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A file can be closed from BASIC using the address in FFC3 ('CLOSE') in association 
with a routine to fetch parameters from BASIC. Usually it is easier to avoid the input, 
simply loading the accumulator with the logical file number and entering CLOSE 5 bytes 
further on. In BASIC 4, for example, LDA #02/ JSR $F 2E 2/ continue closes logical file 
#2. BASIC 4 also has DCLOSE, which closes all files without needing file numbers. A 
slightly tedious piece of code can make CLOSE transferrable between BASICs, by com­
puting the indirect address of CLOSE and adding 5, as in the following example, ir. 
which A is assumed to hold the file number: 

TAY 
CLC 
LDA FFC4 
ADC #05 
STA FCL+l 
LDA FFC5 
ADC #00 
STA FCL+2 
TYA 

FCL JMP FCLOSE 

;SAVE FILE NUMBER 

;LOW BYTE OF ADDRESS OF CLOSE 

;HIGH BYTE OF ADDRESS OF CLOSE 

;RECOVER FILE NUMBER 
; JUMP TO ADDRESS + 5 

Programs and blocks of RAM: loading and saving from machine-code As we have seen 
in the section on program files, BASIC programs and RAM dumps are held in the same 
way on disk (and on tape), namely with the text preceded by two bytes which hold 
the load address. The ROM routines to load and save naturally use the true values of 
these parameters, but the machine-code programmer has the further option of putting 
in alternative addresses, so that routines may be relocated. This is not a facility that 
is much used, but remains an interesting possibility. In BASIC 4, DLOAD checks its 
parameters before entering LOAD. We'll thus consider only LOAD ($FFD5). This is a 
BASIC keyword, and assumes a BASIC program; this means that variables will be 
CLRed and so on. The monitor's .L command does not assume this. In fact the main 
part of LOAD is a subroutine used by both these commands, at $F322 (BASIC 2) or 
$F356 (BASIC 4). To use this routine, the following parameters must be correctly set; 
the named file will load in the normal place, but no pointers will be reset. 

$01 holds length of filename 
($DA) points to start of filename (e.g. to 'DATA' or 'Fl' or 'PRG*' in RAM) 
$04 holds device number - usually #8 
$90 holds O. This is the LOAD/ VERIFY flag; 1 means verify 
$96 holds O. This is the status byte (ST). 

After these preliminaries, LOAD's subroutine is called. ST can be used to test for a 
successful load; both ROM loads AND ST with #$10 to test for a load error; the bit 
should be low, so ST AND #$10 <> 0 signals an error. 

In order to load a block of data held as a program file to any part of memory, it 
is only necessary to simulate that part of LOAD which fetches the 2-byte load address 
from the file. Supposing that the list of parameters above has been set, we need: 

LDA #60 
STA D3 
JSR F4A5 
JSR FOD2 
LDA D3 
JSR F193 
JSR FICO 
LDA $96 
LSR A 
LSR A 
BCC CONT 
JMP F3Cl 

CONT JSR FICO 
JSR F391 

;SECONDARY ADDRESS 0 
;SEND NAME TO IEEE. (F466 IN BASIC 2) 
; SEND 'TALK'. (FOB6 IN BASIC 2) 

;SEND SECONDARY ADDRESS (F128 IN BASIC 2) 
;GET LOW BYTE OF ADDRESS (F18C IN BASIC 2) 
;CHECK ST'S BYTE 1, I.E. 2ND FROM RIGHT 

;ST OK 
;ABORT FILES, PRINT ?FILE NOT FOUND ERROR (F56E IN BASIC 2) 
;GET HIGH BYTE OF ADDRESS. BOTH BYTES ARE IGNORED. 
;REJOIN LOAD (WITHOUT PRINTING 'LOADING '" '). (F355 IN BASIC 2) 

The named file will now be loaded from ($FB) onward in memory. This address is 
normally set from the two bytes which are thrown away by the machine-code routine. 
So the contents of $FB and $FC must also be set by the introductory routines. 

The code may be treated as a subroutine (e.g. followed by RTS) or used in-line. 
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SAVE's address in the kernel jump table is FFD8. It's construction is similar to LOAD, 
but easier to follow, since the BASIC version doesn't require to be processed, as it 
is after LOAD. Its general layout is: 

Sl JSR GETPAR; GETS NAME, LENGTH OF NAME, DEVICE, SEC. ADDRESS FROM BASIC 
S2 JSR STTEND; SETS (C9) AND (FB) TO END OF BASIC / START OF BASIC 
S3 LDA D4 CHECKS DEVICE NUMBER, AND BRANCHES ACCORDINGLY: 

IEEE SAVE - THIS INCLUDES CBM DISKS 

CASSETTE TAPE SAVE 

The subroutine at entry-poirtt SI fetches the same parameters as LOAD, and sets the 
same default values, with the exception of $9D, the load/verify flag, which it ignores. 
The subroutine at S 2 simply stores the start of BASIC pointer in (FB) and the end of 
BASIC pointer in (C9). Obviously, the monitor routine .S "0:HELLO",08,1234,2345 
bypasses these, storing its name pointers and address pointers in the appropriate 
locations, and going straight to S3. It is, in fact, acceptable to enter this routine a 
little later if the parameters are correctly set, since there's no point in comparing the 
device number with #3. Once again, we can modify SAVE if we choose. For example, 
instead of sending the load address as the first two bytes, we might send the horiz­
ontal and vertical screen positions at which to load the data; or we might not send any 
leading values; or we could send an extra code byte with some meaning of our own. 
In each case, there must be a corresponding LOAD routine to process our non-stand­
ard program file. The IEEE SA YE 's major portion can be simulated like this: 

LDA #61 
STA D3 
JSR F4A5 
JSR FOD5 
LDA D3 
JSR F143 

LOOP LDA ?? 
JSR F19E 
B?? LOOP 

END BIT D3 
BMI RET 
JSR FOD5 
LDA D3 
AND #EF 
ORA #EO 
JSR F143 
JMP F1B9 

; SEND NAME TO BUS (F466 IN BASIC 2) 
; SEND 'LISTEN' (FOBA IN BASIC 2) 

; SEND SECONDARY ADDRESS (F128 IN BASIC 

; SEND A CHARACTER TO THE FILE .. 
; .. IN SOME SORT OF LOOP 

;BRANCH TO RTS 
;SEND 'LISTEN' (FOBA IN BASIC 2) 

2) 

;SEND SECONDARY ADDRESS (F128 IN BASIC 2) 
;SEND 'UNLISTEN' (F183 IN BASIC 2) 

The piece of code at LOOP sends the data from the accumulator. The ROM save, of 
course, first sends two address bytes, then consecutive bytes in ascending order 
from the low to the high address. It is preceded, in effect, by code which sets the 
length of the name and its pointer, the device number, and ST=O. The secondary ad­
dress is not needed; the routine sets it to 1 for write. 

As the entries in SAVE and DSAVE (Chapters 5 and 7 respectively) show, it's 
possible to modify SAVE even from BASIC, by poking new 'start' and 'end' addresses; 
BASIC followed by machine-code (e.g. Supermon) can be saved as a BASIC program 
by raising the end-of-BASIC pointer to include the machine-code. A screen display can 
be saved as a program file by temporarily changing the start-of-BASI C to $8000 and 
the end-of-BASIC to $8400 or $8800, for a 40-column and 80-column screen respectively. 

Sending a command string to a disk drive Usually the command string is put into the 
input buffer, and sent from there to the disk drive. It is not however necessary that 
a string be held in a buffer; it can be incorporated into a machine-code routine or 
subroutine. The sequence of operations is this: 

(i) Put #8 into $D 4 and #6F into $D 3 (device number 8 and sec. address 15). 
(ii) Send 'Listen'. 
(iii) Send the secondary address. 
(iv) Send the command string sequentially. If the string is held in the input 

buffer, a zero byte will terminate it; this should not be sent. 
(v) Send 'Unlisten'. The disk operation will take place now. 
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Command strings are sent to the disk drive in the older form of disk syntax, which 
the newer BASIC 4 commands (DLOAD etc.) also use, sending exactly the same strings 
after checking their newer syntax. The relative file handling is accomplished in the 
same sort of way, but the strings it sends are not recognised by DOS 1+. For a summ­
ary of these commands, see Chapter 15's tables of BASIC ROM; BASIC 4 from D839 
lists the format of the commands, including the ,L construction which opens a new 
relative file, and the P construction for RECORD (see DA31). These commands permit 
relative files to be read and written from machine-code. 

As an example, suppose the input buffer is used to take in the command; this 
means that the cursor will flash in the usual way, and characters will appear on the 
screen as they are entered at the keyboard. Carriage return terminates the input, and 
in fact puts a zero terminal byte as a marker at the end of the string, which is moved 
to $020Off. This program sends a command input in this way to disk: 

JSR B4E2 
LDA #08 
STA D4 
LDA #6F 
STA D3 
JSR FOD5 
LDA D3 
JSR F143 
LDX #00 

LOOP LDA 0200,X 
BEQ END 
JSR F19E 
INX 
BNE LOOP 

END JSR FIB9 
CONTINUE 

;INPUT TO BUFFER (C46F IN BASIC 2) 

;SEND 'LISTEN' (FOBA IN BASIC 2) 

;SEND SECONDARY ADDRESS OF 15 (F128 IN BASIC 2) 

;SEND BUFFER CHARACTER (FI6F IN BASIC 2) 

;THIS ALWAYS BRANCHES 
;SEND 'UNLISTEN' (F183 IN BASIC 2) 

For example, $1 sent by this code displays the directory of drive 1, and Dl=O performs 
a backup of drive 0 onto drive 1. SO:PROG* scratches files on drive 0 which begin 
PROG. And so on. 

Disk status messages (05$ and OS) These are easier in BASIC 4 than earlier BASICs 
because routines exist which recognise DS and DS$. For example, 

JSR C024 fetches DS and puts it in floating-point accumulator #1. 
JSR BFC9 sets up the DS$ string in BASIC RAM, and sets the length parameter 

in $OD and the pointer to its start in ($OE), so that, for example: 

JSR BFC9 ;GET DS$ (BA~IC 4 ONLY) AND SET UP STRING 

LDY #FF 
LOOP INY 

CPY $OD 
BEQ EXIT 
LDA ($OE),Y 
JSR FFD2 
BNE LOOP 

EXIT CONTINUE ... 

;SET HORIZ. AND VERT. SCREEN PARAMS. IF NECESSARY (SEE HTAB,VTAB) 

;COMPARE OFFSET WITH LENGTH OF STRING 
;AND EXIT WHEN EQUAL 
;LOAD CHARACTER FROM STRING 
;STANDARD ROUTINE TO OUTPUT A CHARACTER 
;BRANCH ALWAYS (ACCUMULATOR LOADED WITH NON ZERO CHARACTER) 

DS$ can be tested at any time without printing the string by this sort of routine, used 
by HEADER to decide whether the newly-formatted disk was a 'bad disk' or not: 

JSR D991 ;GET DS$ (BASIC 4 ONLY) 
LDY #00 
LDA (OE),Y 
CMP #32 
BCS ERROR 
CONTINUE ... 

The rationale is that DS $ messages starting with 2 or more may be serious, while those 
with 0 or 1, i.e. 0,1,10,11,12, •.. ,19 are not. In practice a number of messages 
are warnings rather than errors. The easiest way to test for messages which are not 
to be considered 'fatal' is probably to fetch DS as a floating-point nu~ber~ convert it 
to an integer with a ROM routine, then test the low byte of the resultmg mteger. 
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BASIC<4 can read the error channel, and display DS$, using this routine: 

LDA #8 
STA D4 ;DEVICE NUMBER 
JSR FOD2 ;SEND 'TALK' (FOB6 IN BASIC 2) 
LDA #6F 
STA D3 ;SECONDARY ADDRESS 15, WITH 'TALK' 
JSR F193 ;SEND SEC. ADDRESS (F164 IN BASIC 2) WITH 'TALK' 

LOOP JSR F1CO ;GET BYTE FROM IEEE (F18C IN BASIC 2) 
CMP #D RETURN? 
BEQ OUT ; IF SO, GO OUT 
JSR E202 ; PRINT TO SCREEN - CAN USE FFD2 FOR OTHER DEVICES. (E3D8 IN BASIC 2) 
BNE LOOP ;BRANCH ALWAYS AS ACCUMULATOR DOESN'T HOLD NULL 

OUT JSR E202 ; PRINT FINAL C. RETURN (E3D8 IN BASIC 2) 
JSR F1AE ;SEND 'UNTALK' (F17F IN BASIC 2 .. SLIGHTLY DIFFERENT ROUTINE) 
CONTINUE .. 

Routines like this will work with either BASIC 2 or BASIC 4, but in practice they are 
unlikely to be used with BASIC 4, since they are already built into ROM and can be 
used more economically than BASIC 2 allows by a direct call. 

Throughout this section I have not referred to BASIC 1; in fact this is usable 
with disks, but to save space I have omitted its ROM entries and other details where 
the ROM and its RAM allocation differs from later BASICs. The tables in Chapter 15 
can be used to help make these interconversions. 

6.7 Compu/think disk drives 

General 'Plug-compatibility' in the world of large computers refers to peripherals such 
as disk units or printers which may be substituted for those made by the computer 
manufacturer, the aim being to save time (if delivery dates are better) or money. This 
phenomenon has spread to the microcomputer industry. The more successful makers of 
micros have found innumerable suppliers of extra software, chips, interfaces and so 
on operating from outside their companies. Sometimes ex-employees help produce the 
stuff. This puts companies like Commodore in a slightly difficult position; their res­
ponse is usually to encourage such alternatives unless they themselves have a similar 
product. Disk units are an important case in point, since they are expensive to buy 
and costly to maintain. High capacity disk units are quite a bit more expensive than 
the computers which use them. A number of non-Commodore disks have been produced 
and are sometimes met with. 'Novapac' disks for example were an early entrant into the 
field. Kilobaud-Microcomputing magazine ran an article on adding 8100 disks to a PET 
(R Freeman, Jan.'80). Byte ran a series (June '81 ff.) on connecting disk units, using 
disk controller chips. New units, including hard disks and even modified full-size hard 
disks, continue to be sold. However, for a long time Compu/think disk drives were the 
only large-capacity storage system for the PET and CBM, so a separate section on them 
seems justified. There are also many operational differences from CBM disk units, and 
the comparison is often instructive. Commodore literature at present scarcely mentions 
alternative disks or printers to their own. There is little published material on these 
drives; Printout, and the PET Benelux Exchange magazine (in Dutch!), have run 
articles. 

Physical size, capacity, operating system Twin drives, typically MPI or PERTEC, are 
mounted vertically, under a standard three-sided sheet metal case. The appearance is 
similar to the 8061/ 8062 drives announced by Commodore, but smaller. This small size 
is achieved largely by filling the CBM with its electronics, consisting of a main board 
holding EPROM and RAM. There now exist single sided versions, single sided double 
density versions, and double sided, double density versions, using 5 1/4 inch disks, 
with storage capacities of 2 x 100 000, 2 x 200 000, and 2 x 400 000 bytes respectively, 
and a further 8 inch model, which is larger, and stores 2 x 800 000 bytes. These all 
operate with a disk operating system called Diskmon, which is compatible only with 
BASIC<4, because all the memory from $9000 to $BFFF is occupied by ROM and RAM 
with this system, not all of which is free with BASIC 4. There is a further Compul­
think product called BB-DOS which occupies ROM slot $900o-9FFF. 

The operating system of these disks is quite portable; not much Commodore ROM 
is used, and even quite trivial features, such as the rectangular border around the 
screen are parameterised. In fact the same system is used in a different machine, 
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distributed in the U.K. by ACT Ltd. ('Applied Computing Techniques').* It is not an 
IEEE system, and does not have the autonomy of CBM drives; it is more accessible, 
and can be peeked and disassembled freely. It is initialised in the same way that tool­
kits are, by a SYS call, in this case to $BOOO (SYS 45056). This puts a wedge into 
BASIC's CHRGET routine, a widely-used technique to enhance BASIC - see Chapter 
14. The function of the wedge is to check for the '$' symbol and interpret subsequent 
characters in its own way. Only the initial of the subsequent command counts; any 
following characters are ignored ,2 unless they are either a comma, semi-colon, or end 
of statement byte. This of courSe is fairly standard. The operating system shares many 
of the cassette tape system's locations; the zero page is a little overcrowded, so for 
example random numbers don't work correctly with the disk drives in operation. The 
usual simple Stop-key disable prevents the disk system from working. Two commands 
are designed for use with printers connected via the user port (not IEEE) and cables 
equipped with Compu/think's own interface; this presumably is an RS232 connection. 

The format and organisation of the disks is far simpler than Commodore's, which 
must help explain its earlier arrival on the scene. The general system is less ambitious 
and appears to have fewer obscure bugs as a result of this. On the other hand, it has 
considerable limitations which have to be programmed around. 

The drives have 40 tracks with 5 1/4 inch disks, 80 tracks with 8 inch disks. 
Each track has 10 sectors. Disk handling is by a Western Digital chip; single density 
drives have 256 bytes per sector, double density drives 512 bytes. The smallest unit 
which Diskmon uses is the track, i.e. 2560 or 5120 bytes, all of which is saved onto 
disk or read from disk. The directory is held on track zero; thus there is a maximum 
of 39 or 79 files and programs on any disk side. When a record from a file is read, 
the whole of this large buffer is filled, and a pointer used to find the actual record. 
Compared with CBM's 256 byte buffers, this is wasteful, and one of the serious limit­
ations of this system is that only one file can be open at a time. For some purposes, 
for example adding to a file which is partly complete, this is fine. But it makes ordin­
ary file updating difficult. The buffer may be updated by poking data in; since 
the position of this buffer (normally $9000-$A3FF) is known, this is a practical prop­
osition, as we shall see. But it is not convenient. It is one reason why software using 
these drives tends to be slow, if it isn't well written: a file is repeatedly opened and 
closed, alternately with another (updated) file. As we shall also see, tracks can be 
loaded and saved into non-standard buffers, notably the top of RAM after the memory 
top has been lowered by poking. This can be a powerful technique. One buffer can 
hold an index, the other data, so an indexed sequential system may be implemented 
without too much trouble. There is an exception to the rule that tracks are the lowest 
common multiple of the system. Program files, which include machine-code dumps like 
CBM disks and tapes, are saved, from the starting address, in whole sectors. As long 
as a programmer knows this, it causes little difficulty. But it makes overlays more 
difficult, because RAM which is further up memory than the theoretical end of a pro­
gram or machine-code routine is overwritten. For example, machine-code saved in the 
cassette buffers ($027A - $03FF is untouched by Diskmon) will, when loaded, reach 
from $027A - $0479 if the system is double-density, and if the code started at $027A. 
It cannot therefore be loaded by a BASIC program unless another program is loaded 
afterwards to reinstate BASIC in $0400 and the subsequent locations. Similarly, code 
of the type of Supermon or Extramon, stored at the top of memory, and saved to disk, 
reprints the top of the screen as it was when the code was saved, because screen RAM 
is adjacent to the machine-code, and some of it is stored with the code. 

There are differences in style between these and CBM disks, which are as much 
a matter of taste as anything else. These disks save with replace without comment, 
where CBM disks print ?file exists error. Files are erased ('scratched') without comm­
ent. Errors are reported with an error number and track and sector number, and the 
program crashes (i.e. stops, printing 'READY. '). There is no error message; the man­
ual gives a vague indication of what the errors (as returned by the disk controller) 
mean. CBM's DS and DS$ system means that this need never happen, because an error 

*As an example of the parameterisation, try this demonstration routine (BASIC 2) which 
.. 033A A9 00 AO 00 A2 00 4C 9B repetitively prints different rectangles to the 
., 0342 BE screen, using the machine-code subroutine: 

o FOR J = 0 TO 40: POKE 827,K: K=(K+l) AND 255: POKE 829,J*.6: POKE 831,J: SYS 826: 
NEXT: GOTO 0 

2A funny story by Gerry Weinberg tells of the consternation he aroused in an enthusiast 
showing off his typing-error-resistant system, by innocently typing something like 
'RELETE'. It is pOSSible, but unlikely, that $F in place of $D will erase a disk. 
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can always be detected with DS, and an appropriate request for action issued, 
e. g • 'Please put a disk in drive 0'. 

Commands The table lists Diskmon's additional commands with CBM equivalents. To 
simplify matters I've assumed drive 1 with Compu/think, drive 0 with CBM, although 
ranges of 1 - 4 and 0 - 1 respectively are normally valid. Most conversions should be 
fairly easy, but there are likely to be problems if multiple files are open with CBM 
disks, since Compu /think can't handle this situation. APPEND and some other com­
mands are hard to translate into Compu/think usage. A few complications are omitted. 

Compu Ith ink 

$F, 1 [ No title or i. d. is 
assigned by $FORMAT] 

$0,1 

CBM BASIC 4 CBM BASIC < 4 

HEADER "TITLP,DO,Jid PRINT#15, "NO :TITLE, id" 

o I RECTORY DO PRINT#15, "$0" 

$S, 1, "PROGRAM" DSAVE "PROGRAM",DO SAVE "0:PROGRAM",8 

$S, 1, "M ICODE", "1234", "2345" .S, "O:M ICODE", 08,1234,2345 

$L,l,"PROG" DLOAD "PROG",DO I LOAD "0:PROG",8 

$L; 1, "PROG" [Loads without affecting the running of the current program, unless 
it is overwritten. There is no easy CBM alternative]. 

$X,l,"PROG" IDLOAD then RUN I LOAD then RUN 
[Loads and executes BASIC or machine-code. The first command with Compu/think 
should be CLR. Similar CBM instructions include DOS support's up-arrow function, 
the shift-stop key, and DLOAD or LOAD in program mode only]. 

$X;l,"PROG" [Loads a new BASIC program and runs it, retaining previous variables' 
values, subject to the provisos on program length which also apply to CBM programs 
loaded from program-mode. Because of Compu/think's sector-loading principle, the 
new program must be sufficiently short that its final sector doesn't overlap the end­
of-program pointers, and thus corrupt the stored variables]. 

$E, 1, "FILP SCRATCH "FILP,DO PRINT#15, "SO:FILP 

DATA FILE HANDLING : 

Opening a new file: 

$0,1, "W", "F ILE", "PARAMS" DOPEN #1, DO, "FILE", W OPEN 1,8,8, "0: FILE,S, W" 
or: DOPEN#1,DO,"FILE",L50 OPEN 1,8,8,"0:FILE,L"+L$ 

[Note that $0 has the sameform with sequential and relative (or 'direct access') files. 
This trick is done by storing parameters in the directory entry, for use (with sequen­
tial files) as a store of (say) creation date, but, since this can be written as a record 
anyway, this is less important than its random access interpretation. Its eight bytes, 
for example I$=CHR$(7)+CHR$(1)+CHR$(55)+CHR$(1)+"XXXX", define the number of 
records in the complete file, followed by the record length; the rest is ignored. So 
the example allocates 311 records of length 263. The directory keeps a record of the 
tracks allocated to a file; records fill tracks and straddle over to the next track]. 

Opening a file which exists already: 

$0,1, "W", "SEQ FILP, "PARAMS"I DOPEN#l, DO, "SEQ FILE", wi OPEN 1,8,8, 1I0:SEQ,S, W" 
$O,l,"R","SEQ FILE",I$ IDOPEN#l,DO,"SEQ FILEII I OPEN 1,8,8,"0:SEQ FILEII 
$O,l,"D","REL FILE",I$ DOPEN#l,DO,"REL FILE" OPEN 1,8,8,"0:REL FILE" 
[These are, in order: (i) Sequential file opened for writing, (ii) Sequential file open­
ed for reading, (iii) Direct access file opened for both reading and writing]. 

Reading records from I writing records to I files of sequential and direct access type: 

$R,R$ 
$R;N, R$ 
$W,R$ 
$W;N,R$ 

Closing a file: 

$C 

INPUT#l,R$ 
RECORD#l, (N) : 
PRINT#l, R$ 
RECORD#l, (N): 

DCLOSE#l 

IINPUT#l,R$ 
INPUT#l,R$ see RECORD# (Chap.7) 

I PRINT#l,R$ 
PRINT#l, R$ see RECORD# (Chap.7) 

CLOSE 1 
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Compu/think DOS has five further commands which don't appear in CBM BASIC, and 
several other features. 

$8 and$P ('BLIST' and 'PRINT') operate only with printers connected to the user 
port (not the IEEE port) . $B, "NAME" prints a heading, page numbers, and a listing of 
BASIC with 50 lines to the page. It does not attempt to print screen editing characters 
in a readable form. $P prints a line, as PRINT# does to an IEEE port printer. 

$G is intended for use with machine-code; after loading it, $G is intended to 
execute it, since the load address of the code is known. The effect should be identical 
to a SYS call to the first location of the code. However, this command has a bug! The 
relevant code is: 

B53D LDA #4C ; JUMP OPCODE (BASIC 2 VERSION) 
STA 27 LOCATION PRIOR TO START ADDRESS 
JSR 0028; SHOULD BE 0027 

With BASIC loaded, the jump goes to $28-$29, holding pointer (low - high) to start of 
BASIC, and to $2A-$2B, holding the pointer (low-high) to the end of BASIC. So if 
BASIC is loaded, the code encountered is 

0028 ORA (04,X) 
002A -VARIES WITH END-OF-BASIC-

So, for example, if the program's length is varied so that PEEK(42)=96, $G will simply 
return and print READY. , because RTS has decimal value 96. When trying to run 
machine-code, the effect depends on the load address of the code, and is far more 
variable; usually it will crash. 

$H clears the memory ('HALT'), having a similar effect to a power-on reset, ex­
cept that locations below BASIC aren't affected. In this way the wedge to the system 
is retained. 

$M is a memory-displaying command; $M, "1234 displays 190 bytes, in hex and in 
ASCII equivalent. It is rather slow in action; a fast-screen poke may be desirable. 
(See Chapter 5, PRINT). The following (completely relocatable) routines supplement 
this command: > and < step forward and backward to the adjacent section of memory, 
] and [ jump about 1K, so the routine can be used to scan memory: 

BASIC 1 BASIC 2 
· . 033A 20 F7 B9 C9 3E FO F9 C9 · . 033A 20 OD BA C9 3E FO F9 C9 
· . 0342 3C FO 09 C9 5D FO 14 C9 · . 0342 3C FO 09 C9 5D FO 14 C9 
· . 034A 5B FO 1A 60 18 C6 F8 A5 · . 034A 5B FO 1A 60 18 C6 FC A5 
· . 0352 F7 69 84 85 F7 BO E1 C6 · . 0352 FB 69 84 85 FB BO E1 C6 
· . 035A F8 90 DD A5 F8 69 OE 18 · . 035A FC 90 DD A5 FC 69 OE 18 
· . 0362 85 F8 18 90 D3 A5 F8 69 · . 0362 85 FC 18 90 D3 A5 FC 69 
· . 036A EE 85 F8 18 90 CA · . 036A EE 85 Fe 18 90 CA 

The EPROM contains a serial number, identical to that on the disk drive. There 
is a security location. This is made possible by the use of the wedge. If you trace 
the jump address in $BOOO, you'll find the initialisation routine for the wedge, which 
gives the address to which CHRGET will now jump - e.g. B43E. The routine starting 
from here first saves the processor status and other things; the next operation is to 
check $040A (=1034) for the presence of #2A, which is usually an asterisk. * (It may 
not be; the following examples happen to include #2A in the link address or linen umber 
so if either format is accidentally used, the protection will unexpectedly come into 
play: 10 REMX 

42 REM ANYTHING. The first line must be 2 tokens long; the second has line 42. 

5 REMABC 
10 REM THIS LINE MUST CONTAIN 27 TOKENS EXACTLY) 

If #2A is detected, only $G, $H, or RUN are usable. $H erases BASIC; $G, as we've 
seen, is liable to crash, but this can be prevented by manipulating the program length 
and peeking location 42. Thus, only RUN is left. This is Compu/think's equivalent of 
the Auto-run modifications of the CBM to BASIC. It prevents LIST and also prevents 
accidental deletion of program lines by users entering numbers. We shall see how to 
insert the character in the section on reading tracks and using the directory. 

*Some old versions use POKE 6,100 as their security location. 
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Bugs in Diskmon The manuals record several types of bug; these chiefly relate to 
string handling of the parameters used in file handling. For example, in this situation 

100 $O,O,"R","SEQ FILE",I$ 
120 $R,R$ 

a sequential file is opened for read, and a record (R$) is read. 1$ should now take 
the value assigned to 1$ when the file was originally written, and R$ should be the 
record as it was written to the disk file. In practice, either of these can go wrong; 
the best preventative is to assign the variables twice: 

o 1$="": R$='''' 
122 R$=R$+"" 

These program lines correct the deficiencies which may exist. 
Further bugs include the introduction of spurious characters at the end of long 

program lines, the failure of integer variable (e.g. X%) parameters to operate correct­
ly, and the well-known IF problem, requiring the use of the short IF statement, 

IF D=l THEN $D,l must be replaced by 
IF D=l THEN: $D,l 

because the first version always performs $D, 1 whether or not D=1. This is a problem 
with many wedge programs; provided it's remembered, it causes no problems. Some­
times the disk drives are left spinning after an error, perhaps a failure to find a file. 
The validation is not very thorough with these disk units. They can be stopped by a 
SYS call to the motor-off subroutine, or, more easily, by calling a directory with $D, 0 
or $D, 1 etc. after which the drives stop. 

Jump table of Oiskmon functions and RAM and ROM memory map 

BOOO 45056 Inserts a jump command into CHRGET 
B003 45059 Returns from CHRGET - replaces processor status and enters CHRGOT 
B006 45062 Reads directory into a short buffer (e.g. lK. Depends on capacity). 
B009 45065 Motor off, may also write updated directory to track O. 
BOOC 45068 Clear 25 byte blocks in directory to erase file. 
BOOF 45071 Allocate track (read). 
B012 45074 Allocate track (write). 
B015 45077 Erase file - if it exists - from the directory. 
B 01 8 45080 Write buffer from $9000- $A 3FF to disk track. (AFFB =drive, AFFF =track) . 
B01B 45083 Read track into $9000-$A3FF. 
BOlE 45086 Write buffer from pointers, e.g. (FB) through (C9). 
B021 IJ5089 Read track into area defined by low/high pointers, e.g. (FB) through (C9) 
B024 45092 Turn motor on. 
B027 45095 Turn motor off. 
B02A 45098 Save program to disk. 
B020 45101 Print line with $P or $B to parallel port printer. 
B030 45104 Load program from disk. 
B 0 33 451 07 Read directory; set relative track to zero. Then: 
B036 45110 Increment relative track number, allocate track, read program track. 
B039 45113 ASCII/hex. IF X<> 0, A becomes hex of X & Y; if X=O, X & Y become ASC(A) 
B03C 45116 Perform $X (load program and run it). 
B03F 45119 Continue with SAVE. 

Some of these routines are usable from BASIC. This is not an exhaustive list of jump 
locations; those corresponding to $ commands - $R, $C, $D, and the rest - vary with 
versions, but can all be found after the initialisation routine to which BODO jumps. In 
BASIC2 (where peeking 45057=43) the comparisons and jumps start at B4C2; BASIC 1 
(with peek of 45057=35) starts at B4B6. The pointers and absolute addresses of the 
buffers vary with the model; so does the length of buffer allocated for the directory 
track. The examples quoted above apply to BASIC 2's double-density version of Disk­
mon. Generally, it is not too difficult to locate subroutines which set pointers and set 
absolute values of track limits, because they take the form of loading the accumulator 
with a value/ storing it! loading with another value/ and so on. Routines like $M and 
$D are fairly easy, because there's a batch of in-line coding, usually near tables of 
text like 'DIRECTORY' or 'MEMORY DUMP', and in association with a memory-map it 
is feasible to decode such routines. The most difficult to understand are those which 
deal with file opening, reading, writing, and closing. 
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8000-COOO A400-AFFF AFDO-AFFF 

8000 

II 
A400 AFDO-AFD1 Block byte counter 

Screen RAM Unused RAM AFD2 Switch (1 Read, 2 Write) 
AFD3 Record byte count 

9000 AFD4 Counter: when 0, read I write ends 

SK buffer A800 AFDS-AFD6 Pointer to buffer lower limit 
AFD7-AFD8 Pointer to buffer higher limit 

AOOO AAOO Record area AFD9 Disk read I write, motor on loff 
A400 ABOO Directory AFDA-AFDF 

Diskmon RAM ACOO area AFEO-AFEF Current file name (16 bytes max.) 
BOOO 

1\ 
ADOO (1000 bytes) AFFO Current relative track number 

Diskmon ROM AEOO AFF1-AFF8 Current file data or pointers for 
AFOO Current load or save 

COOO AFFF variables AFF9 Directory write switch (#10 = write) 
BASIC ROM AFFA Command mode (#22=command mode) 

AFFB Drive number (1-8) 

\ AFFC Sector number (1-10) 
AFFD Disk command byte 
AFFE Register save area 
AFFF Track number (0-39) 

BASI C programming with Compu Ithink disk drives Before presenting programs which 
demonstrate file-handling with this system, let's look at some general programming 
features. 

(i) Because of the possible bugs in string-handling, programs should begin with 
the CLR command. This may be combined with a memory-lowering POKE if several 
buffers are used; POKE 52,255: POKE 53,107: CLR for example reserves 5120 bytes 
of RAM from $6COO-$7FFF with a 32K system. 

(ii) The directory of these disks provides no information about a file type. For 
this reason the manual suggests that sequential files are given names ending '. SEQ', 
program files names ending '. BAS', machine code files names with '. GO', and so on. 
This is entirely optionrJ; programs will run without these codes, but readability is 
helped if some convention is used. 

(iii) When a file is opened, either for reading or writing, the spindle motor is 
left turning, so that delays due to motor start are minimised. (The LED on the drive 
will stay on). To save wear, the motor can be turned off (see the jump table for the 
SYS command), and turned on only when needed. A delay of at least a half-second is 
advised in the disk manuals before writing or reading is attempted, so that the motor 
speed has time to stabilise at its correct value. 

(iv) Diskettes need formatting before use; this is a write-only operation (which 
works even with head-cleaning diskettes). All diskettes should be formatted. (Some 
manuals have a strangely-worded warning which seems to imply the exact opposite). 
Disks do not need to be 'initialised' in the CBM sense. They have no names or other 
identification; in practice the label is a sufficiently good reminder. 

(v) $C (close file) writes a null character, CHR$(O), onto the end of the file, 
and this can be used as a marker in the same way that ST=64 may be used with CBM 
disks. In either ,Jase, the alternatives are to record the number of records, perhaps 
in another file, or to write one's own end of file marker. Because of the arrangement 
by tracks, unclosed files are less of a potential hazard than with CBM drives. 

(vi) Records are terminated by CHR$(13), the carriage return character. 
(vii) In program mode, a 'file not found' flag exists, so that this type of con-

struction is possible: 
1000 POKE 44976,0:' $O,O,"R","SEQ FILE" 
1010 IF PEEK(44976}=255 GOTO 10000: REM ERROR-HANDLING ROUTINE 

(vii) A number of routines, built into CBM disk DOS, are only available in this 
system as BASIC programs on disk. This includes file copy and disk copy utilities and 
also utilities to read disks recorded with different densities. Some ver'sions of the file­
copying program don't work. MONITOR is a long BASIC program which performs simil­
ar functions to SUPERMON and EXTRAMON, but more slowly. The tiny assembler has 
some directives (ORG, EXT, BYT, ADR, TXT, END) of which some are implemented. The 
screen won't scroll: 1531 MK=O/ 1535 MK=MK+1/ 1590 GOTO 1535/ delete 6512 remedies this. 
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RANDOM-FORMAT computes the parameters (Le. low and high bytes of number of 
records and record length respectively) of a specified 'random-access' file, for those 
who haven't found out their secret. DISK COPY provides duplicate or backup disks; 
the copy process proceeds one track at a time, and these are recorded on the screen. 
A track which is difficult to read or write causes a noticeable delay; this can be help­
ful in identifying weak disks. Several test programs are available. They are not ex­
haustive, and leave much of the diskette suface untested. There are also RAM testing 
BASIC programs. A few technical test programs (BOARDTEST, HAT ,NR1) exist. 

Demonstration programs showing file-handling These short programs are similar to 
those in section 6.3 on CBM disk drives. The commands are not very different from 
BASIC 4: 

DEMONSTRATION OF A SEQUENTIAL FILE. WRITING TO DISK. (COMPU/THINK) 

10 $O,l,"W","SEQ FILE","ABCDEFGH" :REM THE PARAMETER STRING CAN BE CHOSEN TO 

20 FOR J = 1 TO 10 
30 X$ = "RECORD NUMBER" + STR$(J) 
40 $W,X$ 

MEAN SOMETHING, IF YOU WISH 

45 PRINT X$ :REM REPEAT ON SCREEN 
50 NEXT 
60 $C :REM CLOSES THE SINGLE OBTAINABLE FILE 

There is no statement corresponding to the CBM's APPEND; without elaborate work in 
the tracks holding the file data, it is therefore impossible to extend such a file once 
written. Also it cannot be read and simultaneously written, with corrections, to another 
file, because of the restriction of one open file only. 

DEMONSTRATION OF A SEQUENTIAL FILE. READING FROM DISK. (COMPU/THINK) 

100 $0, 1, "R", "SEQ FILE",I$ 
110 FOR J = 1 TO 11 
120 $R,X$: X$=X$+"" 
125 PRINT X$: IF X$=CHR$(O) 
130 NEXT J 
140 $C 

:REM 1$ SHOULD ALREADY HAVE BEEN DEFINED; 
:REM 1$ NOW SHOULD BE "ABCDEFGH" OR OTHER. 
:REM THE PATCH MAY NOT BE NECESSARY 

THEN PRINT "END OF FILE FOUND": GOTO 140 

:REM CLOSE 

Note that old records aren't deleted; if end-of-file is ignored or not tested, it may be 
possible to read remaining records left from an earlier, probably longer, file. 

DEMONSTRATION OF A 'RANDOM ACCESS' OR RELATIVE FILE: BOTH READING AND WRITING. 

The first brief program allocates tracks and directory entries for a file called 'R FILE' 
which has a maximum of 4000 records of length 80. (This includes the final carriage 
return, and the record is stored with total length equal to 81 bytes). 

10 1$ = CHR$(136)+CHR$(19)+CHR$(80)+CHR$(0)+"XXXX" :REM 19*256 + 136 = 5000, & 
0*256 + 80 = 80. 

20 $0,1, "W", "R FILE", 1$ 
30 FOR J = 1 TO 5000 
40 $W,BL$ 
50 NEXT 
60 $C 

:REM OPENS FOR WRITE LIKE A SEQUENTIAL FILE 

:REM BL$ MUST BE A STRING OF 80 SPACES HERE 

The point of writing spaces is to erase previous data from all the records. This can be 
time-consuming. Unlike the CBM equivalent, these files don't automatically enlarge 
themselves if asked to read a record beyond the current maximum number. However, 
like CBM relative files, they can be either written to or read from when open; they 
are not explicitly opened only for one or other of these operations. Consequently files 
of this type are usually more often used than sequential files. They can be updated 
while information is entered from the keyboard, or frolll other non-Compu/think files, 
such as tape files, or CBM disk units. But they cannot be updated easily from a file 
of Compu/think data without some programming effort, such as storing the new data 
in string arrays in RAM, perhaps rereading a file several times, while the relative 
file is closed, to read all the records in it. This is one of the penalties of the more 
simple operating system of Diskmon. The next page has a read and write demonstration 
program:-
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5 R$= .... : 1$= .. .. 
10 $O.l ... D ..... R FILE".I$ :REM "D" MEANS 'DIRECT ACCESS' 
20 INPUT "READ OR WRITE"; RW$ 
30 IF RW$="R" THEN GOSUB 100: GOTO 20 
40 IF RW$="W" THEN GOSUB 200: GOTO 20 
50 $C: END :REM ONLY RAND W ACCEPTED 

100 REM ** READ RANDOM ACCESS FILE ** 
110 INPUT "READ WHICH RECORD"; N 
120 IF N<l OR N>5000 GOTO 110 
130 $READ;N,R$: R$=R$+.... :REM $R AND $READ HAVE THE SAME EFFECT 
140 PRINT R$ :REM PRINT RESULT ON THE SCREEN 
150 RETURN 

200 REM ** WRITE RANDOM ACCESS FILE ** 
210 INPUT "WRITE WHICH RECORD"; N 
220 IF N<l OR N>5000 GOTO 210 
230 INPUT "TYPE IN RECORD"; R$ 
240 IF LEN(R$»79 GOTO 230 
250 IF LEN(R$)<79 THEN R$=R$+" ... GOTO 250 :REM PAD WITH SPACES THE LAZY WAY 
260 $W;N,R$ :REM WRITE THE RECORD WITH C.RETURN 
270 RETURN 

Reading and writing tracks The following BASIC routine (which is easily converted 
into machine-code) reliably loads any track into the normal buffer from $9000- $A3FF: 

700 REM ** READ TRACK TR OF DRIVE DR INTO $9000-$A3FF (36864-41983) 
710 POKE 45051.DR :REM POKE DRIVE NUMBER INTO AFFB 
720 SYS 45062 :REM MOTOR ON (ALSO READS DIRECTORY). B006 
730 POKE 45055,TR :REM POKE TRACK NUMBER INTO AFFF 
740 SYS 45083 :REM READ TRACK INTO NORMAL BUFFER. B01B 
750 SYS 45095 
760 RETURN 

:REM MOTOR OFF - B027 

And the opposite process, of storing a track from $9000-$A3FF onto disk, is carried 
out using the write routine SYS 45080 (B018) in place of line 740's read routine. So 
a general readl write routine for this buffer might be: 

700 REM ** BUFFER READ/WRITE: TR=TRACK, DR=DRIVE, RW$="R" OR "W" 
710 POKE 45051,DR: SYS 45062: POKE 45055,TR 
720 IF RW$="R" THEN SYS 45083 
730 IF RW$="W" THEN SYS 45080 :REM IDEALLY, SIGNAL ERROR IF RW$=OTHER 
740 SYS 45095: RETURN 

It is also straightforward to load tracks from non-standard parts of RAM, and read 
them back - if required, into different RAM areas. All that's required is to poke the 
low and high addresses, and use a similar routine to those above, except that the 
routine which reads or writes is selected to bypass the allocation subroutine for these 
buffers. (For example, the slight difference on disassembly between $B018 and $BOlE 
is taken up by this allocation routine). The low and high pointers are ($FB) and ($C9) 
respectively in BASIC>1. For example: 

800 REM ** BUFFER READ/WRITE: THIS EXAMPLE USES $6COO-$7FFF 
810 POKE 45051,DR: SYS 45062: POKE 45055,TR 
820 POKE 251,0: POKE 252,108: REM NOW (FC) HOLDS $6COO IBASIC 1:247 & 248] 
830 POKE 201,255: POKE 202.127: REM AND (C9) HOLDS $7FFF IBASIC 1:229 & 230] 
840 IF RW$="R" THEN SYS 45089 : REM B021 
850 IF RW$="W" THEN SYS 45086 :REM BOlE 
860 SYS 45095: RETURN 

There is of course no problem in parameterising this routine further, so that entry of 
the lower limit of a buffer calculates the upper limit and pokes all four bytes. Note 
that a buffer need not hold 5120 bytes; the directory for example is loaded into a 
shorter buffer, typically 1000 bytes long. If these routines are new to you, try exper­
imenting by adding input statements for drive and track numbers, calling a read sub-
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routine, and displaying the result with, for example, 
PRINT CHR$(34); :FOR J = 36864 TO 41983: PRINT CHR$(PEEK(J»;: NEXT. 

As many as 7 buffers can be simultaneously stored in a 32K machine, at the expense 
of space for BASIC (7 buffers leave lK, 6 buffers leave 5K, for example). There is 
considerable scope for machine-code searching of RAM and similar activities. Self­
checking hashtotals can be introduced quite easily. Tracks may have their track num­
ber, drive number, and a hashtotal stored in three bytes at the end of the track; in 
this way, an entire disk can be tested for its data's self-consistency with a simple 
program to consecutively read and check each track. These possibilities suggest that 
several CBMs may be joined to one disk unit, since reading and writing can be made 
infrequent, but I suspect that the necessary boards with RAM and EPROM may not be 
available independently of the drives. 

The directory track Track zero, the outermost track, holds the disk's directory, 
unless the disk is used in some special way, when it may contain data. Each file has 
directory entries 25 bytes long. The entries are quite simple, and the following dia­
gram illustrates a typical disk directory. Note that the file names have been printed 
in ASCII characters for readability, with 16 representing a single space character, and 
the remaining values are represented by the PEEK value, again for readability. 

-- FILE NAME --
Relative Starting Address or End Address or Rest of 1$ or 
Track No. Number of ReI. Records Record Length Seq. file parameter 

BACKGAMMONWWWWWW 1 1 4 88 27 32 32 32 32 

BACKGAMMONWWWW~W 2 1 4 88 27 32 32 32 32 

MERGE.GOWWWWW~WW 1 0 48 0 61 32 32 32 32 

UTILITY.DATWW~WW 1 3251 32 5256 49 3232 
[1. e. 3 481 ] 

GALLFILE.DIRWWWW 1 236 46 6 0 32 32 32 32 

--------------- OTHERS --------------

GALLFILE.DIRW~WW 17 236 46 6 0 32 32 32 32 

FREEWTRACKbWW~WW 255 32 32 32 32 32 32 32 32 

Each entry has (i) 16 characters of file name, padded with space characters. 
(ii) A relative track number. 'FREE TRACK' has a symbolic value of 255. All file 

tracks are numbered consecutively, starting from 1. Note that a file is 
assigned the earliest empty tracks, so a file may be interwoven with other 
files once some erasure of files has occurred. 

(iii) 8 bytes of parameter. There is no indication of the type of a file; a program 
be read as a random access file, or a sequential file loaded as machine-code. 
The result of such experimentation depends on the 8 parameter bytes, which 
are interpreted in three different ways, viz. starting and end address for 
machine-code and BASIC files (BACKGAMMON and MERGE.GO in the example) 
or number of records and record length for random-access files (GALLFILE. 
DIR) or a string of 8 user-assigned characters (UTILITY.DAT has the date 
of last update = 3 4 81 for instance). 

The program BACKGAMMON starts at 4*256 + 1 = 1025, and ends at 27*256 + 88=7000. 
This is a BASIC program as its starting-point implies, although it could be machine­
code. It is about 6000 bytes long, and therefore occupies two tracks. MERGE.GO 
starts at $3000 and extend to $3DOO, small enough for 1 track. UTILITY.DAT is a 
short sequential file. GALLFILE.DIR is a very long direct access file; its parameters 
show it to have space for 46*256 + 236 = 12012 records of length 6 each. In fact, the 
system allocates space for 7 bytes in each of these records; this is a peculiarity of the 
system. 17 tracks are needed for the resulting file. Finally, we see a FREE TRACK 
entry; all unused tracks contain this. Very occasionally, the word 'bad' appears in 
reverse after a file name entry. The directory is printed by a special routine (follow 
$D to find it - e.g. BB39 in BASIC 2). This lists only filenames with relative track 
number 1, to avoid repetition. The number of free tracks is calculated simultaneously. 
It is interesting to note that because of this, files can be recorded in a way which 
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makes them invisible on the directory: if a file name is longer than 16 characters, the 
length is not checked, but the name overwrites the relative track number. So long as 
CHR$(1) isn't written in the 17th position, the file won't appear. This character 
should not be CHR$(255) or the file will be overwritten. Note that only 16 characters 
are compared during a load or save operation. so the first 16 characters must differ 
in some way between different files. (There is no system of default file names, like 
"*" or "BAS *" with CBM drives). So a program saved as "LENGTH=SEVENTEEN!" 
is invisible on the directory, but will load by $L, 1, "LENGTH=SEVENTEEN". 

The short program which follows analyses the directory track, printing the con­
tents of each track, or of one single file name when this is found. For example, a 
disk has a program called 'PRINT PRICE LIST'; the program comes up with this: 

NAME: PRINT PRICE LIST 

ABS. REL. -LOW PROGRAM HIGH- SEQ. FILE 
TR# TR# #RECS R.A.FILE LEN- 1$ PARAM 

16 1 1025 BASIC 11804 
17 2 1025 BASIC 11804 
18 3 1025 BASIC 11804 

Showing the three tracks which hold the file, which is presumed by its start address 
to be BASIC, and which extends from 1025 - 11804. 1$ is not important. 

10 REM **DIRECTORY TRACK ANALYSER FOR COMPU/THINK 
20 INPUT "WHICH DRIVE"; DR: IF DR<l OR DR>4 GOTO 20 
30 INPUT "FILE NAME"; F$ 
40 IF LEN(F$»16 GOTO 30 
50 IF LEN(F$)<16 THEN F$=F$+" ": GOTO 50 
100 POKE 45051,DR: SYS 45062: POKE 45055,0 :REM TRACK 0 
110 SYS 45083: SYS 45095 :REM READ IT, CLOSE DRIVE 

200 PRINT "NAME": F$: PRINT 
210 PRINT"ABS. REL. -LOW PROGRAM HIGH-
220 PRINT"TR# TR# #RECS R.A.FILE LEN-
230 DIM DE$(39) 

SEQ. FILE"; 
1$ PARAM" 

:REM FOR 40 TRACK UNIT 

300 IN = ASC(F$) :REM INITIAL VALUE FOR FAST TEST 
310 FOR DE = 1 TO 39: IF IN<>PEEK(36839 + 25*DE) THEN NEXT: GOTO 500 
320 FOR DE = DE TO 39 :REM BUILD TABLE OF NAMES ... 
330 K = 36839 + 25*DE 
340 IF IN<>PEEK(K) GOTO 390 
350 FOR J = K TO K+15 
360 DE$(DE) = DE$(DE) + CHR$(PEEK(J» 
370 NEXT J 
380 IF F$=DE$(DE) THEN N=l: GOSUB 450 
390 NEXT DE 
400 IF N=O GOTO 500 
410 END 

:REM ... IGNORING IMPOSSIBLE ONES 

:REM FILE NOT FOUND 

450 PRINT DE TAB(4) PEEK(J) TAB(10) PEEK(J+1) + 256*PEEK(J+2); 
460 IF 1025 = PEEK(J+1) + 256*PEEK(J+2) THEN PRINT" BASIC"; 
470 PRINT TAB(25) PEEK(J+3) + 256*PEEK(J+4) TAB(31); 
480 FOR K = 1 TO 8: PRINT CHR$(PEEK(J+K»;: NEXT K 
490 RETURN 
500 REM ** FILE NOT FOUND - LIST ENTIRE DIRECTORY 
510 PRINT F$; "NOT FOUND": PRINT 
520 FOR DE = 1 TO 39: K = 36839 + 25*DE: FOR J = K TO K+15 
530 DE$(DE) = DE$(DE) + CHR$(PEEK(J»: NEXT J 
540 PRINT"" DE; DE$(DE); 
550 NEXT DE 
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A similar program can 'Unlist' programs, by poking an asterisk in the correct place. 
Or it may be modified to Re-list a protected program. Renaming of files is also easy, 
and some protection can be achieved by including cursor-control characters in a file 
name. An 'Unlist' program, too long to be included here, has to (i) search the direct­
ory for the specified name, typically by loading track zero into RAM and searching it; 
(ii) If the name is found, calculating the absolute track of the first relative track of 
the file, which is the first met with in the directory; (iii) loading this track, poking 
in 42, and finally saving back on disk. The program should begin with REM, preceded 
by not more than 4 tokens, or some other arrangement immune from the influence of a 
foreign CRR $( 42) . The business part of such a program is something like this: 

1010 TR=DE :REM TRACK NUMBER = DIRECTORY ENTRY 
1020 RW$="R": GOSUB 700: REM READ FIRST TRACK OF PROGRAM 
1030 POKE 36873,42: REM EQUIVALENT TO LOCATION 1034 OF BASIC 
1040 RW$="W": GOSUB 700: REM WRITE MODIFIED TRACK 
1050 PRINT "UNLIST "; F$; "COMPLETE": END 

Machine-code and RAM buffers This subsection deals with machine-code processing 
of data held in RAM buffers. Because of Compulthink's track-handling system, this is 
principally relevant with Compu/think, but is also usable with CBM disks, in which 
buffers of data can be loaded and saved by the save command .S and its BASIC 
equivalents and . L and LOAD. 

It may be useful to erase a buffer; this short machine-code routine, which uses 
no zero-page locations and is consequently not immediately relocatable, puts zero bytes 
into all locations $9000-$A3FF. It can be modified to erase any set of locations whose 
lower and upper limits are of the form $xxOO-$xxFF. SYS 800 runs it: 

0320 A9 00 AA 9D 00 90 E8 DO 
0328 FA EE 25 03 A9 A4 CD 25 
0330 03 DO ED A9 90 8D 25 03 
0338 60 

The next example is a routine which searches a buffer for a record. A form of 
indexing may be implemented in this way; a short code or identifier, followed by a 
record number, enables a two-stage operation to find the record by its code. The 
search routine uses a flowchart like this: 

START 

INITIALISE 

Set record no. =1 
Set low limit 
Top limit is 7FFF) 

ferent 

REPEAT SEARCH 

Add rec. len. 
to pOinter 
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This is a sequential search: records are scanned from one end to the other. When the 
search is carried out (the routine takes a fraction of a second) a location, 847, is set 
with a coded value to show whether a match was found between a record and the 
field stored in RAM. A value of 1 shows it was found; 255 shows the search was not 
successful. An alternative entry point enables a search to be repeated, if a record 
exists more than once. The diagram illustrates the rationale behind this type of search. 
A subfield within a record - perhaps a single character only - can be sought. Given 
that the records are of uniform length, the important starting position is the point at 
which the comparison field begins; this need not coincide with the start of the buffer. 

The locations used in this example program are: 

832-846 Sought field. Maximum length is 15 characters. 
847 Found byte. l=Found; 255=Not found. 
848-849 Current record number. Starts at 1. 
850-851 Start point of search. Not necessarily equal to the start of the buffer. 
852 Record length. 
853 Length of sought field (1 - 15). 
854-855 Current pOinter into buffer. 

(-- Record length --------'»,~-----------__,>,r--------------,> 
Compared field > < > 

RECORD NUMBER1 RECORD NUMBER2 RECORD NUMBER3 
Start of 
Buffer 

MACH1NE-CODE SEARCH ROUTINE TO HUNT STRING IN BUFFER 

1 FOR L=856 TO 967: READ M: POKE L,M: NEXT: REM SE1S UP MIC IN CASS,BUFF.2 
2 DATA 169,O,168,141.81,3,169,1,141,80,3,173,82,3.141,86,3,1~3,83,3,141,87,3 
~ DATA 173,86,3,141,124,3,173,87,3,141,125,3 

4 DATA 185,0,16,217,64,3,208,9,200,204,85,3,240,52,76,123,3 
5 DATA 24,173,84,3,109,86,3,141,86,3,169,0,109,87,3,141,87,3 

6 DATA 174,85,3,202,138,24,109,86,3.169,255,109,87,3,201,127,16,18 
7 DATA 238,80,3,208,3,238,81,3,160,0,76,111,3 
8 DATA 169,1,76,196,3,169,255.141,79,3,96 
10 PFUNT "[CLRJMACHINE CODE BUFFER SEARCH ROUTINE" 
15 PRINT "[DOWNlLOCATIONS:": PRINT .. --------- .. 
20 PRINT" ROUTINE IS ENTERED AT $358 (::B56)" 
22 PRINT .. OR AT $38C (=908) TO REPEAT" 
~5 PRINT "[DOWN] $340-$34£ (= 832 - 846) HOLD THE SOUGHT STRING" 
30 PRINT "[DOWNl BYTE $34F (847) IS THE CHECK BYTE" 
31 PRINT" AND HOLDS 255 IF NOT FOUND,": PRINT" 1 IF RECORD FOUND," 
35 PRINT "CDOWN1ASSUMPTION IS THAT THE 5120 BYTES" 
36 PRINT "FROt1 $6COO (27648) TO $7FFF (32767> ": 
37 PRINT " HOLDRECORDS OF [DUAL LENC;TH" 
1000 REM ** ROUTINE HERE (EG COMPU/THINK TO LOAD TRACK OF [IRIVE) *'If 

2000 PRINT "[DOWNJDO YOU WISH TO EXAMINE THE BUFFER? ": 
2010 INPUT "IF SO PRESS A KEY DURING PRINTOUT TO STOP", YN$ 
2020 IF YN$="N" THEN 3000 
2030 FOR L=27648Tc.)32767~GETX$:IFX$=""THENPRINTCHR$(PEEK(L»':NEXT 
3000 PRINT: PRINT: INPUT "SOUGHT ITEM:": CT$ 
3010 FOR L = 1 TO LEN(CT$): POKE 831+L,ASC(MID$(CT$,L,I»: NEXT 
3020 POKE 853.LENICT$) 
3030 PRINT "ENTER TOTAL RECORD LENGTH (EG. INCLUDING RETURN)" 
3040 INPUT "CREC. LENGTH=l FOR COMPLETE SEARCH)"; R 
3050 POKE 852,R 
3060 INPUT "START OF SEARCH (EG 27648):":8 
3070 POKE 851,INT(S/256): POKE 850,S-INT(S/256)*256 
4000 SYS 856 
4010 PRINT "CDOWNJCHECKBYTE CONTAINS ", PEEK(847) 
4020 PRINT "COOWNJRECORD NO (START=!> IS:", PEEK(848) + 256*PEEK(849) 
4030 If PEEK(B47)=255 GOTO 4060 
4040 PRINT: IF PEEK(847)=1 THEN INPUT "REPEAT THIS SEARCH?", YN$ 
4050 IF YN$="Y" THEN SYS 908: GO TO 4010 
4060 GOTO 2000 
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A hash total routine (Chapter 10) and merge routine (Chapter 3) are also well adapted 
for use with these disks. Techniques involving indexed files, and other uses for 
merges, are not however for the faint-hearted. 

There is no routine to turn off these disks once SYS 45056 has been issued. 
Any other routines using wedges, however, are unlikely to co-exist, unless the wedge 
is specially written to allow for the existence of other wedges. See Chapter 14 on this. 
However, a machine code routine to do this is easy to write. Because of the time spent 
processing the wedge, there may be noticeable time-saving, perhaps 20-30%. The same 
effect can be achieved by turning off the interrupt altogether, with 

POKE 59411, PEEK(59411)-1 but the clock and keyboard are not updated/scanned 
if this is done, until POKE 59411, PEEK(59411)+1 restores the interrupt. This may be 
inconvenient, or it may not, depending on the type of program. A report program with 
no other function than to print out data probably doesn't need the keyboard on. 

The BASIC>l code which returns BASIC to normal (so $C for example causes 
?SYNTAX ERROR) is this 14 byte relocatable routine: 

027A 78 A9 E6 85 70 A9 77 85 
0282 71 A9 DO 85 72 60 

SYS 634 (with this location) replaces the first bytes of CHRGET with their normal 
values. This call can be made within a program; its converse, SYS 45056, can also be 
called in program mode, to reconnect the $ commands. 

6.8 Problems, reliability, and maintenance 

Problems and reliability Whilst the electronic circuitry of correctly-assembled comput­
ers is very reliable, it cannot be expected that disk and tape units, and other devices 
with moving parts, should be as error-free. This is not a problem exclusive to small 
computers. 'Head crashes' (where the recording head scratches the disk surface) are 
not unknown in large installations. For this reason, backup copies of data are almost 
invariably kept. There is also, of course, a possibility that human errors will occur. 
Disks may be mislaid, damaged, or demagnetised; or a software error may cause data 
to be deleted or overwritten; perhaps failure to follow some procedure will mean that a 
disk of useful data is lost. The purpose of this subsection is to give some perspective 
on these potential difficulties. 

Minimising the chance of error The following general points apply to all microcomputer 
systems using diskettes. Hard disks ('Winchesters ') are more reliable; nevertheless, in 
any applications where loss of data or programs would be inconvenient, similar pre­
cautions ought to be taken. 

(i) Use some systematic copying method. A commonly-recommended technique is 
the 'grandfather-father-son' method, in which each disk has an earlier version pre­
served and a still earlier one. In this way, software errors or errors in the way data 
has been processed can be corrected by repeating a process on the original version. 
The point at which a copy is taken has to be decided on empirical and common-sense 
lines. Systematic labelling of diskettes helps. The 'header' feature with CBM disks, 
and the disk Ld., can be useful here. A log may be kept of dates on which copies 
were taken, and the processing which was performed on them. Important disks - Le. 
any disk containing information difficult to replace and worth keeping - also need 
physical storage in a place where they will not be confused with other disks and are 
not likely to be damaged. They may, for example. be kept in lockable boxes, or in 
clearly-marked cases in a lockable drawer. Similarly it may be worth keeping copies in 
a different place - another room or another building - for security. 

(ii) Ensure that all diskettes are storing data correctly. Since all the data is 
stored on diskettes, which are inherently a somewhat delicate medium, it makes good 
sense to have techniques to validate them. In the case of new diskettes, if they are 
destined to store valuable information, they should be tested thoroughly with a utility 
program which writes and reads back every location on the diskette's surface. This is 
worth doing even with diskettes which are warranted error-free. Most test programs 
aren't exhaustive, and confine themselves to opening a few files. Sectors or tracks of 
random data can be used. Alternatively, the bit patterns in RAM testing are suitable 
(Le. 1010 1010 and 0101 0101. #$AA and #$55 and CHR$(170) and CHR$(85) are the 
hexadecimal and ASCII equivalents). Disks which hold data need a different approach. 
The point is that a user has a set of disks in envelopes which are unreadable in the 
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normal way, unlike card-indexes or ledgers, say. It is important that validation pro­
grams should exist which enable a disk to be checked for self-consistency of its data, 
providing some reassurance that its data does, in fact, correspond to its label. This 
precaution is quite often lacking in many systems, notably those from the cheap end of 
the market. But it is difficult to see how a user can have total confidence in a system 
lacking a verification facility. As an example of the type of thing I have in mind, a 
system's disks may be run through a program which calculates a hashtotal of a batch 
of data, and compares it with the same hash total previously stored on disk, reporting 
the results. Or a utility program may page rapidly through all the records, or a group 
of them, displaying the results. Or a routine may check the integrity of files by read­
ing consecutive sectors through to the end. In this way, a diskette which perhaps was 
exposed to a magnetic field, or is otherwise suspect, can be checked without an actual 
program run. If this aspect of a system is thought out at the time of design, the 
subsequent effort is likely to be less than if it is introduced as an afterthought. 

(iii) Don't overuse disk drives. Error rates are usually quoted as a proportion 
of disk accesses attempted. While this is a statistical artefact to some extent, it is true 
that drives which continually write data allover the disk's surface are more likely to put 
a sector in the wrong place than the same drives under conditions of less heavy load­
ing. Other things being equal, it is likely to be good policy to cut down on disk use. 
For example, when relative files are opened, CBM's DOS allocates only enough disk 
space for the current records. If a relative file is intended to grow, it is best to gen­
erate the entire length of the file at the start, so that sectors will tend to be arranged 
in a tidy pattern, not interspersed with other data. A new diskette, free from the 
chaotic organisation of sectors resulting from many files being saved and later scratch­
ed, is a better vehicle for relative files for the same reason, that track-seeking move­
ments are reduced. Data which is frequently reused may be better stored in RAM than 
repeatedly read from disk. This rule, however, is very dependent on other features 
of a system. If, for example, the chance of the computer being switched off or losing 
data in some other way is greater than the (small) chance of disk failure, then data 
should be stored immediately on disk. 

(iv) If possible have a standby system. An advantage of microcomputers is that 
exact duplicate systems may be easily accessible, in the same organisation or user 
group. When they are, reciprocal agreements may be possible, so that even serious 
breakdown doesn't affect a system's work. Organisational quirks may make this more 
difficult to arrange than appears likely at first sight. 

Summary of software bugs These remarks apply to CBM disk units with DOS 1.x or 
DOS 2.x, including 2.5; new releases of DOS will make the comments obsolete, for 
those versions of DOS. At the time of writing, definite announcements on DOS bugs 
are infrequent from Commodore, and in the absence of fact, it it not surprising that 
rumour abounds. 

(i) Write-protect tabs. CBM DOS detects the existence of a write-protect tab, 
which prevents an immediate write to the disk, as it is intended to. But a software bug 
in the internal processor leaves the head's write-gate enabled, so that as a diskette is 
searched by the head, a magnetic trace moves across the disk, erasing data, sync 
marks, and so on. The effect is as though a small magnet had run over the diskette; 
much of the data will be destroyed. Don't, therefore, use these tabs with CBM disks. 

(ii) Duplicate disks. There is a potential problem with duplicate disks; since 
their i.d. is the same, they're treated as identical by the machine, so that the wrong 
disk of a pair, one of which has been updated, used by accident, while DOS stores 
the other's BAM, will cause a wrong BAM to be written, and cause sectors to be put in 
the wrong places. This is not likely to be a serious problem if all disks except back­
ups have different Ld.s, or if disks are not taken out and replaced by others with 
identical i. d. It is also not a problem with the newer drives which automatically 
initialise all disks. 

(iii) Unclosed files. COLLECT or PRINT#15, "V ... " is the command which erases 
unclosed files. Again, this is not likely to be a problem, since it is rather easy to 
close files. Program development is a likely time for this bug to strike, since a syntax 
error aborts files, which may not be closed properly afterwards. 

(iv) COPY. This is a useful command, which unfortunately has a bug when used 
to copy an entire disk, e.g. in COPY DO to Dl or PRINT#15, "Cl=O". If the disks have 
different Ld.s, only 8 files can be copied at one time. Also, relative files often copy 
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wrongly; a utility such as COpy / ALL is preferable, or BACKUP of course can simply 
create a duplicate disk without bothering with COPY. Note the syntax of COpy and of 
the equivalent PRINT#15 command. The reversal in order of the drive numbers can 
cause a file to be wrongly replaced by its earlier version. BACKUP and PRINT#15, "D.~' 
have the same reversal. This will not be a problem unless a user is careless; the best 
precaution is to use a program with explicit instructions to help perform these func­
tions. 

(v) Relative and sequential files. Several files can be opened to a single relative 
file. This is probably best avoided; there are several reports of buffers being wrongly 
written in these circumstances. Short relative files, with total record length less than 
254, may have incorrect side sectors allocated. Make them several sectors long at least. 
DOS 2.5 can fill only about a third of the disk with a single relative file; several may 
have to be used where one would theoretically be best. However, it may be unsafe to 
write to relative files when several relative files are open; 'Before the write is complete 
a buffer may get overwritten', is one theory. The best way of using relative files 
seems to be not to have several parallel files, holding between them data on items 1 to 
N, but to have several files covering the range 1 to N/3, N/3+1 to 2N/3, and so on; 
in this way, the minimum number of files need be open. There are other rumours; to 
quote Jim Butterfield, 'There are a lot of rumors flying about ... you hear a lot of 
stories you can't believe'. One of these is that sequential and relative files ought not 
to be mixed. This may be a legacy from DOS 1, when relative files were a different 
species altogether, and seem s to be without foundation. 

(vi) A disk full error causes files to be left unclosed, since there is insufficient 
space on disk to store the final sector. Use COLLECT if this happens. (It should in 
any case never happen with a properly organised working system). 

Software problems (i) Timing. Whenever large amounts of data are going to be stored 
on file, or when complex processing is to be carried out, the usual guesstimate style 
of inferring processing time from benchmarks based on small files should be replaced 
by an accurate trial. If this isn't done, it may be discovered late in the day that a 
sort takes 36 hours, or a sequential read takes 24 hours to get through a file. Test 
data can be generated by a program, and used to check the efficiency of a system in 
action. The data may be nonsensical, but its function is to be processed, not to sim­
ulate actual data. Sometimes program redesign can make a huge difference to overall 
processing time. I've seen a set of programs whose author didn't know about arrays; 
each of a hundred or so categories was extracted from a single file, in about six min­
utes per category. As a result, a report which could have been produced in about 10 
minutes took about 10 hours. 

(ii) Inaccurate storage. Despite the system of internal checks used by diskettes, 
there is a small chance that data may be stored wrongly; the most likely defect is a 
dropped bit, where a byte which should be #DO loads as #90, for example, the correct 
bit pattern of 1101 0000 loading as 1001 0000. This is only likely to happen to old 
disks which have been untouched for some time, and is a very uncommon fault. But it 
is not impossible; I've found examples in old copies of DOS Support programs. The 
easiest way to check for this, if it is felt to be necessary, is to use a hashtotal pro­
gram to conflate all the bytes of the program into a single-figure value, and check 
that the value agrees with the figure computed. This is a simple thing to do: see 
Chapter 14 for an example. Again, it is rarely done, in spite of the extra assurance 
it provides that a program has correctly loaded. This seems a pity, since long machine 
code programs are difficult to validate in any other way, and a few incorrect bytes can 
cause baffling failures and errors. 

Diskette care Most diskette envelopes have a set of symbols printed on the back, 
providing pictorial warnings against maltreatment. Smoking and dust can damage the 
surface, and slowly degrade the performance. Magnetism is an obvious hazard: electric 
motors, TV sets, VDUs, transformers, telephones, demagnetizers can all help to erase 
data from disks. Diskette boxes can be lined with metal foil to provide a Faraday shield 
against magnetism; this looks efficient and may actually be useful. Some people believe 
that underground trains and X-ray scanners can erase disks unless they are metal­
wrapped. Diskettes can be damaged ('glitched') by small pulses of magnetism if drives 
are turned on or off with disks in place. The probability of harm is reduced if the 
drive doors are open. 4040 and 8050 drives, unlike their predecessors, seem safe in 
this respect. Note that the earlier drives don't have a centering mechanism for their 
disks, so the recommended procedure is to keep the drive door open until the disk has 
begun to turn. 
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Disk drive care and maintenance For obvious reasons, disk drives should ideally not 
be subjected to smoke or dust. It is usually good policy not to physically move them 
much. Individual manufacturer's units vary in their resilience; some drift out of 
adjustment quite easily, so that disks become more likely to be non-interchangeable 
between drives; others are more secure and robust. A sudden movement in one direc­
tion may be more harmful than in another direction. Facts on this topic are hard to 
come by, and tend towards the anecdotal ("X used his system for a year without any 
trouble"). Most drives sold in the U. K. to date have been American. The long trans­
American and transAtlantic journeys aren't always good for these machines. Often they 
are not resold without being unpacked and checked, a fact which annoys some buyers. 
Routine maintenance is usually concerned with the heads: these can be cleaned with 
cotton wool and a solvent such as isopropyl alcohol, or with a head-cleaning diskette, 
which is a diskette case housing a diskette-shaped thin absorbent cloth. 

Disk drives are serviced by cleaning and lubricating the appropriate parts, per­
haps replacing components if a design improvement has been announced, and realigning 
the heads. This is done by checking the track zero end stop, and using a specially 
recorded master diskette to check the output from the head. Disks of this sort are 
recorded eccentrically (in the technical sense!) so a suitable high -frequency oscillo­
scope records a pattern (called a 'Cat's eye') of two adjacent areas on the screen of 
the oscilloscope; when these areas are equal the head is in the middle of its track. 
The spindle motor is checked too. The price-range of disk units is such that servicing 
them is a tricky business, and there is considerable temptation for dealers not to get 
involved with this sort of work. For example, a sales director of a British chain said 
he was reluctant to get involved with hard disk units, because it would take another 
eight weeks to train the engineers. It is therefore worth making sure that you have 
access to a technically competent dealer, or to people whose business it is to design 
and use electronic hardware. The work is sometimes farmed out to other organisations; 
the results of this are unpredictable, and from a consumer viewpoint it's easier to 
deal with one company than with a maintenance organisation which is completely differ­
ent from the hardware supplier. 

Sometimes because of a soft ware quirk a unit may appear to be defective when 
in fact there is no serious fault. One example with Commodore's series of drives is 
connected with the use of two processors in those drives: the internal one can be lost, 
inaccessible to the IEEE. Initialization will bring it back to life. 

There are several points worth mentioning about the 8050 series CBM disk drives 
and its descendants. The double-sided version, called the 8250, runs a DOS version 
(2.7) apparently different from any 8050 DOS; Commodore may have problems number­
ing its subsequent ROM issues for the 8050 because of this. The 8061 and its double­
sided equivalent the 8062 (8 inch IBM compatible diskettes), in spite of appearances in 
brochures, may be pre-empted by the 8250, and perhaps not appear. On shipping 
problems of these units: I ••• the 8050 drives are intended to float freely within their 
mounting case. However, in shipping, the outer case flexes against the too-tight 
cutouts, thus bending the drives. This in turn misaligns the heads, which are very 
critical on this octal density drive. Moral of story: dealers, learn how to realign 
Micropolis drives ... I. This is Jim Strasma, quoting Bill Seiler of Commodore in Canada. 
New units use Tandon disk drives, replacing Micropolis, which themselves succeeded 
Shugart. These are presumed to be more reliable, but solid information about this is 
hard to get. It may be worthwhile specifically ordering the most up-to-date units, if 
you can find out what they are. This is a point on which user groups may be more 
helpful, or at least have alternative views, when compared with dealers who may have 
to shift relatively old stock. Finally, a smaller single disk unit is to be made available 
for the VIC; probably to be called the 4031 the idea is to provide cheap disk backup 
for home users, like the single Apple drives. At the time of writing the specification 
remains vague; these drives may be compatible with PET J CBM, or they may not. 
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CHAPTER 7: ALPHABETIC REFERENCE TO DISK BASIC COMMANDS 

7.1 Notes on BASIC disk commands. BASIC 4 has fifteen keywords which earlierBASICs 
lack and which are all concerned with the disk operating system of Commodore's disk drive 
units. They are not intended for use with other manufacturer's equipment. The keywords 
are CON CAT , DOPEN, DCLOSE, RECORD, HEADER, COLLECT, BACKUP, COPY, APP­
END, DSAVE, DLOAD, CATALOG, RENAME, SCRATCH, and DIRECTORY in ascending 
order of token. There is also a disk status indicator, resembling ST, which takes two 
forms, DS $ and DS. Earlier BASICs cannot list these tokens without a special program; 
in fact other keywords from FOR to REM and including ?SYNTAX ERROR will appear in 
their place. At first sight these commands look like radical additions to BASIC: they 
suggest that now we can read and write to disk in a way that was impossible before. In 
fact, this is not the case. The important thing to grasp about CBM disk units is that most 
of the processing is performed within the disk unit. All that BASIC does is send 'command 
strings' and data to the disk units, and receive data back again. The disk units are 
'intelligent' and carry out their functions without the CBM's processor. Many other 
microcomputers store their DOS in RAM, or in ROM, like the cassette system of the CBM 
range, where it can be disassembled and examined. CBM's disk system resembles, and 
can be treated as, a 'black box'. What is all-important is the set of ROMs in the unit. 
The early disk operating systems, DOS 1 to DOS 1. 2, have fewer features than DOS 2 
to DOS 2.7, notably the absence of relative files. This difference is independent of the 
version of BASIC which uses the disks. So a DOS 2.1 disk is controllable even by the 
earliest PET but without the extra commands listed above. For this reason I have included 
equivalent IEEE commands using strings containing controlling characters along with the 
simpler BASIC 4 commands. Most DOS systems try to abbreviate as far as possible; often 
clashes between commands with the same initials have to be avoided, with strange circum­
locutions like 'X' for 'Exit'. CBM disks have not been free of this difficulty. The table 
shows which BASIC 4 commands correspond to which command string characters and the 
names previously assigned to them. See also Chapter 15, BASIC 4 ROM from $D839. 

7.2 Notes on BASIC II disk command syntax. BASIC 4 has an elaborate syntax checking 
technique (see Chapter 15, $DC68 in BASIC 4) allowing all the parameters including the 
file number to be arranged in any order. DOPEN "FILE", W , #3 and DOPEN#3, W, "FILE" 
are effectively identical. This has forced out some constructions which would now be am­
biguous. R shows that a sequential file is to be read; it cannot be also used to indicate 
a relative file. So only the length of the record (e.g. L100) is a parameter when a new 
relative file is opened. On the other hand, some extra ambiguities have been introduced. 
Device number 9 may be specified by ON U9 or ,U9. Strings and numerals may be en­
closed in brackets, but need not be if they begin with" or with 0-9 respectively. All 
string expressions, and numeric expressions not beginning with a numeral, must be in 
brackets, or ?SYNTAX ERROR appears. The following four examples of a DOPEN state­
ment are equivalent, provided that drive 0 of device #8 holds the destination diskette: 

DOPEN#l,"FILE OF NAMES5",U8,DjJ,W 
DOPEN ("FILE OF NAMES" + N$) ,W,#l ON U8 :REM ASSUMING N$="5" 
DOPEN # (X), (FN$ + CHR$(N», W :REM IF X IS 1, FN$ IS "FILE 
DOPEN#l, "FILE OF NAMES", W OF NAMES", AND N=53 

In this section I have assumed for consistency that the command/error channel with sec­
ondary address 15 has been opened with OPEN 15,8,15. I have used upper-case to 
distinguish BASIC from ordinary text, and in the BASIC 4 examples used some lower-case 
commands (the 8032 - not the 4000 series though! - powers on into this mode). 

BASIC<4 BASIC 4 BASIC<4 BASIC 4 

--- APPEND LOAD DLOAD 
D[UPLICATE] BACKUP OPEN DOPEN 

--- CATALOG --- DS, DS$ 
V [ALIDATE] COLLECT SAVE DSAVE 

C[ONCATENATE] CONCAT N[EW] HEADER 
C[OPY] COpy I[NITIALISE] ---
CLOSE DCLOSE --- RECORD 

--- DIRECTORY R[ENAME] RENAME 
S[CRATCH] SCRATCH 
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APPEND 
BASIC 4 disk file command 

PURPOSE: APPEND reopens a closed sequential file, setting pointers to the end of the 
file and preparing to write to disk. I n this way a sequential file can easily be 
extended to store more data. 

NOTE: This BASIC 'I command has no direct connection with the techniques 
discussed alsewhere to ioin BASIC programs end-to-end. 

Syntax: DOS 1 +: APPEND is not directly available; concatenation of the old file to the 
new file must be used instead. See CONCAT. 
DOS 2+: The DOS interface is 'Drive number: file name,A'. 

APPEND is followed by these parameters in any order: 
(i) # then expression for the logical file number. 
(ii) String or string expression in brackets. This is the name of a sequentialfile. 
(iii) Optional drive number. ,D followed by an expression for 0 or 1. 
(iv) Optional device number. ON U or , U with an expression for 4-31. 
Typically this looks like: 
APPEND # arith. expr. , "name" [, D arith. exp.] [, U arith. exp.] 

Spaces - except within APPEND itself or the string, are skipped by BASIC and 
have no substantial effect. * 

Examples: BASIC 4. The first example creates a sequential file called "file of names" 
holding one hundred names, which are assumed to be present in the array N$(). 
Some time later - perhaps almost immediately, perhaps months after the file had 
been written - more names need to be added to the file. By definition, there is 
no alternative, with a sequential file, to writing these onto the end. The method 
is to open the file with APPEND, and write to the file, as program line 110 does 
here. When line 120 closes the file, the new data has been appended like this: 

START OF FILE: 

10 dopen#l "file of names" ,w :rem open a sequential file for writing 
20 for j=l to 100: print#l, n$(j): next: rem write 100 strings 
30 dclose #1 : rem close the file 
100 append #2, "file of names" :rem s,w, are both implicit in this 
110 for j=l to n: print#2,n$(j): next: rem write n more strings 
120 dclose #2 :rem close the file 

BASIC<4. The example below is exactly equivalent, but omits BASIC 4's special 
commands. It may of course be run on a BASIC 4 machine, if it is required to 
ensure that a program is compatible with any BASIC. 

10 OPEN 1,8,2,"O:FILE OF NAMES,S,W": REM SEC. ADDRESS IS UNIMPORTAN'l' 
20 FOR J=l TO 100: PRINT#l,N$(J) CHR$(13);: NEXT 
30 CLOSE 1 
100 OPEN 2,8,2,"0:FILE OF NAMES,A" 
110 FOR J=l TO N: PRINT#2,N$(J) CHR$(13);: NEXT 
120 CLOSE 2 

Notes: [1] APPEND implies both a sequential file, and 'write' mode. The reason is that 
appending is not needed with relative files, since any record can be selected by 
its number. And since the pointers are set to the end of file, reading from this 
point would not achieve anything. Sequential files. because of their irregular rec­
ord length, must usually be read from the beginning. 

[2] Some CBM disk manuals omit this command. 

Abbreviated entry: aP 

Token: $D4 (212) 

Operation: See Chapter 15 under $D977 in BASIC 4. 

ROM entry: The kemel jump address is $FFAB; this jumps to $D977. 

*This is true of all BASIC 4 disk commands, and I shall not explicitly state this fact 
for each of them 
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BACKUP 
BASIC 4 disk system command 

PURPOSE: Creates an exactly identical disk for security purposes and for the creation 
of multiple copies of programs. 

Syntax: DOS 1 + and DOS 2+ have the same DOS interface, which is: 
'D destination drive number: source drive number'. However, their processing is 
not identical - see note [1]. 

BACKUP is followed by one or two parameters: 
(i) D then expression for 0 or 1 TO D then expression for 1 or 0. 
(ii) Optional device number. ON U or , U with an expression for 4-31. 
Typically, this appears like: BACKUP DO TO D1. 

Examples: BASIC 4. The example duplicates a diskette in drive 0 (the right-hand 
drive) onto a disk in drive 1. The duplicate is formatted (and could be a new, 
unused disk) and copied block for block. For this reason a disk to be duplicated 
must be the same type as the drive which does the duplication, since the number 
of tracks and sectors must match. (Cp. COpy). 

10 ? "Place ORIGINAL disk in Drive 11 (right-hand drive)" 
20 ? " COpy disk in Drive 1 (left-hand drive)" 
30 ?:?"Press spacebar to duplicate" 
40 get x$: if x$<>" " goto 40 
50 backup dl1 to d1 
60 goto 10 

BASIC<4. The following example performs the same function, without BASIC 4's 
special command. Note that the order of disks in duplication is apparently re­
versed! In fact the DOS interface interprets the number after D as the destin­
ation drive, and the number after the':' as the source, so BASIC 4 takes the 
two disk drive parameters and sends them on the IEEE bus in this different 
order. If the drive numbers are entered wrongly and the command goes to com­
pletion, the data will be completely irretrievable; this is why it is desirable to 
use a program - like the above - with explicit instructions. 

50 PRINT#15,"D1=11": REM READ THIS AS 'DRIVE 1 BECOMES DRIVE 0'* 

D in this command string is the initial of 'Duplicate'. Perhaps this was felt to be 
too long a command for BASIC; hence 'Backup'. Note that only the initial is 
relevant; 50 PRINT#15, "DAISY1=0" would do as well. 

Notes: [1] Older versions are slower (about 6 minutes compared to about 1- 3 minutes 
depending on the type of unit). There is also a difference in the underlying phil­
osophy: the earlier duplicate command took no account of errors, whereas the 
later BACKUP command aborts on finding errors. In fact some CBM disks are 
'copy protected' by misrecording a few sectors. BACKUP starts at the outside of 
the disk and works inward. 

[2] Remember that the disk formats must match. There are (at the time of writ­
ing!) three of these: 2040 and 3040, 4040, and 8050. Each type of disk must be 
treated separately when duplicating disks - see COPY. 

Abbreviated entry: bA 

Token: $D2 (210) 

Operation: Chapter 15 explains BASIC 4's operation; the disk unit does most of the work 

ROM entry: The kernel jump address is $FFA5; this jumps to $DA7E. 

*Throughout this chapter I have assumed that the command/ error channel has been 
opened with logical file number 15, thus: OPEN 15,8,15. 
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CATALOG & DIRECTORY 
BASIC " disk system command 

PURPOSE: Displays the contents of a CBM disk on the screen. Data written directly 
to sectors will not show up, since it bypasses the file creation and directory 
en try routines which are otherwise used. Other types of disk, for example those 
formatted on other machines or not readable because of incompatibility (e.g. 8050 
on 4040 drives), will, not surprisingly, not have their directories read in this way. 

Syntax: DOS 1+ and DOS 2+ each store their directories in similar ways, as a BASIC 
program, complete with link addresses and line numbers, and zero termination 
bytes to signal that the end has been reached. The difference is that the 'line­
numbers' represent sectors occupied by the program or file data, and need not 
be sequential. DIRECTORY and CATALOG (these have identical effects) are 
BASIC 4 commands which do not rely on a DOS interface, but instead display 
the directory by reading bytes, formatting them like BASIC with a number and 
text, and printing the result directly onto the screen. RAM is unaffected, except 
screen RAM, which becomes the storage device. Once DIRECTORY has scrolled 
off the screen it can be recovered only by another DIRECTORY. The syntax is 

DIRECTORY [D arith. expr. for 0 or 1] [, or ON U arith.expn. for device no.] 

Examples: BASIC 4. Unlike the DOS universal wedge program, this may be called in 
program mode; this is useful when producing hardcopy listings of the contents 
of a lot of disks. Both CATALOG and DIRECTORY or their short forms, e.g. 
cA and diR, are accepted. Note that this form lacks some of the features which 
are available by loading the catalog as a program, notably the production of 
subsets of the catalog. Since BASIC 4 is designed for use with larger amounts 
of storage than before, this seems a little strange. 

open 4,4: cmd 4,;: cA d~ : rem print catalog of diskette in drive ~ 

10 input "drive number";d: if d<>~ and d<>1 goto 10 
20 print "[clr] Press spacebar to pause" 
30 directory d(d) 

BASIC <4. The directory is loaded as a BASIC program; this has the drawback of 
overwriting any BASIC in memory, and the advantage of retaining it in memory. 
The disk operating system is able to identify several useful variations on the 
simple directory: 

LOAD "$9''',8 
LOAD "$1",8 
LOAD "$~:MY*",8 
LOAD "$II:??M/C*",8 

:REM LOADS DIRECTORY INTO MEMORY; NOW LIST IT. 
:REM SAME, EXCEPT THAT DIRECTORY IS FOR DRIVE 1. 
:REM LISTS ALL PROGRAMS, FILES, BEGINNING 'MY'. 
:REM LISTS ALL PROGRAMS, FILES WITH 'M/C' IN 
3RD, 4TH & 5TH POSITIONS (ON DRIVE #11). 

LOAD "$1:FILE*=P",8 :REM PROGRAMS ONLY, STARTING 'FILE', ON DRIVE 1 
LOAD "$II:*=S",8 :REM DIRECTORY OF SEQUENTIAL FILES ON DRIVE ~. 

DOS SUPPORT (UNIVERSAL WEDGE). This program is usable with both BASIC 4 
and BASIC <4. Its method of displaying the directory is identical with that of 
BASIC 4, at least in outline: some differences may well show up, since several 
versions of DOS support exist. These differences largely affect the I/O process­
ing but not much else, so that one version will print a directory to a printer 
after CMD, another won't. However, the commands sent to the disk are more 
flexible than BASIC 4 will permit, because any characters can be loaded into the 
buffer. The following constructions are therefore all acceptable: 

@$II or >$9' :REM DIRECTORY OF DRIVE ~ TO SCREEN. 
@$ or >$ :REM DIRECTORIES OF BOTH DRIVES ARE DISPLAYED -

@$1:ASSEM* 
or >$1:ASSEM* 

@$~:*=P or >$II:*=P 

BE SURE EACH HAS A DISKETTE! 
:REM DIRECTORY OF DRIVE 1, BUT ONLY OF PROGRAMS/ 

FILES WHOSE NAMES BEGIN 'ASSEM'. 

:REM DIRECTORY OF PROGRAMS ONLY FROM DRIVE ~. 
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Notes: [1] Contents of a directory. The specimen 
directory, from an 8050 drive unit, shows 0 1II:3=-.~~i.IIl~~iiUi(:(: •• I!II".'''1@ 
the appearance of a typical diskette directory :35 "BEEPF::DG4:32::;" PRG 
on which programs and files have been stored. :35 "BEEPROG4:32P" PRG 
The top line prints the drive number, and, in :36 "BEEPI':OG8:32S" PRG 
reverse, the diskette's name and i.d. charac- 4 "TELESOFHJAI':E" PRO 
ters. The version of DOS is indicated, not as 19 "BEEPF.:OCiCASSETTE" PF.:Ci 
2.1 or whatever, but 2A or 2C or some similar 4 "H1FO" SEC! 
code. 2C is DOS 2.5, the 8050 version of DOS 4 "Pl" ::;EG! 
2, which allocates space for 2052 sectors (or 4 "F 1 " ::;EC! 
'blocks') on the diskette. Each filename, in 4 "ALCC1" SEC! 
quotes, is displayed with the number of sectors 4 "CR1" SEQ 
which it occupies; the first three programs, 4 "Hl" SEG~ 
for example, all occupy about 35 sectors, and 4 "El" SEG! 
since CBM sectors are 256 bytes long, these 4 "t·U" ::;EG! 
programs are about 35/4 or 9K of BASIC. 4 "t·Q" ::;EG! 

4 "' ... ' 1 " ::;EG! 
NOTE: files which were not CLOSEd, or which 4 "GBL" SEC! 
were SCRATCHED when open, show various 4 "t·1Ll" SEQ 
warning signs, including file-type DEL or an 1875 E:LOCKS FI':EE. 
unexpected asterisk. At this point, if the data 
is important, the disk should be overwritten 
by a backup; if one has not been taken, in-
dividual files may be COPYed to another disk, 
with luck. 

[2] Initialisation. DOS 2.1 and 2.5 automatically 'initialise' (q.v.) their diskettes, 
but earlier versions don't. This can be done by: 

OPEN 15,8,15: PRINT#15,"IjI" :REM "11" FOR DRIVE 1 

or, when DOS support is loaded, by: 

@IjI or >11 

Whenever a new disk is put into a drive it should be initialised, since otherwise 
the operating system may write data according to a wrong block availability map, 
overwriting data. If a program includes initialisation, or if it is automatic, then 
it needn't be repeated. So directories always require initialisation, unless the 
disk has been initialised or this is an automatic function. (I hope this is clear!). 
It is possible to disable (Le. switch off) the auto initialisation; this is a possible 
though unlikely source of trouble. 

[3] Other versions. The directory is an exceptionally accessible piece of code, 
and it is instructive to disassemble DOS support or BASIC 4 if you wish to use 
machine code with disks. An example: with DOS Support loaded, use the monitor 
to examine the high end of RAM, e. g. 7F80-7FFF in a 32K machine. About 9 lines 
up from the bottom is an 0D, a carriage return character. Replace this by 92, the 
hexadecimal equivalent of [RVSOFF]. Now the directory will print across the page 
instead of in columnar form. This BASIC program mimics some of the DOS Support 
and produces program and file names in columns: 

10 OPEN 1,8.0. "$0" :REM DIRECTORY OF DRIVE 0 
20 GET"'.1. X$: GET£1. X$ ; REM REJECT TRACK &. SECTOR BYTES 
30 IF X = 4 THEN X = 0; PRINT :REM PRINTS 4 COLUMNS, FOR 8032~ 
40 PRINT TAB(20*X); :REM (X=2 PRINTS 2 COLUMNS ONLY), 
50 GETt1,X$; GET£1.X$; GET£l,X$; GET£1,X$; IF ST OR DS THEN CLOSE 1; END 
51 ;REM REJECT 4 BYTES INC. NO. OF SECTORS 
60 GETt1,X$; IF X$ ~ "u THEN X = X + 1: GOTO 30 
70 IF X$ : CHR$(34) THEN 9 = NOT Q; GOTO 60 
80 IF Q THEN PRINT X$; ;REM PRINT ONLY ••• 
90 GOT(J 60 ; REM '" STUFF WITHIN QUOTES 

Abbreviated entry: cA and diR Token; $07 (215) and $DA (218) 

Operation: See Chapter 15 on BASIC 4 and Chapter 14 on DOS Support. 

ROM entry points: Both keywords have the same jump address, $FFB4 which jumps to 
$0873. 
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COLLECT 
BASIC II disk system command 

PURPOSE: COLLECT (or Validate) rewrites a diskette's 'Block Allocation Map' to 
exclude sectors in files which have not been closed correctly. The first byte of 
a file'S directory entry indicates to the disk operating- system that a file was open 
but was not closed. Files are checked, by reading consecutive sectors, for a 
correct termination byte. If this is not present, the file will be assumed to cont­
inue in another part of the disk, and sooner or later will become entangled with 
some other file. The object of COLLECT is to delete such files and ensure that 
a diskette contains only sound files. * 
NOTE: This command is suitable for data which is held in the form of linked 
sectors. This includes BASIC programs, sequential fifes, and (DOS 2+ only) 
relative fifes. But data written by the user directly in sectors is not treated in 
the same way, so that the sectors are de-allocated from the block availability 
map. Subsequent write-to-disk operations by the fife-handling system will erase 
these sectors as soon as the remaining disk-space before them is full. For this 
reason, disks with 'user files' are best kept distinct from disks with DOS fifes. 

Syntax: DOS 1+ and DOS 2 + have the same DOS interface: 'V drive number', which in 
DOS 1 meant 'Validate', and was often confused with VERIFY, which is a program 
verification command, not a file verification function. There are differences in 
processing between DOS ROMs, notably when dealing with relative files, which 
DOS 1 doesn't recognise. 

COLLECT is followed by D and an expression for 0 or 1. 
(COLLECT alone defaults to drive 0). 

Examples: BASIC 4. The example validates or collects - whichever you prefer - the 
files on drive 0: 

collect dIJ 
BASIC<4. This example does the same, without BASIC 4's keyword: 

PRINT#15,"VIJ" 

Notes: [1] COLLECT exists because of the possibility of corruption of data by files 
which are incorrectly stored. This type of difficulty is inevitable with any disk 
system which allows sectors to be written anywhere on it disk. The problem may 
be a long time in the making: an error may have been working on your disk for 
months, to quote Jim Butterfield. CBM machines are unusual in not having the 
validation as a normal part of the operating system. Similarly, they don't seem to 
have a method of indicating 'bad' sectors on disks. COLLECT therefore probably 
always ought to be used when programs and files are stored on disk; but data 
written to sectors by B-W and similar commands cannot be COLLECTed, since, 
instead, the block allocation map will reassign their sectors as unused, and 
subsequent file-writing will sooner or later occupy these sectors. 

[2] See SCRATCH: this command too has special properties when corrupted data 
is involved. See also COPY with reference to relative files. 

[3] If COLLECT signals an error - usually failure to read the disk - the block 
map on the disk isn't changed - yet. But the block map in RAM will have been 
modified to some extent, probably, so that it's risky to proceed without initial­
izing the diskette again, reloading the old block map. 

Abbreviated entry: coL 

Token: $D1 (209) 

Operation: See Chapter 15 for BASIC details. 

ROM entry points: The kernel jump address is $FFA2; this jumps to $DA65. 

*This command-like many in BASIC-operates by switching pointers and flags, leaving data 
largely intact. The data in dud files still exists after COLLECT, but the file name is 
removed from the directory, and its sectors are no longer officially in existence as 
recorded by the block availability map, and hence are liable to overwriting. 
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CONCAT 
BASIC 4 disk file command 

PURPOSE: CON CAT concatenates sequential files, so that the resulting single file 
contains all the data from the original files in sequence. 

Syntax: DOS 1 + and DOS 2+ have the same DOS interface, which is: 
'c Destination drive number : destination file name = drive: first file , drive: 2nd file'. 
After this command, the destination drive holds a file of the destination name 
specified, which consists of 'first file' with '2nd file' appended to it. Note that 
CON CA T does not allow a new name to be specified; instead the name is taken 
by default from the second file name parameter. So a construction like: 
CONCAT old file TO newer file GIVING up-to-date file is not available with 
CON CAT , but is available when using the alternative form with 'C'. 

The syntax is CONCAT [D with expr. for 0 or 1,] file name string or variable 
in brackets TO [D with expr. for 0 or 1,] file name [ON U device number expr.] 

In practice, this looks like: CON CAT DO, "NEW STUFF" TODl, "TOTAL FILE", 
which appends the data called "NEW STUFF", from drive 0, onto "TOTAL FILE" 
on drive 1. Files which are not sequential data files give an error in DS $. 

Examples: BASIC 4. The first example concatenates two files from the same drive; the 
second concatenates files from different drives. Note that there is no provision 
for concatenation between drive units. 

1000 concat dO, ("new data" + st'r$(n» to dO, "all data" on uS 
1500 cone at dO,"data1" to d1,"data" 

The first example could be part of a loop which appends several files with names 
"new data 1", "new data 2", and so forth, onto the file "all data". Note that, 
because the drives are identical, the first file will disappear from the directory, 
The second example performs a copy before concatenating, so that the original 
files both still exist separately. 

BASIC<4. To make the operation of this command clear, I've included a listing 
of a demonstration program which concatenates a file on drive 1 called "FIRST 
FILE", and a file on drive 0 called "SECOND FILE". The concatenated file is 
"RESULT", and is on drive 1. Lines 10-150 write the two sequential files which 
are to be concatenated. Lines 300-330 perform the concatenation, using syntax 
identical to that of the DOS interface, and which avoids the keyword CONCAT. 
Finally, lines 400-440 read the file called "RESULT" and print its contents, to 
show that the required concatenation has in fact taken place correctly. The 
syntax of the crucial command is 

310 PRINT#15,"C1:RESULT=1:FIRST FILE,~:SECOND FILE" : REM FOLLOWING IS OK: 
310 PRINT#15,"CONCAT1:RESULT=1:FIRST FILE,~:SECOND FILE" 

Notes: [1] This command operates by switching the pointers at the end of the first file 
to point to the start of the second. Then the directory entry of the second is 
erased, so the file simply reads from one file to the next: the position of the 
sectors on disk will reflect this history. Relative files cannot be concatenated, 
with the present DOS, partly, presumably, because of the greater difficulty of 
programming this as compared with sequential files. CON CAT is closely related 
to COPY; when different drives are involved in CONCAT, the first stage is to 
execute COPY, so that the file to be appended is present on the same disk as 
the major file. 

[2] BASIC<4 can execute what is effectively APPEND using concatenation; all that 
is needed is the data which would have been written to the file opened by APP­
END on its own file, which after CLOSE can be concatenated onto the main file. 

Abbreviated entry: conC 

Token: $CC (204) 

Operation: See Chapter 15 for BASIC details. 

ROM entry point: The kernel jump address is $FF93; this jumps to DAC 7. 
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DEMONSTRATION OF THE USE OF 'C' TO CONCATENATE 

10 OPEN 5,8,5, "1: FIRST FILE, SEGI, Woo 
20 PRINT£5, "FIRST FILE" 20 f~ECORDS" 
30 FOR J= 1 TO 20 
40 PRINT£5,"RECORD NO,"J 
50 NEXT 
60 CLOSE 5 
100 OPEN 5,8,5, "0: SECOND FILE,SEGI,W" 
110 PRINT£5, "SECOND FIl.E •• 10 RECORDS" 
120 FOR J= 1 TO 10 
130 PRINT£5,"RECORD NO."J 
140 NEXT 
150 CLOSE 5 
160 END 
300 OPEN15,8,15 

7: CBM disk commands 

310 PRINT£15,"Cl:RESULT=1:FIRST FILE,O;SECOND FILE" 
320 CLOSE 15 
330 END 
400 OPEN 5f.8,5, "l;RESULT,SEGI,R" 
410 INPUn~5, X$; 
420 PRIN1' X$; 
426 IF ST<)O THEN CLOSE 5; END 
430 NEXTJ 
440 GOTO 410 

'RUN' SF~TS UP TWO SEGlUENTIAL FILES, ONE ON EACH DISKETTE IN THIS CASE; 
'RUN 300' CONCATENATES THE TWO FILES INTO A NEW FILE CALLED 'RESULTS'; 

AND 'RUN 400' ))EMONSTRATES THE SUCCESSFUL CONCATENATION. 

FIRST FIl.E •• 20 RECORDSRECORD NO.1 RECORD NO.2 RECORD NO.3 RECORD NO.4 RECOR 
DNa. 5 RECORD NO. 6 RECORD NO. 7 RECORD NO. 8 RECORD NO. 9 RECORD NO. 10 RECORD 
NO. 11 RECORD NO. 12 RECORD NO. 13 RECORD NO. 14 RECORD NO. 15 RECORD NO. 16 RE 

CORD NO. 17 RECORD NO. 18 RECORD NO. 19 RECORD NO. 20 SECOND FILE •• 10 RECORDSRE 
CORD NO. 1 REcmm NO. 2 RECORD NO. 3 REG ORO NO. 4 RECORD NO. 5 RECORD NO. 6 REeo 
RD NO. 7 RECORD NO. 8 RECORD NO. 9 RECORD NO. 10 
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COpy 
BASIC ij disk file command 

PURPOSE: COPY permits the selective copying of any files from one diskette to 
another, except relative files (at the time of writing). It also permits an entire 
diskette to be copied onto a second diskette, without erasing the current con­
tents of either disk except with DOS 1+, in which case each file must be copied 
individually. Note the distinction between COpy and BACKUP (or DUPLICATE); 
COPY reads the file and writes it back as though it were being written from a 
program; it is added to the current diskette contents. For this reason COpy can 
convert the format of any readable disk into its write format; 3040 diskettes may 
be copied by a 4040 drive. BACKUP is less 'intelligent' and produces an exact 
replica, provided the format is consistent. This of course is essential if tracks 
and sectors have been written by the user in ways which can't be read as ord­
inary files. 

Syntax: DOS 1 + and DOS 2+ appear to have identical facilities as regards both COPY 
and CON CAT , except that DOS 2+ can copy an entire disk when no file names 
are specified in the COPY command. The DOS interface used by BASIC 4 is: 
'C Destination drive: destination name = Source drive: source filename'. This is a 
subset of the full interface, which causes concatenation rather than copying. 

The syntax is: COPY [D expr. for 0 or 1, ][name] TO [D expr. for 0 or 1,] 
[name], where both names may be omitted, or both names present. The destin­
ation file name is checked, and if found to exist, ?file exists error (63) is set 
in DS$. So copies made to the same disk must use a different name. 

Examples: BASIC 4. The first example copies an entire disk onto another. Since the 
destination disk is not cleared in any way, the copy may abort with ?disk full. 
Running HEADER first is therefore common - see note [1]. The second and third 
examples copy a file to the same disk, and the other disk, respectively. Note 
that the names cannot be the same in the second example. 

100 copy d~ to d1 
200 copy d~,"text" to df,J,"text1" 
300 copy df,J,"text" ti d1,"text" 

BASIC 4. These are the equivalents without the keyword 'COPY'. Note that the 
first example only works with DOS 2+, which was specially extended to include 
it: 100 PRINT#15,"COPY1=0": REM NOTE THE 

200 PRINT#15,"C1:TEXT=0:TEXT" 
300 PRINT#15,"COPYO:TEXT1=0:TEXT" 

REVERSAL OF SOURCE AND DESTINATION!! 

Notes: [1] When converting from DOS 1+ to DOS 2+, either through ROM upgrade or 
change of hardware, COpy may be used to reformat the disks by reading the old 
files and writing them to new disks. However, 8050 disks have more tracks, and 
can't be read by smaller disk units, and vice versa. To copy this type of data 
needs two disk drives connected to the same machine and a copy program: two 
are available through user groups and clubs: COPY ALL by Jim Butterfield and 
another version, COPY/ALL which copies relative files too. COpy with relative 
files gets most of the copy correct, but not all. There is no syntax error. 

[2] Watch for the reversal of order between COpy and PRINT#15,"C .. , ". This 
occurs in BACKUP and PRINT#15, liD ... " too. It is less serious here; a mistake 
simply won't find the source file, unless it erroneously exists on the destination 
file, so ?FILE NOT FOUND ERROR is about the worst that can happen. Of course 
the destination disk may be copied in its entirety onto the source disk too. 

Abbreviated entry: coP Token: $D3 (211) 

Operation: See Chapter 15 for BASIC details. 

ROM entry point: The kernel jump address is $FFA8; this jumps to $DAA 7. 
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DCLOSE 
BASIC 4 disk file command 

PURPOSE: DCLOSE performs exactly the same function as CLOSE. It has an optional 
form, however, which closes all open files. The file closed need not be a disk 
file; any IEEE file, opened to device number 4 to 31, may be closed by DCLOSE. 

Syntax: DOS 1 + and DOS 2+ can both handle this command, which is identical, except 
for syntax, to CLOSE. 

The syntax is DCLOSE [l/arith. exp.] [ , or ON U arith.exp.] 
where the first parameter is a logical file number (1-255) and the second the 
device number. 
DCLOSE closes all files; 
DCLOSE #1 closes logical file #1; 
DCLOSE #1 ON U 9 closes logical file #1 on unit 9; 
DCLOSE U8 closes all files on unit #8. 

Examples: BASIC 4. The first example shows individual files being opened and closed; 
the second shows the use of DCLOSE to close all files. The BASIC<4 equivalent 
is in the REM statement. There is little difference between them. 

10 OPEN 4,4 :REM OPEN FILE 4 TO A PRINTER 
20 DOPEN #8, "TEST",W: REM BASIC 4 IS OPEN#8,8,2,"0:TEST,S,W" (ASSUMING 

DEVICE 8 AND DRIVE 0). 
30 --- PROCESSING ---
1000 DCLOSE #4 ON U4: REM OR USE BASIC 4'S CLOSE 4 
1010 DCLOSE #8 REM SAME AS CLOSE 8 

or 1000 DCLOSE : REM CLOSES ALL FILES ON DEVICE 8 ONLY. UNLESS OTHER FILES 
HAVE BEEN OPENED, THIS IS EQUIVALENT TO CLOSE 8 HERE. 

Notes: [1] DCLOSE, like CLOSE, has the effect of completing file processing. More 
details are given in CLOSE, but basically there are two things which may need 
to be done: one is to remove the file details from the file table, so that further 
attempts to read or write will need the file to be reopened. This happens to all 
closed files. However, files for writing (as opposed to files for reading) must 
also be finalised by writing the last buffer of data onto disk; otherwise there 
will be no record of the last items which were to have been written; and, what 
is worse, the chaining of blocks and sectors is left incomplete. This is the reas­
on that correct file closure is stressed. This is not important with tape, as a rule 
but should be avoided on disks used for serious data storage. Very often, of 
course, this is not a problem: the programmer simply CLOSEs the files! If a 
syntax error of some kind occurs, however, it may be important to close write 
files from the keyboard; DCLOSE is useful for this purpose. But note that files 
are closed if a program is edited; in this case use the method in CLOSE, of 
poking the number-of-files-open location. A CBM manual says that (using our 
file numbering convention for the error channel) OPEN 15,8,15: CLOSE 15 will 
close all the files currently open. Both the directory entry, showing the length 
of the file, and the Block Allocation Map, as well as the data, are written on 
CLOSE or DCLOSE of a write file. 

Abbreviated entry: dC 

Token: $GE (206) 

Operation: After checking the syntax, this routine calls CLOSE after the point at 
which parameters have been input. A single file number is checked to ensure it 
isn't zero; DCLOSE alone simply searches the table of device numbers for any 
file of the correct device - usually the default U 8 - and closes each of these. 
(The routine is from DA1B - DA30L 

ROM entry point: The kernel jump address is $FF99; this jumps to $DA07. 
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DLOAD 
BASIC 4 disk file command 

PURPOSE: Loads a BASIC program (or other contiguous RAM, e.g. machine-code) 
into RAM at the same locations from which it was saved. DLOAD unless otherwise 
stated assumes CBM disk unit #8. DLOAD is in fact virtually identical to LOAD; 
the only differences are the syntax and the fact that DLOAD validates the device 
number to ensure it is an IEEE device, so tape files for example won't DLOAD. 
See LOAD, therefore, for more about this subject. 

Syntax: DOS 1 + and DOS 2+ are similar: in each case individual bytes are returned by 
the unit when it is made a talker, and these bytes are processed by BASIC 
which pokes them into memory from the start address which it also receives. 
DLOAD's syntax permits the following parameters, separated by commas, to be 
used in any order: 
(i) String or string expression in brackets. This is the program name. 
(ii) Optional D followed by expression for 0 or 1. This is the drive number; it 
defaults to drive 0, so drive 0 will be searched for the program if this para­
meter is omitted. It will go on to search drive 1 in this case if the file doesn't 
exist on drive O. 
(iii) Optional unit number, U followed by expression for device number 4-31. 

Modes: The action of this command when called from within a program differs from that 
in direct mode; the difference is identical to that for LOAD, q. v. See note [2] 
on this page. 

Examples: BASIC 4. All the following examples assume that the diskette is correctly 
initialised; this mayor may not be an automatic function. 

DLOAD "MY*" :REM LOAD 1ST PROG. FROM Dg WHOSE NAME STARTS 'MY' 
100 DLOAD (X$ + .COPY),U8:REM LOADS THE COMPUTED FILENAME 
DLOAD "PROGRAM", D1 : REM LOADS 'PROGRAM' FROM DRIVE 1 

BASIC<4. The following are exact equivalents. I've assumed device 8 throughout: 

LOAD ": MY*" , 8 
100 LOAD ":X$"+".COPY",8 
LOAD "1: PROGRAM" , 8 

In each case, if the file isn't found, the disk error channel will return error 62, ?FILE 
NOT FOUND ERROR. 

DOS SUPPORT (UNIVERSAL WEDGE). The slash symbol (/) is equivalent to 
DLOAD; the up arrow (1') to DLOAD and RUN. So, for example, 

t* :REM LOADS & RUNS 1ST FILE ON DRIVE g (ERROR IF IT'S DATA!) 
/MY* :REM LOADS FIRST PROGRAM STARTING 'MY' FROM DRIVE 1. 
t1:PROGRAM, : REM LOADS 'PROGRAM' FROM DRIVE 1, THEN RUNS IT 

Notes: [1] BASIC 4 forces dl"*[RETURN]run[RETURN] into the keyboard queue if the 
Shift-stop key is pressed. This is quite easy to do when editing the screen, and 
acts like dload "*", then run. This will erase your current program if you are 
using BASIC. See Chapter 17 for remedies. 

[2] On DLOAD, a program is re-run from the beginning, retaining its variables. 
How can machine-code be loaded? Suppose we have saved 'OLD' on disk and wish 
to load it from a program: 0 DLOAD "OLD" loads the routine, but then starts the 
program over again; so the program keeps loading OLD until Stop puts it out of 
its misery. However, since the variables are retained, this construction may be 
used, provided the machine-code doesn't change variables' values: 

o x = x + 1 
1 IF X=l THEN DLOAD "SCREEN" :REM LOADS INTO $8000 ff 
2 IF X=2 THEN DLOAD "OLD" : REM LOADS ON SECOND RUN 
3 CONTINUE FROM HERE! 

[3] The DOS interface is Drive number:command string with secondary address 
zero. The program in note [3] to CATALOG & DIRECTORY illustrates this. 

Abbreviated entry: dL Token: $D6 (214) 

Operation: Apart from some syntax checking, DLOAD is identical to LOAD: see Ch. 5. 

ROM entry point: The kernel jump address is $FFB1; this jumps to $DB3A. 
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DOPEN 
BASIC II disk file command 

PURPOSE: Opens a file, entering its parameters in tables, and sends a message to an 
I EEE device on the bus to set up its buffer. Only sequential or relative files may 
be opened for write with DOPEN; but any file (SEQ, REL, PRG, USR) may be 
opened for read. Unless otherwise stated, device #8 is assumed. This command 
is very similar to OPEN, except for syntactical differences, the restriction of the 
device number to 4 or more, and limitations on file types. See OPEN. 

Syntax: DOS 1 + and DOS 2+ differ considerably: the first will not, and the second will, 
accept commands to set up relative files. Apart from this difference, the disks 
are not very different. However, DOPEN only sends a subset of the commands 
available from OPEN: in particular, USR and PRG files cannot be mentioned-not 
that they are used much anyway. For this reason OPEN can still be useful even 
when BASIC 4 is fitted. Note that DOS Support has no short form of OPEN. 
The syntax is fairly complex: the following parameters appear in any order:-
(i) #, then expression, which is the logical file number. This must be 1-255. 
(ii) String or string expression in brackets, which is the name of the file to be 

OPENed. This has a maximum length of 16 - unless the open-with-replace 
option is used, when it begins with I@I and may be 17 characters long. In 
this case a file of the same name is overwritten without causing error 63, 
?FILE EXISTS. See e.g. SAVE for warnings about this function. 

(iii) Optional D followed by expression for 0 or 1. This is the drive number. 
(iv) Optional unit number, denoted by ON U or , U with expression for 4-31. 
(v) Optional file type parameter. This may be one of:L then expression for 1-

254; this is the relative file record length parameter, and write is assumed. 
Or: W alone, which indicates write, but to a sequential file. Parameters like 
S ,R, P and so on are not accepted. The table should make this clear: 

'Ll parameter IWI parameter Signification 
Yes No Open relative fIle for write to diskette 
No Yes Open sequential file for write to diskette 
No No Open relative, sequential, program or 

user file for read only 

Finally, when writing to disk is involved, remember that a logical file number of 
1-127 sends carriage return after PRINT# .. : While higher file numbers send 
carriage return plus line feed. 

Examples: BASIC 4. The DOS interface has three forms, exemplified by: 
'1 :FILE', 'I:FILE,W' and 'I:FILE,L,100'. The third will not work with 3040 or 
2040 drives, and usually causes ?file not found error. These three types are ex­
emplified, as they appear in BASIC, by these commands:-

DOPEN#5,"OLD DATA" :REM OPEN FILE - COULD BE REL,SEQ,PRG,USR - FOR READ 
DOPEN#6, "NEW DATA",W :REM OPEN 'NEW DATA' AS A SEQUENTIAL FILE FOR WRITE 
DOPEN#7,"REL DATA",L87:REM OPEN NEW RELATIVE FILE FOR WRITE. REC.LEN.=87 

All these assume drive zero, unit eight. Most practical examples will look like 
them, but for completeness we may add the following examples: 

DOPEN#8,"@NEW REL FILE",L55,D(X) ON U(Y): REM WRITE A NEW RELATIVE FILE, 
WITH REC.LEN. 55, ON DRIVE X OF UNIT Y 

DOPEN#9,"#" REM OPEN CHANNEL FOR DIRECT ACCESS TO DISK 

The first of these final two examples opens logical file number 8 to a new relat­
ive file, which, when it writes, will replace the previous file of the same name, 
if there is one. The record length is 55; this includes the carriage return char­
acter at the end of each record. The drive and unit numbers are expressed as 
variables, and are therefore controlled by the rest of the program; ?S YNT AX 
ERROR will appear, of course, if they are not within their allotted ranges. 

The last example opens a 'direct access' channel to a disk, so that tracks and 
sectors may be written and read without the intervention of DOS. These can be 
very useful, although they are not well documented and not particularly easy to 
use. 
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BASIC<4. The following OPEN statements are exactly equivalent to the DOPEN 
statements which we've just examined. Note especially the format to be used to 
open a relative file without DOPEN; the parameter must be sent as a single byte 
to simulate DOPEN. * 

OPEN2 5,8,5, "0: OLD DATA,SEQ,READ" :REM OR OPEN 5,8,5,"0:OLD DATA,S,R" &C 
or OPEN 5,8,5,"0:OLD DATA,PRG,READ" 
or OPEN 5,8,5,"0:OLD DATA,USER,READ" 

Note that OPEN 5,8,5,"0:OLD DATA,REL,READ" is accepted only by DOS 2+. The 
secondary address 5 has no particular significance. BASIC 4 generates its own 
from a table. Secondary addresses of 0,1, and 15 are, of course, already re­
served for other purposes. 

OPEN2 6,8,6,"0:NEW DATA,SEQ,WRITE":REM OR OPEN 6,8,6,"0:NEW DATA,S,W" &C 
OPEN 7,8,7, "O:REL DATA,L" + CHR$(87)* 

Again, this latter form can only work if the disk is fitted with DOS 2, DOS 2.1, 
or DOS 2.5; what I've loosely referred to as DOS 2+. The parameter for the 
record's length must be within the range 1-254. In BASIC 4 this is checked by 
DOPEN's syntax, but here it is the programmer's job to keep the parameter in 
acceptable limits. 

OPEN 8,Y,8,X$ + "@NEW REL FILE,L" + CHR$(55) 

Where Y is the device number, and X$ is assumed to be either "0" or "I". 

OPEN 9,8,9,"#" 

This is an example of a file opened for direct access to the disk unit; now, 
PRINT#9 is followed by commands of the B-W and M-E type (q.v.) This is a 
user file and it might be expected that a name could be assigned to it when it 
is opened, but this seems never to be done in practice 

Notes: [1] There is not space here for full demonstration programs to open files/ write 
to them/ close/ read back. These in any case involve many of the functions of 
DOS, such as RECORD, DCLOSE, SCRAT CH and so on. Chapter 6 has a set of 
disk file demonstration programs which illustrate the possible permutations and 
combinations of the CBM disk drives. 

[2] Relative files, opened for write, are treated differently from sequential files. 
The latter, roughly speaking, are allocated a buffer and identification on the 
catalog, and are written as the need arises, so that if several are written at one 
time their sectors will interweave in a leapfrog-like manner. Relative files need 
an indexing system. On DOPEN or OPEN a buffer has to be allocated for the 
side sectors as well as the main file. Now, if RECORD # file-number, 200 is 
executed by BASIC, the entire file must be generated for 200 records. In this 
way the file may be created in a more orderly fashion than is possible with 
sequential files. This may reduce disk read errors, since the read head has far 
fewer track and sector skips (on average). 

[3] A complete list of interface commands available through OPEN can only be 
made by disassembling each DOS. There are certainly more than appear in CBM 
documentation. Mike Todd (in IPUG, July '81) says that opening a sequential file 
for read, while it is being written, using something like OPEN 8,8,8, "FILE, N" 
enables the file to be read back, or at least its buffers. Harry Broomhall found 
a command using '&' which may be used as a diagnostic routine - if you know how. 

Abbreviated entry: dO Token: $CD (205) 

Operation: Chapter 15 and Chapter 5 outline the workings of DOPEN and OPEN so far 
as BASIC goes. The other work is performed by the disk units themselves. 

ROM entry point: The kernel jump address is $FF96; this jumps to $D942 

*This is not the only example of undocumented CBM functions which use a parameter of 
this type. Some CBM printers can only be made to perform certain functions when a 
byte parameter is sent in this way. 
2There's a serious bug in OPEN which shows itself if the drive number is omitted (this 
is sloppy programming, of course). The data default is different from the directory 
default, so data is written to the wrong disk unit! Hence all the drive numbers. 
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OS$ & OS 
BASIC 4 reserved variables 

PURPOSE: provides a record of the status of the disk system after any operation. 
In this wayan error condition can be noted without stopping BASIC. The 
variables OS and DS$ are reset on being read. These extra variables are part of 
the price paid for having an external DOS. If DOS were accessible to BASI C , S T 
could record all status conditions, although not in its present form with only 8 
values at most. However, in fact it must be read from the disk drive like other 
data. ST is still needed to convey information like ?device not present, while DS$ 
stores information about the results of disk handling. Errors can range from the 
gross, when for example no diskette is found, or a blank disk can't be read, to 
the subtle, such as a failure to exactly match a file name. These are not serious 
errors; in fact, they show that the system is working correctly. Hard errors, on 
the other hand, such as mistakes in the internal checking system of a sector, 
may be serious. 

Syntax: DOS 1 + and DOS 2 + both treat DS and DS $ in the same way; in each case the 
variable is read from disk through the command I error channel with secondary 
address 15. However, the variable is only recognized as DS or DS$ by BASIC 4 
or some toolkit-enhanced BASIC<4 variations (notably Disk-O-Pro). Otherwise it 
is input, and any convenient name may be given to the variable(s). Like TI and 
ST, DS and DS$ are not variables in the normal sense; they are not stored in 
RAM with other variables, but instead are computed when they are asked for. 
Statements like DS=5 or DS$="HI!" are specifically filtered out by LET, but the 
either variable may be printed or compared: 

?DS$ 
IF DS>19 THEN PRINT DS$: STOP 

DS at present may take values below 75; not all are used, some perhaps have 
been reconsidered, others (e.g. 2-19) never used. 
DS$ has the format 'Error number,message,track,sector' where the latter two 
variables may be irrelevant and set to zero. 'O,ok,O,O' , '21,read error,18,Ol' 
'50,record not present, 24, 7' are typical disk status messages. 

Examples: BASIC 4. This, like the other examples, assumes the error channel is open. 
If it isn't, OPEN 15,8,15 will open it - the file number may be different, the dev­
ice may not be 8, but the secondary address must be 15. 

PRINT DS$: REM PRINT FULL MESSAGE WITH FOUR PARAMETERS 
IF DS>19 THEN GOSUB 10000: REM GO TO AN ERROR-HANDLING ROUTINE. 

BASIC<4. If DOS Support isn't loaded, the following can be used: 
1000 INPUT#15,EN,EM$,ET,ES 
1010 IF EN>19 THEN PRINT EN "," EM$ .. , .. ET "," ES: CLOSE1: CLOSE 15 
1020 RETURN 

If a program crashes with a disk error, the error channel may need to be read 
in direct mode. The easiest entry is 

oP15,8,15: iN15,e,e$: ?e,e$: rem only bother with major variables 

DOS SUPPORT (UNIVERSAL WEDGE). All that is needed, provided the error 
channel is open , is 

o or >. 

Notes: [1] The problem with this variable is when to use it, like ST. DS could be 
checked after every disk operation, but the drives won't usually indicate errors 
if a good program is running. A program which crashes, and leaves the red LED 
in the centre of the drive on, is an obvious candidate for directly reading DS $, 
to find out what went wrong (and turn off the LED). Programs which INPUT# 
data can afford to test DS after each field is read; but can programs which use 
GET#? There is no general answer to this question: it depends on the degree of 
security which the system requires. It may also depend on such hardware factors 
as the age of the system, its state of maintenance, and the quality of the disks. 
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[2] All BASIC 4's keywords for disk handling clear DS$, DS and ST. The rout­
ine to do this, at $DBE1, is called whenever the command string buffer is filled 
prior to transmission on the IEEE bus. To read DS$, a routine at $D991 or 
$D995 is called, depending on whether the string is being fetched or re-fetched. 
It's read one byte at a time until a carriage return character is encountered, 
after making the disk a Talker on secondary address 15. The string is poked 
into RAM at the low end of the strings, and pointed to by ($OE), with length 
parameter in $OD. From here it can be printed. This process avoids any prob­
lems associated with inputting strings containing commas. DS is evaluated by 
converting the first characters up to the first comma into a numeral in a floating 
point accumulator. (In fact Disk-O-Pro evaluates this string and stores it after 
all disk operations, so it more closely resembles a normal variable). Some pre­
BASIC 4 programs use DS and/or DS $, unaware of the promotion in store for 
these variables, and these programs will crash when they meet statements like 
40 INPUT "SIZE OF DIRECTORY";DS$: DS=VAL(DS$) if they are run on a BASIC 4 
machine. DS and DS$ can be set up, like TI and ST, as ordinary variables by 
poking, but this is a trick of little practical value. 

[3] The table summarises the important features of disk status messages. 

Message Information Programming mistake or Hard error 
type: (not an error) simple mechanical error 

o Everything OK 
1 Files scratched 

(gives number) 
2-19 Undocum-
ented. Not 
important. 

20 Sector header not found 
21 Sync mark not found 

Input/ 22 Sector not found 

Output 23 Checksum error in byte 

Errors 24 Byte read error 

at 25 Readback compare error 

Disk 26 Write protect tab on" 

Level 27 Checksum error in header 
28 N ext sync mark not found 

I nit 'ion 29 Disk i.d./BAM mismatch2 
30 Syntax error 

Syntax 31 Unrecognised command 
Errors 32 Overlength command 

33 Wrongly used ? or * in name 
34 File name omitted 
39 Unrec. command to channel 15 

Relative 50 Expand reI. 50 Reading past end of file 
and file size 51 Relative record too long 
Seq. 52 Relative file too big for disk 
Files 

60 Attempt to read a write file 
File 61 File not open 
Errors 62 File doesn't exist 

63 File does exist 
64 File type mismatch 

65 Block-Allocate error: gives 
Track & next available track & sector 
Sector 66 Track or sector out of range. 
Errors 67 System track or sector error 

DOS 
70 Channel to disk unavailable 
71 Error in BAM2 

Errors 72 Disk (or directory) full 
73 DOS mismatch 3 

74 8050 drive hasn't disks 

*3 These may lead to problems later. See Chapter 6 on write-protect tabs on CBM disks 
and on DOS incompatibilities. 2 Generally re-initialisation is required. 
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DSAVE 
BASIC 4 disk file command 

PURPOSE: Writes a consecutive block of RAM bytes to CBM disk, usually a BASIC 
program, and updates the directory so the RAM dump is retrievable. DSAVE is 
similar to SAVE in most respects. 

Syntax: DOS 1 + and DOS 2+ use the same DOS interface for SAVE. This is simply the 
drive number followed by the file name. An additional feature is the optional 
leading @ before the file name, producing the much-discussed 'save-with-replace'. 
DSA VE uses the following parameters, in any order, separated by commas: 
(i) String or string expression in brackets. This is the file name. 
(ii) Optional D followed by expression for 0 or 1. This is the drive number. The 

default value is drive O. 
(iii) Optional U followed by expression for 4-31. This is the IEEE device number. 

Its default is 8. 
A null name ("") is not accepted; the name string must have length>O, even if 
it is only CHR$(O)! 

Examples: BASIC 4. The examples are typical DSAVEs. Usually this command is used 
in direct mode to save a new or rewritten BASIC program, but it may be used 
within BASIC sometimes: see note [2]. 

DSAVE "BASIC PROGRAM" :REM SAVES ONTO RIGHT-HAND DRIVE, DRIVE O. 
DSAVE "@BASIC PROGRAM",D1 
DSAVE D1,(X$) ON U8 

If the program exists, DS$ signals error 63, unless save-with-replace (the second 
example) bypasses this test. The usual maximum length restriction holds: BASIC 
checks the name, ensuring 16 characters maximum. (More than 16 characters can 
be sent to the device by avoiding this test). 

BASIC<4. The commands corresponding to the previous three examples are: 
SAVE "O:BASIC PROGRAM",8 
SAVE "l:@BASIC PROGRAM",8 
SAVE "1:" + X$,8 

DOS Support provides no short form of SAVE. 

Notes: [1] Save-with-replace. The remarks made in Chapter 5 on SAVE apply also to 
DSAVE. A fairly early manual mentions error 67 in DS (this is 'system track or 
sector error') as a possible result of DSAVE "@ ••• ". It seems best to avoid the 
construction with 

SCRATCH "BASIC PROGRAM",D1: DSAVE "BASIC PROGRAM",D1 

[2] SAVE and DSAVE dump RAM from pointers ($28) to ($2A) or, with the old 
BASIC I, from ($7 A) to ($7C). The very last byte is not saved. The machine 
code monitor relies on this to save different areas of RAM. In fact it is easy to 
save from BASIC, using only a few pokes to reset the 'start of BASIC' and 'end 
of BASIC' to new values, and repoke them to the true values after saving your 
data. The following example shows how a screen can be saved; in future, when 
it is loaded, its contents will replace whatever was present on the screen. This 
can be useful in demonstrations, graphics, and so on. 

57000 PL=PEEK(42): PH=PEEK(43): REM STORE END-OF-BASIC POINTERS FOR BASIC>l 
57010 POKE 40,0: POKE 41,128: POKE 42,0: POKE 43,136: REM OR 132 IF 40COLS 
57020 DSAVE "SCREEN PIC" :REM OR SAVE "O:SCREEN PIC",8 
57030 POKE 40,1: POKE 41,4: POKE 42,PL: POKE 43,PH : REM RESET POINTERS 
57040 RETURN 

Now, drive zero has 'SCREEN PIC' stored on its disk. In direct mode, DLOAD or 
LOAD will put it straight into the screen. In program mode, you'll need something 
like this (see DLOAD and LOAD for the reason): 

o ON X GOTO 400,600,1000, .. 
990 X=3: DLOAD "SCREEN PIC",DO 
1000 REM CONTINUE HERE WHEN 'SCREEN PIC' IS LOADED AND PROGRAM RESTARTS 

Abbreviated entry: dS Token: $D5 (213) 

Operation: Chapter 15 and Chapter 5 under SAVE discuss this command. 

ROM entry point: The kernel jump address is $FFAE; this jumps to $DBOD. 
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HEADER 
BASIC II disk system command 

PURPOSE: HEADER (or NEW) formats a blank disk which then becomes usable for any 
CBM disk operation. It allows a name to be given to the disk, and a two­
character identifier. There is an alternative short form which erases a disk's 
directory and enables the disk to be renamed, but does not change the identifier. 
NEW as a disk command - not the same as BASIC NEW - is the BASIC<4 version 
of HEADER. 

Syntax: DOS 1 + and DOS 2+ have identical DOS interfaces for this command: 
'N D1:F1 [,DO]' where N or NEW signals the command, D1 and F1 are drive num­
ber and header name respectively, and DO is the optional identifier. Although 
the interfaces are identical, they are processed differently, or so the document­
ation says. BASIC 4 has several differences compared with earlier BASICs; the 
syntax is different, the cautionary ARE YOU SURE? message prevents accidental 
disk erasure, and ?BAD DISK ERROR appears if, after the disk unit is finished, 
DS exceeds 1. This is checked within the BASIC 4 ROM. 

HEADER uses the following parameters in any order, separated by commas: 
(i) String or string expression in brackets; this is the header name, and it is 

checked to ensure that it doesn't exceed 16 characters. 
(ii) D with expression for 0 or 1. This drive parameter is compulsory. 
(iii) Optional 2-character identifier. This is entered as I followed by the two 

characters (e. g. A1 or 00 or $a or zz etc.). Note that these two characters 
are stored in $033F and $0340 and could be poked in if a modified HEADER 
command were used. The characters are simply read directly by BASIC. So 
I (X $) or 14, or I , where the syntax is variously wrong, yield i. d. s of 
(X and 4, and, in order. 

(iv) Optional unit number. U followed by an expression which evaluates to 4-31. 

Examples: BASIC 4. The first is a 'long', the second a 'short', header or new. 
HEADER D 1, IRW, "PRICE LIST PROGS" 
HEADER DO, "EXPERIMENTS" 
HEADER (X$), D1 ,U9 :REM LEN(X$) MUST BE >0 AND <17 

The final example shows how a string expression is used. 

BASIC <4. Exact equivalents are given, omitting the BASIC 4 keyword 'HEADER': 
PRINT#15,"NEW1:PRICE LIST PROGS,RW",8: REM ANY ALPHABETICS OK, EG NOUGAT 
PRINT#15,"NO:EXPERIMENTS",8 
PRINT#15,"N1:" + X$,9 

In this case, ARE YOU SURE? won't appear and DS or DS$ must be read by the 
programmer if something seems amiss. The system won't do it for you. 

Notes: [1] If HEADER or NEW shows an error, read DS to establish the cause. It may 
be something as trivial as a missing disk. Or it may be that the disk is of poor 
quality, or a write-protect tab may be in place. There is a potential risk in this 
situation that other disks will be partly erased: see Chapter 6 on write-protect 
tabs for example. If the disk won't be formatted switch off before using other 
diskettes if you wish to be certain that they won't be corrupted. 

[2] The shorter version is faster: say 45 seconds against several minutes, dep­
ending on the DOS. Note that part of the directory is cleared, but the files all 
remain on disk without their pointers, a situation rather like BASIC NEW when a 
BASIC program is 'erased'. Issue 10 of Compute! ('Disk File Recovery Program', 
by David L. Cone) has a program to make data recovery possible. 

[3] After HEADER put DOS Support (or any other program which you would like 
to be the first to load) on the disk before other programs. 

[4] $DB9E (56222) prints ARE YOU SURE? and expects either Y or YES (unshift­
ed, with no spaces) and clears carry if it finds it. Not very usable from BASIC. 

Abbreviated entry: hE Token: $D 0 (208) 

Operation: See Chapter 15 for the BASIC ROM processing. 

ROM entry point: The kernel jump address is $FF9F; this jumps to $D9D2. 
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INITIALISE 
Disk system command unavailable directly in BASIC 4 

PURPOSE: Causes the disk unit to read the directory and the block allocation map 
(BAM) from a diskette in drive 0 or 1 or both. This operation may be performed 
in direct mode - when starting up, for example - or in program mode. It is not 
needed usually in drives fitted with DOS 2+. 

NOTE: Some disk systems (e.g. Apple/ITT 2020) use the same command INITIAL­
ISE to format a diskette, an operation called HEADER or disk NEW in the CBM 
system. INITIALISE will not damage the data on a CBM disk; it will erase it from 
an Apple/ITT disk. 

Syntax: DOS 1 + and DOS 2+ all recognize this command and employ the same DOS 
interface 'I [,DO]'. 8050 units, sensibly, perform this as a hardware feature, 
so disks cannot be sneakily changed without initialisation. 4040 units don't have 
this feature; instead DOS checks, before some operations, that the disk Ld. 
matches the disk in the drive. See note [1]. 

Th.e syntax is PRINT#15, "I [,0 or 1]" or PRINT#15,string expression which 
evaluates to "I [,0 or 1]". 

Modes: Direct and program modes are both accepted. 

Examples: oP 15,8,15: pR15,"i": 10 ".",8 :rem do this on switching on. 

This is the short form of OPEN 15,8,15: PRINT#15," I": LOAD ".",8 and may be used 
with any BASIC /DOS combination to initialise two disks, then load the first pro­
gram from drive 0 into RAM. I've assumed device #8. Shift-Stop with BASIC 4 
will load and run the same first program. It uses DLOAD "." 

PRINT#15,"I,," and 
PRINT#15,"11" 

Initialise disks in drive 0 and drive 1 respectively (provided channel 15 is open) . 

DOS SUPPORT (UNIVERSAL WEDGE). PRINT#15 is performed by this wedge, so 
@I or >1 
@I" or >1" 
@Il or >11 

may be used in direct mode to initialise both disks, drlve 0, or drive 1. 
Programs running disks equipped with DOS 1+ need to initialise new disks put in 
the drives; and 4040 disk units will need this too for disk operations which do 
not read the directory (see note [1]). Either type of routine is satisfactory:-

100 INPUT "DRIVE";D$: D$="I"+D$: PRINT#15,D$ :REM EXCLUDES VALIDATION 
100 PRINT#15,"I,," 

Notes: [1] After initialisation, the disk read/write head is left positioned over the dir­
ectory track (18 or 39 in the 8050), ready to read /write to sectors of the disk; 
this central position is used to cut down head seeking time. If a disk hasn't been 
initialised the DS$ error message will read DISK ID MISMATCH (error 29). This 
is true unless the disk has the same Ld. as the BAM, but nevertheless was not 
the disk initialised, in which case data will simply overwrite the disk now in 
place, because DOS cannot tell that it has changed. For this reason strong warn­
ings are often made of the disasters which may happen if disk i. d. s aren't 
carefully selected to be different. Similarly, backup disks should be treated with 
care, stored, perhaps, in another place. Automatic initialisation of 4040 disk 
units is not invoked by BACKUP, COLLECT, HEADER, or RECORD, or any 
direct access command. To be on the safe side, therefore. initialisation, using 
the format above, may well be carried out before these commands are used; for 
example, COLLECT on a wrong disk may scramble up data. 

[2] A CBM manual gives this method for turning off auto-initialisation, apparent­
ly for 4040 disks: PRINT#15, "M-W" CHR$(243) CHR$(16) CHR$(l) CHR$(l) 
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RECORD 
BASIC II relative file command 

PURPOSE: Positions the relative file pointer to the start of any record within the 
relative file, or to any byte position within a record. This command is unusable 
with sequential files, and works with DOS 2+ only, not DOS 1+. It may be 
simulated by BASIC<2, provided this BASIC runs DOS 2+ disks. 

Syntax: DOS 1 + has no relative file facility, unless specially written direct access 
commands are used. DOS 2+ accepts RECORD; the DOS interface is 
P sec. address byte record no. low then high byte position within record. 
As an example, the string "P"+CHR$(5)+CHR$(9)+CHR$(0)+CHR$(1) sent with 
PRINT #15 to the disk positions the pointer to the relative file opened with sec­
ondary address 5 at the first byte of record 9. The syntax of RECORD is less 
baffling. Unlike most other BASIC DOS commands the order of its parameters 
is invariable. The syntax is: 
RECORD # expression for logical file (1-255), expression for record number 
(8-65535) [, optional expression for byte within the record (1-254)]. 

If the byte parameter is omitted, the value 1 is assumed by default. 

Examples: BASIC 4. The short illustrative program opens a relative file and writes ten 
records into it. See Chapter 6 for a longer example. Note that the records are 
shorter than their permissible length. This is possible because the starting point 
of every record is computed by the system, and because a record, as it is 
written to disk, is terminated by Return. On reading back, by INPUT # for 
example, the record is read until the next Return is encountered, so the lack of 
data at the end of the record has no effect. There is one proviso, however -
RECORD must be issued before each PRINT# statement, to move the pointer to 
the required record. If this isn't done - try renumbering line 30 as line 15 -
the records may be written consecutively. This could be a useful feature, but 
appears to be unreliable. It's safer to use RECORD with the byte parameter. 

10 dopen #l,"random fi1e",140 :rem length parameter implies open for write 
20 for j = 1 to 10 
30 record #1, (j) 

40 print #l,"abcdef" + str$(j) 
50 next: dclose #1 

have omitted references to DS $ from this program. If it is checked after line 
30, it will return status message 50, 'record not present', showing that the file 
is being expanded. As an example of the byte parameter, run this program too: 

10 do.pen #l,"random file" :rem open for read, by default 
20 for j = 1 to 10 
30 record #l,(11-j),4 
40 input#l,x$: print x$: next: 

: rem read records in order 10-1 starting at 4 
dclose#l 

This prints def 10 then def 9 then def 8 ... 

BASIC<4. The equivalent programs are as follows, avoiding BASIC 4 keywords: 
-- OOPEN 1,8,5, "0: RANDOM FILE,L," +CHR$(40) 

and 

_0 FOR J = 1 TO 10 
30 PRINT#15, "P" + CHR$(5) + CHR$(J) + CHR$(~) + CHR$(l) : REMEMBER CHANNEL IS! 
40 PRINT#l,"ABCDEF" + STR$(J) 
50 NEXT: CLOSE 1 

10 OPEN 1,8, 5, "0: RANDOM FILE" 
20 FOR J = 1 TO 10 

:REM READ ASSUMED 

30 PRINT#15,"P" + CHR$(5) + CHR$(ll-J) + CHR$(O) + CHR$(4) 
40 INPUT#l,X$: PRINT X$: NEXT: CLOSE 1 

Notes: [1] 'Error' 50 is generated whenever a relative file is expanded beyond its 
currently allocated limits. If INPUT# attempts to read beyond these limits, the 
same message appears, and ST is set to 64. BASIC returns carriage return. 

Abbreviated entry: reC Token: $CF (207) 

Operation: See Chapter 15 (BASIC 4 references from $D7AF). 

ROM entry point: The kernel jump address is $FF9C; this jumps to $D7AF. 
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RENAME 
BASIC disk file command 

PURPOSE: Changes the name of a disk file. Any type of file may be renamed. If the 
new name selected is already present on the diskette, DOS generates error 63, 
file exists. 

Syntax: DOS 1+ and DOS 2+ each have this command. In each case the DOS interface 
is identical: 'R D1 :F2 = D1 :F1' where F1 and F2 are the old and new names, and 
D1 is the code for whichever drive the file is on. The internal operation of each 
DOS may be different. Certainly Harry Broomhall*detected errors in DOS 1 in 
which scratched entries in the directory made RENAME (or to be precise 
PRINT#15, "R ... ") fail to work. Like COPY, this operation has the odd feature 
of having its parameters reversed in its two versions. 

RENAME has the following parameters in any order separated by colons: 
(i) Two strings, or string expressions in brackets, separated by TO. These of 

course are the before-and-after file names. 
(ii) Optional D with an expression for" or 1. This is the drive number; the 

default is drive 0. 
(iii) Optional U with expression for 4-31. This is the device number; its default 

value is S. 

Examples: BASIC 4. A couple of typical RENAMES follow. Note that COPYing a file to 
the same drive - if there's space for it - or to another drive, then scratching 
the original and recopying the file back if it's now on another disk, has the 
same effect as RENAME. 

RENAME D1,"OLD NAME" TO "NEW NAME" 
RENAME (X$) TO (Y$) 
1000 rename ("file" + str$(x» to ("file" + str$(x+1» 

The final example shows how a file's name can reflect a version number after 
being updated, for example, so that its current standing or historical status is 
easy to see. A date or some other meaningful numbers or letters can be used 
in the same general way. 

BASIC<4. The examples which follow are identical in effect to the three just 
printed, but don't use the BASIC 4 keyword. They will therefore work with any 
DOS and any disk (subject to possible bugs ... see note above, and note [1]). 

PRINT#15,"RENAMEl:NEW NAME=OLD NAME" :REM NOTE THE ORDER! 
PRINT#15,"RO:" + Y$ + "=" + X$ 
1000 PRINT#15,"RENjI:" + "FILE" + STR$(X+1) + "=" + "FILE" + STR$(X) 

Notes: [1] This doesn't work with unclosed files. They should be closed in any case. 

Abbreviated entry: reN 

Token: $DS (216) 

Operation: Apart from the syntax check this is carried out entirely by DOS. 

ROM entry point: The kernel jump table address is $FFB7; from here the routine 
jumps to $DB55. 

*Harry Broomhal1 (of Heronview Ltd) is a British authority on the CBM and its disks 
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SCRATCH 
BASIC /I disk file command 

PURPOSE: Deletes one or more files from disk. CBM's pattern matching sequence may 
be used - with caution - to scratch several files. OS$ returns OS=1 followed by 
'files scratched' and a parameter showing the number of files which have been 
scratched. 'Scratch' is a word peculiar to Commodore; most systems 'erase' or 
'delete' files. 

Syntax: DOS 1+ and DOS 2+ use the same DOS interface. BASIC 4 however only sends 
a subset of the possible command string, namely'S Dl:Fl' where S signifies 
SCRATCH, Dl is a drive number and Fl a file name. As the examples in BASIC 
<4 demonstrate, more elaborate constructions may be used. The penalty for 
making a mistake is high - a scratched file is not easy to recover. 
SCRATCH uses the following parameters in any order separated by commas: 
(i) String, or string expression in brackets. This is the 'name string'; often 

simply a name, it may include * and/or? symbols, and thus be treated as 
a string holding pattern-matching symbols. 

(ii) Optional drive number, D followed by an expression for 0 or 1. This 
defaults to drive O. 

(iii) Optional unit number, U followed by an expression for 4-31. This defaults 
to unit number 8. 

Note that scratch prints ARE YOU SURE? and expects Y or YES, in direct mode. 
Like HEADER, when called from a program, this question-and-answer precaution 
is omitted. After SCRATCH, and again only in direct mode, DS$ is read, and 
if it is not null (i. e. if some files actually were scratched) printed out, as for 
example 01,FILES SCRATCHED,03,OO when 3 files were scratched. This same 
sequence of messages is obtainable from BASIC<4, but must be input from the 
error channel manually. 

Finally, note that there is no warning if a file to be scratched doesn't exist. If 
its name was misspelt it'll still be there. 

Examples: BASIC 4. These examples are, I hope, self-explanatory. Note the program 
example; this is the way to avoid dopen "@test",125. 

SCRATCH "FIND CHECKLETTER", D1: REM SCRATCHES A PROGRAM (OR COULD BE DATA) 
SCRATCH DO, "DIS*" :REM SCRATCH ALL STARTING 'DIS' 
scratch dO, "*",u9 :rem scratch all or. drive 0 of unit 9 

100 scratch "test fi1e",d1 
110 dopen "test file",d1,125 

BASIC<4. The equivalents to BASIC 4 follow. There's an extra example to show 
the extended syntax possible with this version of the command. 

PRINT#15, "SCRATCH1 :J'IND CHECKLETTER" 
PRINT#15,"SO:DIS*" 
PRINT#16,"SO:*" REM ASSUMES OPEN 16,9,15 TO UNIT 9 
100 PRINT#15,"SCR1:TEST FILE" 
110 OPEN 1,8,8,"1:TEST FILE,L," + CHR$(25) 

PRINT#15,"Sl:TEST,l:MC.OLD,":X-FILE4,~:TESTER" :REM MULTIPLE DELETES 

Notes: [1] Files currently open, or thought to be open, aren't scratched. COpy is said 
to have the effect of using internal channels so that SCRATCH believes the file to 
be open, and leaves it. It can be scratched later. 

[2] Don't scratch unclosed files; COLLECT or VALIDATE the disk. Otherwise the 
last existing sector will not point to a sector with a zero termination byte, and this 
sector may apparently connect with another file, so DOS will scratch parts of that 
too. Suppose a sequential file, writing to disk, signals 'disk full'; its directory is 
marked '*' as unclosed. SCRATCH now replaces this with file type DEL, and will 
probably produce strange effects. But COLLECT is fine, or read and write back 
with CLOSE if the data is valuable. Or ?syntax error may abort a write file; re­
open channel 15, then close all files. Make COLLECT/ VALIDATE a rule. 

Abbreviated entry: sC Token: $D 9 (217) 
ROM entry point: The kernel jump address is $FFBA; this jumps to $DB66. 
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CHAPTER 8: OTHER PERIPHERALS AND HARDWARE 

8.1 Tape cassettes. 

Cassettes and tape recorders Commodore's tape recorders exist in three forms: built 
into the machine, in the earliest models; the C 2N external recorder; and VIC's tape 
recorder. There have been internal changes in printed circuit board construction, so 
that special loadl save routines may not operate with every model. The C2N has a short 
cable and edge-connector; power is supplied from the PET ICBM, so the device is not 
easily usable away from the computer. VIC's recorder is in white plastic in place of 
the earlier black. It is compatible with the PET ICBM and cheaper. Each PET ICBM has 
ports for two cassettes, and a small amount of software exists which keeps files on one 
tape, reading and updating them onto the second. The ports are arranged differently 
in each of the main designs; see the diagram in Chapter 1. This is usually no problem, 
but from time t9 time, when switching machines, a user may be surprised to find no 
response from the machine, because he is addressing the wrong port. The recorders 
are assigned device numbers land 2, and the whole of their operating system is in 
ROM. There are improvements in BASIC>l over the original, but the main features are 
identical in all ROMs. Consequently external tape recorders, which are portable and 
robust, are often useful in transferring programs between machines even when they 
are equipped with disk drives, because there are few compatibility problems. The top 
of the edge-connector should be labelled; it's often possible to connect it upside-down, 
when recording won't take place. 

All tape recorders use similar principles: there is an erase head and a record­
ing head, arranged so that during recording the tape is first demagnetised, then rec­
orded. Physically, the recoding takes the form of vertically magnetised fields on the 
tape, their form depending on the amount and frequency of the magnetic flux generat­
ed in the recording head. On reading back, the erase head is off and the recording 
head acts in reverse as a read head, the tape, as it passes, inducing current in it 
which is amplified. (Some machines have separate heads for recording and playback). 
The capstan and pinch wheel drive the tape at a constant speed; the capstan rotates, 
driving both the wheel and the tape, whenever they are brought in contact by press­
ing 'Play'. The leading (right-hand) spool is maintained under tension, so the tape is 
tightly wound, and variations in the effective diameter of the take-up spool have no 
effect. Leaving 'Play' pressed when the recorder is off may cause the (now static) 
capstan to dent the pinch wheel, and cause irregular playback. In fast forward or fast 
backward mode, the capstan is disengaged and drive applied directly to one or other 
spool. Routine recommended maintenance involves cleaning and demagnetizing; again, 
all recorders are much the same, and cleaning kits for non-computer cassettes are fine, 
consisting of cotton-wool swabs and solvent (e. g. isopropyl alcohol) to remove tape 
debris. Demagnetizing is always recommended, and sometimes carried out. The movable 
type of demagnetizer, relying on the inverse-square law to magnetize the head in alt­
ernate directions with ever-decreasing flux, seem to be best. Head alignment problems 
may arise when using tapes recorded on equipment different from that used in play­
back. A recorder with its recording head not vertical will usually read back without 
difficulty, because reading exactly matches the magnetic pattern deposited on writing, 
a recording made with the same machine. If a recorder has persistent difficulty in 
loading tapes, this may be the reason. Adjusting the head is fairly easy. 

Cassette tape is cheap, portable, and easy to send through the post. (Some 
tape 'magazines', e.g. 'Cursor', and Petsoft and Commodore cassette programs bear 
commercial witness to this). The best type is ferric oxide (not chromium) of reasonable 
quality. A screw-type casing (which can be taken apart if the tape is tangled) may be 
better than the glued type. We shall see how to estimate storage on tape; the best 
length of tape depends on the user's purpose, some preferring C-lO or C-l2, others 
C-45 or C-60. Avoid thin tape. In principle it's a good idea to test tape, and a number 
of test programs exist. * Unfortunately this is a time-consuming process, much more 
so than with disks. The best compromise is probably to test tapes to be used for 
'master' storage. Three tips: (i) don't save useful stuff directly onto a brand-new 
tape; test it or unwind and rewind it first to un stretch it; (ii) it may help to demag­
netize tape, since PET ICBM uses high recording levels, to erase old programs or data; 
(iii) record the first program I data with a few seconds' extra leader. 
*J Butterfield (e.g. CCN Sept.'8I) and Kilobaud-Microcomputing (March '80) for example. 
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Commodore's newest cassettes are equipped with a tape counter; the older models 
are not. Section 8.4 has information on ways around the restriction. It has additional 
material on fast forward winding and the possibilities of constructing tape directories. 

8.2 Data Storage on CBM Tape. 

Introduction Commodore's tBlpe system stores data coded as square waves. The dia­
gram shows, as an example, how a byte is stored; it has a marker followed by nine 
bits, the last being the parity bit. (Odd parity is used). 

f--Byte Marker--7~Low Bit",,) {---High Bit~. . .. Parity Bit 

--684J.l s., r524J.l s-+t364J.lSH524J.ls~ ~ 524J.lst~64J.lS> 
There are three frequencies, which we can call short, medium and long. A byte mark­
er is one long wave followed by a medium wave. A bit is either a single short wave 
followed by a single long wave (bit 0), or vice versa (bit 1). The periods in micro­
seconds in the diagram were quoted in an article by M Maynard of Audiogenic Ltd. 
The actual process of record and readback is complex. So far as I know, source code 
for the operating system has not been released. * 
Data storage with BASIC There are two types of file available, which are exactly 
analogous to disk files' PRG and SEQ file types. BASIC programs are held, like mach­
ine code routines, as a continuous dump from memory. The header holds the load add­
ress, so the program may be reloaded in the correct (i. e. original) place in RAM. Data 
is stored sequentially in ASCII form, i.e. as if PRINTed to the tape, and, like disk 
sequential files, the result can be read back, but not updated directly. This type of 
storage needs buffers in RAM, since there is no equivalent to the entire program in 
memory; instead, data is generated and stored in a buffer. When the buffer fills, it 
is written to tape and emptied. Conversely, when a file of data is read from tape, the 
cassette motor automatically runs from time to time, loading the next batch of data. 
At this point, without looking at the separate items stored on tape, lets consider tape 
timing, and the estimation of the storage capacity of tape in the CBM system. 

PROGRAM FILE: ~-- LEADER --IHE~ERITONEI --PROGRAM (l)--I--PROGRAM (2)--

DATA FILE: LEADER 

TIME (SECS): 10 4 2 About .009 seconds per byte /2+ sec. gap 

We can see from the diagram that 10000 program bytes are written or read in about 
196 seconds. 10000 bytes of data take more time, because of the 'wastage' caused by 
the inter-block gaps. The increase is something like 60%. (It may appear to be more, 
because the buffers need to be filled too). The amount of tape used is increased in 
proportion. Using approximate figures, 10000 program bytes require 3 1/3 minutes to 
store or load; 10000 data bytes require about 5 minutes. 

CASSETTE TYPE: C10 C20 C30 C60 
Minutes per side: 5 10 15 30 

PROGRAM STORAGE SPACE 1K average 8 16 25 50 
PER SIDE: 5K average 2 5 8 16 

10K average 1 3 4 9 
DATA STORAGE SPACE 1 file 9K 20K 30K 60K 

PER SIDE: 5 files 11K 3K 5K 11K 

*There is little published material on tape storage. Those wishing to know more might 
disassemble their ROMs and examine the result in association with the notes in Chapter 
15. A pair of articles in Compute! (G Campbell, Sep./Oct.'80 and K Falkner, Jan.'81) 
has, respectively, a method to load Applesoft programs (Apple floating-point BASIC) 
into the CBM, and an Apple program to load CBM tapes. The latter is a well-documented 
source listing, with error-recovery 'better than the PET'. Much of it converts tokens 
into the Apple equivalents, and performs other functions not very relevant to the CBM. 
'Rabbit' is a 2-K package (available on tape or as a 2-K ROM (AOOO-A7FF) for fast load/ 
save of programs only. Its rewrite of the operating system doesn't work with every 
recorder. PCW (M Shelley, Jan. '81) has a BASIC 2 routine, with explanation, which is 
designed to help recover partly overwritten tapes. (The explanation, however, says 
nothing of its actual procedure). "Arrow" is another fast tape system in EPROM. 
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The table gives a guide to the storage capacity to be expected from typical cassette 
types. * Thus, a C20 cassette will hold about 5 5-K programs, if they are recorded 
consecutively. Each will take about 2 minutes to record or read. because 10 minutes of 
playing-time is shared between 5 programs. 10K of data takes a little more than five 
minutes to record, and so on. Tapes can be played on ordinary recorders 2 and the 
phenomena illustrated in the pair of diagrams on the previous page verified. There is 
a short tone separating the two halves of the program and the block recordings, each 
of which is recorded twice for security. 

LOADing and SAVEing BASIC programs For detail on the workings of these commands, 
see Chapter 5. Briefly, the syntax appears like this: 

LOAD "NAME",l or LOAD "NAME",2 :REM SEARCH FOR PROGRAM CALLED 'NAME' ON 
CASSETTE#l OR CASSETTE #2 

LOAD :REM LOADS FIRST PROGRAM ON CASSETTE #1 
LOAD "",2 : REM LOADS FIRST PROGRAM ON CASSETTE #2 
LOAD "NAME" :REM LOADS 'NAME' FROM CASSETTE #1 

These examples show that the default is device 1. The instruction 'PRESS PLAY ON 
TAPE #1' or '#2' always appears on the screen: further display includes 'OK' when the 
key is sensed, and 'READY.' or '?FILE NOT FOUND ERROR' or '?LOAD ERROR', de­
pending on the success of the search and load. When the program's header block has 
been found, the message 'LOADING' or 'LOADING NAME' also appears on the screen. 
If the LOAD is carried out in program mode, most of these messages (Le. unless there 
is an actual error) are suppressed, to keep the screen relatively tidy. And if 'Play' 
on the cassette is down before LOAD, no messages at all appear, unless there is some 
error. Loading from within a program causes the new program to begin execution once 
it has finished loading; the object is to enable programs to chain, keeping their var­
iable values. With small (say 8K) machines, this can be useful, both in extending the 
processing capacity, and spreading the tape-reading time out. This may require care 
with the relative lengths of programs, and with strings (which must be stored in high 
RAM if they are to transfer properly). Function definitions also aren't generally carr­
ied over between programs. (Chapters 2 and 5 explain in detail). 

SA VE is equally simple: 
SAVE "PROG NAME",2 :REM SAVES BASIC IN MEMORY ON TAPE #2 AS 

'PROG NAME' 
SAVE :REM SAVES BASIC IN MEMORY ON #1 WITH NO NAME 

Security. To be on the safe side, SAVE important programs twice, either on the same 
tape or on a master tape. Note that SAVE always begins the recording process at 
the point at which the tape is positioned; there is no searching process as there is 
with LOAD. As for LOAD, ?LOAD ERROR occurs if bit 4 of S T is set. Sometimes 
errors can occur in the absence of this message, and recommended practice is to print 
ST to check that it is zero as it should be. A further refinement is to look at the re­
sults of the error-correcting processes of the operating system: PEEK (192) for tape #1, 
or PEEK (193) for tape #2, should also be 0, although values up to and including 4 are 
also acceptable. 3 (For BASIC 1, the peek locations are 630 and 631 respectively). 

LOADing in program mode does not reset ST, so these tests can be incorporated 
in the start of a new program, if a wrong load would cause trouble. Or a machine-code 
routine to calculate a hash total of the program bytes may be used, similar to that sug­
gested for disk-based programs in Chapter 6. However, these methods are normally 
used only when tapes are being tested or head alignment is being checked. 

*The figures are calculated on the basis that each file has 16 seconds of leader; then 
program storage (BASIC or machine-code) takes a further .009 x 2 seconds per byte, 
since each byte is recorded twice. Data storage takes place in 191 byte chunks, each 
being written twice. The number of blocks required must be rounded up; each takes about 
2 seconds for the inter-block gap and 2 x 192 x .009 seconds to record or read. The 
total is about 5! seconds per 191 bytes (which is rather slow). For example, a 5000 
byte program file records in 16 + 90 = 106 seconds. 5000 data bytes need 27 blocks, 
taking 16 + 27 x 5! = 165 seconds. 

2If a speaker is attached to the machine, as explained in Chapter 9, a pin on the user 
port can be attached, like CB2, and the program listened to while loading. Pins 6 and 
7, for tape #1 read and tape #2 read (see manual) are the ones. 
3See e.g. D Isaacson, 'Detecting ~oading Problems •.. ', in Compute! Jan. '81 
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End-of-tape Marker When a tape is being written (either by SAVE or by OPEN I 
PRINT #) a secondary address of 2 - strictly, of a non-zero even number - causes an 
'End-of-tape' marker to be written when the SAVE is finished, or the file CLOSEd. 
This is quite a simple idea, but can cause some puzzlement. An extra buffer is written 
onto tape, exactly like any other buffer except for its very first value. When this tape 
is read back, a buffer of this sort is interpreted as the end of the tape, and the 
reading process will go no further. The marker need not actually coincide with the 
physical end of the tape; a 200-byte program can be saved with an end-of-tape mark, 
so if the tape is searched for some other program, reading will go no further than 
the marker, and the user will be spared the tedious process of waiting for the rest of 
the cassette to read. Thus: 

SAVE "IMPORTANT PROGRAM", 1,2 
OPEN 7,1,2, "MiA.JOR FILE" 

respectively save BASIC to tape 1, with end-of-tape marker, as 'IMPORT ANT PRO­
GRAM', or rather as the first 16 characters of this name; and open a file, for writing, 
to tape 1, called 'MAJOR FILE', again with end-of-tape. 

Writing and reading files: OPEN, PRINT#, INPUT#, CET#, and CLOSE These BASIC 
commands (with OMD ) are all that is required for tape files. Although these files are 
really quite straightforward, they aren't all that easy to get used to; the next page 
has a simple demonstration program, which writes data and reads it back, printing 
the results at each stage on the screen. Lines 10-60 open a file for writing, without 
assigning it a name, and print 256 values to tape. Lines 100-160 read them back, with 
GET #, so that each byte is separately read from tape; you will see that carriage ret­
urn characters act as record separators. Lines 200-260 read the same file with INPUT#, 
which accepts only a range of ASCII values, and also implicitly regards carriage ret­
urns as separators. 

OPEN and CLOSE typically look like this: 

OPEN1 :REM OPEN LOGICAL FILE 1 TO DEVICE 1 FOR READ 
OPEN 3,2,1,"DATA" :REM OPEN FILE 3 TO TAPE 2 FOR WRITING; NAME IT 'DATA' 
OPEN 1,1 :REM SAME AS 'OPEN l' 

As these examples suggest, the four parameters (logical file, device, secondary add­
ress, and name) have defaults, apart from the compulsory file number of 1-255. The 
device defaults to cassette #1, the mode to 0, or read, and the name to spaces. De­
faulting to read is of course intended to avoid accidental overwriting of data. 

When a file is closed, its last buffer is written, with an end-of-file zero byte. 
This is picked up on readback, setting ST to its end-of-file value. It is probably 
better to write some end-of-tape marker, or to include a count of the records being 
written, than to rely on ST, the treatment of which varies between ROMs. 

Tape files are sequential files, like disk files of type SEQ, and they are subject 
to the same rather painful restrictions. These are made worse with tape by the fact 
that only one file may be open at once, unless two cassette units are available. The 
attempt to OPEN one file for read, and another for write, although legal, leaves the 
tape positioned as though only the second command had been issued. Tape data files 
are therefore used only to hold data which was input, or which is for printing, or 
which can be updated entirely in RAM before rewriting to tape, unless there is a sec­
ond cassette or disk unit. 

BASIC 1 (the oldest BASIC version) has two bugs in its data file operating 
sy stem: see section 8.4 for correction s. 

Storage of machine-code programs and data via the monitor The syntax for save or 
load from the monitor is illustrated by these examples: 

.S "MACHINE CODE",Ol,0400,0615 

.L "MACHINE CODE",Ol 

which save the contents of memory from 0400-0614 on tape #1 as 'MACHINE CODE', and 
load it again, respectively. Note that .S operates from the start address until its point­
er equals the end address; the last byte does not get written to tape. (An end-of-tape 
marker can be forced by poking $D3 = 211 with 2. (BASIC 1: $FO = 240). As we shall 
see (Section 8.4) this process can be carried out from BASIC, without entering the 
monitor, when the appropriate locations have been found. Before this we'll examine the 
way data is held on tape in rather greater detail, which includes the structure of the 
header block and the four types of buffer which the PET ICBM system has. 
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TAPE DEMONSTRATION PROGRAM: Showing how to write to tape, and the differences 
between the two methods ('GET and 'INPUT') of reading it back. 

o REM 
1 REM 
2 REM 
3 REM 
4 REM 
5 REM 
6 REM 
7 REM 
8 REM 
9 REM 

UUUUUU##U################U#####U#U#UUUHH## 
# SHORT BASIC TAPE DEMONSTRATION PROGRAM # 
#H#UH#HH####HHH#HH##'###U#U###HUU#U#U###H# 

##H#####HH####H##H####H###U### 
U#U#UH WRITE TO TAPE #UUUU# 
,"#"#H"'###H#######,####,,# 

10 OPEN 1,1,1 :REM OPEN THE FIRST TAPE RECORDER FOR WRITING; FILE NUMBER = 1 
20 FOR J - 0 TO 255 
25 X$ ~ CHR$(J) :REM THE LOOP GENERATES ALL THE POSSIBLE SINGLE CHARACTERS 
26 PRINT J;:REM SHOW ON SCREEN THE ASCII VALUE OF THE CHARACTER BEING WRITTEN. 
30 PRINT#l, X$ :REM PRINT A SINGLE CHARACTER - AND ALSO A CARRIAGE RETURN 
40 NEXT 
60 CLOSE 1,1,1 
70 PRINT: PRINT "WRITING TO TAPE IS COMPLETE. 
71 PRINT: PRINT "PLEASE STOP THE TAPE RECORDER AND REWIND THE TAPE; 
72 PRINT: PRINT"THEN PRESS ANY KEY TO CONTINUE. 
73 GET X$: IF X$ = "" THEN 73 :REM WAIT FOR ANY KEY TO BE PRESSED 
94 REM 
95 REM 
96 REM 
97 REM 
98 REM 
99 REM 

##UU######,"###'H#H'#U'UHH#######UHUUUUUH# 
HUHUU GET SINGLE CHARACTERS FROM TAPE UUU,# 
##HUUU#"###'#U#H#'HH#U#UHUUUUUU#HUUUUUUU#U 

100 OPEN 1,1,0 : REM OPEN THE FIRST TAPE RECORDER FOR READING; FILE NUMBER ~ 1 
120 FOR I - 0 TO 520 :REM THE LARGER NUMBER OF 'GETS' HAS TO ALLOW FOR RETURNS 
130 GET#l, X$ : REM GET A SINGLE CHARACTER FROM TAPE 
135 IF X$ <> "" THEN PRINT ASC(X$); :REM KLUDGE, BECAUSE ASC("") IS DISALLOWED 
136 IF X$- "" THEN PRINT "NULL"; : REM FOR REASON GIVEN BEFORE 
140 NEXT 
160 CLOSE 1 
170 PRINT: PRINT "GETTING SINGLE CHARACTERS FROM TAPE IS COMPLETE. 
171 PRINT: PRINT "PLEASE STOP THE TAPE RECORDER AND REWIND THE TAPE; 
172 PRINT: PRINT"THEN PRESS ANY KEY TO CONTINUE. 
173 GET X$: IF X$ = "" THEN 173 :REM WAIT FOR ANY KEY TO BE PRESSED 
194 REM 
195 REM 
196 REM 
197 REM 
198 REM 

#UUH#"#H#H#U##H#U##HH"'H'UHHH 
UHUHHH INPUT FROM TAPE HUHUHU 
U#UHU#'#UHU#H##H###HU#HHHHHUUHH 

200 OPEN 2,1,0 : REM OPEN THE FIRST TAPE RECORDER FOR READING; FILE NUMBER.= 2 
210 FOR 1- 0 TO 260 :REM NOTE THAT THE SMALLER NUMBER APPLIES NOW 
220 INPUT#2, X$ : REM THIS TIME, INPUT A SINGLE CHARACTER FROM TAPE 
230 IF X$ <> "" THEN PRINT ASC(X$); :REM KLUDGE, BECAUSE ASC("") IS DISALLOWED 
240 IF X$~ "" THEN PRINT "NULL"; : REM FOR REASON GIVEN BEFORE 
250 NEXT 
260 CLOSE 2 
270 REM 
2 71 REM 
272 REM 

#11######### 
## END ## 
11###### #### 

Headers, cassette buffers, and blocks When a program is saved to tape, or a file is 
opened to write to tape, the cassette operating system writes a 'header' to the tape. 
This is a single buffer of data, containing the program or file name, two addresses, 
and a single byte at the start, which the system identifies as the marker for a header. 
Conversely, when a program is loaded, or a file opened for read, the operating system 
searches the tape for blocks of the form which declare themselves as headers. The 
name is checked, and, if it matches the required name, loaded into RAM (program) or 
stopped until GET# or INPUT# asks for data from subsequent buffers. OPEN 1 loads 
the first header on tape into the cassette buffer for the (default) device, tape #1; 
OPEN 1,2,0, "HELLO" loads HELLO's header, from cassette #2, into cassette buffer #2. 
The RAM buffers are 192 bytes long. but only 191 bytes store data; the first is the 
marker. Buffer #1 is $027A-$0339 (634-825); buffer #2 is $033A-$03F9 (826-1017). 
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These buffers are used only by tape, except in BASIC 4 disk handling with CBM 
disks. Consequently, if disks and tape are both in use together, cassette #1 only 
should be used; two cassettes and BASIC 4 disks can be used provided the disks are 
not used while a file is open to cassette #2. Alternatively, the disks can be controlled 
by commands which avoid BASIC 4's special disk commands, concat, dopen, dclose, ... 
Note also that both buffers are usable to store machine-code, provided that no tape 
activity overwrites them. For example, a BASIC routine which pokes machine-code 
into either buffer is fine, and can be loaded from tape. But machine-code in buffer #1 
can't be saved to tape: the first thing that happens is that the buffer is replaced by 
the header details of addresses and name, which will delete any code in the buffer. 
Buffer 2, when BASIC 4 disk commands are used, is safe from $0381- $03E8 (897-1000). 
The limits of the buffers are automatically set by ROM routines depending on the 
device number. See F667/F656/F695 in BASIC 1/2/4. 

Program headers have this structure 

41 721 69 176 176 179 132 132 1 32 1321 
i.d. start end 

$0401 $0411 
program name 

H ELL 0 
spaces 

This header is for the program 10 PRINT"HELLO" , which was loaded from a tape in 
cassette #1. So PEEKing 634 -650 or so gives the decimal information listed. (Note that 
BASIC 1 starts at $0400). The first byte is $01 = 1. 

Data headers have a marker byte of 4: 

&22 1 21581 3 1 68 1 65 1 84 [ 651 32 1 32 1 32 [ 32 [ ~ 
id. start end file name spaces 

$027A $033A D A T A 

This is the header for a file called 'data', which will load into cassette buffer #1. Note 
that the end address is recorded as $033A; in fact, addresses $027 A - $0339 only are 
used by the file data as it is read from tape. 

Data is stored in buffers of this form: 

12 1 72 1 69 1 76 1 76 I 79 113 I 0 I ~ 
id. H ELL 0 CR. Zero 

The marker byte is 2. Data is followed by carriage return. (It may also be separated 
by commas and colons; see INPUT in Chapter 5 for details). The zero-byte is the 
end-of-file marker, written when the file was CLOSEd. On detecting this, ST is set 
to 64. However, if ST is ignored, the zero byte is simply read past, and previous 
data ('garbage') will be read. 

The End-of-tape header is a duplicate of the file's header, but with id=5: 

15 I 58 I 3 [ 250 [ 3 [ 32 [ 32 132 1 32 I 32 [ 
start end spaces 

This example follows an unnamed data file stored in cassette buffer #2. 

Programs are stored in a single block of data; ST=4 or ST=8, 'short block' and 
'long block' errors, happen if a program is read as data. They do not have a marker 
value; all the information needed to load them is held in the header. 

In addition to CHR$(O), which causes ST=64 to be set, CHR$(10), linefeed, is 
treated as a special character: in fact it isn't written (as data) to a tape. There is a 
special routine to remove it. The absence of such a routine led to problems with the 
disk unit's files. CHR$(29), cursor right, also doesn't get through. The demonstration 
program shows these features. As far as INPUT# is concerned, though not GET#, many 
characters are anomalous: CHR$(13), CHR$(32), CHR$(34), CHR$(44), and CHR$(58), 
which are Return, space, quote, comma, and colon, for example, give strange effects. 
Leading spaces are deleted, for instance. 

CMD enables programs to be stored as data; a data file is opened, CMD directs 
output to the file, then LIST saves the program as an ASCII file, so that PRINT is 
stored as 5 bytes. See 'MERGE' (Chapter 5) for details and examples. 

Since OPEN 1 loads a program's header, its load address and save address can 
be found with PEEK(635) + 256*PEEK(636) and PEEK(637) + 256*PEEK(638). The name 
can also be peeked out; so can any machine-code which may have been written into 
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the buffer as a security device. 

ROM routines and machine-code programming OPEN, CLOSE, LOAD, and SAVE can be 
investigated by disassembling the kernel (the jump table almost at the end of ROM). 
Each of these commands has a jump address here. Then, at some later point, after 
taking in the command's parameters, a set of branches occurs: 

LDA $D4 ; DEV ICE NUMBER This, or something similar, is the routine at 
BEQ XXXX; BRANCH IF KEYBOARD which IEEE devices are separated from cass-
CMP #03 ettes. The address after BCC is the start of 
BeC XXXX; TAPE ROUTINES the tape processing. After this, the two poss-

ible tape device numbers are distinguished in 
various ad hoc ways, for example by deerementing and branching if equal to zero, 
which finds device #1. The tape timing mechanism is complicated; it involves both VIA 
timers, and also resets the interrupt vector from a table; there are three interrupts 
(apart from the usual keyboard servicing routine), which deal with writing the header, 
writing data, and reading tape respectively. The keyboard processing is cut off, so no 
keypress gets through to the keyboard buffer. But the stop key is tested by its own 
subroutine, so there is some control over the tape. A method like this is necessary to 
maintain accurate timing, since the keyboard processing routine doesn't take a const­
ant time. The instruction DEC $813 is used to disable the normal interrupt, prior to 
resetting the interrupt vector; it has the effect of setting bit 0 to O. $E813 = 59411, 
so the same trick can be performed from BASIC: POKE 59411,PEEK(59411)-1 turns off 
the interrupt, and with it the keyboard and stop key; it also speeds processing 
slightly. The interrupt must be turned on again if the keyboard is to be reactivated. 

The table below lists some RAM locations, in the interface chips, which are rel­
evant to tape. A few other locations (ROM and RAM) are included, where they are 
closely connected with cassette operating: 

CASSETTE: CASSETTE #1 CASSETTE #2 
ROM: BASIC 1 BASIC 2 BASIC 4 BASIC 1 BASIC 2 BASIC 4 

Motor: On Bit 3 of $E813 (59411) off Bit 3 of $E840 (59456) off 
-- [Usual value $35 (53)] [Usual value $CF (207)] 

Off BIt 3 ot !)iE813 (59411) on Bit 3 of $E840 (59456) on 
[Usual value $3D (61)] [Usual value $DF (223)] 

Cassette status flag'" $207 (519) $F9 (249) $208 (520) $FA (25~) 

Both motors off JSR FFED JSR FCA6 JSR FCEB same 
SYS 65517 SYS 64678 SYS 64747 

Restore normal IRQ JSR FCFE JSR FC7B JSR FCCO same 
SYS 64763 SYS 64635 SYS 64704 

Key Sense pressed 2 Bit 4 of ~E810 (59408) off Bit 5 of $E810 (59408) off 

not pressed Bit 4 of $E810 (59408) on Bit 5 of $E810 (59408) on 

# Chrs. in tape buffer $271 (625) $BB (187) $272 (626) $BC (188) 

Buffer addresses $027A - $0339 (634 - 825) $033A - $03F9 (826 - 1017) 

Tape read interface Bit o of $E811 (59409) Bit 3 of $E84D (59469) 

Tape write interface Bit 3 of $E840 (59456) same 

*If non-zero, the contents of this location signal that a cassette key is pressed 

2 Reverse, Fast Forward, or Play 

The tape motor(s) can be turned on and off from within BASIC with the help of data 
from this chart. A complicating factor is the IRQ service routine (E685/E62E/E455), 
which under normal circumstances turns off either or both motors if it finds them on. 
(The sequence LDA E810/ ASL/ ASL/ ASL tests the cassette sense line for both cass­
ettes: if the carry flag is set, a button is not pressed on cassette #2, and if the min­
us flag is set, a button is not pressed on cassette #1. In either case the motor is 
turned off, provided the cassette status flag (asterisked in chart) is zero). To avoid 
the motor being turned off by the usual interrupt processing, poke a non-zero value 
into the status flag location for the cassette. 
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OPEN, CLOSE, LOAD, and SAVE can of course all be performed from machine-code. 
To see how the inbuilt routines might be used, let's consider some published examples 
of unorthodox use of the cassettes: 

(i) A program can be loaded into addresses different from those on the header, 
by first loading the header alone, then changing its pointers and loading the remaind­
er of the program. It could, for example, be watched loading into the screen; or a 
machine-code routine, saved on a machine with a lot of memory, might be loaded into 
a smaller machine in this way. 

(ii) 'Append' of tape programs or subroutines can be achieved by loading two 
programs so that the second starts where the first ends. 

(iii) A program can be saved along with data in its header. Normally, this can't 
be done, since SAVE clears the buffer, filling it with spaces, before putting the start 
and end addresses and program name in. If a program is saved with machine-code in 
its header, this acts as an anti-copying device up to a point, since SAVE in the usual 
way will erase this buffer, so the copied program won't run if the buffer's routine is 
essen tial to it. 

(iv) Another anti-copying device is to change the header pointers so a program 
loads into the keyboard buffer. It can thus be made to RUN immediately on LOADing. 
Provided the stop key is disabled, the program is made relatively difficult to enter. 

(v) Some programs for BASIC 1 were made 'uncopyable' by setting the header 
pointers to start at an address below the start of BASIC, causing SAVE not to work. 
'Microchess' used such a principle; it also included its own save routine, so that an 
appropriate SYS call copied the program. 

The table which follows should provide a useful map for those readers who wish to ex­
plore tape ROM. Some significant ROM routines and RAM locations concerned with load­
ing and saving programs from / to tape are listed. Roughly speaking, the lower-level 
subroutines are further toward the end of ROM, so the trickiest programs must use 
routines with higher ROM addresses. 

FUNCTION/ LOCATION BASIC 1 BASIC 2 BASIC 4 

Tape LOAD (assumes parameters are set) F3A5 F395 F3D4 
Tape SAVE (assumes parameters are set) F6F6 F703 F742 
Save (i.e. wrIte) header (LDA #1) or e 0 t (LDA #5 F5AE F5DA F619 
Save program or own header etc. * F8C1 F88E F8D3 
Load (Le. read) next header F5AE F5A6 F5E5 
Load named header F495 F494 F4D3 
Load rest of program F3C3 F3B9 F3F8 
Load any data * F88A F85E F8A3 

Device number (1 or 2, stored as $01 or $02) F1 D4 
Length of name (0 means no name assigned) EE D1 
Start address of name, if there is one (F9) (DA) 
Start address for load/ save (F7) (FB) 
End address -1 for load/save (E5) (C9) 
Load I verify flag (0:= load, 1:= verify) 020B 9D 
Secondary address (0,1, or 2) FO D3 
Delay before writing 0279 C3 

*Start and end addresses, and other parameters, need to be set. 

Examples. (i) Loading machine-code or BASIC into screen RAM: The easiest de­
monstration is to load the header, change its pointers, and load 1 or 2 K of the pro­
gram. OPEN 1 reads the first header on tape #1. Locations $027A onwards (Le. 
634 onwards - try FOR J = 634 TO 654: PRINT PEEK(J) j: NEXT for Ld. and addresses 
and ASC II values of the name) hold the header, so we poke the start address with 
$8000 and the end address with $8400 or $8800. POKE 635,0: POKE 636,128: POKE 637,0: 
POKE 638,132 or 136 works for any ROM. Then calling F3C3/F3B9/F3F8 completes the 
load, after taking these addresses form the buffer. So (depending on the ROM) 
SYS 62403/ 62393/ 62456 completes the load into screen RAM. 

(ii) Saving machine-code from BASIC. RAM can be saved to tape as a named 
program file without entering the monitor. All that's needed is to poke all the relevant 
parameters into place, and call a routine which writes to tape. This is not entirely 
straightforward, because the X-register needs to be loaded with zero before SAVE is 
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called, and this can only be done in machine-code. If we save this machine code at the 
start of BASIC, we have a routine like this: 

o REM ""j 1v7" SYS 1031 CALLS: LDX #1 DEX JMP $F6F6 or $F703 or $F742 
1 REM BYTES IN 1031-1036 ARE 162,1,202,76, AND THE 2 JUMP BYTES (LOW-HIGH) 
10000 REM * SUBROUTINE TO SAVE MEMORY IMAGE TO TAPE OR DISK FROM BASIC * 
10010 REM * LIMITS ARE $0400-$8000, AS CASSETTE BUFFERS ARE USED, AND * 
10020 REM * MEMORY ABOVE $8000 ISN'T SAVED ON TAPE. * 
10030 REM * INPUTS. B=BOTTOM OF MEMORY TO BE SAVED, T=TOP+1; N$=NAME; * 
10040 REM * 
10050 POKE 251,B AND 255: POKE 252,B/256: 
10060 POKE 201,T AND 255: POKE 202,T/256: 
10070 FOR J = 0 TO LEN(N$)-l: POKE 826+J, 

10080 POKE 212,1: POKE 209,LEN(N$): 
10090 POKE 218,58: POKE 219,3: 
10100 SYS 1031: RETURN 

REM BOTTOM ADDRESS INTO ($FB) 
REM TOP ADDRESS INTO (C9) 
ASC(MID$(N$,J+1»: NEXT: REM POKE NAME 

INTO CASSETTE BUFFER #2 
REM DEVICE IN D4; NAME'S LENGTH IN D1 
REM 033A = (DA) = START OF NAME 
REM CALL SAVE ROUTINE 

Note than line 0 has been used to store machine-code. Everything after REM is ignored 
so this is perfectly acceptable. However, there must be no zero in the line, or it will 
be treated as an end-of-line marker and generate a spurious line if the program is 
edited; hence the use of LDX #1/ DEX in place of LDX #0. The bytes remain intact 
unless line 0 is edited, in which case some may be changed - peek them to check. 
Quite long machine-code routines can be stored like this. Note that BASIC 1 has a 
different set of zero-page addresses, which can be found in the table on the previous 
page. 

8.3 Miscellaneous: fast forward winding, directories of tapes, BASIC 1 bugs, security 

Timing fast-forward tape movement CBM cassettes have no fast-seek facilities of the 
sort which are sometimes met with, for example in the 'stringy floppy' with loops of 
tape, or certain of Sharp's machines, which store a marker on track 2 of the tape, to 
give advance warning of the presence of a header. This perhaps makes no great diff­
erence; tape is inevitably clumsy compared with disk. Nevertheless it is possible to 
say a few useful things about fast-forwarding tape. * 

In fast-forward mode, we can assume that the drive motor is rotating at a fixed 
speed, so - with apologies to those who don't know calculus - after time t seconds, 
the distance (ds) the tape moves in interval dt is proportional to the circumference of 
tape on the take-up spool x dt. This circumference = 2*pi*(radius of spool + k*t), 
where k is a constant related to the speed of the motor and the tape thickness. 
So s = kl)k2 + k3*t dt = klt + k2t2. In other words, we can expect, or at least 
hope, that a simple quadratic expression relates fast-forward time to distance along the 
tape.2 The diagram illustrates the situation. In fact, this model does approach reality 
with sufficient precision to be useful. Note that the tape is predicted to advance faster 
towards the end, which of course it does. 

Distance 
along tape 

Fast-forward 

rma1 

The point of this type of relationship is this: suppose we have a program on tape 
which is (say) 5 minutes' playing-time from the start. Can we estimate the fast-forward 
equivalent time? If we have a graph like the one sketched above, we can simply read 
off an estimated time; in view of the latitude allowed by leaders, this is usually good 
enough to find the program in a reasonably cost-effective way. 

*Artic1es (empirical rather than theoretical) include N Thomas, IPUG Jan.'80 and Sept. 
'80 and W McCracken, CPUCN #7. 'Micro' has published articles on this topic. 
2Readers who have followed me so far will be able to check that: 

ds = circumference * revs.per sec. * dt, so that 
ds=2*pi*(radius of spool + revs.per sec.*thickness*t) * revs.per sec. * dt 

So Fast-forward distance in tf secs. = 2*pi*rps*{radius*t + rps*th*t2/2). 
Distance in normal operation = 1 7/8 * tn inches. So the ratio of fast-forward to 
normal time required to cover some fixed distance of tape is implicit in 

1 7/8 * tn = 2*pi*rps*r*tf + 2*pi*rps2*th*t2/2. The constants can be guessed or 
measured to provide a quadratic equation; typically, to the first term, tf~.008 * tn' 
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There are two ways in which this information can be applied. We can design a tape 
system so that a number of equal spaces are allocated on tape; in this way, we can 
fast-forward to any program, either to write or read it, fairly easily. Alternatively, we 
can write a directory program which reads any tape, printing the times taken to find 
each program, and perhaps predicting the corresponding fast-forward time. (The pro­
grams of McCracken and Thomas respectively illustrate these approaches). For a 
precise job, it's necessary to write test data to tape, then read it back after a timed 
fast-forward. A program to do this is probably of too limited interest to be included 
here. How can fast-forward timing be measured? We can turn off the motor after a 
predetermined time like this: 

10 INPUT "NUMBER OF SECONDS FAST FORWARD";S 
20 PRINT "PRESS FAST FORWARD KEY" 
30 IF PEEK(59411) <> 53 GOTO 30 :REM AWAIT KEYPRESS 
40 T = 60*S + TI 
50 IF TI<T GOTO 50 
60 POKE 249,1: POKE 59411,61 

:REM TIME LOOP FOR 60*S JIFFIES 
:REM STOP MOTOR (USES STATUS FLAG) 

and in this way we can fast-forward to any point on tape. 

Tape directories It is easy, and useful, to write a program to list the contents of a 
tape. It is true, however, that such a program will be slow, and isn't really a sub stit­
ute for notetaking on the contents of tapes. The program below repeatedly loads head­
ers, reporting the start/end addresses found, printing the name of the file, and rep­
orting the time taken to read the tape at normal speed. 

10 T~=TI: OPEN 1: T1=TI: CLOSE 1 :REM READS HEADER; T1-T~ IS TIME TAKEN 
20 PRINT "NAME:";: 
30 FOR J = 639 TO 654: PRINT CHR$(PEEK(J»;: NEXT: PRINT: REM 16 CHARACTERS 
40 PRINT "START ADDRESS"; PEEK(635) + 256*PEEK(636) 
50 PRINT" END ADDRESS"; PEEK(637) + 256*PEEK(638) 
60 T = T + (T1-T~)/6~ 

70 PRINT "NORMAL SEARCH TIME"; T; "SECONDS" 
80 GOTO 10 :REM CAN INCLUDE END-OF-TAPE TEST, PEEK(634)=5 

This simple program can be enlarged to report whether a file holds a program or data, 
for which PEEK(634) is 1 and 2 respectively. Hex addresses, likely BASIC programs, 
estimated fast-forward times, and the contents of headers which have other than 
spaces after the program name, are examples of the sort of thing which may be of use. 

Bugs in BASIC l's tape handling There are two serious bugs in the data file operat­
ion of BASIC 1, not the program loading and saving, which can be corrected by soft­
ware kludges. (i) A write file opened from cold doesn't set the pointers to cassette 
buffer #1 or #2 as it should; poke them into (F3) with POKE 243,122: POKE 244,2 
($027A for cassette #1) or POKE 243,58: POKE 244,3 ($033A for cassette #2). 

(ii) The interblock gap doesn't allow for motor start-up: the kludge 
for this is to start the motor before the buffer is full, e. g. 

40 PRINT#1,Z$:REM WRITES DATA TO TAPE FILE #1 ON CASSETTE 1 
50 IF PEEK(625»160 THEN POKE 59411,61 :REM MOTOR ON 

The value of the parameter in line 50 depends on the length of the strings being 
written to tape, and the frequency with which they are written. The maximum value in 
625 is 192; allow enough time for the motor to run about 1/3rd second. 

Miscellaneous (i) The '<' key. There is a programming error in BASICs 1 and 2 which 
makes this key appear to relate to cassette #1. (See locations $E6AB ff. in BASIC 2, 
for example). Because of this, if a key is sensed from cassette #1, '<' repeats if it is 
held down if for example the tape holds a recording. Sometimes '<' appears to 
become inactive; poking E811 (59409) so bit 7 is low may help, e.g. POKE 59409, PEEK 
(59409) AND 127. 

(ii) SYS 62485/ 62493/ 62556 print the last-loaded or last read name to 
the screen, both for cassette #1 and cassette #2. 

(iii) Security. Tapes are less copyproofable than disks, because ordin­
ary audio copying can be used (and is, for commercial duplication of programs on 
tape). An interesting routine (,Auto-Run-Save') for BASIC 1 only by W Kolbe 
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in 'Micro' (Sept. '80) enables a BASIC program to be saved with a modified header so 
that it always runs immediately on being loaded. This, combined with disabling of the 
Stop key, provides considerable security against LISTing and amending of BASIC. The 
program ('Auto Run Saver') offers a further possibility of modifying the interrupt to 
test for direct mode at every interrupt, and calling the reset routine if direct mode is 
detected. This makes automatic running very secure against LISTing. (Something like: 
LDA $78/ CMP #02/ BEQ RESET/ JMP IRQ inserted before the normal interrupt detects imm­
ediate mode; in BASIC 1 the equivalent is LDA $CA/BEQ RESET/JMP IRQ). Unfortunate­
ly, while this process is relatively easy for BASIC 1, BASICs 2 and 4 have been re­
organised in a way which makes auto running difficult to achieve. (It can be done 
with disks - see Chapter 6). This diagram shows why: 

-----HEADER (192 BYTES)----- KEYBD. BUFFER PROG. ----MAIN PROGRAM----

I 11~;~!·ll~~dSINAME I MACHINE-CODE I I 1 ISYS655[RETN] 

634 639 655 
The program is saved in three parts, not the usual two with a header and program. 
The diagram is intended to be read from left to right; this is the order in which the 
three components are saved to tape and read back. The header has a start and end 
address pointing to $020D to about $0218; these 12 bytes include the keyboard buffer 
($020F - $0218) and the location holding the number of characters in the buffer. When 
the header loads (into cassette #1 only), the short following program is loaded and 
direct mode is entered; but since the program deliberately fills the keyboard buffer, 
the operating system inputs the buffers contents, which are SYS 656 [Return]. The 
header has machine-code saved with it; this is called by the SYS command, and has 
two functions: (i) to put Run [Return] in the keyboard buffer, (ii) to load the next 
(i.e. ordinary BASIC) program using the header already in cassette buffer #1. So the 
program is loaded and immediately RUN. 

BASICs 2 and 4 have the keyboard buffer in the same place as BASIC 1, but the 
location containing its contents has been moved to the zero-page. This means that the 
intermediate pseudo-program must load into a region which crosses the stack. Since 
the tape loading routine uses the stack, this is difficult or perhaps impossible to arr­
ange. The only alternative seems to be to load a one-byte 'program' into the IRQ vec­
tor, ($90), in the zero-page, to temporarily deflect the interrupt into machine-code in 
cassette-buffer #1. This seems impossible with BASIC 2, because the interrupt points 
to the wrong part of memory, but it should be possible with BASIC 4. 

To save a header and program with machine-code included in buffer #1 and with 
any load address and end address, use this routine, which can be called from BASIC 
or machine-code: 

START LDA #01 
STA $D4 ;DEVICE #1 = TAPE #1 
LDA #7F 
STA $DA 
LDA #02 
STA $DB 
LDA #AA 
STA $D1 
LDA STLO 

;POINTER TO START OF 
; NAME, ASSUMED PRESENT 
;IN BUFFER #1 
;LENGTH OF 'NAME', I.E. 
; INCLUDING M/CODE 

STA $FB ;LOAD ADDRESS TO BE 
LDA STHI ;STORED IN HEADER 
STA $FC 
LDA ENDLO 
STA $C9 ;END ADDRESS TO BE 
LDA ENDHI;STORED IN HEADER 
STA $CA 

This routine writes a header, including 
program name and machine-code, using 
details assumed to have been assembled 
directly in cassette buffer #1; other 
locations of course are possible. It 
also writes the program which the 
header will load; a second program, to 
be loaded by the header's machine 
code, can be written by entering a 
second set of start/end addresses and 
writing the bytes without a header. 

JSR $F656; SET TAPE #1 BUFFER 
JSR $F847;AWAIT PLAY & RECORD 
LDA #01 ;HEADER TYPE = 1 

[BASIC 4:$F695] 
[BASIC 4:$F88C] 

JSR $F5DA;WRITE HEADER [BASIC 4:$F619] 
LDPRG STORE POINTER TO START OF PROGRAM 

OR PSEUDO-PROGRAM IN ($FB) 
STORE POINTER TO END OF PROGRAM 
OR PSEUDO-PROGRAM IN ($C9) 
JMP $F71B; WRITE WITHOUT HEADER [BASIC 4:$F75A] 
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Printers in general Printers serve several purposes: they enable permanent records 
to be kept on paper, for example of program 'listings', as they are in variably called. 
They enable data to be output in a more-or-less readable form, as 'printout'. This may 
include both finished output and audit trails. Finally, they can produce documents with 
features which mimic typed or printed output, for use in word processing, letter-writ­
ing, and so on. In principle, they are simple: often they are receive-only devices, 
which convert a limited range of bytes into characters. In practice there are several 
complications making this aim difficult to achieve. Some printers, usually the more 
expensive daisy-wheel type, are available with 'KSR' (keyboard send and receive) 
features, enabling messages typed at the printer to be received by the computer, but 
we need not consider this aspect in detail, since it is unlikely to be useful except for 
configurations of several remote computers. Let's first look at the current methods 
by which the actual impression is made on paper, before considering the questions of 
interfacing and of firmware. 

In approximate order of expense, these are the printer types now available: 
(i) Teletypes. These provide a paper terminal which can both send and receive 

data to a computer. They were widely used in computer installations, but have been 
largely superseded by VDUs. They are rather large, heavy, and noisy, and have 
upper-case text only; however, second-hand models can be got very cheaply. The 
interface is RS232. 

(ii) Thermal and spark printers. Printers of these types require specially pre­
pared paper, sensitive to heat in one case, and conductive in the other. Characters 
are made up of dots on the dot matrix principle. Thermal printers have a head con­
taining elements which rapidly vary in temperature, causing dots to be plotted as the 
head moves across its paper. Spark printers use aluminised paper; a series of small 
high -voltage bursts burns dark marks on the paper. Printers like this are silent, but 
the paper is expensive, and usually available in narrow rolls only. 

(iii) Modified electric typewriters. Reconditioned golfball typewriters with an 
interface to accept computer data have had some popularity before prices of dot-matrix 
printers dropped to competitive levels. They produce good-quality text, but the speed 
is limited by mechanical components driving the golfball. 

(iv) Dot-matrix printers. These are by far the most widely-used printers with 
microcomputers. The print-head, made by a specialist manufacturer, has typically 7 - 9 
wires arranged vertically, which are driven into contact with the ribbon and paper by 
solenoids, each wire having its own solenoid. The 4022 for example has 8 wires; as the 
head scans the paper, any of the 256 combinations of wires printing or not printing 
can be triggered, and characters are built from these fundamental dot patterns. Each 
4022 character is 6 dots wide, so six separate sets of impacts make a character, unless 
some of the 'impacts' are of a blank column of dots. So, for example, a printer working 
at the rate of 100 characters per second, with an 8 by 6 character structure, makes 
600 sets of impacts per second maximum. Printing at this maximum rate may cause 
problems of overheating; 4022 users are warned in the manual not to print much text 
in reverse characters. 

(v) Daisywheel printers. A 'daisywheel' has 100 or so spokes (or 'petals'!) 
arranged radially around a thicker hub, each spoke terminating in a raised, reversed 
character. The wheels are made of light metal or plastic, designed with low rotational 
inertia so that they can be spun fast. Fortunately they are largely standardised, so 
that (for example) Qume and Diablo wheels run on each others' machines. Some wheels 
(e. g. Ricoh) have upper and lower case on the same spoke. Speeds of 50 or 60 ch .p. s. 
are quite common. The print quality is good. As is the case with golfballs, the common 
letters (e,t,a,i,o,n,s) are clustered near each other, to cut down on time spent mov­
ing the correct letter into place. 'Spinwriter' is similar, but uses a 'thimble'. 

Features of printers A few words on stationery, ribbons, switch-selectable printer 
features, and maintenance are necessary here. 

(i) Paper drive mechanisms and stationery. Computer printers normally use 
continuous fan-fold stationery driven by sprocketed rollers. 'Pinfeed' or 'sprocket 
feed' usually implies that the roller has sprockets of a fixed separation; 'tractor feed' 
implies variable width, the 'tractors' being able to slide along the roller, and, in some 
designs, spreading the load over several perforations with a caterpillar-track arrange­
ment. 'Pinchfeed' permits some printers to use unperforated stationery, e. g telex 
paper. Single sheets can be fed, one at a time, using 'cut sheet feeders'; these are 
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optional extras (usually for daisywheel printers) and are expensive. Computer station­
ery can of course be obtained in multi-thickness form; printers vary in their capacity 
to handle copies. 

(ii) Ribbons. Many printers have cartridge ribbons; the cloth type is arranged 
as an endless loop, held within the cartridge either loose, packed in a random pattern 
so the direction is constant. Also the typewriter-style spools which reverse direction 
are sometimes met with; these are cheaper than cartridges, but there is a risk of dam­
age with some types of ribbon, for example through clogging the print head (with the 
wrong type of ink) or bending the wires (with eyelets in the ribbon). Carbon or film 
ribbons are used for high quality impressions with daisywheel and golfball printers. 
Multi-strike ribbons are more economical and give a slightly inferior appearance. Such 
ribbons offer once-only use, and it may be important to ascertain how much work a 
single ribbon can produce, since otherwise a program run may require more attention 
than ought to be necessary, at a greater cost. 

(iii) Features. External switches on printers - apart from on/off! - may include 
paper control (paper feed, set top-of-form, move to top-of-form) and/or automatic 
linefeed on/off, at the simpler levels, up to a full range of facilities, controlling baud 
rate, parity, horizontal and vertical spacing, margins, tabs, etc. Internal switches, 
accessible only by removing the lid, may be used to set characteristics like the baud 
rate, the type of interface, and (e.g. with Centronics printers) the type font suited 
to national needs, permitting currency symbols, diacritical marks, and special charac­
ters (Dutch ti, German 8) to be printed. Many printers have some form of self-check 
or 'internal diagnostic' routine; Commodore's smaller printers for example have two 
channels available on reset, so switching on with the paper feed button pressed causes 
a jump to be made to a subroutine which repeatedly prints out the character-set. 

The speed of a printer is usually quoted in characters per second or lines per 
minute. Neither measure is completely satisfactory. A 50 ch.p .s. daisywheel printer 
may produce a fairly sparsely-filled document more rapidly than a matrix printer rated 
at twice the speed, by skipping blank spaces instead of covering them at the same 
speed as the text. A bidirectional matrix printer is likely to be faster than a similarly 
rated unidirectional printer, because it need not waste time returning to the leftmost 
margin after every line. A printer with a large buffer may take less computer time to 
print, since the buffer (RAM held within the printer) may be able to accept larger 
batches of data for printing before spending time handshaking, waiting to take in the 
next batch. Some 'intelligent' printers move ~o the next line when they detect that the 
rest of a line is blank; 'Lines per minute' is a useful measure only when this doesn't 
happen, and even then there may be variability if the lines' total length can be con­
trolled. 

Maintenance is generally a dealer function; some machines may have to be deliv­
ered by the user, particularly if they are cheap, even if there is a maintenance 
contract. It is worthwhile estimating the probable amount of use of a machine; if (say) 
an average page has 60 lines of 50 characters, a box of 1000 fanfolded sheets takes 
3 million characters. 

Printer features which are relevant to operating convenience include noise, port­
ability, ease of paper loading, and, with some models, the choice between a free­
standing machine or the desk-top equivalent. 

8.5 Commodore and CBM-plug-compatible printers 

2000, 3000 and 4000 series These printers are Commodore's standard low-cost range. 
The 2022 and 2023 are, or were, 80 column printers, the first having 'tractor feed', 
i.e. sprocket drives of adjustable separation and the second, cheaper, model pinch feed. 
These were renamed the 3022 and 3023 to coincide with the 3000 series CBM computers. 
The 4022, with tractor feed, superseded these at about the start of 1981. There is no 
4023. It differs from its predecessors, and in fact is closely related to the Epson 
MX-70. The firmware in these printers has not been completely successful. Two sets 
of ROMs (set 3 and set 4) have been issued, and others have been tested but not 
issued. Apart from minor bugs, the principal error is in the handling of lower-case 
lettering, which has to be done in a way not compatible with output to the screen or 
to other printers. Future ROM issues will have to be designed on the basis of the 
difficult decision of making the printers easy to use, but incompatible with existing 
CBM printer software, or to retain the previous weaknesses. 
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The 4022 dot-matrix printer This printer is wired as IEEE device #4. It is controlled 
by a 6502. A red LED gives evidence that a channel is open to receive data. The dot 
matrix is 8 by 6; most characters are printed within a 7 by 6 rectangle, with descend­
ers and the lowest line of reversed characters occupying the bottom row. The printer 
is controlled in two ways: firstly, a range of secondary addresses enables semi-perm­
anent aspects of a printout (lines per page, spacing between lines etc.) to be set; and 
characters similar to the screen-editing VDU characters enable the second set of more 
temporary features to be controlled. These include reversed characters and multiple­
length, 'enhanced', characters. The 4022 has 11 secondary addresses; earlier models 
had 7. We shall first look at these secondary addresses. I have assumed that a chann­
el to the printer has been opened with OPEN 4,4. Other channels, which assign a file 
number to a secondary address, also need to be opened, and usually it is easiest to 
number the file equal to the secondary address, for example OPEN 6,4,6. A few points 
ar.e worth noting: PRINT# has to be used as a rule, because CMD followed by PRINT 
sometimes fails to work (e.g. after GOSUB). Some parameters have to be entered as 
CHR $(), although this is not mentioned in the manual. If a command seems not to be 
working, try the combinations of (say) "60", CHR$(60), and 60 until you find the 
correct formulation. And the special features of output formatting and of user-defin­
ition of a character only apply to a single format string and a single character at one 
time. So a table, in which each line resembles the previous line's layout, is straight­
forward to print; whereas interleaved lines of different format require that the format 
string be redefined within the printer. Finally, beware of plugging the printer into 
the PET ICBM with its plug upside-down, which may be possible if the polarising pins 
in the plug work loose; this will damage the computer. 

4022 
Secondary addres5 Function Notes 

o 

2 

3 

5 

6 

7 
8 
9 

10 

Print 'as received' This is the default option (no secondary address 
Tab, Clear, etc. don't work; hangs on back­
space, CHR$(20). 

Print in format Prints according to the format last printed to 
secondary address #2. Overflow (or other error 
resets secondary address to 0, fills the field 
with warning asterisks, and prints out the type 
of error if this is enabled by sec. address #4. 

pefine format A single format can be defined at one time in 
COBOL-like form, e.g. S$$$$9.99 causes 12.345 
printed to secondary address 1 to appear as:­
+ $12.34 

Set lines per page This sets the number of lines which are printed 
before six blank lines automatically print (to 
move past the perforations). CHR$ (147) turns on 
paging; CHR$(19) turns it off. 

Enable diagnostics OPEN 40,4,4: PRINT#40: CLOSE40 causes diagnostic 
messages to appear on errors. There are six 
messages, consisting of a single letter prefixed 
by '*PE:'. ('Printer Error' presumably). 

Define character Define own CHR$( 254). One only at a time. 
Can't be changed during a line; this gives a 
'Terminator error'. Can print several on one linE 
using CHR$(141) as Return without linefeed. 

Set vertical spacing OPEN 6,4,6: PRINT#6,CHR$(N): CLOSE 6 sets the 
line separation to 144/N inches. SO CHR$(18) 
prints 8 lines linch, keeping the characters 
their usual height, so there is no separation. 

Upper case OPEN 7,4,7: PRINT#7: CLOSE 7 
Lower case (in part) OPEN 8,4,8: PRINT#8: CLOSE 8 
Disable diagnostics OPEN 9,4,9: PRINT#9: CLOSE 9 
Reset Reset all the semi-permanent features set via thE 

secondary address to the values obtaining on 
switch-on, with OPEN 10,4, 10: PRINT#10: CLOSE 10. 
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The most significant aspect of printing in formats is that numbers are easier to deal 
with than would otherwise be the case. 23 and 1234.567 can be converted instantly to 
23.00 and 1234.56 with these printers. Unfortunately the formatting process deals only 
in whole lines, so it often happens that text is mixed with numerals, and text is often 
easy to align without the need for a format definition. In other words, when printing 
a mixed output of text and numerals, the textual part may well be more tiresome to 
arrange in formatted form than it would have been to print out directly. The full 
details of formatting, with examples, would take too much space here, but the short 
example which follows illustrates how a literal, a string, and a numeral can all be 
simultaneously formatted. 

The object is to print a single line, given a name N$ and a sum of money D (in 
dollars - the only currency symbol available when formatting). When a set of lines are 
prin ted, they are to appear like this: 

PAY ERROL T. ZINZINHEIMER 
PAY J. DIBBINS 

$45.67 
$7.50 

that is, the word 'PAY' followed by the left-justified name N $ and finally D, formatted 
to 2 decimal places and preceded by '$'. The following program rounds D to the nearest 
half-cent as well: 

100 OPEN 1,4,1: OPEN 2,4,2 
110 PRINT#2,"[RVS]P[RVS]A[RVS]Y AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA $$$$$.99" 
120 INPUT N$,D: REM NAME AND AMOUNT 
130 PRINT#l,N$ CHR$(29) D+.0045 
140 GOTO 120 

Line 120 causes a format to be stored in the printer's RAM. Note that a reverse char­
acter signals that the next character (only) is to be treated as a literal: hence line 
130 prints 'PAY' immediately, followed by N$ left-justified into the alphabetic field. The 
cursor-right or 'skip', CHR$(29), forces an end to the field, so the numeral with the 
leading '$' and numerals after the decimal point prints next. The maximum value is 
9999.99 in the example; if secondary address #4 is active, D larger than this will gen­
erate a brief and modest error-message, which the programmer can pretend has some 
esoteric function. Even if D is zero, the decimal point appears: $.00 and this keeps 
the appearance tidy. There is no easy way to retain a leading zero for values less than 
1; .55 is easier to print than 0.55, although many people prefer this latter form. 

Error messages. The 4022 has 6 diagnostic error messages, which are printed if 
secondary address #4 has been enabled. These are: 

*PE : C * Secondary address exceeds 10. 
*PE:E* Exponent error; number in scientific format requires E±Xx. 
*PE: F* Format sent to secondary address #2 was invalid. 
*PE:L* Lines per page, sent to secondary address #3, were out of range. 
*PE:M* Mismatch - alphabetic data sent to secondary address #1 numeric field. 
*PE: T * Secondary address changed before Return or Linefeed send. 

4022 printer control characters. These characters are printed to the channel 
with secondary address zero, either in quotes or in the form CHR $(x). They are exact­
ly analogous to screen editing characters, such as cursor righ t or Clear, which may be 
'printed' to the screen. In fact some screen editing characters are also printer control 
characters, affecting the printer differently from the screen. Because of this inconsist­
ency, it it usually not possible to print the same output either to the screen or the 
printer, unless all characters are upper-case. 

n chr$(n) chr $(n + 128) 

1 chr$(1) Enhanced printing chr$( 129) [or Return] Unenhanced printing 
10 chr$(10) Linefeed 
13 chr$( 13) Carriage return chr$(141) Carriage return without linefeed 
17 chr$( 17) Lower case ch r$( 145) Upper case 
18 chr$( 18) Reverse printing chr$( 146) Reverse off 
19 chr$(19) Top of form chr$( 147) Set top of form 
29 chr$( 29) Skip space 
32 chr$( 32) Space chr$( 160) Shift-space; not a leading space 
34 chr$( 34) Quote 

chr$( 254) User-defi ned special character 
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Enhanced Printing Most dot-matrix printers have this feature, which is quite easy to 
implement (in contrast to daisywheel printers, for example, where the best approxim­
ation to this facility is to overprint like this). In Commodore's version, CHR$(1) causes 
subsequent characters to be printed with an additional column of dots; carriage return 
or CHR$(129) turns off this feature. This is not a doubling of character width for each 
CHR$(1), as it is often described. The diagram schematically shows what happens. 
Presumably, the printer's RAM is loaded with a constant, which is decremented, acting 
as a counter for the number of columns in each character. 

uNENHANCED 

...... . . 
WITit CHR$ (1) 

••....... ... . .. 
WITH'CHR$(i)CHR$(l) 

. ......•.••• .. .. . ... . ..•....••.• 
WITH CHR$(l)CHR$(l)CHR$(l) 

Remember that enhanced characters will fill a line with fewer characters than are 
required with normal-width characters. 

User-defined character I chr$( 254) The single programmable character available to 
users of this printer is defined by printing a six-character string into a file opened to 
secondary address #5. Subsequently, PRINT#4,CHR$(254) prints out the character, and 
PRINT#4,CHR$(1)CHR$(254) prints it double width, and so on. The character apparently 
is confined to 7 by 6 dots, so that descenders are impossible to get. The columns of 
dots correspond straightforwardly to the bit patterns: 

64 • • • 
32 
16 • 

8 · • . 
4 
2 • · 1 . · • 

TOTAL: 2 65 73 90 9 0 

So the pattern of dots illustrated is printed by 
the string CHR$(2)+CHR$(65)+CHR$(73)+CHR$(90)+ 
CHR$(9)+CHR$(O). The example program below 
defines a character (made up of CHR$(65)s), 
puts this in secondary address #5, and prints 
the result as CHR $( 254). This gives a rather 
unexciting pair of vertical lines, one row at the 
64 (top) level, the other representing 1. 

SPECIAL PRINTER CHARACTER-

REM PRINTER CHANNEL 10 OPEN 4 .• 4 
;;::13 OPEt-l 5 .. 4 ... 5 
::':0 PRINT=II=5 ... "AAAAAA" 
40 PRINT=II=4, CHR$(254): 
50 CLOSE 4: CLOSE 5 

REM SPECIAL CHANNEL TO PRINTER, INTO WHICH "" 
REM •• WE PRINT A 6-CHARACTER STRING 
REM PRINT THE SPECIAL CHARACTER 

In the U.K., the '£' sign is useful. One example is CHR$(l)+CHR$(13)+"?MM!" or you 
may prefer CHR$(9)+"?IIA!". Try these strings in line 30 of the demonstration pro­
gram. replacing "AAAAAA ", to get the feel of the procedure. 

Lower-case printing This is a problem. The designers of the system don't seem to 
have realised the considerable similarities between 'lower-case' and 'graphics' modes on 
the screen (most characters, except alphabetics, remain the same in each mode). In 
place of a simple switch, similar to that caused by POKE 59468 with 12 or 14, and per­
haps an optional set of routines to take account of BASIC l's oddities, each lower-case 
line has to be prefaced by a cursor down character. Without the cursor-down, even in 
lower-case mode the printer produces this sort of thing: 

gji._I_..-:JI~IIII!!!!._!!!!.-'" 
1 •• ET UP STOCK FILE - ADD NEW RECORDS ONTO END OF FILE 
So that in order to produce a printout like this extract: 

Hazar·oj: Origin: B Dig:trib'_~tlcon: M .a.e:S:"1 Tax: 41 Fo.reign; 0 
Sta.t,-~:s: =11= Spar-e 1 : Spar·e2 ; 

The following print statements are necessary: 

11219121 
112195 

PRINT" r-:!l3 .,---. !!JI-----------.------," 
PRINT" III .ALES::::lrIiI g".]$(12) ":JIll I AX: ".J$(13)":J11I -ORE I Gt-lI ".J$(14)' 

:JI 
1121913 
11395 
11121121 
lieS 

PRINT" III IAZARD: "~T$(15) ":JIll rRIGIN: "~T$( 16) ":J IJt-ISTRIBLITION : "~T$(17) ":J I 
PRINT" III .TATlIS: ".]$(19)":J11I .PARE1: ".]$(19)":J11I .PARE2: ".]$(2e)":J1 
PRINT" , '" 
PRINT"II .1IPPLIER CODE: ".]$(21)" ".] " 
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The machine-code routine which follows is a lower-case LISTer. It is written for BAS­
IC 2 ROMs. The alternatives are BASIC 4 equivalents. The routine is entirely relocat­
able, except for the underlined 2-byte address, which must be reset if a relocated 
version is to work. * 

., 033A 

.. 0342 

.. 034A 

.. 0352 

.. 035A 

.. 0362 

.. 036A 

.. 0372 

.. 037A 

.. 0382 

.. 038A 

.. 0392 

.. 039A 

.. 03A2 

., 03AA 

., 03B2 

.. 03BA 

.. 03C2 

.. 03CA 

.. 03D2 

A9 00 85 11 85 12 20 @ 
@ 68 68 AO 01 84 09 Bl 
5C FO 46 20 El FF 20 @ 

@ C8 Bl 5C AA C8 Bl 5C 
C9 FF DO 04 EO FF FO 31 
84 46 20(D9 D9 A9 11 20 

(45 CA) A9 20 A4 46 29 FF 
20 C2 03 C9 22 DO 06 A5 
09 49 FF 85 09 C8 FO 11 
Bl 5C DO 10 A8 Bl 5C AA 
C8 Bl ~ 5C 85 5D DO 
B2 4C~10 DA C9 FF 
FO D6 24 09 30 D2 38 E9 
7F AA 84 46 AO FF CA FO 
08 C8 B9 (92 c2J 10 FA 30 
F5 C8 B9 92 CO 30 05 20 
~DO F5 49 80 DO AC 
48 09 CO C9 DB 90 08 C9 
EO 10 04 68 49 80 48 68 
4C @5 cA) 

A3 
B5 
DF Notu m':}',...L\. ?OK.!:; fE.,12'A .m- Itid..-~ 
BA 

83 CF 
46 BB 
Address (03C2) to be changed on relocation . 

B3 FF 

B2 BO 

46 BB 

46 BB 

Other Commodore printers Commodore offer two other printers, at the time of writing; 
a heavy-duty dot-matrix machine, and a daisywheel printer. Both seem to have been 
produced in conjunction with other printer manufacturers, and are less distinctively 
CBM than might appear at first sight. The 8024 is a 9 by 7 dot-matrix printer with a 
head speed of 160 ch.p.s and capable of producing multiple copies. It prints standard 
ASCII, i.e. no PET ICBM graphics. Or so at least the (rather scant) documentation 
says; presumably, since true ASCII has upper and lower case different with respect to 
CBM, there is some facility for mixed lower- and upper- case printing. Its ST differs 
from that of other CBM printers; it can accept 3 secondary addresses. 

The daisywheel printer is a modified Olympia electronic daisywheel typewriter. 
The 8026 is the keyboardless receive-only version; the 8027 has a keyboard. The cost 
is similar to the 8024. The maximum speed of the unit (16 ch.p.s) is, by printer 
standards, very slow; a page like this one (without the type-face changes!) might take 
five minutes or more. 2 

The 8026 and 8027 have many features found on more expensive machines, but 
as might be reasonably expected, these are typically not so easy to use. Line feed, 
form feed and tab bing, for example, are all relatively awkward. Moreover, several sets 
of ROMs have already appeared, whiCh are (in small ways) incompatible with each 
other. Some ROMs lack variable line separation. The control commands are similar to 
those of many printers, using ASCII control characters of CHR$(10) and CHR$(13) 
for linefeed and return, CHR$(7) for BEL, and in particular the escape character, 
CHR$(27), followed by a whole set of possible parameters. These include horizontal 
spacing (10,12, or 15 ch.p.inch), tabs, direction of printing, and allowance for the 
type of printwheel. 

CBM 'plug-compatible' printers Because of Commodore's major market position in the 
U.K. it is not surprising that manufacturers have produced printers which plug into 
the computer without an external interface box. For example, Anadex have done this, 
and there are a few very cheap Japanese printers. The Epson MX-80 (though not in 

*This routine, published in 'Micro', is the work of Jim Strasma and is printed here 
with his permiSSion. (The BASIC 4 amendments are straightforward ROM address changes; 
I have not tested the result). Jim Strasma is active in the Central Illinois PET Users' 
Group, which publishes the 'Midnite Software Gazette', a quarterly review. The third 
edition of OsbornejMcGraw-Hill's 'PET Guide' is edited by Jim and his wife. 

2CCN, Sept. '81, gives some information on Commodore's daisywheel printers. 
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this 'very cheap' category) is widely preferred to CBM's printers. These machines, 
many of which were sold when CBM printers were subject to delivery delays, are 
often non-Commodore in fairly subtle ways; they may be advertised as having graph­
ics, but the character-set may be non-CBM; the handling of print statements and 
formatting is very likely to differ from Commodore's, since mimicry of the entire range 
of secondary addressing and other features would involve a lot of work. Often this 
makes no difference; only when a program is run on a new machine (i. e. one which 
uses different conventions) will any problems arise. 

Non-CBM and non-plug-compatible printers Many of the major names in printers make 
machines which cannot be directly connected to PETs; Qume, Centronics, Diablo, Spin­
writer are examples. Centronics printers have their own standard; other standards 
include the 'current loop' and the 'RS232', a serial interface which accordingly needs 
few wires. These need 'interface boxes', devices which plug into the computer and also 
into the printer. An interface box may need its own power supply. There are a few 
hazards to watch for. The most important, yet again, is the treatment of upper and 
lower case text. The switch between modes within the computer cannot generally be 
detected by an interface box, so that, unless this is fitted with a switch, you may 
find that only upper-case text, say, can be easily printed. Probably some sort of con­
version routine will be provided, perhaps a painfully slow one in BASIC. This is prob­
ably something most users could do without. It is occasionally true that an interface, 
because of a design oversight, won't transmit certain characters, such as 'Escape'. 

As an example of the methods of programming such printers, which rely on ASCII 
control characters rather than secondary addressing, look at the following short BASIC 
program extracts. They apply respectively to a Qume and a Centronics printer. There 
is no standardisation in the characters following 'Escape'; the specimen printout shows 
a Qume printing data sent from a program designed for a Centronics machine. Note 
that an appendix has a complete list of ASCII characters, mnemonics, and their mean­
ings. 

1000 OPEN 4,4: PRINT#4,CHR$(12);: REM QUME. FORM-FEED ... 
1010 PRINT#4,CHR$(27)"E10"CHR$(27)"L04";: REM HORIZONTAL SPACING 10/120 = 1/12 

INCH; VERT.SEPN.=4/48 = 1/12 INCH 

4100 OPEN 4,4: CMD 4 REM CENTRONICS 
4110 PRINT CHR$(27)CHR$(20)CHR$(27)CHR$(15): REM COMPRESSED AND ELONGATED CHRS! 

BX(JJlIlfr 4.1111 3 III 

11 E II r·j 1ft erg d A IJ Z 2 E liIIU 5 o 
[3 E ~ 01 gee t I w o 2 E 2 4cJ 1I 5 Q 

Printers: a Summary Users looking for good-quality printing, without the obviously 
computer-produced appearance of dot-matrix printers, have little other choice than a 
daisywheel or modified golfball printer. If there is a definite need for speed, and many 
copies of an original, or 132 columns per page, then a heavy-duty printer will be nec­
essary in the first cases, and a wide platen or programmable narrow characters (e.g. 
16.7 ch.p.inch) in the second. Paper width(s) and type may be restricting factors, 
since many machines aren't versatile in their paper-handling. If an interface box is 
necessary, be sure a good one is available. It may be necessary to ensure that a 
printer can operate with several different types of computer. Because of the chance of 
unexpected programming difficulties, it is advisable to test any combination of hard­
ware which is new to you; mixed upper- and lower-case text, and graphics if these 
are important, are likely to be problem areas. In this way, with luck, a good, fast 
system can be put together, in which fundamental aims of the system have not been 
overlooked. Many users, of course, simply buy CBM equipment. Current market 
surveys may (or may not) suggest better buys. Many such surveys though are not 
very thorough, and are little more than assemblages of information provided by advert­
isers. In practice, I suppose dealer advice and exchange of recommendations between 
friends and colleagues are about equally important forces determining final choice of 
hardware. There is one other, perhaps obvious, point: be sure that paper, ribbons, 
spare fuses, extra daisywheels and so on aren't too inaccessible, and that maintenance 
is available if it's needed. 
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Commodore's Modem (the '8010') is wired as IEEE device #5, and can be read/ written 
to with the normal INPUT #/ PRINT # commands to logical files with secondary address 
5. The function of a modem ('modulator-demodulator') is to process ordinary data as 
it is output from a computer into a form suitable for transmission to another modem, 
which reconverts it into data to be input by a second computer. In this way data or 
programs can be transmitted across country or between continents. Typically, ASCII 
data is formatted with start bits, a parity bit, and framing by a UART or USRT type 
chip, sent out, and decoded by a similar chip at the other end. High speeds of data 
transfer are possible. The 8010 is an 'acoustically coupled' modem, using modulated 
sound sent by normal telephone lines. (It has Post Office approval in the U. K . ). A 
telephone handset is used in conjunction with the 8010. 

Software - programs and development aids - can be received in this way; since 
thay can also be sent through the post, this may not be very advantageous. However 
data can also be received from and sent to other computers; if the CBM is to be used 
to process a subset of a company's data, this may be very useful, since data which 
might otherwise need to be keyed in can be processed by program automatically. 

Several points related to the actual operation of the modem should be borne in 
mind. Its rated speed is 300 baud, presumably meaning an upper limit of about 30 
bytes per second. At this rate, a 40-column screen will take about 30 seconds to fill, 
and an 80-column screen 1 minute. This may be too slow for some purposes. There are 
likely to be difficulties over the transmission of mixed upper- and lower-case CBM 
alphabetic characters, since these are not consistent with the ASCII set. Finally, some 
software is needed to process the transmitted data, and moreover hardware interfacing 
may be needed to correct disparities of convention between the computers. Some comm­
ercial products are available incorporating one or both of these facilities, for example 
to read and store Prestel pages. * 
B.7 The keyboard. 

Introduction and physical description The keyboard is not a peripheral in quite the 
same sense as the other items of hardware discussed in this chapter, because of its 
intimate connection with the computer. It resembles the screen in this respect. The 
next chapter is concerned largely with programming the CBM's screen, but there is an 
overlap because of the echo of keyboard to screen which usually happens except with 
GET commands. 

All Commodore keyboards are equipped to handle most ASCII characters, with 
the exception of the control characters (not needed) and the more obscure punctuation 
symbols (curly brackets, underlining, single quotes sloping backwards). Many have 
graphics characters, but in the 'business machines' the decoding is different, and 
these are excluded to some extent. The keyboards have evolved in several stages, 
from the early tiny rectangular array of keys to the typewriter-style keyboard, with a 
numeric keypad, and with punctuation characters obtained by shifting (e. g. ! is shift-
1 and so on). All include screen editing keys and the stop /run key, which are spec­
ifically CBM functions. TAB, ESC, and repeat occur on the 12 inch models only. There 
are some minor differences; some 3000 series machines' keys are marked with very wide 
characters for instance. 

The keyboards are very reliable; sometimes an old one may benefit from being 
taken out and cleaned. They are not quite free from software bugs: the '<' key has 
been mentioned already; in BASIC 4, the 8032's right shift with reverse and C,B,>, 
and 3 repeats the wrong character. 

In 8 inch models, RVS slows the screen scroll 0 second delay before scrolling). 
In 12 inch models, the left arrow slows scrolling, and * or : cause scrolling to 

pause indefinitely, until one of a range of other keys is pressed. 
There are a few incompatibilities that may be a source of difficulty; for example, 

the Run key on the 8032 is in the same position (top right) as Clear on earlier key­
boards, so it is rather easy to load and run a disk program instead of clearing the 
screen if a user is accustomed to the early layout. This of course will erase any 
BASIC program in memory. 

Commodore keyboards have no inbuilt reset key; this has drawbacks, notably 
when developing machine-code. If a crash results, the machine has to be switched off 

*CCN Aug. 'Sl has an article by P Barker on microcomputers as terminals which includes 
some explanatory detail and programs relevant to the SOlO. CCN of Oct. 'Sl has a 16 
page centre section and some useful programs. 
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and reloaded - if the programs were saved, that is. On the other hand it prevents 
a program being wrecked in mid-run, something which is possible on (say) the Apple 
II. (VIC has a reset, using the NMI line). See the next section (8.9) on methods of 
constructing reset keys for PET ICBMs. 

Physically, the keys are made of light plastic, surmounted by a grey or black 
key bearing the legend. The tops of the keys can be levered off and replaced; there 
is a feeble-seeming spring inside each one which prevents the contact at the base 
being made until it is pushed. As we shall see, we can redefine the keyboard decoding 
function, so that non-standard keyboards, such as the 'Dvorak' non-QWERTY layout 
can be tried out. 

A reliable way to disable the Stop key, but still keep it usable for emergencies, 
is to use a guard over the key. The diagram 
(plotted by a PET!) shows the general app-
earance and dimensions of such a guard. (The 
figures may not apply to all keyboards). A 
rectangle of stainless steel, and access to 
metalworking facilities, are necessary prelim­
inaries. The hole in the top allows the key 
to be pressed with a pencil or biro. I have 
found this sy stem completely reliable. 

BASIC and the keyboard On the subject of 
disabling the Stop key, the most well-known 
method is to use a simple poke: 

POKE 537,139 [BASIC 1] 
POKE 144,49 [BASIC 2] 
POKE 144,88 [BASIC 4] 

E 
C) 

BASICs 2 and 4 can be simultaneously covered with POKE 144,PEEK(144)+3. This popular 
method has the drawback of turning off the clock, for reasons we shall see. Also, any 
operation changing the interrupt vector (tape operations for example) is likely to re­
store the normal interrupt with its test for Stop. Poke the identical value minus 3 in 
each case to return to normal operation. 

The keyboard is treated as device #0 by the operating system; then come the 
cassettes and the screen (#3), before proceeding to the IEEE bus. We can open a file 
to the keyboard: 

OPEN 1,0 :REM OPEN 1,0,55,"XYZ" IS SYNTACTICALLY OK, BUT HAS NO EXTRA EFFECT 
and now, in program mode, we can INPUT#l and GET#l from this file. (PRINT#l gives 
an error message). This can be used to give rudimentary input protection; if Return 
is pressed with no other entry, INPUT#l returns CHR$(O). Commas and other punctu­
ation separators won't now print ?EXTRA IGNORED, because a file is considered to be 
open. 

This same (input protection) effect can be more easily got by a simple poke, 

POKE 3,X [BASIC 1] POKE 14,X [BASIC 2] POKE 16,X [BASIC 4] 

where X is any non-zero value. Surprisingly, this method has never yet been docu­
mented, so far as I know. 

GET is the BASIC function which takes characters directly from the keyboard. 
As we have seen in chapter 4, this is a relatively easy way to modify keyed input, to 
avoid the limitations of INPUT and to code keys for some purpose, without echoing the 
character to the screen, as in this simple example: 

10 GET X$: IF X$='''' GOTO 10 : REM GET KEYBOARD CHARACTER (WAIT FOR KEYPRESS) 
20 IF X$>="A" AND X$<="Z" THEN PRINT "ALPHABETIC!" 
30 IF X$>="O" AND X$<="9" THEN PRINT "NUMERIC!" 
40 IF ASC(X$)=13 THEN PRINT "[CLEAR]" :REM DEFINE RETURN KEY TO CLEAR SCREEN 
50 PRINT "OTHER": GOTO 10:REM IGNORING SHIFT CHARACTERS, TO SIMPLIFY PROGRAM! 

BASIC 1 and 2 have a feature (seemingly carried over from non-PET BASIC by Micro­
soft) in which input of CHR$(15), 'Shift In' in ASCII, causes no output to appear on 
the screen. In fact, this character doesn't exist on CBM keyboards, but the suppress­
ion feature remains: POKE 100,X [BASIC 1] and POKE 13,X [BASIC 2] where X exceeds 
127 prevents PRINT from operating. 

There are differences between (true) ASCII and PET ICBM's somewhat modified 
version, but these are only important when communicating between machines. A table 
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of true ASCII characters is printed in the appendices. 

ROM: how the keyboard is scanned When a PET ICBM is operating normally, its pro­
gram is interrupted at regular intervals and a subsidiary routine performed; this pro­
cesses the cursor, turns off one or both cassette motors if they are on, and scans the 
keyboard for a keypress. If a new key is pressed, it is added to the keyboard buffer, 
unless this is full. If it is, BASIC 4 ignores the key, BASICs 1 & 2 cancel the buffer 
and start over. Let's examine this process in greater depth. 

Firstly, how many interrupts occur per second? We can time them approximately 
with BASIC and a 6502 subroutine: Type SYS 4 to enter monitor; now type .M 027A 027A 
.: 027A E6 00 4C xx xx where the unknowns are the IRQ low and high bytes respectively 
as they appeared on entry to the monitor. Overwrite IRQ with 027A and enter .G 0004, 
which causes the interrupt to execute the short routine; it increments location $00 
with each interrupt. Type .X and enter the BASIC program ~ IF TI-T<60GOTO and 
IPRINTPEEK(O):T=TI:POKEO,O:GOTO which is written to run as fast as possible. The 
contents of $00 after 1 second are printed out. The value is about 60 for 8-inch screen 
machines, 50 for 12-inch screen machines. 

When an interrupt is generated, the 6502 finishes its current instruction, saves 
values on the stack, and jumps to the address in ($FFFE), if the interrupt is not 
masked. This address is E66B, E61B, and E442 in BASICs 1,2, & 4. If these addresses 
are disassembled from, it is clear that A ,X, and Yare all saved, for later recovery; 
this means that the interrupt program is entirely separate from the normal program. 
Moreover, the status register is examined to test for a BRK, signalled by the break 
flag, or a standard interrupt. In the former case, the monitor is entered (except in 
BASIC 1), which is why SYS 4 or SYS 1024 or SYS of any location containing zero 
causes a break entry (signalled by *B) to monitor. The interrupt jumps to an address 
held in RAM as two bytes; this address can be changed, so the programmer can write 
new interrupt servicing routines (like the small-scale example above which increments 
$00 at each interrupt). 

($90) holds the address of the interrupt servicing routine; this is the address 
printed under IRQ when .R is entered in the monitor. This is ($0219) in BASIC 1. 
Thus fifty or sixty times per second the interrupt takes place and the code pointed to 
by this address is executed. This code - at E685,E62E, and E455 in BASICs 1,2, & 4 -
is of some length, and takes up a measurable time, perhaps 7% of the total, to per­
form. This time can be saved by temporarily turning off the interrupt. 

There are four parts to the interrupt servicing, which those interested can see 
by disassembling the appropriate code and examining it. The parts are: 

(i) Update the clock (TI and TI$ locations) and check the Stop key. FFEA is a 
kernel jump command which carries this out. BASIC 4 (12-inch screen) includes a 
patch which increments the clock an extra 'jiffy' every 5 interrupts, so the timekeep­
ing is irregular. See TI in Chapter 5 on the 'correction clock'. 

(ii) Service the cursor by reversing the character under the cursor whenever 
the countdown becomes zero. 

(iii) Switch off the cassette motor(s), unless a flag is set. 
(iv) Scan the keyboard and perhaps update the keyboard buffer. 

Of these, (iv) is the most intricate and takes the longest time. A table on the next 
page lists all the relevant RAM locations of these operations in an easily-referenced 
form. Some - the screen processing and the clock - are not directly relevant to the 
keyboard, but a single table is more convenient than several smaller tables. 

To understand the keyboard scanning process, we must briefly consider the 
6520 chip (PIA, or 'Peripheral Interface Adapter') which handles the hardware side of 
it. Chapter 14 maps out and explains this chip in greater detail. The PET ICBM has 
two of these chips; the first, 'PIAl', appears at E810 - E813. The locations which 
control the keyboard are labelled: 

E810 (59408) :Row ~elect PORT A 

E811 (59409) 10£:1* 1 PORT A'S CONTROL REGISTER 

E812 (59410) Ro~ i~PU! ~a~l 8 pits~1 PORT B 

E813 (59411) 10/1* I 10/12 1 PORT B'S CONTROL REGISTER 

*When 0, Port A's or B's contents configure the port for input or output. On switchon, 
bits 0-3 of Port A are configured as output, and bits 4-7 as input, by storing #OF in 
A. Port B is configured for input only. 
2When 0, the interrupt is disabled; this turns off the keyboard scanning process. 
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E812 is wired so that all 8 bits are normally 1. The pattern of bits 0-3 of E810 deter­
mines which (of 9) rows is examined. To scan the entire keyboard therefore requires 
a loop to change E810's rightmost bits from 1 through 9, testing E812 each time for a 
zero bit, which indicates a keypress. There is an elaborate loop in the interrupt ser­
vicing routine which shifts the contents of E812 rightwards, looking for a zero, and 
continues this process while changing E810. When a zero is found, the corresponding 
key is found from the keyboard decode table. (See Chapter 15 for a diagram). It is 
quite easy to mimic this process in BASIC (there is a routine in 'PET Revealed'). The 
short machine-code routine shows which keys belong to which 'rows': 

START LOA #00 
STA E810 
LOA E812 
TAX 
LOA #00 
JMP DC9F/DCD9/CF83 [BASIC 1/2/4] 

.. 027A A9 00 80 10 E8 AD 12 E8 

.: 0282 AA A9 00 4C xx xx 

o INPUT "ROW (O-9)";R 
1 POKE 635,R: SYS 634: GOTO 1 

This code and its BASIC driver prints out the contents of E812 in decimal; if a single 
key is pressed in the row being scanned, a value 127,191,223,239,247,251,253, or 254 
will be printed. No key is shown by 255. Each of these figures has a bit pattern of 
a single 0 within seven Is (0111 1111, 1011 1111, etc.). The figures correspond with 
those shown in the keyboard decode tables; for example, 40-column BASICSs include 
=,·,Stop,<,Space,[, and Reverse in row 9. This row represents the normal state of 
E812 (on switchon and after the keyboard scan) which is the reason that LDA E812 
is used as a test for the Stop key, and can also be used to test for the other keys in 
the row. Thus 'Wordcraft' for example uses the Reverse key and the Stop key to con­
trol its modes. Note that the rows are not arranged in straight lines on the keyboard, 
but are wired to select alternate keys (roughly). 

The keyboard decoding matrix has 80 entries, 10 rows of 8 ASCII values, some 
disused. The table is scanned from the end to the beginning. Note that the shift key 
is signalled by O. 

IRQ Servicing - Keyboard, Screen, and Clock Locations. 

Locations: 
Description BASIC 1 BASIC 2 BASIC II 

3-byte clock 0200-0202 SO-SF SD-8F 
Correction (2 bytes) 0205-0206 99-9A 99-9A 
Stop key test (copy of E812) 0209 98 9B 
Cursor - O=off, <>0 means on 02211 A7 A7 
Cursor countdown (from #$1 II) 0225 A8 A8 
Blink flag - O=unreversed, l=reversed 0227 AA AA 
True character under cursor (peek) 0226 A9 A9 
Displacement 1- 80 from start of table 0223 A6 A6 

(or 255 if no key pressed) 
Shift key - O=off, 1 =on 02011 98 9S 
Displacement 1-80 of previous key, for 0203 97 97 

comparison with 0223/A6/A6 12" 110 col: 
Number of characters in keybd. buffer 0200 9E 9E 
Length of keyboard buffer E3 03EB 
Keyboard buffer 020F-0218 026F-0278 026F-
Repeat - <128 off, 128+ on Ell 03EE 
Repeat countdown ES 03EA 
Change of key indicator E6 03E9 

IRQ SERVICING ROUTINE E68S E62E EII5S 
KEYBOARD DECODING TABLE E75C-E7AB E6FS-E7IJ7 E 609- E 658 (1I0-col) 

E6D1-E720 (SO-col) 

Bit 2 of the control registers of the PIA controls the data direction of the ports; by 
setting the bit low and entering new values in port A or port B, anomalous results. 
can be obtained. POKE 59409,0 is a simple BASIC example; the full range of rows IS 

no longer obtainable. Similarly, if the cassette interrupts are in use, poking E810 (in 
machine-code) with #XA in place of #X9 disables the Stop key. At this point, we can 
pause to examine Stop-key disabling: the usual POKE mentioned previously works by 
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redirecting the interrupt vector to point 3 bytes beyond its normal point; in this way, 
the first instruction of the IRQ servicing routine (e. g. JSR FFEA) is skipped; thus 
the Stop key is disabled and the clock turned off. Another method is to store #FF in 
the location which copies E812, and which is used to test for Stop: 

JSR FFEA; UPDATE CLOCK! COPY E812 FOR STOP TEST 
LDA #FF 
STA 9B COpy OF E812 SET TO 'NO KEY' 
JMP E458; CONTINUE NORMAL INTERRUPT 

This routine, for 40-column BASIC 4, when inserted into the IRQ, behaves exactly like 
the usual interrupt, except that the Stop key, when pressed, is overwritten. Thus the 
internal clock runs normally, while Stop is disabled. 

The Keyboard Buffer It is well-known in CBM circles that the keyboard buffer can be 
programmed independently of the keyboard. (The process is sometimes described as 
'a program writing itself' with certain applications).For a description see section 4.1.9 in 
Chapter 4. The keyboard buffer can be watched as it queues characters. This is worth 
doing to understand the process. Enter one of these routines: 

.:027A A5 9E 09 30 8D 00 80 AO :A5 9E 09 30 8D 00 80 AO :A5 9E 09 30 8D 00 80 A4 

.:0282 OA B9 6E 02 99 02 80 88 :OA B9 6E 02 9902 80 88 :E3 B9 6E 02 9902 80 88 

. :028A DO F7 4C 2E E6 :DO F7 4C 55 E4 :00 F7 4C 55 E4 
BASIC 2 BASIC 4, 40-COL. BASIC 4, 80-COL. 

Then change the IRQ vector to 027A. The keyboard buffer, and the number of bytes 
in it, are displayed in the top-left of the screen. (Lower-case mode will make them 
more readable). A short routine of this sort: 1 GET X$: FOR J=O TO 1000: NEXT:GOTO 1 
will enable characters to be queued up from the keyboard; they are then removed at 
about 1 per second. The separate routine for 12" screen BASIC 4 allows for the fact 
that the buffer is not fixed at the normal 10 characters, but can be varied by poking 
$E3 (=227). Characters remain in the buffer until they are fetched by GET or INPUT, 
or until the buffer is deleted (in BASIC <4) when more than 10 characters are entered. 
Poking the number of characters to zero in effect clears the buffer, giving the same 
effect as 100 GET X$: IF X$<>"" GOTO 100. Conversely, poking the number of charact­
ers to some non-zero value makes them available to the system. Try: 

10 FOR J=623 TO 627 : READ X: POKE J,X: NEXT REM 5 BYTES IN KEYBOARD BUFFER 
20 POKE 158,5 : END : REM SET # BYTES = 5 
30 DATA 72,69,76,76,79 

The five bytes are printed out by the system when the program ends, exactly as if 
they had been keyed in. Replace the data statement with 30 DATA 76,73,83,84,13. 
Now the word 'LIST' followed by a carriage return is entered in the buffer, and the 
command is carried out. There are several examples of this type of routine in this 
book; see for example DELETE in Chapter 5. Note that BASIC 1 has different locations 
(525= #characters, 527-536 = buffer). 

Examples of programming using the Interrupt We shall see now how to carry out some 
ambitious routines involving the interrupt. First, we shall consider software repeat 
keys. These are not needed in 12" screen CBMs, which include repeating keys as a 
standard feature. But in the other models they are useful. The principle is not very 
difficult; the keyboard normally prevents automatic repeating by comparing the key 
pressed during a scan with that pressed before. If they are the same, nothing is done. 
Therefore, if our program intercepts the interrupt and sets the previously recorded 
key value to 255, the key is reinput to the buffer. See the next page for examples. 
The second example moves the entire interrupt routine into RAM, where it can be 
modified freely. For example, the rate of cursor flash can be changed, and this can be 
a useful reminder that a non-standard keyboard is in use. In this way the keyboard 
can be modified, as mentioned before, perhaps to provide a hex keypad, or a Dvorak 
typewriter, or to use one or both shift keys as special function keys. The third ex­
ample is a single-key BASIC entry routine; one shift key, plus a key, enters an en­
tire keyword. This principle can be generalised, so that for example a key may print 
any predefined string to the screen, and some commercial software and toolkits can do 
this. The processing is of course virtually instantaneous; similar effects can be got 
in BASIC, with GET X$: IF X$="X" THEN X$="SOMETHING ELSE" , but this is slower, and 
takes up program space. Moreover, individual keys (e.g. both Shift keys) cannot be 
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Software repeat keys (for 8" PET ICBMs, BASICs 1,2, and 4) 

REPEAT KEY FOR BASIC 2. 

027A 
027C 
027E 
0280 
0282 

0283 
0284 
0286 
0288 
028A 
028C 
028F 
0292 
0294 
0296 
0298 
029B 
0290 
029F 

LOA #84 
STA 90 
LOA #02 
STA 91 
RTS 

NOP 
LOA #FF 
CMP 97 
BNE 028F 
LOA #14 ; 
STA 0283 
DEC 0283 
BNE 029F 
STA 97 
LOA #05 ; 
STA 0283; 
LOA #03 ; 
STA A8 
JMP E62E 

INITIALISE 

REPEAT 

First delay 1/3 sec. 

1/12 sec. between 
repeats 

1/20 sec. between 
cursor flashes 

· . 027A A9 84 85 90 A9 02 85 91 
· . 0282 60 EA A9 FF C5 97 DO 05 
· . 028A A9 @80 83 02 CE 83 02 ;.De.L2y. 
· . 0292 DO OB 85 97 A9 @ 80 83 j T<e.~L. 
· . 029A 02 A9 @ 85 A8 4C 2E E6 ;Cu'sor. 

SYS 634 INITIALISES THIS REPEAT KEY. 

Notes: 
[1] Varying the three bytes controls the 
time taken before repeating starts, the 
rate of repetition, and the rate of flash 
of the cursor. For example, POKE 1 into 
each for the maximum repeat rate of 60 
characters per second. 
[2] .M 0090 0090 from the monitor can be 
used as a method of turning 'repeat' on 
and off, and redirecting IRQ generally. 
[3] If the cassette buffer is corrupted 
while the repeat is operational, the 
interrupt will probably crash. The 
exception is for tape activity itself, 
which resets the IRQ and so disables 
the repeat. 

BASIC 1: Old ROMs differ in (i) IRQ vector, (ii) IRQ servicing location, 
(iii) keypress indicator location, and (iv) cursor flash countdown. 
These are: (i) ($021A), (ii) $E685, (iii) $0223, and (iv) $0225. 
The same logic may be used, but the resulting code inevitably occupies 
more space. The cassette buffer #2 version is this: 

o DATA 169,70,141,26,2,169,3,141,27,2,96: REM INITIALISES 
1 DATA 0,169,255,205,35,2,208,5,169,20,141,69,3,206,69,3,208,13,141,35,2 
2 DATA 169,5,141,69,3,169,3,141,37,2,76,133,230: REM REPEAT KEY DATA 
3 FOR J=826 TO 870: READ K: POKE J,K: NEXT: SYS 826 

BASIC 4: 80-column machines are equipped already with repeat. (Incidentally, this 
can be turned off by poking $E4 (228) with a value<128 and vice versa. 
And the repeat cursor flash rate is controlled by the contents of $E5). 
40-column machines are similar to BASIC 2, except that the IRQ destination 
is different: so substitute JMP $E455 and •.. 4C 55 E4 in each BASIC 2 
program on this page. 12" screen 40-column models have some differences. 

TINY REPEAT KEY. (BASIC 2) 

By using a zero page store, and having only one delay constant, 'repeat' can be 
reduced to 19 bytes only. This is the shortest routine I've been able to write, 
and I include it for those who like little routines: 

LDA #FF A9 FF C5 97 DO 06 85 97 
CMP 97 A9@85 00 C6 00 FO F6; j)e1~ Cot'\~t-at'\t. 

STA 97 BNE +6~ 

[
LDA #10 ; 
STA 00 ; 
DEC 00 ; 
BEQ -10 ; 
JMP E62E 

delay constant 
zero page store 
(can use others) 
decimal branch 

4C 2E E6 

Use .M 0090 0090 to point ($90) to the 
start of this routine. 

At fast rates of repeat the cursor will 
flash too slowly to be. always visible. 
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BASIC RELOCATING LOADER TO ENABLE USER TO DEFINE HIS OWN KEYBOARDS (E.G. HEX PAD). 

BASIC 2 

o PRINT"[CLEAR] [REVS]LOADS USER-DEFINED SPECIAL KEYBOARD AND PROTECTS IT IN TOP OF M 
EMORY 

10 L = PEEK(52)+256*PEEK(53): T1=L: REM L IS CURRENT TOP OF MEMORY; T1 STORES IT 
15 T = L - 302: REM WE RESET TOP OF STRINGS TO ENABLE SAFE INPUT OF CHARACTERS 
16 LH%= T/256: LL% = T - LH%*256 
17 POKE 52,LL%: POKE 50,LL%: POKE 48,LL%: POKE 53,LH%: POKE 51,LH%: POKE49,LH% 
20 FOR J = 59207 TO 58926 STEP -1: POKE L-1, PEEK(J): L = L-1: NEXT 
30 REM MOVE INTERRUPT ROUTINE $E62E-$E747 TO TOP OF MEMORY - 1; L z LOWER LIMIT 
40 KT = L+201: REM THIS IS THE KEYBOARD-TO-ASCII-TABLE POINTER IN RAM (RTS) 
50 KH% = KT/256: KL% = KT - 256*KH%: REM LOW AND HIGH BYTES OF NEW TABLE 
60 POKE L+111,KL%: POKEL+112,KH% 
70 POKE L+160,KL%: POKEL+161,KH% 
80 REM BOTH REFERENCES TO THE KEYBOARD TABLE CHANGED TO POINT TO RAM, NOT ROM 
90 PRINT" [CLEARj [REVSjENTER *** WHEN YOUR KEYBOARD IS COMPLETE": REM COULD BE OTHER E 

XIT STRING 
100 PRINT"[DOWNjPRESS KEY TO BE CHANGED [REVS] OR [RVSO] ENTER 
101 INPUT"ITS ASCII VALUE, LIKE THIS: V14";K$ :REM TO DISTINGUISH 3 FROM CHR$(3) 
102 IFK$="***"THEN500 
105 K=ASC(K$) : REM IF A VALUE HAS BEEN ENTERED, NEXT LINE FINDS CORRECT K 
110 IF LEFT$(K$,l)="V" AND LEN(K$»l THEN K=VAL(MID$(K$,2» 
120 FOR J = 1 TO 80:IF PEEK (59127+J)<>K THEN NEXT: PRINT "[REVSjNOT FOUND": GOT0100 
130 J = J + KT : REM J IS THE POSITION IN THE ROM TABLE AS RAM TABLE MAY VARY 
140 REM WE NOW HAVE POSITION (=J) OF SOUGHT KEY IN RELOCATED TABLE IN RAM 
200 PRINT"[DOWN]PRESS KEY TO REPLACE [REVSjOR [RVSO] ENTER 
201 INPUT"ITS ASCII VALUE, LIKE THIS: V14";K$ 
202 IFK$="***"THEN500 
205 K=ASC(K$) 
210 IFLEFT$(K$,l)="V" AND LEN(K$»l THEN K=VAL(MID$(K$,2» 
220 POKE J,K :REM REPLACE THE PREVIOUS KEY IN THE RAM TABLE WITH THE NEW ONE 
230 GOTO 90 : REM NOH DO THE NEXT CHARACTER 
500 REM FINAL ROUTINE; POKE 2 ROUTINES TO CHANGE INTERRUPT ADDRESS 
510 DATA 120,169,46,133,144,169,230,133,145,96 
520 DATA 120,169,46,133,144,169,230,133,145,96 
530 FOR J = L-20 TO L-1: READ X: POKE J,X: NEXT 
540 L = L-20: REM NEW LOW MEMORY LIMIT = START OF ENTIRE ROUTINE 
550 PRINT" [CLEAR] [Dotffl]SYS";L;"TURNS ON THE NEW KEYBOARD,AND 
560 PRINT"SYS";L+lO;"RETURNS TO NORMAL KEYBOARD 
570 POKE L+2, (L+20) - INT«L+20)/256)*256: POKE L+6,(L+20)/256 
580 REM TURN-oN ROUTINE WILL NOW LOAD THE CORRECT INTERRUPT ADDRESS. 
590 PRINT"[DOWN]SAVE FROM"L"TO"T1 
595 PRINT" ($";: GOSUB600: PRINT" TO $";: L = T1 : GOSUB600: PRINT ")" 
596 END 
599 REM UUU ONE LINE DECIMAL TO HEX CONVERTER UUH 
600 L=L/4096:FORJ=lT04:L%=L:L$=CHR$(48+L%-(L%>9)*7):PRINTL$;:L=16*(L-L%):NEXT:RETURN 

Modifications for BASIC 1 

10 L=PEEK(134)+256.PEEK(135): Tl=L: REM L IS CURRENT TOP OF MEMORY: Tl STOR 
ES 

15 T • L - 319:REM WE RESET TOP OF STRINGS TO ENABLE SAFE INPUT OF CHARACTE 
HS 

17 POKE134,LLI: POKEI32,LLX: POKEI30,LLI: POKEI35tLHI: POKEI33tLHX: POKE131 
I LHl. 

20 FOR J = 59307 TO 59013 STEP -1: Q=PEEK(J); POKE L-lt Q: L = L-l: NEXT 
40 KT :: L+214: REM THIS IS TI--tE KEYBOARD-TO-ASCI I-TABLE POINTER IN RAM (RTS) 
60 POKE L+158.KLI: PUKE L+1S9,KHI 
70 POKE L+187tKLI: POKE L+188tKHI 

120 FOR J = 1 TO BOIIF PEEK (59227+J) C> K THEN NEXT: PRINT "[RVSlNOT FOUND" 
: GDTO 100 

510 DATA 120t169tI33t141t25,2.169,230.141.26,2,96 
520 DATA 120,169,133,141t25.2tI69t230tI41.26.2t96 
530 FOR J = L-24 TO L-l: READ X: POKE J.X: NEXT 
540 L = L-24: REM NEW LOW MEMOHY LIMIT "' START OF ENTIRE ROUTINE 
550 Pfi'INT "[CLRHDOWNJSYS"; L: "TURNS ON THE NEW KEYBOARDt AND 
'560 PRINT "SYS":L+12;"HETURNS TO NORMAL KEYBOARD 
570 POKE L+2t IL+24) - INT(IL+24)/256)*256; POKE L+7t(L+24)/256 
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REDEF It~E KEYBOARD FOR 8032 ONLY:-

o PRINT" [CLRHRVS]LOADS USER-DEFINED SPECIAL I<:EYBOARD At~D PROTECTS IT IN TO 
P OF MEMORY 

10 L = PEEK (52) +256l1ePEEK (53): T 1 =L: REM LIS CURRENT TOP OF MEMORY., T 1 STORE 
S IT 

15 T L - 736: REt'! WE RESET TOP OF STR It~GS TO ENABLE SAFE I NPUT OF CHARACTE 
RS 

16 LH% = T/256: LL% = T - LH%*256 
17 POKE 52 .• LL,..;: POI<E 5~3, LLr-.:: POKE 48 .. LL,..;: POKE 5:3, LHr-.:: POKE 51, LH~'~: POI<E49 ... L 

Hr-.: 
20 FOR 3 = 59168 TO 58453 STEP -1: POKE L-l .. PEEKO): L = L-l: t~EXT 
30 REM MOVE INTERRUPT ROUTINE $E455-$E720 TO TOP OF MEMORY - 1, L = LOWER LI 

MIT 
40 KT = L +635: REt'1 TH I SIS THE KEYBOARD-TO-ASC I I - TABLE PO nnER I N RAM (RTS) 
50 KH;~ = KT /256: KL~~ = KT - 256*KH~~: REM LOW At~D HIGH BYTES OF t-~E~J TABLE 
60 POKE L,32: POKE L+l,234: POKE L+2,255: REM JSR $FFEA TO UPDATE CLOCK 
65 SR=L + 105: SHr-.:=SR/256: SLr-.:=SR-256l1eSH"';: POKE SR-5 .• SU~: POKE SR-4, SH~~ 
66 REM PREVIOUS LINE ALTERS A ~TSR INSTRUCTIOt~ TO POINT TO OUR RAM ROUTIt~E. 
70 POKE L + 135, KLr-.:: POKEL + 136 .• KHr-.: 
80 REM BOTH REFERENCES TO THE KEYBOARD TABLE CHANGED TO PO I NT TO RAt'!.. NOT RO 

t'l 
90 PRmT" [CLRHFNSJENTER *** ~lHEN YOUR KE',.'BOARD IS COMPLETE": RE~1 COULD BE 0 

THER EXIT S 
10~3 PR I tH" [DOWt~] PRESS I<EY TO BE CHANGE[) [RVS J OR [F.:~/SO] EtHER 
101 INPUT"ITS ASCII VALUE, LIKE THIS: VI4",K$ :REM TO DISTINGUISH 3 FROM CHR$ 

(3) 

102 IFK$="***"THEN500 
105 K=ASC(K$) : REM IF A VALUE HAS BEEN ENTERED .. NEXT LINE FINDS CORRECT K 
110 IF LEFT$(K$,l)="V" AND LENCK$»l THEN K=VAL(MID$(K$,2» 
120 FOR .J = 1 TO 80: I F PEEK (59(188+S) C> 1< THEN NEXT: PI': ItH "[ RVS] t~OT FOUND": 

GOTO 100 
1 3(1 .J = .J + KT REM J IS THE POSITION IN THE ROM TABLE AS RAM TABLE MAY VARY 

140 REM WE NOW HAVE POSITION (=3) OF SOUGHT KEY IN RELOCATED TABLE IN RAM 
200 PRItH" CDOWNJPRESS KE',.' TO REPLACE [F.:'y'SJOR[RVSOJ EtHER 
201 It~PUT" ITS A:=:CI I VALUE .• L II<:E THIS: './14" .,K$ 
202 I FI<$= "***" THEt~5~30 
205 1<=A~3C (K$) 
210 IFLEFT$(K$,1 )="V" AND LEN(I<$»1 THEt~ K=VALo::t1ID$(K$ .• 2» 
220 POKE 3 .. K :REM REPLACE THE PREVIOUS KEY IN THE RAM TABLE WITH THE NEW ONE 
2:30 GOTO 90 : REM t~ow 00 THE NEXT CHARACTER 
500 REM FINAL ROUTINE, POKE 2 ROUTINES TO CHANGE INTERRUPT ADDRESS 
510 DATA 120 .. 169,85,133,144 .. 169,228,133,145 .. 96 
520 DATA 120 .. 169,85,133 .. 144,169,228,133,145,96 
530 FOR J = L-20 TO L-l: READ X: POKE S,X: NEXT 
540 L = L-20: REM NEW LOW MEMORY LIMIT = START OF ENTIRE ROUTINE 
550 PI': I tH" [CLR J [DOJ..lt~ J S'T'S" , L, "TUF.:t~S ot~ THE t~E~'l KE',.'80ARD, At·m 
560 PRItH"S'T'S".'L+l~3.~"F.:ETUF.:t~S TO t-lORt'!AL I<EYBOARD 
570 POKE L+2, (L+20) - INTCCL+20)/256)*256: POKE L+6,CL+20)/256 
580 REM TURt~-ot~ ROUTINE J..HLL t-.!OJ..1 LOAD THE CORRECT nnERF.:UPT ADDF.:E~=:S. 
590 PRINT" [Dm,lt~JSAVE FRot1"L "TO"TI 
595 PRINT " ($",: GOSU8600: PRINT" TO $",: L = Tl : GOSUB600: PRINT 

"> II 

596 Et~D 

599 REM ### ONE LINE DECIMAL TO HEX CONVERTER ### 
600 L=L/4096:FORJ=IT04:Lr-.:=L:L$=CHR$(48+L%-(L%>9'*7):PRINTL$;:L=16*(L-L%):NEXT 

:RETURt~ 
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Single-key entry of BASIC keywords &c. Special-purpose programmable keys can be 
implemented on the PET / CBM. The Shift-Stop key of course is a ROM example of this; 
it forces dload "*",8 in compressed form into the keyboard buffer. Commodore's VIC 
and the 'standard data entry' machine-code routine also have programmable keys. The 
following example illustrates a method of patching the IRQ vector, after moving it into 
RAM, to add extra keys. It does this by coding the right-shift key as ASCII 7, which 
is not otherwise used, then checking for this value when the keyboard is scanned. If 
it is found, a short routine converts the shifted key into a BASIC word and prints it. 
This version is BASIC 2; I've used addresses almost identical to those in ROM purely 
for ease of reference, moving the IRQ routine from E62E to 362E for instance. The 
principles are similar for any ROM, although 12" screen models tend to have longer 
decoding routines to process the automatic repeats. The left shift key operates with 
the shift-lock; for this reason the right shift is preferable as a control key. The key­
board has about 64 alphanumeric and punctuation keys. The routine that follows ex­
cludes some of the 76 BASIC 2 tokens, including +,-; ... ,>, =, < which are single keys 
already, END, and GO. 

(i) If BASIC in in use, set the top-of-memory to $3000. 
(ii) Move E62E - E747 to 362E - 3747. This is the whole of the interrupt servlCmg 

routine and the decode table. We can add our extensions to this routine at 3748. 
(iii) Poke 36CF and 369E with 36 in place of E6. [These locations look at the 

ROM decode table; they are both LDA E6F7,X. After the poke they reference the RAM 
table] . 

(iv) Poke $3702 with 7; this is the right shift key, appearing as the first of two 
zeroes in the decode table. 

(v) We put a patch at the point where the shift key is tested. The short piece 
of code following LDA E6F7, X IBNE xxi processes the shift key, storing 1 in its flag. 
After our modification, right-shift stores 7 in the flag. 

369F JMP 3748 ;JUMP TO THE FIRST RAM ROUTINE AFTER THE DECODE TABLE 

3748 BNE 3751 
374A LDA #01 
374C STA 98 
374E JMP 
3751 CMP 

36B6 
#07 

;THESE 3 INSTRUCTIONS IMITATE THE ROM ROUTINE (BUT JMP, NOT BNE) 
;LOOK FOR RIGHT-SHIFT 

3753 BEQ 3758 
3755 JMP 36A7 
3758 STA 98 

;IMITATES THE ROM ROUTINE, RE-ENTERING TO COMPARE #FF 
;STORES RIGHT-SHIFT IN SHIFT LOCATION 

375A BNE 374E ;BRANCH ALWAYS TO EXIT FROM SHIFT-FOUND PART OF ROUTINE 

The keyboard with IRQ directed to this routine will behave normally, because #7 is 
processed by a shift-right, and appears similar to #1 from the point of view of shift­
key processing. What is needed now is a further patch, within the coding which ORA s 
shifted keys with #80, to test for the right-shift. 

(vi) In BASIC 2, E6D2 has the BCC instruction testing for shift; we replace it: 
3766 CMP #20 

36D2 JSR 375C ;CALLS THE SECOND ROUTINE AFTER THE TABLE 3768 BCC 3765 
36D5 NOP 

375C BeS 375F ;IF SHIFT PRESSED, CARRY IS SET 
375E RTS 
375F LSR 98 ;TEST FOR #7 IN RIGHT-SHIFT 
3761 BCS 3766 
3763 EOR #80 ;LEFT-SHIFT. PUT IN UPPER-CASE 
3765 RTS ;AND RETURN 
3766 ;RIGHT-SHIFT PROCESSING BEGINS. 

At this point we have isolated the right-shift from the left, 
al1lJd can insert any routine which will serve our purposes. 
The example tests for reverse and cursor-control characters, 
with ASCII value less than 32, leaving these unchanged; 
it corrects for the 9 arithmetic tokens, already single keys; 
and it prints the Xth. BASIC reserved word, using logic 
largely taken from LIST. 

(vi) Finally, set the IRQ vector to 362E to drive the 
new routine. Poking $91 (=145) with $36 (=54) is convenient 
from BASIC. 

376A SBC #1E 
376C CMP #2B 
376E BCC 3772 
3770 ADC #09 
3772 TAX 
3773 LDY #FF 
3775 DEX 
3776 BEQ 3780 
3778 INY 
3779 LDA C092,Y 
377C BPL 3778 
377E BMI 3775 
3780 INY 
3781 LDA C092,Y 
3784 BMI 378B 
3786 JSR CA45 
3789 BNE 3780 
378B AND #7F 
378D JMP CA45 
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8.8 Other firmware and hardware. 

Reset switches There are three (at least) reset switches usable with the PET ICBM; 
two are hardware, one is software. A reset switch provide an alternative to turning the 
machine off, then on, when a program has 'crashed'. A crash (i.e. completely unresp­
onsive machine) is caused by the execution of an infinite loop. It will only happen in 
BASIC if the program has peeked, poked, SYSed, or USRed, although slow machine­
code routines (notably memory freeing in BASIC<4) may give the appearance of a crash. 
Code like this: 027A LDA #00/ 027C BEQ 027C or: 0300 JMP 0303/ 0303 JMP 0300 
obviously gives an infinite loop; so do some pseudo-opcodes ending in 2 when written in 
hexadecimal. Usually, of course, the cause is more subtle than this. Typically, RAM 
code is overwritten accidentally, or a wrong location is jumped to, and the new code 
happens to have a loop somewhere. Incorrect stack handling can easily cause this type 
of problem; so can memory-move routines. 

How do hardware switches work? The earliest, for BASIC 1, made use of the 
reset vector at (FFFC) in all 6502-based machines. Normally, this vector is used when 
the machine is switched on, and jumps to a routine to initialise the whole of BASIC, 
poking in software values, and incidentally calculating the amount of RAM, and also 
configuring all the input-output chips so the keyboard and cassettes and so forth 
will operate properly. However, if the so-called 'diagnostic sense' pin (bit 7 of PIA 
1) is low, i. e. grounded, an alternative routine is entered, originally a test routine 
for BASIC 1. This feature has been retained in BASIC>1, but the alternative is now a 
'call' entry to the monitor, printing *C in place of the break entry's *B. This is use­
ful, because this entry retains most of the features of the program in RAM. So this 
switch requires two connections: one from pin 5 of the user port to ground (see the 
diagram at the end of Chapter 9. Pins 5 and 12 are the relevant ones). And another, 
connected from pin 22 to pin 25 on the J4 connector along the right-hand side within 
the PET ICBM. This puts the machine into the monitor. (If the 'diagnostic sense' pin is 
left low, switching on causes entry to the monitor, not BASIC. If it is disconnected, 
pin 22 to pin 25 will reset the machine into BASIC, clearing most RAM). Unfortunately 
this process is not hazard-free, since grounding reset is not safe (on the PET ICBM) 
for more than a few seconds. Moreover, the start of the resetting process alters the 
stack pointer irretrievably. The usual process on entering the monitor is to enter . X 
to return to BASIC, then CLR to set the stack (among other things). Machine-code is 
tidied by entering a meaningless command (usually .; is used) then changing SP to 
#FS or (BASIC 1) #FA. 

A safer method (with fewer wires) uses the non-maskable interrupt (NMI) line, 
which has a vector at (FFFA). This was unusable in BASIC 1, but BASIC>1 sets this 
vector to print READY. In this case, pin 24 of J4 is momentarily connected to pin 25 
of J4. Either of these methods, to be used routinely, require proper hardware, with 
a capacitor arrangement to debounce the connection. (Note that these pins are marked 
on the printed circuit board). * The NMI method fails with the X2-type crash. 

Software uncrashing relies on the normal interrupt sequence for its effect. If the 
interrupt is off the method cannot work. And it too fails with X2 crashes. These re­
strictions are not very serious. The method is straightforward; we can redefine the 
Stop key as a reset key by slightly modifying the interrupt processing. 

An interrupt causes the program counter and status register to be pushed on the 
stack, and the program counter to be loaded with the contents of (FFFE). In the PET 
A,X, and Yare saved and a RAM address jumps to E685/E62E/E455. This is: JSR update 
clock & load A from E8l2 (to test Stop), then the remainder of the routine and RTI to 
return to the main processing. 

If the RAM address pOints to a routine of this sort: 
JSR update clock/load E812 
CMP #EF 
BEQ +3 
JMP remainder of interrupt processing routine 
JMP machine-code monitor 

then the software reset is operational. 
This routine leaves three bytes from the interrupt on the stack. Naturally a different 
version is needed for each type of PET ICBM. BASIC 4 is slightly different from the 

*Instructions for wiring both types (simultaneously!) are printed (e.g.) in Kb-Micro­
computing, (J Strasma, Sept.t80). Some other hardware tricks of this sort are possible 
with the 6502; RDY (ready) can halt the 6502 when it is fetching opcodes, so that 
single instructions can be executed, for example. 



Programming the PET ICBM -263- 8: Other peripherals 

others; the version here causes the clock to run at 5/6ths normal speed with 12-inch 
screen CBMs!* 

BASIC 1 BASIC 2 BASIC 4 

JSR FFEA 20 EA FF JSR FFEA 20 EA FF JSR FFEA 20 EA FF 
CMP #EF C9 EF CMP #EF C9 EF CMP #EF C9 EF 
BNE +3 DO 03 BNE +3 DO 03 BNE +3 DO 03 
JMP 040F 4C OF 04 JMP FDll 4C 11 FD JMP D472 4C 72 D4 
JMP E688 4C 88 E6 JMP E631 4C 31 E6 JMP E458 4C 58 E4 

EPROMS Unmodified PET ICBMs have 7 sockets for ROMs on their printed circuit 
boards; BASIC<4 uses 4, and BASIC 4 5, so that there are empty sockets spanning 
$9000-9FFF, $AOOO-$AFFF, and (BASIC<4 only) $BOOO-$BFFF. The sockets accept eith­
er 2K or 4K EPROMs, of type 2716 or 2532 respectively. An 'EPROM' ('Erasable Pro­
grammable Read-Only Memory') appears in use like a ROM; it can be read from, but 
not written to. As its name implies, its contents can be erased and replaced; to do 
this, an EPROM Programmer or 'Burner' has the required bytes loaded into it, and 
these are entered in a semi-permanent way into the EPROM with a relatively high volt­
age pulse of 27 volts or so. Erasure is performed by removing the opaque covering on 
top of the chip and exposing the chip to UV light from what has been called 'the 
world's most expensive ultra-violet lamp'. One of the first PET chips was Nestar's 
'Toolkit'; it was also one of the most popular. It added commands to BASIC using a 
wedge. These are rather rudimentary trace, step and renumber facilities, tape append, 
'find', and variable dump. Later BASIC extenders included 'Disk-o-Pro' for BASIC 2, 
which adds the disk commands found in BASIC 4, and 'Command-Of for BASIC 4, with 
screen and directory scrolling up and down, a 'print using', and search-and-replace. 

'Power' is another well-known EPROM, but there are many more, including some 
complete packages (Visicalc, word processors). Most are designed for the $9000-$9FFF 
slot, with $AOOo-$AFFF a close second. Obviously it is impossible to run EPROMs which 
conflict in their requirements simultaneously. Some have alternative versions for several 
slots; few if any will relocate. Multiple sockets are available which accept several chips 
and allow switching between them, and this may be convenient (if expensive). Amongst 
the several dozen chips on sale are some of the 'Toolkit' utility type, intended to help 
with writing BASIC, and some providing similar help with machine-code. Others are 
designed for business use, easing input and output for example, for graphics use, 
some in association with hardware, and for tape or disk use. Some few are specific in 
nature, dealing (say) with matrix calculations. Unfortunately, documentation is often 
poor, and reviews are usually rush jobs which fail to mention bugs and pitfalls. The 
purchaser of EPROMs therefore should be wary. Moreover, as the technology to copy 
chips becomes more widely available, some of the incentive to produce good-quality 
firmware is lost or at least weakened. 

Other types of EPROM - EAROM = Elec trically Alterable ROM, for instance - are 
only important when hardware modifications allow the CBM to write to 'ROM', so that 
software can be held semi-permanently, in 'Instant ROM' and other products. This re­
quires the write-enable line and a power supply connected to the 'ROM' package. 

Other Black Boxes More ambitious add-ons include CP 1M, a well-known standard 
microcomputer control program, designed for the Z80. The CBM has an external Z80, 
which runs the program in place of its 6502. This is a radical difference. At the time 
of writing, the U. K. company 'Small Systems Engineering' appears to have the only 
working version. Prestel (Videotex in the US) is often demonstrated on micros, and 
at least one system is available. At present this is (virtually) a receive-only system, 
but 2-way transmission may be feasible - Mullard's 'Lucy' chip is reported to be able 
to handle this at speed. Some multiple PET-to-disk systems exist, enabling users to 
share the use of the relatively expensive disks. 

Industry, process control, and research Industrial applications of PET-type micro­
computers range from dedicated (i.e. single) operation as an electronic instrument, to 

*This can be programmed around by loading the accumulator from E812 independently of 
the clock update routine; LDA E812/ CMP E812/ BNE -8/ CMF #EF/ BNE +3/ JMP MONITOR/ 
JMP IRQ SERVICE. The E812 processing provides a simple debounce. 
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fairly large-scale process control. Full explanation of the hardware side of this is out­
side the scope of this book.* But a few examples illustrate what can be achieved with 
the aid of these machines. Most such applications are developed in industrial or acad­
emic laboratories, with some interchange of ideas between the two. Early examples in­
clude stepper motor control, one of the easier devices to program, and measuring and 
inspection machinery, 'such as balances and gauges. Data loggers, taking advantage of 
the video display, include equipment like transient recorders and spectrum analysers. 
Control equipment has been developed to handle the more mechanical side of research 
into animal behaviour. Smaller-scale models of test rigs have been constructed: a much­
publicised motor-engine tester and a computer-controlled drill, again are typical of the 
sort of thing. There is a well-known standard computer application of mathematical 
theory to cutting up sheets of metal, paper, etc., which is the sort of optimisation pro­
cess capable of calculation by the microcomputer. Recently, the computer press carried 
a story of a CBM equipped with hardware (via the user port) and software which were 
able between them to control a dairy packaging system. The engineering side of the 
packaging machinery was controlled by pneumatic valves. 

Successful hardware of any degree of complexity requires considerable skill in 
design, partly because of the difficulties in estimating overall Lolerances and cumulat­
ive errors in all the parts when they are put together. As for the software, I quote 
the Chairman of Research Machines Ltd: "It is virtually impossible to overstate the time 
taken to get software up and running ... a successful application within one year 
means you're doing well at the moment. .. ". 

Single on-off switches are easy to implement with machines like the PET; all 
that's needed is a set-up which protects the PET from excessive current or voltage 
while amplifying its signals. Chips which demultiplex (e.g. 3 wire to 8 wire convert­
ors) are commonplace. Analogue-to-digital conversions and vice-versa are more diffic­
ult, because more lines are used up; so (say) temperature control is harder work, un­
less simple on-off controls are sufficient. Such devices may have to be polled (i.e. 
examined in turn), or controlled by regular timing, or perhaps use an interrupt. In 
addition, data conversion may be needed by or from pieces of equipment with non-PET 
data conventions. Of course, an off-the-shelf package of combined hardware and soft­
ware, if it exists, may be able to deal with all these matters satisfactorily. 

The program reads and displays the 
input from an analogue-to-digital converter. TABLE 
This one (a Siliconix LD130) converts volt- START 
ages from 0 - 1 into binary coded decimal 
output, one digit at a time, so the hundreds, 
tens, and units figures are output individually. 
The result is .000 to .999. Bit 7, when set 
low, signals correct data in the byte; bits 4, 
5, or 6 signal units, tens, or hundreds, de-
pending on which one is high; and bits 0-4 
hold the current value, 0 - 9, of units, tens, 
hundreds. Hardware programming differs 
from ordinary PET ICBM program in that the 
addresses which look like RAM in fact vary 
according to external events, so the style of 
programming has to reflect this. The compar-
atively long-winded programs which result 
are typified by this specimen. 

WAITV 

COMP 

NEXT 

#40 #20 #10;TEST H,T, OR U 
LDA E84F ;AWAIT END OF 
BPL START ;VALID PULSE 
LOX #00 
LDA E84F 
BMI WAIT ;AWAIT VALID DATA 
BIT TABLE,X;lOOs? [lOs? Is?] 
BEQ NEXT ;IF NOT, BRANCH 
CLC 
ADC #30 
STA 8000,X;NUMBER ON VDU 
BNE WAITV 
INX 
CPX #03 ;ALL 3 DIGITS? 
BNE COMP ; BRANCH IF NOT YET 
BEQ WAITV 

*A small number of books deal with CBM-related hardware. The most recent is 'PET Inter­
facing' by J Downey and S Rogers; this is not an introductory text. 'Programming and 
Interfacing the 6502' (M DeJong) deals with the 6502, not specifically the PET/CBM, in 
some detail. Both these titles are listed as 'Blackburg Series' publications in the 
US. Of earlier books, Caxton Foster's 'Programming a Microcomputer:6502' is all about 
hardware, but mostly the KIM-I; and Zaks' '6502 Applications Book' has nothing specific 
on the PET/CBM. 

The computing press has hardware articles; often, rather surprisingly, hardware 
is covered more reliably by journals of the Wireless World and Practical Electronics 
type, where, presumably, the readership and editorial staff expect a reasonable stand­
ard of accuracy. Sometimes outside contributors have a similar effect; for example 
CPUCN 3 #3 has an article on parallel to serial conversion by A Strutt & K Hobbs of 
ICI which is unusually well thought-out. 
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CHAPTER 9: GRAPHICS AND SOUND 

9.1 PET ICBM Screens 

Screen and character-generating ROM All CBM machines to date have had a screen 
(or VDU = visual display unit) built in. Commodore's VIC ('Video interface chip' - or 
'Volkscomputer' in Germany, to avoid an unfortunate pun) departs from this tradition, 
using, like Apple and Tandy, an external TV, so that colour is available. PET ICBMs 
have 8 inch or 12 inch screens, always black and wh"ite; a colour computer demonstrat­
ed by Commodore at a show hasn't subsequently resurfaced. 

Confining ourselves to current models, we can see that the original, blue-white 
phosphor 8 inch screens were replaced by 8 inch green screens, which have now been 
replaced by 12 inch green screens, presumably to cut down on manufacturing hassle. 
All new models, whether 40 or 80 column, now have 12 inch screens. In the course of 
time, probably the40-column models will be discontinued in favour of 40-column VICs. 
(This is a guess on my part). The internal circuitry has been tidied and modularised 
in the process. Its system is peculiar to Commodore. 

The signal sent to the screen (or to an external monitor) has three components: 
horizontal position, vertical position, and indication whether or not to put a dot on the 
screen. Each character is made up of 8 dots by 8; typically only 7 by 5 make up the 
actual area holding the points of the character, so the edges of characters don't inter­
fere too much with their neighbours. Nevertheless the appearance of reversed capitals 
can be improved by printing CHR$(100)s above them; and the 12-inch machines have 
the facility to change line separation using the CRT chip. CBM printers have 8 by 6 
characters, and so cannot exactly reproduce the screen. Since each screen character is 
8 dots deep, there are 8*25 = 200 scans of the screen before flyback to the start. As 
we shall see, the flyback is handled differently by the newer machines, making for 
some ROM incompatibilities with the older models. 

External monitors can be connected to PET ICBMs to enable (say) a class to watch 
a demonstration program; the hardware is connected to the user port, which provides 
video, vertical, and horizontal signals from connections 2,9, and 10 respectively. See 
CPUCN, joint issue 1 and 2 or the 'Pet Revealed' for circuit diagrams (neither of which 
I've tested). These produce output suitable for monitors, not UHF TVs. 

The actual pattern of dots making up a character is created by the character­
generating ROM,*which is in the main board of the PET ICBM near the other ROMs. It 
converts any byte into a fixed pattern, in a manner similar to a look-up table. 256 
separate patterns are stored within it, although it is possible to switch between several 
ROMs, and Commodore has its well-known pair of character sets available. POKEing 
59468 with 12 or 14 switches the character generator into its upper case I graphics 
mode or its lower / upper case mode. The character sets are in fact very similar, ex­
cept for the fact that A-Z when shifted produces graphics characters in the one case, 
and alphabetic characters in the other. Most (all but four) of the remaining characters 
are unaffected by the ROM poke; the chart on the following page shows the arrange­
ment. If PRINT statements are being used, it is impossible to have both the full set of 
graphics and lower- and upper-case, as the chart shows, and experiment will prove. 

*Commodore's VIC uses analogous, but different, principles. The 22-column version has 
22 by 23 characters, fitting slightly less than 2 pages of RAM - 506 bytes of 512. The 
character generation is a RAM function, so user-definable character sets are quite easy 
(if laborious) to write. Each character's colour is controlled by 3 bits, from a byte 
in a 506-byte table. Only one background colour and one border colour can exist. 

NEXT PAGE: Table of CBM 'ASCII' characters, in decimal! hex order:­

Example: PRINT "$" and PRINT CHR$(36) print the dollar symbol. 
PRINT CHR$(65) prints 'a' or 'A' depending on the screen's mode. 
PRINT CHR$(19) and PRINT "[HOME]" (i.e. PRINT "~") home the cursor. 

*These control characters are available only on the 8032 and 12-inch 4032. 
2Note that 96- 127 and 224- 255 appear as repeats of characters 32- 63 and 160- 191. 
So PRINT CHR$(98) prints a quote mark; however, the quotes flag is not set. There 
are 64 ordinary characters and 64 graphics! upper case characters in all. 
38032 only. 
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o 00 64 40 @ 128 80 192 CO B 
1 01 65 41 a A 129 81 193 C1 A ~ 
2 02 66 42 b B 130 82 194 C2 BOJ 
3 03 STOP 67 43 c C 131 83 [D]LOAD & RUN 195 C3 CB 
4 04 68 44 d D 132 84 196 C4 DEl 
5 05 69 45 e E 133 85 197 C5 E CJ 
6 06 70 46 f F 134 86 198 C6 F B 
7 07 BELL* 71 47 9 G 135 87 199 C7 G IT] 
8 08 72 48 h H 136 88 200 C8 H[] 
9 09 TAB* 73 49 i I 137 89 SET TAB* 201 C9 I 5J 

10 OA LINE FEED 74 4A j J 138 8A 202 CA J [9 
11 OB 75 4B k K 139 8B 203 CB K ~ 
12 OC 76 4C I L 140 8C 204 CC L 0 
13 OD RETURN 77 4D m M 141 8D SHIFT-RETURN 205 CD M 1SJ 
14 OE TEXT* 78 4E n N 142 8E GRAPHIC* 206 CE N 1:2:1 
15 OF SET TOP3 79 4F 0 0 143 8F SET BOTTOM3 207 CF 0 0 
16 10 80 50 P P 144 90 208 DO P D 
17 11 CURSOR DOW'"' 81 51 q Q 145 91 CURSOR UP 209 D1 Q[!] 
18 12 REVERSE 82 52 r R 146 92 REVERSE OFF 210 D2 R bd 
19 13 HOME CURSOR 83 53 s S 147 93 CLEAR SCREEN 211 D3 S ~ 
20 14 DELETE CHR. 84 54 t T 148 94 INSERT CHR. 212 D4 TO 
21 15 DELETE LlNE* 85 55 u U 149 95 INSERT LINE * 213 D5 U C3 
22 16 ERASE END* 86 56 v V 150 96 ERASE START* 214 D6 V ~ 
23 17 87 57 w W 151 97 215 D7 W§ 
24 18 88 58 x X 152 98 216 D8 X~ 
25 19 SCROLL UP* 89 59 Y Y 153 99 SCROLL DOWN* 217 D9 Y 0 
26 1A 90 5A z Z 154 9A 218 DA Z ~ 
27 1B ESCAPE* 91 5B [ 155 9B 219 DB EB 
28 1C 92 5C \ 156 9C 220 DC IJ 
29 1D CURSOR RIGHT 93 5D ] 157 9D CURSOR LEFT 221 DD OJ 
30 IE 94 5E t 158 9E 222 DE • f1(] 
31 IF 95 5F ~ 159 9F 223 DF ~ ~ 
32 20 SPACE 96 60 SPACE2 160 AO SH 1FT -SPACE 224 EO REPEATS2 
33 21 ! 97 61 ! 161 Al IJ 225 E1 
34 22 QUOTE " 98 62 " 162 A2 IiiIij 226 E2 
35 23 # 99 63 # 163 A3 0 227 E3 
36 24 $ 100 64 $ 164 A4 0 228 E4 
37 25 % 101 65 % 165 A5 0 229 E5 
38 26 & 102 66 & 166 A6 II 230 E6 
39 27 I 103 67 I 167 A7 0 231 E7 
40 28 ( 104 68 ( 168 A8 IS 232 E8 
41 29 ) 105 69 ) 169 A9 ~ fIII"'l 233 E9 
42 2A * 106 6A * 170 AA 0 234 EA 
43 2B + 107 6B + 171 AB ill 235 EB 
44 2C , 108 6C , 172 AC U. 236 EC 
45 2D - 109 6D - 173 AD [g 237 ED 
46 2E . 110 6E 174 AE 5J 238 EE 
47 2F I 111 6F I 175 AF ~ 239 EF 
48 30 0 112 70 0 176 BO ca 240 FO 
49 31 1 113 71 1 177 B1 t9 241 F1 
50 32 2 114 72 2 178 B2 Ed 242 F2 
51 33 3 115 73 3 179 B3 8J 243 F3 
52 34 Lj 116 74 Lj 180 B4 0 244 F4 
53 35 5 117 75 5 181 B5 (] 245 F5 
54 36 6 118 76 6 182 B6 [J 246 F6 
55 37 7 119 77 7 183 B7 ~ 247 F7 
56 38 8 120 78 8 184 B8 ~ 248 F8 
57 39 9 121 79 9 185 B9 ~ 249 F9 
58 3A : 122 7A : 186 BA G2:J 0 250 FA 
59 3B ; 123 7B ; 187 BB .::I 251 FB 
60 3C > 124 7C > 188 BC ~ 252 FC 
61 3D = 125 7D = 189 BD eJ 253 FD 
62 3E < 126 7E < 190 BE ~ 254 FE 
63 3F ? ~27 7F ? 191 BF ~ 255 FF 
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The earliest PETs followed other computers in giving capital letters primacy, so 
the shift key moves from upper case to lower case. CBM machines adopted the normal 
typing convention of shifting to upper-case. Their character-generating ROMs are 
consequently different, so that the chart on the previous page has its two sets of 
alphabetics arranged with 65 - 90 as upper case only, and 193 - 223 as lower-case or 
graphics. This leads to a confusion of terminology. We can talk about 'lower-case mode' 
and 'graphics mode' with anything except BASIC 1; 'standard' and 'alternate' character 
sets are often used to describe this earliest arrangement, where 'standard' means that 
shift gives lower-case, and 'alternate' shifts to graphics. I shall use 'graphics mode' 
(POKE 59468,12) and 'lower-case mode' (POKE 59468,14), hoping that business key­
board users, with graphics obtainable only by poking, will understand! 

A couple of simple programs show how the screen memory and the character-gen­
eration interact. PET ICBM screens are wired so that consecutive RAM locations store 
the characters in the screen in the normal left-to-right then down sequence. The 
starting location is $8000, exactly midway in the 6502's memory map. 40 column mach­
ines store 40*25 (1000), and 80 column machines 80*25 (2000) bytes in this way. The 
address decoding is incomplete, so PEEKs and POKEs to locations outside the expected 
range produce echoes or 'images' in the screen. The 40 column machme uses 1000 of 
1024 bytes, $8000 - $83E7, to map the screen. (This is 32768 - 33767). The 24 bytes 
from $83E8 - $83FF are normally unused. 

In a 40-coiumn machine, $8400 behaves just like $8000. An 8o-column machine, of 
course, maps its screen to $8000 - $8800. Since the starting address ($8000 = 32768) is 
identical in each machine, * the following simple program displays all 256 characters 
which the ROM can generate: 

10 FOR J = 32768 TO 32768 + 255 :REM 256 VALUES NEED 256 SCREEN LOCATIONS 
20 POKE J,K: K=K+1 :REM POKE 0.1,2.3 •...• 255 
30 NEXT 

This fills the top few lines of the screen with an entire character-set. We can look at 
both character sets by adding this line to switch between the two: 

40 POKE 59468,12: FOR J = 1 TO 500: NEXT: POKE 59468,14: FOR J=lT0500:NEXT:GOT040 

This displays all the characters which can be generated, since no other values than 0 
to 255 can be stored in the screen RAM, and only two modes exist. It may surprise 
business keyboard users to see all these graphics. which cannot be entered from the 
keyboard; the decoding process of the keyboard is rewritten (e.g. in the 8032) to 
remove these characters. Chapter 13 gives a machine-code routine to enable any char­
acter to be input from the keyboard. A table of CBM screen memory, showing decimal 
and hex values corresponding to graphics poked/ peeked to the screen. on the next 
page shows the entire gamut of characters for BASIC>!. Where lower-case mode and 
graphics mode differ, the two alternative appearances are placed side by side. It is 
impossible for the pi symbol and the 4 by 4 chequered symbol to appear on the same 
screen, or for lower-case x and the heart symbol to co-exist; limitations like these 
should be borne in mind. 

By careful synchronization. it is possible to watch characters changing modes. In 
fact, with machine-code, the screen can be made to display non-existent characters, 
made up of single lines from several different characters! However, the severe time 
requirements make this technique hard to use. This BASIC program 2 

10 FOR J = 1 TO 1000: PRINT "A";: NEXT: REM I.E. SHIFT-A. USE 2000 FOR 80-COLS. 
20 X=59468: Y=12: Z=14 : REM ROM LOCATION AND ITS POKES 
30 POKEX.Y:POKEX.Z:GOT030 : REM RAPID SWITCH BETWEEN MODES 

first fills the screen with a character which changes when the mode alters; I've put a 
shifted letter to ensure that the program will work with BASIC 1! Line 30 takes about 
1/120th of a second to execute; BASIC 4 machines find this too fast, so slow line 30, 

*VIC again is different: although the screen is memory-mapped to RAM, the actual loc­
ation can vary. depending on the amount of RAM installed. 

2Dr R Chiswell. in SUPA of March 1981. writes that people with certain forms of epil­
epsy (e.g. temporal lobe epilepsy) may have an attack induced by the program. 
'Creative Computing' (Vol.6, ~10; dated Oct. '78) has some information on video 
displays. This journal specialises in, or at least is biased towards, articles on 
graphics, games, and sound. 
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o 00 @ 32 20 Ii> 64 40 8 96 60 0 128 80 [Sg 160 AO • 192 CO = 224 EO • 1 01 a A 33 21 ! 65 41 Alfl 97 61 IJ 129 81 elm 161 Al .. 193 C1~C 225 E1 [I 
2 02 b B 34 22 " 66 42 8m 98 62 Iiiiil 130 82 ern 162 A2 II 194 C2IBD 226 E2 ~ 
3 03 c C 35 23 # 67 43 CB 99 63 0 131 83 Gil 163 A3 m 195 C3~. 227 E3 ii 
4 04 d D 36 24 $ 68 44 DB 100 64 0 132 84 moo 164 A4 ~ 196 C4iliil 228 E4 II 
5 05 e E 37 25 % 69 45 E tJ 101 650 133 85 [3[§ 165 A5 II! 197 c5mil 229 E5 • 6 06 f F 38 26 & 70 46 F g 102 66 • 134 86011 166 A6 m. 198 C6till 230 E6 II 
7 07 9 G 39 27 I 71 47 Gm 103 67 0 135 87 ~I!I 167 A7 iii 199 C7[!JO 231 E7 IIIL 
8 08 h H 40 28 ( 72 48 H [] 104 68 ~ 136 88 ~{II 168 A8 D 200 C81:l11 232 E8 II 
9 09 i I 41 29 ) 73 49 I 6J 105 699 f'1 137 89110 169 A9 .. 201 C9a. 233 E9 fZJ IA 

10 OA j J 42 2A * 74 4A J ~ 106 6A [) 138 8AD!! 170 AA D 202 CAD.., 234 EA III 
11 OB k K 43 2B + 75 4B KILl 107 6B rn 139 8Bm~ 171 AB II 203 CBla8 235 EB Ii 
12 OC I L 44 2C , 76 4C L [J 108 6C [jj 140 8CUlI 182 AC • 204 CCII~ 236 EC rI 
13 OD m M 45 2D - 77 4D MIS! 109 6D C!3 141 8D a:llil 183 AD II 205 CD~= 237 ED II 
14 OE n N 46 2E 78 4E N!2! 110 6E @ 142 8Em~ 184 AE • 206 CEru 238 EE n 
15 OF 0 0 47 2F / 79 4F on 111 6F t;;;I 143 8FDOO 185 AF fA 207 CF[!J(i 239 EF ~ 
16 10 P P 48 30 0 80 50 PO 112 70 r.a 144 90 CUi 186 BO [fJ 208 DO'~ 240 FO II 
17 11 q Q 49 31 1 81 51 Q[!J 113 71 E9 145 9111&1 187 B1 II 209 D11) 241 F1 II 
18 12 r R 50 32 2 82 52 RQ 114 72 P3 146 92~1 188 B2 II 210 D2~ 242 F2 

== 19 13 s S 51 33 3 83 53 S S 115 73 HJ 147 93D 189 B3 il 211 D3 ~ 243 F3 U 
20 14 t T 52 34 4 84 54 T~ 116 74 0 148 941111 190 B4 m 212 D4;;~ 244 F4 c-. 
21 15 u U 53 35 5 85 55 UUI 117 75 IJ 149 95l!H!1 191 B5 g:r 213 D5t!l1l 245 F5 [II 
22 16 v V 54 36 6 86 56 V~ 118 76 [) 150 96 '11 192 B6 C!J 214 D6~~ 246 F6 IJ 
23 17 w W 55 37 7 87 57 W~ 119 77 a 151 97l'! 193 B7 ~ 215 D71'Ml 247 F7 iii 
24 18 x X 56 38 8 88 58 XI! 120 78 ~ 152 98 ~W 194 B8 m 216 D8m:: 248 F8 iii 
25 19 Y Y 57 39 9 89 59 YO 121 79 ~ 153 99 rlll 195 B9 Iil 217 D9~1I 249 F9 fiI 
26 1A z Z 58 3A : 90 5A Zfi] 122 7A0j:J 154 9AS~ 196 BA • 218 DASD 250 FA. 
27 IB [ 59 3B ; 91 5B H1 123 7B ~ 155 9B D 197 BB • 219 DB 0 251 FB ~ 
28 lC \ 60 3C < 92 5C IJ 124 7C [!! 156 9C .., 198 BC a 220 DC III 252 FC ~ 
29 1D ] 61 3D = 93 5D ill 125 7D E:l 157 9D II 199 BD EI 221 DD 0 253 FD r:I 
30 IE t 62 3E > 94 5Ea fN 126 7E f!J 158 9E 0 200 BE .. 222 DE 11-; 254 FE J;I 
31 IF ~ 63 3F ? 95 5FI.\1~ 127 7F ~ 159 9F as 201 BF Ii 223 DF~iI 255 FF !ill 

\ J 

shif'ted ~ ____________ ~~ ____ ~Sh~1~f~t~ed~ ______ ~J 
revefsed 

PET/CBM SCREEN MEMORY 

for example with redundant spaces, to about 1/100th second. When the program runs, 
the screen fills with repeats of a character - this tedious part can be speeded up in 
various ways, e.g. by printing fewer, longer strings - then enters an infinite loop. A 
band, corresponding to the times when the character set is changed by a poke from 
line 30, but is not yet changed back, appears on the screen. Close examination of 
individual characters shows they are partly made up from shift-A, and partly from the 
spade graphics character. (I am referring to those characters which form the bound­
ary of the bands). How does this happen? Line 30 runs in synchronization with the 
screen refresh. That is, every 60 times per second, or 50 with the 8032, the screen 
finishes scanning (the scan reaches the bottom) and an interrupt is generated, the 
identical interrupt to that which drives the keyboard input processing. After a short 
period of flyback, the screen is refreshed, scanning again from top to bottom. Our 
BASIC program changes the mode exactly twice during one complete scan, so the screen 
is separated into bands. If the timing of BASIC slows slightly, the bands will start to 
roll up, and vice versa. (Try pressing a key). The analogous process in machine-code 
works on the following lines: there are 8*25 = 200 lines of dots, all of which are scan­
ned in (say) 1/50th second. Therefore one row of dots takes about 1/10000 th second 
to be refreshed on the screen. This interval allows 100 clock pulses to occur, so a 
machine-code routine can replace some of the characters (not all 40 or 80!) before the 
next line of dots is scanned. The process must be repeated with each. screen refresh 
to give a static image. 

Alternative character-generating ROMs to those supplied can be made in EPROM 
form fairly cheaply, although in practice there does not seem to be much demand for 
them. The entire 'graphics mode' set can be changed, so that POKE 59468,12 makes 
the alternatives (e.g. Prestel) available, while retaining 'lower case mode' for use 
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when the system is loading and running normal programs. 

PRINT, POKE and PEEK The double usages of the screen memory and ASCII can be 
very confusing. It may be some consolation to recall that Commodore themselves seem 
to have been confused when designing the software for their printers. Let's start with 
the screen memory. We've seen that POKE puts a character on the screen, and that 
each poke corresponds to a character. In fact, there is a one-to-one relation, with the 
sole exception of space (CHR$(32» and shift-space (CHR$(160» which look alike but 
PEEK differently. There is no ambiguity about the screen: provided we know which 
mode it is set to, and provided we're not worried about shifted or unshifted spaces, 
the character's appearance tells us the value we shall peek from its RAM location. This 
diagram shows the relationship between the keys pressed and the screen: 

BIT 7 BIT 6 BITS 5,4,3,2,1,0 
1 =REVERS ED 1=SHIFTED REPRESENT ANY CHARACTER 
O=UNREVERSED O=UNSHIFTED FROM 0-63 IN SCREEN RAM 

Because of this, bit 7 simply needs to be reversed to switch a character from reversed 
to unreversed and back. For example, EOR #$80 has this effect in CBM graphics. Not 
all computers use this system. Apple high resolution graphics use EOR #$FF, since 
every bit has to be reversed. Bit 6 selects either the unshifted or shifted part of the 
character set. In this case, EOR #$40 shifts and unshifts a character alternately. The 
remaining bits offer 26 = 64 combinations, which are roughly divided into the alphabetic, 
numeric and punctuation symbols, and graphics. There is a maximum of 64 graphics; 
but reversing each of these extends the set, and in fact is the only way to complete 
some of the graphics subsets, as we shall see. 

PRINTing has to convert ASCII characters into the screen form. True ASCII 
reserves the first 32 characters for control information, and PET took this idea over, 
although many PET screen editing functions bear little relation to any ASCII function. 
So, because of the screen memory arrangement, PRINT CHR$(65) or PRINT "a" has 
to poke 1 into the screen. To do this it simply drops the 6th bit from the ASCII 
value, after testing whether the character to be printed might be a control character. 
This is the reason for the repeats in the table of CBM 'ASCII' characters, two pages 
before this. Note that a reversed character cannot simply be printed; it must be pre­
ceded by the [RVS] key, or, what amounts to the same thing, the reverse flag must 
be set, $9F ($020E in BASIC 1) holding a non-zero value. This can be irritating when 
a graphics set is saved from the screen as strings: one of the manuals demonstrates 
graphics with a rocket which is drawn on the screen, then saved as BASIC by homing 
the cursor and typing 10" [return], 20" [return], and so on. What they don't say is 
that reversed characters, which are often necessary for a full effect, can't be saved 
in this way in a string. Instead the string must be punctuated with [RVS] and 
[RVSOFF] symbols. 

How does PRINT work? Chapter 5 has information on this; we need consider only 
output to the screen. Typically this involves the kernel routine $FFD2, 'OUTPUT A 
CHARACTER'. This first checks for the device number; when 3 (i.e. screen) is found, 
the current A,X, and Y values are saved, and a set of routines entered, depending 
on whether the shift key was pressed, and so on. Control characters are tested by 
routines which are, in wide-screen CBMs, remarkably tortuous. Ordinary characters 
go by a different route to subroutines which put the correct byte into the screen (at 
last!) and update the screen cursor postions and so on, before recovering A,X, and Y 
and returning. It is not surprising that poking the screen direct in machine-code is 
the fastest way to transfer data to the screen. For this reason, all games and graph­
ics programs, and routines which perform functions like reversing the screen or stor­
ing screens in RAM, directly load and save the RAM values in machine-code using 
load accumulator - store accumulator style operations. So why use the routine to print 
at all? The answer is: it is convenient. All the screen scrolling, calculation of new 
lines, cursor homing and movement, is easily done. Poke requires both machine-code 
and screen-position calculations; BASIC POKEing is not efficient. 

The portion of PRINT which puts a byte into the screen differs between 8 inch 
screen PETs/CBMs and their later counterparts. The difference is in hardware, and it 
is reflected in the software. The routines (E7AC in BASIC 1, E6EA in BASIC 2, E606 
in BASIC 4) are of two types; one waits until bit 5 of $E840 is zero before storing the 
accumulator's contents in the screen. The other, more recent, type doesn't wait, but 
slaps the characters in at full speed. (I quote Jim Butterfield). In the first case, the 
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object of the delay is to wait for the 'retrace interrupt' to be signalled, which means 
that flyback is taking place. In the earliest PETs the screen was blanked during this 
interval, and new characters written into the screen memory. When refresh took place, 
the new characters appeared. Direct poking caused 'snow', because the character gen­
erator couldn't tell whether some dots were supposed to be black or white. Hence this 
type of thing: 

TAY ; SAVE BYTE ... 
LDA E840 ;AWAIT RETRACE INTERRUPT •.. 
AND #20 
BNE -7 
TYA ;AND RESTORE BYTE FOR SCREEN POKE. 

BASIC 2 has this same formula in it; BASIC 4 has dropped it, at least in the 12 inch 
versions. A hardware rearrangement made it unnecessary. Because of this, BASIC 4 
in the very earliest PETs will give a 'snowstorm' effect (well, it's not really that bad). 

With PRINT, a fair amount of time is wasted if retrace has to be waited for, 
because only a very small proportion of the scan's time is taken up with the interrupt. 
In fact, only a tiny number of bytes, perhaps ten, can be fitted into each of these 
flybacks. The fast-screen POKEs, discovered several years ago, and then recalled from 
some software when their harmful effects on certain machines became known, work by 
causing this delay not to happen. POKE 59458,62 speeds up screen writing by a factor 
of about 6, in BASIC 1 and BASIC 2 machines. This improves the appearance so much 
that it is pretty well compulsory with BASIC. Unfortunately, the hardware modification 
which helped take the 3032 into the 8032, and which made this type of poke redundant, 
is affected by the poke, so that software including the poke should not be transferred 
to BASIC 4 machines. The damage is not immediate; the screen picture collapses or 
diminishes, and eventually a curl of smoke comes from the machine ... (I quote Jim 
Butterfield again). 

9.2 The CRT Controller chip 12 inch screen CBMs, but not 8 inch, contain a 6845 
CRT (cathode ray tube) controller chip. Motorola's MC6845 is designed for raster-scan 
displays and can be configured for 'almost any' screen density; notably 80 by 25. It 
includes facilities for cursor control and light pen operation, not used by CBM. The 
manufacturer's data sheets are informative and include examples of parameter calcul­
ations used when initialising the chip. Confining ourselves to Commodore's implement­
ation, we find the two RAM locations, wired to the address register and the register 
file, at $E880 and $E881 respectively. The first of these is an 'indirect' or 'pointer' 
register: its contents may be 0-17 (it has 5 bits only) and, depending on the value, 
the corresponding register, 0 - 17 is accessed, and a new parameter may be put in it. 
To see how this works, we find that a jump table in the CBM controls the CRTC. On 
switching on, the CRTC is initialised by a jump to $EOI8. This puts the machine into 
lower-case mode and separates the individual lines of text. The same effect is obtained 
by PRINT CHR$(14), 'Set text', or of course by SYS 57368 or JSR $EOI8 from BASIC 
or machine-code. Graphics mode is initialised by a neighbouring jump, $EOIB, which 
can be performed by PRINT CHR$(142), 'Set graphic mode', or by SYS 57371, or by 
JSR $EOlB. * A further jump table entry, $EOlE, should be loaded before it is called 
with appropriate values for A,X, and Y; it is a user-definable entry point. 

When any of these three routines arrives at $E088, A and X are assumed to 
poin t to ROM or RAM, X being the high byte and A the low. The Y -register holds 12 
or 14 decimal; this is poked into the location to control upper flower case and graphics. 
Then 18 bytes, from the address pointed to up, are poked into the register file; this 
means that the address register is alternately poked with the register number. On the 
next page is a listing of a short BASIC program which exactly simUlates the action of 
this. The order, from 17 to 0, mimics that of the machine-code, and the table of 18 
bytes is identical to that for lower-case mode. Running the program therefore has no 
effect when in normal lower-case mode. However, if the screen is set to graphics mode, 
or lower-case mode with the lines next to each other (e.g. PRINT CHR$(142): POKE 
59468,14), the program will make the screen revert to its switch-on appearance. The 
DATA values for graphics mode are: 0,0,0,0,0,16,0,0,7,0,37,25,0,49,15,41,40,49. 

*These addresses relate to the 8032; at the time of writing I haven't definite evidence 
on 12 inch 4032s. In any case it's not hard to find the relevant code; for example, 
the reset vector can be followed until a reference to locations E880 & E881 is found. 
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CRT CONTROLLER PROGRAM IN BASIC (80 COLUMN CBM) 

100 FOR J = 17 TO 0 STEP -1 
110 POKE 59520,J 
120 READ XI POKE 59521,X 
130 NEXT 
200 DATA 0,0,0,0,0,16,0,0,9,0,32,25,0,39,15,41,40,49 
210 REM PUT EACH tlATA ITEM ON ITS OWN LINE FOR EASIER EtllTING 

There is little difference in setting for each mode. (These values are from tables at 
E 72A - E 7 3B and E 73C - E 74D for lower-case and graphics modes respectively). We can 
now, using this table of registers as a guide, investigate the chip further. Note that 
some combinations of inputs produce odd effects with the CRT; I've been told that it's 
unlikely that damage could result, but nevertheless the high-voltage equipment which 
operates the tube can emit noises of the sort you'd rather hear on other peoples' 
machines. 

REGISTER # REGISTER FILE DESCRIPTION CBM LOWER CASE/ UPPER CASE VALUES REGISTER BITS 

0 HORIZONTAL TOTAL 49 ($31) 49 ($31) 0-7 
1 HORIZONTAL DISPLAYED 40 ($28) 40 ($28) 0-7 
2 HORIZONTAL SYNC POSITION 41 ($29) 41 ($29) 0-7 
3 HORIZONTAL SYNC WIDTH 15 ($OF) 15 ($OF) 0-3 
4 VERTICAL TOTAL 39 ($27) 49 ($31) 0-6 
5 VERTICAL TOTAL ADJUST 0 ($00) 0 ($00) 0-4 
6 VERTICAL DISPLAYED 25 ($19) 25 ($19) 0-6 
7 VERTICAL SYNC POSITION 32 ($20) 37 ($25) 0-6 
8 INTERLACE MODE 0 ($00) 0 ($00) 0-1 
9 MAXIMUM SCAN LINE ADDRESS 9 ($09) 7 ($07) 0-4 

10 CURSOR START 0 ($00) 0 ($00) 0-4* 
11 CURSOR END 0 ($00) 0 ($00) 0-4 
12 START ADDRESS (HIGH) 16 ($10) 16 ($10) 0-5 
13 START ADDRESS (LOW) 0 ($00) 0 ($00) 0-7 
14 CURSOR (HIGH) 0 ($00) 0 ($00) 0-5 
15 CURSOR (LOW) 0 ($00) 0 ($00) 0-7 
16 LIGHT PEN (HIGH) 0 ($00) 0 ($00) 0-5 
17 LIGHT PEN (LOW) 0 ($00) 0 ($00) 0-7 

Note that register 1 holds the horizontal display; this is 40, not 80, as might be ex­
pected. If this register is Changed to say 41, by POKE 59520,1: POKE 59521,41 then 
the text will slope diagonally to the left, and the cursor moves in a crab like diagonal 
direction. A program called 'CBM 4032 C CHEE' reconfigures the 8032 as for a 40-column 
machine by (I presume) putting 20 into register 1. Register 9 controls the number of 
scans given to each character. 7 puts no blanks between adjacent lines; 9 puts 2. A 
value of 6 in this register loses the bottom line of dots, including lower-case decend­
ers. A short program of the following type can be used to watch the effect of any 
register: 

10 POKE 59520,R :REM REGISTER NUMBER; CHOOSE 0 - 17 
20 FOR J = 0 TO 128 :REM OR CHOOSE OTHER LIMITS; TABLE ABOVE INDICATES MAXIMA 
30 POKE 59521,J: GET X$: IF X$="X" THEN PRINT CHR$(14): END 
40 GET X$: IF X$<>" " GOTO 40 
50 NEXT 

Each press of the space-bar will change the register-value. Entry of 'X' at the key­
board provides an emergency exit (just in case!) and returns to normal. 

Register 6 controls the number of lines printed; if these exceed 25, garbage 
appears from higher up the screen memory. Register 13 alters the start address- the 
screen shifts left with wraparound. Register 12, holding 1210, reverses the screen! 
So POKE 59520,12: POKE 59521,12 reverses the screen. Registers 4 and 7 between 
them control the position of the characters on the screen, rather like horizontal hold 
on a TV. I have been unable to get characters to come out in reverse, although I 
suspect this may be possible. 

*Bit 5 sets blink period control, and bit 6 sets blink/non blink. 
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9.3 Graphics and the PET ICBM 

BASIC graphics Commodore has retained its set of graphic characters in all its 
machines, including VIC . As we have seen, there are 128 graphics in total, or more if 
some of the alphanumerics or punctuation symbols are included. They have not added 
a high resolution facility, though hardware is commercially available which will do this. 
Some other machines have upgraded to high resolution graphics, such as the newer 
Sharps; and some, notably Apple, have had high resolution, and colour, of a sort, all 
along . PET ICBM users generally have to do without elaborate graphics; Commodore has 
allocated such activity to its VIC evolutionary branch. CBM graphics displays usually 
have a Prestel-like quality, apparently being made of a jigsaw of little bricks. The 
character-generation also has an annoying defect, causing some adjacent blocks of 
reversed characters not to connect properly, leaving small lines. Nevertheless there 
are advantages in the CBM approach. Unlike external TV sets, the monitor picture is 
stable. Moreover the graphics are fast, since only one or two thousand fill the screen. 
Apple high-resolution pictures need 8K of RAM storage. It is also possible to replace 
the character-generator with a fast EPROM containing (say) Prestel characters or 
128 user-defined graphics (the other 128 being their reversed forms). 

'Cross-reference to CBM graphics characters' - see the table on the following 
page - groups the individual graphics in a helpful way. There seems to be no method 
in the ordering of these characters in ROM. Note that, when reverse is taken into 
account, the sets of graphic type are all complete, with the exception of the shaded 
blocks. 

Programmers unused to the graphics set, or perhaps looking for ideas on how 
best to combine graphics characters, could to worse than experiment with a short 
BASIC program like this: 

10 POKE 59468,12: INPUT "LOWER CASE SET (YIN)"; YN$: IF YN$="Y" THEN POKE 
59468,14 

20 INPUT "CHARACTER STRING"; X$ 
30 FOR J=1 TO 5: X$=X$+X$: NEXT: REM INCREASE LENGTH OF STRING FOR SPEED 
40 FOR J=1 TO 1000jLEN(X$): PRINT X$;: NEXT: RUN 

This accepts input of a short string of graphics characters, then fills the screen with 
repetitions of the string. Interesting optical effects can be found; for example, the 
diagonally-shaded squares in lower-case mode produce a herringbone pattern which 
displays a well-known optical illusion. A string with format xxxyzzy may work well, 
and so on. Obviously, if the input string is 2 or 4 characters long, the result will be 
rectilinear, since each line will exactly repeat the previous line. Otherwise, the patt­
ern naturally has a diagonal symmetry. Note that the program is designed for a 40 
column machine; line 40 prints about a thousand individual characters. The 8032 is less 
amenable to graphics than its earlier counterpart; to display the full range, input a 
set of numbers (see the table) and convert them by CHR$ into a printable graphic 
equivalent. Also change the constant in line 40 to 2000. Business keyboard users will 
find a number of graphics hard to obtain; the rather useful lines, permitting boxed 
formats, for example like the screen pictured below, which is authentic apart from the 
figures, aren't obtainable by keying-in. This is because shift-! through shift-? in the 
ASCII table have been combined typewriter-fashion : shift-l becomes ! rather than a 
T-shaped connecting graphic symbol. 

PRINT PRICE LIST 

D.a:te <: DO Mt1 YY): 
Price Basis (C~H~E~or S): 
Edition Ref: 1~8~ ~pecial 
Number· 0+ tems per Page: 

. . • ~ 1 . t:::. ..... c: 25.00 0: 55.~~ E: 75.00 F; 33. 3 
G: 75.00 J: 100.00 
K: 120.00 M: 44.45 
P: 64.20 T: 15.00 
V: 64.34 X: 21.00 

: : 

CHECK Ol<? ~"'es 
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CROSS-REFERENCE TO CBM GRAPHICS CHARACTERS 

KEY: sh-$ sh-r sh-f sh-O sh-c sh-d sh-e sh-# 
CHR$: 228 210 198 192 195 196 197 227 
POKE: 100 82 70 64 67 68 69 99 

0 0 g g El El U 0 
KEY: sh-% sh-t sh-g sh-b sh-] sh-h sh-y sh-' 

CHR$: 229 212 199 194 221 200 217 231 
POKE: 101 84 71 66 93 72 89 103 

D [] ITJ CD rn [] D 0 
KEY: REVERSE, CHR$(18) , THEN-
KEY: sh-$ sh-/ sh-9 Sh_" sh-8 sh-7 sh-# sh-space 

CHR$: 228 239 249 226 184 183 163 160 
POKE: 100 111 121 98 248 247 227 224 

0 1:1 ~ ~ .. Ii iii • KEY: REVERSE, CHR$(18) , THEN-
KEY: sh-% sh-4 sh-5 sh-! sh-6 sh-* sh-' sh-space 

CHR$: 229 244 245 225 182 170 167 160 
POKE: 101 116 117 97 246 234 231 224 

0 0 [J IJ IJ III • • KEY: sh-o sh-p sh-: sh-1 sh-v sh- [ sh-m sh-n 
CHR$: 207 208 186 204 214 219 205 206 
POKE: 79 80 58 76 86 91 77 78 

0 0 0 0 [gJ EE rsJ [21 
KEY: sh-= sh-- sh-~ sh-. sh-1 sh-2 sh-3 sh-+ 

CHR$: 189 173 176 174 177 178 179 171 
POKE: 125 109 112 110 113 114 115 107 

eJ [g GI 5J E9 53 BJ [] 
KEY: sh-< sh-> sh-, sh-; sh-? 

CHR$: 190 188 172 187 191 
POKE: 126 124 108 123 127 

~ ~ ~ ~ ~ 
KEY: sh-k sh-j sh-u sh-i sh-w sh-q 

CHR$: 203 202 213 201 215 209 
POKE: 75 74 85 73 87 82 

EJ Cj G3 bJ ~ ~ -
KEY: sh-) sh-~ sh-& sh-( sh-\ 

CHR$: 169 223 166 168 220 
POKE: 105 95 102 104 92 

~ ~ 1m ~ [I 
KEY: sh-a sh-s sh-z sh-x sh-t 

CHR$: 193 211 218 216 222 
POKE: 65 83 90 88 94 

ltl [!] ~ ~ ~ 

NOTES: (i) There are ambiguities in many of the CHR$ figures - CHR$(227) or CHR$(163) 
might equally well be chosen. I've preferred the values with a constant difference of 
64 or 128 from the screen POKE/ PEEK value. 

(ii) As the characters are made of 8 dots by 8, a line cannot appear exactly in 
the centre of any character; some characters, when positioned as neighbours, will not 
exactly line up together. 

(iii) The table has more than 64 entries, because some appear twice. Note that 
the lower-case mode special graphics- chequered square, diagonally shaded squares, and 
square-root or tick sign- have not been included. The full 128 graphics characters are 
obtained by reversing all those in the table, by PRINTing the reverse character first, 
or by POKEing the values listed here + 128. 
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'Digital clock' is a reasonably short specimen graphics program; it converts TI $ into 
larger characters, modelled on a 7-segment LED or liquid-crystal display. Two type­
faces, ordinary and 'modern', are available! This program is in BASIC and is quite 
slow, so that 1 second is sometimes not enough time to allow the time to be updated, so 
it will skip a second. Also, of course, the program does nothing else but 'draw' the 
clock. The subroutine starting at line 10 draws a single numeral; it can be used to 
print any other numerals, where a display somewhat larger than normal is wanted, on 
a similar basis. 

Briefly, we wish to simulate diagram 1. A complete square is not available in the 
graphics set, so a layout like that in diagram 2 is needed, in which 5 adjacent squares 
con trol the final appearance. I've used the order D, B ,A, C ,E ,F of diagram 3; in this 
way, the cursor is always left in a position to start the next number, if there is one. 

8 E§ ~ 
Diagram 1 Diagram 2 Diagram 3 

If we make up a table with 10 rows, one for each digit, we can write out the ASCII 
values required in segments A - E. Zero for example needs llil,rn,IfJ,I!:], and If] , or, in 
ASCII values, 164,165,165,204 and 165. The five lines of subroutine in the program 
each process one of these segments, using a logical formula to embrace every value of 
numeral X. 

A decimal point can be allowed for; 
5000 IF MID$ (X$, J, 1}=" ." THEN PRINT "I:i";: GOTO 5020 shows the sort of thing. 

DIGI TAL CJ..(lCK 

o GOTU JOOO 
10 PRINT CHRS(204 + 172*(X=1 OR X=4 OR X=7) + 40*(X=3 OR X=5 OR X=9»; "[LEFT][ 

UPJ·' ; 
20 PRINT CHR$(204 + 172*(X=1) + 40*(X=2 OR X=3) + 39*(X=0 OR X=7»; "[LEFT][UP] 

II ~ 

30 PRINT CHRSC164 + J3"Z*(X=1 OR X=4»; "[DOWN]"; 
40 PRINT CHRS(165 + 133*(X=5 OR X=6»; "[LEFTJ[DOWNJ"; 
50 PRINT CHRS(165 + 133*(X=2»; 
60 RETUF<N 
1000 PR INT "[CLRHDOWNJ" 
1010 XS = TIS 
1020 FOR I = 1 TO 6 STEP2 
102'5 FOR l< = 0 TO 1 
1030 X = VAL( MID$(XS,I+K,l) ); GOSUB 10 
1040 NEXT }{: PRINT",",: NEXT I 
1050 PRINT "[HOMEHDOWNJ" 
1060 GOTO 1010 

READY. 

SIMILAR ROUTINE WITH COMPUTER-STYLE TYPEFACE: 

10 PRINT CHRS(204 + 172*(X=1 OR X=4 OR X=7) + 29*(X=3 OR X=5 OR X=9»; U[LEFTJ[ 
UPJ"; 

20 PRINT CHR$(204 + 172*(X=1) + 40*(X=2 OR X=3) + 24*(X=0 OR X=7»; "[LEFTJ[UPJ 
" ; 

30 PRINT CHRS(164 + 1~:~2*(X=1 OR X=4»; "[DOWNJ"; 
40 PRINT CHR$(180 + 148*(X=5 OR X=6»; "[LEFTJ(DOWNJ"; 
50 PRINT CHR$(180 + 148*(X=2»; 
60 RETURN 
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.?p-ecial features of BASIC II screen handlinR BASIC 4 machines are more complex 
than their predecessors. There are currently three distinct models: the 8032, which 
has 80 columns; the 8" screen 4032 (and 4016, 4008), which is no longer manufactured, 
and the 12" screen 4032 (and 4016, 4008). The 80-column machine has the most feat­
ures, largely because a chunk of RAM previously used for screen-line tables is not 
needed. This enables it to be equipped with several features not obtainable on any 
other machines, even those with BASIC 4, notably a definable screen 'window'. These 
differences are made possible by varying the ROM which deals with EOOO - E7FF. The 
presence of the CRT controller chip distinguishes 12" screen machines from the earlier 
8" models. 

Textl graphics 12" machines have machine-code which both sets the CRT and puts 
the character-generator into the appropriate mode. For 'graphics', the lines are moved 
so as to be adjacent, and upper-case I graphics mode is selected; in 'text', or 'lower­
case' mode, the process is reversed. PRINT CHR$(14) selects text mode; the value 14 
was presumably suggested by the use of POKE 59468,14 to select lower-case mode. 
PRINT CHR$(142) sets graphics. The ROM routine can be called directly, with SYS 
57368 or SY S 57371. The [ESCAPE] key allows yet another variation; tn' is the 14th 
letter of the alphabet, so PRINT "[ESCAPE]UNSHIFTED-N has the effect of PRINT CHR$(14), 
and PRINT" [ESCAPE] rRVS ]UNSHIFTED-N acts like PRINT CHR$ (142) • 

8032 screen window One screen window only may be defined at anyone time; however 
the redefinition time is small, so there is little difficulty in apparently generating such 
windows at will anywhere on the screen. When a window is defined, four RAM para­
meters are set: locations $E1 and $D5 (225 and 213 in decimal) hold the screen pos­
itions of the bottom and right of the window; $EO and $E2 (224 and 226) hold the top 
and left. The top and left parameters have a minimum value of zero, corresponding 
to the topmost line and leftmost screen position. The bottom has a maximum of 24, 
and the right a maximum of 79. If these values are exceeded, garbage will appear on 
the screen when it scrolls, and information at the rightmost end of lines will be lost. 
If the bottom parameter is less than or equal to the top, or if the right is less than 
or equal to the left, a single row or column only is printable. A window must have a 
certain minimum width to be usable. For example, RUN[RETURN] needs at least 4 col­
umns. A narrower window will not permit the command RUN to operate. 

The parameters may be poked into the locations given, or the specially allocated 
characters may be printed: PRINT CHR$(15) makes the cursor's current position into 
the window's top-left, and PRINT CHR$(143) sets the bottom-right. 

A window is erased by two consecutive [HOME] s, which are counted in RAM 
location $E8 (=232 in decimal). 

110 to 80 column interconversion 40-column programs can be run on the 80-column 
machine by redining the screen with the CRT chip, as previously mentioned. Generally 
the reverse process is impossible, because 80-column software requires 2000 bytes of 
screen RAM, which the smaller-screen machines do not have. However, by editing 
the larger-screen output, provided its total storage requirement isn't too large, conver­
sion to the smaller format may be possible. 40-column software may run without mod­
ifications on 80-column machines: if only PRINT statements are used, and if these are 
terminated with carriage returns, the output will align itself down the left half of the 
screen. When PRINT is followed by ';' ,relying on the end of the screen to force 
prin ting on the next line, its line will extend across the screen. Direct pokes into 
screen RAM fill the top half of the screen. Either of these latter possibilities can be 
avoided by CRT reconfiguration. 

Other screen-editing characters in BASIC II Apart from TABs, BASIC 4's new screen 
editing commands are: 

PRINT CHR$(21) Delete line from screen PRINT CHR$(149) Insert line into screen 
PRINT CHR$(22) Erase line up to end PRINT CHR$(150) Erase line from start 
PRINT CHR$(25) Scroll screen up PRINT CHR$(153) Scroll screen down 

These may be easier to use if a string is defined to store the appropriate characters; 
for example, SD$=CHR$(153) is mnemonically helpful in PRINT SD$. 

Using TABs PRINT CHR$(137) sets a tab position; PRINT CHR$ (9) moves the cursor to the 
next tab position, or to the end of the line. However, if a tab is already set at that 
position, PRINT CHR$(137) unsets it. Tab data is stored in ten bytes of RAM, just 
below BASIC. (See Chapter 15's RAM map). Each of the eighty bits may be 1 or 0; 
and 1 denotes a tab setting. The first byte stores tabs for columns 0-7, the second 
for 8-13, and so on. However, the bits are arranged in the reverse order, so poking 
the first byte with (say) 2 sets a tab near the left of its set of columns. 
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Machine-code grap'hics As we've seen, BASIC is liable to be slow when dealing with 
graphics. In this section we'll look at machine-code graphics, which enable graphics 
effects to be realised in a far faster manner. This will have to be skipped by those 
not yet familiar with machine-code; nonetheless many of the examples can be entered 
and run by inexperienced programmers. 

Machine-code is chiefly used (with graphics) to put characters directly into 
screen RAM, rather than PRINTing them with FFD2 or a similar output routine. The 
beginner, to understand this idea, can enter this short program into the machine with 
the monitor: 

Enter SYS 4; the monitor now displays the program counter and other registers. 
Enter M 033A 0342; two lines from the machine (16 bytes in all) are printed in 
two lines. This is the start of the second cassette buffer; in BASIC<4 it is 
inviolate, unless the second external cassette port is used; in BASIC 4 it 
stores some disk data, but in our example this isn't important. Now type in: 
M 033A A2 00 8A 9D 00 80 E8 DO 
M 0342 F9 60 the remaining symbols are unimportant. 
Enter X to return to BASIC. 

$033A (=826) is now the starting-point for the following machine-code: 

LDX 
TXA 
STA 
INX 
BNE 
RTS 

#00 

8000,X 

-7 

;load register X with value zero 
;transfer contents of X to A 
;store accumulator contents into address $8000 + offset in X 
; increment X 
;if X is non-zero, branch back 7 (count from RTS) to TXA 
;return when X is zero - after 256 loops. 

Now SYS 826 pokes 256 values, from 0-255, into the top of the screen. They should 
correspond to the table of screen poke values a few pages back. Note the greatly in­
creased speed with which characters are printed to the screen. This program is short 
because its values are computed; they needn't be looked up. The next example pokes 
the word 'hello' into the screen, in lower- or upper- case depending on the mode: 

r,::-:::.. r.:;. ~.\ "'¢4-'" VIa. of c.\..I"!..-to pr"nt-1D 
M 0350 A2\Q!)BD 5B 03 9D~""31>1"" ;t ~ \\. _$ 1._ 

M 0358 CA DO F760(08 05 OC OC f~ s '<1<, "'''''''~ .... IY\ SCA&~- ~12.3 ,...,...~o 
M 0360 OF __ any __ = \c..\'\~ of by1:Cs. 

When this routine is entered, SYS 848 prints 'hello', starting at $8123. The table of 5 
bytes holding 'hello' appears after 60, which is the R TS opcode. Again, the beginner 
is recommended to try this; it is quite easy to understand. The values ringed can be 
changed freely, and the result examined. 

Screen reversal and flashing. These effects are easy to get in machine-code, 
subject to the usual problem of managing RAM so that the routine doesn't occupy 
space taken up by other routines. We have already seen that the high bit of screen 
RAM characters detemines whether the character is reversed or not. To reverse an 
entire screen, therefore, all we need to do is scan the entire screen RAM, replacing 
every character by its equivalent with the high bit reversed. If we repeat the process 
the screen will return to its previous condition. Note that this method reverses all 
characters; if they are reversed already, our routine will return them to the unrev­
ersed state. 

LDA #80 
STA 01 
LDA #00 
STA 00 ;indirect address (OO) points to $8000 now 

L1 LDY #00 ;this loop processes one page (256 bytes) of screen 
L2 LDA {OO),Y;this loop uses Y to count from 0-255 

EOR #80 
STA (OO),Y;poke reversed value back into the screen 
INY 
BNE L2 
INC 01 
LDA 01 
CMP #84 
BNE L1 
RTS 

; indirect address (OO) points to $8100, $8200, etc. 

;stop when $8400 reached; 80-column machines use #88 
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This machine-code (not quite identical - a tighter version) reverses the screen: 

M 033A AO 00 84 01 A2 ~ 86 02 ~s 7 W '30 -",l""",,- mac.1r..,T'./:. 
0342 B1 01 49 80 91 01 88 DO 
034A F7 CA 30 F2 60 -any---

So SYS 826 reverses the screen (in 1/50th second or 1/25th with 80-columns), and 
10 FOR J = 1 TO 10: SYS 826: NEXT flashes the screen ten times, leaving it un reversed . 
This code is relocatable (i.e. can be entered unchanged anywhere in RAM); locations 
1 and 2 are used, so USR jumps will no longer work until their correct jump address 
is loaded. 

Is it possible to reverse only part of the screen? This too is quite easy. Let's 
suppose we have the starting address (e.g $8050) of the region to be reversed, and 
let's suppose we want a certain number of bytes «256) after the starting address to 
reverse; for example, 40 or 80 bytes will reverse one line of text. The following short 
routine, also relocatable machine-code (for a change, I've put it at the start of the 
first cassette buffer, starting $027A), and demonstration BASIC driver program is one 
way of doing this: 

M 027A A4 00 88 B1 01 49 80 91 
0282 01 98 DOF6 60 --any--

1000 POKE 0,20 :REM 0 HOLDS NUMBER OF CHARACTERS, SAY 20, AS HERE 
1010 POKE 1,80: POKE 2,128 :REM (01) POINTS TO $8050 
1020 SYS 634 :REM REVERSE 20 CHARACTERS FROM $8050 ON 

Different effects can be obtained by modifying the core of all these routines, 
which is LDA from an address/ EOR #80 to switch the high bit/ STA back into address. 
For example, AND #7F unreverses the entire screen; ORA #80 puts every character in 
reverse form; EOR #40 switches all shifted characters to unshifted, and vice versa; 
INC address (e.g. INC(Ol),Y /NOP /NOP/ NOP/ NOP) replaces every character by the next 
character in the screen RAM table. 

Note that all these examples use purely software methods. When the screen 
scrolls, the reversed text will scroll up with it, leaving normal text. 

Using switches. With the help of the interrupt routine, we can call up machine­
code routines with a simple poke; this provides a convenient way to call a batch of 
routines. For example, we may have ten stored screens of data; poking a preset loc­
ation with 1-10 can automatically display any of them. To show the method, I'll assume 
that the routine at the top of this page is present in RAM. We can use 034F as the key 
location. Then enter: 

M 0350 AD 4F 03 DO 03 4C pp __ ~1 BASIC 2: 2E E6, BASIC 1: 85 E6 
0358 20 3A 03 10 F8 --any--

Now enter .R, to display the registers, and change IRQ from E455 or E62E orE685 
to 0350. The IRQ vector isn't changed until a GO command, so enter .G 0004 to 
BRK. Now, this machine-code is processed at every interrupt: 

0350 LDA 034F 
0353 BNE 0358 
0355 JMP E455; OR E62E OR E685 
0358 JSR 033A;executes subroutine at 033A, in this case screen reverse 
035B BPL 0355;unconditional branch, because of 033A's method of operation. 

When $034F (=847) is POKEd with any non-zero value, the screen is reversed at each 
interrupt; therefore the screen flashes, and processing also slows down a great deal 
because there are 50 or 60 interrupts per second, and our routine takes 1/25th or 
1/50th of a second to run! POKE 847,0 stops the flashing. The routine at $0350 is easy 
to extend so that it perhaps reverses the screen once, or reverses it n times when n 
is poked into $034F. The real point, however, is the relative ease by which subrout­
ines can be called like this; this is as true in machine-code as BASIC. A value of 0 in 
a location might signal that nothing is to be done; values from 1-16 might draw object 
number 1 in any of sixteen preset positions on the screen; values of 17-31 might do 
the same for another object, and so on. If necessary the interrupt can test several 
locations. 'Space Invaders' in its PET ICBM version uses a technique like this. Having 
seen a few methods at work, we can consider some of the published work on graphics. 
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Published utilities. 'Compute!' (March 'Sl; Vol. 3, #3) has a six-page article by 
D Malmberg including machine-code (long) and BASIC enabling one rectangle at a time 
to be filled with a character, reversed, or made to flash; and also to be shifted else­
where bodily, shifted continuously or 'made to grow or shrink in size'. This last feat­
ure means that, as a rectangle moves, its previous incarnations are left on the screen, 
not erased. D Simons (CPUCN Vol.3,#2) has a long routine, for BASIC 2, which inter­
cepts BASIC, providing various screen facilities, including the interchange of two 
screens in RAM, and vertical-bar graphics. 'Printout' (Jan.'Sl) has a few routines, 
taken from 'PET User Notes'. CCN (Vo1.3,#8) has some machine-code, without,how­
ever, instructions on using it. Probably, if you have access to back issues of journals, 
you can find more. Don't expect much though; you may be disappointed. A different 
style of screen image processing is represented by 'systematic routines', as I've called 
them, for lack of a better name. These include 'SET', which plots double-density dots 
on the screen (see Chapter 5). 

~y.stematic machine-code utilities Three pages before this you'll find a table entitled 
'Cross-reference to CBM graphics characters'. From the layout, notably of the topmost 
rows, it is clear that the completeness of the graphics character sets enables some 
progress to be made towards high resolution graphics. SET (in Chapter 5) exploits the 
fact that all sixteen combinations of squares with internal quadrants exist on the PET / 
CBM; the machine-code has a table of the appropriate values built in. Similarly, a CBM 
manual has a demonstration program including a histogram of US national income, in 
which the horizontal bars include, at the end, fractions of a square, as listed in the 
fourth row of the graphics chart. D Simons' 'Super BASIC' (see reference above) in­
cludes a routine to plot vertical bars in the same way. And some EPROMs, e.g. the 
'Pic Chip , , include routines to approximate curved lines with short segments, taken 
from the first and second rows of the chart. To show the methods which such pro­
grams use, let's write a routine to plot vertical bars in histogram-fashion, to the 
nearest l/Sth of a square, i.e. including for 0-7 rows of dots on top of each column of 
solid characters. For this, the third row in 'Cross-reference' is needed. I shall assume 
that the starting-point in the screen (e.g $S3CO, the bottom-left of a 40-column screen) 
is stored in the two bytes ($01), and that the height of the column is stored in $00, 
so that a 'height' of 20 means 2 solid squares (making 16 rows of dots) topped by 
CHR$(226), adding the final 4 rows of dots. 

LDY #00 
L1 LDA 00 

CMP #OS 
BCC +23 ;exit routine when this value is zero to seven at L2 
SBe #OS 
STA 00 
LDA#AO 
STA (Ol),Y; put reverse-space into screen 
LDA 01 
SBC #2S 
STA 01 
LDA 02 
SBC #00 
STA 02 

;subtract 4010' SO-column machines use #50 instead. 

BCS L1 ;unconditiona1 branch back to continue 
L2 TAX ;A and X hold value 0-7, which now becomes the table's offset 

BEQ L2 ;don't plot if zero ... 
LDA TABLE,X;otherwise, load Xth value from table (holds row 3 poke values). 
STA (Ol),Y;store final few rows of dots 

L2 RTS 
TABLE #64 #6F #79 #62 #F8 #F7 IE3 ;in decima1,100,111,121,98,248,247,227 

The routine relocates, and works with all BASICs (in graphics mode). It looks like 
this'-

. M 027A AO 00 A5 00 C9 OS 90 16 
02S2 E9 OS S5 00 A9 AO 91 01 
028A A5 01 E9 @ 85 01 A5 02 ~ 50 wah '30 -c.o!.u.-n ",¥I,..u..-t-S. 
0292 E9 00 85 02 BO E4 AA FO 
029A 05 BD AO 02 91 01 60 64 
02A2 6F 79 62 FS F7 E3 -any-

So POKE O,H:POKE 1,P: POKE 2,131 ;SYS 634 draws a column of height H on $8300 + P. 
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Using 'SET'. The disassembled version of SET is too long for inclusion here; its 
method, briefly, involves (i) Calculating the position in the screen which corresponds 
to X -coordinate and Y -coordinate; (ii) Loading the character at that screen position; 
(iii) Modifying it, by ~Ring the offsets in the table of 16 characters together; (iv) 
Replacing the character with a new one, with one quadrant changed (or nothing chang­
ed if the dot already exists). 

Instructions for ROM modifications and relocation appear in Chapter 5. Note that 
the X- and Y-coordinates, stored in $00 and $01, are changed in the course of the 
routine's execution, and must be entered afresh for each plot. Any characters in the 
screen which are not in the lookup table (i.e. everything except the sixteen graphics 
characters which are part of the set of quadrants) causes nothing to happen, so that 
leetering on graphs is ignored. Obviously, because locations 0 - 2 are utilised, it is 
necessary if USR subroutines are called from BASIC to poke the jump byte ($4C=76) 
into 0, and the indirect address into (01). Its worth noting that the character gener­
ating ROM has defects which show up in this instruction. Reverse- shift-> , shift-; 
and shift-? do not abut correctly to reverse-space, leaving little vertical lines. 

Demonstration programs. 'Conic sections' is a mathematical routine, which draws 
a conic section from 6 general parameters. It includes a subroutine to enlarge and 
reduce the scale on which the conic section is plotted; the limits on the X -axis are 
shown on the screen. In this way (with luck) a conic section can be viewed at a 
reasonable scale. It is interesting to see how the two branches of a hyperbola appear, 
when reduced in scale, as intersecting straight lines. Some equations, of course, are 
incapable of being plotted, having only imaginary solutions. The program simply 
calculates 80 solutions to a quadratic, scanning from left to right, and plotting the 
result if it exists, and fits into the current screen's limits. Line 508's function is 
the sign; its function is mainly cosmetic. The scaling factors have to convert any 
range of X values into 0 - 79. For example, X limits of 20 to 50 are transformed so 
that X=20 becomes 0, X=50 becomes 79; at 1/10scale the transformation is recalculated 
so that -115 to 150 is the range for which X becomes 0 - 79. An 80-column machine 
requires a few changes, to lines 10 and 510. 

DOUBLE DENSITY CONIC SECTIONS PLOTTER Feb 81 

o PRINT "[CLEAR] [REVS] NOTE [RVSO] NEEDS 'HIRES $033A' TO BE LOADED": WAIT 158,1: RE 
M WARNS 

2 GOTO 500 
10 FOR I = 0 TO 79: X = Xl + I*SF 
20 IF C=O THEN Al=FNAl(X): A2=FNA2(X): Y=-A2!Al: COTO 56 
30 Al = FNAl(X)/C 
31 A2 = FNA2(X)/C 
35 IF Al*Al < 4*A2 THEN NEXT: GOTO 110: REM FASTER THAN 'GOTO 100' 
40 A3 = SQR(A1*Al-4*A2) 
50 Y = (-Al+A3)!2.6 :REM DIVISOR 2 .• 6 IS A SCALE CORRECTION (FOR ROUND CIRCLES!) 
51 Y -25 + Y!SF 
52 IF Y>l AND Y<50 THEN POKE 0,1: POKE l,Y: SYS 826 
55 Y = (-A1-A3)!2.6: REM THIS IS THE OTHER SOLUTION 0 THE QUADRATIC 
56 Y = 25 + Y/SF 
58 IF Y>l AND Y<50 THEN POKE 0,1: POKE l,Y: SYS 826 
100 NEXT 
110 INPUT" [HOME] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOW 

N] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN] [DOWN]O (EXIT) / ENLARGEMENT 
FACTOR";Al 

115 IF Al = 0 COTO 500 
120 S2 = (X2+Xl)/2: S3 = (X2-Xl)/2 
130 Xl = S2-S3/Al: X2 = S2+S3/A1: GOTO 510 
500 PRINT"COEFFICIENTS OF A,B,C,D,E,F :":INPUT A, B, C, D, E, F 
502 INPUT "INITIAL LIMITS OF Xl,X2 ARE";Xl, X2 
504 DEF FN Al(X) = (B*X + E) 
506 DEF FN A2(X) = (A*X*X + D*X + F) 
508 DEF FN SG(X) = - (X<0)*45 - (X>-0)*43 
510 SF - (X2-X1)/79 : REM SCALE FACTOR 
512 PRINT "[CLEAR]"; A; "[LEFT]r2"; " "; CHR$(FNSG(B»; " "; MID$(STR$(B),2); "XY"; 
513 PRINT" "; CHR$(FNSG(C»; " "; MID$(STR$(C),2); "Y~2"; " "; 
514 PRINT CHR$(FNSG(D»; " "; MID$(STR$(D),2); "X"; " "; CHR$(FNSG(E»; " "; 
515 PRINT MID$(STR$(E),2); fly = "; -F 
518 PRINT "FOR X="; SGN (Xl) *INT (ABS (Xl)+. 1); "TO"; SGN (X2) *INT (ABS (X2)+.1); ":" 
520 GOTO 10 
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Extensions. An obvious addition to SET is a command to plot 'straight lines', 
i.e. small squares as nearly straight as the resolution will allow. There is insufficient 
space here to go into details. (CPUCN Vo1.3,#2 has a 40-col. routine by D Middleton). 
The algorithm is reasonably straightforward; something like this is required: 

(i) arrange the end-points a, band c, d so that a is less than or equal to c. 
(ii) Test a=c and b=d; if true, plot one point only and exit. 
(iii) Is ABS(d-b) > ABS(c-a)? If so, the gradient, either up or down, is steeper 

tha 1. Branch to one of two routines depending on the gradient: 
(iv) Gradient<=1. Every horizontal position will have a corresponding point; 

some verticals may be duplicated, like this: 
I : : 

Plot a, b. Increment a; if it exceeds c, exit. 
Calculate the next b = b + x-increment*(d-b )/(c-a). 
Go back to plot a,b again. 

(v) Gradient > 1. Test for a vertical line: if found, draw it with its own sub­
rou tine. 'Vertical' includes nearly vertical lines, which otherwise will be too short. 

Increment vertical positions, not horizontals, like this: 

I ~ Plot a, b. Increment b, calculate the nearest a, L and continue until b exceeds d. 

'SET' is slower than it need be: a lookup table for screen lines saves time in 
performing calculations, but occupies more space. The slowest part of the routine is 
the search for one of the sixteen characters. With CBM ROMs this process is inevitable 
because of the unordered arrangement of the relevant graphics screen form. A system 
in which the screen value corresponded to the graphic's appearance (e.g. POKE 0 
giving a blank, POKE 1 a single quadrant in the top left, etc.) would be faster. 

Demonstrations. Finally, a few more simple BASIC demonstration programs. Some 
of the results are Illustrated on the next page. 

HIGH RESOLUTION GRAPHICS DEMONSTRATIONS (ASSUMING SVS 826) 

400 FOR J = 6 TO 2 STEP -1 
410 FOR X = 0 TO 79 STEP J: FOR V = 0 TO 49 STEP J: POKE O,X: POKE 1,V 
420 SVS 826: NEXT V, X, J: END 
500 FOR J = 60 TO 2 STEP -1 
510 FOR X = 0 TO 79 STEP J: FOR V = 0 TO 49 STEP J: POKE O,X: POKE 1,Y 
520 SYS 826: NEXT Y, X. J: END 
600 DEt FN Y(X) = 25 + X*SIN(X/3)/I0 
610 FOR X = 0 TO 79: Y = FNY(X): IF V e 0 OR Y ) 255 THEN 630 
620 POKE O,X: POKE 1,Y: SYS 826 
630 NEXT 
640 END 
700 DrF FN yeX) = 25 + SIN(X/I0)*COSeX/I0)*25 
710 Frn~ X = 0 TO 79: Y ~ FNY(X): IF yeO OR V)255 THEN 730 
720 POKL u.X. POKE I.Y: SYS 826 
730 NEXT:END 
800 DEF FNY!X)=X*J 
810 FOR J = 0 TO 2 ~TEP .2 
820 FOR X = 0 TO 79: Y = FNY(X): IF veo OR Y)255 THEN 840 
830 POKE O,X: POKE I,V: SYS 826 
840 NEXT XtJ 
850 END 
900 I NPLIT NO.OF PETALS";M: INPUT "STEP SIZE .01-10";SP 
910 IF M = INTeM/2'*2THEN M = M/2 
920 FOR TH ~ 0 TO 100 STEP SP 
930 S = ~INeTH*M)+.2 
940 x = S*COS(TH):Y = S*SINCTH) 
950 X = 40+30*X: V = 2S+20*Y 
960 POKE O,X: POKE l,Y: eye 826 
970 NEXT 
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9.11 Dumping PET ICBM graphics to a printer 'DUMP', in Chapter 5, has a program 
to scan and print the screen to non-CBM printers; graphics characters are printed 
as 'I' or some other symbol, to show that they exist. but cannot be printed. The 
BASIC routine below will print screen produced by SET to any printer; the top and 
bottom halves of each character are printed as' ',' *', '* " or '**' 
LISTING OF 'HI RESOLUTION' PLOTTING PROGRAM 

o PRINT"LOAD SCREEN WITH PICTURE TO BE PRINTED IN LINE 00": END 
10 OPEN 4,4: CMD4: REM PRINTER OPENED AND READY 
20 SCREEN = 8*4096: REM START OF SCREEN 
30 FOR V = 0 TO 24: REM SWEEP VERTICAL POSITIONS OF SCREEN 
40 FOR H = 0 TO 39: REM SWEEP HORIZONTALLY AND PRINT HIGH HALF OF CHARACTER 
50 CH .. PEEK (SC+ 40*V + H) : REM ASCII VALUE OF CHARACTER ON SCREEN 
60 IF CH=32 OR CH=98 OR CH=108 OR CH=123 THEN PRINT" "; :GOTO 100 
70 IF CH=124 OR CH=225 OR CH-254 OR CH=255 THEN PRINT" *"; :GOTO 100 
80 IF CH=97 OR CH=126 OR CH=127 OR CH-252 THEN PRINT "* "; :GOTO 100 
90 IF CH=160 OR CH-226 OR CH-236 OR CH .. 251 THEN PRINT n**,,; 
100 NEXT H 
110 PRINT 
140 FOR H = 0 TO 39: REM SWEEP HORIZONTALLY AND PRINT LOW HALF OF CHARACTER 
150 CH .. PEEK (SC+ 40*V + H) : REM ASCII VALUE OF CHARACTER ON SCREEN 
160 IF CH-32 OR CH=124 OR CH=126 OR CH=226 THEN PRINT" n; :GOTO 200 
170 IF CH=108 OR CH-127 OR CH=225 OR CH=251 THEN PRINT" *"; :GOTO 200 
180 IF CH=97 OR CH"123 OR CH=236 OR CH=255 THEN PRINT n* "; :GOTO 200 
190 IF CH=98 OR CH-l60 OR CH=252 OR CH .. 254 THEN PRINT "**"; 
200 NEXT H 
210 PRINT 
250 NEXT V 
260 CLOSE 4: END 

........... __ .......................... . 
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Users with Commodore printers can of course reproduce the entire graphics set on 
paper. This machine-code program, 'Keyprint', is the BASIC 4 version of a routine 
which has appeared twice in 'Compute!', in March '81 (Vol. 3, #3) for BASIC 1, and in 
Nov./Dec.'80 (Vo1.2,#4) for BASIC 2. 

'KEYPRINT' (BASIC 4) 

027A 78 A9 9~ 85 91 A9 85 85 
0282 90 58 60 A5 97 C9@DO; Cllall'a.dfr ("':B . bad<sla.sh,). 
028A 03 20 91 02 4C ~~_~~ A9 
0292 80 85 20 A9 00 85 1F A9 
029A 04 85 BO 85 D4 20 D5 FO 
02A2 20 48 F1 A9 19 85 22 A9 
02AA OD 85 21 20 D2 FF AO 11 
02B2 AE 4C E8 EO OC DO 02 A9 
02BA 91 20 D2 FF AO 00 B1 1F 
02C2 29 7F AA B1 1F 45 21 10 
02CA OB B1 1F 85 21 29 80 49 
02D2 92 20 D2 FF 8A C9 20 BO 
02DA 04 09 40 DO OE C9 40 90 
02E2 OA C9 60 BO 04 09 80 DO 
02EA 02 49 CO 20 D2 FF C8 CO 
02F2 @90 CB A5 1F 69 27 85; Columns (~2.g 01" =It- 5(». 
02FA 1F 90 02 E6 20 C6 22 DO 
0302 A6 A9 OD 20 D2 FF 4C CC 
030A FF 

Notes: 

;Points to $0285 here 

;Points to $0291 & IRQ 

[1] Has no test for 'stop'; if inadvertently started, switch off the printer. 
[21 Designed for upper case with graphics mode. 
[3] The marked byte controls the width of the output: change this to #$50 (80 in 

decimal) with 8032 machines, else you'll get 50 lines of 40 characters. 
[4] The other marked byte controls the character which starts the print at any 

time during program running. The backslash character is #$2F in location $97 
with 8032 machines, but #$45 in others, because of differences in the 
keyboard organisation. 

[5] Calling $027A (by SYS 634) redirects the IRQ vector so every sixtieth of a 
second backslash is tested for, and, if found, the program stops while the 
entire screen is dumped. Obviously, if the IRQ vector is reset, by you or 
by tape activity, or if the interrupt is off, 'keyprint' won't work. 

[6] This is positioned in cassette buffer #1, for compatibility with disks (which 
in BASIC 4 use parts of buffer #2) and external cassettes (device 2). A few 
early addresses need changing to relocate the routine. 

9.5 Animation Before examining programming methods, let's briefly look at some of 
the stock-in-trade methods of animators. * 

Broadly speaking, the object is to get an impression across at least expense. In 
practice this means using as much repetition as possible, as few elaborate drawings, 
and as few frames-per-second as looks reasonable. Significant features are enlarged, 
e.g. head, nose, eyes; less inportant features are suppressed. The overall figure must 
have its configuration of (say) arms, legs and body correct with respect to the centre 
of gravity, if motion is to be suggested. Too many 'in-betweens' should be avoided: 
a stylised face may have only a profile or full-face, perhaps a 3/4 face. Symbols will 
obviously be needed: 'Microchess' successfully used very stylised chess pieces in its 
PET version. 'Space invaders' has led to the acceptance of things like busloads of 
people and orange lawnmowers whizzing around screens. An article by an advertiser, 
D Ross (,Creative Computing', Jan. '81) lists rules of thumb for eyecatching animations, 
*Computer graphics can produce very impressive (and expensive) effects; some simulators 
for air and sea pilots have real-time displays in colour of considerable realism. Some 
west-coast US universities, and the New York Tech, are renowned for their work 
in this field. See (e.g) 'Principles of Interactive Computer Graphics' (Newman & 
Sproull, McGraw-Hill), which is however heavily mathematical. Work of this type, which 
may involve data transfer rates of many megabytes per second, is outside the capacity 
of present microcomputers. 
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largely based on the idea that any motion attracts attention. (,"If it moves, salute it' is 
a biological imperative not confined to the quarter-deck" - G Spencer Brown). 

~ : rft': ~ .1 ; ~,'" .. ' 
~_. _~ : n:-:I1 
! ~ i 
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Paraphrasing this and other articles gives 'rules' something to this effect: 
i. Always have something on the screen (i.e. don't just clear it). 
ii. Al ways have movement of some kind, blinking or flashing text, etc. 
iii. Vary the speed (but keep it at at least medium-pace) and vary styles of 

lettering - large, small, overwriting, rolling righ t-to-Ieft, 3-D - and their relations to 
objects. Words may appear on a board, within a speech balloon, from an 'alphabet 
soup', or shot from a gun. 

iv. Even apparently dull things may be animatable; Ross quotes a 'frypan with a 
flickering flame' and 'bread popping from a toaster'. The BASIC loader of Supermon 
puts numbers in the top left of the screen, so you have something to watch. 

Animation by replacement of the screen. An obvious method to achieve motion is 
to rewrite the screen at intervals of a fraction of a second. With a 32-K 40-column 
machine, a maximum of about 30 different screens can be held in RAM simultaneously; 
this is more than enough to provide good animations of such things as engines. The 
worst part of such a program is the effort of 'drawing' and storing the individual 
screens. Once they have been stored in RAM - it's sensible to practise storing them to 
disk before all the work of entering them - they can be displayed by a program like 
the following machine-code. I've assumed that the screens are arranged in l-K sets 
starting just below screen RAM; adjustments for non-32K and non-40 column machines 
aren't too difficult. The start of each screen therefore is a block of RAM starting at a 
page. For convenience I've arbitrarily numbered the screens in descending order, 
starting 1. The object is to access any screen easily; let's use the idea of a switch, 
so that a POKE into some key location with 3, say, instantly displays screen 3. Then 
it's easy to control the animation in either machine-code or BASIC; for example BASIC 
needs only something like: 10 FOR J=l TO 10: POKE 634,J: NEXT: GOTO 10 to show 10 
screens in sequence. 

$8000-$83FF 
SCREEN DISPLAY 

This machine-code (I've omitted the initialisation routine to direct the IRQ vector to 
$027B) fits the bill. It stores the addresses 'from' and 'to' in the random-number area 
in the zero-page. 
027A 00 
027B AD 7A 02 
027E FO 27 
0280 OA 
0281 OA 
0282 49 FF 
0284 38 
0285 69 80 
0287 85 89 
0289 A9 00 
028B A8 
028C 85 88 
028E 85 8A 
0290 8D 7A 02 
0293 A9 80 
0295 85 8B 
0297 A2 04 
0299 Bl 88 
029B 91 8A 
029D 88 
029E DO F9 
02AO E6 89 
02A2 E6 8B 
02A4 CA 
02A5 DO F2 
02A7 4C 2E E6 

BRK 
LDA S027A 
BEQ S02A7 
ASL 
ASL 
EOR II$FF 
SEC 
ADC 11$80 
STA $89 
LDA 11$00 
TAY 
STA i88 STA 8A 
STA 027A 
LDA 1$80 
STA S8B 
LDX 11$04 
LOA ($88),Y 
STA ($8A), Y 
DEY 
BNE $0299 
INC $89 
INC $8B 
DEX 
BNE $0299 
JMP $E62E 

;Ho1ds key byte 0,1.2 •... 
;Load key byte 
;Exit if it's zero 

;Key byte now 4.8.12 •... 
;Flip bits .•. 
;+1 for 2's complement 
;Gives #80 minus 4*screen# 
;High byte of start address 

;Initialise offset Y 

;Set low bytes to zero 
;And reset key byte off. 

;Now (88)=7COO etc; (8A)=8000 
;Counter for 4 pages 

;Transfer loop for 1 page 

;Continue interrupt. [E62E BASIC 2] 
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027A 00 AD 7A 02 FO 27 OA OA 
0282 49 FF 38 69 80 85 89 A9 
028A 00 A8 85 88 85 8A 8D 7A 
0292 02 A9 80 85 8B A2 04 Bl 
029A 88 91 8A 88 DO F9 ~~ i~ 
02A2 E6 8B CA DO F2 4ClJ 
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to BASIC. ~: '55' f."1t-. 

Test the routine by displaying the registers from monitor (type .R) and changing IRQ 
to 027B. Enter .G 0004, which substitues the new IRQ for the old. If 027A did not 
hold zero, the screen will immediately fill with some lower part of RAM. 

The appearance of this type of animation can be improved with a form of 'in­
betweening'. A screen is not simply moved bodily in one movement. Instead, each 
screen replaces its predecessor in two stages. The first compares the two screens, and 
puts blanks in all locations which are not identical. Then it shifts the new screen. The 
effect is to simulate movement more accurately, by keeping the fixed parts of the image 
but temporarily deleting the moving parts. Thus part A does not instantly reappear in 
position B, but only after a very short delay. This is worth trying, although with 
some images which rely on reversed graphics there may be too much flickering. 

Table of screen memory locations 

Screen line Start of line 
number 110 columns 80 columns 

0 $8000 32768 $8000 32768 
1 $8028 32808 $8050 32848 
2 $8050 32848 $80AO 32928 
3 $8078 32888 $80FO 33008 
4 $80AO 32928 $8140 33088 
5 $80C8 32968 $8190 33168 
6 $80FO 33008 $81EO 33248 
7 $8118 33048 $8230 33328 
8 $8140 33088 $8280 33408 
9 $8168 33128 $82DO 33488 

10 $8190 33168 $8320 33568 
11 $8188 33208 $8370 33648 
12 $81E0 33248 $83CO 33728 
13 $8208 33288 $8410 33808 
14 $8230 33328 $8460 33888 
15 $8258 33368 $8480 33968 
16 $8280 33408 $8500 34048 
17 $82A8 33448 $8550 34128 
18 $82DO 33488 $85AO 34208 
19 $82F8 33528 $85FO 34288 
20 $8320 33568 $8640 34368 
21 $8348 33608 $8690 34448 
22 $8370 33648 $86EO 34528 
23 $83CO 33688 $8730 34608 
24 $83E8 33728 $8780 34688 

9.6 Pen Plotters. Plotters are not common peripherals; they are used for computer­
aided design, and are not often found in the micro world. The best plotters are large 
pieces of equipment, either 'flat-bed' or 'rotary'; the latter use wide rolls of paper. 
Benson is one manufacturer of this type of equipment; Calcomp is another. Smaller 
scale plotters are available from, for example, Hewlett-Packard and Houston Instru-
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ment make smaller models, desk-top size. The principle of these machines is to attach 
a pen to a carrier which is movable in perpendicular directions under program control. 
Typically, two stepper-motors drive the carrier. An 'unintelligent' plotter can move its 
pen only in steps; 'intelligent' plotters can 'home' and store coordinate positions. They 
may have other features, such as a set of alphanumeric character plotting routines in 
ROM. The precision of the motors controls, to some extent, the maximum plotting-speed 
obtainable. And the step-size controls the fineness of the resulting drawings, which, 
because of the stepwise nature of the plotting process, inevitably have a slightly 
serrated appearance. Typically, several step-size and step-rate combinations can be 
selected. For example, a small Houston 'HiPlot' can plot either 240 steps per second at 
.01 inch step-size, or 480 steps per second at .005 inch step-size. Thus the fastest 
rate of drawing is about 2! inches with this model. This parameter is rather important; 
a complicated drawing can take a lot of time. Moreover, the baud rate is also import­
ant. Suppose a CBM has an interface set at 600 baud; this means 600 bits (not bytes) 
per second. If the programming system is such that one byte generates one movement 
of a motor, then a maximum of only about* 75 bytes can be sent per second; this is 
fine for (say) a daisywheel printer, but confines a plotter to perhaps an inch per 
second at most. 

To illustrate the programming methods used with plotters, I'll take the 'Hiplot' 
as an example. This machine is controlled by only ten commands; 8 of these are 
directions as shown in the diagram, and the remaining two commands move the pen 
down to the paper and lift it from the paper. All other positioning, for example of the 
pen before plotting starts, is done manually. Each direction on the diagram is labelled 
with the character which, when sent from the computer, causes one step to be plotted 
in that direction. Obviously, each motor can step in the positive direction, or in the 
negative direction, or not at all. Thus there are 3*3 = 9 combinations. There is no 
particular command for no-movement-at-all. 

W P Q 

v R 

U S 

The 450 lines are of course generated by simultaneously activating both motors. This 
is useful, because some of the jaggedness of lines can be taken out. When plotting a 
straight line, for example, the appearance can be improved by building it from 450 

lines with either horizontal or vertical lines, rather than drawing it only with lines 
parallel to the x- and y- axes. The diagrams show the difference. The program on the 
next page draws the best straight line between two points in this way. Note that it 
uses the notation NW$, E$, SE$, and so on as a rather obvious mnemonic. These 
strings have to be initialised elsewhere in the program, by 

1000 n$="P":e$="R":s$="T":w$="V":ne$="Q":se$="S":sw$="U":nw$="W":u$="Y":d$="Z" 

Lines 107 and 109 test the gradient of the line which is to be drawn; those with grad­
ient < 1 are drawn by program lines 110 - 195, and steeper steeper straight lines are 
dealt with by the part of the program starting at 300. Note that steep lines require 
N$ or S$, while gentle lines use W$ or E$. Logical file #4 is assumed to be open to 
the plotter. 

Circles can be difficult to program. The standard algorithm, which uses the 
minimum of trigonometrical calculation, is: 

500 REM Q=DEGREES SUBTENDED BY EACH STRAIGHT-LINE SEGMENT. EG Q=10 PLOTS A 
36-SIDED FIGURE 

510 G=R: H=O: REM R=RADIUS. G AND H ARE INTERMEDIATE VALUES 
520 N=360/Q : REM N=NUMBER OF SIDES=NUMBER OF REPETITIONS OF LOOP 
530 F=COS(Q*[PI]/180): I=SIN(Q*[PI]/180):REM TRIG PARAMETERS 
540 FOR J = 0 TO N 
550 C=G*F-H*I: A=G*I+H*F :REM THESE ARE THE X- AND Y-COORDINATES OF THE NEXT PT. 
560 REM DRAW THE STRAIGHT-LINE SEGMENT TO THE POINT X=C,Y=A 
570 G=C :H=A 
580 NEXT J 

*In practice, 1 byte may be transmitted with 10 bits (say); hence the vagueness. 
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99 REM **********.******~************************************************ 
100 REM *. SUenOUTINE TO PLOT I.INE BETWEEN POINTS, GIVEN X AND Y DISTANCES 
101 REM ****************************************************************** 
105 XP'O; YP~O 

106 IF XD=O THEN M=lE9: GOTD 300 
107 M~ABS(YD/XD) 
109 IF M)l THEN 300 
110 IF XD>O THEN X$=E$; Y$=NE$; IF YOeO THEN Y$=SE$ 
120 IF XDeo THEN X$=W$: Y$=NW$: IF YDCO THEN Y$=SW$ 
130 XD=ABS(XD): YD=ABS(YD) 
160 FOf< 8=1 TO XD: PRINT£4, X$ 
170 IF M*S>YP THEN PRINT£4,Y$: YP=YP+l: 8=5+1; IF seXD GOTD 170 
180 NEXT 
190 FOR J=O TO lE5: IF YP-l(YD THEN PRINT£4,Y$; YP=YP+l; NEXT 
195 RETURN 
300 IF YD)O THEN Y$~N$; X$=NE$; IF XDCO THEN X$=NW$ 
302 IF YD=eo THEN Y$=S$; X$=SE$; IF XDeo THEN X$=SW$ 
304 XD~ABS(XD): YDEABS(YD) 
305 FOR 8=1 TO VD: PRINT£4,Y$ 
310 IF 8)M*XP THEN PRINT£4,X$: XP=XP+l; 8=8+1; IF 8eVD GOTD 310 
320 NEXT 
330 FOR J = 0 TO lE5: IF XP-leXD THEN PRINT£4,X$; XP=XP+l; NEXT 
340 RETURN 

Pattern plotting Mathematical curves and drawings. either as single long lines 
(e.g. LIssaJOU fIgures - see 'SET') or as repeated plots (straight line segments mimic­
ing string and nails/ repetitive drawings in which parameters are slightly varied/ etc.) 
have been fairly popular. They may also be useful in mathematical education. Curves 
with plottable formulas include these following examples. These equations are all para­
metric. so pairs of values are generated. and can be plotted immediately. The scale of 
course has to be adjusted so the drawing is aptly sized. 

Trisectrix: x=cosa + cos2a 
y=sina + sin2a 

Cycloid: x=a + sina Cardioid: x=2cosa + cos2a 
y=l - ncosa y=2sina + sin2a 

Folium: x=t/(1+t3) 
y=t2 / (1+t3) 

Epicycloid: x=mbcosa - bcosma Strophoid: x=(t2-1)/(t2+1) 
y=mbsina - bsinma y=t(t2-1)/(t2+1) 

There are of course innumerable equations of functions of y in terms of x. which are 
instructive to plot; for example: 

Catenary: y=c cosh(x/c) 
-(x-a)2 -kx 

Normal: y=e Damped sine: y=e (Asinwx + Bcoswx) 

The specimen below. and that at the foot of the page before last. were con­
structed by a different principle; four separate types of 'tile'. used as building-blocks 
and drawn next to each other in random sequences chosen by the computer. make up 
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the entire drawing. This example plots 'tiles' of these designs; when drawn as neigh­
bours, their lines must always link, forming an Islamic-style abstract pattern. 

~§]~~ 
The program is too long for reproduction here; it has four subroutines, one for each 
'tile', and a routine to convert the random sequence of five or so 'tiles' into a sym­
metrical array. The actual loop which performs the plot is this: 

3500 REM **** NOW PLOT SYMMETRICAL PATTERN USING CAX(,) ARRAY DATA *** 
3510 V = 1 :REM 'LOOP' 
3520 FOR H = 1 TO 2*HRIZ 
3530 ON CAXCH,V) GDSUB 100,200,300,400 
3540 NEXT H 
3550 V~V+l: IF V)2*VERT THEN END 
3560 PRINT£4,PU$; FOR J=1 TO 3*S; PRINT£4,SW$; NEXT 
3570 FOR J=l TO 3*S*(2*HRIZ-l): PRINT£4,W$: NEXT 
3580 GOTD 3520 

Lines 3560-3570 move the pen back from the end of one line of tiles to the start of the 
next. 

Three dimensional drawings. Perspective drawings are possible, but the pro­
grams are mathematically difficult. Each corner has to be entered as three co-ordinates 
and their positions on plotting calculated so that the geometrical shape is projected on 
a plane. The picture of a CBM below was plotted like this; in fact it is a stereo plot, 
the original being a stereoscopic pair in red and blue. When viewed through two 
filters, red for one eye and blue the other, this creates a stereo image. Several black 
and white films have been made using this colour separation technique. Again, the 
program is too long for reproduction. Readers interested in this will need to consult 
textbooks on the theory of perspective projections; matrix arithmetic is usually the 
preferred way to store data and process it. There are some snags: one is the hidden­
line removal problem, which tries to deal with lines which would be blocked out by an 
opaque object, but which the computer may not recognise as unwanted. (The CBM 
picture had no 'corners' input of its far side, which evaded the difficulty). Another 
snag may involve the conceptual framework of the projection: the arithmetic may 

assume that the object is fixed, and the viewpoint moves around it; or the object it­
self may be rotated. If the method isn't suited to your needs, you may find it necess­
ary to calculate angles and distances in order to make the image the correct size or 
make a series of images bear the correct relationships to each other. 

Pseudo-perspective drawings - axonometric or isometric - are easier because 
there is much less calculation involved. As an example, consider what is required to 

bOO <rl' 

I 

- -- .... , , 
Axonometric 

plot a mathematical function in 

Isometric 

3-dimensions. The aim is to plot a function to produce 
an image of the sort indicated in the sketch. 
How can this be done? The simplest method is 
to ignore the hidden-line problem, simply 
plotting cross-sections of the curve from left 
to right for a range of values. Taking account 
of hidden lines makes the programming, and 
the runnmg time j 19nger. The easy programming 
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solution is to adopt a modified axonometric 
projection, exactly like this diagram excep t 
that the horizontal y-axis is drawn to coin­
cide with the z-axis. Now, for each point 
xn ' a set of values z(x ,y) are found, and 
plotted as dots provided that each value 
exceeds the previous value. In this way a 

9: Graphics and sound 
z 

column of dots builds up, scanning from X 
left to right, which takes the form of the 
type of drawing we have in mind. This method is fine with a VDU, but not very good 
with a plotter, because more time is spent moving the pen than actually plotting. So 
a more elaborate method must be used, which stores the maximum value plotted so far 
at every x n ' and plots a continuous line from left to right, except where it is inter­
rupted by some larger value. 

LI 

FOR Y = YI TO Y2 STEP YS 
FOR X = Xl TO X2 STEP XS 
Z = FN(X,Y) + Y 

N=(X-Xl)/XS 
IF Z<MAX(N) GOTO LI 
MAX(N)=Z: PLOT SEGMENT 
NEXT X: NEXT Y 

:REM XS,YS MEANS X-STEP SIZE, Y-STEP SIZE 
:REM EXTRA Y GIVES 'PERSPECTIVE', INCREASING THE 
'HEIGHT' OF FAR POINTS 
:REM NTH COL. OF PLOT; N=O,I,2 •... 
:REM DON'T PLOT SEGMENT IF VALUE < MAXIMUM 
:REM SAVE NEW MAXIMUM AND PLOT 

This schematic BASIC program shows the method. 

9.7 Sounds and the PET ICBM 

I ntroduction Computer synthesized music has achieved considerable success, notably 
with organ-like sounds and special effects; ordinary orchestral in struments remain 
resistant to synthesis. because of the extremely complicated waveforms which they 
generate. Before considering microcomputer music. let's look at a typical note-synthes­
ising method. We may distinguish three stages in the life of a note: attack, sustain, 
and decay. The attack - the period in which the note is becoming established - has a 
spiky and irregular waveform because of the note's instability. This part is difficult 
to synthesize. The sustained part of the note has a steady waveform. including 
harmonics characteristic of the instrument. Finally, the decay also has the same wave­
form. but harmonics tend to disappear as the note attenuates. 

~I 
V 

Attack 

r\ J 

V 
Sustain 

To simulate these stages, we can hold a table of. say. 256 bytes per note. Each byte 
may have a value of 0-255; and all the bytes together provide samples of the wave­
form from the start of a wave to its end (i.e. 1 wavelength). If we cycle through the 
'attack' table a number of times. then the 'sustain' table, and finally the 'decay', the 
entire note is simulated in this manner: 

UO\JP WW U W W LJO W CreT\;) <;:> ~ ......... -= 

Start ~Attack ----7 ~ Sustain ) <E-- DecaY----7 

If the digital values genell'ated are converted to analogue signals by a digital-to-anal­
ogue converter ('DA C'), an approximation to the original sound will result. Speech 
is synthesized from a vocal cord analogue (buzzing sound) with perhaps 3 bandpass 
filters for each of the major formants of speech sounds. Chips are available, and are 
used commercially in some products. to produce sounds of specified waveform, frequen­
cy. and envelope shape. to synthesize speech, and so on. 

New. 12 inch screen CBMs are all equipped with an internal speaker (of very 
low volume). This provides, as we'll see, an easy way to generate tones, clicks. 
squeaks, and so on; it relies on a square wave, produced, in the CBM's case, by the 
shift register, which periodically shifts a bit to be amplified by the speaker. This has 
only two positions, out and in, so the sound is cruder than that produced by digital 
to analogue conversion. 
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The frequency produced by these methods can be calculated easily enough for any 
particular case, but what is the corresponding note? Several musical scales exist, 
including the scientific ('Just') scale with middle C of 256 Hz, and two equal-tempered 
chromatic scales, of which the American standard has middle C of 261.63, and the 
International standard a middle C of 258.65. Chromatic scales have 12 notes before the 
octave repeats, and their frequencies have a constant ratio of 21/12 (1.05946 ... ). An 
abridged summary of the full range of notes for each scale follows:-

EQUAL TEMPERED CHROMATIC SCALE SCIENTIFIC SCALE 
NOTE FREQUENCY: ASA INTERNATIONAL PITCH 

C4 261.63 258.65 256 
C#4 277.18 274.03 
D4 293.66 290.33 288 
D#4 311.13 307.59 
E4 329.63 325.88 320 
F4 349.23 345.26 341.33 
F#4 369.99 365.79 
G4 392.00 387.54 384 
G#4 415.30 410.59 
A4 4110 1135 426.67 
A#4 466.16 460.87 

B4 493.88 488.27 480 

Sounds with microcomputers Hal Chamberlin is one of the most well-known authorities 
on music generation by computer; see Byte, Sept. '77, or his more recent book, 'Mus­
ical Applications of Microprocessors' (Haydon 1 Wiley). Both user-port techniques for 
the PET appear to have originated from him. (A commercial product for 4-voice sound 
synthesis, by MTU, is his. Another well-known product is the 'Visible music monitor', 
or VMM, by AB Computers. Each has software with a digital-to-analogue converter). 
VIC has a 4-voice synthesizer built in. Other machines, e.g. Apple, have speakers 
built in as standard. As we'll see, the usual PET system uses a different system of 
operation which is probably easier to work. Let's first look at square-wave generation 
on the PET, using extra hardware. The programming is identical to that for the wide­
screen models, which have the same circuitry ready supplied. 

Square-wave generation with the VIA's shift register Before the specimen programs, 
here are three alternative methods to make the VIA's square waves audible. They are 
arranged in order of ease of implementation. I don't recommend users without hardware 
experience to try this, and can't accept responsibility for disasters which may result. 
(Not that anything untoward is likely to happen, in fact). 

(i) It's not widely known that the PET's sound can be amplified without any 
connections at all, except one to the M pin, corresponding to CB2, which is the right­
most-but-one pin on the underside of the user port. (This port is next to the IEEE 
port - check in the manual). If a single connection to this pin is taken as a wire near 
a radio, its radio frequency signals will be picked up, and the sound broadcast. The 
result is rather noisy, in the technical sense, but is better than nothing. 

(ii) The same single wire can be attached to the radio's volume control. Assum­
ing this is a thumbwheel, connect the output to A or B, enabling the volume control 
to operate. (Not C, which doesn't). 

(iii) A simple amplifier circuit, of three components plus a small speaker, gives 
very adequate sound. The circuit diagram shows how the components are arranged; 
a sketch on the following page shows how they appear, in unmounted form, with the 
computer. It is of course possible to buy amplifiers as chips, which makes very neat 
and compact units available. ---S--=--v-ou-s-------. 

3Lr 000 Q, 

o \JOL,5 
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The signal may be reduced by increasing the smaller resistance from 100 ohms. The 
larger resistor's value is set at 34000 ohms since the gain is of the order of 200, so 
200 x (100 + 70) = 34000. 

Programming the speaker is a fairly easy matter. The usual method is to use the VIA's 
Shift Register, at $E84A. A shift register moves one byte to the right at regular time 
intervals determined by a clock. In our case, the location $E848, which is the low byte 
of timer 2, controls the rate of shifting. Also, the Auxiliary Control Register, which 
has 8 alternative shift-register settings, is set for 'Free Running Output Mode'. Let's 
first look at a machine-code example; in fact the routine which BAS I C 4 uses to tinkle 
its internal bell. 

The jump-table address (E02A in the 8032) causes the chimes to ring once; the 
jump is to E6A 7. To ring the bell twice, call E6A4, which has the command JSR E6A 7, 
and consequently tinkles the bell, then drops through to tinkle it again. The bell­
ringing routine is like this: 

LDA #$10 
STA $E84B ;AUX.CTRL.REG. ('ACR') INTO FREE RUNNING OUTPUT MODE, T2 CONTROLLED 
LDA #$OF 
STA $E84A ;SHIFT REGISTER HOLDS 0000 1111 

LOOP LDA xxxx ;LOAD A WITH SOME TABLED VALUE 
STA $E848 ;PUT A INTO TIMER 2 (LOW) 

EXIT LDA #$00 
STA $E84A ;SHIFT REGISTER HOLDS 0000 0000 
STA $E84B ;ACR HOLDS 0000 0000 

The values the CBM loads are OEI lEI 3EI TEI 3EI lEI OE in turn. The delays before 
shifting are in proportion to 1:2:4:8:4:2:1 (Le. spanning 3 octaves, because the fre­
quencies are halved by the delay's doubling). The rationale is this: 

(i) Bits 2,3, and 4 between them control the shift register; if for example they 
hold 000, no shifting occurs; 101 causes just 8 bits, the present contents of the shift 
rgister, to be shifted under control of T2; and - our sound generator - 100 causes 
the shift register to shift in 'free run' output under the control of T 2. This means that 
T 2, which is decremented at every clock cycle, causes 1 bit of the shift register to be 
output when ever T2 becomes zero. T2 is automatically reloaded in this mode; so is 
the shift register. ACR is E84B (59467). 

(ii) T2 has a high byte and a low byte. As we shall see, only the low byte is 
usually used for tone generation. Its location is E848 (=59464). 

(iii) The shift register itself is E84A (=59466). Its pattern of bits determines 
the frequency of the note and its timbre. 

To see how these three VIA registers cause a square wave to be generated, 

Start: 1101100111 
T2 out:101011001ICB2=1~ ) 
T2 out: 1001011001 CB2=1 ---, ) 
T2 out: I00010110ICB2=O~ 
T2 out: I00001011IcB2=O~ 
T2 out:I00000101IcB2=1~ 

consider these illustrations of the shift regist­
er at regular intervals as T2 times out. A bit 
is set high or low (lor 0) on CB2 at each of 
these intervals, and the resulting wave train 
appears as shown; it has only two amplitudes, 
and is a square wave (with disturbances dep­
ending on mechanical and electrical error). 

Many of these wave trains corresponding to SR's bit patterns sound identical to waves 
originating from other bit patterns which at first sight appear different. For example, 
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01 (0000 0001) and $80 (128 decimal). 1000 0000 sound identical, because each produces 
a single pulse. More subtly, $OF =%0000 1111, changes the note's apparent frequency 
because the ear picks up the period of the wave as half that of, say, 1110 1100. This 
applies also to 0011 0011 and 0101 0101 and their variants, in which the frequency 
shifts (of an octave each) are caused by the repetitive bit pattern. Note also that 
patterns which we might call 'inversions' - e.g. 1111 1000 and 0000 0111 - sound alike 
to the ear; this is a fact about the psychology of perception, rather than physics. We 
can list all the fundamentally different bit patterns; they are 

F:£StJL 15 DF M Z 1 MM.ERMANN '5 'MUS I C GENERATC/f·( I PRDGRAt1 \ FEB 81 BYTE.) 

,.", ') () 0 0 0 0 1 
3 0 0 (I 0 0 0 1 
') (j \) 0 0 0 .t 0 j 

7 0 0 (1 0 0 1. 1 1 
9 () r) 0 0 1. () 0 j 

11 0 0 (> 0 1. 0 1. 1. 
15 (} 0 0 (> 1. 1. 1 1. 
17 (I (> 0 1 0 0 (J 1 
19 0 <) 0 1. 0 0 1 
21 0 0 0 1 (> 1 (I .:. 

23 (I 0 0 1 0 l 1. 
2? (; 0 0 1 1 0 1 1 

37 0 0 1 0 0 1 0 1. 
4:3 0 0 1 (I 1. 0 1. 1 
45 0 0 1 0 1. 1. 0 1 
51 0 0 1 1 <) 0 1 1 
B5 0 1. 0 1 0 0 1 

Zimmerman's 'Byte' article also includes Fourier Analysis methods, routines being given 
for the BASIC 1 PET. * 

The great advantage of this method of tone generation is that, once started, it 
continues. Apple's system requires the machine to continually tweak the speaker, so 
no other processing can be carried on. To show how this can be used, the following 
short machine-code program uses the interrupt to help play a tune. (It is written for 
BASIC 2; other BASICs need their correct IRQ in place of E62E). The overhead in 
terms of time is tiny; the space overhead depends on the table of notes. This example 
'plays' the zero-page, producing 1 note with each interrupt; you should therefore be 
able to hear repetition of the 'tune' each 4 seconds or so. Load the routine, and point 
the IRQ to $0300 (e. g. SYS 4/ M 0090 00 03 -- same --). The routine is now active. 

Program Demonstrating use of the Interrupt to Playa Tune while BASIC runs. 
NO. DEC. HEX DUMP DISASSEMBLY 

1 
2 
3 
4 
5 
6 
7 
8 
9 

768 
770 
772 
775 
777 
779 
781 
784 
787 

E6 00 
FO 03 
4C 2E E6 
A9 FF 
85 00 
A5 70 
EE OC 03 
8D 48 E8 
4C 2E E6 

$0300 INC $00 
$0302 BEQ $0307 
$0304 JMP $E62E 
$0307 LDA #$FF 
$0309 STA $00 
$030B LDA $78 
$030D INC $030C 
$0310 STA $E848 
$0313 JMP $E62E 

LOCATION $00 IS A COUNTER; EACH TIME IT IS 
INCREMENTED TO #00, THE NOTE IS CHANGED. 

RELOAD THE COUNTER (SMALL VALUE = SLOWER) 

OUR DEMONSTRATION PICKS ITS NOTES FROM THE 
ZERO PAGE, CYCLING THROUGH 256 VALUES. 
STORE ACCUMULATOR IN THE TIMER. 
AND CONTINUE NORMAL INTERRUPT. 

POKE 59467, 16 starts SR shifting in free-running mode. This starts the 'tune'. POKE 
59466,X enters a byte (and may be needed to make the tune audible!). It also controls 
the timbre of the notes produced, within the restrictions imposed by the square wave. 
A BASIC program can be run while the noise continues. (POKE 59467,0 to turn it off). 

*These are fairly easy to convert to other ROM sets; see Chapter 15. Fourier was a 
French mathematician who proved that any periodiC waveform could be generated by adding 
sine curves together (sometimes - as with square waves - infinitely many in number). 
'Fundamentals' and 'overtones' are an aspect of this. The process is similar to that 
of Ptolemy, who in effect synthesised ellipses from many circular motions. 
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POKE 776,X varies the rate at which notes are changed; this location is used to count 
interrupts; the smaller the value, the longer is each note played, up to a maximum of 
4 or 5 seconds. Obviously, a table of bytes can be played, so a recognisable tune will 
emerge, while BASIC runs. A table of 256 bytes (say) played at the rate of 2 notes 
per second (the equivalent of POKE 776,25 or so in our example) will run for 2 minutes 
before repeating. We can use our technique of 'switching', i. e. using a special POKE 
location to cause the interrupt to choose different tunes, from tables of perhaps 4 or 
5. In fact, these could be chosen by the program; thus, a game program might be 
accompanied by music of the appropriate mood, like a piano accompaniment to a silent 
film. 

This demonstration BASIC program plays 2 octaves: 

92 REM #####################################################1################ 
93 REM # DEMONSTRATION OF CHROMATIC SCALE OF 2+ OCTAVE RANGE # 
94 REM # EACH NOTE OBTAINABLE BY A SINGLE 'POKE' FROM BASIC OR MACHINE-CODE # 
95 REM ########1###############1##############1###1#11####################### 
96 REM 
97 REM 
100 POKE 59467,16: REM FREE RUN MODE 
110 POKE 59464,0: REM SWITCH OFF IF CONTENTS EXIST 
120 POKE 59466,22: REM OTHER VALUES WILL PRODUCE THEIR OWN TIMBRES/ TONES 
130 DIM N(30) : REM ARRAY WHICH WILL HOLD THE CONTENTS OF DATA 
140 FOR X = 1 TO 1000: READ N(X): IF N(X) <> 999 THEN NEXT: REM READ DATA IN. 
150 N = X-I: REM N IS THE NUMBER OF ITEMS IN THE TABLE OF NOTES 
191 REM 
192 REM 
193 REM ####################################################################### 
194 REM # PLAY ALL THE NOTES FROM THE DATA TABLE IN ASCENDING SEQUENCE # 
195 REM ######################################U############### ################# 
196 REM 
200 FOR X = 1 TO N: 
210 POKE 59464, N(X): 
220 FOR J = 0 TO 200: NEXT J: 
230 NEXT X 
500 POKE 59467,0: END: 
991 REM 
992 REM 

REM PLAY ALL NOTES 
REM POKE TIMER WITH DATA 
REM DELAY LOOP BETWEEN NOTES 

REM SWITCH OFF 

993 REM ####################################################################### 
994 REM # STARTING VALUE OF 252.1 FOUND BY TRIAL TO GIVE CLOSE APPROXIMATIONS # 
995 REM II TO TRUE CORRECT CHROMATIC RATIOS; BUT DOES NOT HAVE PERFECT PITCH. # 
996 REM II START VALUE MULTIPLIED BY 2 - ONE-TWELFTH; THEN 2 CYCLES SUBTRACTED.# 
997 REM 11####1#################################11############################### 
998 REM 
1000 DATA 250,236,223,210,198,187,176,166,157,148,139,132 
1010 DATA 124,117,110,104,98,92,87,82,77,73,69,65 
1020 DATA 61,999 

:REM FIRST SET OF 12 
:REM SECOND SET OF 12 
:REM 999 SIGNALS END 

How can we calculate the absolute frequency of a note? Let's say that timer 2 contains 
the value T «256). The timer decrements once every microsecond, so one bit will shift 
every T microseconds. * So 8 bits are sent in 8T microseconds, and the full period of 
a wave is twice this, assuming a pattern like 0000 0001, not an internally repeating 
one such as 0101 0101; so the frequency is 1000000116T cycles per sec. This is the 
same as 62500/T. So a frequency of 256 is obtained by poking 244 into T2. When gen­
erating square waves, the greatest precision can be got by using the longest possible 
value of T2; this means a correspondingly fast square-wave, 0101 0101. This has 4 
times the frequency of 0000 1111. Timer 2's high byte (in E849 = 59465) may need to 
be used as well as its low byte. 

Several square waves can be generated simultaneously, although the resolution 
is inevitably poor: this requires the reloading of the shift register after each timer 
countdown, with the next in the sequence of combined waveforms. The timing could be 
carried out by enabling T2's interrupt, but the technique is tricky. 

*This seems a reasonable assumption. R Zaks ('6502 Applications Book') implies that 
the half-period is N+l.75, made up of an average from N+2 (top of pulse), and N+l.5 
(bottom of pulse). His method gives slightly different values for the constants; it 
was used in the BASIC program above - see line 996. At the time of writing I haven't 
found a definitive answer to this simple question. 
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These short BASIC routines demonstrate typical easily-achieved sound effects: 

(i) Glissando 

1000 POKE 59466,15: POKE 59467,16: REM REGULAR SQUARE WAVE + SR ON 
1010 FOR J = 255 TO 1 STEP -1 REM LOW TO HIGH PITCH 
1020 POKE 59464,J 
1030 NEXT: POKE 59467,0 

(ii) Beep 

REM BRIEFLY PRODUCE TONE 
REM SR OFF WHEN LOOP ENDS 

1000 POKE 59466,15: POKE 59467,16: REM OR USE DIFFERENT «>15) TIMBRE ... 
1010 POKE 59464,140 REM ... OR TONE 
1020 FOR J = 0 TO 20: NEXT REM SHORT DELAY LOOP 
1030 POKE 59467,0 REM SWITCH OFF AFTER BEEP 

(iii) Murmur 

1000 POKE 59466,45: F=59464 
1010 FOR J = 1 TO 200 
1020 X=RND(l)*16 
1030 FOR K = 0 TO 8*RND(l) 
1040 POKE F,N(X+K) 
1050 NEXT K,J: POKE 59467,0 

REM NOTES VARY AROUND THIS 

REM ASSUMES N() HOLDS TABLE OF NOTES 

SUMMARY OF CB2 SOUND VIA LOCATIONS. 

E848 59464 
E849 59465 
E84A 59466 
E84B 59467 

Timer 2 (low byte) 

Shift Register 
Auxiliary Control 

T2L O=off; otherwise, small means high pitch 
T2H Only useful for slow timing 
SR Contents determine timbre and octave 
ACR Bits xxxxxxxx control SR (Free run 100) 

Tones with 8-bit resolution Output port A of the VIA has bits PAO-PA7 connected to 
pins C,D,E,F,H,J,K, and L of the user port. (These are on the underside). The dia­
gram shows a digital-to-analogue converter which allocates weights to each bit, so that 
the most significant bit L has twice the effect of pin K, which in turn has twice the 
effect of pin J, and so on. The resistor values chosen are 'preferred values'; their 
values are only approximately in the ratio 2 to 1. Greater precision requires the use 
of a 'ladder' circuit, corrected for the 1K resistor to ground. The diagram includes 
only 5 pins, ignoring the least significant 3 bits, whose effect, in such a simple cir­
cuit, is small. The resistor-capacitor arrangement provides some smoothing. Pin M is 
included, so CB 2 sound is available as well; pin 6, with a resistor, can be added, so 
tape loading can be aurally checked. The output should be amplified by (for example) 
a plug inserted into a portable radio's DIN socket. A simple transistor circuit isn't 
sufficient. 

TApe-
DEMONSTRATION PROGRAM 

A~ 
L1 

LDA #FF ;CONFIGURE PORT 
STA E843; FOR OUTPUT 
LDA 2000,X 
STA E84F;SEND OUTPUT 
INX 
BNE L1 
LDA 9B ;TEST STOP KEY 
CMP #EF ;[0209 IN BASIC1] 
BNE L1 
RTS ;RETURN TO BASIC 

[OR BRK IN M/CODE] 

PA1lP.LL£L ~E"- PoRT IEEE 

C 
't10K22.0K (00/( tt7K ZlK (ooK 

fo 
., fJF TI...-____ A_"_'_L_'F_\_EIl 

This simple demonstration routine first configures all 8 bits of port A for output, then 
repeatedly stores 256 bytes (1 page) of bytes into the output port. This repeating 
pattern constitutes the waveform. A routine to stop the output is provided. In this 
way 256 separate speaker positions model one wavelength of the sound. For high fre­
quencies this is too great, and a smaller table, perhaps 32 bytes, must be used. Two 
examples follow; note that the starting value of $2000 (=8192) is arbitrary, and other 
val ues, such as the top of RAM, can be used. An oscilloscope will display the waveform. 

1=0: FOR J 8192 TO 8192+255: POKE J,I: 1=1+1: NEXT: REM GIVES SAWTOOTH 
1=0: FOR J = 8192 TO 8447: POKE J,128+125*SIN(I): 1=1+2*[PI]/256: NEXT: REM SINE 
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CHAPTER 10: THE TRANSITION TO MACHINE-CODE 

10.1 Introduction and some a-bit concepts. 

Machine-code programming can only be leamt by trial and error, by experimenting with 
sample programs to see what they do, and transferring the results of this learning to 
one's own programs. This chapter explains the connection between decimal and hexa­
decimal notation, and the meaning of 'bit', 'byte', and other related words. It also has 
short examples of machine-code programming; these are continued and expanded in the 
next chapter. But the bulk of the present chapter is concerned with monitors: not the 
VDUs, but software enabling the programmer to get to the 6502 chip. The novice in 
6502 machine-code will find some of the detail hard to follow: the problem being that 
machine-code can be understood only with the help of a monitor, but a monitor cannot 
be understood without knowledge of machine-code. Some of the detail must be skipped 
on the first reading. Chapter 12 has an alphabetic guide to the 6502, to which refer­
ence may be made, but again, because of its comprehensiveness, much will be obscure 
to the comparative beginner. 

The 6502 microprocessor performs all the processing of the PET ICBM. It is sup­
plemented by chips to control the keyboard, screen, and other peripherals, and cir­
cuitry to perform such functions as the screen scanning and the control of the power 
supply. A crystal-controlled clock determines the speed of operation of the 6502, so 
it is possible to calculate the precise time taken by a program. * Each variety of micro­
processor has its own version of 'machine-code' or 'machine-language'. This is a map 
or dictionary (in effect) giving a one-to-one translation of the contents of locations 
accessed by the chip to the chip's flctivity. Each separate machine-code instruction has 
little effect; only the combined effect of millions of instructions enables a computer to 
achieve anything. The 6502 is an 8-bit processor. It operates in units of 8 bits. A 'bit' 
(as many people know) is a 'binary digit'. Conventionally represented as 0 for off and 
1 for on, it is the smallest unit of data. Note that a bit isn't actually a '0' or a '1'; it 
is a voltage, interpreted as 'off' in the range zero volts and up, and 'on' in the range 
five volts down, with the exact range depending on the chip. Most of the 6502's data 
is stored in RAM or in ROM. If a static charge or voltage spike causes a voltage to 
drop from (say) 4 volts to 2, the bit will no longer hold its correct value; the data 
will be 'corrupted'. 

A byte is a set of 8 bits wired so that they correspond to a single address. 8 
pins on the 6502 are used for data transfer, both into and out of the chip. The indi­
vidual bits are usually represented as bits number 7 to 0 in descending order, with 
bit 7 the 'high' and bit 0 the 'low' bit. This is consistent with ordinary mathematical 
notation, using standard base 2 (binary) arithmetic. The value of a byte can be any 
integer from 0 to 255; there are 256 (=28) different possibilities. The table below, 
familiar to everyone exposed to 'modern' mathematics, shows the connection between 
bits and the overall byte value: ONE BYTE: 

BIT NUMBER: 
POWER OF 2: 

'WEIGHT': 

7 
7 

128 

6 
6 

64 

So, for example, the decimal equivalent of 

5 4 
5 4 

32 16 

0000 0000 
0000 0001 
0000 0110 
1111 1110 = 

3 
3 
8 

0, 
1, 
6, 
254. 

2 
2 
4 

1 0 
1 0 
2 1 

The division of a byte into two halves of 4 bits (known, sometimes, as 'nybb/es', by 
a process of paronomasia) is another convention: it is impossible to remember 256 sep­
arate numeric symbols for a byte, so hexadecima/ 2notation is widely used instead. Each 
nybble is represented by 0- 9, A,B,C,D,E, or F. 'A' in hexadecimal ('hex' for short) 
means 10 in decimal, 'B' means 11, ... ,'F' means 15. This is the representation used 
by the CBM's built-in monitor. This notation expresses a decimal number of 0 - 255 in 
two characters at most; and decimal numbers up to 65535 (=216) in four characters at 
most. The appendix has a complete table of hexadecimal-decimal 8-bit conversions, and 

*This suggests that programs (calculations for example) might be accelerated by the 
use of a faster clock. 
2 'Sedecimal , (all-Latin in origin) is sometimes recommended as a more satisfactory 
word, naturally without much success. 
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a conflated table of values multiplied by 256. These may be used to convert 16-bit hex­
adecimal numbers into decimal and vice-versa. The 6502 is equipped with a 16-bit add­
ress bus; pins 9-20 and 22-25 between them carry address data. This design allows 
2562 = 65536 RAMI ROM addresses to be used directly, without a system of switching. 
16-bit, 2-byte hexadecimal numbers are represented by an extension of the notation to 
four characters: 

BIT NUMBER: 
POWER OF 2: 
256* POWER: 

'WEIGHT': 

15 
15 

7 
32768 

14 
14 

6 
16384 

TWO BYTES (16 BITS): 

13 12 11 10 9 
13 12 11 10 9 

5 4 3 2 1 
8192 4096 2048 1024 512 

8 7 6 5 432 
8 7 6 5 432 
0 

256 128 64 32 16 8 4 

So that, for example, the following conversion relationships hold: 

DOUBLE BYTE HEX DECIMAL VALUE 
0000 0000 0000 0000 $0000 0 
0001 0000 0000 0000 $1000 4096 (= 16*256 = 163 ) 

0000 0100 0000 0001 $0401 1025 (= 4*256 + 1) 
1010 1011 1100 1101 $ABCD 43981 (= «10*16 + 11)*16 + 12) *16 + 13) 
1111 1111 1111 1000 $FFF8 65528 (= 65535 - 7) 

1 0 
1 0 

2 1 

I have used the convention of prefixing a hexadecimal number with '$'. This avoids 
ambiguity in the case of those numbers which happen to include no alphabetic charac­
ters. (An alternative convention, unusual with the 6502, is to write 'H' after the numb­
er. This is not always satisfactory: 'BEACH' can be a hexadecimal number or an ass­
embler label). 

At first, this notation seems odd - it appears strange that $CAFE or $BEEF can 
represent an ordinary number, and that $20 is 32, and $100 is 256. With practice the 
interconversion becomes fairly easy, at least with small values, which can be converted 
mentally - $A2 is clearly 10 sixteens plus 2, i.e. 162; $55 is 5 sixteens plus 5, 88. 
Chapter 4, section 4.1.1 has one-line BASIC interconversion routines which may be use­
ful. In the absence of a computer or tables, conversions can be carried out with a cal­
culator: 

(i) Hexadecimal to decimal. A four-digit hex numeral (say FGHJ) has weights of 
163 , 162 , 16, and 1 respectively to be multiplied by each respective digit's decimal 
value. (This is what is meant by 'Base 16'; it is exactly analogous to 103 , 10 2 , 10, and 1 
weighting the digits of a decimal number). So the result is F*163 + G*162 + H*16 + J, 
where F ,G ,H and J are intended as algebraic representations of any value 0 - 15. 
H is often easier to evaluate the result as a continual calculation, multiplying F by 16, 
adding G, multiplying the result by 16, adding H, multiplying by 16 again, and lastly 
adding J. In this way, the correct weights are automatically assigned. 

(ii) Decimal to hexadecimal. The method is to first divide by $1000, which is 
4096; this gives the first, most significant hex digit, of 0 - 15. Note this digit, then 
subtract it from the currently-stored decimal value, and multiply by 16. This reveals 
the second most 'significant digit. Continue until all four have been found. 

The combination of two bytes into an address is an important feature of the 6502 
chip, and the formula for a two-byte value, which equals 256*the high byte + the low 
byte recurs in machine-code, POKEs and PEEKs, and SYS commands. It is perhaps a 
pity that the 6502 handles double-byte numbers assuming that the low byte is stored 
first, followed by the high byte. In other words, the order is opposite to what you 
would expect from a normal number. (Some other chips, for example the 6809, have 
double-byte addressing in 'natural' order). Because of this, pointers used by BASIC 
BASIC are almost always in this format, which can be used without modification by the 
chip. 

Two other general points about the computer's handling of hexadecimal arithmetic 
can be made at this point; they are not enormously important, and may be skipped: 

(iii) Two's complement arithmetic. This is a convention for the representation of 
negative numbers, which is implemented on the 6502. In its simplest form, with 8 bits 
only, bit 7 determines the sign of a number: '0' means positive, '1', bit 7 set, means 
negative. The rule to change the sign is to flip the bits and add 7. Thus, the bit 
pattern 0101 1001 ($59 = 89 decimal) is made negative by flipping the bits (to 1010 
0110) and adding 1, to give 1010 0111. Normally this counts as $A 7 = 167 decimal, and 
this example shows that a number and its two's complement add to 256 or $0100. The 
point is that addition of positive and negative numbers is consistent with normal use, 
so that, for instance, $59 and $A 7 add to $100, which, ignoring the bit which over-
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flows, is zero, which is the result required from the addition of two numbers of opp­
osite sign but equal magnitude. Simply flipping the bits does not provide this, as the 
numbers add to $FF or 255. Note that the complement of zero ($00 = 0000 0000), i.e. 
minus zero, does not exist. For experienced programmers, there is an example in 
section 9.5 which involves subtraction by taking the two's complement. As we shall see, 
branches use two's complement arithmetic to calculate the address to jump to; only one 
byte is allowed for this offset, which therefore has a maximum value of 0111 1111 = 127 
in the forward direction, and 1000 0000 = - 128 in the backward direction. 

(iv) The meaning of 'K'. The prefix 'K' or 'Kilo' implies a unit of measurement 
one thousand times larger than some standard unit. In computer jargon, however, a 
'kilobyte' is not a unit of 1000 bytes, but 210 = 1024 bytes, a figure which derives 
naturally from the organization of present-day computers, with on-off storage. 1024 
bytes is not the same thing as $1000 bytes; the hexadecimal interpretation of '1000' is 
16 3 = 4096. Not surprisingly, this can lead to confusion. For example, the RAM needed 
to store a high-resolution graphics display may occupy (say) $9000 - $AFFF, which is 
two batches of length $1000. It is easy to think that the display occupies 2K, whereas 
in fact it uses 8K. This table, of decimal and hex equivalents to integer multiples of 
1 K, may be helpful: 

TABLE OF KILOBYTE VALUES 

16K 1638q $qOOO 32K 32768 $8000 q8K q9152 $COOO 
1K 102q $OqOO 17K 17q08 $qqOO 33K 33792 $8qOO q9K 50176 $CqOO 
2K 20q8 $0800 18K 18q32 $q800 3qK 3q816 $8800 50K 51200 $C800 
3K 3072 $OCOO 19K 19q56 $qCOO 35K 358qO $8COO 51K 5222q $CCOO 
qK q096 $1000 20K 20q80 $5000 36K 3686q $9000 52K 532q8 $0000 
5K 5120 $lqOO 21 K 2150q $5qOO 37K 37888 $9qOO 53K 5q272 $OqOO 
6K 61qq $1800 22K 22528 $5800 38K 38912 $9800 5qK 55296 $0800 
7K 7168 $lCOO 23K 23552 $5COO 39K 39936 $9C00 55K 56320 $OCOO 
8K 8192 $2000 2qK 2q576 $6000 qOK q0960 $AOOO 56K 573qq $EOOO 
9K 9216 $2QOO 25K 25600 $6QOO Q1K Q198Q $AQOO 57K 58368 $EQOO 

10K 102QO $2800 26K 2662Q $6800 Q2K Q3008 $A800 58K 59392 $E800 
11 K 1126Q $2COO 27K 276Q8 $6COO Q3K QQ032 $ACOO 59K 60Q16 $ECOO 
12K 12288 $3000 28K 28672 $7000 QQK Q5056 $BOOO 60K 61QQO $FOOO 
13K 13312 $3QOO 29K 29696 $7QOO Q5K Q6080 $BQOO 61K 62Q6Q $FQOO 
nK n336 $3800 30K 30720 $7800 Q6K Q710Q $B800 62K 63Q88 $F800 
15K 15360 $3COO 31 K 317QQ $7COO Q7K Q8128 $BCOO 63K 6Q512 $FCOO 

611K 65536 $10000 

Note that 32K marks the half-way point for a 64K system. The PET ICBM screen starts 
here, and generally RAM is below this dividing-line, and ROM above, except in the 
case of RAM on boards accessed by the memory-expansion ports, and other special 
cases. 

10.2 CBM machine-language monitors - T 1M and MLM • 

The earliest (BASIC 1) machines have no machine-code monitor in ROM: instead, an 
assembly listing of machine-code was provided in the manual (pp. 100ff). This occupies 
the space of a BASIC program, and in fact consists of 10 SYS(1039) followed by the 
monitor, saved as a single program by extending the end-of-BASIC pointers to include 
the monitor. (The redundant brackets enclosing 1039 have recurred elsewhere ever 
since). Since this machine lacks a monitor, entering the program is difficult - there is 
no way to directly key in the hex information provided! A series of pokes will do the 
trick, but there are a great many. The easiest way (apart from copying someone else's 
tape) is to use a loader program like the following, which inputs hex bytes, turns 
them into decimal, and pokes the result into the correct location. But the BASIC will 
itself have to be overwritten by poking the values of the bytes relevant to the monitor 
into place; and, finally, the end-of-program pointer must be altered to include the 
monitor. 

10 INPUT "START ADDRESS";S 
20 INPUT "BYTE";L$ 
30 L=0:FORJ=1T02:L%=ASC(MID$(L$,J»:L=16*L+L%-48+(L%>64)*7: NEXT 
40 POKE S,L: S=S+1: PRINT S;: GOTO 20 
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TIM ('tiny monitor') has a 'call entry' of $040F (=1039), and a 'Break entry' point of 
$0427 (=1063). The latter works only if ($021B), the pointer from BRK, is set to $0427. 
TIM has similar features to later monitors, but displays PC SR AC XR YR SP only. 

BASIC 2 machines have a built-in monitor (called 'MLM', 'machine-language mon­
itor'; rather more dignified than 'TIM'). This displays the interrupt request address 
(IRQ) in addition to the program counter, status register, A, X, and Y, and the stack 
pointer. It has a few slight improvements; for example, the decimal flag is cleared. 
From BASIC, a SYS call to any location with peek-value zero causes the monitor to be 
entered at the break entry point. SYS 1024 (using BASIC's initial 0) or SYS 4 (using 
a flag which is only set when a program is running) are the favourites. The call entry 
point is $FD 11 (=64785), although this is not often used. 

BASIC 4 has a monitor similar to BASIC 2. The differences are (i) it occupies 
different locations in ROM; see Chapter 15, starting at D472 in the BASIC 4 column, 
for comparative locations of the subroutines. (ii) The break entry is modified to abort 
output to printer; the idea is that a BRK always displays the registers on the screen, 
without printing strange information onto a printout or listing. Because of this, the 
call entry point is easiest with a printer: $D472 (=54386) is the relevant address, and 
OPEN 128,4: CMD 128;: SYS 54386 a typical series of commands to divert the output to 
a printer. The file-number, larger than 127, ensures a carriage-return character is 
accompanied by line-feed. If this feature is unwanted, use a lower file-number (e.g.4) 
or switch 'auto-line-feed' off. 

MLM commands The machine-language monitor contains a table of single-byte commands, 
which are checked against the actual input. These commands are : ; R M G X Land S, 
in that order. The monitor also puts a period or full-stop at the start of each line, the 
sole function of which is to verify that a line is to be considered input into the monitor. 
The syntax and operation of each command is as follows. (For actual entry addresses 
and other detailed information, see Chapter 15). 

; Alter registers takes 7 parameters and stores them in a buffer from $0200 - $0208, 
where they remain until (i) they are altered again, or 
(ii) exit to BASI C ignores them, or (iii) the command 
G ('GO TO' or 'GO RUN') loads them all into their res­
pective locations and executes machine-code accordingly. 
Note that nothing happens until G is entered; in this 
way, the altered values are controllable. 

MLM values are input according to their absolute pos­
ition. The following line, for example, inputs the val­
ues which are underlined, ignoring the others: 
.;123456789012345678901~456789[RETURN] 

PC IRQ SR AC XR YR SP 

$0200 PC High 
$0201 PC Low 
$0202 Flags 
$0203 Accumulator 
$0204 X-Register 
$0205 V-Register 
$0206 Stack ptr. 
$0207 IRQ High 
$0208 IRQ Low 

Alter memory contents inputs a four-character starting address and eight bytes, 
which it stores in the eight memory locations from the starting address on. 
Like the previous command, the values depend on absolute positions . 
• , 0400 00 06 04 00 OA 8A 00 00 00 for example puts 8 bytes into RAM, 
where they make a BASIC program 10 RUN. Any other values in the line 
are simply ignored. This routine incorporates a read-back comparison, so 
that an attempt to write to ROM or non-existent RAM gives .? 

R Display registers (no parameters) is always called on entering the monitor. After 
this, .R has the same effect. This command is normally a preliminary to 
changing the registers; for instance, suppose the interrupt vector is to 
be changed from BASIC 4's E455 to a routine at $027A in the first cassette 
buffer. First, . R displays the text PC IRQ SR AC XR YR SP with 
.• 0005 E455 32 32 32 32 FA 
or something similar. After moving the cursor up, E455 is overwritten with 
027A. Nothing happens until G; .G 0004 causes a break entry, in 
effect performing SYS 4, and the IRQ is changed, as the screen will show. 

M Display memory contents has syntax .M fghj fghj, where the two hex addresses are 
mandatory, and the second must be not less than the first. Sets of eight 
bytes are output, preceded by .: and their start address, like this: 
.M 0070 0080 

0070 E6 77 DO 02 E6 78 AD 8A 
0078 OD C9 3A 80 OA C9 20 FO 
0080 EF 38 E9 30 38 E9 DO 60 
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G Go to, Go run has two valid syntactical structures: G alone executes code from the 
current program counter, PC; G fghj executes code starting at the hex 
address here represented algebraically as fghj. The effect is similar to a 
SYS call in BASIC, control being transferred to the new address. However 
.G 027A differs from SYS 634 in having the capacity to set values for the 
registers, stack pointer, and so on as a standard feature. 

X Exit to BASIC (no parameters) returns to BASIC in direct mode. This is therefore 
the converse command to a SYS call into monitor. 

S Save machine-code to tape or disk has this syntax: 
.S "NAME (LENGTH<17)",Ol,027A,0304 
.S "O:DISK NAME",08,027A,0304 
for tape (cassette #1 in the example; could also be 02) and disk (drive 0 
in the example) respectively. The commas are necessary, and help en­
sure correct input. Note: SAVE finishes when the final address is reached; 
consequently, the 'end address' must be at least one byte beyond the true 
end of the machine-code. 

L Load machine-code from 'tape or disk has this syntax: 
.L "NAME",Ol 
.L "O:NAME",08 
for cassette #1,and drive 0 of CBM disk with device #8, respectively. 

Adding commands to MLM. BASIC 4's monitor can be represented in a simplified form 
by a flowchart such as that on the following page, which shows the major features, but 
omits the details of line-input and so on. If a command doesn't match any of those in 
the table, for example if .Q was entered, a jump takes place with one level of in­
direction, to the address stored in the two bytes $03F A and $03FB. The default value 
in these bytes, put there when the machine is turned on, points to the subroutine in 
the monitor which prints .? and waits for another input. However, the pointer can be 
changed to a RAM routine which mimics the action of the monitor, enabling new comm­
ands to be added. In this way, extended monitors of much greater versatility can be 
written for these machines. Note: TIM lacks this feature, and must be slightly mod­
ified to include it. 

10.3 Extended machine-code monitors. 

Before we look at the extra commands offered by extensions to MLM, let's briefly 
survey some of the programs currently available. The first to become widely available 
was SUPERMON, which is available in versions for BASICs 1,2, and 4. Several versions 
exist within each type. This program includes work by Bill Seiler, and includes a dis­
assembler based on Steve Wozniak and A Baum's Apple program, with a single-step 
utility written by J Russo. The whole thing was 'combined, choreographed, and trim­
med up' by Jim Butterfield, and written in the form of a relocating loader, so that the 
code is put into the top of RAM, wherever this may happen to be, and protected from 
overwriting by BASIC by lowering the top-of-memory pointers. The result is powerful 
and easy to use. Later versions have a machine-code routine to do the relocating; this 
is much faster than the earlier BASIC. These are public domain programs; the append­
ices include listings of the BASIC 2 and BASIC 4 versions, for readers who lack the 
programs, but not the patience to key them in. 

Supermon has itself been modified and extended by other users. The next major 
monitor was EXTRAMON, by Bill Seiler, which has more features than Supermon, and 
has been revised as MICROMON and also modified into other forms by non-Commodore 
software people. The main differences between this program and Supermon are: 

(i) Machine-code 'trace' allows breakpoints, so program execution stops when some 
address is reached a pre-set number of times. Single-step trace is often too slow to be 
practically useful. 

(ii) A relocater enables code to be moved about in memory so that it will run 
correctly. The command is not as easy to use as this bare description suggests. 

(iii) An ASCII dump is provided, so tables and messages can be identified and 
read more easily. 

(iv) Comparatively small, cosmetic, changes include improved scrolling, so that 
(for example) disassembled output to printers is easier, and better screen editing. 
VIC has a monitor, available as a plug-in module, which includes most of these feat-
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CALL ENTRY 
(SYS call, or RESET t--,.--/ 
with diag. sense 
low). Store "c" 

BREAK ENTRY 

(I.E. 'BRK' FOUND) 
Save A,X,Y, and SP 
on the stack. 

Store "B"; CLC/ 
CLD/ abort files/ 
pull SP,Y,X, & A 

Pull PeL, PeH 

PRINT C* or B* 

Load accumulator 
with "R" command 

Reset flags/print 
c.rtn. & '. '/input 
line (Accumulator t-~~----~ 
holds command) 

Compare commands 
in table with 
accumulator 

R M G 

ALTM ALTR DSPLYR DSPLYM GO 

x 

Jump to address in 
($03FA). Default 
value prints ? 

L,S 

EXIT LOAD 
& SAVE 

FLOWCHART OF BASIC II MACHINE-LANGUAGE MONITOR. 

ures, plus a disassembler that works backwards. 
Among other monitors, BASMON is distributed by IPUG in the U. K., and is 

esserttially Supermon with additions, notably to allow printout to a wide range of print­
er types, and to accept a larger range of input formats. For example, a table of bytes 
can be entered directly into the mini-assembler. Like some other monitors the interrupt 
is redirected to test for the Stop key, so a program in an infinite loop can be aborted 
(usually) by software. (Section 8.9 gives the method). ULTRAMON is an enlarged 
version of Extramon; it is an American monitor, containing (according to a review by 
J Strasma) assorted unacknowledged bits of code from diverse sources, including 
Compute! magazine. Occasionally one meets HIMON in user-group collections; this is 
simply one or other of the main monitors ready relocated into the high end of RAM, 
and naturally this will operate successfully only if the recipient CBM has the same RAM 
storage fitted. 
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Extended monitor commands: (i) SUPERMON 

Most extended monitors consist of machine-code followed by tables: in Supermon's case 
these include assembler! disassembler characters ($,#,X,Y and so on), opcodes, and 
other data, followed by the commands (T F H DC, A and I) and their respective 
addresses, which are stored (for reasons connected with the operation of the RTS 
instruction) one byte smaller than the true value. Some versions have an 'N' command 
which is not used. Note that each letter is different from those in MLM; this is clearly 
necessary, since otherwise they would never be executed, but it means that rather odd 
circumlocutions have to be used to rationalise some commands. 'S' is used for 'SAVE', 
so single-step has to be something else - in fact, I, perhaps implying '1' step. 

Alter memory, then disassemble screenful of data 
The screen-dump (right) shows a 
Supermon disassembly, consisting of a 
screenful of disassembled data which was 
generated by . D 784C. In fact it is the 
start of BASIC 2's Supermon. Up to three 
bytes on any line may be changed; when 
Return is pressed, the new values are put 
into RAM and the disassemble command re­
entered, with the same start point; 748C 
in the example. The new screen is there­
fore very similar to the previous one. 

A Assemble is a 'tiny' or 'mini' assembler, which con­
verts opcodes and addresses into the 
correct byte form (deducing the address­
ing mode from the input format), but not 
permitting labels or directives or any of 
the other features to be found on true 
assemblers. (See Chapter 14 on these). 
The format is illustrated in the screen 
dump (right). Pressing Return alone (or 
entering any erroneous data) causes the 
error routine to be called, so a query is 
printed, followed by the monitor's '.' on 
the following line. While assembly contin­
ues, new '.A' s are printed at the start 
of each new line. 

C Calculate branch offset uses a format like this: 
. C ABCD ABFF ,from which the positive or 
negative offset is calculated. This is one 
byte only, and is counted as negative if 
its high bit is set. If the range is too 
large, the command replies with a query. 

· , 748C AD 44 7A · , 748F 85 34 · , 7491 AD 45 7A 
., 7494 85 35 · , 7496 AD 42 7A · , 7499 80 FA 03 · , 749C AD 43 7A 
Of 749F 8D FB 03 
., 74A2 00 
., 74A3 A2 08 · , 74A5 DD 24 7A · , 74A8 DO OE 
., 74AA 86 84 · , 74AC 8A · , 74AD OA · , 74AE AA · , 74AF SO 2F 7A · , 7482 48 · , 7483 80 2E 7A · , 74B6 48 

· 7487 60 

.A 0300 LOA #$00 

.A 0302 LOX '$FF 

.A 0304 STA $8000,X 

.A 0307 DEX 

.A 0308 BPL $0304 

.A 030A I~ S0306 

.A 0300 LOA $0306 
• A 0310 C~~P #$84 
.A 0312 BNE $0300 
.A 0314 RTS 
.A 0315 1 

LOA $7A44 
STA $34 
LDA S7A45 
STA S35 
LDA $7A42 
STA S03FA 
LOA $7A43 
STA S03F8 
SIlK 
LOX #$08 
CMP $7A24,X 
BNE $7488 I STX $84 
TXA 
ASL 
TAX 
LOA $7A2F,X 
PHA 
LOA $7A2E,X 
PHA 
RTS 

This was intended to help with branches in a forward direction, but was 
probably not widely used. Later Supermons (SUPERMON .REL) dropped it. 

D Disassemble is a standard disassembler (with $ and # for hexadecimal and immediate 
mode, respectively), without labels. See the example above under ',' • 

F Fill memory has three parameters, demonstrated 
by this example: 
F 3000 4000 AA 
which has the effect of filling RAM 
from $3000 to $4000 with $AA. This is 
useful in clearing an area of RAM. $00 
may be used; $EA (NOP or 'no operat­
ion') is also popular. 

H Hunt memory (for bytes or ASC II) reports all in­
stances of a byte combination or a string 
of ASCII characters, between two add­
resses. The two formats are: 
,H ABCD CDEF AB[CD] [EF] ... 
.H ABeD CDEF 'HELLO 

Single-step through program (see example, right) 

PC IRO SR AC XR YR SP 
0, 748C E62E 32 04 5E 00 F6 
.1 

AO 8C 5E 00 F8 746F 85 34 STA 34 
AO 6C 5E 00 F6 7491 AD 45 7A LOA 7A45 
20 74 5E 00 F8 7494 65 35 STA 35 
20 74 5E 00 F8 7496 AD 42 7A LOA 7A42 
AO A3 5E 00 Fa 7499 80 FA 03 STA 03FA 
AO A3 5E 00 F8 749C AD 43 7A LOA 7A43 
20 74 5E 00 F8 749F SO FB 03 STA 03FB 
20 74 5E 00 F8 74A2 00 BRK 
Al 77 F6 00 F6 FDOO A9 00 LOA 100 
21 OD F8 00 F6 FOD2 4C 02 FF JMP FF02 
21 OD F6 00 F6 FFD2 4C 32 F2 JMP F232 
21 OD F8 00 F6 F232 48 PHA 
21 OD F8 00 F5 F233 A5 BO LDA BO 
21 03 F8 00 F5 F235 C9 03 CMP 103 
23 03 F8 00 F5 F237 DO 04 BNE F23D 
23 03 F6 00 F5 F239 68 PLA 
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performs GO to the location indicated by the program counter, loading the 
values of the status register, A,X, and Y, the stack pointer, and the int­
errupt vector. From then on it displays the contents of the five registers, 
plus the location, disassembly and corresponding byte (s), at each step in 
the program. The illustration shows the effect of running the program in 
memory from 748C; the program is Supermon itself, as listed in the first 
diagram of the three. Chapter 14 explains the working of this routine. In 
brief, each instruction is interrupted during its execution; this means that 
the interrupt is serviced when the instruction is finished. At this juncture 
the data displayed is collected together. This is the reason for the absence 
of the very first command. Note, for example, how the Y-register remains 
unchanged; how BRK causes a jump to a new part of the program; how 
the status register changes as the contents of the accumulator change; and 
how a JMP retains all the flags - the status register is unchanged - but 
alters the program counter. 

The speed at which single-stepping takes place is controllable from the 
keyboard. < causes just one instruction to execute; RVS steps at a constant 
slow pace; and the space-bar causes rapid stepping. Nothing happens if no 
key is pressed. Press the Stop key to return to the monitor. 

P Printer disassembler as its name implies gives a continuous output to a printer; the 
syntax is . P 3000 3100 ,or whatever other limiting addresses are to be 
disassembled between. This command is not available on all Supermons; 
early versions disassemble 22 lines only, as though the printer were the 
screen. 

T Transfer memory moves a block of memory. 
As the example (right) implies, only 
three parameters are required, two 
to delimit the block of memory, and 
another to indicate the starting-point 
of the transferred block. The end­
point of the new block is implicit in 
these three values. 

Extended monitor commands: (ij) EXTRAMON 

TRANSFER MEMORY 

.T 1000 1100 5000 

TRANSFER MEMORY IN THE RANGE 1000 . 
HEX TO 1100 HEX AND START STORING IT AT 
ADDRESS 5000 HEX. 

EXTRAMON's table of commands is A B D E F H I N Q T U W ' and,. Some of these 
are closely similar to the corresponding Supermon commands, namely Assemble, Disass­
emble, Fill memory, Hunt, and Transfer memory. Extramon's W is Walk code, identical 
to Supermon's single-step. The new commands are as follows: 

B Breakpoint set & Q Quick trace let a program be single-stepped without any results 
appearing on the screen, so that a graphics program can be watched as it 
develops at any of the speeds allowed by single-stepping. These are: 

< FOR SINGLE STEP; 
RVS FOR SLOW STEP; 
SPACE FOR FAST STEPPING. 

The process aborts at a breakpoint, when a specified location is entered 
a pre-set number of times. Each command has alternative syntaxes: 
.8 2345 breaks when location $2345 is entered for the first time; and 
.8 2345 AO breaks only when it is entered the 160th time . 
• Q traces with the data currently displayable by . R, whereas 
• Q 2000 alters the program counter to $2000 (so . R isn't necessary). 

E Exit & U Undo are complementary routines which respectively set up and undo an 
emergency exit routine from an infinite loop. This is valuable when a pro­
gram appears to be lost in an infinite loop. (The rationale is explained in 
section 8.9. It involves redirection of the interrupt vector through a test 
routine, with a jump to the start of the monitor if the test succeeds. This 
method fails if the interrupt is reset - for example by cassette tape activ­
ity - or with 'X2' type crashes, which are not susceptible to this cure). 
In order to permit normal use of the Stop key. a combined keypress is 
needed to trigger the return to monitor. 40-column machines rely on both 
= and Stop, which are checked by examination of $E812. Two keys pressed 
at once register the logical AND of each separate key: $6F in this case. 

The syntax is simply .E and . U in each case. 



Programming the PET ICBM -302- 70: Transition to machine-code 
'Integrate memory' (not to be confused with Supermon's single-step) provides a hex 

dump of 8 bytes, plus the equivalent in ASCII, so that tables, messages, 
and so forth are readable. It is analogous to the .M command, except that 
(i) ASCII is present after the hex, (ii) the colon of .M is replaced by a 
new symbol, '. Thus I and' between them perform a similar function to, 
and may be used in place of, M and :. There is however a slight syntax 
difference: 
· I ABCD continues to the end of memory (FFFF) unless stopped, whereas 
• M ABCD elicits the ? error indication. 
• I ABCD BCDE behaves like .M ABCD BCDE and ceases at the second address . 

• 1 FOOO 

, FOOO 54 4F 4F 20 4D 41 4E 59TOO MANY 
, F008 20 46 49 4C 45 D3 4649 FILESFI 

N 'New loeater' is a true relocater, not just a memory-move routine like . T . It has 
six parameters, three of which are identical to those of . T, and which 
specify the start and end addresses of the chunk of code to be moved and 
the new starting-point. The end-point is of course implicit in these. Two 
types of code may be moved: continuous machine-code, or 'word tables', 
i. e. individual bytes of data not intended to be 'run' as a program. If we 
consider machine-code first, our chunk of code may not be an entire pro­
gram; and if it is a subroutine or subprogram, it may be called by code 
outside itself. So, in addition to an indication that the code is of program 
type, the remaining parameters define the range to be examined for calls 
to the relocated code. 'Word tables' can also be referred to externally, but 
do not themselves require any internal changes of the sort required by 
absolute addressing. (See Chapter 13 on relocation, for further details). 
The way to use this command is (i) Put zero bytes into the receiving area 
of RAM (.N will not move BRK instructions); (ii) Move the tables next, 
and (iii) Move the code. The examples given in the instruction program 
are 

.N 7000 77FF 1000 0400 8000 

.N 7000 77FF 1000 0400 8000 W 

in which the whole of normal RAM from $0400 to $8000 is examined for 
references to $7000 - $7FFF, and, if any are found, are converted into 
the range $1000 - $1FFF. Even if many entirely disparate machine-code 
routines coexist in RAM, this will probably be successful, since it is not 
likely that any of them will reference each others' tables or subroutines. 
This routine will not relocate zero-page programs; it will relocate ROM 
routines, which can be useful, as they are modifiable in RAM, but tables 
may their references rewritten manually, to make the resulting relocated 
code compact. 

Modifying monitors. An advantage of programs stored in RAM is their accessibility to 
the programmer. Given some experience in machine-code, it is possible to introduce 
modifications to carry out functions otherwise unattainable, but at the same time to 
preserve the input and formatting features which make monitors easier to use than ad 
hoc pieces of coding. On the other hand, this process is tricky if a source listing of 
the routine doesn't exist, because machine-code is typically written in a compact form, 
'fitting together like polished mahogany' as Churchill wrote. (Of Latin sentences!). 
Let's consider a concrete example: the 'Hunt' function enables us to search any part 
of RAM for any sequence of bytes which will fit into a single line; 

.H BOOO FFFF AD 48 E8 
searches BASIC 4 ROM for three bytes which dissamble as LDA E848. What must we do 
to allow the use of a 'wild card', e. g. 00 in this example: 

.H BOOO FFFF 85 FB 00 00 85 FC 
assuming our only software tool is an extended monitor, and not, say, an assembler 
with a label-generating disassembler? The object is to permit 'Hunt' in which the bytes 
in the positions corresponding to 00 may take any value, so STA FB any 2 bytes 
STA FC will be sought by the particular input line just quoted. As it happens, this is 
an easy modification to make. To illustrate the method, I'll use BASIC 2 Supermon in 
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a 32K machine. Other monitors and memory-sizes will therefore not give identical dis­
assemblies, but the method should be clear enough. 

First we have to find the routines which process H. By examining the tables (at 
the end of the program) we can find $48 (ASCII for H) within the table of other ASCII 
characters which make up the additional commands. We then use the relative position of 
H in its table to deduce the entry address of H, by looking through the programs for 
a table of addresses which seem to correspond to entry-points in the monitor. If. as is 
usual, the address is entered by two PHA commands followed by RTS, we must add 1 
to this address. The resulting possible entry-point 
can be checked by inspecting the code for CMP #$27 
(checking for', as in .H ABCD BCDE 'HELLO). At · , 
this point the code separates; if we follow the branch ., 
- since we are not concerned with the ASCII string · , 
test - we find a block of code from which exit occurs ., 
on CMP #$OD. The function of this loop is to fetch • , 
the bytes from the screen and store them in a buff- • , 
er. Finally, we reach the code where comparisons . , · , are made. (See the disassembly, right). Location B 4 • , 
holds the number of bytes being matched; 7BBC and ., 
7BBE compare the contents of memory with the con- ., 
tents of the buffer, and, if these are equal for all · , 
X values, the address is printed, to show that a · , 
match has been found. · , 

To introduce our modification, all we need do 
is insert a test for the presence of our 'wild card' 

· , · , · , 
byte, and, if one is found, treat it as a genuine · , 
match. The second batch of code (see right) is one 
version of this. Line 7BBB and 7BBD (4 bytes in all) 
compare the buffer contents with #00 and branch past ., 
the memory comparison if #00 has been found. (7BBC ., 
may be altered to any other value, should a #00 wild ., 
card be unsuitable; namely when #00 bytes are them- • , 
selves sought). Because of the four-byte patch, some :: 
branches have to be slightly changed; moreover, the ., 
hunt function for ASCII strings cannot be made to 
coexist with our new function, without a great deal 

· , · , 
of rewriting. I n practice, the new version would be 
stored separately under a different name from the 

· , · , 
original. : : 

All the modifications are marked on the second · , 
piece of code, including the chunk of code which was ., 
relocated 4 bytes back in RAM. Apart from rewriting • , 
the comparisons, the remaining changes only dealt · , · , with recalculating branch destinations. 

Rather obviously, this type of adjustment can't : : 
be made without a fair amount of machine-code exper- ., 
ience. In the same way, comparative beginners will · , 
not find it a simple matter to decipher the workings • , 
of these monitors. Supermon, for example, starts 
with a series of ten subroutines, which have the 
following functions: 
(i) Reset top-of-BASIC and USRCMD; 
(ii) Search for extra Supermon instruction; 
(iii) Decrement contents of (FD) or (FB); 

· , · , · , · , · , · , · , 
(iv) Get next character from input, ignoring spaces; ., 
(v) Input hex address into (F.B) , ignoring spaces; · , 
(vi) Skip a character. Get hex address into (FB). · , 
(vii) Print X spaces; · , 
(viii) Increment address in (FB); · , 
(ix) Exchange contents of FB and FC with contents 

of 020B and 020C respectively; 
· , · , · , (x) Test for equality of (020B) and (FB). If equal, • , 

Z flag is set; if less, carry flag is cleared. · , · , · , · , · , 

Section of unmodified code: 
$B4 
$FOOO 
it$00 
it$00 
($FB) , Y 
$0210,X 
$7BCF 

7BB3 86 B4 
7BB5 20 
7BB8 A2 
7BBA AO 
7BBC B1 
7BBE 00 
7BC1 00 
7BC3 C8 
7BC4 E8 
7BC5 E4 
7BC7 00 
7BC9 20 
7BCC 20 

00 FO 
00 
00 
FB 
10 02 
OC 

B4 
F3 
6A E7 
CO FO 

7BCF 20 
7B02 A6 
7B04 00 
7B06 20 
7B09 BO 00 

05 FO 
OE 
92 
09 7A 

STX 
JSR 
LOX 
LOY 
LOA 
CMP 
BNE 
INY 
INX 
CPX 
BNE 
JSR 
JSR 
JSR 
LOX 
BNE 
JSR 
BCS 

$B4 
$7BBC 
$E76A 
$FOCO 
$FOOS 
$OE 
$7B68 
$7A09 
$7BB8 

Code after modification: 
7137F 
7B81 
7B83 
7B86 
7B89 E8 

C9 27 
00 (i.Q) 
20 EB E7 
90 10 02 

7B8A 20 CF FF 
C9 00 7B80 

7B8F 
7B91 
7B93 
7B96 
7B99 
7B9B 
7B9E 
7B9F 
7BA2 

FO 22 
EO 20 
8E 00 01 
20 BE E7 
90~ 
90 10 02 
E8 
20 CF FF 
C9 00 

7BA4 FO 09 
7BA6 20 J!§... E7 
7BA9 90~ 
7BAB EO 20 
7BAD 00 EC 
7BAF 86 B4 
7BB1 20 00 FO 
7BB4 A2 

7BBO FO 04 
7BBF i51FB 
7BCl 00 OC 
7BC3 C8 
7BC4 E8 
7BC5 E4 B4 
7BC700@ 
7BC9 20 6A E7 
7BCC 20 CO FO 
7BCF 20 05 FO 
7B02 A6 OE 
7B04 00 92 
7B06 20 09 7A 
7BD9 BO@ 
7BOB 4C 56 FO 
7BDE 20 94 7A 
7BEl 80 00 02 

CMP 
BNE 
JSR 
STA 
INX 
JSR 
CMP 
BEQ 
CPX 
STX 
JSR 
BCC 
STA 
INX 
JSR 
CMP 
BEQ 
JSR 
BCC 
CPX 
BNE 
STX 
JSR 
LOX 
LOY 
LOA 
CMP 
BEQ 
CMP 
BNE 
INY 
INX 

#$27 
$7B93 
$E7EB 
$0210,X 

$FFCF 
it$oo 
$7BB3 
#$20 
$0100 
$E7BE 
$7B6S 
$0210,X 

$FFCF 
#$00 
$7BAF 
$E7B6 
$7B65 
#$20 
$7B9B 
$B4 
$FOOO 
#$00 
it$00 
$0210,X 
#$00 
$7BC3 
($FB), Y 
$7BCF 

CPX $B4 
BNE $7BB8 
JSR $E76A 
JSR $FOCO 
JSR $FOOS 
LOX $OE 
BNE $7B68 
JSR $7A09 
BCS $7BB4 
JMP $F056 
JSR $7A94 
STA $0200 
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10.4 Monitors in BASIC. 

-304- 10: Transition to machine-code 

Although good machine-code routines are unquestionably superior to their BASIC 
counterparts, there are often advantages in BASIC monitors to offset their slow speed 
and relatively large memory requirements. (i) They can be transferred between PETs 
without compatibility problems, except possibly with regard to top-of-memory pointers 
or printer formatting. This may not be true of machine-code programs, leaving the 
would-be user with the options of modifying a present program, or going back to 
BASIC, probably temporarily. (ii) The control of BASIC is familiar: the ability to stop 
the program and LIST it can be valuable. (iii) BASIC is easily changed to allow for 
smallish variations and differences. For example, a new printer, with different control 
characters, can easily be accommodated in BASIC. Decimal numbers can be used in 
place of hexadecimal. or alongside hexadecimal. if required. Different opcode conven­
tions can easily be implemented. Changes of this sort are far more difficult in mach­
ine-code. 

Beside these reasons. writing a disassembler is a useful exercise in understand­
ing a chip. The next page has a PET ICBM 6502 version which runs on all models. 
A simplified flowchart of its logic (see below) shows that it operates by waiting for 
input of a starting address. then disassembling from that point by peeking the ad­
dress and converting it into the equivalent opcode form. and looping back to repeat 
the process with subsequent addresses. As an example, suppose 027A holds this: 

.:027A 20 E4 FF FO FA 60 00 00 
On entry of starting address = 027A. the program peeks 027A, finding 32 (in decimal). 
This figure corresponds to "JSR" with address mode 10. This is processed by the 
subroutine at line 700. which prints the following two bytes, in hex. in the reverse 
order. Meanwhile. this instruction has 3 bytes (NB=3). So JSR FFE4 is printed. and 
the address to be peeked is updated. now being 027D, and the process continues. 
If line 0 includes a poke to lower the top of memory. (see HIMEM in Chapter 5). RAM 
below $8000 can partly be used for machine-code. Line 10 provides a 'warm start'. re­
entering the program without clearing the variables. The data storage method used 
here causes no garbage collection delays with any version of BASIC. 

TABLE OF VARIABLES. 

CA=current address (usu. of opcode) 
L & L$=decimal and hexadecimal numb-

ers for interconversion 
M=addressing mode. coded 0-12 
M%()=opcodes' address modes 
NB:number of bytes in current 

instruction (always 1-3) 
OP=decimal value of opcode 
OP$()=table of opcodes by decimal 

value (e.g. OP$(O)="BRK") 
P=peek value of current address 

(usually corresponds to opcode) 

TABLE OF SUBROUTINES. 

100 Print 4-byte hex number given L 
200 Print 2-byte hex number given L 
300 Convert 4-byte hex number into L 
350 Convert 2-byte hex number into L 
400 Print hex number from next two 

bytes in reverse order 
500 Print next byte in hex 
600 - 710 Print address or data after 

the opcode. punctuated in the 
standard way. See the REMs for 
details of modes M, 0-12 

2000 Initialises ... 
2500 is warm start .•. 
3000 Disassembles until spacebar is 

pressed (see line 3070) 

I' 

( START 

'of 
INITIALISE 
Set up tables of 
opcodes & their 
addressing modes 

-} 
10: INPUT STARTING AD- 'l/ 

DRESS FOR DISASSEMBLY 

1 
~ 

DDRESS HO~ 
ALID OPCODE 

N 
'fv 

PRINT ONE LINE OF NOT AN OPCODE 
DISASSEMBLY 

Location,opcode,& Print ??? 

poss.data/address 

~ 

UPDATE ADDRESS 

Address = 
Addr.+l, 2, or 3 

+ 
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o CLR: GOTO 2000: REM FITS 7K WITH SOME REMS REMOVED 
10 GOTO 2500 

10: Transition to machine-code 

100 L=L/4096:FORJ=1T04:L%=L:PRINTCHR$(48+L%-(L%>9)*7)~:L=16*(L-L%):NEXT:RETURN 
200 L=L/16:FORJ=1T02:L%=L:PRINTCHR$(48+L%-(L%>9)*7);:L=16*(L-L%):NEXT:RETURN 
300 L=0:FORJ=1T04:L%=ASC(MID$(L$,J»:L=16*L+L%-48+(L%>64)*7: NEXT: RETURN 
350 L=0:FORJ=1T02:L%=ASC(MID$(L$,J»:L=16*L+L%-48+(L%>64)*7: NEXT: RETURN 
400 FORK=2T01STEP-1:L=PEEK(CA+K):GOSUB200:NEXT:RETURN 
500 L=PEEK(CA+1):GOSUB 200:RETURN 
600 PRINT "(";: GOSUB 400: PRINT ")": RETURN: REM INDIRECT JUMP 
610 GOSUB 500: PRINT ",Y": RETURN: REM ZERO PAGE, INDEXED BY Y REGISTER 
620 PRINT "(";: GOSUB 500: PRINT ",X)": RETURN: REM INDEXED INDIRECT (ZERO PAGE,X) 
630 PRINT "(";: GOSUB 500: PRINT "),Y": RETURN: REM INDIRECT INDEXED (ZERO PAGE),Y 
640 L=PEEK(CA+1): IF L>127 THEN L=L-256 
642 L=CA+2+L: GOSUB 100: PRINT: RETURN: REM RELATIVE BRANCH 
650 GOSUB 400: PRINT ",Y": RETURN: REM ABSOLUTE, INDEXED BY Y REGISTER 
660 PRINT "#"~: GOSUB 500: PRINT: RETURN: REM IMMEDIATE 
670 GOSUB 400: PRINT II ,X": RETURN: REM ABSOLUTE, INDEXED BY X REGISTER 
680 GOSUB 500: PRINT II ,X": RETURN: REM ZERO PAGE, INDEXED BY X REGISTER 
690 GOSUB 500: PRINT: RETURN: REM ZERO PAGE 
700 GOSUB 400: PRINT: RETURN: REM ABSOLUTE 
710 PRINT: RETURN: REM IMPLIED AND ACCUMULATOR 

2000 DIM OP$(255), M%(255): SP$=" II 

2010 FOR J = 0 TO 150: REM TOTAL OF 151 DIFFERENT OPCODE/MODE COMBINATIONS 
2020 READ OP, OP$(OP), M%(OP) 
2030 NEXT J 
2500 INPUT "ASSEMBLE OR DISASSEMBLE";L$ 
2510 IF L$="A" GOTO 4000 
3000 INPUT "DISASSEMBLE FROM"; L$ 
3005 GOSUB 300: CA=L 
3008 INPUT "DEVICE#";N 
3009 OPEN N,N: CMD N,; 
3010 L=CA: PRINT L LEFT$(SP$,7-LEN(STR$(L»)~: GOSUB 100 
3015 P=PEEK(CA): M=M%(P) 
3020 IF OP$(P) <> .... THEN 3025 
3022 L=P:PRINT" "~:GOSUB200:PRINT" ???":NB=1:GOT03065 
3025 NB=2: IF M=O OR M=5 OR M=7 OR M=10 THEN NB=3 
3030 IF M=11 THEN NB=1 
3035 PRINT" "~ 
3040 FOR K=O TO NB-1 
3045 L=PEEK(CA+K): GOSUB 200: PRINT " "~ 
3050 NEXT K 
3055 FOR J = NB TO 3: PRINT" ";: NEXT: PRINT OP$(P) " "; 
3060 ON M+1 GOSUB 600,610,620,630,640,650,660,670,680,690,700,710 
3065 CA=CA+NB 
3066 CLOSEN 
3070 GET L$: IF L$ = " " THEN 2500 
3075 GOTO 3009 
5000 DATA O,BRK,11,1,ORA,2,5,ORA,9,6,ASL,9,8,PHP,11,9,ORA,6,10,ASL,1 1 
5010 DATA 13,ORA, 10,14,ASL,10,16,BPL,4, 17,ORA,3,21,ORA,8,22,ASL,8,2 4,CLC,11 
5020 DATA 25,ORA,5,29,ORA,7,30,ASL,7,32,JSR,10,33,AND,2,36,BIT,9,37,AND,9 
5030 DATA 38,ROL,9,40,PLP,11,41,AND,6,42,ROL,11,44,BIT,10,45,AND,10 
5040 DATA 46,ROL,10,48,BMI,4,49,AND,3,53,AND,8,54,ROL,8,56,SEC,11,57,AND,5 
5050 DATA 61,AND,7,62,ROL,7,64,RTI,11,65,EOR,2,69,EOR,9,70,LSR,9,72,PHA,11 
5060 DATA 73,EOR,6,74,LSR, 11,76,JMP,10,77,EOR,10,78,LSR, 10,80,BVC ,4 
5070 DATA 81,EOR,3,85,EOR,8,86,LSR,8,88,CLI,11,89,EOR,5,93,EOR,7 
5080 DATA 94,LSR,7,96,RTS,11,97,ADC,2,101,ADC,9,102,ROR,9,104,PLA,11 
5090 DATA 105,ADC,6,106,ROR,11,108,JMP,O,109,ADC,10,110,ROR,10 
5100 DATA 112,BVS,4,113,ADC,3,117,ADC,8,118,ROR,8,120,SEI,11,121,ADC,5 
5110 DATA 125,ADC,7,126,ROR,7, 129,STA,2,132,STY,9, 133,STA,9, 134,STX ,9 
5120 DATA 136,DEY,11,138,TXA,11,140,STY,10,141,STA,10,142,STX,10,144,BCC,4 
5130 DATA 145,STA,3,148,STY,8,149,STA,8,150,STX,1,152,TYA,11,153,STA,5 
5140 DATA 154,TXS,11,157,STA,7,160,LDY,6,161,LDA,2 
5150 DATA 162,LDX,6,164,LDY,9,165,LDA,9,166,LDX,9,168,TAY,11 
5160 DATA 169,LDA,6,170,TAX,11,172,LDY,10,173,LDA,10,174,LDX,10 
5170 DATA 176,BCS,4,177,LDA,3,180,LDY,8,181,LDA,8,182,LDX,3,184,CLV,11 
5180 DATA 185,LDA,5,186,TSX,11,188,LDY,7,189,LDA,7,190,LDX,5,192,CPY,6 
5190 DATA 193,CMP,2, 196,CPY,9, 197,CMP,9, 198,DEC,9,200,INY,11,201 ,CMP,6 
5200 DATA 202,DEX,11,204,CPY,10,205,CMP,10,206,DEC,10,208,BNE,4,209,CMP,3 
5210 DATA 213,CMP,8,214,DEC,8,216,CLD,11,217,CMP,5,221,CMP,7,222,DEC,7 
5220 DATA 224,CPX,6,225,SBC,2,228,CPX,9,229,SBC,9,230,INC,9,232,INX,11 
5230 DATA 233,SBC,6,234,NOP,11,236,CPX, 10,237,SBC,10,238,INC, 10, 240,BEQ,4 
5240 DATA 241,SBC,3,245,SBC,8,246,INC,8,248,SED,11 
5250 DATA 249,SBC,5,253,SBC,7,254,INC,7 
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Tiny assemblers in BASIC are a little harder to write; each line must be validated, 
and the addressing-mode deduced from the input. The additional batches of code (see 
below) may be added to the disassembler, and called from line 2500. They do not pro­
vide full validation, but are designed for ease of programming. The rationale of sub­
routine 800, which determines the mode, is illustrated in 
this table of addressing modes, numbered as in the pro­
gram, arranged as examples in columnar form, so that 
the lengths of each complete instruction and the pos­
itions of the punctuation symbols can be seen at a glance. 

Lines 3035 - 4045 check for the existence of the 
opcode and for the correctness of its addressing mode, 
rejecting "PQR" and "PH A 1234", for example. The sub­
routines starting at 900 extract the address from the 
string which was input; and lines 4060 ff. poke the 
'assembled' values into RAM. Note that line 4015 puts 
a " before the input; this enables commas to be accepted 
without ?extra ignored. The pokes apply to BASIC>1. 

This version does not include '$' symbols before 

1 
ABS. IND. . 
O-P,Y L 
(IND,X) L 
(IND) , Y I 
BRANCH E 
ABS,Y II 
IMMEDIATE II 
ABS,X II 
O-P,X II 
O-PAGE II 
IMPLIED/A IE 

Il 
MODE 

) 0 
, 1 
, ) 2 
) ,~ 3 

4 

,~ 5 
6 

,x 7 
, 8 

9 
10 

hexadecimal numbers; there is little problem in introducing them, however. In some 
cases (e,g, line 3010) the TAB function has been replaced by a longer expression, as 
not all printers process TAB. Line 3009 may need to open a file-number > 127. 

800 L=LEN(AS$) 
805 IF L=3 THEN M=ll: 
810 IF L=6 THEN M= 9: 
815 IF L=7 THEN M= 6: 
820 L$=MID$(AS$,8,1) 

RETURN: 
RETURN: 
RETURN: 

825 IF L$="X" THEN M=8:RETURN 
830 IF L$="Y" THEN M=l:RETURN 
835 IF L$="," THEN M=2:RETURN 
840 IF L$=")" THEN M=3: RETURN: 
845 L$=RIGHT$(AS$,l) 

REM IMPLIED 
REM ZERO PAGE 
REM IMMEDIATE 

REM 
REM 
REM 
REM 

ZERO PAGE,X 
ZERO PAGE,Y 
INDIRECT, X 
INDIRECT,Y 

850 IF L$="X" AND L=10 THEN M=7:RETURN REM ABSOLUTE,X 
855 IF L$="Y" AND L=10 THEN M=5: RETURN REM ABSOLUTE, Y 
860 IF L$=")" AND L=10 THEN M=O:RETURN REM ABSOLUTE INDIRECT 
865 IF LEFT$(AS$,l)="B" AND MID$(AS$,2,1)<>"I" THEN M=4: RETURN: REM BRANCH 
870 IF L=8 THEN M= 1 0 : RETURN: REM ABSOLUTE 
875 PRINT "MODE ?":M=12: RETURN: REM CATCH ALL OTHER INCORRECT ENTRIES 
900 P=6:L=4:GOSUB 960:RETURN 
905 P=5:L=2:GOTO 960 
910 P=6:L=2:GOTO 960 
915 P=6:L=2:GOTO 960 
920 P=5:L=4:GOSUB 960: GOSUB 300 
921 L=L-CA-2: IF L>127 OR L<-128 THEN PRINT "BRANCH?":M=12:RETURN 
922 IF L<O THEN L=L+256 
923 RETURN 
925 P=5:L=4:GOTO 960 
930 P=6:L=2:GOTO 960 
935 p=5:L=4:GOTO 960 
940 P=5:L=2:GOTO 960 
945 p=5:L=2:GOTO 960 
950 P=5:L=4:GOTO 960 
960 L$=MID$(AS$,P,L): RETURN 

4000 INPUT "ASSEMBLE FROM"; L$ 
4005 GOSUB 300: CA=L 
4010 L=CA: PRINT L TAB(7);: GOSUB 100 
4015 POKE 527,34: POKE 525,1: INPUT" ";ASSEMBLER$ 
4020 IF AS$="END" GOTO 2500 
4025 CO$ = LEFT$(AS$,3) 
4030 GOSUB 800: IF M=12 THEN 4010 
4035 FOR J=O TO 255 
4040 IF CO$<>OP$(J) THEN NEXT: PRINT "OPCODE?": GOTO 4010 
4045 IF M<>M%(J) THEN J=J+l: GOT04040 
4050 NB=2: IF M=O OR M=5 OR M=7 OR M=10 THEN NB=3 
4055 IF M=ll THEN NB=l 
4060 POKE CA,J: REM POKE OPCODE INTO MEMORY 
4065 IF NB=1 THEN 4900 
4070 IF M=4 THEN GOSUB 920: IF M=12 THEN 4010 
4075 IF M=4 THEN POKE CA+l,L: GOTO 4900 
4080 ON M+1 GOSUB 900,905,910,915,920,925,930,935,940,945,950 
4085 IF NB=2 THEN GOSUB 350: POKE CA+l,L: Rm4 ONE ADDRESS BYTE ONLY; TWO:-
4090 IF NB=3 THEN GOSUB 300: POKE CA+l,L-INT(L/256)*256: POKE CA+2,L/256 
4900 CA=CA+NB:GOT04010 
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10.5 Introduction to 6502 coding: elementary examples. 

I shall assume in this section and subsequent chapters that the reader has a reasonable 
grasp of hex arithmetic, and has either a BASIC or machine-code monitor available. 
Equipped in this way, s /he can experiment with the 6502 and become confident in its 
use. This chip is not particularly easy to program. One of the designers of Commod­
ore's 'Micro-mainframe' has said, among other things, 'If you can program the 6502 
you're a genius' and 'After the 6502, everything from then on is easy'. Without going 
as far as this, it remains the case that machine-language cannot be mastered overnight. 

We'll look at some of the simplest instructions and addressing-modes in this sec­
tion, since progression from these to the more subtle instructions is a natural route 
which most or all programmers (I suppose) take. Each example can be entered either 
from the machine-language monitor in the CBM (SYS 4 is usually the easiest method of 
access), or via a monitor; I have used the convention of prefixing hex numbers with 
'$', which however should be omitted if the BASIC routine is the previous section is 
used. There are, of course, many other examples throughout the book: SYS and USR 
in Chapter 5, and some graphics routines in Chapter 9, ought to be fairly accessible 
even to quite inexperienced programmers. 

Example 1: poking a single character to the screen. 

Starting at 027A, enter the following 6 bytes, either with .M, or with a monitor's 
assembler. The two forms are exactly equivalent to each other, and are simply differ­
ent ways of writing the same information. The opcodes are more readable - with exper­
ience - than the individual bytes, but either form can be deduced from the other. Thus 
disassembly of the bytes entered by .M will yield the result shown; and inspection of 
memory after entering the instructions from an assembler will show the same pattern of 
six bytes as though entered using MLM. 

.M 027A A9 00 8D 00 80 60 xx xx 

(xx may be any value). 

$027A LDA #$00 
$027C STA $8000 
$027F RTS 

What does this short routine do? $027A = 634, so SYS 634 causes the code to execute. 
RTS, 'ReTurn from Subroutine', has the effect of returning to BASIC, so we may 
execute SYS 826 as often as we like from direct- or program-mode BASIC. Its effect is 
to print an '@' symbol in the extreme top-left corner of the screen, unless the screen 
scrolls and the character is lost. This top-left screen location, as we already know, is 
location $8000 in RAM. This should give a clue to the meaning of ' STA $8000 '. In fact, 
we can read the code like this: Load the accumulator with #0 (i. e. value zero), store 
the accumulator in $8000, and return to BASIC. The accumUlator, abbreviated to A, 
and shown by MLM as 'AC' when the registers are displayed, is an 8-bit location within 
the chip itself, which can therefore be loaded with any value from 0 - FF. Our example 
has the same effect as poking $8000 with zero. 

Can we do more with this? If we POKE 635,1 then SYS 634, the letter 'a' or 'A', 
depending on the upper- or lower-case mode, appears on the screen; and disassembly 
shows that our short routine now reads: $027A LDA #$01 

$027C STA $8000 
$027F RTS 

because 027B was changed (from BASIC) into 1. This direct-mode 

FOR J=O TO 255: POKE 635,J: SYS 634: NEXT 

statement: 

runs through the entire gamut of characters: very rapidly changing, they are all dis­
played one after the other in the top-left corner of the CBM screen. The machine-code 
has been executed 256 times, each time in a slightly different form, being left with 
its first instruction changed to $027A LDA #$FF, because $FF, 255 in decimal, was 
the last value put into $027B. 

When this is fairly clear to you, look at the .M form of the six bytes again. 
Note that the address $8000 is held in reverse order, with $00 preceding $80. This is 
a feature of all 3-byte commands in the 6502 and many other chips. (But not the 6809). 
If we modify 027D's contents, SYS 634 will load the accumulator, then store it. not in 
$8000, but in a location from $8001 - $80FF, i.e. within the first few lines of the 
screen. Try this: 

FOR J=O TO 255: POKE 635,J: POKE 637,J: SYS 634: NEXT 

which calls the routine 256 times again, but this time prints each character separately 
on the screen, in ascending order. The final form of the routine, after 255 has been 
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poked in, is: $027A LOA #$FF 
$027C STA $80FF 
$027F RTS 

You should now be able to print any character into any location on the screen, after 
a certain amount of calculation. Section 9.1's table of PET ICBM screen memory char­
acters lists the values corresponding to each poked character; and section 9.1 has a 
table of the hex values of the start of each screen-line. 

Example 2: Indexed addressing. 

Enter the 7-byte routine $027A LOA #$00 

027A A9 00 AA 90 00 80 60 xx 
$027C TAX 

.M 
$0270 STA $8000,X 

(xx may be any value) . $0280 RTS 

This introduces two ideas: the idea of the X-register, and its use as an index. TAX 
stands for 'Transfer Accumulator to X-register'; X is an 8-bit register, similar to the 
accumulator, into which the contents of A are loaded when TAX is executed. $8000, X 
is a special notation, meaning the address $8000+X's current contents. That is, what­
ever value is in X is added to $8000, and the resulting address used in the command. 
Since X is 8 bits long, the range of addresses spanned is $8000 - $80FF in our example. 
What happens when SYS 634 runs this code? We can read it like this: Load A with the 
value zero; transfer A to X, so that X now also holds the value zero; store A in the 
address $8000 indexed by X, which is therefore $8000; and return to BASIC. The 
effect is to put '@' in the top-left of the screen again. 

POKE 635,1: SYS 634 runs 
this modified version: $027A LOA #$01 

$027C TAX 
$0270 STA $8000,X 
$0280 RTS 

which puts 'a' or 'A' in the top-Ieft-but-one location on the screen. This happens be­
cause STA $8000, X when X holds #1 is understood by the 6502 to refer to $8001. 

Example 3: Incrementing and branching to generate loops. 

Type in the next routine, which introduces a few more introductions. Once again, the 
PET's monitor and the 'assembler' and disassembler are dealing with identical data; the 
appearance may be different, but the essence is the same: 

.M 027A A2 00 8A 90 00 81 E8 00 $027A LOX #$00 ;LOAO REGISTER X WITH #00 

.M 0282 F9 60 xx xx xx xx xx xx [$027C TXA ;TRANSFER X TO ACCUMULATOR 

(xx may be any value). $0270 STA $80AO,X;STORE ACC'R IN $80AO,X 
$0280 INX ; INCREMENT X-REGISTER BY 1 
$0281 BNE $027C ;BRANCH IF RESULT IS NOT 0 
$0283 RTS ;RETURN (TO BASIC) 

Now enter SYS 634 from BASIC. The effect is to print all 256 screen values in 256 
adjacent locations (Le. reading across, then down), starting at the fourth line of the 
screen, or the second with an 80-column screen. How does this work? The instruct­
ions have been annotated to help make the process clear. (These comments won't be 
accepted by many tiny assemblers, so don't try to enter them with the program). 

First, X, like A, can be loaded with any 8-bit value; #0 in our example. TXA 
transfers X to A. At this stage, therefore, both hold #0, or, in terms of bits, 
0000 0000. $80A 0 is the start of a line on the screen; when X holds #0, the indexed 
address 80AO,X is therefore calculated to be $80AO. So #0 is poked into $80AO. The 
next instruction, INX, adds 1 to the contents of the X -register. If the value is #FF, 
it is incremented to #0. So long as it is not zero, BNE ('Branch if Not Equal to zero) 
will cause the program to jump to the address specified; in the example, therefore, the 
code from 027C to 0281 is executed 256 times, the value of X at the start of the loop 
being incremented from #0 to #FF. After this. the branch fails and RTS returns to 
BASIC. Note that the branch command, in spite of disassembling to three bytes, none­
theless occupies only two bytes of machine-code. All branches have relative addressing 
in the 6502. This is a fairly simple concept. When the branch is instruction has been 
read by the chip, the program counter points just after it, to the next instruction -
RTS here. The byte following the branch is added to the program counter, and a jump 
made to the new address, if the branch's test succeeded. In the example, counting back 
from RTS to TXA gives -7 bytes. This is 256 - 7 = 249 in 2's complement form, or F9. 
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Example 4: Subroutines and comparisons. 

The previous machine-code example is a subroutine, which we called from BASIC. It is 
also callable from machine-code; the routine which follows calls it 256 times, each time 
incrementing the address which, when indexed, determines the placing of each charact­
er on the screen. Type in the code, retaining that of the previous example, which it 
uses: 

.M 0284 20 7A 02 EE 7E 02 AD 7E 

.M 028C 02 C9 AO DO F3 60 xx xx 

(xx may be any value). 

$0284 JSR $027A iCALL SUBROUTINE AT $027A 
$0287 INC $027E iINCREMENT CONTENTS OF $027E 
$028A LDA $027E iLOAD ACC'R WITH NEW CONTENTS 
$028D CMP #$AO iEQUAL TO #AO YET? 
$028F BNE $0284 iIF NOT, REPEAT LOOP 
$0291 RTS iBUT IF SO, RETURN TO BASIC 

From BASIC, SYS 644 runs this. ($0284=644 in decimal). It takes about.8 of a second 
to return to BASIC; meanwhile the entire set of characters is printed on the screen 256 
times, the starting-points varying from $80AO-$80FF, then $8000-$80AO. INC 027E has the 
same effect as poking J from BASIC when J is incremented from within the FOR ... NEXT 
loop. CMP ('CoMPare accumulator'), in our example, compares #AO with the contents of 
the accumulator, which holds the incremented value in $027E. The branch back occurs 
until the accumulator's contents equal #AO, after a complete cycle of 256 increments. 
Note that it is easier to test for equality with zero (as in the previous example); a 
comparison with #0 is not usually needed. Note that JSR, which is analogous to GOSUB 
in BASIC, returns when RTS is encountered. JSR actually means 'Jump Saving Return 
address', not 'jump to subroutine' as might be thought. The branch instruction is a 
little longer here, jumping 13 bytes back; this is F3 in 2's-complement hexadecimal. 

Example 5: Decrementing and counting. 

If we call the previous routine 256 times (taking almost 4 minutes) the pattern of char­
acters repeats. We ean use the third and final register to count; this is the Y-registel'. 

.M 0292 AO 00 20 84 02 88 DO FA $0292 LDY #$00 ;LOAD COUNTER 

.M 029A 60 xx xx xx xx xx xx xx $0294 JSR $0284 ;CALL PREVIOUS SUBROUTINE 

(xx may be any value). $0297 DEY ;DECREMENT COUNTER 
$0298 BNE $0294 ;BRANCH IF COUNTER NON-ZERO 
$029A RTS ;BACK TO BASIC 

SYS 658 sets this going. Note that the Stop key will have no effect, since this works 
in BASIC only by specially being tested before the execution of each statement. Y is 
very similar to X, although there are some differences in indexed addressing modes, 
which are asymmetrically distributed between X and Y. Decrementing, when used to 
count, is very similar to incrementing, but is often superior from the programming 
point of view, enabling a few bytes to be saved. Like an increment, this command 
passes directly between #0 and #FF. In the example, therefore, the value of Y within 
the loop is #0, #FF, #FE, #FD, ... , #0. 

Example 6: Simple program with BASIC driver to look at CBM's memory. 

The machine-code subroutine, which we shall call from a BASIC program, moves 256 
bytes of memory from some portion of the CBM to the screen. (Note that the originals 
are not altered in any way by the process of being read). The BASIC program loops 
until Stopped; any keypress causes the 256 bytes following those currently on the 
screen to be displayed - except the comma, which moves back. Any other key may be 
used instead of the comma - see line 10030. Put the keyboard into lower-case mode to 
make strings, BASIC keywords in ROM, etc., readable . 

. M 027A A2 00 BD 00 CO 9D 00 80 $027A LDX #$00 
.M 0282 E8 DO F7 60 xx xx xx xx $027C LDA $COOO,X ;LOAD ACC'R FROM INDEXED 

(xx may be any value). 

A simple BASIC program is this: 

$027F STA $8000,X ;ADDRESS & SAVE IT 
$0282 INX 
$0283 BNE $027C 
$0285 RTS 

10000 L=192 : REM THIS CORRESPONDS TO $CO OF $COOO; IT COULD BE INPUT AS A HEX NUMBER 
10010 POKE 638,L: SYS 634 :REM DISPLAY 256 BYTES 
10020 GET X$: IF X$='''' GOTO 10020 : REM WAIT FOR KEYPRESS 
10030 IF X$="," THEN L=L-2 
10040 L=L+l: GOTO 10010 

:REM IF SPECIAL CHARACTER, REDUCE ADDRESS BY 2 
:REM INCREMENT ADDRESS; DISPLAY BYTES ETC. 
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CHAPTER 11: PROGRAMMING THE 6502 MICROPROCESSOR 

11.1 Hardware features of the 6502. 

This section deals with the following topics: 

11.1.1 Addressing modes 11.1.2 The status register; NVBDIZC flags 
11 . 1 . 3 The program counter, zero-page, and stack 
11. 1 . 4 Hardware vectors in the 6502: NMI, RESET, and IRQ 
11.1.5 Instructions and opcodes 

Note that Chapter 12 has a comprehensive guide to the 6502, prefaced with a table 
which indicates the meanings of the standard mnemonics. The appendices include a 
comprehensive set of tables of reference on the 6502. 

11. 1. 1 Addressing modes. The 6502 has 12 or 13 addressing modes, depending on how 
they are counted. Most of them are quite easy to understand; a few are difficult. Let's 
first consider how addressing modes are built into the chip. We've seen, in the ele­
mentary examples of the previous chapter how an instruction may be followed by one 
or two bytes, or stand on its own. This is inescapable with this chip: no command 
extends, in total, over more than three bytes. Now suppose an instruction is encount­
ered while a program runs, and assume it to be a three-byte instruction. It might 
appear like this: xx 00 80 , referring to the address $8000. Without knowledge of 
the precise instruction, however, it is impossible to state what addressing-mode is in 
use; as the previous chapter showed, xx=AD loads the accumulator with the contents 
of $8000; xx=BD loads it from $8000,X. So the instruction has, implicit within it, an 
addressing mode; and in fact this determines whether the total instruction is 1,2, or 3 
bytes long, and the position at which the next instruction is deemed to begin. Note 
that all addressing modes but one deal in memory locations; typically, the contents of 
some location may be added to the contents of another, and compared with the contents 
of a third. Only 'immediate' mode addressing loads an explicit value. This rather ab­
stract property of processors takes some time to grasp. Now we can examine each mode 
in turn. For convenience, we can divide instructions into those of length 1,2, and 3 
bytes: 

1-byte instructions have no reference to either address or data, and therefore oper­
ate only on hardware features within the chip itself. In a sense, the phrase 'address­
ing mode' doesn't apply at all, but for consistency these are described as possessing 
'implied addressing'. Some of the flags, and some stack operations, can be processed 
by these commands, as we'll see in the next sections. The accumulator can also be 
shifted or rotated bit by bit with a single-byte instruction; this is sometimes disting­
uished as 'Accumulator addressing'. 

2-byte instructions consist of an instruction followed by a single byte. If this byte is 
treated as data, the instruction uses 'Immediate mode'. This is usually indicated by a 
hash symbol (#) before the data; we had examples in the elementary programs of the 
last chapter, for example LOA #$00 and LOX #$00. Apart from loading one of the three 
registers with a value, this addressing mode is used in arithmetic operations, logical 
operations, and comparisons. 

All other 2-byte instructions refer to addresses, not data. There are six differ­
ent types. We have already used branches in the previous chapter. Their addressing is 
usually called 'Relative', because off its use of an offset, which, in the 6502, confines 
the maximum range reachable by a branch to a backward distance of 128 and a forward 
distance of 127 bytes. 

The remaining five 2-byte modes all use zero-page addressing. The zero-page is 
not a feature of the chip itself; it is the section of RAM (or ROM) which is wired to 
addresses $0000 - $OOFF. However, the chip has the facility of enabling the most sig­
nificant byte, of zero, to be ignored, so that, for example, LOA $34 can be written in 
place of LOA $0034. This saves a byte, which in turn shortens programs and increases 
their speed. * For this reason, the first 256 bytes are usually in great demand in 6502 

*The appendices include a quick-reference chart of 6502 addressing-modes' timing which 
condenses the information on timing provided by the manufacturers of the chip. The MOS 
manuals on the chip have examples to show how the tjming is determined by the separate 
sub-instructions carried out at each clock-cycle. For our purposes it is probably 
sufficient to note that long, complex instructions are slower than short simple ones. 
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programs, so that machine-code routines which coexist with BASIC must be careful to 
take into account BASIC's use of these locations. The five types of addressing are 
illustrated by these examples: 

(i) Zero-page. This is the simplest type: LDA $55 (A5 55) loads the accumulator 
with the contents of address $55. $55 may hold any value from #0 to #FF. Note the 
difference between this and the immediate mode instruction LDA #$55 (A9 55) which 
loads the value #55 into the accumulator, and has no connection with location $55. 

(ii) Zero-page indexed by X. LDA $AO,X (85 AO) loads the accumulator from 
$AO plus the contents of the X-register at the time the instruction is carried out. Note 
that the total of $AO+X is itself treated as a zero-page address; if there is overflow, 
it is ignored. If X holds #60, AO+60 is treated as 0, not $0100, and the contents of 
address 0 are loaded into A. 

(iii) Zero-page indexed by Y. This is exactly analogous to the latter mode, but 
the chip is designed so that only two commands can use this mode, viz. LDX and STX • 

(iv) Indexed indirect. An example of this type is: LDA ($00, X) (AI 00). The 
brackets are a convention, which indicates that A is loaded from an indirect address. 
That is, two bytes point to the address from which the data is taken. Let's assume 
for the moment that X contains #0, to simplify matters. In effect, we now have 
LDA ($00) , since the indexing effect of X is zero. Suppose the start of the zero-page 
is like this: 

.M 0000 01 80 84 02 xx xx xx xx. 
Now, LDA ($00) loads A from the address it finds in ($00), which is $8001. So the 
instruction, in this instance, has the same effect as LDA $8001. In fact, pure indirect 
addressing like this is not available on the 6502; 'indexed indirect' addressing, as the 
name implies, allows indexing of the indirect address. Thus, if X were loaded with 
#2, then LDA ($00, X) has the effect of loading A from the indirect address of $00+2, 
or ($02). In effect, therefore, with the figures above, LDA $0284 is executed. The 
command is useful (a) when X=#O, as pure indirect addressing of the zero-page; (b) 
when a table of pointers exists in the zero-page. The BASIC pointers to the start of 
BASIC, its end, and its variables, provide an example. 

This command is again asymmetrical with respect to the X and Y registers; see 
STY in Chapter 12 for some comment on this. 

(v) Indirect indexed. An example of this type is: LDA ($2A) , Y (81 2A). As with 
the latter mode, the brackets indicate indirect addressing; if Y holds #0, the effect is 
identical to that obtained when X holds #0 and LDA ($2A,X) is executed. Apart from 
this special case, however, this mode is post-indexed by Y; that is, the indirect add­
ress is calculated, then Y is added, and the resulting address is the object of the 
processing. To show how this works, consider the data shown above, of four possible 
bytes at the very start of RAM. Now, LDA ($00), Y loads from $8001 + Y, so the 256 
bytes from $8001 to $8100 can all be accessed, depending on Y's value. Chapter 9 has 
some graphics examples which use this mode. See for example the routine to plot 
vertical bars, histogram-fashion, in section 9.3. 

3-byte instructions in the 6502 always consist of an instruction followed by a 2-byte 
address. (Since the accumulator, for example, is an 8-bit register, 'LDA #$1234' makes 
no sense). There are four interpretations of the address: 

(i) Absolute. This mode is a simple reference to a 2-byte address, as in: 
LOA $1234 or LOA $8000 or LOA $0012. 

(ii) Absolute, indexed by X. The contents of X are added to the address to 
give the actual referenced address. Thus, if X holds #$50, LDA $8000,X loads the 
accumulator from $8050. As with zero-page indexing, the maximum value cannot exceed 
the legitimate range, so LDA $FFFO,X when X holds #$11 loads the accumulator from 
$0001, not from the non-existent $10001. 

(iii) Absolute, indexed by Y. This is exactly analogous to the previous mode. 
(iv) Absolute indirect. The 6502 has one instruction only with this mode, namely 

JMP. An indirect jump transfers the program's flow of control to a new address; this 
is found from the contents of the address pointed to, by the indirect command. An 
example is perhaps in order here: JMP ($0000) with the zero-page data we've used 
before has the same effect as JMP $8001; and JMP ($0001) jumps to $8480, and so on. 
This command is useful when a table of addresses exists in a block, like the three vec­
tors at the top of RAM, without JMP commands between the addresses. The RESET 
vector at (FFFC) can be called by JMP ($FFFC) irrespective of BASIC ROM. Tables with 
JMP, the kernel for example, do not need this. 
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11 . 1 • 2 The status register and N, V ,8,0, I, Z and C flags 

The status register or 'Processor status register', recorded as 'SR' by the PET ICBM 
monitor, is an 8-bit register within the chip containing seven status bits or 'flags'. 
The eighth bit, bit 5 in fact, is not used, and is fixed at 1. The flags are intimately 
related to the chip's operation, at least three being in a position in the register which 
is directly related to their function. A chart in the appendices enables a status reg­
ister to be separated into its individual bits; from it, an SR of A4 (say) can be imm­
ediately recognized as having its N and I flags on, and its other flags off. Before we 
examine each flag's purpose, it is important to make clear the idea that the flags do 
not change unless a command explicitly alters them; the decimal (D) bit for example 
typically remains off throughout the entire operation of all the programs which a CBM 
runs. The appendices have a double-page table of opcodes, which includes a list of 
flags, those which are altered by a command being marked. All the blank spaces in 
this part of the table mark flags which are left unchanged. LDA alters both the Nand 
Z flags, but no others, for example. Where a flag is marked, a '1' or '0' implies that 
the command explicitly sets this value in the flag. 'CLD' for example 'CLears the Dec­
imal' flag; the flag is set to 0, irrespective of its value before. The flags marked as 
'N' , 'V' , 'Z' and so on may be set in either direction, depending on the result of the 
processing. LDA sets the 'Z' or 'Zero' flag true when the accumulator loads the value 
of zero, and so on. 

The 'N I, 'Negative ' flag (bit 7 of SR) usually holds bit 7 of the result of an operat­
ion, or of an intermediate result, and can be pictured as a direct copy of bit 7 into 
the status register. LDA #$D3 loads #D3 into A, and is a command which affects N. 
Since D 3 = 1101 0011 in bit terms, with bit 7 high, the N flag is turned on by the 
instruction. The word 'negative' is based on the 2's complement idea: where this is in 
use, N = 1 shows a negative, and N = 0 a positive, number. In other cases the flag 
may be used in a conventionalised sense: hardware may be wired to bit 7, and BMI 
and BPL (Branch on Minus and Branch on PLus) used to detect whether bit 7 is high 
or low. See BMI and BPL in Chapter 12. These branches depend on the state of N; 
when on, BMI is taken; when off, BPL. So 'BPL' really means 'branch if bit 7 is low', 
or 'branch if zero or positive'. 

The 'V', 'internal oVerflow I flag (bit 6 of SR) is probably the least-used 6502 flag, 
because of the infrequent use of 2's complement arithmetic outside the chip's own 
branch istructions. See the entry under BVC in Chapter 12. V is altered by only five 
instructions, including addition (ADC) and subtraction (SBC). 

The '8 I, '8 reak' flag (bit 4 of SR) is usually set only on BRK and when the SR is 
examined after having been pushed on the stack. Its purpose is to enable a BRK 
instruction to be distinguished from an interrupt, since both jump to the same address. 
Section 11.1. 4 explains the hardware vectors on the 6502. 

The '0 ' , 'Decimal calculation mode' flag (bit 3 of SR) changes the mode of operation 
of the chip from hexadecimal arithmetic to 'BCD' or 'binary-coded decimal'. See SED in 
Chapter 12. When bit 3 of the status register is on, the effect on addition is to add 
6 to the low nybble if its result exceeds 9, and to add 6 to the high nybble if that 
result exceeded 9. When this bit is set - see SYS in Chapter 5 for an example - the 
normal arithmetic operations of the PET become confused. For this reason the built-in 
monitor takes the precaution to clear the decimal flag. 

The 'I', 'Interrupt disable' flag (bit 2 of SR) prevents the interrupt request line from 
causing the 6502 to service an interrupt, when it is on. When off, any interrupt which 
uses the IRQ line will cause an interrupt, as explained in 11.1. 4. In this way, the 
program can be made to ignore interrupts of this sort until it is ready to deal with 
them. See SEI and CLI in Chapter 12. The CBM uses a regular interrupt to read the 
keyboard. If this is redirected to a new program, it may be necessary to set the dis­
able flag to ensure that the interrupt is not itself interrupted. 

The 'Z', 'Zero result ' flag (bit 1 of SR) is set by most of the instructions which set 
N. Instead of registering the result in a single bit, Z in effect logically OR s together 
all the bits of a result; if this process gives a value of zero, the Z bit is set, to show 
a zero result; otherwise, when Z is off, the result was non-zero. The notes to BEQ 
and BNE in Chapter 12 expand on this. 

The 'C ' , 'Carry' flag (bit 0 of SR) is primarily of use in additions or subtractions, 
where its function is similar to the carry which is used (or was used, before cheap 
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calculators) to denote overflow from a column of figures to a more significant column. 
BCC in Chapter 12 has notes on this flag, and an example involving addition; CLC, 
SEC, and BCS are other commands involving this flag. 

11.1.3 The program-counter, zero-page, and stack. The program-counter is a pair of 
8-bit registers, usually represented as PCL and PCH, connected to appear like a 16-
bit register. This counter keeps a record of the current RAM or ROM location of the 
command being executed. Because of its 8-bit structure, updating in order to point to 
consecutive items of data takes 2 clock cycles, which is why the fastest instructions 
take 2 cycles with this chip. The registers can only be accessed indirectly; BRK or an 
interrupt causes the value to be saved, as does JSR, where the 'Save Return address' 
refers to the program counter. RTS and RTI accordingly both load their saved data 
into the program counter, so these commands can be used to load values directly into 
PC. CBM BASIC uses 'RTS' to jump to the addresses at which BASIC keywords are 
run; and the MLM uses 'RTI' to load the status register and the program counter when 
.G is run. The same effect could be got - perhaps more easily - with a JMP instruct­
ion, whose function is solely to reload PC with some new value. 

The zero-page, as we've seen in 11.1. 1 on addressing, is the section of memory 
from $00 - $FF. The stack is a hardware feature of the chip. It uses page 1, i.e. $100 
- $lFF of RAM. (Note that memory is divided into 256-byte pages. Some machine-code 
instructions take an extra clock cycle to compute branches and indexed addresses if 
the result happens to cross the boundary of a page). The stack is difficult to under­
stand, for several reasons. In the first place, the area of RAM from $0100 - $OlFF 
which holds the stack also doubles as normal RAM; it is not reserved for the stack 
alone. Secondly, bytes 'pushed' onto the stack are added at the bottom of the present 
stack. Thirdly, the stack pointer, in order to be consistent, behaves in an apparently 
inconsistent way, operating differently when pulling than pushing. The stack pointer 
is another 8-bit register, which in the 6502 is always preceded by $01, and which 
keeps track of the current stack of data. (The leading $01 forces the pointer into the 
range $0100 - $OlFF). Two complementary pairs of instructions exist on the 6502: 
PHA and PLA ,and PHP and PLP. Any of these instructions followed by the other member 
of the pair must leave the accumulator or processor status flags unchanged. Because 
of this, the sequence store data I update pointer is used with a 'push', and the se­
quence update pointer I load data with a 'pull'. Chapter 12 has examples and comment 
under PHA, PHP, PLA, and PLP. Four other commands operate on the stack automat­
ically: these are JSR and its complement RTS, BRK, and RTI. The stack pointer is 
accessible by transfer with the X-register only: TSX and TXS respectively transfer 
the current stack pointer (omitting $01-) to X, and vice-versa. 

11.1.4 Hardware vectors in the 6502: NMI, RESET, and IRQ. The 6502 has, like 
many microprocessors, a clutch of specially reserved addresses at the top of ROM. On 
activation of the non -maskable interrupt line, the reset line, or the interrupt request 
line while the interrupt-disable flag (I) is off, the chip automatically sets the program 
counter to the address in (FFFA), (FFFC), and (FFFE) respectively. The designer of 
the system has to ensure that suitable processing routines exist at the destination 
addresses. For example, BASIC 4 has 
.M FFFA 49 FD 16 FD 42 E4 xx xx, 
so the effect of causing a non-maskable interrupt can be investigated by disassembling 
from $FD49; the reset sequence (triggered at switch-on) follows $FD16; and ordinary 
maskable interrupts are processed from $E442. These three vectors are the 6502's total 
complement of special vectors; some chips have many more. The BRK ('BReaK') instr­
uction in fact shares the IRQ vector, so a routine has to be used to work out whether 
a BRK or interrupt caused the execution of the routine: this is easy to find in the 
PET ICBM by disassembling the machine-language from (FFFE). If the entry on the 
stack has its BRK flag (B) set, an instruction like SYS 4 is assumed, and the monitor 
is entered; otherwise, the regular keyboard and screen servicing routine is entered. 
(Note: the PET, with BASIC 1, is different - see Chapter 15). An interrupt has a 
similar effect to BRK, in that it pushes the program counter and status register onto 
the stack. (But not A,X, and Y). In this way, RTI (ReTurn from Interrupt) can con­
tinue execution of the interrupted routine when the interrupt has been serviced. For 
this reason, BRK and RTI respectively push and pull the same data on the stack, and 
so carry out their operations in the opposite sense from each other. 

The NMI vector (which is usable in BASIC>l) is sometimes used to supply a 
reset switch to the CBM, so that infinite loops in machine-code can be aborted. See 
section 8. 9. The RESET vector is self-explanatory; JMP (FFFC) calls it, and can be 
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used to erase a program after it has been used, for instance. IRQ is used in the PET 
and CBM to scan the keyboard, the frequency depending on the VDU screen. Setting 
the interrupt disable flag (with SEI) turns this off indefinitely. In process-control 
systems, most interrupts use IRQ, and can be temporarily ignored by disabling the 
servicing routines; the NMI is reserved for emergency use as a rule. The pins on the 
6502 which correspond to the vectors are pins 6, 40, and 4 respectively. 

11.1.5 6502 instructions and opcodes. An opcode ('operation code') is a mnemonic, 
intended to make machine-language relatively easy to read. 6502 opcodes are all three 
letters long (unlike e.g. Z80 opcodes) which makes for tidy assembler and disassemb­
ler listings. An alphabetical list of opcodes in the next chapter explains the workings 
of each instruction. It is prefaced by a table to summarise the mnemonics' meanings. 
An opcode bears the same relation to machine-language that a BASIC keyword does to 
its tokenised form. Just as a BASIC keyword is stored in one byte, but LISTed by a 
special routine which expands it into a recognisable word, so a machine-code instruct­
ion occupies one byte only, and is converted into a three-letter opcode for the sake 
of readability. Although the opcodes are standard, there is nothing to stop anyone 
using their own, for example by modifying the BASIC program in the previous chap­
ter. This may in fact be helpful as a learning aid, although it would be unorthodox. 

There are 56 opcodes, some with one addressing mode, some with as many as 
eight. We can group them by function as follows: 

Add/ Subtract ADC ('Add with carry') and SBC ('Subtract borrowing carry') are 
the 6502's arithmetic functions. Both addition and subtraction are carried out on 
all 8 bits, using the carry flag (C) for overflow. 2's complement arithmetic is not 
used,*but flags are present which enable it to be implemented. Binary-coded dec­
imal (B CD) arithmetic is available if it's wanted. 

ii Branches The 6502 has eight branches, all conditional on the status of a flag, 
and all having a single-byte 2's complement offset. The instructions are: BCC & 
BCS, BNE & BEQ, BPL & BMI, BVC & BVS, and the branch is taken if the C, Z, 
N, and V flag is off/on respectively. 

iii 'Break' BRK causes an unconditional jump to (FFFE), having first saved 
both bytes of the program counter and the status register on the stack. 

iv Comparisons CPX, CPY, and CMP enable X, Y, and A to be compared with data 
or with memory contents. The data or memory is subtracted from X, Y, or A and 
flags are set, without storing the result. N, Z, and C are set, so a comparison 
may be followed by any branch (except BVC or BVS) to test the comparison. 

v Data transfers Data can be loaded from RAM or ROM by LDA, LDX, or LDY; it can 
be stored in RAM by STA, STX, or STY. These few commands are extended in 
power by being equipped with a large number of addressing modes. 

vi Decrements! increments alter X, Y, or memory by subtracting! adding 1 bit, set­
ting Nand Z. The instructions are DEX, DEY, DEC and INX, INY, INC. 

vii Flag clea r! set enable some flags to be altered at will: CLC, CLD, CLI, and CLV 
clear flags C, D, I, and V; SEC, SED, and SEI set flags C, D, and I. 

viii Jumps JMP acts like GOTO in BASIC. JSR acts like GOSUB, with RTS the 
equivalent of RETURN. JSR saves 2+curl'ent address on the stack. 

ix Logical operations AND, EOR ('Exclusive or') and ORA ('Inclusive or') perform 
binary logical operations on the Accumulator and data or memory, retaining the 
result in A, and setting Nand Z. BIT sets 3 flags. 

x No operation NOP does nothing 
xi Return RTS returns to the instruction following JSR by jumping to the 

address currently on the stack + 1. RTI jumps to the address on the stack and also 
loads the status register from the stack. 

xii Rotate/ shift ROL and ROR act on the Accumulator and the C flag (a 9-bit rot­
ation). ASL ('Arithmetic shift left') and LSR ('Logical shift right') also involve A 
and C, but do not rotate C, so that bit 0 with ASL and bit 7 with LSR are always 
set to zero. Flags N, Z, & C are set. 

xiii Stack operations are PHA, PHP, PLA, and PLP. These are explicit operations on 
the stack, but BRK, JSR, RTS, and RTI also use the stack. TSX and TXS allow 
the stack pointer to be found/ set respectively. 

xiv Transfers between registers Six instructions allow transfers between any two neigh­
bours of Y,A,X, and S. The opcodes are TYA & TAY, TAX & TXA, TXS & TSX. 

*For example, CLeI LDA #501 ADC #50 leaves A holding #AO, which is obviously not a 
negative number. However, the results are consistent with 2's complement arithmetic; 
in this case, the N flag signals overflow into the sign bit. 
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11. 2 Software methods using the 6502. 

This section deals with the following topics: 

11.2.1 Incrementing 2 bytes 11.2.2 Decrementing 2 bytes 
11.2.3 Adding 2-byte pairs 11.2.4 Subtracting 2-byte pairs 
11. 2.5 Multiplying single bytes 11. 2.6 Division of 2 bytes by a single byte 
11.2.7 Comparing 2-byte pairs 11.2.8 Negation by 2's complement 
11. 2.9 Other 2-byte operations 11. 2.10 Loops 
11.2.11 Saving and restoring zero-page 11.2.12 Memory-moving several pages 
11. 2. 1 3 Using shift and rotate commands11. 2.14 Jump tables, data tables, address tables 
11 .2. 1 5 Random numbers 11.2. 16 Addressing modes 
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11.2.1 Incrementing 2 bytes. The best method is 

INC LOBYTE 
BNE +2 or +3; depending on position in RAM of hibyte 
INC HIBYTE 

where the more significant byte is incremented only if the low byte has just been in­
cremented from #FF to #0. Note that a branch after INC HIBYTE can be put in to test 
for the transition from FFFF to 0000, if this is important. 

11.2.2 Decrementing 2 bytes. There is no unique test for a decrement from #0 to #FF 
so this is less simple than incrementing two bytes: 

LDA LOBYTE 
BNE +2 or +3 
DEC HIBYTE 
DEC LOBYTE 

DEC HIBYTE may be replaced by LDA HIBYTE/ BEQ EXIT/ DEC HIBYTE if it is required to 
go to EXIT when the two bytes hold #0000. 

11.2.3 Adding 2-byte pairs. The carry bit (C) is used to carry from the low to the 
high byte; if the carry bit is set on exit from the routine, overflow has taken place 
from the high byte; i.e. the result is too large for 16 bits. 

CLC e.g. CLC 
LDA L01 LDA $2A 
ADC L02 ADC $01 
STA L02 STA $01 
LDAHIl LDA $2B 
ADC HI2 ADC $02 
STA HI2 STA $02 

Note that an addition leaves the result in the accumulator; it must therefore be stored 
in some way if it is to be kept. In the example, the 16 bits made up of HI1 and LO 1 
are added to the 16 bits of HI2 and L02; the result is stored in HI2 and L02, but 
could equally well be stored in any other locations. The example with numerals adds 
the contents of ($2A) to those of ($01), leaving the result in ($01). For instance, if 
$2A holds #34 and $2B holds #AB, ($2A) contains the 16-bit value #AB34. And if $01 
holds #FF and $02 holds #11, ($01) contains #l1FF. The machine-code will leave ($2A) 
unaltered, but change ($01) to #BD33. 

11.2.4 Subtracting 2-byte pairs. The carry bit is usually set before subtraction. !fit 
is cleared on exit, the result is negative; the first address held data of smaller value 
than the second. The general reasoning is similar to that in the previos instruction. 

SEC e.g. SEC 
LDA L01 LDA $2A 
SBC L02 ADC $01 
STA L02 STA $01 
LDA HIl LDA $2B 
SBC HI2 SBC $02 
STA HI2 STA $02 
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li.2.S Multiplying single bytes. Multiplication and division are not functions present 
on the 6502. The following example uses two zero-page bytes only; the answer is left 
in the same two bytes, erasing the original values. The actual zero-page locations are 
those for the NMI vector, which is unlikely to be used: if it is, switch to other locat­
ions. It is possible to test a routine of this sort exhaustively, which is quite unusual. 
The routine is relocatable; the actual values given (Le. in the middle of cassette buff­
er #1) can of course be changed, but as the routine stands this BASIC program can 
demonstrate the machine-code: 

10 INPUT X,Y: POKE 136,X: POKE 137,Y: SYS 768: PRINT PEEK(136)+256*PEEK(137) 

$0300 18 CLC 
$0301 A9 00 LDA #$00 
$0303 A2 08 LDX #$08 
$0305 6A ROR A 
$0306 66 88 ROR $88 
$0308 90 03 BCC $030D 
$030A 18 CLC 
$030B 65 89 ADC $89 
$030D CA DEX 
$030E 10 F5 BPL $0305 
$0310 85 89 STA $89 
$0312 60 RTS 

This routine can be expected to take about 165 clock cycles on average - depending 
on the number of internal branches. So about 6000 multiplications of this type can be 
performed in one second. The method of operation relies on the ROR instruction, which 
is used both to detect bits in $88 and to store both bytes of the result. 

11.2.6 Division of 2 bytes by a single byte. The routine that follows has the con­
verse effect to the latter routine. A 16-bit number is divided by an 8-bit number; the 
answer is assumed to be in the range 0-255, and this is normally taken care of by the 
way the routine is used. The division is therefore a slight cheat: the multiply routine 
allows any pair of single-byte values (i.e 0 - 255) to be multiplied, giving results from 
o - 65025 (=FF01), but division, although permitting any of these calculations to be 
performed in reverse, won't work correctly with (say) 65025 divided by 1. 

Three zero-page bytes, ($88) for the numerator and $8A for the denominator, 
are assumed here, partly to make the routine easily workable from BASIC, like this: 

10 INPUT X,Y: POKE 136,X-INT(X/256)*256: POKE 137,X/256: POKE 138,Y 
20 SYS 768: PRINT "RESULT =" PEEK(136) " AND REMAINDER =" PEEK(137) 

$0300 18 CLC 
$0301 A2 08 LDX #$08 
$0303 A5 89 LDA $89 
$0305 26 88 ROL $88 
$0307 2A ROL A 
$0308 BO 04 BCS $030E 
$030A C5 8A CMP $8A 
$030C 90 03 BCC $0311 
$030E E5 8A SBC $8A 
$0310 38 SEC 
$0311 CA DEX 
$0312 DO F1 BNE $0305 
$0314 26 88 ROL $88 
$0316 85 89 STA $89 
$0318 60 RTS 

The numerator is held in the analogous locations to the multiply routine, so the two 
may be used together. On average, a division takes about 185 microseconds, about 
5400 per second. An exhaustive test of this routine is much slower than obtains with a 
multiplication routine, since all the remainders need to be checked. Note that, at the 
start, the high byte of the numerator must be less than the denominator, because an 
answer less than 256 is taken for granted. For each of eight loops, the denominator 
is doubled by a pair of leftward rotations. and the numerator subtracted, if this is 
possible; if not, C is clear. The low byte is replaced by the result; A is the remainder. 
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11.2.7 Comparing 2-byte pairs. The trick in this case is to avoid the comparison 
instructions, using SBC instead, which (unlike CMP &c) retains the result of subtract­
ion without only setting flags. This enables us to write a routine to test for equality 
as well as for the less-than-or-equal-to condition which the carry bit tests. For 
example: SEC 

LDA L01 
SBC L02 
STA TEMP 
LDA HIl 
SBC HI2 
ORA TEMP 

;LOW BYTE OF THE FIRST VALUE'S LOCATION 
;LOW BYTE OF THE SECOND VALUE'S LOCATION 
;TEMPORARY STORE FOR RESULT (MAY BE ZERO) 
;HIGH BYTE OF THE FIRST VALUE'S LOCATION 
;HIGH BYTE OF THE SECOND VALUE'S LOCATION 
;RESULT ZERO!! BOTH ACC'R AND TEMP WERE ZERO 

If the contents at the first address equalled the contents of the second, the Zero flag 
(Z) is set. If the contents at the first were less than those at the second, the Carry 
flag is clear; and if the contents at the first address exceeded those at the second, C 
is set. So BEQ, BCC, and BCS respectively test for =, <, and >. 

11.2.8 Negation by 2's complement. The rule for 2's complement is 'flip the bits and 
add 1'. As we 've seen, this ensures that a number and its conventionalised negative 
add to exactly zero, with overflow. 8-bit numbers which add to 256 (=$0100) are 2's 
complements; so are 16-bit bumbers adding to 65536 (=$10000). AN 8-bit number is 
easily 2's complemented: 

LDA NUMBER 
EOR #$FF ;THIS REVERSES EACH BIT 
CLC 
ADC #$01 ;OR SEC! ADC #$00 

If this process is performed twice on a number, the original number is obtained; there 
is no need to subtract 1 and then flip bits. The 16-bit equivalent involves EOR #$FF 
with both bytes, and then a 2-byte addition of #1. 

11.2.9 Other 2-byte operations. Since there are two registers in addition to the acc­
umulator, it is often possible to write compact code using these to store the two bytes 
of a 16-bit address. For example, suppose ($2C) contains a pointer which we wish to 
decrement and store in ($0300). We can combine these objectives like this: 

LDX $2A 
LDY $2B 
DEX 
BNE LABEL 
DEY 

LABEL STX $0300 
STY $0301 

11.2.10 Loops. Loops generally use either the X -register or Y -register as a counter, 
and often as an offset too. Three example programs below print the word 'HELLO' at 
the top-left of the screen. In each case, X is a counter, but is also used as an offset 
to select one letter from the 5 bytes of 'HELLO' which are stored in RAM. In the first 
example, X is incremented (with INX), and needs CPX #05 to test for the end of the 
text. The second and third examples use DEX, which is more elegant, since DEX sets 
the Z flag (on transition from #1 to #0) and also the N flag (on transition from #0 to 
#FF). BPL allows X to take the value #0; BNE does not, and the differences between 
the routines (e.g. X starting at #4 or #5, the use of 7FFF,X or 8000,X) are the result 
of this. Possibly BPL gives code which is easier to follow. 

$027A A2 00 LDX #$00 $027A A2 05 LDX #$05 
$027C BO 88 02 LOA $0288,X $027C BD 85 02 LOA $0285,X 
$027F 9D 00 80 STA $8000,X $027F 90 FF 7F STA $7FFF,X 
$0282 E8 INX $0282 CA OEX 
$0283 EO 05 CPX #$05 $0283 DO F7 BNE $027C 
$0285 DO F5 BNE $027C $0285 60 RTS 
$0287 60 RTS $0286 48 45 4C .BYTE 'HELLO' 
$0288 48 45 4C .BYTE 'HELLO' 

$027A 
$027C 
$027F 
$0282 
$0283 
$0285 
$0286 

A2 04 LOX #$04 
BD 86 02 LDA $0286,X 
90 00 80 STA $8000,X 
CA OEX 
10 F7 BPL $027C 
60 RTS 
48 45 4C .BYTE 'HELLO' 
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Section 11.2.14 has other methods for accessing tables 
written for the 6502; this is a delay 

11: Programming the 6502 

of data. Nested loops can be 

loop, which uses all three registers 
(A, X, and Y) as counters. When run 
from BASIC, it shows how setting the 
interrupt disable flag turns off the 
CBM's internal BASIC clock. With the 
addresses given here, 

PRINT TI: SYS 634: PRINT TI 

gives equal or virtually equal values 
for TI, in spite of the delay, which 
is over a minute with the values as 
they appear in the program. (Loading 
A with other values alters the length 
of the delay in direct proportion). 
Note that the innermost loop runs 256 
times for each execution of the next 
loop, which in turn runs 256 times as 
often as the outermost loop. To estimate 
the duration of such a loop, the outer 
loops can often be ignored (as they 
contribute less than !% to the overall 

$027A 
$027B 
$027C 
$027E 
$0280 
$0282 
$0283 
$0285 
$0286 
$0288 
$028A 
$028C 60 

78 
18 
A9 00 
A2 00 
AO 00 
E8 
DO FD 
C8 
DO FA 
69 01 
DO F6 

SEI 
CLC 
LDA #$00 
LDX #$00 
LDY #$00 
INX 
BNE $0282 
INY 
BNE $0282 
ADC #$01 
BNE $0282 
RTS 

time). Reference to the timing charts shows that INX takes 2 clock cycles, and BNE 
with a successful branch, not across a page boundary, takes 3 cycles. So the total 
delay is about 256 3 * 5 /1000000 seconds, or 1 minute 24 seconds. 

11.2.11 Saving and restoring the zero-page. This is sometimes a useful trick, either 
to enable a long machine-code program to run in tandem with BASIC, or when using 
certain ROM routines which would otherwise change BASIC pointers. The TRACE 
routines in Chapter 5, for example, do this. The point about machine-code programs 
is that they are likely to be faster if the zero-page is used; in any case, a program 
may be written already, using these locations, and the effort of rewriting to fit CBM 
zero-page usage may not be worthwhile. The routines, one to save in RAM, the other 
to restore, are simple enough; the only difficulty is to ensure the inviolability of the 
RAM area in which the zero-page is stored. Usually this will be in the top of RAM, 
below the screen. 

SAVE ZERO-PAGE 

LDX #$00 
LABEL LDA $OO,X 

STA STORE,X 
INX 
BNE LABEL 

RESTORE ZERO-PAGE 

LDX #$00 
LABEL LDA STORE,X 

STA $OO,X 
INX 
BNE LABEL 

11.2.12 Memory-move with several pages. The maximum range spanned by an 8-bit 
register, used for post-indexing, is 256 bytes, so moving (say) 1K bytes normally 
means moving four batches of 256 bytes, with either a counter to run from 4 to 1 or 
o to 3 or Whatever, or a test on the actual addresses. Section 11. 2.16 has examples 
of ways to do this, and includes timing comparisons. 

11.2.13 Using shift and rotate commands. Shift instructions (ASL, LSR) are useful 
whenever a byte is to be processed bitwise. After shifting, the Carry flag holds the 
latest bit to be shifted, so BCC or BCS processes the routine appropriate to a high 
or low bit respectively. In Chapter 14, a VIA program displays the contents of all 16 
registers in this chip, in bit form, using this method. Routines to convert parallel 
data to serial (e.g. RS232 output and input routines) typically load the byte into A, 
then shift it 8 times, sending individual bits serially down the connecting wire, with a 
few other bits for parity, etc. Rotations involve 9 bits, including C, and so may be 
used to inspect bits While eventually returning a location to its original condition, or, 
more subtly, entering some new, dependent value; the routines in 11.2.5 and 11.2.6 
for multiplication and division do this. Rotations involving A are much faster than 
those operating on memory locations, so it is good practice to work on A where poss­
ible, for example in 16-bit calculations. On the next page is a typical calculation sub-
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routine. It shows how a process of 
successive shifts and rotates left 
(which in effect multiply by 2) can 
be used in computations. Three 
parameters are involved: 

$00 holds an X-coordinate (0 - 39), 
$01 holds a Y-coordinate (0 - 24), 
and $02 holds #$20. 

The object is to set up a pointer 
to the Xth column of the Yth row 
of a 40-column screen. This can be 
done with a table (and in fact it is 
faster with that method). However, 
the method demonstrated here cal-
culates #8000 + 40*Y, putting the 
result in ($01), so an instruction 
like LDY $00/ LDA ($01), Y 
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LDA $01 
ASL A 
ASL A 
ADC $01 
ASL A 
ASL A 
ROL $02 
ASL A 
ROL $02 
STA $01 

77: Programming the 6502 

;A holds Y-coordinate 
;A holds 2*Y-coord. (0 - 48) 
;A holds 4*Y-coord. (0 - 96). C=O 
;A holds 5*Y-coord. (0 - 120). 
;A holds 10*Y-coord. (0 - 240) 
;A = 20*Y-coord (0-480); overflow C 
;#4000 + overflow 
;A = 40*Y-coord (0-960); overflow C 
;#8000 + overflow 
;($01) holds #8000 + 40*Y-coordinate 

references the correct position on the screen. This is used in SET (see Chapter 5). 

11.2.14. Jump tables, data tables, and address tables. Jump tables contain JMP in­
structions and addresses. The point is to provide a table of values which are either 
(i) easy to remember, or (ii) easy to program (the actual addresses to be used only 
being filled in later), or (iii) constant, even with different ROMs (say). BASIC 4 has 
such a table at EOOO in the 80-column version. All BASICs have the 'kernel', so that 
JSR FFE4 always 'gets' a character, for example, even though FFE4 has different add­
resses following JMP. Data tables store ASCII data, arithmetic values, messages, and 
so on. CBM BASIC for example has keywords stored in a table, and these are separ­
ated from each other by setting the high bit of the final letter of each keyword. The 
high bit is masked (by AND #7F) before printing, but the N flag determines the end 
of a keyword. A similar method is to store strings terminated by a zero byte; this 
wastes one byte per string, but makes it easier to have strings of different lengths. 
A routine to print such a string looks 
something like this, assuming no string 
is longer than 255 characters (so X on 
its own spans the whole length of it). 
A ddress tables are similar in purpose 
to jump tables, but contain addresses 
only, normally in 2-byte form with the 
order reversed, without JMPs inter­
spersed. The beginning of CBM BASIC 

LDX #$00 
LABEL LDA START,X 

BEQ EXIT 
JSR PRINT 
INX 
BNE LABEL 

EXIT 

:START=START OF DATA TABLE 

;USE STANDARD ROUTINE(S) 
;ASSUMES X IS PRESERVED 
;BRANCH ALWAYS TAKEN 
;CONTINUE PROCESSING 

has several (very long) tables of this sort. Address tables in practice are tricky to 
access. CBM BASIC has examples in which BASIC keywords' addresses are jumped to 
by pushing two bytes on the stack and performing the routine to get the next BASIC 
character, which ends RTS, and thus both loads the accumulator with the appropriate 
value and jumps to any required address. (However, the addresses are actually stored 
as address-l, because RTS always increments the return address). A similar process, 
using RTI, is used by the machine-language monitor; this allows the status register to 
be set, in addition to jumping to a specified address. These manoeuvres are necessary 
because this part of BASIC is in ROM. From RAM, tables can be accessed by the 
indirect jump instruction. This example 
assumes that the addresses are tabled 
starting at $BOOO, and that the X-reg­
ister contains the offset from the start 

027A STX 027E ;X ASSUMED TO BE OFFSE! 
027D JMP (BOxx);xx ALTERED BY X 

of $BOOO of the desired address. This method is far easier than using the stack, but 
has the drawback that the indirect jump command has a bug, which causes it to work 
wrongly if a page-boundary is crossed. See the appendices ('Further aspects of the 
6502' on this). Also, the table mayn't begin at precisely $BOOO or $ClOO or whatever, 
so X may need to be increased by some value. 

11.2.15 Random numbers. There are several ways to find pseudo-random numbers in 
machine-code. In the first place, the BASIC routine may be used; this has its own 
special storage location, and derives each number from t~e. previous value uSin.g ~his, 
unless the argument is zero (Le. RND(O) ). The result IS In the range 0 - 1; It IS 
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forced into this range by putting the exponent to #80. So a random integer in the 
range 0 - 256 can be generated by calling the routine, replacing its exponent by #88, 
and calling the routine to convert this to an integer. This, though thorough, is long; 
two alternatives follow: 

(i) Using the VIA counters. This method, like RND(O), is strictly dependent 
on time for the value it yields, so if it used within any regularly repeating code will 
show regularities. Nevertheless it is easy and quick to program: 

LDA $E844 TIMER 1 LOW 
EOR $E845 TIMER 1 HIGH 
EOR $E848 TIMER 2 LOW 
EOR $E849 TIMER 2 HIGH 

This leaves A with an 8-bit value, which for many purposes is 'random'. 
(ii) Pseudo-random number calculations. We'll consider I-byte and 2-byte ran­

dom numbers only; the principles are the same for larger byte numbers. The usual 
formula for pseudo-random numbers is a recurrence relation: 

xi+1 = a * xi + c (mod m). 

If we set m=256 or 65536, the modulo condition, which means take the remainder after 
division by m, is automatically set by ignoring any overflow. A theorem of Gauss's 
says that the maximum period of repetition is obtained when a=4 n + 1 and c is an odd 
number. That is, if we base our calculations on a single byte, a formula in which 'a' 
is a multiple of four, plus one, and c is odd, will generate values which repeat with 
a cycle of length 256. The simplest case is 

xi+1 = 5 * xi + 1 (mod 256) which is easily programmed: 

LDA STORE ; LOAD LAST RANDOM NUMBER 
ASL A iDOUBLE IT (IGNORING OVERFLOW) 
ASL A iQUADRUPLE (IGNORING OVERFLOW) 
SEC iTHIS WILL ADD 1 
ADC STORE i FIVE TIMES NUMBER + 1 
STA STORE ;SAVE NEW RANDOM NUMBER 

This gives 0,1,6,31,156,13,66,75,120,89,190,183,148,229,122,99,240,177,118,79,140, 
which, because of the small values (5 81 1) may give an obvious sequence of ascending 
values when the seed becomes low (e. g. 2,11,56) but otherwise is probably satisfact­
ory. * The process is similar with 16-bit numbers. We may use this easily-programmed 
relation: Xi 1 = 257*x i + 43981 (mod 65536). 43981 is #ABCD; other values are of 
course usable: If we represent the 16 bits by bytes HI and LO, this program gener­
ates a sequence of pseudo-random numbers recurring every 65536 repetitions: 

CLC/ LDA LO/ ADC HI/ STA HI/ CLC/ LDA #CD/ ADC LO/ STA LO/ LDA #AB/ ADC HI/ STA HI 

11.2.16 Addressing modes. To show how different addressing modes may be used to 
solve a programming problem, consider the question of memory-moving 1024 bytes from 
6000 - 63FF into the screen area of a 40-column CBM, 8000 - 83FF. Four separate 
'pages' of 256 bytes have to be moved. Section 9.5 has a solution to this problem, in 
which X counts from 4 to 0, while a loop involving indirect indexed addressing uses Y 
(changing from #0 through to #0 again) takes care of each page. It is possible to im­
prove on that routine; it can be made both smaller and about 13 % faster. Using its 
address locations, we could use routine (a): 

(a) (b) 
L 0297 LDA (88),Y L 0297 LDA 63FF,Y 

0299 STA (8A), Y 029A STA 83FF,Y 
029B INY 029D INY 
029C BNE L 029E BNE L 
029E DEC 88 02AO DEC 0299 iDECREMENTS HIGH BYTE OF EACH 
02AO DEC 8A 02A3 DEC 029C ;ADDRESS IN LDA AND STA ABS,Y 
02A2 BPL L 02A6 BPL L 

which uses no counter, but relies instead on the fact that #80, decremented to #7F, 
leaves the N -flag clear. Routine (b) is similar in its operation but modifies absolute ad­
dresses). It is faster, since the commands within the loop take less time. But it is 

*Note: it is a peculiarity of this system of pseudo-random number generation that the 
values it produces are always alternately odd and even. In addition, particular series 
may have internal reoeats or subseries of manv kinds. 
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less easily relocated, since the program modifies itself as it runs, and it is essential to 
modify exactly the right addresses. Program (a) has the advantage of using the same 
zero-page locations to store its temporary data wherever the routine is put in memory. 
For the same reason, (b) cannot be used in ROM. 
Self-modifying code is occasionally used by the 
CBM: the example (right) is part of the GETCHR 
routine, which BASIC uses when scanning through 
a program (See Chapter 14 on this topic). This 
avoids the need to reserve an index for use with 
indirect addressing; it also means the routine has 
to be present in RAM, not ROM. 

11.2.17 Testing for the range of a byte of data. 
A mysterious construction sometimes met with is 
illustrated (right) in a form which should make 
its operation fairly clear. Note that the first SEC 
is not necessary, since the carry flag is known 
to be clear at that point, so SEC/ SBC #30 could 
be replaced by SBC #2F. However, it draws attent­
ion to the fact that #30 and #DO are 2's complements. 
The point is that, on exit, the contents of A are 
unchanged, but the carry flag is clear for values 
#30 - #39, and set for all other values. This range 
is of course the ASCII equivalent of numerals 0 - 9. 
As a variation on the theme, the second piece of 
code is an ASCII-to-hex routine; this replaces 
#30 - #39 by #00 - #09, and #41 - #46 (ASCII for 
A - F) by #OA - #OF. Note the temporary storage 
of the status register, later recovered to test for 
the status of C after the comparison. 

0070 INC $77 
0072 BNE $0076 
0074 INC $78 
0076 
0079 

LDA xxxx ;CURRENT ADDR. 
; CONTINUE 

L 

L 

LDA xxxx 
CMP #3A 
BCS L 
SEC 
SBe #30 
SEC 
SBC #DO 

LDA xxxx 
CMP #3A 
PHP 
AND #OF 
PLP 
BeC L 
ADC #08 

;BRANCH IF 
; >= #3A 
;#00 - #39 
; -+DO,Dl" ,0,9 

;0-9 CLEAR C 
; CONTINUE 

;REMOVE HIBITS 

;ADDS 9,AS C=l 
; CONTINUE 

11. 2. 18 Using subroutines. JSR and RTS are complementary instructions, designed 
to be easy to use and trouble-free; usually they perform perfectly well, the exceptions 
being caused by failure to appreciate the workings of the stack. See PHA, and 11.2.14, 
for details on loading the stack with a new address for RTS, and for RTI; and see 
PLA on 'popping' return addresses from the stack, in the next chapter. Note that 
JSR xxxx/ RTS can always be replaced by JMP xxxx, saving two bytes from being 
pushed onto the stack. Conversely, however, JMP can be replaced by JSR / RTS only 
if it includes RTS at some stage. 

Neither JSR nor RTS alters A,X, or Y, or any of the flags. This means that 
flags, .set within a subroutine, can be tested 
on return. This is a valuable feature, which 
the specimen program (right) demonstrates. 
The subroutine's function is to examine the 
RAM area from $0100 - $OlOB for the presence 
of the character in A on entry. For example, 
to test for #45 in the buffer (ASCII for E), 

LDA #45 
JSR 7F5E 
BeS FOUND 

7F5E 
7F60 
7F63 
7F65 
7F66 
7F68 

LDX #00 
CMP OlOO,X 
BEQ 7F6B 
INX 
CPX #OC 
BNE 7F60 

7F6A CLC 
7F6B RTS 

can be used. BCS appears because, on return, the carry flag is clear if the character 
wasn't found; it is set if the character was found, and moreover X holds its position 
in relation to $0100. The INX construction has been used because the subroutine is 
intended to search the buffer from left to right; in fact, this buffer holds numerals as 
they are converted into strings for output to the screen or the printer. PRINT USING 
(Chapter 5) uses this subroutine. 

Although subroutines can save a great deal of memory space and make pro­
grams more readable, they have one (admittedly small) drawback in the 6502, which is 
that they use only absolute addressing; relocating them is therefore tedious. Chapter 
14 has remarks and methods to help get round this difficulty. 
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CHAPTER 12: ALPHABETIC REFERENCE TO 6502 OPCODES 

This chapter lists each opcode with full details on its use. Short demonstration pro­
grams are provided for most opcodes. 

The following conventions have been adopted: 

is read 'becomes'. For example, A: =X means that the value in A becomes that 
in X. 

x,O and 1 show the effect on the status flags of an opcode. x means that the flag is 
set, but its value may be 0 or 1. 0 and 1 represent flags which an opcode always 
sets to 0 and 1 respectively. All other flags are left unchanged. 

$ and % prefix hexadecimal and binary numbers; where these are omitted, a number is 
decimal. 

A, X, and Yare the accumulator and the two index registers X and Y. 
M means memory; this may be ROM in the case of load instructions. Note that 

# (immediate mode) loads from memory immediately following the opcode. All other 
addressing modes load from elsewhere in memory. 
or SR is the processor status register. 
is the stack pointer. 

PSR 
SP 
PC is the program counter; this is composed of two 8-bit registers, PCl and PCH. 

The table below is intended as a reminder or summary of opcode mnemonics on the 
6502, for readers who are not yet familiar with the opcodes or who have forgotten what 
they mean. 

GUIDE TO 6502 OPCODE MNEMONICS 

A accumulator/ arithmetic shift 
AD add 
AN D logical AN D 
B borrow the carry bit/ branch 
BIT bitwise instruction 
BRK break 
C carry bit/ flag is clear 
Cl clear flag 
CMP compare accumulator 
CP compare X or Y register 
D decimal flag 
DE decrement X or Y register 
DEC decrement memory 
E exclusive OR 
EQ equal to zero 
I interrupt flag 
I N increment X or Y register 
I NC increment memory location 
JMP jump to new address 
JSR jump to subroutine, saving return 

l leftl logical shift 
lD load accumulator, X, or Y 
MI minus 
NE not equal to zero 
NOP no operation 
OR logical OR 
P processor status register 
PH push onto stack 
Pl pull from stack 
R right 
RO rotate byte 
RT return 
S flag set I shift / stack pointer / 

subroutine / subtract 
SE set flag 
ST store accumulator, X, or Y 
T transfer between registers 
V overflow flag 
X X register 
Y Y register 
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ADC 
Add memory plus carry to the accumulator. A: = A + M+ C 

INSTRUCTION ADDRESSING BYTES CYCLES 
$61 ( 97 %0110 0001) ADC (zero page,X) 00 6 
$65 ( 1 01 %0110 0101) A DC zero page 00 3 
$69 ( 105 %011 0 1001) ADC # immediate 00 2 
$6D ( 1 09 %0110 1101) ADC absolute 000 4 
$71 ( 11 3 %0111 0001) ADC (zero page), Y 00 5* 
$75 (117 %0111 0101) ADC zero page, X 00 4 
$79 ( 1 21 %0111 1001) ADC absolute, Y 000 4* 
$7D (125 %0111 1101) ADC absolute,X 000 4* 

*Add 1 if page boundary crossed 

Flags: I ~ ~ - B D I ! ~ I 
Operation: Adds together the current contents of the accumulator, the byte 

referenced by the opcode. and the carry bit. If the result is too large for 
a single byte. C is set to 1. The internal overflow flag. V. is set if there 
is overflow from bit 6 into the high bit, bit 7. If A holds zero (i. e. each 
bit = 0) the Z flag is set to 1; otherwise it is O.*If bit 7 in A is 1, the N 
flag is also set 1, to denote a 'negative' value in A. 

Uses: [1] Single, double and multiple byte additions. The carry bit automatically 
provides for overflow from one byte to the next. For example: 

CLC ENSURES CARRY BIT IS 0 
LDA $4A WE WISH TO ADD #$OA (10 DECIMAL) TO THE CONTENTS 
ADC #$OA OF ($4A). I.E. THE DOUBLE-BYTE ADDRESS WHERE $4A 
STA $4A IS THE LOW BYTE AND $4B THE HIGH BYTE. 
LDA $4B 
ADC #$00 ADDS THE CARRY BIT WHERE APPLICABLE 
STA $4B RESULT MUST BE STORED, ELSE IT WILL REMAIN ONLY IN A. 

[ 2] Increasing or decreasing the accumulator; there is no 'IN C A' opcode. 

BCS AWAY 
ADC #$01 

CLC 
ADC #$FF 

EXAMPLE ONLY. (WE KNOW CARRY BIT IS CLEAR NOW). 
INCREMENTS A; #0 BECOMES #1, #1 #2, ..•• #FF BECOMES #0. 

ANOTHER EXAMPLE. CARRY BIT NOW O. 
THIS SUBTRACTS 1 FROM A AND SETS CARRY FLAG UNLESS A=O 

[3] In binary-coded decimal mode, obtained by setting D to 1, each nybble 
represents 0- 9 and addition is corrected for this basis. This mode is unused 
in CBM equipment at present. On switching on and on entry to the monitor, 
D is always cleared, so ADC is in hexadecimal mode unless D is specifically 
set. This example adds 123 (decimal) to the contents of locations 0 and 1, 
which are assumed to contain, in ascending order, 4 binary coded digits. 
Thus locations 0 and 1 contain, in BCD, 0- 9999. 

SED 
CLC 
LDA $01 
ADC #$23 
STA $01 
LDA $00 
ADC #$01 
STA $00 
CLD 

SET THE DECIMAL FLAG 
CLEA~ CARRY FLAG 
WE'VE ASSUMED THE BCD DATA IS STORED IN NORMAL ORDER, 

WITH LOW BYTES FOLLOWING HIGHER ONES, NOT 6502 ORDER 
ADD 23 DECIMAL 

ADD 01 DECIMAL PLUS POSSIBLY CARRY BIT EQUIVALENT TO 100 

CLEAR THE DECIMAL BIT, UNLESS MORE DECIMAL MATH NEEDED 

Notes: [l]*In decimal mode, the zero flag doesn't operate normally with ADC 
because of the automatic correction (adding 6) which the 6502 carries out. 
Testing for a zero result requires (for example) TAXI BEQ .•• or CMP #001 
BEQ ... which is an extra step not required in hexadecimal arithmetic. 

[2] The V flag is important if the 2's complement convention is in use. in 
which case it tests whether the high bit means negative. or implies that the 
addition has overflowed to bit 7. In BCD. 2's complement is unusable. 
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AND 
Logical AND of memory with the accumulator. A:=A AND M 

INSTRUCTION ADDRESSING BYTES CYCLES 
$21 ( 33 %0010 0001) AND (zero page,X) 00 6 
$25 ( 37 %0010 0101) AND zero page 00 3 
$29 ( ql %0010 1001) AND # immediate 00 2 
$2D ( q5 %0010 1101) AND absolute 000 q 
$31 ( q9 %0011 0001) AND (zero page), Y 00 5 
$35 ( 53 %00110101) AND zero page,X 00 q 
$39 ( 57 %0011 1001 ) AND absolute, Y 000 q* 
$3D ( 61 %0011 1101) AND absolute,X 000 q* 

*Add 1 if page boundary crossed 

Flags: I ~ V - B D I ! C I 
Operation: Performs AND of the 8 bits currently in the accumulator and the 8 bits 

referenced by the opcode. See BASIC's AND command for a description of 
the truth table of AND. Essentially, when both bits are 1, the result is 1, 
but if either or both bits are zero, the result is O. (So the first bit AND 
the second must be 1). The resulting byte is stored in A. If A now holds 0, 
i. e. all its bits are zero, the Z flag is set to 1; and if the high bit is set, 
i.e. bit 7 is 1, the 'negative' flag N is set to 1. Otherwise the flag is O. 

Uses: [1] 'Masking' off unwanted bits (cp. ORA) typically to test for the existence 
of a few high bits, or to test that some bits are zero: 

ASL 

LDA $E081,X LOADS ACCUMULATOR FROM A TABLE OF CODED VALUES .. 
AND #$3F .. TURNS OFF BITS 6 AND 7, LEAVING ALPHABETIC ASCII. 

LDA $E840 
AND #$EF 
STA $E840 

LOADS ACCUMULATOR FROM VIA'S IEEE REGISTER + CASSETTE 
MOTOR CONTROL. THEN TURNS OFF BIT 4 WITH %1110 1111. 

STORES RESULTING VALUE BACK IN REGISTER 

[2] AND #$FF RESETS FLAGS AS THOUGH LDA HAD JUST OCCURRED; 
AND #$00 HAS THE SAME EFFECT AS LDA #$00 

Shift memory or accumulator left one bit {g-i7 6 5 q 3 2 1 O~ 
INSTRUCT ION ADDRESSING BYTES CYCLES 
$06 ( 6 %0000 0110) ASL zero page 00 5 
$OA ( 10 %0000 1010) ASL accumulator 0 2 
$OE ( 1ij %0000 1110) ASL absolute 000 6 
$16 ( 22 %0001 0110) ASL zero page, X 00 6 
$lE ( 30 %0001 1110) ASL absolute, X 000 7 

Flags: I ~ V - B D I ! ; I 
Operation: Moves the contents of memory or the accumulator left by one bit position, 

moving 0 into the low bit, and the high bit into the carry flag, erasing its 
current value. The carry bit therefore is set to 0 or 1 depending on bit 7 
previously being 0 or 1. Z and N are set according to the re'sult; thus Z 
can be true (1) only if the location or A held #$00 or #$80 before ASL. The 
N bit can only be set true if bit 6 was previously 1. 

Uses: [1] Doubles a byte (though not in decimal mode). If signed arithmetic is 
not being used the result can safely reach values not exceeding 254, after 
which the carry must be taken into account, often with ROL. This example 
uses A from 0 to 127 to load two bytes from a table of address pointers: 

ASL AI TAYI LDA ADDHI, YI PHAI LDA ADDLO, YI PHA and store them on the 
stack. Another example: LDA $201 ASL AI ADC $20 multiplies the contents 
of $20 by three, provided that it originally held #85 decimal at most. In this 
case, the carry bit is automatically cleared by the shift. 

[2] Tests a bit by moving it into Z or N, perhaps with a flag in BASIC. Note 
that 4 ASLs move the low nybble into the high nybble. 
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Bee 
Branch if the carry bit is O. PC : = PC + offset 

ADDRESSING INSTRUCTION 
$90 (lqq %1001 0000) BCC relative 

*Add 1 if branch occurs; add 1 more if the branch crosses a page 

Flags: I N V - B D I Z C I 
Operation: If C holds 0, the byte following the opcode is added to the program 

counter, which is set to the following command. If C holds 1, the program 
counter is unaffected. The effect is to cause a jump to the offset address 
when C is clear. 

Uses: [1] If the carry bit is known to be clear, this command becomes effectively 
a 'branch always' instruction. So the flag may be set in a purely signalling 
sense, with no significance other than to show that one of two conditions 
applies. For example, BASIC's commands to END and STOP a program are 
almost identical, except that one command prints a message with a line­
number, and the other doesn't. So: 

BCS 

C763 BCC C768 CARRY BIT IS SET FOR STOP, CLEAR FOR END ... 
C765 JMP C37E ; PRINT "BREAK IN LINENUMBER" MESSAGE 
C768 JMP C389 ; PRINT "READY" 

[2] Usually the test is concerned with the result of a previous operation 
which mayor may not set the carry flag; this compare routine for 
instance: 

JSR GETCHAR 
CMP #$OA 
BeC TO 0-9 

LOAD THE ACCUMULATOR WITH A VALUE (DEVICE NO.,TRACK,SEC­
TOR, OR WHATEVER). COMPARE WITH #OA; THIS SETS C. 

BRANCH TO PROCESS THESE LOW VALUES; 
CONTINUE HERE WITH HIGH VALUES, 10-255 DECIMAL. 

ADC and SBC, the add and subtract operations, are obvious candidates 
here, but occur less often with BCC than might be expected, because the 
value of the carry bit can often be taken care of by the mathematical routine 
without the need for branching. This example might be used in 2-byte 
addition where an overflow warning is needed: 

CLC CLEAR FOR ADD 
LDA LOADD 
ADC #LO 
STA LOADD 
LDA HIADD 
ADC #HI 
STA HIADD 
BCC CONT 
JMP OVERFL 

ACCUMULATOR HOLDS CONTENTS OF THE LOWER BYTE .. 
.. ADDS THE LOWER BYTE VALUE 
AND STORES IT; C MAY BE 0 OR 1. 
ACCUMULATOR HOLDS MORE SIGNIFICANT ADDRESS BYTE .. 
.. ADDS THE HIGHER BYTE VALUE 
AND STORES IT. AGAIN, C MAY BE 0 OR 1: 
IF IT'S CLEAR, THE ADDITION HASN'T OVERFLOWED. 
IF IT'S 1, PROCESS ACCORDINGLY; E.G. ERROR INDICATION 

Branch if the carry bit is 1. PC:=PC+offset if C=l 

INSTRUCTION ADDRESSING 
$B 0 (176 %1011 0000) BCS relative 

*Add 1 if branch occurs; add 1 more if branch crosses a page 

Flags: QLY - B D I Z C 1 

Operation: Identical to BCC, except that the branch is taken if C=1 and not C=O. 

Uses: [1] The uses are identical to those of BCC; the choice between BCC and 
BCS at a branch point depends on convenience only. For example, suppose 
a hardware port is to be read until bit 1 is set to 0; this routine: 

LOOP LDA PORT ; LOAD FROM HERE UNTIL xxxx xxOx 
LSR A 
LSR A 
BeS LOOP 

is more natural than one involving BCC, and easier to read. 
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BEQ 
Branch if zero flag is 1. PC:=PC + offset if Z=1 

INSTRUCTION ADDRESSING 
$FO (2110 %1111 0000) BEQ relative 

*Add 1 if branch occurs; add 1 more if branch crosses a page 

Flags: I N V - B D I Z C I 
Operation: If Z=1, the byte following the opcode is added, in 2's complement arith­

metic, to the program counter, which currently points to the next opcode. 
The effect is to cause a jump, forward or backward, up to a maximum of 
about ±128, if the zero flag is set. IF Z=O the branch is ignored. 

Uses: [1] The zero flag cannot be set directly (there is no 'SEZ'). But since it is 
very often set in the course of a program, the use of BEQ as an unconditional 
branch is common. This sort of thing may be used to make short routines 
relocatable, where the branch command isn't quite wide-ranging enough to 
LDA #$FS· SOME VALUE OR OTHER P7~it all the ~ranching that is n7eded 
BEQ BACK: THESE TWO BRANCHES wlthm the routme to take place without an 
BEQ FWRD' RELY ON Z=l intermediate hop. This, of course, is not 

really recommended with large programs. 

[2] A common use is to end a loop, either when a counter is decremented 
to zero, or because a zero byte is deliberately used as a terminator: 

LOOP LDA TABLE,X ; LOAD A WITH THE NEXT CHARACTER 
BEQ EXIT ; EXIT LOOP WHEN ZERO BYTE FOUND 
•.. CONTINUE, E.G. STA OUTPUT,X/ INX/ BNE LOOP 

[3] BEQ is popular after comparisons because it's easy to use: 
JSR GETCHR/ CMP #$2C/ BEQ COMMA looks for a comma in BASIC. 

Notes: [1] When a result is zero, the zero flag Z is made 'true'- i.e. 1. This point 
can confuse people. 'BEQ' is usually read 'branch if equal to zero' but when 
comparisons are being made it could be read 'branch if equal'. 

BIT 
Test memory bits. Z flag set on A AND M; N flag=M7; V flag=M6 

INSTRUCTION ADDRESSING BYTES CYCLES 
$24 ( 36 %0010 0100) BIT zero page 00 3 
$2C ( 114 %0010 1100) BIT absolute 000 II 

Flags: I N V - B D I Z C I 
M7 M6 x. 

Operation: BIT affects only three flags leaving registers and data unchanged. Z is set 
on A AND M: if no bit of the memory location and of A has a 1 in each, then 
A AND M is zero and Z= 1. Also, bits 6 and 7 are copied from memory to V & N. 

Uses: [1] The 3-byte, absolute address BIT is the only instruction regularly used 
LDA #$OD A9 OD ; LDA #OD for unconventional disassembly from a non-
BIT $20A9 2C A9 20 ; LDA #20 standard entry point. The example loads A 
BIT $lDA9 2C A9 ID ; LDA #lD with Return, space, or [RIGHT] depending 
on the entry point into the routine. 

[2] BIT with BMI/BPL or BVC/BVS tests bits 7 and 6. This is often used 
BIT $07 with PIA/VIA locations- see the IEEE examples. The example 
BMI ERR here tests location $07, with an error indication if it holds a 
RTS negative. $07 is in fact used to check for type mismatches. 

ERR JMP ERROR #FF denotes a string, #00 a numeric variable. 

[3] This example shows the AND feature in use. CHRFLG holds #0 if no char-
LDA VALUE acter is to be output, and #FF otherwise. Assuming the 
BIT CHRFLG accumulator holds a non-zero value, BIT tests whether to 
BEQ NOTOUT branch past the output routine, while retaining A's value. 
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BMI 
Branch if the N flag is 1. PC: = PC + offset if N =1 

INSTRUCTION ADDRESSING 
$30 ( 48 %0011 0000) BMI relative 

*Add 1 if branch occurs; add 1 more if branch crosses a page 

Flags: I N V - B D I Z C I 
Operation: The program counter is incremented to point at the next opcode, and 

if N holds 1 the byte following the branch opcode is added to the program 
counter in 2's complement form. The effect is to force a jump to the new 
address. The maximum range of a branch is therefore about ±128. When N 
holds 0 the branch command is ignored. 

Uses: [1] Testing the 'negative' bit of a location; for example: 
LOOP BIT $E840; BIT 7 IS CONNECTED TO DATA VALID SIGNAL .. 

BMI LOOP; .. THIS LOOP WAITS UNTIL DAV IS O. 

Like other flags, N may be used in a purely conventional sense. As an ex­
ample, consider BASIC's keyword tokens: these all have values, in decimal, 
of 128 or more, which keeps keywords logically separate from other BASIC, 
and also permits instructions like this schematic branch: 

LDA NEXT LOAD NEXT CHR INTO ACCUMULATOR 
BMI TOKEN ; BRANCH TO PROCESS A KEYWORD 

; OTHERWISE, PROCESS DATA AND EXPRESSIONS 

Notes: [1] It's important to realise that the 'minus' in BMI refers only to the use 
of bit 7 to denote a negative number in 2's complement arithmetic. It may be 
easier to think of this operation as 'branch if the high bit is set'. BPL is 
exactly the opposite of BMI. Where one branches, the other does not. 

BNE 
Branch if Z is O. PC: = PC + offset if Z = 0 

INSTRUCTION ADDRESSING 
$DO (208 %1101 0000) BNE relative 

*Add 1 if branch occurs; add 1 more if branch crosses a page 

Flags: I N V - B D I Z C I 
Operation: BNE operates exactly like BEQ, except that the condition is opposite. 

If Z =0 the offset contained in the byte after BNE is added to the program 
counter, so the branch takes place. If Z=l the branch is ignored. 

Uses: [1] BNE may be used in unconditional branches in circumstances like those 
which apply to BEQ- see note [1] on BEQ . 

[2] BNE is very often used in a loop in which a counter is being decrem­
ented. This is probably the easiest type of loop to write, although the 

LDX #$OA starting address of the loop's data needs to be 
LOOP LDA TABLE,X fixed with care, as offset 0 isn't executed by a 

[3] 

JSR OUTPUT loop like this. The example prints ten characters 
DEX from a table, their offsets being 10,9,8, ... ,2,1. 
BNE LOOP 

BNE, like BEQ, 
B4CO LDA $Cl 
B4C2 CMP #$42; 
B4C4 BNE $B4C9 
B4C6 JMP $B876 
B4C9 CMP #$48; 

is popular after comparisons: 

IS IT B? 

IS IT H? 

Comparisons like this can continue over 
many bytes of machine-code. 

Notes: [1] When a result (say, of LDA) is non-zero, the zero flag Z is made false, 
i.e. set to O. This can be confusing. 'BNE' is usually read 'branch if not 
equal to zero'. The result of a comparison is zero if both bytes are identical, 
because one is subtracted from the other. Hence the use of BNE and BEQ. 
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BPL 
Branch if the N flag is o. PC: = PC + offset if N = 0 

INSTRUCTION ADDRESSING 
$10 (16 %0001 0000) B PL relative 

*Add 1 if branch occurs; add 1 more if branch crosses a page 

Flags: I N V - B D I Z C I 
Operation: BPL operates exactly like BMI, except that the condition is opposite. 

Uses: 

The branch is taken to the new address given by program counter plus 
offset if N=O. This means that if the result was positive or zero the branch 
is taken. 

[1] In testing the negative bit 
LOOP LDA TESTLOCN 

BPL LOOP 

of a memory location. This code, for example 
waits until the accumulator holds a b.¥te 
with bit 7 on. Such a location must be 
hardware cotrolled, not just RAM. 

[2] Testing for the end of a loop where a counter is being decremented, and 
the counter's value 0 is needed. This simple loop prints 10 bytes to screen: 

LDX 1$09 X REGISTER WILL COUNT 9,8,7, ... ,1,0 
LOOP LDA BASE,X 'BASE' IS THE STARTING ADDRESS OF THE 10 BYTES 

STA 8000,X CBM SCREEN STARTS AT $8000. (OTHER MACHINES DIFFER). 
DEX DECREMENT X 
BPL LOOP BRANCH WHEN POSITIVE OR ZERO 

BRK 
Force break. 

INSTRUCTION ADDRESSING 
$00 ( 0 %0000 0000) BRK implied 

Flag s: I N V - ~ D ! Z. C I 
Operation: BRK is a forced interrupt, which saves its current position and status 

and jumps to a standard address. Note that (i) The program counter saved 
points to the BRK byte plus two (like a branch), and (ii) The processor 
status register on the stack has flag B set to 1. In CBM machines, the new 
address is shared by the IRQ service routine and generally with the 6502 
maskable interrupts always jump to ($FFFE); the break flag is a sort of 
designer's patch so that BRK can be recognized as different from other 
interrupts. 

Uses: [1] BRK can be used to patch programs (as mentioned in Zaks' 6502 book), 
but this requires (i) a change in the interrupt's vector, i.e. ($92) in BASIC>1 
or ($0219) in BASIC 1 and (ii) processing required by the program. Also a 
return, using the stack program counter and processor status, is needed. 
This is sufficiently complex not to be done often. 

[2] With BASIC vectors left as on power-up, BRK causes BASIC to jump to 
the monitor, or to location $0 in BASIC 1. This is why SYS 1024 or SYS 4 
may be used to enter the monitor. 1024 normally contains a zero byte at the 
start of BASIC; 4 is zero whenever quotes mode is not set, e.g. when in 
direct mode. On entering the monitor the data on the stack is pulled off 
and displayed. The program counter is (for some reason) decremented; 
since PC+2 is stored, the monitor address points at the byte after BRK. 
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Bve 
Branch if the internal overflow PC:= PC + offset if V=O 

*Add 1 if branch occurs; add 1 more if branch crosses a page 

Flags: INV-BDIZcl 

Operation: If V is clear, the byte following the opcode is added, as a two's 
complement number, to the program counter, set to point at the following 
instruction. The effect is to jump to a new address, which must be within 
a range of about ±128 bytes. If V=l the next instruction is processed and 
the branch ignored. 

Uses: [ 1] As a 'branch always' instruction: 
CLV 
BVC LOAD 

[2] With signed arithmetic, to detect overflow from bit 6 into bit 7, glvmg 
a spurious negative bit. This is rather rarely used since the sign of a 
number can be held apart from the number, perhaps as #0 or #FF, so that 
ordinary arithmetic can be used without the extra complication of the V bit. 
See the note for an explanation of V's derivation. 

LDA ADDl This routine adds two numbers, in 2's complement form; 
CLC their range therefore is -128 to 127. Clearing V is only 
(CLV) used in examples like [1]; unlike the carry bit c, it is 
ADC ADD2 never added in to results, so clearing is not needed. 
BVC OK CLC is necessary; it may add in 1 to the result. 
JMP OVERFL 

[3] BIT copies a location's 6th bit into the processor status register, so 
BVC or BVS can be used to test bit 6. For example, this routine: 

F103 BIT $E840 waits until the hardware sets bit 6 of location $E840 
F106 BVC $F103 equal to 1. 

Notes: [1] The Meaning of V. When using signed arithmetic, two numbers of 
opposite sign cannot overflow. The most extreme values, e.g. -128+0, are 
always within the acceptable range. However, if the signs are the same, 
overflow is possible. #$6A + #$5B overflows: the result is not in the range 
-128 to 127. We have: %0110 1010 + %0101 1011 = %1100 0101. When the two 
leftmost bits are 0, each original number is positive; if in addition the 
result has bit 7 equal to 1, an overflow must have occurred. Similarly, two 
negative numbers with overflow behave like this: consider -100 and - 89, in 
decimal. When added, these overflow, since -189 is out of the acceptable 
range for signed bytes. Now, +100 = #$64 and +89 = #$59. The negatives 
are therefore -100 = #$9C and -89 = #$A7. We have: %10011100 + %1010 0111 
= %0100 0011. The overflow shows itself in causing two negative numbers 

BVS 

to apparently add to a positive. V is thus calculated by complementing the 
EOR of 2 negative bits , and ANDing the result with the EOR of the result's 
negative bit and ont the original number's negative bits. This is not so 
complicated as it might seem. 

Branch if the internal overflow flag (V) is 1. PC:= PC + offset 

INSTRUCTION ADDRESSING 
$70 (112 %0111 0000) BVS relative 

*Add 1 if branch occurs; add 1 more if branch crosses a page 

Flags: I N V - B 0 I Z C I 
Operation: This branch is identical to BVC except that the test logic to decide 

whether the branch is taken is opposite. See notes on BVC. 
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ClC 
Clear the carry flag. C: = 0 

INSTRUCTION 
$18 ( 24 %0001 1000) 

Flags: I N V - B D I Z ~ I 
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ADDRESSING 
ClC implied 

Operation: The carry flag is set o. All other flags are unchanged. 

Uses: The carry bit is an automatically included feature in add and subtract 
commands (ADC and SBC), so that accurate calculations require the flag 
to be in a known state. CLC is the usual preliminary to additions: 

CLC 
LDA #$02 After CLC, this routine adds 2 and 2 and prints the 
ADC #$02 resulting byte, which is 4. In multiple-byte additions 
JSR PRBYTE C is cleared at the start but subseC(uently used to 

carry through the overflows, if they exist. 

ClD 
Clear the decimal flag. D: = 0 

INSTRUCTION ADDRESSING 
$D8 (216 %1101 1000) ClD implied 

Flag s : I N V - B ~ I Z C I 
Operation: The decimal flag is set 0; all other flags are unchanged. 

Uses: Resets the mode for ADC and SBC so that hexadecimal (binary) arithmetic 
is performed, not binary-coded decimal. Typically, SED precedes some 
decimal calculation, with CLD following when this is finished. 

Notes: Commodore BASIC uses no decimal mode calculations; on switching the 
machine on, CLD is executed and the flag is permanently left off. Entry 
to the monitor clears D, should it happen to have been set. There have 
been reports that future BASICs may contain BCD arithmetic. 

ell 
Clear the interrupt disable flag. 1:= 0 

INSTRUCTION ADDRESSING 
$58 ( 88 %0101 1000) CLI implied 

Flag s : iN V - B D ~ Z C I 

Operation: The interrupt disable flag is set to O. From now on, interrupts will 
be processed by the system, using the IRQ vector in ($FFFE). 

Notes: [1] Interrupts through the NMI line ('non-maskable interrupts') take place 
irrespective of the I flag. 

ClV 

[2] Commodore use the interrupt to process the keyboard and clocks. 
Typically, CLI is used after SEI plus changes to interrupt vectors. Often, 
CLI isn't needed when used with BASIC, as a number of BASIC routines 
themselves use CLI. See SEI for an example including CLI . 

Clear the internal overflow flag. V:=O 

ADDRESSING INSTRUCTION 
$B 8 (184 %1011 1000) ClV implied 

Flags :1 r N'--;i~:----=B:.......=D,--,-I -=Z=----=:C:...;1 
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CMP 
Compare memory with the contents of the accumulator. PSR set by A - M 

INSTRUCTION ADDRESSINC BYTES CYCLES 
$Cl (193 %11 00 0001) CMP (zero page,X) 2 6 
$C5 (197 %1100 0101)) CM P zero page 2 3 
$C 9 (201 %11 00 1001) CMP # immediate 2 2 
$CD (205 %1100 11 01) CMP absolute 3 4 
$01 (209 %1101 0001) CMP (zero page), Y 2 5* 
$05 (213 %11 01 0101) CMP zero page,X 2 4 
$09 (217 %1101 1001) CMP absolute, Y 3 4* 
$00 (221 %1101 11 01) CMP absolute,X 3 4* 

*Add 1 If page IS crossed 

Flags: I ~ V - B 0 I ! ~ I 
Operation: CMP affects three flags only, leaving registers and data intact. The 

accumulator is not changed. The byte at the address specified by the 
opcode is subtracted from A, and the three flags N, Z, and C set depending 
on the result. Thus, if the accumulator holds the same value as the memory 
location, the result is zero, and BEQ causes the appropriate action to be 
taken. Before performing the subtraction, the carry bit is set by the chip. 
Within the chip, what happens is that the accumulator's contents are added 
to the 2's complement of the data. and the result of this determines how 
the flags are set. 

Uses: [1] With the zero flag, Z. This is the easiest flag to use with CMP*:-
FF22 JSR FFCF; INPUT A CHARACTER 
FF25 CMP #$20; IS IT A SPACE? 
FF27 BEQ FF22; YES. INPUT AGAIN 
FF29 CMP #$OD; IS IT C.RETURN? 
FF2B BEQ FF47; YES. BRANCH ... 
FF2D CMP #$22; .. NO. MAYBE "? 

This is part of a routine 
to parse BASIC lines from 
the keyboard; the characters 
it looks for are typical of 
such routines. 

[2] With the carry flag, C. This is quite straightforward. If the memory 
con ten t8 are less than A, or equal to A, the carry flag is set. 'Less than' 
means in the absolute sense, not the 2's complement sense. Thus, 100 is 
less than 190, although in 2's complement notation, 190, being negative, 
would count as the smaller number of the two. 

LDA 085D 
CMP #$3A 
BCS 0087 
CMP #$20 

LDY #$00 
LDA (PTR), Y 
CMP #$20 
BeC Bl 
CMP #$40 
BeC B2 

This is part of CHRGET, where A is loaded with one 
byte of the BASIC program in memory. It's then pro­
cessed; see Chapter 14 for details. This extract 
compares with the ASCII for a colon, which is #3A, and 
branches for any less value, or if equal, to RTS. 

This example shows how a range of values may be tested 
for and processed. Starting with the lowest ranges. 
comparisons are carried out until the correct range is 
found; each comparison is followed by a branch to B 1, 
B 2 etc. where processing is carried out for 0- #IF, #$20-
#$39. and so on. 

[3] With the negative flag. N. This is the most obscure flag to use with 
CMP. The reason is that 2's complement numbers are assumed, and if you 
are working with these CMP operates as expected, subtracting the memory 
from the accumulator. and therefore giving a negative answer whenever the 
memory exceeds the accumulator. If both numbers are positive. or both neg­
ative, the N flag is set as though absolute subtraction were being used. and 
in these circumstances BMI/BPL can be used. But if the two data items have 
different signs. the comparison process is complicated by the fact that the V 
bit may register internal overflow. See Chapter 11 for more detail. 

*We have it on the authority of Gerry Weinberg that poor quality machine-code 
invariably has a branch of this type; you have been warned! 
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CPX 
Compare memory with the contents of the X register. PSR set by X - M 

INSTRUCTION ADDRESSING BYTES CYCLES 
$EO ~ 2211 %111 0 OOOO~ CPX It immediate 00 2 
$EII (228 %1110 0100) CPX zero page 00 3 
$EC (236 %1110 1100) CPX absolute 000 II 

Flags: 

Operation: CPX affects three flags only, leaving the registers and data intact. The 
byte referenced by the opcode is subtracted from X, and the flags N, Z, and 
C set depending on the result. Within the chip, X is added to the 2's comp­
lement of the data, and the result of this determines how the flags are set. 

Uses: [1] With the zero flag, Z. This flag tests equality. 

Cpy 

LDX #$00 
LOOP LDA $0270,X The loop in this example is part of the keyboard 

STA $026F, X buffer processing, showing how the contents of 
INX the buffer are shifted one character at a time. 
CPX $9E $9E is a zero-page location, updated whenever a 
BNE LOOP new character is keyed in, which holds the current 

number of characters in the buffer: the comparison provides a test to end 
the loop. 

[2] With the carry flag, C. This flag tests for X>=M and X<M:-
LDX $00 
CPX #$50 
BCS EXIT; IF X>79 

comparison causes exit, 

The test routine is part of a graphics plot program; 
location $00 holds the horizontal coordinate, which 
is to be in the range 0-79 to fit the screen. The 

without plotting, when X holds 80-255. 

[3] With the negative flag, N. When X and the data have the same sign, i.e. 
both are 0-127 or 128-255, BMI has the same effect as BCC, and vice versa. 
When the signs are opposite, the process is complicated by the possibility 
of overflow into bit 7. For example, 78 compared with 225 sets N =0, but 127 
compared with 255 sets N=1. (Because 225=-31 as a 2's complement number; 
thus 78+31=109 with N=O, but 127+31=158 with N=1) 

Compare memory with the contents of the Y register. PSR set by Y - M 

INSTRUCTION ADDRESSING BYTES CYCLES 
$CO (192 %1100 0000) CPY It immediate 00 2 
$C4 (196 %1100 0100) CPY zero page 00 3 
$CC (204 %11 00 11 00) CPY absolute 000 4 

Flags: I~ V - B D I ! ~ I 
Operation: CPY affects three flags only, leaving the registers and data intact. The 

byte referenced by the opcode is subtracted from Y, and the flags N, Z, 
and C set depending on the result. Apart from the use of Y in place of X, 
with the resulting asymmetry in the implementation of addressing, this 
opcode is identical in its effects to CPX. 

Notes: The major difference in addressing between X and Y is the fact that post­
indexing of indirect addresses is available only with Y. So this type of 

LDY #$00 construction, in which a set of consecutive bytes, 
LOOP LDA (PTR). Y perhaps a string in RAM or an error message, is 

JSR OUTPUT processed up to some known length, tends to use 
INY the Y register. 
CPY LENGTH 
BNE LOOP 
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DEC 
Decrement memory contents. M:=M-l 

INSTRUCTION ADDRESSING BYTES CYCLES 
$C6 (198 %1100 0110) DEC zero page gg 5 
$CE (206 %1100 1110) DEC absolute 000 6 
$D6 (214 %11 01 0110) DEC zero page, X 00 6 
$DE (222 %11 01 1110) DEC absolute, X 000 7 

Flags: I ~ V - B D I ! C I 
Operation: The byte referenced by the addressing mode is decremented by 1, 

setting the N flag and the Z flag. If the byte contained anything from 
#81 to #0, after DEC the N flag will be set; however, Z will be 0 except 
for the one case where its value was #1 before the decrement. Probably 
#FF is added within the chip itself, setting Nand Z on the result. Note 
that the carry bit is unchanged irrespective of the outcome of DEC. 

Uses: [1] LDA $93 This short routine shows an efficient method to decrement 
BNE +2 a zero page pointer or any other double-byte value. It uses 
DEC $94 the fact that the high byte must be decremented only if the 
DEC $93 low byte is exactly zero. Compare INC. 

[2] Counters other than the X register and Y register can easily be 
implemented with this command (or INC). Such counters must be in RAM; 
there is no 'DEA' instruction. This simple delay loop which decrements 
locations $00 and $01 shows. the type of thing:-

AND #$00; FOR A CHANGE 
STA $00 SET THESE BOTH A zero page decrement takes 5 clock cycles 
STA $01 ; TO ZERO to carry out; a successful branch takes 3. 

LOOP DEC $00 (We'll assume a page isn't crossed, as in 
BNE LOOP; 255 LOOPS... fact it is statistically unlikely to be if this 
DEC $01 code is put into RAM at random). The 
BNE LOOP; .,. BY 255 inside loop therefore takes 8*255 cycles to 

complete, and the whole loop is a little more than 8*255*255 cycles. We can 
divide this by a million to get the actual time in seconds, which is about 
half a second. 

DEX 
Decrement the contents of the X 

INSTRUCTION 

register. X:=X-l 

ADDRESSING 
$CA (202 %1100 1010) DE~ implied 

Flags: I ~ V - B D I ~ C I 
Operation: The contents of the X register are decremented by 1, setting the N 

flag if the result has bit 7 set, and setting the Z flag if the result is O. 
As with DEC, the carry bit is unaltered. 

Uses: DEX is almost exclusively used to count X in a loop. Its maximum range, 
of 255 bytes, is often insufficient, so several loops may be necessary. 
E12F LDX #$lC 
E131 LDA EOF8, X This routine moves 28 bytes from ROM to RAM, 
E134 STA 6F,X including the CHRGET routine, in BASIC 2. 
E136 DEX 
E137 BNE E131 

LDX #$00 
LOOP LDA #$20 

STA $8000,X 
STA $8100,X 
STA $8200,X 

STA $8300,X 
DEX 
BNE LOOP 

This is a screen-clearing routine, which puts 1000 
bytes of #$20 (space) into RAM. With an 80-column 
machine only the top half of the screen blanks out, 
because 80 columns by 25 rows gives 2000 locations. 
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DEY 
Decrement the contents of the Y register. Y:=Y-l 

INSTRUCTION ADDRESSING 
$88 (136 %1000 1000) DEY implied 

Flags: I ~ V - B D I ! C I 
Operation: The contents of the Y register are decremented by 1, setting the N 

flag if the result has bit 7 set (i.e. is greater than 127), and setting the Z 
flag if the result is #0. As with DEC, the carry bit is unaltered. 

Uses: DEY, like DEX, is almost exclusively used to count within loops. There are 
more opcodes which have indexing by X than by Y, so X is more popular for 
this purpose. This example is less of a loop than those I've chosen for X:­

LDY #$02 
LDA (PTR) , Y; LOAD 2ND BYTE This inclusively ORs together three adjacent 
DEY bytes; so that if the result is #0, each of 
ORA (PTR) , Y; ORA 1ST BYTE the three must have been zeros. Note the 
DEY addressing mode, which is indirect indexed, 
ORA (PTR) , Y; ORA OTH BYTE the indirect mode which is post-indexed by 
BNE CONT END IF ZERO the Y register. 

EOR 
Accumulator's contents are exclusively ORed bitwise with the contents of memory. 
A:=AEORM 

INSTRUCTION ADDRESSING BYTES CYCLES 
$41 (65 %0100 0001 ) EOR (zero page,X) 00 6 
$45 (69 %0100 0101) EOR zero page 00 3 
$49 ( 73 %0100 1001) EOR # immediate 00 2 
$4D ( 77 %0100 11 01) EOR absolute 000 4 
$51 ( 81 %0101 0001) EOR (zero page), Y 00 5* 
$55 ( 85 %0101 0101) EOR zero page,X 00 4 
$59 ( 89 %0101 1001) EOR absolute, Y 000 4* 
$5D ( 93 %0101 1101) EOR absolute, X 000 4* 

*Add 1 if page is crossed 

Flags: I~V-BDI!CI 
Operation: An exclusive OR (compare ORA for a description of an inclusive OR) 

is a logical operation in which bits are compared, and EOR is considered to 
be 'true' if A or B - but not both, or neither - is true. For example, 
let's evaluate #AB EOR #5F. Now #AB is %1010 1011, i.e. in decimal, ten 
followed by eleven. #5F is %0101 1111. So the EOR of these two is 
%1111 0100, or #F4. We arrive at this result by a process of bit comparisons, 
where bit 7 is 0 EOR 1=1, and so on. 

Uses: [1] CBM graphics use bit 7 to signal reverse video. In BASIC, this screen 
POKE can be used to reverse any character(s): POKE P, (PEEK(P) OR 128) 
AND NOT (PEEK(P) AND 128). This exclusively-ORs the high bit with the peek 
value, reversing the video byte. In machine code, the same reverse effect 

LDA LOCN is more elegantly and quickly achieved with this 
EOR #$80 EOR, which is not directly available in BASIC. 
STA LOCN Chapter 9 has more on this topic. 

[2] EOR is exceptional among CBM and 6502 logical functions in that no 
'information' in the technical sense is lost. If you repeatedly ANp, you will 
finish with #0; if you ORA, you'll end with #FF. For this reason, hashtotals 
and data encryption algorithms often use EOR. To code data, each byte is 
EORed with a byte generated by some secret, repeatable process. When the 
result is EORed again with the identical sequence, all the original bytes are 
restored. 
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INC 
I ncrement memory contents. M: =M+l 

INSTRUCTION ADDRESSING BYTES CYCLES 
$E6 (230 %1110 0110) INC zero page 00 5 
$EE (238 %1110 1110) INC absolute 000 6 
$F6 (246 %1111 0110) INC zero page,X 00 6 
$FE (254 %1111 1110) INC absolute, X 000 7 

Flags: I ~ V - B D I ; C I 

Operation: The byte referenced by the addressing mode is incremented by 1, setting 
the N flag and the Z flag. The N flag will be 1 if the contents' high bit is 
1, and otherwise 0; and Z will be 1 if the contents now equal zero exactly. 
The carry bit is unchanged. 

Uses: [1] INC $93 This short routine shows an efficient method to increment a 
BNE CONT zero page pointer or any other double-byte value. The high 
INC $94 byte must be incremented only when the low byte changes 

CONT ... from #FF to #00. Compare DEC. 

[2] Exactly as note [2] in DEC, INC may be used to implement counters in 
RAM where the X and Y registers are insufficient. Suppose we use the IRQ 
interrupt servicing to (say) flash a cursor or repeat a key. Something like: 
IRQ INC $00 

BEQ +3 
JMP IRQCONT 
LDA #20 
STA $00 

where IRQCONT is the interrupt's usual routine enables 
some periodic routine to be performed. Here, the zero 
page location $0 is used to count from #20 up to #FF and 
#00, so the processing occurs every 255-32=223 jiffies -
about every 3.7 seconds. 

Notes: [1] The accumulator can't be incremented using this; CLC / ADC #01 or SEC / 
ADC #00 must be used, or TAX / INX / TXA or some other variation. 

INX 

[2] Remember that INC doesn't load; if the incremented contents are to be 
used in A, or in a register, then INC $C6 say must be followed by LDA $C6 
or LDX $C6 or LDY $C6. 

I ncrement the contents of the X register. X: = X + 1 

INSTRUCTION ADDRESSING 
~$C;:E""8--=--='(~2';.C32::-:-"%~1 ';;':11~0:--::1 ~O 0:-;0") -+-'1 N X i m pi ied 

Flags: I ~ V - B D I ! C I 
Operation: The contents of the X register are incremented by 1, setting the N flag 

if the result has bit 7 set, and the Z flag if the result is zero. These flags 
may both be 0, or one of them may be 1; it is impossible for both to be set 
1 by this command. The carry bit is unchanged. 

Uses: INX is common as a loop variable. It is also often used to set miscellaneous 
values which happen to be near each other, like this: 

LDX #$00 
STX $033A 
STX $033C 
INX 
STX $10 

Stack pointer processing tends to be connected with the use of the X 
register, because TXS and TSX are the only ways of accessing SP. Most 
of CBM's stack handling and memory checking for BASIC uses the X register. 
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INY 
Increment the contents of the Y 

INSTRUCTION 

register. Y:=Y +1 

ADDRESSING 
$C8 (200 %1100 1000) INY implied 

Flags: I ~ V - B D I ! C I 

Operation: The contents of the Y register are incremented by 1, setting N=1 if the 
result has bit 7=1, and vice versa, and setting Z=1 if the result is zero, and 
vice versa. A zero result is obtained by incrementing #$FF. Note that the 
carry bit is unchanged. 

Uses: Like DEX, DEY, and INX this command is often used to control loops; and 
like them it is often followed by a comparison (CPY) to check whether its 
exit value has been reached. See CPY for a typical example. 

JMP 
Jump to a new location anywhere in memory. PC: = M 

I NSTRUCT ION ADDRESSING BYTES CYCLES 
$IIC ( 76 %0100 1109) JMP absolute 000 3 
$6C ( 1 08 %0110 1100) JMP (absolute) 000 3 

Flags: I N V - B D I Z C I 
Operation: JMP is the 6502 equivalent of a GOTO, transferring control to some 

non-sequential part of the program. An absolute JMP, opcode $4C, causes 
the following byte to be transferred to the low byte of the program counter 
and the next-but-one to the high byte of the program counter, resulting in 
a jump. The indirect absolute jump is more elaborate, and takes longer: 
PCL and PCH are loaded from the address following JMP and from the next 
address respectively. This is the only absolute indirect command available 
on the 6502. 

Uses: JMP, unlike JSR, keeps no record of its present position, and transfers 
control unconditionally to its new destination. The resulting code is not 

LDA PTRLO relocatable and in the case of ROM routines not 
LDY PTRHI usually portable between CBMs, so branching may 
JMP ADD be preferable where possible- i.e. in short programs. 

CMP #$2C ;' , These extracts from programs demonstrate how JMP 
BEQ +3 is used. The first loads two pointers to a work area 
JMP ERROR for calculations; a routine to add accumulator #1 to 

this data is jumped to. The second is part of a 
parsing subroutine which checks for a comma in a BASIC line; if the comma 
has been omitted, an error message is printed to inform the user of this fact. 

Notes: [1] Indirect addressing. This is a 3-byte command which therefore looks like 
this: JMP ($0072) or JMP ($7FFO). A concrete example is the IRQ vector in 
the CBMs. When a hardware interrupt occurs, an indirect jump to ($0090) 
takes place. « $0129)in BASIC 1). A look at this region of RAM with the 
monitor reveals something like this: 

., 0090 2E E6 17 FD 89 C3 00 FF NOTE: THIS IS BASIC 2 
So JMP ($0090) is equivalent to JMP $E62E. And JMP ($0092) jumps to $FD17. 
Pairs of bytes can be used in this way to form an indirect jump table. Note 
that this instruction has a bug: JMP ($02FF) takes its new address from 
$02FF and $0200, not $0300. 

[2] JSR, RTS, and JMP. As the depth of subroutine nesting grows with 
increasing program complexity, inevitably some subroutines which themselves 
call other subroutines develop code like this: 

LOAD VALUES And the point is that a subroutine call followed by a 
JSR PROCESS return is exactly identical to a jump, except that the 
JSR CHECK stack use is less and the timing is shorter. Replacing 
RTS JSR CHECK/ RTS by JMP CHECK is a common trick. 
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JSR 
Jump to a new memory location saving the return address. 
S:=PC+2H, SP:=SP-1, S:=PC+2L, SP:=SP-1, PC:=M 

INSTRUCTION ADDRESSING 
$20 ( 32 %0010 0000) JSR absolute 

Flags: I N V - B D I Z C I 
Operation: JSR is the 6502 equivalent of a GOSUB, transferring control to another 

part of the program until an RTS is met, which has an effect like RETURN. 
Like BRK, this instruction saves PC +2 on the stack, which is the last byte 
of the JSR command, RTS therefore has to increment the stored value in 
order to execute a correct return. Note that no flags are changed by 
JSR. RTS also leaves flags unaltered. 

Uses: [1] JSR is a very valuable commandandisused a great deal in complex 
programs: see for example the ROM BASIC interpreter. It has drawbacks 
which are similar to those of JMP. In particular, JSR is not relocatable 
except as regards fixed addresses such as those in ROM; and even these 
don't usually carryover between ROMs. The exception is the so-called 
'kernel' commands. JSR $FFE4 is a GET command and is relocatable in the 
usual sense between any CBM ROM. Note that the 6809 has 'BSR', branch 
on subroutine, with both short and long offsets permitted, which overcomes 
the reloca tability difficulties *. 
LOOP JSR FFE4 

BNE LOOP 

LDA CHAR 
JSR FFD2 

0300 BNE 0305 
0302 JSR 0308 
0305 JMP IRQCONT 
0308 PROCESS 

The first two examples here show how ROM routines 
in the kernel may be used. It is not necessary to 
know how they operate; all that's needed is know­
ledge of their principal features, which in these 
examples are that data is transferred by the accum­
ulator, and that the flags are set by FFE4 as though 
LDA had been used. So the first example loops until 
a non-null byte has been fetched; the second loads 
a byte from memory and outputs it to cassette or 
printer or whatever. The third example, part of a 
routine inserted into the IRQ servicing routine, RTS 

030D JSR EOF9; INCREMENT GETCHR ADDRESS 
0310 JSR CC9F; EVALUATE EXPRN; PUT IN ACC#1 
0313 JSR D72C; ADD .5 TO ACC#1 TO ROUND 
0316 JSR D6D2; CONVERT ACC#1 TO INTEGER IN ($11) 
0319 JSR C52C; SEARCH FOR LINENUMBER IN BASIC 
031C BCS 0321; CARRY SET IF FOUND 
031E JMP C7EB; ?UNDEF'D STATEMENT ERROR 

has checked for some condition - possibly a particular keypress - and, if 
the condition was true, calls a subroutine before returning to the interrupt 
servicing as usual. This example illustrates the point made before about the 
problem of relocation. Suppose the routine were shifted to a new part of 
RAM. It would reappear as: 0200 BNE 0205/ 0202 JSR 0308/ 0205 JMP IRQCONT/ 
0208 PROCESS ... RTS. What is wanted is JSR 0208. See Chapter 14 on this 
subject. 

The fourth example is part of a computed GOTO routine for BASIC, which 
uses ROM routines (in fact, BASIC 2 routines). BASIC subroutines provide 
debugged code, but need rewriting to cope with each new issue of ROM. 

Notes: See RTS for the PLA/ PLA construction which 'pops' one subroutine return 
address from the stack. RTS also explains the special construction in which 
an address (minus 1!) is pushed onto the stack, generating a jump when 
RTS occurs. Finally, see JMP for a note on the way in which JSR ... /RTS 
may be replaced by JMP... . 

*Very often there is no need to worry about this aspect of the 6502, of course. 
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LOA 
Load the accumulator with a byte from memory. A: = M 

INSTRUCTION ADDRESSING BYTES CYCLES 
$Al (161 %1010 0001) LOA (zero page,X) 00 6 
$A5 (165 %1010 0101) LOA zero page 00 3 
$A9 (169 %1010 1001) LOA # immediate 00 2 
$AD (173 %1010 1101) LOA absolute 000 4 
$Bl (177 %1011 0001) LOA (zero page), Y 00 5* 
$B5 (181 %1011 0101) LOA zero page,X 00 4 
$B9 (185 %1011 1001) LOA absolute, Y 000 4* 
$BD (189 %1011 11 01) LOA absolute, X 000 4*' 

* Add 1 if page boundary crossed 

Flags: I ~ V - B 0 I ! C I 
Operation: Loads the accumulator and sets the zero flag Z to 1 if the accumulator 

now holds zero (i.e. all bits = 0). Bit 7 is copied into the N ('negative') 
flag. No other flags are altered. 

Uses: [1] General transfer of data from one part of memory to another needs a 
temporary intermediate store of data, which A (or X or Y) can be. As an 

LDX #00 example, this program transfers 256 consecutive 
LDA 7000,X bytes of data from $7000ff to $8000 ff. The 
STA 8000, X accumulator is alternately loaded with data and 
DEX written to memory. * 
BNE -9 

[ 2] Some binary operations use the accumulator: ADC, SB C, and CMP all 
require A to be loaded before adding / subtracting/comparing. The addition 
or whatever can't be made directly between two RAM locations. (Even if 
it could the opcode would make a 5-byte instruction). 

LDA 97 WHICH KEY? 
CMF #FF ; PERHAPS NONE? 
BNE KEY ; BRANCH IF KEY 

[3] LDA $E843 When the CBM is switched on, the code it executes 
contains this instruction. It initialises a register 

by reading from it. The value is not important; the fact of reading out is. 

LOX 
Load the X reg ister with a byte from memory. X: = M 

INSTRUCTION ADDRESSING BYTES CYCLES 
$A2 (162 %1010 0001) LOX # immediate 00 2 
$A6 (166 %1010 0101) LOX zero page 00 3 
$AE (174 %1010 1110) LOX absolute 000 4 
$B6 (182 %10110101) LOX zero page,Y 00 4 
$BE (190 %1011 1110) LOX absolute, Y 000 4* 

*Add 1 if page boundary crossed 

Flags: I ~ V - B 0 I ! C I 
Operation: Loads X from memory and sets Z=1 if X now holds zero. Bit 7 from the 

memory is also copied into N. No other flags are altered. 

Uses: [1] Transfer of data and holding temporary values (e.g. for comparisons). 
These closely resemble LDA (q. v . ) 

[2] X has two characteristics which distinguish it from A: it is in direct 
communication with the stack pointer and it can be used as an offset with 
indexed addressing. (There are other differences too!) So constructions 
like these are common: LDX #$FF 1 TXS and LDX #$001 ... 1 DEXI BNE ... 

*Some chips (e.g. Z80) have documentation in which 'load' means 'load into memory'. 
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LOY 
Load the Y register with a byte from memory. Y:=M 

INSTRUCTION ADDRESSING BYTES CYCLES 
$AO (160 %1010 0000) LDY # immediate 00 2 
$A4 (164 %1010 0100) LDY zero page 00 3 
$AC (172 %1010 1100) LDY absolute 000 4 
$B4 (180 %1011 0100) LDY zero page,X 00 4 
$BC (188 %1011 1100) LDY absolute, X 000 4* 

* Add 1 if page boundary crossed 

Flags: I ~ V - B D I ! C I 
Operation: Loads Y from memory and sets Z=1 if Y now holds zero. Bit 7 from 

memory is copied into N. No other flags are altered. 

Uses: [1] Transfer of data and storage of temporary values: Cp. LDX, LDY. 

LSR 

[2] Since Y can be used as an index, and can be incremented/ decremented· 
easily, it is often used in loops. However, X generally has more combinations 
of addressing modes in which it is used as an index; often therefore X is 
reserved for indexing, while A and Y between them process other para­
meters. When indirect addressing is used this preference between X and Y 
is reversed, since (usually) LDA (addr,X) is less useful than LDA (addr), Y. 

LDY #00 X HOLDS LENGTH 
LOOP DEX DECREMENT IT 

BEQ EXIT EXIT WHEN 0 
LDA (PTR),Y; LOAD ACCUMULATOR 
JSR PRINT PRINT SINGLE CHR 
CMP #OD 
BEQ EXIT 
BNE LOOP 

EXIT IF 
'RETURN' 

CONTINUE LOOP 

This (admittedly rather unexciting) 
example shows how A,X, and Y have 
distinct roles; the ROM routine to print 
the character is assumed to return the 
original X and Y values (as in fact it 
does) . 

Shift memory or accumulator right one bit. @]--l7 6 5 4 3 2 1 O~ 

INSTRUCTION ADDRESSING BYTES CYCLES 
$46 ( 70 %0100 011 0) LSR zero page 00 5 
$4A ( 74 %0100 1010) LSR accumulator 0 2 
$4E ( 78 %0100 1110) LSR absolute 000 6 
$56 ( 86 %0101 0110) LSR zero page, X 00 6 
$5E ( 94 %0101 1110) LSR absolute, X 000 7 

Flags: I~ V - B D I ! ; I 
Operation: Moves the contents of memory or the accumulator right by one bit position, 

putting 0 into bit 7 and the negative flag, and moving the rightmost bit, 
bit 0, into the carry flag. Z is set to 1 if the result is zero, and cleared 
if not. Z can therefore only become 1 if the location before LSR held either 
#0 or #1. 

Uses: [1] This instruction is similar to ASL (and could just as well be called 
'arithmetic shift right'). A byte is halved by this instruction (unless in 
decimal mode, with D set), its remainder moving into the carry flag. See 
for example the machine-code corresponding to the BASIC 'SET' command, 
which halves the coordinates of a point in 'high resolution' graphics to fit 
the screen. A rotate command can save the carry bit; see ROL. 

[2] Miscellaneous uses include: (i) LSR/ LSR/ LSR/ LSR move a highnybble 
into a low nybble; (ii) LSR/ BCC tests bit 0, and branches if it was not set 
to 1; (iii) LSR turns off bit 7; sometimes this is an easy way to convert a 
negative number into its positive equivalent, when the sign is stored as a 
separate byte. The BASIC ABS function for instance does this. 
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NOP 
No operation. 

INSTRUCTION ADDRESSING 
$EA (23/1 %111 0 1010) NOP implied 

Flags: I N V - B D I Z C I 
Operation: Does nothing. (Well, not quite nothing - it increments the program 

counter and continues with the next opcode). 

Uses: [1] Filling disused portions of program; this is useful with hand 'assembly' 
and other methods where recalculation of branch addresses and so on can't 
be done easily. Some CBM ROM has this feature: for example, BASIC 2's 
PEEK has many NOPs left over from deleting the PEEK protection from 
BASIC 1. 

[2] Conversely, when writing machine-code which hasn't been thoroughly 
thought out beforehand (I am assured that this does very rarely happen) 
a large block of NOPs, or occasional sprinkling of them, can make the task 
of editing the code and inserting corrections easier. There is some time 
lost in this process; NOP can be used as part of a timing loop. 

ORA 
Logical inclusive OR of memory with the accumulator. A:=A inclusive OR M 

INSTRUCTION ADDRESSING BYTES CYCLES 
$01 ( 1 %0000 0001) ORA (zero page, X) 00 6 
$05 ( 5 %0000 0101) ORA zero page 00 3 
$09 ( 9 %0000 1001) ORA # immediate 00 2 
$00 ( 1 3 %0000 11 01) ORA absolute 000 /I 
$11 ( 17 %0001 0001) ORA (zero page), Y 00 5 
$15 ( 21 %0001 0101) ORA zero page,X 00 /I 
$19 ( 25 %0001 1001) ORA absolute, Y 000 /1* 
$10 ( 29 %0001 11 01) ORA absolute,X 000 /1* 

*Add 1 if page boundary crossed 

Flags: I ~ V - B 0 I ! c I 
Operation: Performs the inclusive OR of the 8 bits currently in the accumulator 

with the 8 bits referenced by the opcode. The result is stored in A. If 
either bit is 1, the resulting bit is set to 1, so that for example: 
%0011 0101 ORA %0000 1111 is %0011 1111. The negative flag N, and the 
zero flag Z, are set or cleared depending on the result. 

Uses: [1] 'Flagging in' a bit or bits. This is the opposite process to 'masking out' 
bits, as described under AND. These two examples are typical extracts 

LDA (PTR), Y from larger routines which use this function: the 
ORA #$80 first loads a character from the screen, then sets 

ORA $96 
STA $96 

the high bit, reversing it - unless the character 
was already in reverse, in which case it is left 
unchanged. (Cp. EOR). The second is the method 

by which an error code of #1, #2, #4 or whatever, held in A, is flagged into 
the status byte ST. ST is stored in $96. Note the necessity for STA $96; 
without it, only A holds the correct value of ST. 

[2] Other miscellaneous uses include the testing of several bytes for cond­
itions which are intended to be true for each of them, for instance that 3 
consecutive bytes are all zero, or that several bytes all have bit 7 equal to 
zero. LDY #00/ LDA (PTR),Y/ INY/ ORA (PTR),Y/ INY/ ORA (PTR),Y/ BNE 
branches if one or more bytes contains a non-zero value. 
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PHA 
Push the accumulator's contents onto the stack. S:=A, SP:=SP- 1 

INSTRUCTION ADDRESSING 
$48 (72 %0100 1000) PHA implied 

Flags: I N V - B D I Z C I 
Operation: A is put into the stack at the current position pointed to by the stack 

pointer; the stack pointer is decremented. This diagram illustrates the 
position before and after the 'push':-

$0100 MAXIMUM EXTENT OF THE STACK --- $OIFF 
I 1'1 STACK IN USE I 

SP (STACK POINTER) 
mlAI STACK IN USE 

Note: 'Push' is a rather misleading term for the action of this instruction; and the 
well-known 'stack of plates' analogy is also seriously misleading, and no 
doubt responsible for the puzzlement with which the stack is often viewed. 

PHP 
Push the processor status register's contents onto the stack. S: = PSR, SP: = SP - 1 

INSTRUCTION ADDRESSING 
$08 ( 8 %0000 1000) PHP implied 

Flag s: I N V - B D I Z C I 
Operation: The operation is exactly similar to PHA, except that the processor status 

register is put in the stack. The PSR is unchanged by the push. 

Uses: Stores the entire set of flags, usually either to be recovered later and 
displayed by a monitor program, or for recovery followed by a branch. 

PHP This leaves the stack in the condition it was found; it also 
PLA loads A with the flag register. The first example under PHA 

shows the recovery of A, which sets either / neither of N and V. The same 
effect can be achieved, with the full range of flags, with LDA CHR/ PHP. 
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PLA 
Pull the stack into the accumulator. SP : = SP + 1, A: = S 

INSTRUCTION ADDRESSING 
$68 (104 %0110 1000) PLA implied 

Flags: I ~ V - B D I ! C I 
Operation: The stack pointer is incremented, then the RAM address to which it 

points is read and loaded into A, setting the Nand Z flags. The effect is 
similar to LDA. This diagram illustrates the position before and after the 
'pull' :-

Uses: 

PLP 

$0100 
I 

MAXIMUM EXTENT OF THE STACK --­
I IAI STACK IN USE 
SP (STACK POINTER) 

IAI STACK IN USE 
SF (STACK POINTER) 

$OlFF 
I 

[1] PLA is the converse of PHA. It retrieves values put on the stack by 
PHA, in the reverse order. So for example: 

PLA This code leaves the stack unchanged, but leaves 
PHA A holding the contents of the current 'top' of the 

PHP 
PLA 

stack. Flags Nand Z are set as though by LDA. 
This next example shows how the processor status 
register may be examined by loading it into the 

accumulator from the stack. For example, if A now has bit 3 equal to 1, 
the decimal mode is set. 

[2] A frequent use of PLA is to 'throwaway' the top two bytes of the 
stack. This is equivalent to adding 2 to the stack pointer. This is done 
to 'pop' a return address from the stack; in this way, the next RTS which 
is encountered will not return to the previous J S R, but to the one before 
it. It assumes, of course, that the stack has not been added to since the 
JSR. The following short example illustrates the point:-

033A LDX #FF 
033C JSR 0340 
033F BRK 

0340 JSR 0350 
0343 LDX #01 
0345 RTS 

Enter this trio of routines into a CBM with a monitor 
(Le. not BASIC 1, unless a monitor is specially 
loaded). However, use $0350 RTS at first. If the 
routine is run, by .G 033A which goes to the 
machine-code address $033A and executes the code 
there, on BRK the registers are displayed, among 
them X, which equals #01. This is ordinary nested 

0350 PLA subroutine logic; the earlier value of X is over-
0351 PLA written in the subroutine starting at $0340. But 
0352 RTS if you use routine $0350 as it appears here, the X 
register holds #FF on BRK. The return address of $0342, as it is held in the 
stack, has been lost, so RTS goes straight to BRK. 

Pull the stack into the processor status register. PSR:=S 

INSTRUCTION ADDRESSING 
$28 (40 %0010 1000) PLP implied 

Flags: I N V - B D I Z C I 
.xx xxxxx. 

Operation: The operation is exactly similar to PLA, except that the processor status 
register, not the accumulator, is loaded from the stack. 

Uses: Recovers previously stored flags with which to test or branch. See the 
notes on PHP. This can also be used to experiment with the flags, perhaps 
trying to set bit 5 (which is set to 1) or to set V, for example. 
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ROL 
Rotate memory or accumulator and the carry flag left one bit. 

~7 6 5 II 3 2 1 of'+J 
INSTRUCTION ADDRESSING BYTES CYCLES 
$26 ( 38 %0010 0110) ROL zero page 00 5 
$2A ( 112 %0010 1010) ROL accumulator 0 2 
$2E ( 116 %0010 1110) ROL absolute 000 6 
$36 ( 511 %0011 0110) ROL zero page, X 00 6 
$3E ( 62 %0011 1110) ROL absolute, X 000 7 

Flags: I ~ V - B D I ! ~ I 
Operation: 9 bits, consisting of the contents of memory referenced by the instruction, 

and the carry bit, are 'rotated' as the diagram shows. In the process, C is 
changed to what was bit 7, bit 0 becomes the previous C, and the negative 
flag, bit 7, becomes the previous bit 6. In addition, Z is set or cleared 
depending on the new memory contents. 

Uses: [1] Like ASL, ROL doubles the contents of the byte which it references, but 
in addition the carry bit may be used to propagate the overflow from such a 
doubling. Multiplication and division routines take advantage of this property 
where a chain of consecutive bytes has to be moved one bit leftward. ROR is 
used where the direction of movement is rightward, and often these commands 
are used together. 

i. ASL $4000 
ROL $4001 
ROL $4002 

ii. ROL $7FE3,X 
CLC 
ROR $7FE3,X 

The first example moves the entire 24 bits of $4000 -
$4002 over by 1 bit, introducing 0 into the rightmost 
bit; if there is a carry, the carry flag will be 1. 
The second example demonstrates an alternative 
method for clearing bit 7 of a location to the more 
obvious LDA / AND #7F / ST A . It is however far 
'slower', taking half as long again to execute. All 

rotations and shifts are slow, with the exception of operations on A which are 
as fast as the 6502 allows. If possible, therefore, rotations and shifts should 
use A. Parity bits are a good example of the type of application for which 
ROL is ideal. Zak's 6502 book has an example in which ONECNT holds the 
count of Is in a byte, and A holds the character; what should follow is: 

ROL A BIT 7 OF THE CHR NOT YET KNOWN 
LSR ONECNT; PUTS 0 (EVEN), 1 (ODD) INTO C 
ROR A ; INCORPORATE C INTO BIT 7 

[2] Like A SL, ROL may be used before testing N, Z, or C, especially N. 
ROL A ROTATE 1 BIT LEFTWARD 
BMI BRANCH; BRANCHES IF BIT 6 WAS ON 

ROR 
R I t otate memor~ or accumu a or an d th e carry fI . ht ag rIg one b't I • 

~7 6 5 II 3 2 1 O"}JNB: old 6502s lack this instruction, but all PETICB Ms have it. 

INSTRUCTION ADDRESSING BYTES CYCLES 
$66 (102 %0110 0110) ROR zero page 00 5 
$6A (106 %0110 1010) ROR accumulator 0 2 
$6E (110 %0110 1110) ROR absolute 000 6 
$76 ( 11 8 %0111 0110) ROR zero page,X 00 6 
$7E (126 %0111 1110) ROR absolute, X 000 7 

Flags: I~ 
Operation: 9 bits, consisting of the contents of memory referenced by the instruction, 

and the carry bit, are 'rotated' as the diagram shows. C becomes what was 
bit 0, bit 7 becomes the previous C, and Z is set or cleared depending on 
the byte's current contents. For applications, see ROL. 
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RTI 
Return from interrupt. 

INSTRUCTION 
$40 (64 %0100 0000 

Flags: N V - B D I Z C 
xx xxxxx 

Operation: RTI takes 3 bytes from the stack, deposited there when the hardware 
triggered the interrupt, assuming that the stack has been tidied up before 
RTI with equal numbers of pulls following the pushes. The processor status 
flags are recovered as they were when the interrupt occurred, and the 
program counter is restored so that the program resumes operation at the 
byte at which it was interrupted. Note that A, X, and Yare not saved or 
recovered automatically in this way, but must be saved by the interrupt 
processing and restored immediately before RTI. If you follow the vector 
stored in CBM ROM at ($FFFE), you will see this operation taking place. 

Uses: [1] Obviously, to resume after an interrupt. Unless you are using your own 
hardware to generate interrupts, or programming the VIA to generate inter­
rupts, this instruction is unlikely to be useful to you. 

RTS 

[2] However, it is possible, as with RTS, to exploit the automatic nature of 
this command to execute a jump by pushing 3 bytes on the stack, imitating 
an interrupt, then using RTI to pop the addresses and processor status. 

LDA HI 
PHA 
LDA LO 
PHA 
LDA PSR 
PHA 
RTI 

This routine, by simulating the stack contents 
left by an interrupt, jumps to 256*HI + LO (in 
decimal!) with its processor flags equal to what­
ever was pushed on the stack as 'PSR'. 

Return from subroutine. SP:=SP + 1, PCL:=S, 

INSTRUCTION ADDRESSING 
$20 ( 32 %0010 0000) JSR implied 

Flags: I N V - B D I Z C I 
Operation: RTS takes 2 bytes from the stack, increments the result, and jumps to the 

address found by putting it into the program counter. It is similar to RTI, 
but does not change the processor flags, since an important feature of 
subroutines is that, on return, flags should be usable. Also, unlike RTI in 
which the address saved is the address to return to, RTS must increment 
the address it fetches from the stack, which points to the second byte after 
a 'JSR'. (Presumably, the chip uses the routine for BRK and for JSR in 
common). 

Uses: [1] To return after a subroutine. This is entirely straightforward:-
033A JSR 0350; CALL SUBROUTINE 
033D RTS ; RETURN TO BASIC SYS 826 calls the routine at 
0350 STA $8000; PUT A IN SCREEN 033A which is a short program, 
0353 RTS • RETURN calling. a subroutine before 

, returnmg to BASIC. The 
subroutine starts at 0350 and continues until RTS is found; this example simply 
pokes A into the top-left corner of the screen before returning. 

Notes: [1] See PLA for the technique for discarding subroutines' return addresses. 
Also see JMP for the essential identity of JSR ... / RTS and JMP... . 
Finally, as with RTI, a jump can be generated by pushing bytes onto the stack 
and executing RTS, even though no subroutine call was actually made. 
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SBC 
Subtract memory with borrow from accumulator. A: = A - M - (1-C) 

INSTRUCTION ADDRESSING BYTES CYCLES 
$E1 (225 %1110 0001) SBC (zero page, X) 00 6 
$E5 (229 %1110 0101) SBC zero page 00 3 
$E9 (233 %1110 1001) SBC # immediate 00 2 
$ED (237 %1110 1101) SBC absolute 000 II 
$F1 (2111 %1111 0001) SBC (zero page), Y 00 5* 
$F5 (2115 %1111 0101) SBC zero page, X 00 II 
$F9 (2119 %1111 1001) SBC absolute, Y 000 11* 
$FD (253 %1111 1101) SBC absolute, X 000 11* 

*Add 1 if page boundary crossed 

Flags: I ~ ~ - B D I ! ~ I 
Operation: It is usual to set the carry bit before this operation, or precede it by an 

operation which is known to leave the carry bit set. Then SBC appears to 
subtract the data referenced by the addressing mode from the accumulator. 
If the carry flag is still set, this indicates that the result did not 'borrow', 
i.e. that the accumulator's contents were greater than or equal to the data. 
When C is clear, the data exceeded the accumulator's contents and C shows 
that a 'borrow' is needed. Within the chip, A is added to the 2's complement 
of the data and to the complement of C. *This affects the N, V, Z, and C flags. 

Uses: [1] Single byte subtraction. This has quite a number of applications: 
SEC CARRY FLAG IN KNOWN STATE The first is a conversion 
LDA CHR; ASCII NUMERAL ('0 '=#30 IIC) routine which simply subtracts 
SBC #2F; CONVERT TO BYTE 00 TO 09 a fixed amount from an ASCII 
JSR OUT; PRINT OR CALCULATE WITH VALUE numeral to convert it into a 

byte value 0-9, perhaps for the purposes of calculation. Numerals have 
ASCII value #30- #39 (48- 57 decimal) which subtraction converts to #0- #9. 

LDA HORlZ; LOAD CURRENT CORSOR POSN The next example is more elab-
SEC CARRY FLAG SET DURING LOOP orate and is a detail from PRINT. 

LOOP SBC #OA SUBTRACT lOS UNTIL CARRY.. When processing the comma in 
BCS LOOP .. IS CLEAR (I.E. A IS NEG) a print statement, the cursor 
EOR #FF FLIP BITS AND ADD 1 TO is moved to position 0, 10, 20, 
ADC #01 ; CONVERT TO POSITIVE. etc. Suppose the cursor is 

now at 17 horizontally; we subtract lOs until the carry flag is clear, when A 
will hold -3. The 2's complement is 3, and 3 spaces or cursor rights take us 
to the correct position on the screen. Note that ADC #01 adds 1 only; the 
carry flag is known to be zero by that stage. 

[2] Double byte subtraction. The point about subtracting one 16-bit number 
from another is that the borrow is performed automatically by SBC. First 
C is set to 1; then the low byte is subtracted; then the high byte is sub­
tracted, with borrow if the low bytes were such as to make this necessary. 

SEC In this example #026A is subtracted from the 
LDA LO contents of addresses (or data) LO and HI. The 
SBC #6A result is replaced in LO and HI. Note that SEC is 
STA LO performed once only. In this way, borrowing is 
LDA HI performed properly. For example: suppose the 
SBC #02 address from which #26A is to be subtracted holds 
STA HI #1234. When #6A is subtracted from #34, the carry 

flag is cleared, so that #2 and 1 is subtracted from the high byte #12. 

Subtraction is sometimes used twice, in a way which clears the carry bit 
for values in A within a certain range. In this way, JSR ... /BCC .. may be 
used. See Chapter 14 on CHRGET for an example. Other examples include 
a check for alphabetic characters (A-Z) only. 

Note: *Strictly speaking, l's complement and C are added to A. For example: SEC/ 
LDA #AO/ SBC #55 takes #AO and adds AA and 1=#4B with C=l. Whereas SEC/ 
LDA #AO/ SBC #BC takes #AO and adds 43 and 1=#E4 with C=O. 
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SEC 
Set the carry flag to 1. C : = 1 

INSTRUCTION ADDRESSING 
$38 ( 56 %0011 1000) SEC implied 

Flags: I N V - B D I Z ~ I 

Operation: Sets the carry flag; this is the opposite of CLC, which clears it. 

Uses: Used whenever the carry flag has to be put into a known state; usually 

SED 

SEC is performed before subtraction (SBC) and CLC before addition (ADC) 
since the numeric values the used are the same as in ordinary arithmetic. 
See ADC and SBC for examples. 

Set the decimal mode flag to 1. D:= 1 

ADDRESSING INSTRUCTION 
$F8 (248 %1111 1000) SED implied 

Flags: I N V - B ~ I Z C I 

Operation: Sets the decimal flag; this is the opposite of CLD, which clears it. 

Uses: Sets the mode to BCD arithmetic ('binary coded decimal') in which each 

SEI 

nybble holds a decimal numeral. For example, ten is held as #10 and ninety 
as #90. Two thousand four hundred and fifteen is #2415 in 2 bytes. ADC 
and SBC are designed to operate in this mode as well as in binary, but 
the flags no longer have the same meaning, except C. 

Where indefinite precision is required with calculations buffers can be 
allocated for storage and addition of large numbers. No precision will be 
lost within the range specified. (It's possible to do a similar processing job 
on numerals stored in single bytes; these of course occupy twice as much 
space, and take longer to work with). This mode is unused in BASICs 1-4. 

Set the interrupt disable flag to 1. 1:=1 

ADDRESSING INSTRUCTION 
$78 (120 %0111 1000) SEI implied 

Flags: I N V - B D ~ Z C I 
Operation: Sets the interrupt disable flag; this is the opposite of CLI, which clears it. 

Uses: When this flag has been set, no interrupts are processed by the chip, except 
non-maskable interrupts (which have higher priority) and reset. With CBM 
equipment, ordinary maskable hardware interrupts occur every 1/50th or 1/60th 
of a second; setting I will cause the processing associated with this, i.e. 
clock (TI and TI$), keyboard and cassettes, to cease until CLI. Maskable 
interrupts are processed by ($FFFE), like BRK. If the vector in the very top 
locations of the BASIC ROM is followed, the interrupt servicing routines can 
033A SE be found. These are not (entirely) hardwired in 

I ROM: the vectors use an address in RAM before 
033B LOA :~5 jumping back to ROM. So the example bere is a 
0330 STA typical initialisation routine to redirect the vector 
033F LOA #03 into the user's own program, where it may set a 
0341 STA 91 musical tone, process a repeat key, turn off STOP, 
~~:! ~~ or whatever. See Chapter 13 for more detail. 
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STA 
Store the contents of the accumulator into memory. M: = A 

INSTRUCTION ADDRESSING BYTES CYCLES 
$81 (129 %1000 0001) STA (zero page,X) 00 6 
$85 (133 %1000 0101) STA zero page 00 3 
$8D (141 %1000 1101) STA absolute 000 4 
$91 (1"5 %1001 0001) ST A (zero page), Y 00 6 
$95 (149 %1001 0101) STA zero page,X 00 

" $99 (153 %1001 1001) ST A absolute, Y 000 5 
$9D (157 %1001 1101) ST A absolute, X 000 5 

Flags: I N V - B D I Z C I 
Operation: The contents of A are sent to the address referenced by the opcode. 

All registers and flags are unchanged. 

Uses: [1] Transfer of blocks of data from one part of memory to another needs a 
temporary intermediate store; this can be A,X, or Y. This is alternately 
loaded and stored. See LDA. Another example in addition to the one given 

LDY 100 there is this outline of a 
LOOP JSR LOADCHR; LOAD A WITH CHR routine, where LDA is carried 

STA (PTR) , Y; STORE A INTO MEM out by some routine and 
INC PTR INCREMENT POINTER there is a further routine to 
BNE TEST check whether all characters 
INC PTR+1 have yet been moved. 

TEST JSR TESTPTR; TEST FOR LIMIT 
BNE LOOP CONTINUE IF NOT END 

[2] Binary operations using the accumulator, notably ADC and SBC, are 
performed within the accumulator; a common bug in machine code programs 
is the omission to save the result: 

LDA $96; ST BYTE 
AND I$FD;BIT 1 OFF 
STA $96 ;REMEMBER THIS! 

[3] Another very common use is storing isolated values during initialisation, 
to set the contents of certain locations to known values: 

LDA 189 
STA 94 ; SETS ($94) 
LDA IC3 
STA 95 ; TO $C389. 
LDA #17 

&C. 

STX 
Store the contents of the X register i ntomemory. M:=X 

INSTRUCTION ADDRESSING BYTES CYCLES 
$86 (13" %1000 0110) STX zero page 00 3 
$8E (142 %1000 1110) STX absolute 000 

" $96 (150 %1001 0110) STX zero page, Y 00 

" 
Flags: !NV-BDIZC 

Operation: The contents of X are sent to the address referenced by the opcode. 
All registers and flags are unchanged. 

Uses: The uses are identical to those of STA; there is a tendency for X to be 
used as an index, so STX is less used than STA. 
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STY 
Store the contents of the Y register into memory. M: = Y 

INSTRUCTION ADDRESSING BYTES CYCLES 
$84 (132 %1000 0100) STY zero page 00 3 
$8C (140 %1000 1100) STY absolute 000 4 
$94 (148 %1001 0100) STY zero page,X 00 4 

Flags: I N V - B D I Z C 

Operation: The contents of Yare sent to the address referenced by the opcode. 
All registers and flags are unchanged. 

Uses: STY resembles STX; the comments under STX apply. 

TAX 
Transfer the contents of the accumulator into the X 

INSTRUCTION ADDRESSING 
$AA (170 %10101010) TAX implied 

Flags: I~ V - B D I ! C I 
Operation: The byte in A is transferred to X. The Nand Z flags are set as though 

LDX had taken place. 

Uses: 

Note:: 

TAY 

This transfer is mostly used to set X for use as an index or a parameter, 
or to temporarily hold A. These examples illustrate the type of thing. The 

TXA first is from a 'high resolution' screen plotting 
EOR #FF routine; the object is to plot a black dot in a 
ORA 94 location with a coded value of 1,2,4 or 8 in $94. 
EOR #FF X on entry holds the position of the current 
TAX graphics character in a table. On exit X holds the 
LDA TABLE,X position of the new character. Intermediate calcul­

PLA 
TAX 
PLA 
TAY 

ations use the accumulator because there is no 
'EOR with X' instruction. The second example is 
a straightforward reconstruction of X and Y values 
stored on the stack. This has to be done when 
returning from interrupt processing. 

Registers A ,X, Y and the stack pointer are interchangeable with one 
instruction in some cases, but not others. The connections are these: 

Y ~A~X~S. 

Transfer the contents of the accumulator into the Y 

INSTRUCTION ADDRESSING 
$A8 (168 %1010 1000) TAY implied 

Flags: I ~ V - B D I ! C I 
Operation: The byte in A is transferred to Y. The Nand Z flags are set as though 

LDY had taken place. 

Uses: See TAX; T A Y is similar to this other instruction. 
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TSX 
Transfer the stack pointer into the X register. X: = SP 

INSTRUCTION ADDRESSING 
$BA (186 %1011 1010) TSX implied 

Flags: I ~ V - B D I ! C I 

Operation: The stack pointer is transferred to X. Note that the stack pointer is 
always used in conjunction with $0100, that is, when the stack is accessed 
the high byte of RAM is always set to #1. The pointer itself is a single 
byte. 

Uses: [1] To inspect the stack; in the case of CBM BASIC, for GOSUB and FOR 
tokens when processing NEXT and RETURN. The stack pointer is also used 
to estimate the amount of space left on the stack; again, CBM BASIC does 
this, typically printing ?OUT OF MEMORY ERROR if the stack is not 
sufficient for some manoeuvre. Since the pointer does not point at the last 
item pushed on the stack, but the byte below it, LDA $0101, X can be used 
to peek the last pushed item. 

[2] This is sometimes used to store the stack pointer when a different (i.e. 
lower) part of the stack is temporarily moved to for processing. 

TXA 
Transfer the contents of the X re ister into the accumulator. A: = X 

INSTRUCTION 
$8A (138 %1000 1010) 

Flags: I ~ V - B D I ! C I 
Operation: The byte in X is transferred to A. The N flag and Z flag are set as 

though LDA had taken place. 

Uses: See TAX. 
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TXS 

Flags: I N V - B D I Z C I 
Operation: X is stored in the stack pointer. Now, PHA or PHP will place a byte 

into the stack at $0100 + the new stack pointer, and PLA or PLP will pull 
from the next byte up from this. Also RTI and RTS will return to addresses 
determined by the stack contents at the new position of the stack. 

Uses: [1] TX S initialises the stack on switchon, when the RESET line is activated, 
and also in some BASIC commands like RUN and CLR. The stack extends 
from $0100 - $OIFF in principle; this is the area of RAM which is reached 
as the stack pointer varies from #0 to #FF. Not all of this is used by PET t 
CBM machines. Since the stack pointer is decremented when data is pushed 
on to the stack - i.e. if memory is pictured starting at location zero on the 
left and increasing rightward, the stack 'grows' to the left as data is push­
ed - the initial value is usually something like #FF on setting the machine's 
starting values: 

LDX IFF 
TXS 

[2] The other use is to switch to a new stack location. As a simple example, 
CLC the routine presented here is an equivalent to 
TSX PLAt PLA which we've seen under RTS to be a 
TXA 'pop' command, deleting a subroutine's return 
ADC 1102 address. Incrementing the stack pointer by 2 has 
TAX the identical effect. For a more complex example, 
TXS see 'POP' in the BASIC reference section, which 

is similar in conception but more complex in execution because of the 
greater elaboration of BASIC compared to machine-code. 

TYA 
Transfer the contents of the V register into the accumulator. A:=V 

INSTRUCTION ADDRESSING 
$98 (152 %1001 1000) TVA implied 

Flags: I~ V - B D I ! c I 
Operation: The byte in Y is transferred to A. The N flag and Z flag are set as 

though LDA had taken place. 

Uses: See TAX. The transfers TAX, TA Y, TXA, and TYA all perform similar 
functions. 
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CHAPTER 13: ROM ROUTINES AND THEIR USES 

13.1 The RESET sequence. 

As we saw in Chapter 11, the RESET line* in any 6502 is used to cause a jump to a 
standard a9dress (FFFC ). Most 6502-based equipment has a ROM routine which is jump­
ed to on RESET; this includes CBM printer and disk systems. Disassembly of such 
routines can give useful information about a system. The input/ output chips' RAM 
locations and contents on reset, for example, show which registers are configured for 
input and which for output, which interrupts are enabled, and so on. BASICs 1 to 4 
have similar reset routines, at FD38, FCD1, and FD16 in order. Chapter 15 lists the 
operations they perform. The routines are in two parts, like this: 

(i) On RESET, or on JMP (FFFC), the routine at FD38, FCD1, or FD16 is run. 
(ii) Most of the hardware-oriented aspects of the PET /CBM are initialised: the 

I/O chips are configured to match the system, the screen is cleared (to erase 
its 'random' garbage), the screen table set up in 40-column machines, the 
decimal flag cleared, and NMI, IRQ and other addresses set up. 

(iii) Now the 'diagnostic sense pin' is checked; see Chapter 8 on 'Reset switches' 
for information about this. 

(iv) Depending on the diagnostic sense pin, BASIC is initialised (this is usual) 
or MLM is entered, or, in BASIC 1, a diagnostic routine may be run. 

(v) BASIC initialisation (at EOD2/ E116/ D3B6) sets the stack, USR address, 
CHRGET and the random number seed, BASIC start and end addresses, and 
other specific BASIC items. Finally, a loop tests RAM by writing #55 and #AA 
into RAM from $0400, until either $8000 is reached or the read-back value no 
longer equals the poked value, indicating end of RAM. This leaves the end­
of-memory pointer set; by subtraction, the number of bytes free is computed 
and printed. So a 32K system prints 31743 bytes, since 1024 + 31743 = #7FFF. 
(If a RAM chip is carefully removed, you may get (say) 15359 bytes free, 
where 1024 + 15359 = #3FFF). 

Any of these routines can be entered, bypassing the earlier initialisation. Chapter 5 
has examples in SYS to clear the entire memory from $00, not just $0400. Normally 
the RAM below BASIC in untouched by RESET, which is why machine-code in the cass­
ette buffers can sometimes survive a power-off and immediate power-on. 

13.2 The interrupt routine. 

The CBM interrupt-processing sequence has two branches, like RESET. One is for BRK 
commands, the other for interrupts generated by the screen, and used to control the 
keyboard, tape, and cursor. These branches are distinguished by the presence or 
absence of the B flag in the status register; both BRK and IRQ share the same vector, 
(FFFE). Disassembly reveals that A,X, and Yare saved on the stack (an interrupt 
saves the program counter and status register, but not the other registers), and an 
indirect jump is made to (90) for IRQ and (92) for BRK. Either of these addresses may 
be poked to point at user-written routines; Chapter 8 has several examples, involving 
repea t keys, keyboard redefinition, and so on; Chapter 9 also includes examples. The 
ROM in BASIC 1 uses ($0219) and ($021B) for IRQ and BRK. 

Example: displaying a part of memory continually on the screen The fairly short mach­
ine-code routine presented here works like this: 

SYS 634 awaits input. 0100 OOOA displays 10 characters from $0100 onwards; 
0200 0028 displays 40 characters from the input buffer. 

It uses MLM routines to input a pair of hex addresses, the first of which is stored in 
(FD), the second in (FB). Some operations will overwrite these addresses; this can be 
avoided by using (say) $00 - $02, at the cost of a slightly longer program. The IRQ 
is diverted to run part of this routine, beginning AO 00 ... , which continually, i.e. 
every 50th or 60th of a second rewrites its data at the top of the screen. In this way, 
numbers can be watched being formatted; the input buffer can be watched; and so on. 
A maximum of 256 bytes can be displayed - again, there is no reason why more can't 
be used. Note that SYS 634 then 8001 OOFF continually shifts the top of the screen. 

SYS 671 turns the routine off. 
*Reference to 6502 data-sheets shows this process is as follows: the line is to be 
held low on switchon; it must be held low until the voltage Vcc reaches its operating 
level, and a little longer; when RESET now goes high,. the chip resets itself in six 
cycles, sets the interrupt disable flag, and loads the program counter from (FFFC). 
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DISPLAY BYTES USING IRQ: BASIC 2 VERSION 

· . 027A 20 A7 E7 20 97 E7 20 EB 

· . 0282 E7 20 A7 E7 78 A9 02 85 

· . 028A 91 A9 90 85 90 60 AO 00 

· . 0292 B1 FD 99 00 80 C8 C4 FB 

· . 029A DO F6 4C 2E E6 78 A9 E6 

· . 02A2 85 91 A9 2E 85 90 60 xx 

Example: pause loop By combining 
a redirected interrupt with a ROM 
routine to GET a character from the 
keyboard, we can write a pause 
loop. This example is activated by 
'@', a key for which there is usually 
little use. The interrupt routine at 
this point enters a loop, in which it 
will remain until '@' is pressed again. 
Additional code can be written to 

027A JSR FFE4 
027D CMP #40 
027F BNE 0288 
0281 JSR FFE4 
0284 eMP #40 
0286 BNE 0281 
0288 JMP E455 

73: Using ROM routines 

BASIC 4 VERSION 

027A 20 54 D7 20 44 D7 20 98 
0282 D7 20 54 D7 78 A9 02 85 
028A 91 A9 90 85 90 60 AO 00 
0292 B1 FD 99 00 80 C8 C4 FB 
029A DO F6 4C 55 E4 78 A9 E4 
02A2 85 91 A9 55 85 90 60 xx 

;GET CHR. FROM KEYBOARD IN A 
;IS IT @? 
;NO - CONTINUE INTERRUPT 
;GET ANOTHER CHARACTER IN A 

;KEEP LOOPING UNTIL @ 
;OR E62E WITH BASIC 2 

alter the address in ($90) to $027 A, and to change it back to its normal value; or it 
can be activated by changing IRQ in the monitor to 027A or whatever other address 
this code is put into (it it relocatable). LIST, for example, is stopped by the routine, 
and can be continued at will. BASIC 4 has routines of this sort built in. 

13.3 Other ROM routines. 

Disassembly of ROM routines CBM ROMs are easily disassembled, and (except for 
BASIC 1) have no peek protection. Chapter 15 has a guide to all CBM BASIC ROMS so 
far issued. Nevertheless it is not very easy to use such routines, since they are all 
(with few exceptions) very complex. The next page has an example of.a disassembly 
(of 'OPEN') written out in English; this sort of translation is essential if a ROM rou t­
ine is to be used and reused. Less detailed examples include the flowchart for PRINT 
(in Chapter 5) and for the machine-language monitor (in Chapter 10). Unannotated 
disassembler listings are difficult to follow. Many important routines are collected in a 
jump table near the end of memory called the 'Kernel'.· It is possible to deduce their 
functions by looking through ROM for calls (Le. JMP or JSR) to them; for example 
FFE4 is GET. The kernel routines and their jump addresses for all ROMs are listed at 
the end of Chapter 15; the entry points for BASIC keywords are noted in Chapter 5; 
and the machine-code monitor and its subroutines are listed in BASIC 4 sequence, 
starting at about D400 in the BASIC 4 column of Chapter 15. 

There are far too many routines to cover exhaustively. Let's consider 
GET and PRINT. 
GET in BASIC is closely similar to GET#, which, however, calls a routine to set the 
input file number. In effect, the device number is usually zero for GET, and may be 
10r 2 (tape), 3 (screen), or 4 or more with GET#. In any of these cases, JSR FFE4 
fetches a single character into the Accumulator. If it is the null byte, no character is 
assumed to have been found. GET also. of course, has an assignment routine, so that 
GET X$ not only fetches a character, but causes X$ to be set up with length 1 to hold 
the character. On disassembling FFE4, we find that ST is set zero and the device num­
ber is checked. This is a standard feature of CBM I/O: in OPEN on the next page, 
we have LDA device number; BEQ or BNE tests for the keyboard (device #0). After 
this, A is compared with #3; if equal, the device is the screen (device #3); if the 
carry flag is clear, one of the cassettes (#1 or #2) is assumed; and if the carry flag is 
set, the device number exceeds 3, and may be (for example) #4 (printer) or #8 (disk). 
So, by controlling the device number, we can control the device which FFE4 gets its 
character from. The pause loop, above, assumes the input device is the keyboard, 
which is the usual default value. By disassembling, we can see that $AF holds the 
device number ($0263 in BASIC 1); we can also find (for example) that the cursor's 
position on the screen, and whether or not it flashes, are controllable when the screen 
is used as an input device. Similarly, assuming a file is open to a device. we can get 
characters in machine-code much faster than is possible with BASIC, at"least with disk 
(since tape will be slow in any case). There is a password routine on the next page; 
SYS 634 waits until a password has been entered. using FFE4 so it isn't echoed to the 
screen. If it is wrongly entered, RESET is called. More sophisticated versions allow 
several attempts to be made, and prompt the user with 'Enter password', but the 

·Commodore literature, at the time of writing, seems to have adopted 'Kernal' as its 
official spelling. 
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EXAMPLE OF ROM DISASSEMBLY: 'OPEN' 

JSR inputs and stores logical file, device, and secondary address parameters. 
LDA logical file number 
BEQ print ?SYNTAX ERROR rejects logical file number O. 
LDY #offset for FILE OPEN message in table $FOOO ff. 
JSR checks table of up to 10 logical-file numbers for match with accumulator. 
BEQ print ?FILE OPEN ERROR if the file number exists already. 
LDX number of open files. 
LDY #0 
STY status byte ST. Sets ST to O. 
CPX #$OA 
BEQ print ?TOO MANY FILES ERROR if X is 10 at present. 
INC number of open files. 
LDA logical file number. 
STA File table,X. X still holds the previous value, i.e. 0-9. 
LDA secondary address 
ORA #$60 sets bits 5 & 6. Secondary addresses>95 repeat earlier values. 
STA secondary address: stores the result. 
S T A Secondary address table, X. Also stores the result in the second table. 
LDA device number 
STA Device number table,X. Finally, stores the device in the third table. 
BEQ RTS. If device number is 0, i. e. keyboard, file is now open. 
CMP #3 
BEQ RTS. If device number is 3, i.e. screen, file is now open. 
BCC +3. Branch is taken if device is 1 or 2, i.e. cassette. 
JMP sends .name string to IEEE for device numbers> 3, usually disk. 

String is usually of form "d: filename, type, mode" and the receiving device 
processes it. If the device is present and answers, its file will be opened. 
Tape: 

LDA secondary address 
AND #OF removes bits 5 & 6 again, leaving secondary address=O, 1, or 2. 
BNE W1. Write tape if the branch is taken, that is if secondary address=1 or 2. 

Read: 
JSR prints PRESS PLAY and waits for cassette key (unless a key's down now). 
JSR prints SEARCHING and, if name has non-zero length, FOR FILENAME 
LDA length of name 
BEQ T 1. If a name's not given, loads the first header. 
JSR find a named header matches the first characters of the names 
BNE T2. If the accumulator holds 0, the header wasn't found; in this case, 

print ?FILE NOT FOUND ERROR, abort files, and if in program mode 
print IN LINEN UMBER with the current linenumber. 

Tl JSR find first tape header (i.e. or next on tape) 
BEQ prints ?FILE NOT FOUND ERROR, as before, if no file can be found. 
BNE +8 unconditionally branches to T 2 when the file is found. 

W1 JSR prints PRESS PLAY .. RECORD and OK on cassette key depression. 
LDA #4. Indicates the type of file (data). 
JSR writes tape header 

T 2 20 byte routine which sets the 
write, 191 for read. If writing 
of the buffer as a marker. 

Write. 
pointer to the cassette buffer to 0 for 
to tape, puts #2 into the zeroth. byte 

Old ROM BASIC 1 differs in some ways from this schema, which closely follows 
both BASIC 2 and BASIC 4. There is a rather misleading appearance that tape 
handling predominates in OPEN, because the IEEE processing is done elsewhere. 
OPEN is one of the commands from the 'kernel'; its address is $FFC 0, from 
which the following addresses are jumped to: 

ROM entry points: 

BASIC 1: $F52A (62762) 
BASIC 2: $F521 (62753) 
BASIC 4: $F560 (62816) 
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general idea should be clear enough 
from the example: 

027A LDA #00 ;ERASE KEYBOARD BUFFER 
027C STA 9E ;0263 IN BASIC 1 

The loop construction in 027E JSR FFE4 
027E - 0282 is a standard wait-for­
entry, exactly analogous to BASIC's 

0281 BEQ 027E ;LOOP IF NO ENTRY 
0283 CMP #41 

100 GET X$: IF X$="" GOTO 100 , 
0285 BNE 0291 ;RESET IF NOT CORRECT 

and usable because JSR FFE4 acts 
like LDA, setting the zero flag when 
a zero byte is loaded into A. The 
'password' is 'AB'; in practice, a 
longer routine can input longer 
passwords; the resulting program 

0287 JSR FFE4 
028A BEQ 0287 
028C CMP #42 
028E BNE 0291 
0290 RTS 

;RESET IF NOT CORRECT 

0291 JMP (FFFC) 

will be more compact if it keeps the password in a table, 
than the straight-line style of programming here. 

and relies on indexing rather 

PRINT can be directed to any output device in a way analogous to GET. The kernel 
corresponding to FFE4 is FFD2; on disassembling, this has a very similar device num­
ber check, but its location is $BO, not $AF, as this is the output device; its default 
value is 3, since the usual output device is the screen. ($0264 is BASIC l's location). 
Operation is the opposite of GET: a value is loaded into A, the routine called, and the 
ASCII equivalent printed. Chapter 15 has a lot of information about this. PRINT calls 
this routine in a loop when a string is being printed to the screen; each character is 
simply loaded, with the LDA (Zero-page), Y command, and individually output. This 
method may be easier than relying on CA27 f CAlC! BBlD in ROM 

Demonstrations which use various ROM routines A short selection of programs which 
use BASIC routines and demonstrate their operations follows. Most ROM routines refer 
to standard zero-page and other locations; skilful use of ROM therefore usually in­
volves a certain amount of disassembly to investigate the most important parameters of 
a routine, plus some searching for routines which will do as much work as possible 
given minimum preliminary work. See for example POP and VARPTR in Chapter 5, each 
of which largely relies on ROM routines, the first on RETURN, the second on LET. In 
both cases the actual working of the ROM routines doesn't need to be understood fully. 

(i) 'Receive line from keyboard'. This is an important routine, used, among 
other things, to take in lines of BASIC and combine them into a program. To watch 
it in operation, key in the 'Display bytes using IRQ' program (2 pages back) and set 
it to display 80 bytes from $0200, which is the start of the input buffer. (BASIC 1 's 
buffer starts at $OA). The buffer is 81 bytes long; when a line is input, a zero byte 
is put at the end, so 81 bytes are needed to store a line of 80 bytes maximum. In 
the machine-language routine to show how 
this works (right) I have separated out the 
two functions of inputting a line and token­
ising it; a leading space causes tokenisation, 
no leading space inputs the line without 
changing it. Both processes can be watched 
as they take place. (Note: use lower-case 
mode, i. e. poke 59468,14, to ensure alpha­

033A JSR C468/ C46F/ B4E2; BASICS 1,2,4 
033D LDA 0200 
0340 CMP #20 
0342 BEQ 0345 
0344 RTS 
0345 JMP C48D/ C495/ B4FB; BASICS 1,2,4 

betic characters are readable). SYS 826 prints a flashing cursor, and awaits input; 
when Return is pressed, the line is input, as you will be able to see. When the line 
includes a leading space, you will also see the tokenisation process occurring. 

(ii) 'Get linenumber from BASIC line'. To save space, we'll consider BASICs 2 
and 4 only here. On exit from 'Receive line from keyboard', X and Y hold #FF and 
#01. They are set to point to $OlFF. We 
can use these values with BASIC's GETCHR 
routine as shown, with the 'Get linenumber' 
routine. The effect of this is to store the 
number in ($11); if no number is found, or 
the number is zero, ($11) holds #0. '1:0 
prove it's worked, the final subroutine 
prints the value of ($11), using another 
ROM routine which prints 256*A + X. 
Now SYS 826 awaits a line, and on Return 
prints the value of its leading integer. 

033A JSR C46F/ B4E2 ;GET BASIC LINE 
033D STX 77 
033F STY 78 
0341 JSR 0070 ;GETCHR AFTER $OlFF 
0344 JSR C873/ B8F6 ;GET NUMERALS 
0347 LDA 12 
0349 LDX 11 
034B JSR DCD9/ CF83 ;PRINT NUMBER 
034E RTS 
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(iii) Search BASIC for linenumber. 
GOTO, GOSUB, and other BASIC operations 
use the subroutine C522/ C52C/ B5A3 to 
find a specified linen umber. Confining our­
selves to BASIC 2 and 4 (BASIC 1 uses 
different storage locations), this machine­
code (right) hunts BASIC for the line­
number in (033A); if found, the carry flag 
is set on leaving the ROM routine, so this 
program uses a location to register whether 
or not a line actually exists in BASIC; this 
is 033E, which is zero when the line exists, 
but #FF otherwise. (033C) holds the pointer 
to the position of the line's start. Because 
both ($11) and ($ 5C) are liable to be over­
written, they are saved in these special 

13: Using ROM routines 

033A ;LINENUMBER LO BYTE 
033B ;LINENUMBER HI BYTE 
033C ;POINTER TO LINE LO BYTE 
033D ;POINTER TO LINE HI BYTE 
033E ;LINE FOUND/ NOT FOUND FLAG 
033F LDA 033A 
0342 STA 11 
0344 LDA 033B 
0347 STA 12 
0349 LDA #00 
034B STA 033E 
034E JSR C52C/ B5A3 
0351 BCC 035E 
0353 LDA 5C 
0355 STA 033C 
0358 LDA 5D 

;BASIC 2 OR 4 
; NOT FOUND IF C=O 

locations, but machine-code programs usually 035A STA 033D 
will make use of the values without needing 035D RTS 
to do this. The short BASIC program which 035E DEC 033E ; FLAG #FF IF NOT FOUND 
follows, entered at the end of any BASIC, 0361 RTS 
lists all the linenumbers and their positions: 

62500 FOR L=O TO 65535: POKE 826,L-INT(L/256)*256: POKE 827,L/256 
62510 SYS 831: IF PEEK(830)=0 THEN PRINT "LINE" L "STARTS AT" PEEK(828) 

+ 256*PEEK(829): NEXT 

(iv) RUN. This routine (at C775/ 
C7S5/ BSOS) has four lines of machine-code 
only; one jumps to RUN, two jump to RUN n 
where n represents a linenumber, and one 
is a branch to separate the two, depending 
on whether RUN is an isolated keyword or is 
followed by a number. The machine-code 
program (right) shows how the option which 
runs from a linenumber can be mimicked with 
the linenumber search program. Note that 
RUN assumes CHRGET points to the zero 
byte preceding a line: for this reason it is 

;SET ($11) = LINENUMBER 
JSR C52C/ B5A3 ;BASIC 2 OR 4 
BCC EXIT ;NO SUCH LINE 
LDA 5C 
ADC #FE 
STA 77 
LDA 5D 
ADC #FF 
STA 78 
JMP C78A/ B80D ; RUN FROM LINENUMBEF 

necessary to subtract #1 from the pointer ($5C), which the program does by adding 
#FFFE plus the carry flag to (5C) and storing the result in (77). 

(v) Memory move. A routine at C2E1/ 033A ;BOTTOM OF AREA TO BE MOVED 
C2DF / B357 is one of several in BASIC ROM 033B 
which move blocks of memory; this one is used 033C CLC 
to open space in BASIC, so ROM calls which 033D LDA 033A 
make use of it move memory from a lower to a 0340 STA 5C 
higher point. The demonstration routine fills 0342 ADC #E8 
the screen (40 columns - $SOOO- $S3E 7) with 0344 STA 57 
bytes from memory, starting from the location 0346 LDA 033B 
stored in (033A). ($5C) holds this value; 0349 STA 5D 
($57) has to hold the top of the area to be 0348 ADC #03 
moved + 1, so this is calculated by adding 034D STA 58 
#03ES. Finally ($55) holds the top of the area 034F LDA #E8 
to be moved to + 1; this is $S3E S in the 0351 STA 55 
example. This can of course be modified to 0353 LDA #83 
move other blocks of RAM than those of 0355 STA 56 
length #03E8 bytes, and into other locations 0357 JMP C2DF/ B357 :BASIC 2 OR 4 
than the screen top, for example by poking 
values from BASIC. 

Memory move routines aren't as simple as they might appear at first sight: the 
problem occurs if a region to be moved overlaps with the region it i~ to be moved. to. 
Suppose the first four bytes of ABCDEF are to be moved to the reglOn now occupIed 
by CDEF. If the memory-move operates by taking bytes from the left and working to 
the right, the result will be ABAB, not ABCD. The order, here, should be right to 
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left. The short BASIC routine is a bug-free example of what is needed. If you are 
not aware of this potential probleifl, baffling errors may result. 

993 REM ******************************************************************* 
994 REM * MEMORY MOVE IN BASIC. * 
995 REM * PARAMETERS; SA=START ADDRESS OF BLOCK TO BE MOVED * 
996 REM * EA= END ADDRESS OF BLOCK TO BE MOVED * 
997 REM * TA= START ADDRESS OF BLOCK TO BE MOVED TO * 
998 REM ******************************************************************* 
999 REM 
1000 IF TA)SA AND EA)=TA THEN 1020 
1010 C=O; FOR I = SA TO EAt POKE TA+C,PEEK (I); C=C+1; NEXT: RETURN 
1020 C=EA-SA; FOR I = EA TO SA STEP -1: POKE TA+C,PEEK (I): C=C-l: NEXT:RETURN 

(vi) String comparison. CF1EI CF101 COCE is the start of the string comparison sub­
routine; its parameters are listed in Chapter 15. Like many ROM routines - and this 
feature serves as a bridge to the next section of this chapter - the relevant part of 
the routine is embedded in other processes, not separated out as its own subroutine. 
For this reason, the routine must be relocated into RAM and modified there. If the 
central part of 'String comparison', i.e. after the parameter-setting code and up to 
the exit from the comparison loop, is relocated, it may be followed by RTS and used in 
isolation. In this way, it is possible to confirm that X is set to #FF I #0/ #1 according 
as the first string is <1=1> the second. SORT (Chapter 5) relies on the relocated 
comparison routine for its operation. 

13.4 Examples of modified ROM routines. 

13.4.1 PRINT USING. The number formatting buffer, in which numerals are placed . 
for printing after conversion from the floating-point accumulator or elsewhere, extends 
roughly from $OOFF to $OlOF. 'Display bytes using IRQ' can show how this buffer is 
used in practice, and the table below gives specimen results from a variety of number 
outputs, including string conversions, calculations, and simple print statements. The 
notes on PRINT USING in Chapter 5 explain how the normal number printing routine, 
which is made up of three consecutive subroutines, can be copied, but with the add­
ition of an extra routine to alter the buffer from the way it appears in the diagram to 
a new, formatted and justified arrangement. 

EXAMPLES OF NUMBER FORMATTING 

WHEN BUFFER CONTENTS: 
PRINTING: OFF 100 101 102 103 104 105 106 107 108 

0 sp 0 @ Unchanged 
45 sp 4 5 @ 

24.1234 sp 2 4 . 
999 999 999.1 sp 9 9 9 
9 999 999 999 sp 1 E + 

2T12.1 sp 4 3 8 
LOG(.5) - · 6 9 
ASC( "T") sp 8 4 @ 

TI" sp 2 1 6 
TI$* 1 0 0 3 4 

STR$( 44) sp 4 4 @ 0 
STR$( 1 13) sp . 3 3 3 
:STK~l pi) 3 · 1 4 

. 009 sp 9 E -
-lE-23 - 1 E -

12345678.9 sp 1 2 3 
123456789 sp 1 2 3 
SIN (pi) sp 7 . 3 
11 111 111 111 sp 1 1 

.8 sp · 8 @ 

*These values are specimens only 
'@I represents the null character 

0 0 
1 2 
9 9 
1 0 
9 
3 1 
0 0 
6 8 
4 @ 

0 0 
3 3 
1 5 
0 3 
2 3 
4 5 
4 5 
1 4 
1 1 
0 0 

.......... 
0 0 0 
3 4 @ 

9 9 9 
@ 0 0 
9 8 4 
4 7 1 
0 0 0 
9 1 cg 
Unchanged 
0 0 0 
3 3 3 
9 l. b 
@ 0 0 
@ 0 0 
6 7 8 
6 7 8 
5 9 0 
1 1 1 
0 0 0 

109 lOA lOB 10C 100 10E 10F 

0 0 Unchanged · .. 
0 0 Unchanged · .. 
9 @ Unchanged · .. 
0 0 Unchanged · .. 
1 1 @ Unchanged ... 
8 @ Unchanged ... 
0 0 Unchanged · .. 
0 0 Unchanged · .. .......... 
0 Unchanged ... 
3 @ Unchanged · .. 

!> (g uncnanged · .. 
0 0 Unchanged · .. 
0 0 Unchanged · .. . 9 @ Unchanged . .. 
9 @ Unchanged · .. 
4 E - 1 0 @ 

1 1 E + 1 0 @ 

0 0 Unchanged · .. 
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PRINT USING is too long to explain fully here; the buffer-editing routine formats the 
data in either floating-point or integer form, by inserting or dropping the decimal 
point; it also checks for the presence of E and the null byte, among others, and has 
exits which it takes if a number appears to be of the incorrect form. It makes no 
attempt to format a number containing 'E', for instance. On leaving the routine, ($61) 
is made to point to $0100, the start of the buffer, from which point the string-print 
routine takes characters, printing them until the null byte is encountered. 

13.".2 LIST. Chapter 5 has a BASIC lister which generates program listings in which 
the cursor control characters appear as IDOWN], IRVS], etc. Apart from the problems 
of lower-case listings with CBM printers, this is probably the most wished-for feature 
of LIST. It is fairly easy to implement, once LIST has been moved from ROM to RAM, 
because LIST is a compact routine and a patch is quite easy to put in. A BASIC 2 
version (see below), called by SYS 7*4096 or SYS 28672, lists in exactly the same way 
as the ordinary LIST, except for the special characters; these are held, with their 
equivalent output, in two tables after the machine-code. This sort of routine must 
have a control over the length of a printed line, since any line with many special 
characters in it will be printed out to a length which may cause some characters to be 
lost. The annotated BASIC 4 version shows how a BASIC loader can improve a pro­
gram's versatility; it relocates its code into any BASIC 4 machine, and allows easy 
changing of the target characters to be specially listed. It too has a linelength control; 
a short specimen shows the sort of effect which can be achieved. 

B* 
PC IRQ SR AC XR YR SP 

.j 0401 E62E 32 04 5E 00 F8 

7000 A9 01 85 5C A9 04 85 50 
7008 A9 FF 85 11 85 12 AO 01 
7010 84 09 B1 5C FO 43 20 E1 
7018 FF 20 BO 70 C8 B1 5C AA 
7020 C8 B1 5C C5 12 00 04 E4 
7028 11 FO 02 BO 2C 84 46 20 
7030 09 OC A9 20 A4 46 29 7F 
7038 20 BA 70 C9 22 00 06 A5 
7040 09 49 FF 85 09 C8 FO 11 
7048 B1 5C 00 10 A8 B1 5C AA 
7050 C8 B1 5C 86 5c 85 50 00 
7058 B5 4C 89 C3 10 28 C9 FF 
7060 FO 06 24 09 30 20 38 E9 
7068 7F AA 84 46 AO FF CA FO 
7070 08 C8 B9 92 CO 10 FA 30 
7078 F5 C8 B9 92 CO 30 B5 20 
7080 BA 70 ~ F5 53 00 8E 85 
7088 70 A2 ma> 00 ~ FO 09 
7090 CA 10 F8 AE 85 70 4C .la..-..... 
7098 70 8A OA OA OA AA BO~ 
70AO 70 FO 06 20 BA 70 E8 00 
70A8 F5 AE 85 70 4C 3B 70 00 
70BO 20 E2 C9 A9 06 80 84 70 
70B8 60 EA 48 20 45 CA EE 84 
70CO 70 AO 84 70 C9 A 0 02 
70C8 68 60 20 BO 70 CA 
7000 20 CA FO 20 CA FO 68 
7008 00 00 00 00 00 00 
70EO 11 12 13 10 91 92 93 90 

o 00 00 
70FO 5B 44 4F 57 4E 50 00 00 
70F8 5B 52 45 56 53 50 00 00 
7100 5B 48 4F 40 45 50 00 00 
7108 5B 52 49 47 48 54 50 00 
7110 5B 55 50 50 00 00 00 00 
7118 5B 52 56 53 4F 50 00 00 
7120 5B 43 4C 45 41 52 50 00 
7128 5B 4C 45 46 54 50 00 00 
7130 00 00 00 00 00 00 00 00 
7138 00 00 00 00 00 00 00 00 

MACHINE-CODE LIST FOR BASIC 2. 

SYS 7*4096 runs this routine, which lists 
the entire BASIC program in memory, 
starting at $0401. It processes characters 
within quotes. There are (here) eight 
characters which are specially dealt with; 
they are stored in a table starting at $70EO. 
The corresponding output is held in another 
table, starting at $70FO. So character $11 
(17 decimal), the first item in the first 
table, appears as [DOWN], which is the 
first item in the second table. 

A zero byte has been used to terminate 
printing, so an output item can have a 
maximum length of 7 only. 

OPEN 4,4:CMD4:SYS7*4096 

then PRINT #4: CLOSE4 lists to a printer. 

This routine is suitable for a 32K machine; 
see chapters 13 and 14 for information on 
relocating machine code. 

c....,,,-rro\S If:-''.1t-h of- L~ne. <=- 9'¢ ~f"'c.{-~. 

(fi,,,r <>. 1...aS -<..eLu...." l:.!>t o"'~. d.."""C2. to 1-0'" .$1'1-). 
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RELOCATING LOADER FOR SPECIAL 'LIST' - BASIC 4.0 

10 DATA 169.0,133,48,133,50,133,52/169,0,133,49,133/51,133,53,96 
11 DATA 169,1,133,92,169,4,133,93:REM 1) LOWER MEMORY/ 2) SET LINENUMBERS 
12 DATA 142,-3S0.162,8.221,-259,240,9,202,16,248,174,-350,76,-440,138,10 
13 DATA 10,10,170,189,-243,240,6,32/-297,232,208,245,174,-350,76,-437 
14 DATA 0,32,223.186,169,6.141,-351,96,0,72,32,70,187,238,-351,173,-351,201 
15 DATA 90,240,2,104,96,32,-307,169,6/141,56,125,169,32,32,210 
16 DAfA 255,206,56,125,208,246,104/96 
1000 F(£M 
1001 .,:LM 
1002 REM 
1003 flEM 
1004 REM 

**************************************** 
** USER-DEFINABLE LIST FOR BASIC 4.0 ** 
**************************************** 

1050 T = PtEK(S2) + 256*P~EK(53) 
1060 L = T - 513 

REM CURRENT TOP OF MEMI.lRY 
~ REM ASSIGN S13 BYTES 

1100 REM 
1101 REM 
1102 REM 
1103 REM 
1104 REM 
1105 REM 

*********.~******************************************************* 
* BASIC 4.0 MEMORY-MOVE OF 'LIST' ROUTINE INTO RAM. * 
* $B657 - $B6DD (46679-46813) * 
********«****iI'************~ ¥. ~. "********************************'M-'~'** 

1110 X = 0 
1120 FOR J = L + 25 TO L + 159 
1130 POKE J/ P~EK (X+46679) 
1140 X = X+l NEXT 
1160 FOR J = L TO L + 24: READ X : POKE J/X: NEXT :REM STARTUP ROUTINES 
1170 FOR J = L + 164 TO L + 251 :REM PROCESSING ROUTIN 
11S0 READ XX: IF XXCO THEN Y=XX+T: XX=Y/256: Z=Y-XX*256: POK~ J,Z: J=J+l 
1190 POKE J / XX 
1200 NEXT 
1250 REM 
1251 REM *******~.******************************************************* 
1252 REM * CHANGE BRANCH AND JSR COMMANDS IN 'LIST' TO RUN OWN ROUTINES * 
1253 REM **************************************************************** 
1254 REM 
1260 REM * SEARCH BYTE TABLE ROUTINE 
1261 REM 
1265 POKE 
1266 POKE 
1267 l'ilKE 
1269 REM 

L+110. 53: REM CHANGE BRANCH DESTINATION (VALUES 00-7F) 
L+114, 49: REM CHANGE BRANCH DESTINATION (VALUE FF =PI) 
L+,l.l8, ,45: REM GiANGE BRANCH [lESTINATION (VALUES SO-FE) 

1270 REM * CRLF ROUTINE 
1271 REM 
1275 X " T-307 
1276 XX = X/256 
1277 ~OKE L+43, Z 
1279 REM 

t REM CRLF POSITION RELATIVE TO TOP OF MEMORY 
Z = X - XS*256 
eOKE L+44, Xx. 

1280 REM * PRINT BYTE ROUTINE 
1281 REM 
128S X = T-297 
1286 XX = X/256 
1287 PUKE L+74, Z 
1288 POKE L+156/ Z: 
1300 REM 

REM PRINT CHARACTER ROUTINE 
Z = X - XX*256 
POKE L+75, XX 
POKE L+157, XX 

RELATIVE TO MEMORY TOP 

1301 REM ************************************************************ 
1302 REM * PUT NEW, LOWER TOP OF MEMORY INTO MEMORY POINTER ROUTINE * 
1303 REM ************************************************************ 
1304 REM 
1305 XX = L/256 t Z = L - XS*256 
1310 POKE L + 1 t Z POKE L + 9, XX 
1400 REM 
1401 REM ***************************************************************** 
1402 REM * USER'S TABLES OF BYTES AND OUTPUT (EG 157 PRINTED [LEFTJ) * 
1403 REM * CAN BE CHANGED SUBJECT TO MAXIMUM OF 16 ITEMS OF LENGTH 7 * 
1404 REM ***************************************************************** 
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1408 DATA TABLfS,10,17,18,19,29,145,146,147,157,160,255; REM 10 =ITEMS IN TABL 
E 

1410 DATA [DOWNJ,[RVSJ,[HOMEl,[RIGHTl,[UPl,[~VSOJ,[CLRJ,[LEFTJ,[USPCJ,[PIJ 
1420 FOR J = 1 TO 1E9 : READ X$ : If X$ (> "TABLES" THEN NEXT 
1430 READ XX REM NUMBER Of ITEMS IN THE TABLE 
1440 POKE L + 168 , XX - 1 REM SETS LOOP IN M/CODE fROM 0 TO XX-l 
1450 fOR J = L + 254 TO L + 253 + XX 
1460 READ X : POKE J,X ; NEXT: REM BUILD TABLE Of BYTES IN MEMORY 
1470 fOR J = L + 269 TO L + 268 + XX*8 STEP 8 
1480 READ X$: FOR X = 1 TO LEN (X$) : POKE J+X, ASC(MID$(X$,X,l» : NEXT 
1490 POKE J + X , 0; NEXT ; REM POKE NULL TERMINATING BYTE AfTER EACH 
1500 REM 
1501 REM ************************************************************ 
1502 REM * PRINT INSTRUCTIONS AND ADDRESSES * 
1503 REM ************************************************************ 
1504 REM 
1510 PRINT "[CLRHRVSHDOWNHDOWNl ROM4 LIST BY RAY WEST " 
1520 PRINT "[OOWNl(RVSJLIST SYS,[LEfTJ"; L+17 
1530 PRINT " [DOWNJPOKE" , L+227 , "TO CHANGE LINELENGTH" 
1540 PRINT .. roOWNHDOWNJSAVE FROM" , L ; " TO" ; L+512 
1550 PRINT" (S" ,; X=L; GOSUB 5000 
1560 PRINT" TO S" ;; L=X+512: GOSUB 5000 : PRINT")" 
1570 PRINT"CDOWNJSECURE IN MEMORY WITH SYS" ; X :PRINT "WHICH LOWERS TOP-Of-ME 

MORY 
1580 PRINT"[DOWNJ[DOWNJ";; LIST 1410 
4900 END 
4999 REM DECIMAL TO HEX CONVERSION 
5000 L=L/4096:FORJ=lT04:LX=L:PRINTCIIRS(48+LX-(LX)9)*7);;L=16*(L-LX):NEXT:RETUR 

N 

$AMPLE SHOWING EffECT OF CHANGING LINELENGTH (=24) ~ 

10 DATA 169.0,133,48 
,133,50,133,52,169 
,0,133,49,133,51,1 
33,53,96 

11 DATA 169,1,133,92 
,169,4,133,93:REM 
1) LOWER MEMORY, 2 
) SET LINENUMBERS 

12 DATA 142,-350,162 
,8,221,-259,240,9, 
202,16,248,174,-35 
0,76,-440,138,10 

13.4.3 TRACE. The TRACE routine in Chapter 5 is another application of LIST, in 
this case written to display single lines at the screen-top. It operates by intercepting 
the GETCHR routine; this is a standard technique, explained in full detail in the next 
Chapter. Its controlling keys are determined by the keyboard decoding table, and 
apply to BASICs 1 and 2 and the 4o-column BASIC 4. There is insufficient space to 
include two more versions, so BASICs 1 and 2 only appear in TRACE in Chapter 5. 
The flowchart of the routine (see next page) shows how CHRGET has intermediate 
instructions; this version of 'trace' does not distinguish between statements, but by 
linenumbers, so that a line is listed for as long as it is being executed. The trace is 
turned on by pressing RVS, and off again by pressing the same key, so keyboard 
control of the routine is good. A,X, and Yare saved and restored, so CHRGET's 
running isn't disturbed. The status flags are set at a later stage, and need not be 
stored. Note that a single-step is available; when the trace is on, '=' causes a BASIC 
line to be executed, and no further lines are executed until either '=' is pressed again, 
or the routine is reset by the speed change command, '[' followed by a number from 
0-9. Lines are executed every 5 seconds with 0, down to every .5 second when 9 is 
chosen. This, however, is overridden by the space key, which removes the action of 
the delay loop, and traces through the program very rapidly. LIST is not very easy 
to incorporate in programs like this, because it uses many zero-page locations which 
are normally allocated for other purposes. This is probably the reason why LIST is not 
allowed in program mode without terminating the program run. My version of trace 
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sidesteps this problem by saving the zero-page, and restoring it when LIST has done 
its work. This approach also enables the horizontal and vertical screen positions to be 
retained even after the cursor is horned and the top of the screen cleared for LIST. 
There is insufficient space for full documentation or explanation here. However, the 
memory map of the routine is arranged like this: 

(i) Initialisation routine to alter CHRGET and lower memory pointers. 
(ii) Switch-off routine to restore CHRGET. 
(iii) Space for 9 bytes. These are: A, X, and Y storage; Trace flag (#0 off, #FF 

on); Step flag (#0 off, #7F on); current linenumber, stored as low byte then high 
byte; delay parameter; countdown for delay loop, starting from delay parameter value. 

(iv) Routine as in the flowchart, excluding ... 
(v) LIST routine, slightly modified (e.g. not to print crlf at the start). 
(vi) 256 spare bytes for the stored zero-pages. 

from CHRGET 

Store new line­
number; LIST new 
line on screentop 
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CHAPTER 14: EFFECTIVE 6502 PROGRAMMING 

14.1 Assemblers. 

We have seen the improvements in machine-code readability brought about by the use 
of opcodes, and by the use of hexadecimal notation, over the fundamental 8-bit binary 
storage of this system. An assembler carries this improvement much further, by allow­
ing a fully algebraic notation to represent machine-code. Before going into detail, let's 
consider what is involved. A diagram on the next page illustrates features found in 
most assembler listings, without representing anyone actual assembler's output. Note 
that the object code:is identical to that produced by a simple disassembler. This is not 
surprising, since the same fundamental data underlies both approaches and enforces 
some uniformity. The main novelty is the so-called source code. Around the core of 
familiar opcodes is a collection of names and symbols, some of which (e.g. LDA ADRTAB,X) 
are punctuated to resemble addressing modes. This code is usually held as a source 
file, which is in effect a sequential file of everything labelled 'source code' on the 
diagram. The job of the assembler is to convert the file into object code, an example 
of which appears on the same diagram. Object code is not usually relocatable without 
some effort; it is designed to be run where it is, from $2000 in the example. The 
great versatility of assemblers is illustrated by the command in linenumber 12 of the 
code, in which the starting-point of the assembly is assigned as $2000. A simple 
change to *=$3000, followed by assembly, generates code identical in its effect, but 
positioned to start at $3000. In the same way, new instructions can be inserted by 
editing the source file and reassembling; this is far less laborious than attempting the 
same process manually. Note, though, that a source file may be much longer than the 
machine-code it generates: compare the number of bytes in a typical assembler line with 
the total length of the line. A ratio of between 20:1 and 50:1 is common. This means 
that long programs of 1K or more are already difficult to fit in RAM and have to be 
separated into sections. Conversely, disassemblers which generate labels, producing 
a version of source code without comments but with assembler format, are likely to be 
unable to cope with long programs, for instance the BASIC ROM. Some widely-available 
software for the CBM was in fact developed on other machines. 

CBM's assembler (issued some years back originally; try to get the latest version 
including the source files LOADERSRC, ED16SRC and ED32SRC, and U-LD16SRC and 
U-LD32SRC, which have useful documentation) is widely used and has these features: 
it is disk based,*designed for use with CBM disk units and printer, and without 
EPROMs or other hardware, so there are potential conflicts between assembled code and 
the set of programs constituting the assembler package. Everything is in RAM, as 
this diagram shows: ASSEMBLER 

~--~~~~~----------~~~~~--~----~~~~~~~----~ Normal BASIC storage (for 32K) BASIC ROM 

$0000 <----- LOADERS _ ..... $FFFF 
There are three essentially different programs in the package: an editor, an assembler, 
and several loaders. The editor is pictured at the high end of RAM. It actually loads 
into the low end and relocates on being run, so it can coexist with the assembler, if 
it (the editor) is loaded and run first. The function of the editor is to enable the user 
to set up a source file; the line numbered format is similar to BASIC, lines being typed 
in and modified from the keyboard, and saved to disk and perhaps printed out. To 
facilitate this process, line renumbering, block deletion, automatic numbering and so on 
are provided. Files can be loaded from disk, edited, and stored back on disk, to corr­
ect errors which have shown up. PUT and GET are the commands to save and load, 
respectively. (There may be an undocumented CPUT which stores the file without 
surplus spaces). All this is very standard in editors. 

The assembler reads a source file into RAM (or uses a source file already there, 
starting at $2000) and proceeds to convert it into object code, which may be stored 
directly into RAM or saved on disk as an object file. The data saved is formatted in 
a manner similar to a program file, with the length of the routine followed by its 
starting address, and then all the data bytes written as hexadecimal numbers. 

The loaders read the object file just described, and poke its contents into RAM. 
If the machine-code program is being loaded high in RAM, the low-memory loader is the 

*I'm uncertain whether it's impossible, or merely difficult, to use cassette tape. 
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2 
4 
6 
8 

10 
12 
14 

2000 
2000 

[LABEL/ OPCODE or DIRECTIVE/ OPERAND/ COMMENT] 
OBJECT CODE ---------SOURCE CODE-------------------------

;ROUTINE TO AWAIT A KEY, THEN EXECUTE CORRES­
;PONDING CODE, USING TABLED VALUES 

GETCHR=$FFE4 
*=$2000 
. PAGE 

;TYPICAL 'EQUATES' DIRECTIVE 
;TYPICAL STARTING-POINT DIRECTIVE 
;TYPICAL TOP-OF-FORM DIRECTIVE 

16 2000 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
53 
54 
56 

2000 
2003 
2005 
2007 
200A 
200C 
200D 
200F 
2011 
2014 
2015 
2016 
2017 
201A 
201B 
201E 
201F 
2020 
2021 
2024 
202A 

20 E4 FF 
FO FB 
A2 02 
DD 21 20 
FO 05 
CA 
10 F8 
30 EF 
8D 20 20 
8A 
OA 
AA 
BD 25 20 
48 

START 

LOOP 

FOUND 

JSR GETCHR 
BEQ START 
LDX #2 
CMP CHRLIS,X 
BEQ FOUND 
DEX 
BPL LOOP 
BMI START 
STA STORCH 
TXA 
ASL A 
TAX 
LDA ADRTAB+1,X 
PHA 

BD 24 20 LDA ADRTAB,X 

;STANDARD KERNEL 'GET' INTO ACC'R 
; WAIT UNTIL KEY PRESSED 
;TABLE HAS THREE VALUES ONLY 
; COMPARE VALUES IN TURN, 
; UNTIL FOUND OR NOT FOUND 

;LOOP FROM X=2 TO X=O INCLUSIVE 
;KEY NOT IN TABLE; GOTO START 
;STORE THE ASCII CHARACTER 
;STANDARD JUMP ROUTINE FOLLOWS, 
;IN WHICH THE STACK HOLDS BOTH 
;BYTES OF THE DESTINATION, AND 
:RTS CAUSES THE JUMP. 

HIGH BYTE ON STACK 

48 PHA AND LOW BYTE. 
60 RTS ; JUMP TO ADDRESS NOW ON STACK 

STORCH *=*+1 ; USES ASSEMBLER LOCATION POINTER 
41 42 43 CHRLIS .BYTE 'ABC' ;SETS UP TABLE OF ASCII BYTES 
29 20 6F ADRTAB .WORD A-1, B-1, C-1;SETS UP TABLE OF ADDRESSES - 1 
AO 00 A LDY #0 ;START OF PROCESSING FOR ROUTINE A 

Features of a typical assembler listing. 

one to use, while code destined for low RAM needs the high-memory loader. We may 
summarise the process of writing machine-code with an assembler in three stages: 

(i) The editor creates a source-file, usually stored on disk. 
(ii) The assembler creates an object-file from the source file, again on disk. 
(iii) A loader puts the program in memory; from here it can be saved as an 

ordinary machine-code routine by SAVE or .M . 
It is not necessary to store the intermediate stages; it is merely advisable. Accidental 
loss of a long program, usually when incompletely debugged machine-code executes, is 
common. 

By way of contrast, assemblers may be available in hardware. An EPROM called 
'Mikro' illustrates this. It modifies BASIC to include its own instructions,· which include 
a command to assemble; and it uses BASIC's line input facility as an editing system. 

Most assemblers use the 'two pass' system, in which forward addresses are calc­
ulated on a second pass. To understand why this is necessary, imagine that you are 
assembling the example above, and have arrived at line 24. Its address has not yet 
been reached, so its value (i. e. the value of CHRLIS) is temporarily left unfilled. If 
there is no such operand the assembler prints an error message (or should do), which 
probably will be one of many. First-time assemblies without any errors are rare. Unlike 
BASIC, which can run fairly successfully with syntax errors dotted about, assembler 
is intolerant of errors in its source file. Often, removing errors becomes a sub-goal in 
itself, the triumph of finally achieving no 'errors' leading the programmer to fail to 
notice that the resulting program doesn't quite do what it should. 

Assemblers vary in the way they scan source code. Some assume fairly strict 
column formatting, and may require source code to be arranged tidily; others don't 
check, beyond expecting one or more spaces as separators. For this reason, line 18 



Programming the PET ICBM -363- 74: Effective 6502 programming 

is rejected by some assemblers, because START seems to contain the opcode STA. 

Assembler features. Assemblers for the 6502 and other chips typically have features 
like those listed below, most of which make an appearance in the specimen listing: 

(i) Labels. These mark entry-points to which branches, jumps or subroutine 
calls are made. Often there is a maximum length of six characters. 

(Ii) Opcodes. Invariably standard. 
(iii) Directives. These commands have a similar effect to opcodes, carrying out 

a single fairly simple function. Often they are preceded by a '.', which is picked up 
by the assembler's parsing; sometimes they resemble opcodes, having three-letter 
mnemonics. The most important directives are probably these: 

* or ORC. This sets the starting point or origin form which the object code is 
to be assembled. * has a further use, as a location pointer, ill ustra ted in line 52 of 
the specimen, where it reserves 1 byte as a storage location. Similarly, *=*+50 reserv­
es 50 bytes, and . BYTE *-LABEL calculates the difference between the current location 
and an earlier label, storing it in one byte. 

= or EQU. The 'equates' directive is self-explanatory. Most directives of this 
type are collected at the start of source code, where they can be both easily seen and 
checked, and easily altered. 

· BYTE . TEXT BYT TXT. These provide variations on a theme; in some assem-
blers the functions are combined in .BYTE, in others .BYTE and. TEXT differ . 

. BYTE enters single bytes into RAM, as these examples show: 

.BYTE 31, $EA, %0100 0001 puts three bytes IF EA 41 into RAM, 

.BYTE COUNT + 1 puts the value of COUNT + 1 into RAM; e.g. if 
COUNT = 4, the hexadecimal number 05 is stored in RAM . 

. BYTE 'HELLO' and. TEXT 'HELLO' are alternative forms of the function which 
stores five bytes (48 45 4C 4C 4F) in RAM, and generally sets up ASCII tables. 

· WORD takes a 16-bit number, storing it in RAM with the low byte first and 
high byte second. The 'word-length' of a computer is usually the minimum length it is 
designed to handle, e. g. 4 bytes in IBM machines, 2 bytes in DEC. In 8-bit machines, 
'word' and 'byte' are sometimes used synonymously, but assembler convention assigns 
2-byte words to the 6502. Line 54 in the specimen listing has an example. Note that 
A = $202A, so A-I = $2029, and this is stored, with bytes reversed, at the start of 
the 6-byte table labelled 'ADRTAB', some of which is omitted by the listing. 

· DB YT E assigns two consecutive bytes to memory in the normal order. Since this 
can be accomplished in any case with .BYTE, this directive may be absent. 

.END marks the end of the source code. 
(iv) Symbols. The names (GETCHR, CHRLIS, LOOP, or whatever), including 

labels, are called 'symbols'. An assembler usually constructs a 'symbol table' on its 
first pass, filling in forward references from it on the second pass. 

(v) Operands. The 'operand' following an opcode is a symbol or absolute value 
punctuated in the standard way, i.e. possibly including $, %, @ to signify hex, octal 
and binary numbers, # to signify immediate mode, I for ASCII values, and ( ) , X Y. 

(vi) Comments. Often signalled by a semicolon, which causes the assembler's 
parser to ignore the remainder of the line, these, like BASIC REMs, help make a 
program readable. 

The CBM assembler. This has .PAGE and .SKIP which turn to a new page and 
skip a line (for easier reading) respectively .. OPT allows control over the printing of 
information after assembly. .OPT NOLIST, NOERRORS, NOMEMORY, NOSYMBOLS, 
NOGENERATE causes only assembler error messages to appear on the screen, with no 
other output either to screen or printer. CBM's assembler, like some others, allows an 
operand syntax including < and >, to load low and high bytes of 16-bit addresses. If 
• WORD M has set up the two bytes corresponding to the value of the symbol M, then 
LDA #>M / LDY #<M loads A and Y with the high and low bytes. 

Assembly can be stopped with the Stop key; the program then awaits entry of 
M or B, after which the monitor or BASIC is entered. Conditional assembly, where 
values set at assembly-time mOdify the assembler output, is valuable in producing 
slightly different versions of similar routines, for example to fit different capacities of 
RAM. Examples occur in the source code (q. v.). Other special features include .LIB 
and .FILE directives. .LIB permits library software to be used, which means that a 
named file can be read and assembled into another source file during the course of its 
assembly. .FILE transfers assembly to another file, so a string of segments of code 
can be assembled one after the other. Finally, let's look at an assembler function which 
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cannot quite be carried out with this assembler. A macro is a directive which causes 
an assembler to expand a pseudo-command into several machine-code commands, which 
carry out the functions of the pseudo-command. An example might be MACRO INC 
ADDR, which would increment the I6-bit ADDR, by inserting INC #<ADDR/ BNE *+ 4/ 
INC #>ADDR at the point in the source code where the macro instruction appeared. 
The point is that parameters are allowed, so MACRO INC OTHER would be expanded in 
a similar way, but with values appropriate to the address of OTHER. CBM's . LIB files 
don't work in quite this way, as there is no scope for varying parameters easily. But 
library software is not very different from macro generating software. Consider this 
example, which reverses the low and high nybbles in the accumulator. 
The code works for any value, and leaves the processor status flags PHP 
unchanged, even where this doesn't matter, so it can be inserted in PHA 
any position where the operation of exchanging nybbles is wanted. ROR A 
The directive .FIL will do this, and provided that the filename is PLA 
reasonably meaningful, the resulting source code should be improved ROR A 
in readability. PHA 

(A t first sight, four rotate instructions might be expected to ROR A 
reverse the nybbles, but, since the carry flag is included in the PLA 
rotation, this is not the case. An extra bit would end up between ROR A 
two halves of the original byte. The code (right) gets round this by PHA 
setting the carry flag at each stage to equal the current rightmost ROR A 
bit). PLA 

14.2 Conversion of machine-language programs between ROMs. 
All PETsl CBMs and VIC are sufficiently similar for machine-code 
interconversion to be likely to succeed. Generally, the later versions 
of BASIC include earlier ones' features as subsets, so upward con­
version tends to be fairly easy, while downward conversion may not 
be possible. The steps are as follows: first, the program is disass-

ROR A 
PHA 
ROR A 
PLA 
ROR A 
PLP 

embled. All jumps and subroutine calls to ROM are likely to be different in other ROMs, 
with the exception of kernel routines. Some of these calls may be made in disguised 
form by pushing bytes on the stack and executing RTS or RTI, and if they are, these 
too must be changed, although as a rule this method is used to jump to tables within 
the routine itself. Zero-page values, and those for the region $200 - $400, may have 
different functions; this is particularly the case with BASIC 1 as against BASICs 2 & 4, 
and again with VIC. Without an intelligent disassembler to create labels, it can be very 
tedious indeed to convert 2-byte instructions into three bytes. Other difficulties in­
clude special values, for example of keyboard decode tables, which vary (sometimes) 
between machines, so that LDA E812 for example is interpreted differently. ROM rout­
ines may have slightly different effects in their various ROMs. Thus, the 'print string' 
routine at CA27 I CAlC I BBID is different in BASIC 4. Chapter 15 has details of all 
PET ICBM ROMs to date, and many standard entry points are listed. Intermediate entry 
points can usually be found with some detective work on disassembled listings of the 
relevant parts of each ROM. 

Some interconversion problems are obviously insoluble: VIC colour programs can't 
be imitated on PETs, CRT controller chips can't be programmed in 8-inch screen mach­
ines, disk commands aren't available on BASIC 2 (unless they're in RAM), an ESCAPE 
key may not exist on the keyboard, BASIC 1 cannot be used with NMI. In cases of 
this sort parts of a program will have to be modified if the original workings are to be 
retained; otherwise, slightly different keyboard instructions and output formats from 
the original will result. It is impossible to lay down firm rules, since programming 
methods and styles vary, so that while many routines are trivially easy to convert, 
a twist in the method used makes another far more difficult. 

Machine-independent routines (as regards the PET I CBM and perhaps VIC, but 
almost certainly not other machines too) can be written, or at least approached, by 
taking advantage of standard features. Thus, LOAD is likely to have a similar effect 
on all these machines, so if non-kernel ROM routines are stored in RAM the resulting 
code will be independent of ROM. Some of BASIC 2, for instance, may be transplanted 
into other BASICs, where its performance will be known. The same applies to some 
calculation and string routines. Apart from this, kernel routines for input, output, 
testing Stop, and so on, can obviously be used until such time as Commodore decides 
to change this aspect of ROM. It must be said that many important aspects of pro­
grams are difficult to move between machines; 22-, 40-, and 80-column screens 
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For the sake of an example, I have written each wedge to test for the GO token. This 
means that GO might be used to trigger a computed GOTO or GOSUB. Other possible 
symbols include any not usually found in BASIC, !, $, @, have been used, and other 
possibilities include shift-space, cursor-control characters, and space itself. A whole 
table of processes might follow such a symbol; thus @D 1,3 might plot a point at 1,3, 
where'D' means 'Draw'; !C might clear the whole of memory; $D,l might display a 
disk directory, and each of these commands might be only one of several alternatives. 
The initial special character makes processing somewhat easier, but isn't necessary, 
and keywords like DUMP or FIND can be checked for and acted upon when found. 

Both examples use JMP commands. JSR is often used, and, where applicable, RTS 
can be used, for example in the wedge in the first example. However, if subsequent 
processing doesn't return to the same place, a construction of the type PLAjPLA/JMP 
0070 will be necessary, where the return address is removed, leaving only the return 
address from which CHRGET was called. 

Examples. These three examples illustrate some of the points mentioned, and introduce 
a few refinements which we haven't yet dealt with: 

(i) Use of ! from BASIC to reverse the screen. This is straightforward; one of 
the routines in Chapter 9 can be inserted to perform the reversal. First, enter the 
routine (right) which processes the wedge. 
Then enter the subsidiary machine-code t 
modify CHRGET, and run it. If this is done 
first, BASIC will crash, producing effects 
similar to those which occur when the IRQ 
vector is changed to some non-existent 
subroutine. 

Note that the wedge processing has 
a test for direct-mode; if this is in force 
the 'command' is ignored. The object of 
this is to prevent unwanted direct-mode 
screen reversals. This, of course, hardly 
matters, but it might be important in 
other cases. Conversely, only direct-mode 

0300 CMP #21 
0302 BEQ 0307 ;BRANCH IF ! IN ACC'R 
0304 JMP EOBE/ E102j D3A2;BASICS 1,2,4 
0307 LDA 78 
0309 CMP #02 
030B BEQ EXIT ;BRANCH IF OIRECT MODE 
0300 TYA 
030E PHA ;SAVE Y ON STACK 
030F --REVERSE SCREEN USING A & Y--

PLA 
TAY ; RECOVER Y 

EXIT JMP 0070 ;NEXT BASIC INSTRUCTION 

might be required, as it is in the DOS support programs. Now, 

.M 0079 0079 
4C 00 03 xx xx xx xx xx 

converts CHRGET to its new form (right). 
LOA #4C/ STA 79/ etc can of course also 

0070 
0072 

be used. (BASIC 1 has different addresses). 0074 

INC 77 
BNE 0076 
INC 78 

The mechanism by which the wedge operates 
should, I hope, be clear. Usually, CHRGET 
won't find !, and following the routine from 

0076 LDA BASADR 
0079 JMP 0300 

the start on this assumption shows that the operation 
except for a small slowing caused by the extra code. 

of CHRGET is exactly as normal, 

(ii) TRACE. The version in Chapter 5 inserts a wedge at entry-point D, of the 
form JMP WEDGE where the wedge is high in RAM. The code then follows the sequence 
STA/ STX/ STY/ LIST LINE, WHERE NECESSARY/ LDA/ LOX/ LOY / JMP EOC6 or E10A or 03AA. 
These latter alternatives apply to BASICs 1,2, and 4, and are the ROM entry-points 
which correspond to D. In this way, CHRGET is left fundamentally unaltered, but 
processing takes place using parameters (e. g. current linen umber) of BASIC. This is a 
slightly risky routine for use with TRACE, because. entry-point D can only be reached 
if the BASIC byte is in the range #0 - #$39. The wedge is therefore often bypassed. 
In practice, all BASIC lines include an end-of-line null character and/or ASCII numer­
als in GOTO, and the added versatility given by a wedge which can leave others in 
place to run normally is an advantage. 

(iii) Computed GOTO and GOSUB. The favoured form of wedge is the replace­
ment of 0070 INC 77 by JMP WEDGE , where the address WEDGE is typically in high 
RAM or in EPROM. Unlike wedges lower down in CHRGET, this assures priority of 
whatever new coding is to be introduced. The logic is slightly different from the 
previous examples, because the wedge replaces GETCHR rather than GOTCHR. In other 
words, wedge processing here must include incrementing the contents of ($77). 
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An elegant way to do this is to use the three bytes after JMP. A subroutine to incre­
ment ($77) 's contents can be put here, so JSR 0073 functions exactly like CHRGET. The 
subroutine can be INC 77/ BNE +3/ INC 78 or, what is perhaps slightly easier, the ROM 
routine. The revised CHRGET routine and its wedge has this structure: 

0070 JMP WEDGE 
0073 JSR EOB5/EOF9jD399 
0076 LDA BASADR etc • 

• • . unchanged .•• 

0303 CMP #CB 
0305 BNE 0321 

.M 0070 4C 00 03 20 F9 EO xx xx 

With this wedge in place, try this: 

o PRINT "1": GO SQR (64) 

0307 JSR EOF9 ;YES: INC POINTER TO NEXT BYTE, 
;INPUT AND EVALUATE EXPRESSION, 
;CONVERT FPACC#l INTO INTEGER, 
; SEARCH FOR LINENUMBER IN ($11), 
;CARRY CLEAR IF LINE NOT FOUND; 
; ($5C) POINTS TO LINK ADDRESS, 
;SO ADD #4 [CARRY IS SET] 

030A JSR CC9F 
030D JSR D6D2 
0310 JSR C52C 

4 PRINT "3": GO x*x + 4 
0313 BCC 0324 

8 PRINT "2": X=4: GO X 
20 PRINT "4": END 

0315 LDA 5C 
0317 ADC #03 
0319 STA 77 ;AND PUT RESULT IN ($77). 

which prints 1 to 4 during execution. 031B LDA 5D 
Some odd anomalies tend to occur with 031D ADC #00 
wedges unless there is specific pro­ 031F 
tection within them against direct-mode 0321 
entry and entry from the input buffer. 0324 
If either of these is omitted, entering 

STA 78 
JMP 0076 ;CONTINUE BASIC 
JMP C7EB ;'UNDEF'D STATEMENT ERROR' 

programs when the wedge is enabled may give oddities. Lines like 100 :! may be nec­
essary. The DOS support ('Universal Wedge') is instructive in this respect. Another 
type of anomaly is the behaviour of conditional statements; IF X=l THEN @123 , a typ­
ical wedge, maya/ways execute, irrespective of the value of X, unless rewritten in 
the form IF X=l THEN: @123. 0300 JSR 0073 ;GET NEXT CHARACTER 

Since the wedge is processed before CHRGET 
is able to pass its results to ROM, ordinary tokens 
can be altered: #$89 ('GOTO') can itself be mod­
ified, for instance. Computed GOSUB (right) is 
more complex than GOTO. On disassembling GOS UB 
in ROM, one finds a lot of stack activity followed 
by GOTO. RETURN unravels the stack information. 
It is important with a wedge to save the return 
address of GETCHR (which is called by GETCHR's 
final RTS), for use by the exit JMP 0076 from the 
wedge. In the example it is stored in RAM. 

Subroutines can be called by name, rather 
than linenumber. If a date-processing subroutine, 
say, starts at 10000 and DA=10000. then GOSUB 
DA TE is usable. Such names must contain no res­
erved BASIC words, of course, and their values 
must be correct. They will not, for example, in 
general survive renumbering correctly. 

The use of location $300 in these examples 
has no particular significance and is for convenience 
only. Note that all wedges inevitably have a slowing 
effect on BASIC, so a routine to 'kill' the wedge 
when it's not in use may be worth including in the 
overall program. Also, of course, a routine to turn 
it on is convenient; SYS 40960 or SYS 45056 
has this function in many hardware add-ons. 

0303 
0305 
0307 
0308 
030B 
030C 
030F 
0311 
0314 
0316 
0317 
0319 
031A 
031C 
031D 
031F 
0320 

eMP #8D 
BNE 0337 
PLA 
STA 033A 
PLA 
STA 033B 
LDA #03 
JSR C31B 
LDA 78 
PHA 
LDA 77 
PHA 
LDA 37 
PHA 
LDA 36 
PHA 
LDA #8D 

0322 PHA 

i GOSUB TOKEN? 
;IF NOT, EXIT. 
iRECOVER RETURN 

ADDRESS AND 
; STORE IT. 

iCHECK STACK DEPTH 

0323 JSR EOF9 ;INCREMENT (77) 
0326 JSR CC8B ;EVALUATE EXPRESSION 
0329 JSR D6D2 ;CONVERT TO 2-BYTES 
032C JSR C7BO iUPDATE (77) ADDRESS 
032F LDA 033B iREPLACE RETURN 
0332 PHA ADDRESS FOR RTS 
0333 LDA 033A ; ON STACK 
0336 PHA 
0337 JMP 0076 ;CONTINUE 
033A ;2 BYTES STORAGE 
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14.3.3 BASIC utilities. Chapter 5 has a number of examples of machine-code pro­
grams which process BASIC. Two examples here exemplify suitable methods for dealing 
with this type of problem. 

(i) Search and replace. A fairly simple routine for any BASIC, which changes 
single characters, follows. It can exchange all occurrences of PRINT to PRINT #, or of 
PEEK to USR, for example; or, within quotes, all shift-spaces may be converted into 
spaces, or all cursor-downs into (say) reverse characters. The logic is shown in the 
flowchart. Note (a) how the end-of-line 
test is necessary to prevent link addresses 
and linenumbers being wrongly changed, 
(b) how the end-of-program is tested, 
(c) the use of the quotes flag to show 
whether or not some particular region of 
BASIC is within quotes, and therefore Set pOinter=$0404 
may require special treatment. 

The routine uses addresses $0 - $2 Quotes flag off 
in the zero-page, but no other RAM apart 
from its own (relocatable) code. 

$OO=QUOTES FLAG (#0 OFF, #FF ON) 
$Ol=POINTER (LOW BYTE) 
$02=POINTER (HIGH BYTE) 

0300 A2 00 86 00 AO 01 A9 04 
0308 85 01 85 02 E6 01 DO 02 
0310 E6 02 Al 01FO 1A C9 22 
0318 DO 08 48 A5 00 49 FF 85 
0320 00 68 E4 OO(DO E6)C9~ 
0328 DO E2 A9@81 01 DO DC 
0330 B1 01 C8 11 01 FO 11 88 
0338 18 86 00 A9 05 65 01 85 
0340 01 8A 65 02 85 02 DO CA 
0348 60 xx xx xx xx xx xx xx 

@@ ('PRINT') IS CHANGED TO 
(#98) (' PRINT# ') IN THIS EXAMPLE. 

~: IGNORE CONTENTS OF QUOTES, 
~: CHANGE ONLY QUOTE CONTENTS, 
~: CHANGE BOTH, ON SYS 768 

N . B . : The quote character itself 
cannot be changed using this 
routine as it stands. 

Yes 

No 

Increment pointer 

and load character 

END 

(ii) Hashtotal. A BASIC or 
machine-code hash total is often 
helpful in checking whether load 
errors may have occurred or 
whether the correct version of a 
program has been loaded. We need 
a routine to combine each byte 
from the start to the end in a 
repeatable way. The example 
program (next page) creates a 
single-byte hashtotal, by exclus-

Flowchart: replace only characters outside quotes. 

ive-ORing every byte from ($28) to ($2A) and printing the result. This value could 
be stored in RAM and checked automatically by the program itself. The routine uses no 
zero-page pointers, but instead is self-modifying. The hashtotalling process stops when 
this modified address equals the end-of-program pointer in ($2A). Obviously, other 
zero-page start and end pointers can be substituted, such as ($7A) for BASIC 1 or 
($2B) for VIC. The print routine (this prints linenumbers, and can be tracked down 
at the end of RESET, where it prints the number of bytes free) differs between ROMs. 
I have used SY S 700 because the location is easy to remember, at least in decimal. The 
routine needs six address changes if it is to be relocated. 
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02BC LDA 28 ;STORE START-OF-PROGRAM POINTER IN RAM ADDRESS 
02BE 
02Cl 
02C3 
02C6 

LOOP 02C7 
02C8 
02CB 
02CC 
02CF 
02Dl 
02D4 
0205 
0208 
02DA 
02DD 
02DF 
02El 
02E2 
02E3 
02E5 

STA 02C9 
LDA 29 
STA 02CA 
PHA 
PLA ;EXCLUSIVE-OR POINTER CONTENTS WITH HASHTOTAL SO FAR 
EOR xxxx 
PHA 
INC 02C9 ; INCREMENT POINTER 
BNE 02D4 
INC 02CA 
SEC ;COMPARE POINTER WITH END-OF-BASIC. BRANCH TO LOOP WHILE LESS 
LDA 02C9 
SBC 2A 
LDA 02CA 
SBC 2B 
BCC 02C7 
PLA ;RECOVER HASHTOTAL (STORED ON STACK AS SBC USES ACCUMULATOR) 
TAX 
LOA #00 
JMP DC9F/ DCD9/ CF83; PRINT 256*A + X, WHICH NOW = HASHTOTAL 

1"." Machine-code loaders in BASIC: ordinary loaders and relocating loaders. 

1". ". 1 Ordinary loaders. When machine-code is to be stored in some fixed place in 
RAM - notably the cassette buffer(s), which, except for buffer#2 in BASIC 4 disk 
operations, are only used by BASIC during tape input/ output - a simple series 
of pokes provides an easy way to load the individual bytes. Section 4.1. 9 has a BASIC 
routine which uses the keyboard buffer and screen together to convert consecutive 
bytes into decimal BASIC values, for later poking back into RAM. It may be easier and 
less space-consuming to use hexadecimal strings; the two subroutines below are comp­
lementary, the first generating strings like that in line 0 of the second program, which 
in turn, given a starting address, reconstitutes the code in RAM. 

61491 REM #######U##########U######UUOU########U###########U###########1####### 
61492 REM U# ROUTINE WHICH STORES MACHINE CODE FROM RAM INTO A BASIC STRING. #U 
61493 REM ## ** SEE THE FOLLOWING ROUTINE FOR TYPICAL PROGRAM TO RECONSTRUCT ## 
61494 REM ## ** THE CONTENTS OF RAM FROM WITHIN ANOTHER BASIC PROGRAM. ## 
61495 REM ####U###########I##II##########I####I######################1########1 
61496 REM 
61500 INPUT" RAM START LOCATION";S 
61510 INPUT" RAM END LOCATION";E 
61515 INPUT "STARTING LINENUMBERn;L 
61520 PRINT n[CLEAR]n;MID$(STR$(L),2);nMC$=MC$+n;CHR$(34);:G-PEEK(54)+256*PEEK(55) 
61530 FOR J - S TO E 
61540 IF POS (0)+ PEEK(l96» 74 THEN PRINT CHR$( 34); n [HOME] [DOWN] [DOWN]L-n;L; n+1: S_n; J; n: E 

=";E;":GOTO";G 
61550 IF POS(O)+PEEK(196»74THEN POKE623, 19:POKE624,13:POKE625, 13:POKEI58,3:END 
61560 P=PEEK(J):Q%~P/16:P-P-Q%*16:REM Q% IS HIGH BYTE, P LOW BYTE, IN DECIMAL. 
61570 C=P:GOSUB 61600:C=Q%:GOSUB 61600:REM Q%>9 THEN Q%=Q%+16: PRINTCHR$(Q%); 
61580 NEJIT 
61590 PRINT CHR$(34): POKE 623,19: POKE624,13: POKEI58,2: END: REM LAST LINE 
61598 REM 
61599 REM ** CONVERT DECIMAL FROM 0-15 INTO HEX FROM 0-9, A-F AND PRINT DIGIT ** 
61600 C = C + 48: IF C > 57 THEN C - C+7 
61610 PRINT CHR$(C); 
61620 RETURN 

o MC$"MC$+"E600F0034C2EE6A9FF8500A578EEOC038D48E84C2EE60Q":REM EXAMPLE ONLY 
61745 REM 
61746 REM ######1#############11####1#########11#1######11#111####11111#####11 
61747 REM ## TYPICAL PROGRAM TO CONVERT A BASIC HEX STRING BACK INTO ~~ORY II 
61748 REM #####################1#######1######1#########1########1####1####### 
61749 REM 
61750 INPUT "START LOCATION OF CODEn; S 
61760 FOR J - 1 TO LEN (MC$) STEP 2 
61770 Q% - ASC( MID$(MC$,J,1) ): REM ASCII VALUE OF HIGH BYTE 
61780 P .. ASC( MID$(MC$,J+l,I»: REM ASCII VALUE OF LOW BYTE 
61790 Q% - Q% - ASC(non): Q% .. Q% + 7* (Q%>9) : REM DECIMAL VALUE OF HIGH BYTE 
61800 P - P - ASC(nO"): p .. P + 7* (P>9) : REM DECIMAL VALUE OF LOW BYTE 
61810 POKE S + J/2 , 16 * Q% + P : REM NOW POKE IN TRUE VALUE 
61820 NEXT 
61830 END 
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14.4.2 Relocating loaders. Machine-code which works correctly in any part of memory 
(subject to constraints imposed by the other software and hardware) is called relocat­
able. Code of this sort can be put into RAM by a straightforward set of pokes, with 
a variable starting-point from which the bytes are written. This can't be done, without 
modifications, with most code using absolute addresses. A relocating loader pokes in 
code, correcting the relevant bytes. As an example of its use, consider BASIC using 
several routines in high RAM; a relocating loader can painlessly put (say) several 
different keyboard redefinitions there, all fitting tidily into the space, and all working 
correctly. In the same way, a loader can put in its code into machines of differing RAM 
capacity. Relocating code may also be machine-independent, but this is more difficult. 

Which instructions relocate? All implied mode and immediate mode instructions, 
all branches, and all accumulator mode instructions relocate. For example, TSX, RTS, 
CLC, and LDX #00, LDA #FF, and BEQ +6 and ROL A can be poked in byte form any­
where in memory without affecting their disassembled equivalent in any way. The prob­
lems arise with addresses. With BASIC, zero-page instructions can usually be consid­
ered to relocate, because their functions are fixed, and an instruction like LDA ($2A),Y 
has to be retained wherever the code is. ROM addresses are fixed too. Addresses 
which have to be varied look like this: 7000 JSR 70E4/ LDA 70BO,X/ CMP 7100/ JlfP 7050 
and so on, which after relocation becomes 6000 JSR 60E4/ LDA 60BO,X / etc. 

Many approaches are possible to writing such code: here, I'll assume the code is 
to be put into the top of RAM, and is to be loaded in decimal from BASIC. The well­
known use of negative numbers as distinguishing marks is used; machine-code versions 
can't do this, and may use zero bytes instead, followed by a routine enabling a check 
for real zeroes as opposed to code zeroes. Supermon 4 (q.v. - appendices) has an 
example. 

We can use the following loader, which may be embellished in various ways, typ­
ically to print out initialisation addresses, special locations, and instructions. The 
peeked values apply to BASIC> 1; others may be substituted: 

100 T=PEEK(52)+256*PEEK(53) :REM TOP OF MEMORY FOR BASIC 2 & 4 
110 L=T-N :REM N=NUMBER OF BYTES OF CODE: L=LOWERED MEM.TOP 
120 FOR J=L TO T-1: READ X% :REM DATA HELD IN (SAY) LINES 0 AND FOLLOWING 
130 IF X%<O THEN_Y=X%+T: X%=Y/256: Z=Y-X%*256: POKE J,Z: J=J+1 : 

:REM Y IS RELOCATED VALUE CALCULATED FROM NEG.X% 
140 POKE J,X%: NEXT :REM COMPLETE PROCESS FOR ALL VALUES 
150 POKE 52,L-INT(L/256)*256: POKE 53,L/256: CLR:REM RESET TOP-OF-MEMORY 

To convert code into data which this program can use, follow these steps: 
(i) Enter the code into RAM (and preferably test it). 
(ii) Print (or write out) the disassembled version. A disassembler giving decimal 

'values of locations is helpful. 
(iii) Mark all the absolute addresses which need changing during relocation. 
(iv) Replace each of them by its offset from the end of the program: i.e. count 

from the end of program plus one backwards, the result being a negative number from 
-1 to -30000 or so. See the example: this is easier than it might seem. 

(v) Convert the bytes into data statements and enter them. Note that each new 
negative value replaces two bytes as a rule. 

(vi) Enter the value of N in line 110. 
(vii) Test the loader: run it several times, and check that each routine is in­

depent and correctly set up. 

Example. The nonsense program (right) has a 
subroutine call, a table of byte values, and a 
branch. The branch, because of its relative 
addressing mode, relocates: so does the table, 
and the single-byte, implied-mode instructions 
and the immediate-mode instruction. So the 
only addresses to be relocated are those circled. 

32 
96 

162 
221 
202 
208 

96 
65 

126 

2 
134 

250 

66 

2 027A JSR[027E ) 
027D RTS 

@027E LDX #2 
2 0280 CMP[ 0286}, X 

0283 DEX 
0284 BNE 0280 rn 0286 RTS 
0287 .BYTE $41,$42 Counting back from the end, we find that 

027E is the 11th byte, and 0286 the third: so -11 
and -3 respectively replace all occurrences of these 
ment is therefore 

two addresses. The DATA state-

o DATA 32,-11,96,162,2,221,-3,202,208,250,96,65,66 

and the number of bytes in the program is 15, so line 110 becomes 
110 L=T-15 
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Our loader should now be capable of placing 
its code into memory as the diagram (right) 
shows, with adjacent versions of the routine 
abutting exactly. Another temporary line of 
BASIC: 

145 PRINT "TOP" T "TO" L 

will show the continual diminution of RAM 
as the routines accumulate in the top of 
RAM. 

Refinements on this process include: 
(i) Test for type of ROM, perhaps with a 
few pokes to modify ROM addresses, 
(ii) Test for size of memory, which may be 
too small, 
(iii) Automation of some of these processes, 
including calculation of negative values and 
of number of bytes in the program, 
(iv) Inclusion of the memory-lowering pokes 
into the initialisation routine itself. In this 
way, a pre-relocated machine-code program 
can be loaded as a file, and when initialised, 
will set the memory-pointers so that it cannot 

14.5 Pure machine-code techniques. 

3BC4 JSR 3BCS 
3BC7 RTS 
3BCS LDX #02 
3BCA CMP 3BDO, X 
3BCD DEX 
3BCE BNE 3BCA 
3BDO RTS 
3BDI EOR (42,X) 
3BD3 JSR 3BD7 
3BD6 RTS 
3BD7 LDX #02 
3BD9 CMP 3BDF,X 
3BDC DEX 
3BDD BNE 3BD9 
3BDF RTS 
3BEO EOR (42,X) 
3BE2 JSR 3BE6 
3BE5 RTS 
3BE6 LDX #02 

and so on 

be overwritten by BASIC strings. 

'Hand assembly' This is the name usually given to a hybrid technique for machine­
code programming, in which the final code is not fitted together as a solid chunk in 
the manner of an assembler, but instead is distributed in RAM in a way convenient to 
the programmer, in separate subroutines. For example, a disk-processing program 
may start at $3000 and have 50 or so lines of program terminating with a message to 
be printed on successful completion. Major subroutines, to read, write, compare, move 
data, and so on, could be at $3100, $3200, $3300, and other addresses in this series. 
Provided that the documentation keeps a record of the function of each SUbroutine, 
code built up in this way is fairly easy to check (subroutines can be tested individ­
ually) and quite easy to modify, without having to reassemble the entire program. 
Moreover, skeletal trial programs can be written and run, and later elaborated upon 
and made user-friendly by expanding parts of the code as required. The sequence of 
the parts is not changed by this process, as it may be when assembler programs are 
patched. Different depths of subroutines can be represented by their locations; as a 
COBOL program might have controlling modules prefixed by A-, their subsidiary 
routines prefixed by C-, and their elementary commands to read or write single rec­
ords prefixed by E-, so $3000 ff may contain the highest-level control programs, 
$4000 ff their subroutines, and $5000 ff the elementary subroutines. Since enormous 
machine-code programs are rare, there is not often a shortage of RAM for the purpose. 
There is of course no reason why this procedure shouldn't be carried out with an ass­
embler; all that's needed is a fair sprinkling of commands like *=3000 and *=3100. In­
evitably, JMP or JSR commands (or stack pushes with RTS or RTI) have to be used to 
communicate between routines; branches cannot reach far enough. (This qualification 
is removed with the 6809 chip, which not only has 'long branches' but 'branch saving 
return address'. These features make 6809 code much more easily relocatable than 
6502 code). 

Running with SYS. LOAD assumes BASIC; RUN is expected, the CBM having no 
command to run pure machine-code. If we have a machine-code program, how can we 
write it so that RUN executes it? The answer is to put in a SYS call to the code. To 
see how this can be done in the general case, let's suppose we have a routine starting 
at $3000. RUN executes a program from its starting-point; we therefore precede the 
machine-code with a BASIC program. The easiest way to do this is to insert bytes like 
these: ~ 

ACTUAL BYTES: 00 OC 04 00 00 9E 31 32 32 38 38 00 00 00 
BASIC EQUIVALENT: • Link Line# SYS 1 2 2 8 8 ~ • • 

where it denotes the null byte. The link address (=$040C here) points to the first of 
the two end-of-program marker bytes, on the assumption that $0400 is the address of 
the start of this machine-code. The link address cannot be zero. The arrow marks 
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the start of BASIC, as determined by the pointers in ($28) in BASICs >1, and ($7A) 
in BASIC 1. Unfortunately, the byte previous to this must be a null byte, imitating an 
end-of-line, and this usually only happens with the standard loading and saving pro­
cedure where $0400 holds #0. So entry of 

.0400 00 OC 04 00 00 9E 31 32 ;SYS 12288 is assumed here, but obviously other 

.0408 32 38 38 00 00 00 xx xx ; values, from SYSl039 up, are possible. 
and 

0028 01 04 ~ xx xx xx xx xx ;Top of memory underlined; must> $3000, e.g.FF 39. 

followed by SAVE will convert the machine-code into a pseudo-BASIC program, which 
can be RUN. In this case, all the bytes from $0410 to $3000 are wasted; to prevent 
this the code could be relocated down, or another loader used to put a zero byte in 
the position corresponding to $0400, boring though this may be. 

lt is not strictly necessary to include three null bytes after the BASIC SYS and 
END program, but it tidies LIST. 

14.6 Debugging machine-code. 

This list, which is naturally not exhaustive, includes many errors which experience 
shows to be common in 6502 programming. Errors in the design itself are best cured 
at the earliest stages; careful analysis and dry-running of code with both typical and 
abnormal data should ensure that a program is fundamentally sound. 

Simple errors of carelessness. These may remain undetected for a long time in mach­
code, because no ?syntax error warning ever appears. Examples include: 
(i) Transcription errors. Typically 7038 for 703B. 
(ii) Omission, or inclusion, of immediate-mode #, as in LDA #01/ PHA/ LDA 02/ PHA. 
(iii) Use of wrong ROM addresses, for example FFE4 as output, or, with ROM 

addresses not in the kernel, those for a different ROM from that in use. 
(iv) Branch errors are quite likely to occur in code not written by assembler. 

Addressing mode errors include 
(i) Confusion of order of low and high bytes of an address. 
(ii) Failure to understand the method of working of indirect addressing. 
(iii) The attempt to use indexed zero-page addressing to extand above $FF. 

LDA $AB,X wraps around back to zero if X exceeds #54. 
(iv) Other indexing errors, for example: LDA 0102,X/ STA OlOO,Y/ DEX/ DEY/ 

BEQ -10 loads garbage if X drops to #FF and below, which is untested. 
(v) Program design may be weakened through failure to appreciate limitations of 

the chip; e. g. tripling A by TAX/ ASL A/ ADC X is impossible. 
(vi) Indirect jump has a bug: JMP (03FF) takes its address from 03FF and 0300. 

Calculation errors involve addition, subtraction, and negation, for example: 
(i) It's easy to forget that only the accumulator is holding the result. 

LDA #2/ ADC 1234 adds 2, but the contents of 1234 are unchanged. To 
change 1234, STA1234 is necessary. 

(ii) The carry bit may give problems: the rule is usually to clear it before add­
itions, and set it before subtractions. 

(iii) A 2's complement is always 256 minus the original byte, or 65536 minus a 
16-bit integer, and so on. This is EaR #FF + #1. 

Errors with status flags. There is a logic behind the setting of flags, but it is not 
easy to get used to it. This example: LDA AB/ CMP #07/ BEQ +1/ RTS/ STA 08 
stores a zero value in 08, but this does not set the zero flag, although loading 
the value from 08 does set the flag. Other problems include the negative flag 
with CMP, and the fact that incrementing a value from 127 decimal to 128 makes 
the value change from 'positive' to 'negative'. 

Stack errors: the rule is to have the same number of stack pushes and pulls if a sub­
routine is to return in the normal way. If a subroutine stack is pulled before 
being pushed, it is important to return the correct values on the stack before 
RTS unless special processing is being performed. 

Errors in which a program is modified include programs partially overwritten by BAS­
IC, or by cassette activity, or by BASIC 4 in cassette buffer #2, or by the pro­
gram itself. 2-byte pointers may be updated while they are still in use, so that 
they temporarily point to a wrong area of memory. Often, A, X, or Y is changed by 
a subroutine or interrupt, and has to be saved in RAM or on the stack. 
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14.7 IEEE-488, VIA, and PIA: interfaces to the outside world 

The IEEE bus (General Purpose Interface Bus). This standard 'bus', permitting 
interchange of data between devices, is described in the IEEE document IEEE-488, 
published in 1978 and itself based on a 1975 standard. Any devices, subject to 
certain limitations, become plug-compatible, and able to transmit and receive ASCII 
data. Why should this be a problem? In the first place, innumerable variations 
are possible in the signals controlling the data flow. A standard set of commands 
indicating which lines are to be active and when is needed. Secondly, if all the 
devices were timed by some central clock, data could be passed without problems 
of synchronization between the devices: the same order of magnitude as obtains 
within RAM could apply to data transmission rates. But independent pieces of 
equipment are not synchronized, and a fairly elaborate system of checking is used 
to determine when data is to be sent. This process is called 'handshaking'. The 
two-way capability of the bus makes for complication. IEEE equipment tends to 
be costly. Moreover (this happens in many computer-related fields) large chunks 
of the standard may remain unused. The IEEE standard's design parameters were 
apparently based on the characteristics of equipment already in use, and this 
design approach has obvious risks. 

Description of the bus. The IEEE-488 bus is a cable of 16 wires. 8 wires carry data, 
usually in ASCII form with bit 7 used as a parity check. The data lines transmit 
one bit each, so that an 8-bit byte is sent as a unit; the result is sometimes 
described 'bit parallel, byte serial'. Handshaking is carried out between each 
byte. Not surprisingly, this slows the rate of transmission, which in any case will 
be slow if one or more of the receiving devices processes its data at a relatively 
leisurely pace. 1 megabyte per second is the maximum allowed by the design; CBM 
equipment has a maximum of about 5000 bytes per second. 3 of the remaining 8 
wires control the handshake. The CBM's ROM from $FOOO upwards includes its 
IEEE processing, in addition to tape and monitor programs. A fair proportion of 
its IEEE work is concerned, as we shall see, with setting these handshaking lines 
and generating error messages and ST (status flag) values if the returning signals 
don't behave in the correct handshaking manner. Finally, 5 wires are concerned 
with bus management. Only 21 of these are used in the PET ICBM. This is caused 
by Commodore's design system, in which the computer gets priority over all other 
devices on the bus. There are quite severe restrictions on cable length between 
pieces of equipment: not more than 5 metres between devices, and not more than 
20 metres overall, are the figures usually quoted. For this reason, VIC has a 
different connector, based on the RS232, which has a much better linelength. The 
RS 232 (for example) can operate with two wires only. However, since interface 
boxes are available, this makes no great difference, except that the price of the 
total equipment package is raised. The advantage of the IEEE emerges when 
electronic and scientific equipment of a technical type (Le. not printers) requires 
control by a CBM computer. Before describing the programming of this bus, we'll 
look at the IEEE port as it appears on all PET ICBM machines. The meaning of 
the mnemonics will (I hope) become less obscure as we proceed. The early manuals 
for the computers, for example part no. 320856-3, contain hardware data on the 
pin connections, their hardware addresses, handshaking and the management bus, 
ST, and a much-reproduced table of IEEE commands. There's also some account 
of CMD, GET#, INPUT#, and PRINT#, which of course are all BASIC's way of 
moving data on the bus. 

The IEEE port. The IEEE port is in the middle of the back of the PET ICBM. 
Its pins, and the corresponding IEEE connector as it appears (say) with a disk unit, 
labelled with IEEE mnemonics, are arranged like this:-

.-INC')'" AU ~ 
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IEEE mnemonics and concepts. As we have seen, there are three conceptually 
separate sets of wires or lines in the IEEE bus. These are called Data Lines, 
Data Byte Transfer Control Lines (for handshaking!) and General Interface 
Management Lines (which the controller uses). Each of the 16 lines has a mnemonic. 

DATA LINES 

DI01 - mOB are B data lines ('Data input/output') which carry single 
bytes of data and of commands. 

DATA BYTE TRANSFER CONTROL BUS 

DAV ('Data valid'). Tells listener that new data is on the bus. 
NDAC ('Not data accepted') Tells talker data hasn't been read yet. 
NRFD ('Not ready for data') Tells talker not to talk yet. 

GENERAL INTERFACE MANAGEMENT BUS 

ATN ('Attention') Distinguishes commands to devices from data. 
EOI ('End or Identify') Indicates that the current byte is the last. 
IFC ('Interface Clear') Clears all devices on switchon or reset. 
REN ('Remote Enable') Gives control to other device (not used with CBM). 
SRQ ('Service Request') Allows a device to request service (not on CBM). 

All devices on the bus are controlled, at any given time, by a single 'controller'. The 
other devices may be 'talkers' or 'listeners'. A 'talker' transmits only; some technical 
measuring devices are of this type. A 'listener' receives data only; many printers 
and plotters illustrate this. Another type, the 'talker /listener', as you will not be 
surprised to read, can perform both activities; Commodore disk drives and modems 
illustrate this. The bus may be arranged with devices in a 'star' pattern or 'daisy­
chained' together, or a combination of these; it doesn't matter to the bus. These 
devices may be any mixture of talkers and listeners. Much of the time the devices 
may be inactive or switched off. A 'talker' doesn't have to talk all the time. 

The next important concept to grasp is the active low principle which the IEEE 
uses. Unlike all the remaining operations of the CBM, on the IEEE 'true' is low, 
(0), and 'false' is high (1). This applies to data and commands. In machine code, 
therefore, data is EORed with #$FF before transmission. With the CBM, the output 
register is $E822, so EOR #$FF /STA $E822 precedes data transmission. Another 
example (see next page) is the values assigned to the IEEE locations when the CBM 
is reset or powered on; each bit which is configured for output by the initialisation 
system is set high, rather than the alternative convention of the low value. This 
convention is determined by hardware considerations. Anyone device can hold a 
line in the low state by keeping the line impedance high, irrespective of other 
devices' states, and this is useful when assorted devices with a range of response 
times have been connected to the same bus system. The 'active low' principle is 
responsible for the double negatives which tend to be a confusing part of discussion 
about this bus, particularly when it concerns the control bus commands which use 
lines which wait to be released by all the devices. For example, a device listening 
on the bus and ready to receive data sets 'Not ready for data' false, by setting 
the line high. This of course is the same as 'Ready for data'. 

Finally, a vital concept without which nothing will make sense. The 'A TN' line -
read as 'Attention' - distinguishes between commands and data. When it is low, 
(true), each byte sent is treated by all devices as a command, not as data. If 
the command refers to a particular device, that device becomes a talker or a 
listener and waits for the handshaking process to begin. Now the point is this:­
only one byte carries the information telling the devices which device is to talk, 
say. How can the devices distinguish a 'talk' command from a 'listen'? In fact each 
command byte is partitioned up, so that the range within which the command byte 
lies determines its meaning. For example, if it is from 0-31 decimal, the command 
is a special type which we've not discussed and isn't used on CBM machines. If it 
is from 32-62, the command is a listen address; if from 96-126, a secondary address. 
As an example, consider the Commodore disk unit; this is device #B (unless modif­
ied). The unit is made a listener by (i) Setting ATN true (0); (ii) ORA #$20 with 
the device number, 8, and so setting the relevant 'listen address' bit; (iii) Sending 
#$28 as a command; (iv) setting ATN false (1). Further transmissions will be 
understood as ASCII. A secondary address will often be sent too. 
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CBM IMPLEMENTATION OF THE IEEE-488 BUS* 

Function: Description: Location: Bit number: Value on setup: 

CONTROL LINES: 

ATN in Attention $E821 ( 59425) 7 0 
ATN out $E840 ( 59456) 2 1 

DAV in Data Valid $E840 ( 59456) 7 0 
DAV out $E823 ( 59427) 3 1 

EOI in End or Identify $E810 ( 59408) 6 0 
EOI out $E811 ( 59409) 3 1 

NDAC in Not data accepted $E840 ( 59456) 0 0 
NDAC out $E821 ( 59425) 3 1 

NRFD in Not ready for data $E840 ( 59456) 6 0 
NRFD out $E840 ( 59456) 1 1 

SRQ in Service request $E823 ( 59427) 7 0 

DATA LINES: 

Input $E820 ( 59424) 0-7 
Output $E822 ( 59426) 0-7 FF 

PIA 1 --
E810 • a •• .... a (#40) = EOI in 
E811 .... b ••• b (#08) = EOI out 
E812 
E813 

PIA 2 --
E820 iiii iiii input register 
E821 c ••• d ••• c (#80) = ATN in, d (#08) = NDAC out 
E822 0000 0000 output register 
E823 e ... f .•• e (#80) = SRQ in, f (#08) = DAV out 

VIA --
E840 gh .. .jkl 9 (#80) = DAV in, h ( #40) = NRFD in, j ( #04) = ATN out, 

k (#02) = NRFD out, I (#01) = NDAC in 
E841 
to 

E84F 

*References include: 
i) IEEE Std 488-1978 describes the 'GPIB' (General Purpose Interface Bus) and 

includes a full specification. 
ii) Gregory Yob's three part article in Kilobaud-Microcomputing (July - Sept. '80), 

'get your PET on the IEEE bus', has a lot of information in about 23 pages. 
This includes hardware examples (e.g. Hewlett-Packard clock and signal gener­
ator, 'Blinkin' Lites'machine) , BASIC routines to illustrate the workings of 
the bus, explanations of IEEE activity during input/output (e.g. INPUT# and 
PRINT#) and machine-code routines including some ROM locations. 

iii) 'PET and the IEEE-488 Bus (GPIB), by Fisher and Jensen (McGraw-Hill 1980) 
deals mainly with old ROM PETs. The book largely consists of detailed break­
downs of the BASIC I/O commands and lists of references- including instruments 
using the IEEE and a bibliography. It is hardware oriented; software examples 
include flowcharts, a BASIC diagnostic program to report faults on the bus, 
and a single machine-code example, a reprint of a routine to drive an 
astronomical telescope. 
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Machine Code programming of CBM's version of the IEEE: Examples. 

Machine 
Code:-

Meaning :- Machine 
Code:-

Meaning:-

BIT $E8l0 Branch taken if input EO! LDA $E840 Wait until DAV in is high (false) 
BVC SET ST is high (false). 'Branch if BPL -5 'Data not valid'. 

LDA #$34 not end of input message'. L BIT $E840 Wait until DAVin is low (true). 
STA $E811 Set output EOI low (true) BMI L 'Data valid'. 

LDA #$3C Set output EO! high (false), tDA $E840 Wait until NRFD in is false, i.e. 
STA $E811 'Not end of message'. AND #$40 until 'Ready for data'. 

LDA $E820 Get a character from the BEQ -7 
EOR #$FF input register & reverse it.* LDA $E840 Set NRFD out high (false). 

. ORA #$02 'Ready for data'. 
LDA #$34 Sets ATN In low, and NDAC STA $E840 
STA $E82l ou t low, 'data not accepted'. 

LDA #$3C Sets ATN in low, and NDA C 
STA $E82l out high, 'data accepted' 

EOR #$FF Store data (reversed) in 
STA $E822 output buffer.* 

LDA #$34 Sets SRQ in low (true) and 
STA $E823 DAV out true, 'data valid'. 

LDA $E823 Set DAV high (false). 
ORA #$08 'Data not valid'. 
STA $E823 

LDA $E823 
AND #$F7 
STA $E823 

LDA #$3C 
STA $E823 

Set DAV low (true). 
'Data valid'. 

Sets SRQ in true and DA V 
out false. 'Data not valid'. 

LDA $E840 Set ATN high (false). 
ORA #$04 'Send data, not IEEE 
STA $E840 commands'. 

LDA $E840 Set ATN low (true). 
AND #$FB 'Send IEEE commands, not 
STA $E840 data'. 

LDA #$FD 2 

AND $E840 
STA $E840 

LDA $E840 
AND #$41 
CMP #$41 
BEQ ERROR 

LDA $E840 
AND #$01 
BEQ -7 

BIT $E84D 
BVS ERROR 

Set NRFD out low (true). 
'Not ready for data'. 

Branch taken if both NRFD in 
is high (false) and NDAC in is 
high (false). I.e. 'Ready for 
data' and 'Data accepted' are 
both true. 

Wait until NDAC in is high. 
'Data accepted'. 

Uses a VIA timer to detect time 
out. ST =1 if write, 2 if read. 3 

This table is intended for use as an aid in understanding disassembled code. Each 
IEEE location appears in sequence, with the handshaking and control line mnemonics 
approximately in alphabetical order. Not all the possible permutations and combin­
ations are listed, but those which are occur frequently in CBM ROM. Analogous 
6502 code exists within Commodore devices, to handle data transfer from the point 
of view of those devices. 

*The equivalent in BASIC to reverse byte X is 255-X. 
2This variation has of course the identical effect to LDA $E840/ AND #$FD. 
3In BASIC 4, time out may be ignored by poking 1020 with any value> 127. 
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--- HIGH NYBBLE ---

0 1 2 3 4 5 6 7 E F 
0 0 16 0 16 0 16 0 16 

- 1 GTL LLO 1 17 1 17 1 17 1 17 
- 2 2 18 2 18 2 18 2 18 
- 3 3 19 3 19 3 19 3 19 

LOW 4 SDC DCL 4 20 4 20 4 20 4 20 
NYBBLE 5 PPC PPU 5 21 5 21 5 21 5 21 

- 6 6 22 6 22 6 22 6 22 
- 7 7 23 7 23 7 23 7 23 
- 8 GET SPE 8 24 8 24 8 24 8 24 

9 TCf SPD 9 25 9 25 9 25 9 25 
A 10 26 10 26 10 26 10 26 
B 11 27 11 27 11 27 11 27 
C 12 28 12 28 12 28 12 28 
0 13 29 13 29 13 29 13 29 
E 14 30 14 30 14 30 14 30 
F 15 UNL 15 UNT 15 31 15 31 

ACG UCG LAG TAG SCG SCG2 SCG3 

ACG (Addressed Command Group) includes: 
GET=Group Execute Trigger 
PPC=Parallel Poll Configure 
TCT=Take Control 

GTL=Go To Local 
SDC=Selected Device Clear 

UCG (Universal Command Group) includes: 
DCL=Devices Clear 
PPU=Parallel Poll Unconfigure 
SPE =Serial Poll Enable 

LLO=Local Lockout 
SPD =Serial Poll Disable 

LAG (Listen Address Group) includes UNL=Unlisten All Devices 
TAG (Talk Address Group) includes UNT=Untalk All Devices 
SCG (Secondary Command Group) holds CBM secondary addresses, except 
2 Secondary address for CLOSE, 3 Secondary address for OPEN and SAVE. 

Subdividing the command byte sets limits on the number of devices controllable by 
the bus. 31 primary devices are allowed; secondary addressing was introduced 
to enable extra devices to be connected, according to Fisher and Jensen, so that 
31 x 31 = 961 is the absolute maximum. Commodore's use of the secondary address 
as a means of controlling the primary device is therefore rather unorthodox. What 
does all this imply in BASIC? Firstly, the OPEN command for devices numbered 4 
or more (excludirig keyboard, cassettes, and screen) is designed to prepare BASIC 
for future communication with the IEEE bus. OPEN X, Y ,Z, "STRING" makes three 
entries in each of three tables in RAM, unless these tables are full already. PEEK 
locations 593, 603, and 613 to take a look at this. If a file has been opened, these 
locations will typically be 5,4, and 97. OPEN 5,4,1 will give these figures, the 
first being the 'logical file number', the second the device number - here, 4, a 
printer - and the third the secondary address with its high nybble set to 6, adding 
96. (BASIC 1 has locations 578, 588, 598 instead). If OPEN includes a "STRING" 
this is sent along the bus and processed by the receiving device: normally this is 
a disk command, for instance "O:FILE,SEQ,READ" or "#" or "PROGRAM". This of 
course sets up a similar set of table entries within the disk drive's own RAM. Now 
when PRINT#X, "MESSAGE" is executed, the device number Y, and secondary 
address Z, corresponding to X are looked up in the tables. Y has its high nybble 
set to 2 by ORA #$20, corresl>onding to LISTEN. ATN is set low (true) and these 
bytes sent as commands; when ATN is reset high, all further output is ASCII data 
generated by the PRINT statement and formatted in the normal CBM way. Finally, 
PRINT # X sends an UNLISTEN to the bus directed at the printer. (It will also send 
UNTALK if there is an IEEE output device too; but usually the keyboard or screen 
provides output). Note that OPEN and CLOSE have special secondary addresses 
allocated to them, as appears in the final two columns of the table above. This is the 
reason for ROM routines like this: LDA secondary address! ORA #$FO. Again, it's 
a peculiarity of Commodore that these control bytes are interpreted this way by 
CBM equipment. 
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Program Examples with the IEEE bus. 

[1] CMD. This BASIC keyword uses identical syntax to PRINT#, and operates in a 
very similar way, the only difference being that the device is not UNLISTENed. * 
For this reason it is used to keep open a file to disk or tape when a program is to 
be LISTed as a sequential file. Generally, PRINT# is easier to use, unless a lot of 
PRINT statements have to be changed, since UNLISTEN or other IEEE command 
may be issued by some other part of BASIC. CMD may be worth trying if data is 
to be sent simultaneously to several destinations. In the same way that OPEN 4,4: 
CMD4:INPUT"NAME";N$ within a program prints out NAME to the printer, not the 
screen, several files may be opened and printed to simultaneously; try for example 
OPEN1, 1, 1: CMD1:0PEN3,3:CMD3:0PEN8,8,8, "0:FILE":CMD8:PRINT "HELLO" 
which prints HELLO to tape #1, screen, and disk at one time. 

[2] ATN. (Not arctangent!) Setting the ATN line low, sending a command, and 
setting it high again may be used to direct data to a recipient device. As an 
example, consider C Brannon's 'Keyprint' program to print the screen contents to 
a Commodore printer (showing graphics and other Commodore features). The aim 
is to tell device 4 to listen, then set ATN high, then to output characters one at 
a time, e.g. with $FFD2. When the page is finished, $FFCC, the routine to UN­
LISTEN the printer, is called, and control returned to the interrupted program. 
ATN out is bit 2 of $E840. Unfortunately it is not enough to use machine code to 
load the IEEE output buffer with #44 - the talk command for device 4 - with its 
bits reversed, then lower ATN and put it high again, since this ignores the bus' 
handshaking. The easiest method is to use ROM routines, although this has the 
drawback of causing the program to be untransferable between different ROMs 
without a few changes. LISTEN shares the same ROM area as TALK and in fact 
these routines are the very first in the FOOO-FFFF ROM. To cause device 4 to 
become a listener, the current device location ($F1 in BASIC 1, $D4 in BASIC>l) 
must contain #4, then LISTEN is called. ($FOBA in BASIC<4, $FOD5 in BASIC 4). 
Now ATN has to be set high. A routine which does this (Le. sets bit 2 of $E840 
high) exists at $F132 (BASIC 1), $F12D (BASIC 2), or $F148 (BASIC 4). Also 
the current CMD location has to be set to #4, so that $FFD2 outputs its charact­
ers to the correct device. This location is $0264 in BASIC 1 and $BO in BASIC>1. 
So with BASIC 4: 

LDA #$04 DEVICE NUMBER 4=PRINTER 
STA $D4 CURRENT DEVICE 
STA $BO CMD LOCATION (CURRENT OUTPUT) 
JSR $FOD5; 'LISTEN' 
JSR $F148; PREPARE FOR DATA OUTPUT 

PRINT CHARACTERS WITH $FFD2 
JSR $FFCC; SEND UNLISTEN 

CONTINUE 

In this example, a secondary address was not sent. It could easily have been; 
5 bytes prior to the second subroutine, which sets ATN false, is the entry point 
from which the contents of A are output to the IEEE before ATN is set false. 

[3] The PET as controller. The first published account of spooling with the PET 
seems to be T M Peterson's article in Compute! (Vol.3, #1 and reprinted in CCN and 
Transactor). This method may not be foolproof. Jim Butterfield, by coincidence in 
the same issue of the magazine, wrote that, the logic is not accurate enough for 
spooling to be possible. Peterson's method, for BASICs 2 and 4, is as follows:-

*The commands LISTEN, TALK, UNLISTEN and UNTALK use the imperative VOice, so to 
speak. To make the point clear we can consider human analogies: conversational­
ist X may say to conversationalist Y,"Listen. I want to tell you that ... " and 
this use of LISTEN is similar to the IEEE's. So is: "You've got five seconds to 
talk, or else ... " where the recipient of this message is being sent a TALK 
command. CBM equipment allows only 65 milliseconds (.065 sec), however, before a 
so-called 'time out error'. 
Like all analogies, this one breaks down at some pOints. The controller ensures 
that one talker only is allowed on the IEEE bUS, although there may be many 
listeners. In human communication on the other hand, no such restriction holds. 
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Spooling is a technique used to overcome speed limitations of printers: large 
computer installations store their output on disk, then later disgorge the whole 
lot, often at night. And the printers can be used when the processor is working 
but has no printing to do. In principal this can be done with IEEE devices. The· 
sequence is: (1) Set ATN low (true), so the devices wait for commands. (ii) Send 
UNLISTEN so that all devices in LISTEN mode no longer listen. (iii) Send TALK 
to device X; X is now the only talker. (iv) Send LISTEN to device Y, (v) Now, 
set ATN high (false) again, having set up a listener and a talker. These two 
devices will now talk and listen until the bus is used for something else. On the 
PET, suppose we have a sequential file on disk, which could contain data, or a 
program LISTed as a sequential file. The spooling technique goes like this: 

OPEN 7,8,9, "O:SPOOL,SEQ,READ": REM FIGURES CHOSEN FOR UNAMBIGUOUSNESS 
POKE 165,64+8: SYS 61668 : REM SYS 61695 IN BASIC 4. HIGH NYBBLE 4=TALK 
POKE 165,96+9: SYS 61668 : REM SYS 61695 IN BASIC 4. HIGH NYBBLE 6=S.ADD. 
OPEN 5,4: CMD 5,;:POKE 176,3:POKE 174,0: REM MAKE PRINTER A LISTENER 

POKE 176,3 makes the screen the output device, so another program (not using 
the bus) may be run. POKE 174,0 sets the number of files to 0, so files 5 and 7 
are erased. When the spooling is over, POKE 174,10: CLOSE 7 will close the 
disk file. (Or you can OPEN 7,8,9: CLOSE 7). 

[4] Handshaking. The charts of implementation of the IEEE on the PET show 
each control line (where used) except for SRQ having an 'input' and an 'output' 
connection. This means that during handshaking, values set by the PET use the 
'output' location, but values being tested by the PET use the 'input' location. 
So the machine code which branches to itself when testing a line always uses an 
input location, while code which sets a value always uses an output line. This 
distinction is of course a product of the hardware buffering methods employed. 
As an example, let's consider the ROM routine which outputs a character on the 
bus. This is situated immediately after the routine to send TALK and UNTALK, 
which sets A TN low before dropping into the routine and thus outputting a 
command. In BASIC 1 it's at $FOF1, in BASIC 2 at $FOEE, and in BASIC 4 at 
$F109. For copyright reasons it cannot be reproduced here, but the logic can be 
deciphered into this:-

i. Set DAV false. (I.e. puts 1 into DAV out's bit in $E823) 
ii. Check if both NRFD and NDAC are false. If so, the program stops with 

a ?DEVICE NOT PRESENT ERROR. (I.e. uses bits from NRFD in & NDAC 
in, for the test). 

iii. Put reversed data in the output register $E822. 
iv. Wait until NRFD is true. 
v. Set DA V true, and start the clock in the VIA. 
vi. Wait until NDAC becomes false. If this doesn't happen before the timer 

clocks up 65536 microseconds, the status flag byte is set - in fact, #1 
is ORA'd into it, which is why ST of 1 means a time out error on write. 
Note however that BASIC 4 has a patch put in which enables this time 
out feature to be disabled. POKE $03FC (1020 in decimal) with any value 
greater than 127 to make the device wait indefinitely until the data has 
been accepted. Commodore could., but didn't, include an option allowing 
the user to select his own time-out interval. 

vii.DA V is set false. 
viii. Finally, the output register is set null (with #FF!). 

This is the three-line handshake as implemented on the CBM, using the three 
lines of the data byte control bus. Hewlett-Packard will supply details of this 
handshaking procedure. This, however, is approaching the hardware side of CBM, 
which is not my intention. Before leaving this topic let's briefly see how to write 
one's own handshaking routines for this bus. In view of the opportunities, there 
seems to be a surprisingly small amount of published work on device control with 
the PET ICBM. One popular set of routines, by John Cooke, has appeared in 
Commodore publications, Fisher & Jensen, Gregvry Yob's articles, and, without 
acknowledgement, in the 'PET Revealed', and this is about all. However, provided 
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the details of the handshake are known, there should be little difficulty in writing 
routines which carry out the equivalent machine code. As a simple subexample, 
suppose we wish to set NRFD false, wait until DAV is true, then recover data 
from the input register. We look up these facts: 

i. NRFD out is bit 1 of $E840. 
ii. DAV in is bit 7 of $E840. 
iii. The input register is $E820. 

And the corresponding machine code might be:-

LDA $ES40 
ORA #$01 FORCES BIT 1 HIGH (IE FALSE) 
STA $ES40 NOW, NRFD IS FALSE. 

LABEL LDA $ES40 
BMI LABEL LOOPS UNTIL HIGH BIT 0 (TRUE) 
LDA $ES20 
EOR #$FF REVERSE DATA; NOW IN USUAL FORMAT 

[5] The status byte and ST. ST (also appears in the BASIC keywords reference 
section) is reserved in BASIC, so PRINT ST yields a value often zero, but, if not, 
providing information on a read or write transaction on the IEEE bus or with the 
cassette tapes, which don't use the bus, but are programmed to look similar for 
consistency. ST is not a normal variable held in RAM. Instead, when ST is found 
in a BASIC statement, the value held in a single byte is found and converted to 
ST, which therefore can't (normally) exceed 255. This byte is $020C in BASIC 1, 
and $96 in BASIC>l. Confining ourselves to IEEE transactions only, ST has only 
4 values apart from 0, which are 

ST=l Time out error on write 
ST=2 Time out error on read 
ST =64 End of message 
ST=-128 Device not present. 

These messages vary in value. ST =-128 may in BASIC cause the program to crash 
anyway. The time out errors can be useful; ST =2 shows the data hasn't been read 
although this may be obvious from the data itself. ST =1 is a bit incalculable. For 
example, some newer CBM printers give this 'error' even when working correctly. 
And ST=64 can often be made redundant by the use of an end-of-file marker. In 
any case, EOI may not be reliable with some devices. However, in machine code, 
routines to read disk files often use ST's byte location as an easy test for end-of­
file. If it is non-zero, the file is presumed to have been read completely. 

[6] ROM routines for use with the IEEE in data transfer. When using disk, modem 
or printer, the handshaking is taken care of, and best left alone. But the ROM 
subroutines for processing data in machine code are of interest, providing as they 
do the possibility of faster data processing than is available with BASIC. All the 
'kernel' ROM routines (those in common between all the CBM ROMs) operate with 
the IEEE and are often quite easy to use. Important RAM locations are: 

Length of message (e.g. "O:PROG" has length 6) $D1 in BASIC>l, $EE inB.l. 
Logical file number $D2 in BASIC>l, $EF in BASICl. 
Secondary address $D3 in BASIC>!, $FO in BASIC 1. 
Device number (primary address) $D4 in BASIC>l, $F1 in BASIC l. 
Input device number, for input $AF in BASIC>l, $0263 in B.1. 
Output device number, for output $BO in BASIC>l, $0264 in B.l. 

As an example, consider a machine-code routine to read CBM sequential files. We 
can open the file from BASIC, then read with machine-code: OPEN 2,S,3, "DATA" to 
read sequentially from the default device, for instance. Then LDX #02/ JSR $FFC6 
sets the device for input to the CBM, and JSR $FFCF inputs a single byte from the 
device. When reading is complete, JSR$FFCC closes the file. To open a file from 
machine-code requires that the parameters in the table above are set, and that 
GETCHR points to the start of the string. Then JSR $FFCO calls the OPEN routine 
used by BASIC. IEEE routines themselves can be called, although the resulting 
code is not transferable between BASICs. For example, in BASIC 2, if a file is 
open, LDA #os/ STA $D4/ JSR $FOB6/ LDA #$63/ STA $D3/ JSR $F12S performs two 
functions, firstly setting device #8 (the disk drives) to talk - a file is presumed to 
be open - and outputting the secondary address 3. Now, JSR $F1SC inputs a single 
character along the IEEE bus. This method is used, with secondary address 15, 
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by 'Universal Wedge' for DOS, to read characters from the error channel. Commands 
may be send to the disk using the error/command channel with secondary address 
15, which of course has to be OPENed with OPEN 15,8,15 or some other logical 
file number early in the proceedings. This routine illustrates the method: 

LDA #$08 iDEVICE NUMBER (PRIMARY ADDRESS) 
iSTORE IT. 
iSECONDARY ADDRESS OF 15 (HAS HIGH NYBBLE = 6) 
iSTORE IT, TOO. 

STA $D4 
LDA #$6F 
STA $D3 
JSR $FOD5 
LDA $D3 
JSR $F143 

;SEND 'LISTEN'. (THIS IS BASIC 4. BASIC 1=$FOBA, BASIC 2=$FOBA). 
;LOAD SECONDARY ADDRESS 

LABEL LDX #$00 
INC $77 

;SEND IT; ALSO SET ATTENTION LINE HIGH (FALSE). THIS IS BASIC 4; 
;BASIC 1=$F12C, BASIC 2=$F128. 

LDA ($77,X)i LOAD NEXT CHARACTER IN BUFFER FROM $0200ff. 
BEQ EXIT iZERO BYTE MARKS END OF COMMAND STRING 
JSR $F19E iHANDSHAKE THE BYTE OUT. (BASIC 1=$F167, BASIC 
JMP LABEL iCONTINUE LOOP, OUTPUTTING CHARACTERS. 

2=$F16F) 

EXIT JSR F1B9 ;SEND 'UNLISTEN'. (THIS IS BASIC 4. BASIC 1=$F17E, BASIC 2=$F183). 

Other features, notes, and bugs related to the IEEE bus. 

[1] Functions not implemented by CBM. A large number of IEEE functions don't 
exist on the CBM, but can be programmed along the lines already discussed. It 
appears from Fisher and Jensen that any function can be programmed (pp .135 ff.). 
Presumably this can only be accomplished after hardware modifications should a 
function require the use of one of the interface lines not currently wired for the 
purpose. These lines are the IFC line, the REN line, and the SRQ line, which is 
wired for input only. IFC (interface clear) is a reset line; on switchon it is set 
low as a hard ware process. REN (remote enable) is grounded, hence 'true', to 
retain CBM control over the devices. SRQ (service request) for the same reason is 
not wired for output from the CBM, which is the controller. 

[2] Bugs. BASIC 1, not surprisingly, has a number. LOAD • SAVE and VERIFY 
don't work properly with disks (and have tape bugs too). The hardware connect­
ions to the PIAs and VIA cause some problems because of interactions. When the 
screen scrolls $E8ll was poked to blank the screen; this also sent an EOl out. 
This bug was carried over into BASIC 2. BASIC 4, as we've seen, has a special 
location to enable the time out feature to be switched off; 65 milliseconds was in 
any case an arbitrary figure. If it is off, though, the stop key is the only exit 
should a device not respond. All ROMs prior to BASIC 4 have a bug in their 
UNTALK/ UNLISTEN routine ($FFCC), where ATN is not set low when #$5F, the 
command for UNTALK, is sent. G Huckell (Compute! Jan.'8l) wrote that a device 
may become wrongly enabled, or single characters lost or treated as commands, 
because of this. When using $FFCC, therefore, on earlier ROMs, it is advisable to 
set ATN like this: LDA $E840 

AND #$FB 
STA $E840; ATN NOW LOW (TRUE) 
JSR $FFCC 

Huckell also wrote that CBM equipment is 'immune' from this problem. Probably 
only those users who are trying to connect other IEEE equipment need concern 
themselves with this. Relocation of some ROM routines into RAM may be the best 
way of actually writing in the patch. 
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These three chips control the keyboard, cassettes, screen, IEEE bus, and user port. 
Both are 4o-pin devices with two ports, invariably called A and B. The ports are 
independently controlled and (apart from certain small differences) almost identical, so 
each chip can be considered to be made up of two similar halves. The PIA or 6520, 
('Peripheral Interface Adapter'), is memory-mapped into four bytes, of which two are 
ports; the VIA or 6522 ('Versatile Interface Adapter') occupies 16 bytes, of which 
three are ports, two of them alternatives of port A. In all PET / CBMs they occupy 
these locations: 

PIA 1 E810 - E813 59408 - 59411 
PIA 2 ... E820 - E823 59424 - 59427 
VIA E840 - E84F 59456 - 59471 

[CRT controller in 12-inch screen CBMs ... E880 - E881]. 
The peripherals are not wired in a very systematic manner, as the section on the IEEE 
bus showed. Before describing the various parts of these chips and explaining their 
programming, I draw the reader's attention to the following program. This is written 
for BASIC 2, and is a relocatable routine which loops, displaying eight-bit byte patt­
erns on the screen, with their addresses. The range of addresses is controllable by 
changing the marked bytes. And different ROMs can be catered for: disassemble the 
routine and change the four ROM addresses from BASIC 2 to BASIC<>2, with the help 
of Chapter 15: 

E775 Print A as two nybbles. 
FDCA Print two spaces. · : 033A A9 13 20 D2 FF A9@85 

FDCD Print one space. · . 0342 02 A9 @ 85 01 AS 02 20 

FDDO Print carriage return. · . 034A ];;_.!l;.l AS 01 20 75 E7 20 

· : 0352 ~lLt'P_ AD 00 B1 OYS500 
[FFD2 and FFEl are kernel · : 035A A9 30 06 00 90 02 A9 31 
routines] . · . 0362 20 D2 FF C8 CO 08 FO 09 

· : 036A CO 04 DO EC 20 ~P __ ll:Q DO · . 0372 E7 20 ~~_fQ E6 01 AS 01 · : 037A C9 (5]) DO C9 20 E1 FF BO 

· . 0382 B7 00 

DISPLAY BYTES FROM $E840 - $E84F. 

This breaks to the monitor on Stop; put #$60 into $0383 to return to BASIC. The loop 
repeatedly homes the cursor and displays the VIA's contents, so the timers for exam­
ple can be seen moving. If the loop is removed and the routine prefixed by SEI, it 
can be incorporated into the interrupt to give a continual display of the chip's cont­
ents. Either PIA can be watched when required. 

14.8.1 The PIA. This chip, though simpler than the VIA, is nevertheless consider­
ably complex. Let's look at its features and the names and abbreviations given to each 
of them. First, we have the two ports, A and B. These are 8 bits held in a single 
byte or register; the individual bits are referred to as PA 0 to PA 7 in port A, and 
PB 0 to PB 7 in port B. Each bit can be configured for either input or output; very 
often all 8 bits are configured identically. Peeking or poking, and the machine-code 
equivalent, is used to take data from the registers and write it into the registers 
respectively. The registers may be called I lORA or I IORB, input/output register A or 
register B. Each of the two ports has two con trol lines; each occupies one pin, so the 
ports have 10 bits each if these lines are used. Port A has control lines CA 7 and CA 2 , 
and port B has CB 7 and CB2. CAl and CB1 are usable only for input; CA2 and CB2 
may be defined either for input or output. The ports therefore occupy two bytes of 
the memory-map; the other two bytes, which include flags to check the status of the 
control lines, are called control registers. CRA ('control register A') and CRB ('cont­
rol register B') correspond, unsurprisingly, to ports A and B respectively. When the 
control register is appropriately set, its port no longer receives or sends data, but is 
treated instead as a data direction register, the pattern of bits being loaded into it 
defining its bits as inputs (when bit = 0), or outputs (when bit = 1). DORA and DDRB 
are the data direction registers for ports A and B. Their locations are the same as 
those of the ports; bit 2 in the control register determines whether the register is 
currently treated as a data direction register or a port. When bit 2 is zero, DDR is 
assumed, and the value in the direction register when bit 2 rises to 1 defines which 
bits will be treated as input and which as output until the system is redefined. This 
arrangement is economical, if a little confusing. Note that on switching on, the chip's 
internal mechanism sets all registers to zero, so that a data direction is assumed in 
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which all bits are inputs. This prevents hardware connected to the system from being 
turned on with the computer. PIAs have two interrupt request lines, IRQA and IRQB. 
These are normally high, but may be programmed to become low when a change is det­
ected in CAl, CA2, CB1, or CB2. All these interrupts, if they occur, can be dist­
inguished by software; in the PET ICBM, only one interrupt (corresponding to the 
screen refresh) is enabled, so the system of flags in the control registers is not used. 
At least, this is generally true, with the exception of tape operations, which detect 
and control the cassettes by means of interrupts and the control-line CAl on PIAl 
and CB1 on the VIA. Interrupts can be defined to take place upon either of two types 
of transition: 'active low' means that a transition from high (1) to low (0) triggers 
the interrupt, and 'active high' means the opposite - that the relevant control-line 
must rise from low (0) to high (1). If a triggering transition takes place, it is called 
an active transition. Transitions in the other direction are not active. Even if the 
interrupt request enable is off, a flag is set in the chip whenever an appropriate 
transition happens; these flags cannot be turned off in the normal way, with a poke, 
but instead a peek is used! Reading the data from the register (i. e. the port) resets 
the interrupt flags. The control lines are intended for use in handshaking applications 
and, as we'll see, the IEEE commands described in the previous section are of this 
type. Note that the control lines are not present as bits in the PIA. The programmer 
can tell the chip to set one or other control-line for output, and set it low or high, 
or detect changes in an input, but there is no bit in either register which directly 
reveals any control-line's current status. This is a rather confusing point until it is 
understood. 

Having made a stab at a verbal explanation, let's look at the same material diag­
rammatically in the hope of reinforcing whatever learning may have taken place. We'll 
consider PIA 1; PIA 2 is internally identical, but has different RAM locations and, 
because it is connected differently, has other functions than those of PIA 1: 

RAM ADDRESS: BITS: 

E810 (59408) CAl [INPUT] + CA2 [I/O] + 

E811 (59409) 

E812 (59410) CB1 [INPUT] + CB2 [I/O] + 

7 6 5 4 3 2 1 0 

I " I I I I I I 
II i I WI 
I I I I I I I I I 

PORT A or DDRA 

CONTROL REGISTER A 

PORT B or DDRB 

E813 (59411) Ii , iii I eDl CONTROL REGISTER B 

The ports. As we've seen, these are relatively straightforward. Bit 2 of either control 
register switches its own port between a data direction register when the bit is zero, 
to a port when the bit is 1. Example: how do we configure port A for output of all 8 
bits? First, bit 2 of CRA must be set to zero; then #FF is stored in DDRA; then bit 
2 of CRA is reset to 1. This program (or the BASIC equivalent) will do the trick: 

LDA E811/ AND IFB/ STA E811/ LDA IFF/ STA E810/ LDA E811/ ORA 104/ STA E811* 
In the same way #00 configures port A for input on all 8 lines, #AB configures bits 
2,4, and 6 for input and the rest for output. 

The control registers. We can ignore bit 2, which we now know about. The only other 
function of the control registers is control of the lines CA 1 and CA 2 (by CRA), and 
control of CB1 and CB2 (by CRB). CAl and CB1 are for input only, and have one 
fewer controlling bit than CA2 and CB2, 3 bits as opposed to 4. The diagram shows 
how the seven bits are divided. Bits 7 and 6, the two high bits, are interrupt flagsof 
control - lines 1 and 2 respectively; the BIT instruction can test both, which helps 
explain the fragmented layout. 

Control lines as inputs. When bit 5 of a control register is zero, control-line 2 
is configured for input. This option is not available for control-line 1, which is always 
an input. We can deal with these situations together, because each line is controlled in 
the same way when control-line 2 is an input. Remembering that bits 6 and 7 are flags, 
not controllable by direct poking of data, we have only bits 0,1,3, and 4 left. Of 
these, bits 0 and 1 control litle 1, and bits 3 and 4 control line 2. Their effects are 
to set the direction of active transition, and to enable or disable the interrupt re­
quest line. (The interrupt flags are always set on active transition, but IRQ need not 
be). This table summarises the situation: 

BIT NUMBER: 1 [CTRL-LINE1] or 4 [CTRL-LINE2] o [CTRL-LINE1] or 3 [CTRL-LINE2] 

BIT SET TO 0: Sets active transition negative Disables IRQ output 
BIT SET TO 1: Sets active transition positive Enables IRQ output 

*Note: this program is an illustration only; it may be inadvisable to reconfigure PETs. 
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Control-lines CA2 and CB2 as outputs. When bit 5 of either control register is 
set high, CA2 or CB2 respectively (or both) become configured for output. The two 
ports are now somewhat asymmetrical if handshaking is used. If it isn't, both ports 
behave identically. Let's look at this situation first: 

BIT 5=1 [CTRL-LINE 2 OUTPUT] and BIT4=1 ['MANUAL OUTPUT' WITHOUT HANDSHAKING] 

Now, BIT 3 HIGH SETS CONTROL-LINE 2 HIGH; 
BIT 3 LOW SETS CONTROL-LINE 2 LOW. 

This is the so-called manual output, where CA2 or CB 2 can be set high or low as the 
programmer pleases. 

Output with handshaking is the most complex option: 

BIT 5=1 [CTRL-LINE 2 OUTPUT] and BIT 4=0 [OUTPUT WITH HANDSHAKING] 

Now, control-line 1 is configured (as always) for input, and control-line 2 for output. 
It is this which makes handshaking possible, the input bringing a signal from the 
device, and the output line sending a signal. The port itself can be used either to 
read or write, and CA2 handshakes on reading, CB2 on writing. That is, CA2 is used 
with LDA and similar instructions, CB2 with STA-type instructions. The sequences are 
these: 

BIT 3 LOW with CA2: CA2 is now controlled by two events: 
(i) CAl active transition sets it high, 
(ii) Read operation sets it low. 

BIT 3 LOW with CB2: CB2 is controlled by two events: 
(i) CB1 active transition sets it high, 
(ii) Write operation sets it low. 

BIT 3 HIGH: Causes 'pulse output', CA2 or CB2 going low for one cycle only after 
read or write operation. (This pulse may be too short for some uses) 

Before looking at examples from the PET, the reader might like to examine this summ­
ary diagram of the PIA i which includes most of the features mentioned. If it seems 
rather confusing, please don't blame me! 

7 6 5 4 

CAl active CA2 active CA2 CA2 
transition transition direction Hand-

flag flag l=out shake=O 

l=on l=on Manual =1 
O=off O=off 

O=in Active: 
High=l 
Low =0 

3 2 

Control Port A 
on Read=O control: 
Pulse = 1 DDRA=O 
CA2 high=l IORA=l 
CA2 low =0 

IRQ on = 1 
IRQ off= 0 

1 

CAl 
Active: 
High=l 
Low =0 

0 

r.ontrol 

IRQ on = 
IRQ off= 

1 
0 

PORT A 
or 

DORA. 

CONTROL 
REG­

ISTER A. 

Port Band DDRB are identical, except that CRB = xxlO Oxxx implies read handshake. 

Exameles. We can follow the reset vector from ($FFFC) in ROM to find how the PET / 
CBM mitialises its PIAs. Diagrams on the next page show how the ports are connected, 
and the uses of the control lines, and these may be compared with the initialisation 
logic to see how each PIA works. Considering PIA 1 first, ignoring other I/O chips: 

RESET ALL REGISTERS NOW HOLD 0 
LDA 
STA 
LDA 
STA 

BIT 
LDA 

#OF 
E810 
#3D 
E813 

E812 
#3C 

;THIS IS CURRENTLY DDRA, SO WE HAVE FOUR INPUTS AND FOUR OUTPUTS 

;DDRB IMPLICITLY LEFT WITH #0, I.E. ALL INPUTS. CONTROL REGISTER 
;B ENABLES CB1 INTERRUPT WITH ACNVE LOW, AND SETS CB2 HIGH 
;SEEMS TO BE INTENDED TO CLEAR INTERRUPT FLAGS IN E813 

STA E811 ;SWITCHES TO PORT A FROM DDRA; DISABLES INTERRUPTS; SETS CA2HIGH 

Thus, bits 4 - 7 in port A are for input, and bits 0 - 3 for output; this last batch of 
bits is used with port B (configured for output) when reading the keyboard during 
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the interrupt processing sequence. Note that an interrupt is enabled on a CB1 trans­
ition. This is the interrupt which drives the keyboard processing. Now let's look at 
the second PIA, again ignoring the other chips' initialisation ~ 

RESET ... ALL REGISTERS NOW HOLD 0 ... 
LDX #FF 
STX E822 ;THIS IS CURRENTLY DDRB FOR THIS CHIP, SO IT'S CONFIGURED FOR 

iOUTPUT ON ALL 8 BITS 
LDA #3C 
STA E821 iDDRA IMPLICITLY LEFT WITH INPUTS. CA2 IS SET FOR OUTPUT & HIGH 
STA E823 iCB2 IS SET FOR OUTPUT, AND IS SET HIGH 
STX E822 iPUT #FF AS OUTPUT OF PORT B, BECAUSE IEEE 'LOW' IS 1 AND V.V. 

PIA 2 is used only by the IEEE bus. Its programming in ROM reflects this: the input 
port (A) is read and EORed with #FF to flip its bits, and conversely data is reversed 
and stored in the output port (B). The output control lines CA2 and CB2 (=NDAC and 
DAV out) are set alternately high and low by storing #3C and #34 into their control 
registers, setting bit 3 on and off. PIA 1 has more variety: a search program (e.g. 
Hunt from Supermon) can track down the forty or so occurrences of ROM calls to add­
resses E810 - E 813, revealing tests for input bits in port A, keyboard reading routines, 
tape routines which disable the CB1 interrupt and later reenable it, and some CA2 
outputs which are relics of BASIC 1. 

PIA 1 ---
E810 59408 PORT A ------- ----INPU S------ ------- ------ ----OUT! UTS----- ------

Diag. IEEE Cassett ~ sense Ke board rcw (0-9) 
sense EOI in #2 #1 

E811 59409 CONTROL CAl [CA2 CA2=out ~ut to b ank the Port A CA1=cass tte #1 
REGISTER trans'n trans'n screen old PET only) or DDRA read lin 

A flag flag] =EOI out (CBMs) switch 
E812 59410 PORT B ------- -------- ------ ---INPlY S------ ------- -------- ------

Conte ts of k yboard ow 
(~sually , all bit set, 0 all bu one) 

E813 59411 CONTROL CB1 [CB2 Port B 
CB1=scre n CB2=out ut to c ssette re-

REGISTER trans'n trans'n 1=0 ,O=off 
or DDRB 

trace li in #l's mo or: e 
B flag flag] switch 

PIA 2 

E820 59424 PORT A ------- ------- -------- -INPUTS ------- ------- -------- --- ---
I lput buff ~r for ttle IEEE ~us 

CONTROL CAl [CA2 CA2 lin ~ = NDAC out Port AI CA1=IEEE ATN in 
REG'R A trans'n transn] DDRA 

E821 59425 

E822 59426 PORT B ------- ------- ---- --- OUTPUTS ------ -------- ---- --- -------
Ou ;put buff ~r for the IEEE bus 

E823 59427 CONTROL CB1 [CB2 CB2 lin DAV put Port Bf CB1=IEEE SRQ in 
REG'R B trans'n transn] ~ = DDRB 

'Q.8.2 The VIA. This input-output chip is another 40-pin device, which includes 
an the PIA's features as a subset of its own. As we shall see, the arrangement is a 
little different. The PIA is a predecessor of the VIA, so if the previous section of the 
chapter has been understood you will be well equipped to tackle the rather greater 
complexities of the VIA. All this is something of an electronic engineer's specialism, 
and is not needed in most programming unless it's essential to write or decipher I/O 
routines. The usual sources of information on chips of this sort are free data sheets 
from the manufacturer, and in fact many books on the subject quote from these with 
little attempt at comprehensible explanation. I've tried to present all the important 
aspects of the VIA in a readable form, starting with a description of the extra regis­
ters possessed by the chip, a diagram of the PET ICBM's individual implementation of 
them, and finally program examples showing how each type of facility is used. The 
examples are in machine-code: BASIC equivalents are easily written, usually by direct 
conversion into peek and poke commands operating on decimal addresses. 
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The VIA has two ports, port A and port B, each of which has a separate data direct­
ion register. Port A can be written or read or both from two separate locations; there 
are two port As. The same data appears in each; the difference is that one has a 
handshake effect with CA2, the other having no such effect. Rather confusingly, port 
B appears first in the RAM addresses, followed by the handshaking port A. CA 1 and 
CA2 are control lines for port A, CB1 and CB2 for port B, and, as with the PIA, the 
CAl and CB1 lines are always input lines, while CA2 and CB2 may be configured for 
either input or output. Note that every PIA and VIA has its own control lines; the 
similarity of the names should not (although it might) cause you to think that the 
name 'CAl' say refers to a unique wire somewhere. 

The VIA occupies 16 RAM addresses, 12 more than the PIA. As we've seen, 
there is an extra 8-bit port and two data direction registers to account for 3 new ad­
dresses. There are also 6 registers occupied by timers, 1 by the shift-register, and 
4 by the control registers, which between them include the PIA's CRA and CRB. We'll 
see very shortly what these registers do and how they do it, but let's first look at 
familiar parts of the chip, which resemble the PIA. The ports and data direction reg­
isters are similar (but do not need a bit to switch from one to the other), as are the 
control lines. On reset, values are set zero, and the usual conventions apply with 
respect to bit settings: A bit value of 1 (a) sets a line high, (b) configures a line for 
output, (c) defines an active transition as positive (Le. 0 to 1), (d) indicates that an 
active transition has occurred, or (e) enables an interrupt to happen when a line 
receives an active transition. Zero bit values of course mean the opposite. As in the 
PIA, flags which show transitions cannot be set by pokes, but instead are set only by 
hardware transitions and cleared only by peeking or poking certain related locations. 

The user port (the central connector at the back of the machine) is connected 
to the VIA: pin B (on the underside, second from the left) is CAl; pins B - L are 
port A; and pin M is CB2. CAl is an input line which may be used to handshake with 
port A, which is the reason for its inclusion. CB 2 is connected to the shift register, 
and can be used to deal with serial processing. Of the other control lines, CA2 is 
responsible for the graphics or lower-case switch in the character-generation, and 
CB 1 is used to signal input from cassette #2. 

Taking the new features of this chip in sequence, we have the following: 
Timers. The VIA is equipped with two 16-bit timers. These are timers 1 and 2, 

or T 1 and T 2. Each takes up two 8-bit registers. Each is set for input on power­
on, in which mode counting takes place; when a value is loaded into either timer it is 
set for output, decrementing once every clock-cycle. A maximum cycle of about 1/15th 
second (from #FFFF to #0) can be timed. When a timer reaches zero an interrupt flag 
is set, but an interrupt occurs only if it is enabled. Timer T 1 has a special feature, 
namely a latch. This is a second 16-bit register which allows a value to be stored 
until it is moved to the timer proper. When T1 reaches zero, the latched value is re­
loaded and the process repeated, so the time-intervals between timing-out are variable 
within a large range, though with a 1/15th second maximum. In this way, T 1 takes up 
4 bytes. and T2 two. The rule to remember is that reading the low byte of either 
timer (but not the latch) clears its own interrupt flag; and writing to the high byte 
clears the flag and starts the timer counting. This means that sequences of interrupts, 
and one-shot interrupts can be used, and that new timer values must be loaded with 
the low-byte first if exact timing is required, e. g. a lapse of #1234 microseconds 
exactly. 

Ports A and B can also be latched, so that on an active transition of CAl, the 
value in port A is retained indefinitely (or until the next active transition on that pin) 
and similarly for CB 1 and port B. This is useful of course in many input applications 
where it may be impracticable to continually read the value at a port. 

The shift-register. This 8-bit register is connected to CB2. On command, the 
shift register performs 8 shifts, having the effect either of moving out 8 bits singly to 
CB2, or of inputting 8 bits from CB2 one at a time. The command is analogous to ASL, 
where CB 2 is equivalent to the carry flag and the shifted location (say A) corres­
ponds to the shift register; if this is repeted eight times, the byte contained in the 
shift register has been output in serial form, one bit at a time. There isn't a command 
quite analogous to shifting in; LSR takes in a zero bit. 

The shift register can be timed by T 2 (see the music example in Chapter 9), and 
at the same rate as the 6502, using the 'phase two clock', 02. Alternatively another 
external clock may time it. This is therefore a versatile register, which - with suitable 
hardware expertise - extends the user port's usefulness a great deal. 
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The Auxiliary Control Register (ACR) controls the timers, the shift register, and the 
latch status of ports A and B. The diagram reflects the conceptual arrangement of bits 
7 - 0 across the page. The shift register control has three bits, and therefore eight 
combinations, which explains its apparently excessive prominence. (Note: Timer 1 has 
effects on bit PB 7 of port B; I've ignored them here for simplicity, since they aren't 
used and are unlikely to be). 

ACR7 ACR6 ACRS ACR4 ACR3 ACR2 ACRl ACRO 

E84B 59467 TIMER 1 CONTROL TIMER 2 SHIFT REGISTER CONTROL PORT B PORT A ---
CONTROL 

0=PB7 O=ONE I I LATCH LATCH -- --
UNUSED SHOT O=ONE OOO=SHIFT REG. DISABLED O=DIS- O=DIS-

l=CONTIN SHOT 0Ol=SHIFT IN BY TIMER 2 ABLED ABLED 
UOUS l=COUNT 010=SHIFT IN BY 162 l=EN- l=EN-

SET NO. 01l=SHIFT IN, EXT.CLOCK ABLED ABLED 
OF PB6 100=FREE RUN BY TIMER 2 ON CBl ON CAl 
PULSES 101=SHIFT OUT BY TIMER 2 TRANSN TRANSN 

l10=SHIFT OUT BY 162 (IN/ (IN) 
111=SHIFT OUT,EXT.CLOCK OUT) 

The Peripheral Control Register (PCR) controls the operating modes of the four 
control lines CAl, CA2, CBI, and CB2. CB2 and CA2 are allocated three control bits 
in this register. CBI and CAl are allocated one each. This register therefore is very 
like both CRA and CRB of the PIA, but without the interrupt flags (which have been 
moved to the interrupt flag register (below) and the active transition bit for CAl; the 
switch between DDR and Port is omitted. The interrupt enable flags are also moved, 
to the interrupt enable register. This means that CA2 and CB2 have an extra bit, and 
its only effect is on the clearing of the interrupt flag, which with pattern OxO may be 
cleared by reading or writing the port, but with Oxl is cleared only by writing bit I 
into the correct bit of the interrupt flag register. 

PCR7 PCR6 PCRS PCR4 PCR3 PCR2 PCRl PCRO 

E84C 59468 CB2 CONTROL CB1 CA2 CONTROL CAl -("ONTROL CONTROL 
Direct- Hand- on Write Active Direct- Hand- on Read Active 

ion: shake=O =0 transn: ion: shake=O =0 transn: 
1 =OUT Manual=l CB2 hi-1 High=l l=OUT Manual=l CA2hi=1 High=l 

CB210=0 Low =0 CA210=0 Low =0 
Active Clear Active Clear 

O=IN High=l IFR = O=IN High=l IFR =1 
Low =0 IFR/ORB=C Low =0 IFR/ORB=O 

The Interrupt Flag Register (IFR) and the Interrupt Enable Register (IER). 
These registers are symmetrical with respect to each other and can be considered to­
gether. The first indicates whether an active transition has occurred, and, if so, 
which VIA device caused it. It also signals whether an interrupt took place - if the 
corresponding interrupt was not enabled by the IER, the flag, though set, won't 
cause an interrupt. IER7 controls the function of the rest of IER: when 0, each bit 
set to I clears its corresponding interrupt enable: when IER7=1, each bit set to 1 sets 
its interrupt enable bit. 

IFR7 IFR6 IFRS IFR4 IFR3 IFR2 IFRl IFRO 

E84D 59469 

IER7 IER6 IERS IER4 IER3 IER2 IERl IERa 

E84E 59470 
0=1 DISABLES 
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E840 59456 PORT B DAV INRFD Retrace Tapel Tape ~I ATN NRFD NDAC 

E841 59457 POR T A * 
E842 59458 DDRB (values 

on set-up shown 
E843 59459 DDRA 

E844 59460 TIMER 1 LO 

E845 59461 TIMER 1 HI 

E846 59462 Tl LATCH LO 

E847 59463 Tl LATCH HI 

E848 59464 TIMER 2 LO 

E849 59465 TIMER 2 HI 

E84A 59466 SHIFT REG'R 

in 

) ° 

in in motora data out out out in 

USER PORT with CA2 handshake 

I 0 0 1 1 I 1 1 0 

USER PORT DATA DIRECTION REGISTER 

(set to IFF on system power-on) 

E84B 59467 ACR (set to TIllER 1 TIllER 2 SHIFT REGISTER PORT B PORT A 
) 100 on power-on 

E84C 59468 PCR (set 10C 0 

lOE on power-on 
E84D 59469 IFR (set to 

100 on power-on) 
E84E 59470 IER (set to 

180 on power-on 
E84F 59471 PORT A * 

CONTROL CONTROl CONTROL LATCH LATCH 
r CB2 CONTROL3 CB18 CA2 CONTROL8 CAP 
) (USER PORT PIN II) CNTRL (GRAPHICS 1I0DE) CNTRL 

IRQ Tl T2 CBl CB2 SH-REG CAl CA2 
on/off NT INT INT INT INT INT INT 
enablel Tl T2 CBl CB2 SH-REG CAl CA2 ) disable 

USER PORT without CA2 handshake 

*E84F (59471) is the preferred user port register, since CA2 controls screen graphics. 
aThe motor is on when this line is low, and off when it is high. 
3CAl is connected to pin B of the user port. Pins B - L correspond to port A, which is 
invariably E84E. CB2 (connectedto the shift-register) also connects with pin II of the 
user port; square-wave tones (see Chapter 9) use these ~acts. CBl signals input from 
cassette 12. CA2 controls screen graphics: it is configured for output, and, when low, 
gives lower-case charcters and others. When high, the mode is upper case/ graphics. 

Implementation of the VIA in the PET ICBM system. 

Examples of VIA programming. 

A PET ICBM's VIA contents typically resemble the 
diagram (right). Note that the act of peeking some 
registers resets the corresponding interrupt flag if 
it is set, so IFR may not be accurate. Port A is 
configured for input, as it is on switching on. 
Port B is configured for output in the usual way, 
except that bit 4 is set for output, to enable fast­
screen printing with BASIC<4 only. Both timers 

E840 
E841 
E842 
E843 
E844 
E845 
E846 
E847 
E848 
E849 
E84A 
E848 
E84C 
E84D 
E84E 
E84F 

76'54 3210 
1001 1110 
1111 1111 
0011 1110 
0000 0000 
1100 1100 
1111 1111 
1111 1111 
1111 1111 
0010 0101 
1101 0000 
1111 1111 
0000 0000 
0000 1100 
0000 0000 
1000 0000 
1111 1111 

BIT NUMBER 
PORT B 
PORT A 
DDRB 
DDRA 
Tl LOW 
Tl HIGH 
TIL LOW 
TIL HIGH 
T2 LOW 
T2 HIGH 
SHIFT REG 
ACR 
PeR 
IFR 
lEft 
PORT A 

are running; T 1 has been set to #FFFF. The shift 
register holds #FF, in place of the usual #0, hav­
ing been used for square-wave music. It is at 
present disabled: ACR is #0, its normal value. PCR 
holds decimal 12, so the machine is in upper case I 
graphics mode. No use is being made of CB2. IFR 
shows that no IRQ has' taken place, and no flags to 
denote transitions on any of the 7 lines are set, but 
these would in any case have been cleared by the 
program, which reads from E840 through E848. IER 
shows that no transitions will generate interrupts. 

TYPICAL VIA CONTENTS 
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Programming the ports Port B handles a great deal of IEEE character input and out­
put, in addition to some tape handling. 7 bits are therefore initialised on power-on, 
and there is little reason to change them via DDRB. Bit 5 can be converted to output 
mode; in BASICs < 4 this accelerates screen writing, because screen retrace is no long­
er awaited before a character is poked into screen RAM. Port A is unused by the CBM, 
although some hardware (e. g. Compu Ithink) uses it. In principle it is easy to use: the 
eight bits of port A are connected to the external device, and CAl, also on the user 
port, signals data transmission by its transition from (say) low to high, which, when 
detected by the PET ICBM, reads the data from the port, perhaps having latched it. 
Conversely, CB 2 can be configured for output and used to signal that data is ready at 
the PET ICBM's port. These hardware topics are not within the scope of this book. 

Programming the timers Both timers are used by the PET ICBM (although timer 1 's 
latch is ignored). Timer 2 is exclusively used with tape, to time the reading and writ­
ing of bits. Timer 1 is used to time out the IEEE response (before setting ST) and 
also with tape, although not to such an extent as timer 2. (Both timers also contribute 
to RND with argument zero, but this is rather a marginal use. It does not apply to 
BASIC 1, which has the wrong addresses for the purpose). There is one more func­
tion, namely the timing of the screen-scroll delay in BASICs<4, which uses timer 1 in 
this way: 

LDA #FE 
LDY #08 

DELAY STA E845 
L BIT E84D 

BVC L 
DEY 

;SETS HIGH PART OF TIMER 1 TO #FE, IGNORING LOW PART, WHICH 
; IS SET AT #FF ALREADY ... 
; ... AND ALSO (i) CLEARS T1 INTERRUPT FLAG, (ii) STARTS TIMER 1 
; COUNT, IN ONE-SHOT MODE. T1 INTERRUPT IS DISABLED. 
;TEST IFR FOR BIT 7 ON, I.E. T1 TIMED OUT 

BNE DELAY ;PERFORM 8 LOOPS. AT EACH LOOP THE TIMER RESTARTS. 

This was dropped in BASIC 4, as it affects the IEEE bus; an ordinary nested set of 
loops replaced it. It illustrates these points about VIA timers: 

(i) To load a value into a timer, load the low byte first, then the high byte. 
When this second step occurs, both bytes are transferred from the 'timer' to the 'counter' 
within the chip, and the countdown begins. 

(ii) Starting the timer clears the timer's interrupt flag 
(iii) Reading the low register (not performed in the example) also clears the flag. 
(iv) T1's latch enables T1's value to be read at any time. 

Note that the delay loop takes about 255*8*256 j.lsecs = ! second or so. If LDA #x/ 
LDY #y / JSR DELAY is used, variable pauses from 16 seconds to thousandths of a second 
can be generated. 

BASIC can be timed, provided the operations aren't slower than about 1/15th 
second: POKE 59460,255:POKE59461,255::PRINT PEEK(59460) + PEEK(59461) - K 
shows the method, where K is set to print O. Any BASIC inserted between the colons 
will be timed by the system's clock and is therefore accurate to 1 microsecond. The 
value 'K' varies with spaces in the BASIC line. 

Programming the shift register We've seen (Chapter 9) how the CB 2 pin of the user 
port can be used to generate tones. Now we can investigate the rationale for this. In 
BASIC, this gives a tone: POKE 59466,X:POKE 59467,16: POKE 59464,T: POKE 59465,0 
where X<>O and X<>255. T controls the pitch. 59466 is the shift register. This is load­
ed with a bit pattern, and the shift register is enabled in free-running mode, each bit 
shifting on T 2 time-out. Finally, timer 2 is started, after loading its low byte with a 
timing parameter. CBM ROM does not make use of this register. 

Programming interrupts Interrupts in T1 and T2 are used in IEEE handling and tape; 
CB1 interrupts are also used with tape. CBM ROM does not use interrupt signals from 
CB2, the shift register, CAl, or CA2. We'll look at two examples here; (i) Single-step, 
and (ii) using a timer to control the keyboard. To program the IER, note that IE R 7=0 
means that all high bits disable the corresponding interrupts (if they are set). For ex­
ample, LDA #7F / STA E84D disables all seven interrupts. On the other hand, IER 7=1 
means that high bits enable interrupts, so LDA #co/ STA E84D enables T 1 's interrupt. 
An IRQ will now be generated when T1 times out. (i) Single-step (e.g. Supermon's) 
enables T2's interrupt, turns off the screen interrupt (by DEC E813), alters IRQ's vec­
tor, and loads T 2 with 46 decimal. This value is calculated to time out just as the next 
machine-code instruction starts. When it does, the interrupt awaits completion of the 
command, then jumps to the new IRQ address, which first calls a tape routine to reset 
the timers and screen interrupt to normal, before disassembling the instruction. We 
can change the rate of keyboard scan, the internal clock, and the cursor flash rate in 
a similar "'fay, using T 1 to generate regular interrupts, if the interrupt processing 
sequence IS moved to RAM and references to E813 deleted (otherwise the screen inter­
rupt also runs). The timer must either be in free-running mode, or restarted with 
each interrupt. 
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CHAPTER 15: INDEX TO CBM BASIC ROMS AND RAM STORAGE 

32 K 
CBM 

r i Pages 0-15: 
8 K 
CBM 

16 K I 
CBM-+ 

1 

Screen RAM: qO, 
80 columns 

PET /CBM MEMORY MAP 

RAM ROM 

0 9 

1 A 

2 B 

3 C 
IL 

q D 
--
6502 E 

5 --

6 ~ F 

7 
~ E 

- 8 __ 

Spare ROM 

sockets I 
,"ASIC' 

BASIC 
and 

BASIC 2 

PIAs, VIA, CRT 
controller (80 cols only) ... 

The diagram shows how the CBM's addressable memory of 64K bytes is 
partitioned between RAM and ROM and hardware input/output. Each full-sized 
block corresponds to 4K (4096) bytes; the blocks are therefore 0000 - OFFF, 1000-
1FFF, and so on up to FOOO - FFFF. Machines with less than 32 K have RAM space 
available, although increasing the RAM may not be possible or may require the same 
RAM slots to take larger capacity chips, with hardware modifications (i.e. 'surgery' 
on the address lines). Spare ROM space is however indicated by spare sockets. 
These of course are often occupied by 'toolkit'-type ROMs or EPROMs, stored software 
such as word processors, industrial software in EPROM, and non-CBM devices of 
various types - disks, video boards. 

A description of the BASIC ROMs would be incomplete without mention of the 
storage areas, buffers, flags and routines which BASIC inevitably needs during its 
operation. With CBM equipment, this means pages zero to three, stretching from 
the important zero page to the start of BASIC storage in RAM. The ROMs are very 
similar to each other in many respects, of which absolute addresses of ROM routines 
is the major exception. The sequence on the following pages is based on BASIC 4. 
The guide (next page) showing how the working storage and ROMs are laid out 
should make the location of most routines fairly easy. 
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PET ICBM MEMORY MAP; THE FIRST FOUR PAGES 

BASIC 4 (80 COL) BASIC 2 BASIC 1 
0000 f..-UISK Jump aQ(lreSEL 

String pointers 
Numeral nnint ...... Input buffer for BASIC 
BASIC pOinters lines, direct commands, 

Calculation work area As BASIC 4 INPUT, GET 

GETCHAR routine 
BASIC flags 

0080 BASIC pointers 
RND/ TI/ into vectors/ ST Variables processing 
Keyboard/ screen/ IEEE Calculation work area 
Tape parameters and flags CHRGET routine 
Window parameters Screen line table Screen and file data 

0100 
AlSl converS1on area 

Tape correction/ check area 

T 
As BASIC 4 

0180 
Stack 

0200 r 
Input buffer for BASIC lines, Clock/ keyboard buffer/ 
direct commands, INPUT, GET. "" .. ", .. n / int ~ 

Screen line table 
--Tables: logical file #/ As BASIC 4 Tables: logical file#/ 
f:device #/ sec. addr./ keybd. device #/ sec. addr;-
~buffer. .... .., 

0280 

1 
Cassette buffer #1 

Cassette buffer #1 

0300 

'r -DOS comman~ string buffer-
and Cas set e buffer #2 ~ 

0380 ~, 
Cassette buffer #2 

~, 1 0400 

Most of BASIC 4 is identical to BASIC 2; BASIC 2 is fairly similar to BASIC 1, 
except for the input buffer's move from zero-page to $0200, with thl(! consequent 
changes in most pointers. Major differences between BASIC 4 and BASIC 2 are (i) the 
cassette buffer for tape #2 is no longer used solely by tape operations, but by the 
new disk commands too, and (ii) 80 column BASIC 4 replaces the table of screen line 
pointers with screen and keyboard parameters. BASIC 4 (40-col) and the 80-column 
version differ in ROM EOOO - E7FF, dealing with screen and keyboard processing. 
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BASIC1 BASIC2 (&4) BASIC4 

PAGE 0: RAM $0000 - $OOFF 

0-2 

$5A 90 
$5B 91 
$5C 92 
$5D 93 
$5E 94 
$5F 95 
$60 96 
$61 97 
$62 98 
$63 99 

$64 100 
$03 3 

$06 6 
$07 7 
($08) 8-9 
$65 101 
($66) 102-103 
$68-$70 

104-112 
($71) 113-114 
($73) 115-116 
$75-$79 

117-121 
($7A) 122-123 
($7C) 124-125 
($7E) 126-127 
($80) 128-129 
($82) 130-131 
($84) 132-133 
($86) 134-135 
($88) 136-137 
($8A) 138-139 
($8C) 140-141 
($8E) 142-143 
($90) 144-145 
($92) 146-147 
( $94) 148-149 
($96) 150-151 
($98) 152-153 
($9A) 154-155 
$9C 156 
($9D) 157-158 
$9F-$A2 

159-162 
$A3-$A5 

163-165 
$A6-$AB 

166-171 
($AC)172-173 
($AE) 174-175 
$BO-$B5 

176-181 
$B6 182 
$B7 183 
$B8-$BD 

184-189 

0-2 

3 
4 
5 
6 
7 
8 
9 
$OA 10 
SOB 11 
SOC 12 

SOD 13 
$OE 14 

$OF 15 
$10 16 
($11) 17-18 
$13 19 
($14) 20-21 
$16-$lE 

22-30 
($lF) 31-32 
($21) 33-34 
$23-$27 

35-39 
($28) 40-41 
($2A) 42-43 
($2C) 44-45 
($2E) 46-47 
($30) 48-49 
($32) 50-51 
($34) 52-53 
($36) 54-55 
($38) 56-57 
($3A) 58-59 
($3C) 60-61 
($3E) 62-63 
($40) 64-65 
($42) 66-67 
($44) 68-69 
($46) 70-71 
($48) 72-73 
$4A 74 
($4B) 75-76 
$4D-$50 

77-80 

USR jump instruction (default prints 'illegal quantity err­
or'). 0 holds #4C=JMP; ($Ol)=jump address 
Offset pointer when scanning for end of statement or line 
Quotes marker. Is zero when not in quotes. 
Input buffer pointer/ number of subscripts of an array 
Default DIM flag / array name initial/AND, OR flag 
Type of variable: #FF=string, #OO=numeric 
Type of numeric variable: #80=integer, #O=floating point 
Flag used in DATAl LISTI garbage collectl memory 
Flag used for subscriptsl FN DEFinitions 
Flag with INPUT=#O, GET=#40, READ=#98 
ATN signl comparison evaluation flag 
SOD 13 DS $ length in BASIC 4 only 
($OE) 14-15 DS$ pointers in BASIC 4 only 
Flag to suppress PRINT or PRINT # when negative 
$10 16 File number of current 110 device (when 

non-zero suppresses INPUT prompt etc) 
Terminal width (unused - carried over from teletype) 
Width of source (unused - carried over from teletype) 
2-byte integer address computed for GOTO, SYS, GOSUB 
Index to next string pointer 
Pointer to descriptor stack for string processing 
Descriptor stack of three temporary string pointers of 
the form length then 2-byte pointer 
Pointer e. g. for memory-move I for string in memory 
Pointer e.g. for number movements 
Intermediate product area for calculation 

Pointer to start of program (usually $0401 = 1025) 
Pointer to start of variables I end of program 
Pointer to start of arraysl end of variables 
Pointer to start of free RAMI end of arrays 
Pointer to present lower limit of dynamic string storage 
Utility string pointer to reserve space for new string 
Top-of-memory pointer (e.g. $8000 on power-on with 32K) 
Current linenumber I highbyte=#FF means direct mode 
Previous linenumber 
Pointer to statement for CONT 
Linenumber of current DATA line 
Pointer to current DATA value (starts at $0400) 
INPUT, READ, and GET vector to save CHRGET 
Current variable name, first character first 
Pointer to variable in RAM; points just after name 
Holds variable name for FOR •.. NEXT I WAIT parameters &c 
Save Y-registerl new operatorl operator pointer etc 
Comparison symbol check ; bits 0,1,2 are <, =, > 
Pointer to temporary stc;>rage in RAM for FN DEF, TAN, &c 
Pointer to string, length, and garbage collect constant 

$51-$53 Jump vector for function evaluations, consisting of #4C 
81-83 (=JMP) followed by arithmetic function address 

$54-$59 Temporary pointers (e.g. in memory move) plus numeral 
84- 89 storage of intermediate results ('Floating point Acc'r #3') 

($5A) 90-91 Numeric pointer e.g. in ASCII conversion, series eval'n 
($5C) 92- 93 Pointers e. g. in LET, search for linen umber 
$5E-$63 Floating-point accumulator #1 (most results of evaluations 

94-99 are left here). Exponent, 4 mantissas, and sign bytes 
$64 100 Series evaluation counter of number of items in series 
$65 101 Overflow byte on normalizing floating-point accumulator #1 
$66-$6B Floating-point accumulator #2 (used with FPAcc. #1 in eval-

102-107 uation of products, sums, differences, etc. EMMMMS 
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BASIC1 BASIC2 (&4) BASIC 4 

$BE 190 
$BF 191 
($CO) 192-193 
$C2-$09194-217 

$C8 200 

$DA-$DE 
218-222 

$0200- $0202 
512-514 

($0219) 537-538 
($021B) 539-540 

none 
$020C 524 
$0203 515 

$0204 
($205) 
$0209 
$020A 
$020B 
$020D 
$020E 
$021D 
$021E 
$021F 
$0220 
$0221 
$0222 
$0223 

$0224 
$0225 
$0226 
$0227 
$0228 
$0260 
$0261 
$0262 
$0263 
$0264 
$0265 
$0266 

$E9 
$0268 

$026C 

516 
517- 518 
521 
522 
523 
525 
526 
541 
542 
543 
544 
545 
546 
547 

548 
549 
550 
551 
552 
608 
609 
610 
611 
612 
613 
614 

233 
616 

620 

$026F 623 
$0270 624 
($0271) 625-626 
$0273 627 
$0274 628 
$0275 629 
$0276-$0277 

630-631 
$0278 632 

$0279 633 

$6C 
$6D 
($6E) 
$70-$87 

$76 

$88-$8C 

108 Sign comparison between FPAccs: #O=equal, #FF opp. 
109 Rounding byte for floating-point accumulator #1 
110-111 Cassette buffer length/ series eval'n/ VAL etc. pointer 
112-135 BASIC's CHRCET routine which loads A with the next 

118 

BASIC character (not space) and sets flags: 
C clear if ASCII numeral 0-9; Z set if end-of-line or : 
CHRCOT entry point loads A with current BASIC char­
acter and sets flags as CHRCET does. 
RND number seed and subsequent values; always the 

136-140 previous random number generated 
$8D- $8F 13-byte jiffy clock arranged most significant through 

( $90) 
( $92) 
( $94) 
$96 
$97 

$98 
($99) 
$9B 
$9C 
$9D 
$9E 
$9F 
$AO 
$A1 
$A2 
$A3 
$A4 
$A5 
$A6 

141-143 least significant bytes 
144-145 IRQ RAM vector, usually E68S/ E62E/ E4S5 
146-147 BRK RAM vector, usually 0000/ F017/ 0478 
148-149 NMI RAM vector, usually --/C389/B3FF to print 'ready' 
150 Status byte ST, from which ST is computed 
151 Which key pressed? (Interpretation may vary with 

keyboard decoding). #FF= no key 
152 Shift key pressed? #0 if no, #1 if yes 
153-154 Low and high bytes of 'correction clock' (slows TO 
155 Contents of E812 for testing Stop key etc 
156 Tape timing constant 
157 Flag for LOAD or VERIFY: #O=LOAD, #l=VERIFY 
158 No. of characters currently stored in keyboard buffer 
159 Screen reverse flag: #O=normal, #12=reversed 
160 IEEE output flag: #FF=character awaiting output 
161 Count of characters of line input from screen 
162 Not used 
163 Cursor row [also $F5/ $D8] 
164 Cursor column [also $E2/ $C6] 
165 IEEE byte buffer for output (#FF means no character) 
166 Copy of keypress checked by interrupt so that a 

$A 7 167 
constant keypress registers once only. #FF=no key 
Cursor on/off flag: #O=on, other value = off 
Countdown each interrupt for cursor flash $A8 168 

$A9 169 
$AA 170 
$AB 171 
$AC 172 
$AD 173 
$AE 174 
$AF 175 
$B 0 176 
$B1 177 
$B 2 178 
$B3 179 
$B4 180 
$B5 181 
$B6 182 
$B7 183 
$B8 184 

True character at cursor's position 
Cursor in blink phase= #1; otherwise =#0 
End of tape input flag 
Input from screen (#3) or from keyboard (#0) flag 
X-register save in tape handlimg (saves cassette #) 
Total number of open files (max. 10) 
Input device (default = #0, keyboard) 
Output device (default = #3, screen) 
Tape character parity 
Byte received flag 
Temporary save e.g. by DOS wedge 
Tape buffer leading chr. (e.g. #5=end of tape)/ MLM 
MLM flag, counter/ (B4) points to file name for SAVE 

Serial bit counter 

$B9 185 Cycle counter 
$BA 186 Tape write countdown 
($BB) 187-188 Pointer (0-192 decimal) for use with tape operations 
$BD 189 Counter for tape writing and reading 
$BE 190 Write byte/ error flag on tape read 
$BF 191 Write start bit! read bit sequence errors 
$CO-$C1 Pass 1 read errors/ pass 2 read errors 

192-193 
$C2 194 Cassette read flags: O=scan/ 1-15=count! #40=LOAD/ 

#80=end of tape marker 
$C3 195 Counter of seconds before tape write / checksum 
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BASIC1 BASIC2 (&4) BASIC4 

($EO) 224-225 ($C4) 196-197 Pointer to screen RAM position of start of current line 
$E2 226 $C6 198 Position of cursor along line 
($E3) 227-228 ($C7) 199-200 Start address for tape LOAD/ utility pointer 
($E5) 229-230 ($C9) 201-202 End address for tape LOAD 
$E7-$E8 $CB-$CC Constants for tape timing 

231-232 203-204 
$E9 
$EA 
$EB 
$EC 
$ED 
$EF 
$FO 
$F1 

233 $CD 205 Quote flag: #O=direct cursor, else control chrs. printed 
Tape read timer flag 234 $CE 206 

235 $CF 207 End of tape read 
236 $DO 208 Read character error 
237 $D1 209 Length of file name; O=no name 

Current file number 239 $02 210 
240 $03 211 Current secondary address OR'd e. g. with #60 

Current device number: #O=keyboard, #1-2=tape, #3= 
screen, #4 typically printer, #8 typically disk drives 
Right-hand of window (BASIC 4)/ length of current 
line (39 or 79) (BASIC<4 or 40-col. BASIC 4) 

241 $04 212 

$F2 242 

($F3) 243-244 
$F5 245 
$F6 246 
($F9) 249-250 
$FB 251 
$FC 252 
$FD 253 
$FE 254 
$0229-$0241 

553- 577 

$0207- $0208 
519-520 

$D5 213 

($D6) 214-215 Pointer to start of tape buffer #1 or #2 
$D8 216 Screen line of cursor 
$D9 217 Last key input/ buffer checksum/ temporary I/O store 
($DA) 218-219 Pointer to start of file name 
$DC 220 Number of keyboard inserts outstanding 
$DD 221 Write shift word/ read character in 
$DE 222 Number of blocks remaining to read/ write 
$DF 223 Serial word buffer 
$EO-$F8 40 column machines: Table of 25 high bytes of the 

224--248 RAM addresses of the start of screen lines. (A ROM 
table holds the corresponding low bytes). Lines which 
wrap around (i.e. are double length) are flagged. 
80 column machines: 
$EO-$E2 224-226 Top, bottom, left margins of window 
$E3 227 Maximum length of keyboard buffer 
$E4 228 Repeat flag: #0 =on , #40=off 
$E5 229 Repeat countdown 
$E6 230 New key marker 
$E7 231 Bell timing: #O=off 
$E8 232 Counter for two [HOME] keys 
($E9) 233-234 Screen input indirect vector ($EllD) 
($EB) 235-236 Screen output indirect vector ($E20C) 
$ED-$F7 237-247 Unused 
$F8 248 Counter to speed TI by 6/5 

$F9-$FA Cassette flags for #1 and #2 
249-250 

($F7) 247-248 ($FB) 251-252 Pointer for MLM, 
253-254 Pointer for MLM, 

start of tape address with . S 
others ($FD) 

PAGE 1 (THE STACK): RAM $0100-$01FF 

$00FF-$010F 

$0100-$013E 
$0140- $OlFF 

$OOFF-$OlFF 

$0100- $013E 
$0140-$01FF 

PAGE 2: RAM $0200-$02FF 

$0200- $0208 

$OA-$5A 

$0242-$024B 
$024C-$0255 
$0256- $0261 

$0200-$0250 

$0251-$02SA 
$025B-$0264 
$0265- $026E 

Area for conversion of numerals into ASCII string 
format for printing 
Tape read error log 
Stack as used by BASIC 

MLM area: holds, in sequence, stored values of the 
program counter high and low, the processor status 
flags, A, X , Y , the stack pointer, and the IRQ vector. 
Input buffer. Length is 80 characters maximum (plus 
null byte to terminate string) 
Table of up to 10 file numbers 
Table of up to 10 corresponding device numbers 
Table of up to 10 corresponding secondary addresses 
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BASIC1 BASIC2 (&4) BASIC4 

$020F-$0218 
527-536 

$027A-$0339 
634-825 

$027A 
($027B) 
($027D) 

$026F- $0278 
623-632 

$027A-$0339 

$027A 
($027B) 
($027D ) 

634-825 

$026F-
623-

Keyboard input buffer (interrupt driven); 
length is variable in BASIC 4 

Input and output buffer for cassette tape #1 

Type of tape file 
Start address for load 
End address for load 

PAGE 3: RAM $0300-03FF 

$033A-$03F9 $033A-$03F9 Input and output buffer for cassette tape #2 
826-1017 826-1017 

$033A 
($033B) 
($033D) 

$033A Type of tape file 
($033B) Start address for load 
($033D) End address for load 

$033A 826 DOS byte parameter in RECORD 
$033B 827 DOS drive number 
$033C 828 DOS drive number 
$033D 829 DOS length/ write flag 
$033E 830 8-bit syntax checking flag 
$033F-$0340 831-832 Diskette ID 
$0341 833 I Length of DOS command string 
$0342- $0352 834-850 Buffer for filename 
$0353-$0380 851-896 Full DOS command string buffer 

40-column BASIC 4 only:-
$03E9 1001 Repeat key countdown 
$03EA 1002 Delay between repeats 
$03EB 1003 Maximum size of keyboard buffer 
$03EC 1004 Bell timing: #O=off 
$03ED 1005 Counter to speed TI by 6/5 
$03EE 1006 Repeat flag: #O=on. #40=off 
$03FO - $03F 9 1008-1017 Table of 80 bits to set tab s 

80-column BASIC 4 only:-
$03EE-$03F7 1006-1015 Table of 80 bits to set tabs 

($03FA) 1018-1019 USRCMD extension vector from MLM; set on power 
on to prin t .? in monitor. 

$03FC 1020 
I IEEE 'timeout defeat': when poked 
negative. ST is no longer set for 
timeout after .065 second's delay. 

PAGE 4: RAM $0400-$04FF 

$0400 1024 $0400 1024 
$0401 1025 $0401 1025 

Null byte at start of BASIC 
Start of BASIC storage (unless pointers changed from 
$0400. Sequence is 2 byte link address; 2-byte line­
number; tokenised BASIC terminated by a null byte; 
and so on, until the end is marked by three consec­
utive null bytes. 
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PET ICBM MEMORY MAP: GUIDE TO ROMS 

VERSION OF BASIC and APPROXIMATE CONTENTS 
ROM starting address 

BASIC 1 BASIC 2 BASIC 4 

COOO cOOO BOOO Keywords and operators with their addresses, and a 
table of error messages. Stack handling is here and 
includes routines to check space left on the stack and 
to search for tokens of GOSUB and FOR. The direct 
mode processing of commands and of BASIC lines, plus 
the routines to clear variables and run programs, are 
all in this ROM: NEW, CLR, RUN. END, STOP, and 
CONT occur here, with with other system-like commands 
including LIST, RESTORE, GOSUB, GOTO, RETURN, 
IF, ON and LET, and the input/output commands 
PRINT, GET, INPUT, CMD, READ. Also LET is part 
of this ROM; it is a default keyword. It checks variable 
types and evaluates expressions. 

0000 0000 cOOO This ROM performs most of the complex processing 
required by string and numeric variables. lt includes 
arrays ('subscripted variables '), the garbage collection 
routine, and string-numeral interconversion routines 
like STR$. It processes all floating point accumulators 
and interconverts ASCII with numerals, integers and 
so on. Most mathematical functions are calculated from 
here, including PEEK, POKE, WAIT, SGN, ABS, INT, 
SQR, EXP,RND, COS, SIN. 

0000 BASIC 4 only: processes the additional BASIC commands 
used by CBM disks: DOPEN, APPEND, HEADER, and 
so on. Processing for DS and DS $ is partly here, and 
partly in earlier ROMs. Actually, only about a half of 
this ROM processes disk commands: the rest is taken 
f~om the previous ROM of older versions and from 
EOOOff. of the older ROMs, and includes the MLM monitor. 

EOOO EOOO EOOO The first half of this slot (EOOO - E7FF) is occupied by 
ROM; the remainder by a few I/O chips. Print routines, 
screen processing routines, keyboard and cursor cont-
rol and similar functions are carried out here. Note 
that 40-column BASIC 4 and SO-column differ in this 
part of ROM. Reset and IRQ also come here. 

FOOO FOOO FOOO All the tape processing - loading, saving, writing, and 
reading - is controlled by this ROM. The tape 
operating system is similar in all the ROMs, apart from 
corrections made to remove bugs from BASIC 1. Tape 
is not an IEEE device. Also the inputl ouput for IEEE 
is carried out from here; this includes OPEN, CLOSE, 
VERIFY, LOAD and SAVE and also error messages. 
BASIC 1 has no monitor, but it does have diagnostic 
routines (which only work if the user port is specially 
wired up). BASIC 2 has most of its MLM (monitor) here. 
The 'kernel' jump addresses are here, in the top of 
memory near the 6502's NMI, Reset, and IRQ vectors. 
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BASICl BASIC2 BASIC4 

$COOO $COOO $BOOO 5 tables of addresses, keywords, and error messages. 

$C046 
$C074 

$C092 

$C190 

$C2AC 

$C(l46 
$C074 

$C092 

$C192 

$C2AA 

$B066 
$B094 

$BOB2 

$B20D 

$B322 

These are (i) Addresses - 1 of principal keywords, i. e. those 
which start a BASIC statement. The addresses are pushed 
on the stack and RTS executed (via GETCHR) to jump to 
them; hence the displacement by 1 from the true entry 
point. (ii) True addresses of numeric and string functions. 
(iii) Addresses - 10f operators, with a byte to assign their 
hierarchy: the table corresponds to add, subtract, multiply, 
divide, power, and, or, negative, not, and comparison. The 
lattermost function evaluates <, =, and>. Their hierarchy 
values in hex are: 79,79, 7B, 7B, 7F, 50, 46, 7D, 5A and 64. 
(iv) Keywords with the final character stored with bit 7 high. 
These include +, -, *, I etc. which are converted to tokens as 
well as END, FOR, NEXT, ... (v) Error messages, stored 
with the final byte zero as a terminator. 

The keywords in each ROM are different; BASIC 2 has GO, 
which is not present in BASIC1; BASIC 4 additionally has 
15 disk commands (including DIRECTORY). A list of each 
appears in a table in Chapter 2. The error messages 
are identical, except that BASIC l's BAD DATA becomes 
FILE DATA in subsequent ROMs. 

Check stack for 'FOR'. Called by NEXT and RETURN. If 
Z flag=O on return from this, FOR has not been found and 
? NEXT WITHOUT FOR results. Otherwise the loop variable 
is checked. Also eliminates FOR when GOSUB token is 
expected in the stack by RETURN. 

$C2DA $C2D8 $B350 Open up space in memory. This routine enables BASIC 
lines to be merged into BASIC. After checking that there 
is sufficient RAM, a memory move takes place up RAM. 

$C2E1 $C2DF $B357 In BASIC 2/4:($55)=Top of area to be moved to + 1 
($57)=Top of area to be moved + 1 
($5C)=Bottom of area to be moved 
$lF =Temporary parameter. 

In BASIC 1 the parameters are: ($A7), ($A9), ($AE) and 
$71. On exit, all the pointers are changed. 

$C31 D $C31 B $B3 9 3 Check space within stack. Tests whether twice the byte in 
the accumulator will fit the stack; if not, ?OUT OF MEMORY 
is printed. The bottom of the stack allows 62 bytes for 
other purposes. (I.e. the whole stack is not used as a 
stack; some is treated as ordinary RAM). So, to fit 10 
bytes on the stack, LDA #5 then JSR to this routine tests 
the space. 

$C32A $C328 $B3AO Check for overlap of BASIC strings and variables in RAM. 
On input, A and Y hold the address high byte and low 
byte. If, on comparison with the string pointer there isn't 
sufficient room in RAM, the intermediate calculation is 
stored and garbage is collected. If there still isn't room, 
?OUT OF MEMORY ERROR is printed. 

$C357 $C355 $B3CD Print 'OUT OF MEMORY ERROR' to the screen - or: 
$C359 $C357 $B3CF Print the error message offset by X from the start of the 

error message table. Then: 
Restore keyboard input and screen output, reset stack and 

$C37C $C37A $B3FO flags, print "ERROR", and if in program mode, "IN" with 
the linenumber. Then: 

$C38B $C389 $B3FF Prints [Return] READY. [Return] and await BASIC line or 
direct command. 
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BASIC 1 BASIC 2 BASIC II 

$C3911 $C392 $B1I06 Await direct or program line from the keyboard. This calls 
C468/C46F/B8F6 which puts one line into the input buffer, 
and on [return} puts a zero terminating byte at the end of 
its input. After this, the initial character is read by CHR­
GET. If this returns carry clear, the initial character was 
numeric, and the following routine is branched to; otherwise 
it's treated as a direct mode command, and is tokenised and 
run by C48D then C6E9/C495 then C6F7/B4FB then B77C. 

$C3AC 
$C3FD 

$C1I30 

$C1I33 

$C1I68 

$C1I79 

$C1I80 

$C522 

$C551 

$C56A 

$C3AB 
$C3FD 

$C1I39 

$C1I1I2 

$CII6F 

$CII 81 

$C1I95 

$C52C 

$C55B 

$C577 

$BIl1F 
$B470 

$BIIAD 

$BIIB6 

$BIIE2 

$BIIFB 

$B5A3 

$B502 

$B5EE 

Tokenise BASIC program line. If the linenumber exists, 
replace it; if it is new, insert the line into BASI C in RAM. 
Note that the length of the' line is stored in $5C/$05/$05. 
If the line exists, it is erased by a memory move routine at 
C3EF /C3EE/B462 before dropping through to the line insert­
ion routine. All the variables are erased by CLR and BASIC 
is rechained (so variable values are lost on editing). Then 
the previous major routine is called again. 

Reset BASIC execution to start; clear; and chain. This is 
also called by LOAD when not in program mode. 

Rechain BASIC program in memory. This searches for 0 
bytes marking end-of-line, then recalculates the link add­
resses. Lines longer than 255 cause this routine to hang. 
BASIC 1 has a different implementation from the other 
BASICs and is used by the keyboard entry routine. 

Input keyboard line into buffer. BASIC l's input buffer 
starts at $OA; subsequent BASICs start at $0200. Single 
characters are input fron a 'device' which is usually the 
keyboard, and stored in consecutive locations in the buffer, 
until [return} is pressed. Then, a null terminating byte is 
put into the end of the string and RTS is called. BASIC 4 
tests whether the line exceeds 80 characters, and stops with 
?string too long error if so. Earlier BASICS use a little 
routine to fetch a character, based on FFCF, which appears 
to suppress output if CHR$(15) is read in. This is dropped 
in BASIC 4. 

Single character input routine. 

Tokenise the input buffer. The buffer is processed until a 
zero byte is found, each recognised keyword being con­
verted into a single byte (with bit 7 set high). ? and" are 
checked. BASIC 4 uses ($IF) as a pointer to the table of 
keywords; this table is now too long to be spanned by a 
single register's offset. This is the routine which can be 
fooled by eN, fO, nE and so on. 

Search BASIC for a finenumber. In BASIC 4, ($11) holds 
the linenumber, low byte first as usual. On exit, carry bit 
clear means that the line was not found. If it exists, ($5e) 
points to it. The location pointed to is the start of the link 
address, i.e. one byte beyond the 0 end-of-line marker. 
BASIC 2 is identical; BASIC 1 uses ($08) and ($AE). 

Perform NEW. This has a syntax check to disallow NEW 
followed by anything other than : or zero byte. It relies on 
the start-of-BASIC pointers; putting zero bytes into the 
start of BASIC, and the next byte, then storing start + 2 
into end of BASIC. Next GETCHR is loaded with start-of­
BASIC - 1. Then the following is executed: 

Perform CLR. Like NEW, CLR has a syntax check. Its action 
essentially is to set all the variables' pointers to coincide 
with the pointer to the end of BASIC, so they are effectively 
erased. The stack is also reset. And I/O activity is aborted. 
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BASICl BASIC2 BASIC4 

$C59A $C5A7 $B622 Reset GETCHR to start of program. Adds #FFFF to ($28) 
and stores the result in ($77). (Compare this with RESTORE 
to see different programming styles). 

$C5A8 
$C5C9 

$C5D5 
$C62B 

$C649 

$C664 

$C692 

$C6B5 

$C6CF 

$C6E9 

$C6F2 

$C70D 

$C71C 

$C5B5 
$C5D6 

$C5E2 
$C63A 

$C658 

$C673 

$C6A1 

$C6C4 

$C6D4 

$C6F7 

$C700 

$C730 

$C73F 

$B630 
$B651 

$B65D 
$B6B5 

$B6DE 

$B6F9 

$B727 

$B74A 

$B75F 

$B77C 

$B785 

$B7B7 

$B7C6 

Perform LIST. Full check for parameters, including -. 
List program with no parameter checks. ($11) holds the 
high line number and defaults to #FFFF with LIST or LISTn-. 
($5C) points to the low linenumber; #0401 is its lowest value. 
List one line of BASIC, Le. number then text. 
Converts a token in A (Le. #$80+) into keyword. 

Perform FOR. This sets up a block of data on the stack. 
It assigns the loop variable value, then checks the stack 
for FOR and for 18 bytes of space. Its scans for the end of 
the FOR statement, and pushes 18 bytes onto the stack: 
(i) Pointer to following statement, (ii) Current linenumber, 
(iii) Floating-point value of higher limit, (iv) Value of STEP 
plus its sign byte, (v) loop variable name, (vi) FOR token. 
This routine processes STEP by assuming 1 and overwriting 
this with the true value if a STEP token (#A9) is found. 

BASIC warm start. This is the controlling loqp which runs 
BASIC statements. It tests the Stop key, updates the CONT 
pointer (unless in direct mode) and tests for colons or for 
end-of-line null bytes between statements. 
This routine exits if an end-of-program 0 is found (so that 
END isn't needed) and otherwise processes a new line, by 
incrementing the CHRGET address to point to the start of 
the next line. 
BASIC start with CHRGET pointing to BASIC text (not link 
address). The above routine drops through to here, where 
GETCHR gets the next BASIC character, the start of a 
statement, into A, then executes it with the following sub­
routine, and loops back to the warm start entry point where 
CHRGET points to a link address. 

Perform a BASIC keyword. This routine (i) Returns with 
nothing done if a colon is found; (ii) Assumes 'LET' by 
defaul t if a token is not the first character found; (iii) 
Checks that tokens (L e. byte with high bit set, therefore 
with value #$80 + ) are within the range of the token table. 
(If BASIC 4 disk commands are 'run' on BASIC 2, for 
ex ample, the tokens will be unrecognised). (i v) Lastly, the 
keyword's address is pushed on the stack. These two bytes 
are taken from the table at the start of BASIC; they're 
found by doubling the value (token - #$80) and using this 
as an offset. Note that BASIC 2 has a patch to test for GO. 
It checks that GO is followed by TO, then performs GOTO. 
The actual execution is performed by jumping to GETCHR, 
so that the accumulator holds the next character of BASIC 
and also the address of FOR or RESTORE or LET or which­
ever it may be is made the destination when RTS is reached 
at the end of GETCHR. 

Perform RESTORE. Sets the DATA pointer to start-of­
BASIC, as this appears in the pointers, minus 1. In BASIC4 
($3E) holds ($28) - 1; in BASIC 1, ($90) becomes ($7A) - 1. 

Perform STOP, END and break in program. If the carry flag 
is set (for example, when $FFEl tests the stop key and finds 
it pressed) STOP is performed, if Z is also set. If carry is 
clear, END is performed. Both routines save information for 
CONT (pointer to BASIC, linenumber) unless in direct mode; 
STOP prints BREAK IN n, while END skips this to print 
only READY. The stop key performs STOP, and an end-of­
program terminating zero calls END. 
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$C7IJ5 

$C775 

$C567 

$C77A 

$C780 

$C790 

$C7CA 

$C7D8 
$C7DB 
$C79A 

$C7FO 

$C7FE 
$C801 

$C76B 

$C785 

$C572 

$C78A 

$C790 

$C7AO 

$C7DA 

$C7E8 
$C7EB 
$C7FO 

$C800 

$C80E 
$C811 

$B7EE 

$B808 

$B5E9 

$B80D 

$B813 

$B830 

$B850 

$B86B 
$B86E 
$BFOO 

$B883 

$B891 
$B89" 

Perform CONT. This, (i) Rejects CONT if it is followed by 
something other than an end of statement indication, (ii) 
Prints ?CAN'T CONTINUE ERROR if the highbyte of the 
pointer is #0; it's set to this on a syntax error. And 
(iii) The pointer into BASIC and the then-current BASIC 
linenumber are restored, and the program continues. 

Perform RUN. This has two branches, RUN and RUN n, 
where n is a linenumber. 
RUN resets CHRGET to the start of BASIC, then CLRs 
variables and stack and runs. 
RUN n CLRs variables and stack then calls 'GOTO'. 

Perform GOSUB. This tests the stack for space to push 6 
bytes; if this doesn't elicit ?OUT OF MEMORY ERROR, the 
following 5 bytes are pushed on the stack: (i) Contents of 
CHRGET, (ii) Current linenumber, (iii) GOSUB token (#8D). 
Then it calls GOTO, which changes CHRGET according to 
the location of GOSUB's linenumber, and finally warm starts 
BASIC from its new position. The data on the stack is used 
by RETURN. 

Perform GOTO. There are three parts to this routine: the 
first fetches the linenumber following GOTO, and stored it 
in ($11) or ($08) in BASIC 1. Then, this linenumber is 
sought in the program: to save time with long programs, 
the following linen umber is compared with the sought one 
and the starting point of the search depends on the result 
of comparing the high bytes of these lines. Finally, the 
routine to search BASIC for a linenumber looks for the line 
and if it's found loads the pointer (less 1) into CHRGET. 
To clarify the operation, consider this program line: 
10000 GOTO 12000, which may be part of a very long pro­
gram. 10000=39*256 + 16, so the current linen umber is 
stored as the 2 bytes OA and 27. 12000=46*256 + 224, which 
is stored as EO and 2E. The highbytes are compared, and 
since 2E exceeds 27 only lines after 10000 are serached. 
On the other hand, 10000 GOTO 10001 searches BASIC from 
the start. 

Perform RETURN. This checks for GOSUB on the stack and 
recovers the subroutine's details, or prints ?RETURN 
WITHOUT GOSUB ERROR. (i) The syntax is checked, (li) 
The stack is searched (bypassing FOR's variable pointer 
processing) , (iii) If A doesn't hold the GOSUB token (#8D) 
the error message is printed, (iv) The original BASIC line­
number and pointer are reconstructed, (v) The next state­
ment is found, as an offset in Y, (vi) CHRGET's address is 
set, so the next statement will execute. 

Prints ?RETURN WITHOUT GOSUB ERROR. 
Prints ?UNDEF'D STATEMENT ERROR. 
Prints ?SYNTAX ERROR. 

Performs OAT A. This routine is shared with the end of 
GOSUB: it's the part which looks for and continues with 
the next statement, so that DATA 1,2,3: PRINT X ignores 
the DATA, but carries on at the print statement. 

Search for next BASIC statement. Looks for : or null byte. 
Search for next BASIC line. Looks for null byte, marking 
the end of the line. In either case, on return the Y register 
holds the displacement from CHRGET'S address, which is 
($77) or ($C9) in BASIC 1. An interchange routine is used 
to ensure that a colon within quotes is not regarded as an 
end-of-statement indication. 
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$C820 $C830 $B8B3 Perform IF. This routine evaluates the expression following 
IF, and checks that the expression is followed either by 
GOTO (#89) or THEN (#A 7). Assuming this to be OK, the 
next step is to load the accumulator with the exponent of 
floating point accumulator #1, in which the result of the 
evaluation was deposited. When a result is evaluated as 
zero, the exponent is set 0, and because of the importance 
of this special case, it is sufficient to test this single byte 
when finding if a result was O. 
At this point the routine branches: a result of 0 means 
'false'. In this case the next line is found, and an uncon­
ditional branch rejoins DATA at the point where CHRGET 
is incremented by the offset to the next line. This is the 

$C833 $C843 $B8C6 same routine used to perform REM. 

If the result was non-zero, this is regarded as 'true', and 
the next statement is executed using the keyword processing 
routine - unless a numeral follows, when 'GOTO' is called. 

$C843 $C853 $B806 Perform ON. (i) Checks variable type and evaluates it, 
(ii) tests for either GOSUB or GOTO, (iii) repetitively 
decrements the variable value in $12 (or $B4 in BASIC 1), 
and works through the list of commas, until the value is 
reduced to zero. When this finally happens the token is 
recovered from the stack and the appropriate command 
carried out by entry into the routine which executes BASIC 
statements. (If the location never becomes zero, the next 
statement is performed by default). 

$C863 $C873 $B8F6 Fetch integer (usually linenumber) from BASIC. This uses 
shifts, rotations, and adds to multiply consecutive ASCII 
digits by 10, add the next, and so on until a non-numeric 
character is encountered. On entry, A holds the value read 
by GETCHR. If it isn't numeric, there is an immediate 
return and the number is O. Note that validation is not 
complete; this is why 'GOTO 100xxx' is syntactically OK. 
To use this routine, point ($77) in GETCHR to the start of 
the number. Then JSR 00701 JSR B8F6 reads the number 
into ($11) and leaves ($77) pointing at the first non-numeric 
character. BASIC l's GETCHR is ($C9), and numeral ($08). 

$C890 $C8AD $B930 Perform LET. There are three parts to this routine: 

$C8B2 $C8C2 

$C8BC $C8CC 
$C8CE $C8DE 
$C92B $C937 
$C8DC $C8EF 
$C91C $C928 

$C97F $C98B 

$B945 

$B94F 
$B961 
$B9BA 
$B972 
$B9AB 

$BA88 

(i) The variable (X say in X =5) is searched for in RAM, 
and set up if it doesn't yet exist. (ii) '=' is checked for 
(its token is #B2) and the following expression or string 
evaluated. (iii) Floating-point accumulator is moved into 
RAM or pointers are set to the string, depending on the 
type of variable. This completes the assigning process. 
These are the entry points for the assignment; see VARPTR 
for an illustration of assignment. 
Assigns floating-point numbers 
Assigns integers 
Assigns strings, except: 
Assigns TI$ (e.g. TI$="123456") 
Adds ASCII digit, pointed to by ($lF), Y, to the present 
contents of floating-point accumulator #1. (Used by the 
previous routine with TI$). 

Perform PRINT#. This routine has two opcodes only; the 
first calls CMD, which is why the syntax of CMD and that of 
PRINT# are identical. The second jumps to the end of the 
routine which performs INPUT#. The part of this routine 
which it executes aborts the file used by CMD and sets 
the 'current device' to zero. That is,locations #10, HOE, and 
#03 in BASICs 4,2, and 1 respectively are made zero. 
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$C965 $C991 $BA8E Perform CMD. CMD is identical to PRINT#, except that the 
output device is left as an output device, not cancelled. 
Thus, future output, even with PRINT, goes to the same 
device. This is roughly what happens, at any rate. CMD 
evaluates its parameter (single byte only) and stores it in 
$62. ($B4 with BASIC 1). The comma is checked for if the 
statement hasn't ended. The output device is set by FFC9 
and PRINT performed. 

$C999 

$C99F 

$C9AB 
$C9AF 
$C9A3 
$C9A7 
$C9BA 
$C9D8 
$C999 

$CA27 

$CA44 

$CA44 
$CA47 

$CA77 

$CA9F 

$C9A5 

$C9AB 

$C9B8 
$C9BC 
$C9AF 
$C9B3 
$C9C7 
$C9E2 
$C9A5 

$CA1C 

$CA39 

$CA3D 
$CA40 
$CA43 

$CA4F 

$CA7D 

$BAA2 

$BM8 

$BAB5 
$BAB9 
$BAAC 
$BABO 
$BAC4 
$BADF 
$BAA2 

$BB1D 

$BB3A 

$BB3E 
$BB41 
$BB44 

$BB4C 

$BB7A 

Part of a loop which PRINT uses to print a string from 
memory, then continue with punctuation of PRINT ... 

Perform PRINT. This is the main entry point to PRINT from 
BASIC. The flowchart of PRINT in Chapter 5 shows what 
it does. On exit the buffer is reset: $0200 holds #0, X holds 
#FF, Y holds #1. (BASIC l's buffer is different - starts at 
$OA. Note that BASIC 1processing is rather different from 
later BASICs. BASIC 4 is closely similar to BASIC 2, except 
that the CMD file is $10, not $OE, and linefeed is not 
automatic after carriage return). 
Test for comma, branch if found. 
Test for semi-colon, branch if found. 
Test for TAB(, branch if found. 
Test for SPC (, branch if found. 
Print numeral (after converting to ASCII string). 
Print CRLF or CR. 
Print string. 

Print string from memory. From this entry point, if the 
accumulator A holds the low byte and Y holds the high 
byte of an address, this routine prints consecutive char­
acters from that location upward until a zero terminator is 
found. BASIC 4 is reported to insert zero bytes; it may be 
necessary to write a routine with FFD2 on the lines of 
this next routine: 

Print a screen format character. BASIC 1 prints cursor right; 
the others print either cursor right (to screen) or space 
(when some output file exists). BIT is used to separate the 
alternatives. 
Print space 
Print cursor right 
Print ? for error messages - also slipped in. 

Print error messages for GET, INPUT, and READ. On entry 
to this routine, a zero page flag (location $OB or, in BASIC1, 
$62) holds #0 to denote INPUT ,#$40 for GET, and #$98 for 
READ. The routine separates these out; READ and GET 
both generate ?SYNTAX ERROR and exit to direct mode. 
INPUT splits according to whether a file is open or not; if 
not, ?REDO FROM START is printed and GETCHR loaded 
with the previous linenumber's pointer again. If a file is 
open, ?FILE DATA ERROR (or BAD DATA in BASIC 1) 
terminates the program. 

Perform GET and GET#. GET is based around FFE4, as 
might be expected. Its additions include: (i) Testing for 
direct mode, (ii) where '#' exists, inputting the file number, 
checking the comma and setting the device for input, (iii) 
setting the input buffer for one character only with null 
bytes, (iv) GETting the character and assigning it to its 
variable, and finally, where an input file was used, 
restoring the default devices of screen and keyboard. 
Note that A is loaded with #40 before the GET / INPUT /READ 
routine processes the single input character. Stored in $OB, 
this keeps the three processes distinct when necessary. 
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$CAC6 $CAA7 $BBA4 

$CAEO 

$CB17 

$CB24 

$CB29 
$CB2A 
$CB88 
$CBAO 
$CBCF 
$CBF5 

$CC12 

$CC36 

$CC92 

$CACl 

$CAFA 

$CA4F 

$CBOE 
$CBIO 
$CB72 
$CB8A 
$CBB9 
$CBDF 

$CBFC 

$CC20 

$CC79 

$BBBE 

$BBFS 

$BC02 

$BC09 
$BCOB 
$BC6D 
$BC85 
$BCB4 
$ BCDA 

$BCF7 

$B019 

$BD72 

Perform INPUT#. INPUT# relies heavily on INPUT; it adds 
only input of the file number and a check for the presence 
of a comma, plus the turning on and turning off of the 
device on either side of INPUT. 

Perform INPUT. If a quotation mark is found after INPUT, 
by CMP #$22, the string within quotes is pointed to and 
printed - usually to the screen. Direct mode INPUTs are 
rejected. Now the following routine is called, which, on 
carriage return, completes input of a line to the buffer, 
using in fact the same subroutine as BASIC in direct mode. 
There is a test for ST. If this is 3 (BASIC 4) or 2 in the 
others, the command is aborted and the next BASIC state­
ment carried out. The scanning and assignment of the 
parsed input buffer is carried out in the GET /INPUT /READ 
routines, where INRUT is signalled by #0 in SOB. Note that 
the INPUT crash, on carriage return, is deliberately 
programmed in to go to END. 

Print ? prompt and put input into buffer. This is the 
routine which INPUT uses to get data to the buffer. All 
data is transferred on carriage return, including commas 
and colons, which are only distinguished as separators by 
the parsing routine after this one. User-defined INPUTs 
can use this routine, omitting the query if preferred, to 
input and format data in other ways than CBM's. 

Perform READ. GET and INPUT share this routine, but 
are distinguished when necessary by the flag in $OB, which 
contains #98 with READ. The object of these routines is to 
scan the input buffer or DATA statements, assigning 
variables to each syntactically correct chunk of data, and 
signalling mismatches and other errors. 
INPUT entry point, 
GET entry point (preceded by LDA #$40). 
Assign string to string variable, 
Assign numeral to numeric variable. 
Scan program for DATA statements; used by READ. 
Checks whether pointer is at end of buffer, i. e. for zero 
byte. If this isn't found it prints ?EXTRA IGNORED -
unless there is an active file, in which case no warning 
is printed. 

?EXTRA IGNORED crlf and ?REDO FROM START crlf 
text messages (with null byte terminator). 

Perform NEXT. NEXT carries out this sequence of oper­
ations: (i) If NEXT is alone, ($46) becomes #0000; if not, 
the variable following NEXT is sought in memory, and A 
returns set to the low byte of its pointer, Y to the high 
byte; these are put in ($46). The stack is searched; no 
FOR, or no matching FOR, gives ?NEXT WITHOUT FOR 
ERROR. (ii) The current value of the loop variable is added 
to the step, and the result moved up within RAM. This 
requires several pointers to be set, e. g. into variable 
storage in RAM. (iii) The comparison routine is called, which 
sets A depending on the result. (iv) If the loop is now 
finished, another routine deletes the stack entry and checks 
for a comma. If one is found, NEXT is entered again. (v) 
If the loop isn't finished, CHRGET and the previously 
current linenumber are loaded (as they are with RETURN) 
and the BASIC warm start routine continues the program. 
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$CCAII $CC8B $80811 I nput and evaluate a numeric expression with check for 
type mismatch. This calls a subroutine - a little further in 
ROM - which evaluates any BASIC expression, whether 
string or numeric. Numerals are left in floating-point 
accumulator #1, and $07 is loaded with a flag: #FF for a 
string expression, #0 if it was numeric. (The flag is $5E 
for BASIC 1). Checking for type mismatch is done by the 
next routine: 

$CCA7 $CC8E $8087 Checks numeral was input. 
$CCA9 $CC90 $8089 Checks string was input. These routines interlock; the 

carry flag determines which category of variable will cause 
?TYPE MISMATCH ERROR. Note the use of BIT $38 to give 
an entry point which sets carry. (SEC = #$38). 

$CCB8 $CC9F $8098 Input and evaluate any expression. This elaborate routine 
(500 bytes or so excluding other subroutines) parses any 
string or numeric expression, checking for syntax errors, 
and on exit leaves the type of expression flag ($07, or 
$5E in BASIC 1) set to #FF for a string, #0 for numeral. 
If numeric, the result is left in floating point accumulator #1. 
From here it can be processed further; JSR CF93 converts it 
to an ASCII string at the low end of the stack, and JSR 
BBlD prints this out, for example. (These are BASIC 4 ROM 
addresses). If the result is a string, on exit from this 
routine A holds the length, as do $5E and $C8; and the 
pointer is stored in ($60) and ($C8). BASIC l's locations are 
$CC and ($CD9, and $BO and ($Bl) respectively. 
Note that this routine is not an INPUT routine, but takes 
a BASIC expression from RAM; before calling it, CHRGET 
must point to its starting byte. It enables complex express-
ions like 24+VAL("1.23"+X$)*5*(A=NOT B) to be evaluated. 
In the process, a lot of the stack and many zero-page flags 
are used. All Microsoft BASICs have a routine of this type. 
Parsing is by operator precedence in the case of numeric 
expressions; as the expression is scanned, an operator of 
greater hierarchical value is pushed on the stack, with the 
evaluated result from accumulator #1. An operator lower in 
the hierarchy pops the stack result into accumulator #2, 
which is then combined with accumulator #1. The routine is 
recursive. Unexpected ?OUT OF MEMORY ERROR messages 
may appear with rather complicated expressions, because of 
the intermediate results on the stack; simplifying into short 
sub-expressions may cure this. 

$CCC3 $CCAA $BDA3 Push accumulator onto stack and recursively run routine. 
$CCD2 $CCB9 $BDB2 Test for >=< and store their combined code in $4A ($9C with 

BASIC 1). 
$CCFl $CCD8 $BDDl Process other operators 
$CD3A $CD21 $BE1A Puts FPAcc. #1 on the stack and performs mathematical 

operation determined by offset Y and table of addresses. 
$CD72 $CD59 $BE56 Pop stack into FPAcc. #2; loads A with exponent. 

$CD9D $CD84 $BE81 Evaluation routine. This looks for ASCII numeral strings, 
e. g . 123, variables, pi, . - + ", NOT, FN, arithmetic 
functions, e. g. SGN, ABS, and expressions in parentheses. 

$CDBC $CDA3 $BEAO Pi as 5 byte floating point number. 
$CE05 $CDEC $BEE9 Check parentheses and evaluate expression within them. 
$CEOB $CDF2 $BEEF ?SYNTAX ERROR if CHRGET doesn't point to ). 
$CEOE $CDF5 $BEF2 ?SYNTAX ERROR if CHRGET doesn't point to (. 
$CEll $CDF8 $BEF5 ?SYNTAX ERROR if CHRGET doesn't point to ,. 
$CE1C $CE03 $BFOO ?SYNTAX ERROR and return to READY. 
$CEll $CDFA $BEF7 ?SYNTAX ERROR if CHRGET doesn't point to a byte identical 

to that in A. If it does, A returns with the next character. 
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$CE28 $CEOF $BFOC Evaluate a variable. This first uses the routine to search 
for a variable in RAM, returning with A holding the low 
byte and Y the high byte of its pointer. Strings are not 
processed, except for TI$ and DS$ in BASIC 4, but all 
numeric variables - integer, floating-point, TI, ST and, in 
BASIC 4, DS - are evaluated and the result is stored in 
floating-point accumulator #I. 

$CE3D 

$CE58 
$CE65 

$CE6D 
$CE8A 

$CE79 

$CED6 
$CED9 

$CF06 

$CFOB 
$CF1E 

$CF71 

$CF7B 

$CE2E 

$CE43 
$CE82 

$CE60 
$CE7D 

$CE89 

$CEC8 
$CECB 

$CEF8 

$CEFD 
$CF10 

$CF63 

$CF6D 

$BFAD 
$BFC9 
$BFD8 
$C040 

$BFF3 
$C017 
$C024 

$C047 

$C086 
$C089 

$COB6 

$COBB 
$COCE 

$C121 

$C12B 

Read clock (TI$) and set up string holding result. 
Read DS $ and set up string holding result. 
Evaluate integer variable. Result in FP Acc . #1. 
Evaluate floating-point variable, not TI, ST, or DS. Note 
that (i) BASIC 1 uses a set of patches in E19B-ElDF which 
are moved to be in line with the main code in BASIC 2. 
(ii) BASIC 4 has a slightly different arrangement, due to the 
introduction of DS and DS$. 
Evaluate TI. Result in FPAcc. #1. 
Evaluate ST. Result in FPAcc. #1. 
Evaluate DS. Result in FP Acc. #1. 

Process arithmetic functions. 

Perform OR. 
Perform AND. These two binary operations are written as 
one routine; a flag holds #FF for OR, #0 for AND. See 
Chapter 5 for the rationale. The flag is location $05, or, 
in BASIC 1, $5C. Each of the two arguments is converted 
from floating-point to integer form, with an error message 
if the range is wrong. Intermediate results are stored in 
the zero page. The result is left in FP Acc. #1. 

Perform comparisons. This routine begins by testing that 
the two items do in fact match in type. It separates into 
two branches depending on whether numerals or strings 
are to be compared. 
Numeric comparison, and:-
String comparison. 
Numbers are compared with another subroutine (DB2D/ 
DB67/CD91) after first modifying FPacc. #1 to include the 
sign bit in the mantissa. 
The string comparison function works like this:-
The first string's parameters are $5E=length, ($5F) =pointer; 
the second string has its length put in A, and its pointers 
in ($69). (BASIC 1 is different - BO and (B1) and (BB) 
are its equivalents). The X register holds one of three 
values on exit: X =0 means the strings are equal, 
X=1 means the first is 'greater than' the second, and 
X=255 means the second is 'greater than' the first. 
The accumulator holds only #0 or #255 on exit; this varies 
with the contents of the comparison evaluation flag. 

Perform DIM. This routine calls the next routine, which 
searches for a variable in memory and sets it up if it isn't 
found. So for example DIM A$(44) sets up the variable 
A $( 44) in memory; and in the process it generates the 
entire array from elements A$(O) through to A$(44). If the 
statement has not ended, the routine loops repetitively, 
checking for a comma, and setting up the next array. 

Search for variable and set it up if not found. The first 
half of this routine validates the variable's name: the 
leading character must be alphabetic, the next may be that 
or numeric; a loop rejects further alphanumerics; and the 
variable type flag in $07 is set to #FF if '$' is found, and 
#0 otherwise; and the numeral flag in $08 becomes #80 if a 
'%' is found. $OA indicates a function. A '(' causes another 
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BASIC1 BASIC2 BASICII ROM routine, 'Find or create array', to be called. Finally, 
the name is stored in ($42), with its initial character in $42. 
BASIC 1, naturally, is different - it uses ($94). These are 
stored with their high bits set according to the type of 
variable: see Chapter 2 for the four types. So much for 
the first part of this routine. The second actually looks for 
the name in RAM. All the variables are stored together after 
BASIC and before the arrays; moreover they each occupy a 
total of 7 bytes. So a loop simply compares consecutive 

$CFD7 $CFC9 $C187 variables until the sought one is found. If in fact it doesn't 
exist, the ROM routine 'Create a new BASIC variable' is 
branched to. 

$0005 $CFF7 $C1B6 Check A holds alphabetic ASCII character. The carry flag 
is set to 1 if A holds ASCII A-Z. 

$OOOF 

$D088 

$D099 

$0090 

$00B9 

$D100 

$D149 
$D135 
$D12D 
$D130 
$D1F4 

$D233 

$D135 

$02611 

$0001 

$D078 

$D089 

$0080 

$OOAC 

$DOF3 

$D13C 
$D128 
$D120 
$D123 
$D1E7 

$D228 

$D128 

$0259 

$C1CO 

$C2C8 

$C2D9 

$C200 

$C2FC 

$C343 

$C38C 
$C378 
$C370 
$C373 
$C436 

$C477 

$C378 

$CIIA8 

Create a new BASIC variable. Sets up a new simple (not 
array) variable in RAM after the present variables. If any 
arrays are present, they have to be moved 7 bytes up in 
RAM to accommodate the variable. The array pointers need 
to be changed, and BASIC 4 string-into-pointers also need 
to be updated. This can take a second or two. On exit, 
($5C) points to the start of the variable, i.e. the first 
character of its name; ($44) points two bytes forward of 
this, to the variable's value or pointers if it's a string. 
All its bytes are set to zero. TI and ST, and DS with BASIC 
4, are checked for and give ?SYNTAX ERROR if they've 
been used on the left of an expression. The same is true of 
DS$. TI$ returns with a dummy value (null string). 

Allocates space for array pointers. This adds #5 to twice 
the number of dimensions of an array, and in turn adds this 
result to a pointer. This makes room for the housekeeping of 
an array, not for the actual data. 

Holds -32768.0005 as a 5 byte floating-point numeral. 

I nput and evaluate expression as a positive Integer. This is 
not part of INPUT; it takes an expression from BASIC, such 
as PEEK(123)+99, evaluates it, and, if the result is positive 
and less than 32768, it is converted into a fixed point 
number held in the two bytes ($61) within FPAcc. #I. 

Find array element or create new array in RAM. This is 
rather similar to the routine which searches for simple 
variables. However, the details of the array are held on 
the stack, so the more dimensions an array has, the larger 
is the space used on the stack. And this routine is much 
longer and more complex. A loop checks for the existence 
of the subscripted variable; it has two exits, one taken when 
the variable is not found, and. the other taken when it is. 
Array variable not found; set it up. (DIM=10). 
Array variable found. 
?BAD SUBSCRIPT ERROR then READY. 
?ILLEGAL QUANTITY ERROR then READY. 
?OUT OF MEMORY ERROR used by next routine: 

Compute size of array subscript. This loops 16 times, and 
returns with X and Y holding the size required, X the low 
and Y the high bytes. 

?REDIM'D ARRAY ERROR if the DIM flag ($06 or $5D in 
BASIC 1) is non-zero. 

Perform FRE. If string mode is on, temporary strings are 
cleared and 'garbage collect' performed. After this, the 
pointer to the lowest string minus the end-of-arrays pointer 
is stored in A and Y, and put into FPAcc. #1:-
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$0278 $0260 $C4BC Convert 2-byte integer into floating-point. On entry, 

$0285 

$D287 

$0285 

$D290 

$0295 

$D2C3 

$0206 

$0349 

$027A 

$D27C 

$0280 

$D285 
$D288 

$0280 

$D2BB 

$02CE 

$D33F 

$C4C9 

$C4CB 

$C4CF 

$C4D4 
$C4D7 

$C40C 

$C50A 

$C510 

$C58E 

Y holds the low byte and A the high byte of an integer 
in the range 0-65535. This routine converts it into floating­
point form, leaving it in FPAcc. #1 (i.e. $5E holds the 
exponent, $5F-$62 hold the mantissa, and $63 is the sign.) 

Perform POS. Calls the previous routine , ignoring whatever 
dummy v!lriable appeared in POS (x). It loads Y with the 
position of the cursor on its line (from $C6 or $05 with 
BASIC 1) and the high byte A with #0, then calls the last 
routine, overwriting the contents of FPAcc. #1 with the 
value of POS. Put contents of Y into FPAcc. #1. 

Check for program mode. If the high byte of the current 
linenumber is #FF, this is a code used to signal that a 
command was entered in direct mode (i.e. from the keyboard 
without a linenumber). 
?ILLEGAL DIRECT ERROR then READY. 
?TYPE MISMATCH ERROR then READY. 

Perform OEF (function definition). Some of the syntax 
checking is carried out by the next routine. This one tests 
for direct mode and the presence of a '(', then searches 
for and/or sets up its dependent variable, checks for ') =', 
and pushes 5 bytes on the stack. The first byte is the first 
character of the function definition, perhaps a variable's 
initial character or a token for LOG or SQR. Then the 
dependent variable's address and the current pointer into 
BASIC are stored; when a FN is addressed, the expression 
to be evaluated is calculated by temorarily restoring CHRGET 
to its present value, pointing to the start of the expression. 
Finally, the next statement is scanned for, and the bytes 
are all popped and loaded into the function definition in RAM. 

Check some of DEF FN's syntax. This (i) Checks for a FN 
token (#A5), (ii) Sets the function flag, ORing the initial 
of the function's name with #80, (iii) Searches for this func­
tion, setting it up if it doesn't yet exist, (iv) Checking that 
the type is numeric. (String functions aren't allowed). 

Evaluate FN. This routine (i) Checks FN with the last 
subroutine, (ii) Evaluates the expression in parentheses, 
and checks that it's numeric, leaving the answer in FPAcc#1, 
without changing the value of the dependent variable, (iii) 
Recovers the five values stored by DEF FN; (iv) Stores the 
current variables on the stack, (v) Puts the five floating­
point bytes directly into FN's area in memory, (vi) performs 
the evaluation, leaving the result in FPAcc. #1, and (vii) 
Pops and replaces the FN DEF data in RAM. 

Perform STR$. This apparently short routine in fact calls 
a rather longer routine, which is an important one in string 
handling. STR$ first checks that the argument evaluates 
to a number; it converts the contents of FPAcc. #1 into a 
string starting at $0100 ($0200 in BASIC 1), in the usual 
Microsoft form, e. g. with numbers smaller than .01 expressed 
in scientific notation, like 5E-03. It throws away a return 
address (popping 2 bytes from the stack) and sets pointers 
to the buffer holding the string; now, it's ready to convert 
the pointers into a standard zero-page pointer (not A and 
Y any more) and to measure the length parameter, which is 
determined by the first null byte encountered. 
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$0359 $0311F $C59E Allocate pointers and length to new string. Because lengths 
of strings are not dimensioned, each new string has to have 
its pointers and length recalculated. Thus, X$="ONE": 

$036B 

$D3AA 
$D3BO 
$D3D2 

$D3F4 

$011011 

$D497 
$D4A1 

$0361 

$D3A4 
$D3AA 
$D3CE 

$D3FO 

$01100 

$D497 
$D4A1 

$C5BO 

$C5F3 
$C5F9 
$C61D 

$C65B 

$C66A 

X$="TWO" requires two calculations solely for this purpose. 
This routine requires that A on entry holds the length of the 
string; on exit, $5E holds the length and ($5F) points to the 
RAM area allocated for the string. The routine also transfers 
a temporary address. CHR$, LEFT$, STR$ and so on all use 
part of this routine. BASIC 1 uses $BO and ($H1). 

Set up string in memory. This routine is used by INPUT, 
READ, STR$, and other functions to generate space for a 
string in the high end of RAM, put the string there, and 
set the pointers for (say) X$ to point to it. Two flags, 
$03 and $04 (or $5A and $5B in BASIC 1) .are used for test 
locations here; they contain either quotes or, with a later 
entry point, : and , respectively. The quotes of course are 
redundant, except for the first, but they make the same 
routine usable for different purposes. On entry to this 
routine, A holds the low byte, Y the high byte, of the 
pointer to the start of string-1. The string may end with a 
zero terminator, or with " , or : depending on the type of 
string being processed. $5E holds the length, and ($5F) the 
pointer, on exit; many other temporary pointers are used. 
(BASIC 1: $BO and ($B1». 
Sets string pointers- entry point from CHR$, '+', etc. 
?FORMULA TOO COMPLEX ERROR then READY. 
Allocate space for string. On entry, A holds the length of 
a string; this is the amount by which the current string 
pointer is decremented (using a 2's complement method). 
This is ($30) in BASIC>1 and ($82) in BASIC 1. The same 
result is put into the adjacent locations which hold a 'utility 
string pointer'. If the end-of-arrays pointer overlaps the 
lowered string pointer the next subroutine is called: 

Garbage collects or prints ?OUT OF MEMORY and exits. 
After a garbage collection, the previous routine is re-enter­
ed. A flag in $09 ($60 in BASIC 1) ensures this process 
isn't endless by being set on exit form this subroutine with 
bit 7 high, then tested on re-entry. So garbage collection is 
done once only. * 
Garbage collection. This is a long routine which tidies the 
strings in the high end of RAM, and their pointers. To 
watch this in action, see Chapter 2 for programs. BASICs 
prior to 4 are notorious for the slowness of their garbage 
collection, if a large number of strings have been defined in 
the high area of RAM (i. e. not null strings or strings whose 
pointers point back within a program). In practice, this means 
string arrays. (Numeric arrays don't need garbage collection). 
This formula: Time in seconds=.00008*(n+1l)2 gives an 
accurate approximation for the time taken by n strings to 
free memory. BASIC 4 has a shorter and far faster routine. 
This operates on the pointers ($4B) and ($5C). Several 
subroutines subtract A from these in the course of memory 
freeing. In earlier BASICs the following routines have been 
identified : 

Check for most eligible string collection. 
Collect a string. 

*A bug has been reported in which BASIC 4 prints ?OUT OF MEMORY instead of garbage 
collecting when three strings are concatenated. 
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$0515 $0517 $C7I1F Perform string concatenation. This routine apparently 
works by adding the two strings'lengths,allocating that 
amount of space in memory, then putting each string into 
the space side by side and finally setting up the name and 
pointers for the entire new string. ($61) is assumed to 
point to the first string; the second is input and evaluated 
by this routine. 

$D530 

$0552 

$D552 

$D560 

$D564 

$057B 

$D5B3 

$05CII 

$0508 
$D6011 
$060F 

$D532 

$05511 

$D554 

$D562 

$D566 

$0570 

$D5B5 

$05C6 

$05DA 
$0606 
$0611 

$C76A 

$C78C 

$C78C 

$C79A 

$C79E 

$C7B5 

$C811 

$C822 

$C836 
$C862 
$C860 

?STRING TOO LONG ERROR then READY. 

Store string in high end of RAM. Comparatively simple 
routine which uses A to hold the string length, and ($1F) 
as a temporary ponter to the start of the string. It also 
uses the utility pointer ($32) to transfer the data; on exit 
this points to the end of the string. BASI C 1 equivalents 
are ($71) and ($84). Several entry points are used:­
($6C) points to the byte just after the variable's name in 
RAM. (In BASIC 1, ($BE». 
A holds length, X and Y point to the byte immediately 
following the variable's name. 
A holds length and ($lF) the temporary pointer. 

Oiscard temporary string. This routine begins by loading 
($lF) with a pointer to the strings parameters; on exit, 
the same pointer ($lF) points to the actual string, and the 
bottom-of-string pointers are moved up by the length of the 
string, so that it will be overwritten by the next string to 
be defined. (This is only done if the string was the very 
last to be defined). BASIC 1 uses ($71). 

Clean the descriptor stack. A holds the low byte, Y the 
high byte of a string vector; if these match the temporary 
store in ($14), Y is loaded with #0 (and the Z flag set) 
and $13 and $14 are loaded with A and A-3. The purpose 
of this is mysterious to me. This is used by the previous 
routine. 

Perform CHR$. All strings of the type CHR$(n) have 
length 1; this routine simply inputs the parameter, ensures 
that a 1-byte space is available, puts the character in it 
and sets up the string details. 

Perform LEFT$. 
Perform RIGHT$. 
Perform MIO$. 
Each of these routines uses the second part of LEFT$ (from 
D5E6/D5E6/C843) to allocate space for the string and set it 
up in memory with its pointers. The length of the new 
substring and its starting point within the string, which 
were earlier pushed on the stack, are later popped and 
used to construct the substring. The rest of the routines, 
notably MID$ which has two valid syntaxes, deal mostly with 
syntax checking and with processing parameters. For 
example, RIGHT$ pulls the parameters (see next routine) 
including n in RIGHT $(X $ ,n) which is held in Aand X. 
The length of X$ is reduced by n before entering LEFT $'s 
routine; so RIGHT$ picks a substring starting within X$. 
Note that some validation takes place to guarantee that the 
string doesn't reach beyond the end of its parent string. 
This is done by comparing the string's length with with the 
parameters and selecting whichever is less with the help of 
the carry flag. 
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$D637 $D63B $C897 Pull String function parameters from stack. The diagram 
illustrates the working of this subroutine, which is called 
by each of the string functions. It first checks for the 
existence of a right parenthesis, ')', then pops ($4E), the 
pointer to the string, and its length, from the stack. On 
exit, both A and X hold the length of the string; Y is set 
to zero. BASIC 1 has a slightly different routine; and its 
pointer address is different. It uses ($9F). 

The stack before: 1$41 
$4D 
X" A 

IS52 

SP: ~ 

and after: $52 
y 

SP:--+ 

$0654 $0656 $C8B2 Perform LEN. Calls the next subroutme, from which it 
returns will the string's length in Y. Then it jumps into 
POS, where Y only is placed in FPAcc. #1 in floating-point. 

$D65A $D65C $C8B8 Load lengthl move into numeric mode from a string. 
VAL, ASC, and LEN each call this . It checks for a string 
and points to it (with 'discard a string'), loading the acc­
umulator in the process with its length. It sets the mode 
flag to numeric ($07, or $5E in BASIC 1, is #0). Finally, 
T AY puts the length into the Y register in addition to A. 

$0663 $0665 $C8Cl Perform ASC. This calls the last routine - and rejects a 
string of length zero - then just loads A from the temporary 
pointer which it set up, I.e. ($lF). This is put into floating 
point form by entry into POS. Note that only the initial 
of the string is dealt with. 

$D130 $D672 $C8CE Jump to print error message ('illegal quantity'). 

$0673 $0675 $C801 Evaluate and input a l-byte parameter (0-255). GETCHR 
must point to the expression', which is evaluated and 
checked for range and type and also rounded down. The 
result is left in $62 and X; and A holds the character at 
the end of the numeric expression. With BASIC 1, the 
parameter is returned in $B4. 
Functions which interact with machine code need some such 
routine as this one; for example, POKE. 

$0685 $0687 $C8E3 Perform VAL. VAL operates by treating its string as a 
buffer, and scanning it with the routine which converts a 
string into floating-point in FPAcc. #1. The exception is a 
zero-length string, which returns VAL =0. Several para­
meters are stored and later retrieved, when the conversion 
process is over. 

$D6C4 $D6C6 $C921 Evaluate and input parameters for POKE and WAIT. Typically 
POKE 12345,6 and WAIT 23456,7 are the statements which 
this routine inputs and checks; firstly, a numeric expression 
is evaluated, then converted (see next routine) into a 2-byte 
integer. The comma is then checked for and the next para­
meter calculated and put into X (see last-but-one routine). 

$D6CA $D6CC $C927 WAIT 123,45,6 is checked by re-entering the routine. This 
has to be left until the first 1-byte parameter has been dealt 
with, of course. The larger parameter is deposited in" ($61) 
and in ($11), where it is less transient. The other location, 
in FPAcc. #1, is liable to be overwritten. BASIC 1 uses ($09). 
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$06OA $0602 $C920 Convert Floating-point accumulator #1 into 2-byte integer. 
This checks that the number is positive and within the range 
0-65535; then calls the conversion routine in DB6D/DBA7/ 
CDD1; and finally stores the result in ($11), or, with 
BASIC 1, ($08). This is used by AND, OR, WAIT and some 
other BASIC commands where a 16 bit number is wanted. 

$06E6 

$06F9 

$0702 

$D713 

$D71e 

$0275 

$D728 

$073C 

$D73F 

$D744 

$D778 

$D81C 

$D853 
$D858 

$06E8 

$0707 

$0710 

$D721 

$D72C 

$0733 

$D736 

$0773 

$D776 

$D77B 

$D7AF 

$D853 

$D88A 
$D88F 

$C943 

$C95A 

$C963 

$C974 

$C97F 

$C986 

$C989 

$C990 

$C9AO 

$C9A5 

$C9D9 

$CA7D 

$CAB4 
$ CAB 9 

Perform PEEK. On entry, floating-point accumulator #1 
(Le. $5E-$63) holds the address to be peeked in floating­
point form. On exit, Y holds the peeked value, and it's 
reconverted to floating-point format. This is done partly by 
the last routine, which puts the address into a convenient 
form to access memory. Note that BASIC 1 tests the PEEK 
address to reject some values and return zero. And its 
floating-point accumulator occupies different memory slots, 
from $BO-$B5. 

Perform POKE. Gets two parameters, puts the second into 
A, and stores A into RAM where the 2-byte parameter points. 

Perform WAIT. Gets two parameters, and an optional third, 
which otherwise is made zero. The address parameter is put 
into ($11), the first byte parameter into $46, and the other, 
optional, parameter into $47. Now WAIT is performed, a 
loop which continues until the address, exclusive-ORed 
with the third and ANDed with the second bytes, is not 
zero. BASIC 2 (not 1 or 4) has Microsoft's joke here. See 
WAIT in Chapter 5. Or try, say, POKE70,n:SYS 55121. 

Add .5 to contents of FPAcc. #1. A (low byte) and Y (high 
byte) point to .5 in floating-point form in ROM, then the 
addition routine is entered. Used when rounding. 

Perform subtraction. Replaces FPAcc. #1 by FPAcc. #2 minus 
FPAcc. #1. On entry at this entry point, A must hold the 
low byte and Y the highbyte of a pointer to a 5-byte 
floating-point constant, which will be loaded into FPAcc. #2. 
On entry here, however, both floating-point accumulators 
are assumed to be loaded, and their contents will be sub­
tracted as l've indicated. 

Perform addition. Replaces FPAcc. #1 by FPAcc. #1 plus 
FPAcc. #2. On entry here, A must hold the low byte and 
Y the high byte of a pointer to a 5-byte floating-point 
value in ROM or RAM. This will be loaded into FPAcc. #2, 
then added to FPAcc. #1. The result is in floating-point 
form. If the value to be added is zero, the routine jumps to 
simply copy FPAcc. #2 into FPAcc. #1 without any further 
calculations. This entry point makes this test-it assumes 
that A holds the exponent of floating-point accumulator #2's 
contents, Le. the contents of location $66 or $B8 in BASIC 
1. If this is so, the test will speed up additions of zero. 
Finally, this entry point adds the two numbers without any 
special test. 
Add two numbers which have equal exponents. (In other 
cases one of the numbers is modified until both have equal 
exponents 
Replace FPAcc. #1 by its 2's complement. (I.e. all the bits 
of the accumulator are flipped; then 1 is added). 
?OVERFLOW ERROR and READY. 
Multiply a byte subroutine. 
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$D891 $D8C8 $CAF2 Table of constants: t, then constants for LOG (byte of 3 
which is a counter for the series calculation, then 
.4342559, .5765845, . 96180{)7, 2.88539), and! SQR(2), 
SQR (2), -.5, and 10ge2. 

$08BF $08F6 $CB20 Perform LOG to base e. See Chapter 5 on LOG for an 
explanation of this function and its operation. 

$08FO $09311 $CBSE Perform multiplication. Multiplies the contents of FPAcc. #1 
by the contents of FPAcc. #2, leaving the result in FPAcc.#1. 
This first entry point assumes that pointers are set to the 
second value in memory, held in 5-byte floating-point 
format. These pointers are: A to the low byte, and Y to the 
high byte, of the start of the value. As an illustration, note 
that D8F9/D930/CB5A point to 10ge2 and then drop through 
into this routine, thus multiplying floating-point accumulator 
#1 by 10ge2. (This of course is part of the previous func­
tion). Note that the routine which loads the second floating­
point accumulator also loads A with the exponent of the first 
floating-point number; in this way, if the first number is 
zero, nothing more need be done. 

$D9 0 2 $D93C $CB66 Multiplies the two floating-point accumulators without loading 
either of them afresh. The result is left in FPAcc. #1. 

$D92B $D96 5 $ CB8 F Multiply a byte and store the result in the product area. 
(This is a temporary accumulator in locations $23- $27. 
In BASIC 1, $75-$79). 

$09SE $0998 $CBC2 Load Floating-point accumulator #2 from memory. This routine 
takes the value held as a 5-byte floating-point number and 
puts it into floating-point accumulator #2. In the process it 
unpacks the sign byte and stores this separately. These 
locations are used: 
$66 (exponent), $67-6A (mantissa), and $6B (sign). 
On exit from this routine, A holds the sign of the number in 
floating-point accumulator #7 (not #2). Pointers: Alow, Yhigh. 

$D989 $D9C3 $CBED Multiplication subroutine to check both accumulators. 
This checks various conditions; if FPAcc. #2 is zero, then 
FPAcc. #1 is made zero; if the exponents together are too 
large or too small, ?OVERFLOW ERROR or zeroisation of the 
result respectively take place. 

$09BII $09EE $CC1 8 Multiply Floating-point accumulator #1 by 10. This short 
routine doesn't use a value of 10 in ROM; instead it multi­
plies accumulator #1 by 4, adds this result to itself, and 
doubles the result. At each stage it tests for overflow. 

$D9CB $DA05 $CC2F Constant: 10 in 5 bytes of floating-point. (84,20,0,0,0). 

$D9DO $DAOA $CC34 Divide contents of floating-point accumulator #1 by 10. 
This moves accumulator #1 into accumulator #2, then sets 
pointers to 10 and performs division. 

$0909 $OA13 $CC30 Perform division into floating-point accumulator #2. On entry, 
A, Y, and X hold the low and high pointers to a 5-byte value 
and the sign comparison byte, in that order. Then FPAcc. #1 
is loaded-leaving FPAcc. #2 unchanged- and the result of 
FPAcc.#2 / FPAcc.#l calculated and left in FPAcc.#1. 

$09E1 $DA1B $CCIIS Perform division: FPAcc.#2 / FPAcc.#l into FPAcc.#1. 
This entry point loads accumulator #2 before the division, 
using the routine at D95E/D998/CBC2, so the pointers A and 
Y must be arranged beforehand. The following entry points: 

$D9E6 $DA20 $CC4A Divide the present accumulators without changing either of 
them. 

$DA5C $DA96 $CCCO ?DIVISION BY ZERO ERROR then READY. 
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$DA74 $DAAE $CCD8 Load Floating-point accumulator from memory. This routine 
takes a value held as a 5-byte floating-point number and 
puts it into floating-point accumulator #1. In the process it 
unpacks the sign byte and stores this separately. The bytes 
are taken from the memory locations pointed at by A (low) 
and Y (high). See, for an example, the routine starting at 
D9DO/DAOA/CC34 which loads 10 into floating-point accumul­
ator #1 then divides this into FPAcc. #2. The locations used 
are $5E (exponent), $5F-$62 (mantissa), and $63 (sign). 
Note that zero sign bit means plus, #FF means minus. 

$DA99 $DAD3 

$DAA2 $DADC 

$DAA6 $DAEO 

$CCFD 

$CD06 

$CDOA 

Store Floating-point accumulator #1 into memory. This packs 
the sign byte and rounds the accumulator, so that it fills the 
standard 5 bytes of a numeric variable. It is stored into 5 
bytes starting with the address pointed to by X (low byte) 
and Y (high byte). There are four entry points: two of 
these point to special zero-page locations in which TAN and 
series expansions are worked out. (I.e. $59-$5D and $54-$58). 
The third entry point stores the value in the location which 
($46) points to (or ($98) in BASIC 1). This is used by LET 
and by the FOR-NEXT loop to store an evaluated quantity 
in a variable's storage after a BASIC program. 
Finally, this entry point is the one to select when the X and 
Y values have to be set explicitly and don't correspond to 
those cast in the silicon of ROM. 

$ DACE $0808 $CD32 Copy accumulator 1#2 into accumulator #1. This moves the sign 
and five data bytes from one accumulator to the other; both 
now hold the same value. The rounding byte is made zero. 

$ DADE $0818 $CD42 Round and copy accumulator #1 into accumulator #2. Calls the 
following routine, moves 6 bytes of the accumulator (more 
elegantly than the last routine!), and zeroises the rounding 
byte. Each of these short pieces of code therefore loses a 
little information. 

$DAED $DB27 $CD51 Round accumulator #1. The rounding routine doubles the 
rounding byte and exits without action if the result has the 
carry bit clear, showing that it was less than 128. It also 
exits with zero (this is always signalled by the exponent's 
value being zero). However, if the carry bit is set, a single 
bit is added to the floating-point value; this process can be 
traced in ROM. Each byte is incremented until the result of 
the increment is not zero (which of course is usual). If the 
addition propagates through the accumulator, a routine is 
called which adds one to the exponent and also rotates all 
the bytes right. In this case, the rounding bit is lost . 

$DAFO $0837 $CD61 Find sign of accumulator #1. On exit, these values apply: 
A=O means value is O. 
A=l means value is positive. 
A=#FF means value is negative. 

$080B $OB45 $CD6F Perform SGN. Because BASIC function arguments are put in 
floating-point accumulator #1 after evaluation, SGN calls the 
previous subroutine to compute its sign. This is placed in 
floating-point accumulator #1 as shown here: 

$5E $51 $60 $61 $62 $63 1$6DI 
'$88 sign 0 0 0 0 0 

and a subrou.t.ine in the 'addition' routines is called to 
convert 0,1, or #FF into their floating-point form, normalised 
and with the sign byte set. See the next subroutines. 



-475- 75: CBM BASIC ROMs Programming the PET ICBM 

BASICl BASIC2 BASICq 

$DBOE $DB48 $CD72 Store contents of accumulator only in accumulator 1#1. 
Example: LDA I#AO / JSR CD72 puts the value 160 (decimal) 
in floating-point form in FPAcc.l#l. 

$DB16 

$DB2A 

$DB2D 

$DB6D 

$DB9E 

$DBBB 

$DBCS 

$DC3C 
$DC50 

$DC85 

$OC9Q 

$DC9F 

$DB50 

$DB6Q 

$DB67 

$DBA7 

$DBD8 

$DBF5 

$DBFF 

$DC76 
$DC8A 

$DCBF 

$OCCE 

$DCD9 

$CD7A 

$CD8E 

$CD91 

$Cool 

$CE02 

$CE1F 

$CE29 

$CEAO 
$CEB4 

$CEE9 

$CF78 

$CF83 

Evaluates a double-byte integer and converts the result into 
floating-point form (0-65535). On entry here, X must hold 
1#$90, $5F the high byte, and $60 the low byte, like this: 

1 $6DI 
1$90 sign 0 0 0 0 

Note that the carry bit indicates the sign in all these 
routines. If it is set, the number is treated as positive and 
vice versa. 

NOTE: The values 1#88, #90 (136, 144 decimal) are exponents 
indicating the size to which the number is to be normalized. 
Numerals of three or four bytes can be evaluated by an 
extension of this calculation routine. See INT. 

Perform ABS. See Chapter 5. 

Compare Floating-point accumulator #1 with 5-byte floating­
point number. A (low byte) and Y (high byte) point to the 
5-byte value in memory. On exit, the accumulator (A, not 
one of the floating-point variety) indicates the relative sizes: 
A=O means the values are equal. 
A=l means that accumulator 1#1 > memory. 
A=#FF means that accumulator 1#1 < memory. 

Convert Floating-point #1 into integer, within FPAcc. #l. 
This routine is called by D6DA/D6D2/C92D which, however, 
also treats the fixed-point number as an address, which it 
stores in ($11), or, with BASIC I, in ($08). 

Perform INT. Acts on floating-point accumulator 1#1, rounding 
it down to the nearest integer, but leaving the result in 
floating-point form. 
Used when zeroising all of accumulator 1#1 when the exponent 
has been found to be zero. 

Convert an ASCII string into a numeral in FPAcc. #1. VAL 
and other routines use this to evaluate a numeral which is 
in string form. GETCHR should point to this string before 
entering this routine; then JSR 0070/ JSR CE29 (or what­
ever other values apply for BASICs 1 and 2) scans the 
string and puts the result in floating-point accumulator #1. 
E . + - and leading and other spaces are specially checked; 
the routine to multiply by 10 adds together consecutive digits 
as they are encountered. 
Add new ASCII numeral to the mantissa. 
Add contents of A only to floating-point accumulator 1#1. 
Example: LDA #$OF /JSR CEB4 adds 15 to the accumulator. 

String conversion constants. There are three of these: 
99 999 999.9, 999 999 999.75 and 1 000 000 000. 

Print IN followed by linenumber. IN is a message from the 
standard table. The linenumber is printed by loading A and 
X with the high and low bytes respectively which are stored 
in ($36), or ($Bl) in BASIC 1. This is the current line­
number, which is stored by RUN as BASIC is executed. 
This prints 256*A + X on the following line. 
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$DCAF $DCE9 $CF93 Convert contents of Floating-point accumulator #1 into ASCII 
string starting at $0100. On exit, A and Y hold #0 and #1, 
pointing to $0100, so that the print routine CA27/CA1C/BBlD 
can print the result as a string. Note that the buffer is at 
the lowest end of the stack, inaccessible to BASIC. Chapter 
2 has a table showing how this fomatting process works in 
practice. Note the zero terminating byte, and the special­
case processing for zero. PRINT USING, in Chapter 5, 
demonstrates how this routine may be adapted to get other 
output formats. 

$DD3A $DD74 $D01E 

$DDE3 $DE1D $DOC7 

Note that FPAcc. #1 is changed when this routine has been 
run. The tables of constants following this routine are used 
in the comparison/ conversion process. The later ones deal 
with TI$. And the three values tabled before this routine 
are used to decide when scientific format should be used. 
Convert TI $ from three bytes into the corresponding string. 

String conversion and TI$ constants: .5 for SQR and round­
ing, then 15 4-byte constants, -100 000 000, 10 000 000, 
-1 000 000, 100 000, -10 000, 1 000, -100, 10, -1 and 
-2 160 001, 216 000 (=1 hour), -36 000, 3600 (=1 minute), 
-600, 60 (=1 second). 

$OE24 $OESE $0108 Perform SQR. This puts FPAcc.#l into FPAcc.#2, loads 
FP Acc • #1 with .5 and performs the next routine: 

$OE2E $OE68 $0112 Perform power calculation (1'). Calculates FPAcc.#2 to the 
power FPAcc. #1. Note that FPAcc.#l may be loaded from 
memory by setting A and Y pointers and entering one 
instruction earlier. FPAcc. #2 must be loaded before running 
this routine. Both numbers are tested for equality with zero 
and if zero is found, set the result in FPAcc. #1 to 0 or 1 
according as FPAcc.#l or FPAcc.#2 is zero. The function is 
evaluated by saving FPAcc.#l in the zero page, then 
multiplying the logarithm of FPAcc. #2 by FPAcc. #1, and 
finding the exponent of the result. 

$DE67 $DEA1 $D14B Negate contents of floating-point accumulator #1. Changes the 
sign byte with EOR #FF, so 0 becomes #FF and vice versa. 
FPAcc. #1 is unchanged if it equals zero. 

$DE72 $DEAC $D156 Table of constants: 1/log2e and 8 constants for EXP's series 
evaluation: byte of 7 then 2.149876 E-5, 1.435231 E-4, 
1.342263 E-3, 9.614017 E-3, 5.550513 E-2, 2.402263 E-1, 
6.931471 E-1, 1. The series in fact calculates 2\n. 

$OEAO $OEOA $0184 Perform EXP. The value eJ'.FPAcc.#l is computed and left in 
FPAcc. #1. For notes on the method and on the series used, 
see Chapter 16. 

$DEF3 $DF2D $D1D7 Function evaluation routine: this calls the next routine. It 
evaluates more complex expressions of the type q*fn(q*x), 
where fn(x) is evaluated by the series expansion formula 
embodied in the next piece of code:-

$OF09 $DF43 $01 ED Main series evaluation routine. All the mathematical functions 
(LOG, SIN, COS, etc.) are evaluated by transforming the 
argument into a suitable range (e.g. 0-1), calculating the 
result and finally, where necessary, modifying the result­
perhaps by chenging the sign or altering the exponent. 
This subroutine must be entered with the pointers ($6E), or 
($CO) in BASIC 1, looking at a single byte, which will be read 
as the number of values in the table. Then by a repetitive 
process the tabled values are added and multiplied to FPAcc#l 
so the table byte=3/5/311/10 (for example) finds the value of 
10 + 3x + 5x 2 • See Chapter 16 for more on this subject. 
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$DF3D 
$DF41 

$DF4S 

$DF4C 

$DF63 

$DF78 
$DF88 

$DF9E 
$DFAS 

$OFEE 

$E01A 

$E048 

$E078 

$EOBS 

$EOC6 

$DF77 
$DF7B 

$DF7F 

$DF86 

$DF9D 

$DFB2 
$DFC2 

$DF08 
$OFDF 

$E028 

$E054 

$E08C 

$EOBC 

$EOF9 

$E1DA 

$D221 
$D225 

$0229 

$D230 

$D247 

$D25C 
$D26C 

$0282 
$0289 

$0202 

$D2FE 

$D32C 

$D35C 

$0399 

$D3AA 

RNO - multiplicative constant. 
RNO - additive constant. 

(=11 879 546.4) 
(=3.927 677 78 E-8) 

Perform RNO. The first three instructions of this function 
compute the sign of accumulator #1 (and hence of the arg­
ument of RND) and branch to three sections of the routine 
according to this sign - counting negative, zero and positive 
as different 'signs'. All three branches meet and exit from 
the routine together. Briefly, what happens is this: 
Zero arlument. The four bytes $5F- $62 in FP Acc. #1 are each 
loaded rom the VIA timers; 2 of these change with every 
clock cycle, so there's some justification for calling this 
'random'. (BASIC 1 uses the wrong ROM addresses here, 
probably because the final positioning of the chips wasn't 
settled when RND was written). Then jumps to common exit. 

Positive argument. Multiplies the stored random number by 
the first constant at the top of the page, then adds the second. 
Then continues with : 
Negative argument. Interchanges bytes as marked. 
Common exit routine. This puts: #0 into $63 (i.e. positive), 
Exponent into rounding byte, and #$80 into Exponent. The 
latter forces the result into the range 0-1, the former perhaps 
is intended to ensure that the exact value 0 does not occur. 
Finally, FPAcc. #1 is stored into the random number work 
area, ready for the next positive argument in RND. 

Perform COS. Puts pi/2 into FPAcc.#2 and adds; then: 
Perform SIN. Evaluates SIN of FPAcc. #1 and leaves the 
result in FPAcc. #1. The argument is in radians. See Chap­
ters 5 and 16 for more information. 
Perform TAN. Evaluates TAN of FPAcc.#l, by dividing 
the sine of that value by its cosine. As the argument 
approaches 900 and other values (pi/2) the calculation will 
inevitably lose precision. 

Table of constants: pi/2, 2*pi and. 25. Then there's a byte 
which acts as a counter; it is 5, and the constants following 
(6 of them!) are -14.38139, 42.007797, -76.70417, 81.605223, 
-41. 3417021, and 2*pi again. These are used by SIN. 
BASIC 2 has also ! TFOSORCIM in encoded form. 

Perform A TN. The arctangent is left in FPAcc. #1 after 
evaluation; it's in radians. It is calculated with the aid of a 
series with 12 terms; this is the longest series used, but it 
also happens to be based on the simplest, and is optimised 
for the range 0-1. (The basic series is x - x 3 J3 + x 5/5- ... ) 

Counter and table of 12 constants for ATN evaluation. 
These are: -6.84793912 E-4, 4.85094216 E-3, -.0161117018, 
.034209638, -.0542791328, .0724571965, -.0898023954, 
.110932413, -.142839808, .19999912, .333333316, and 1. 

CHRGET routine and RNO seed for relocation into RAM. 
BASIC on reset moves both these tables into RAM, starting 
at $70 (or $C2 in BASIC 1) where they are positioned con­
secutively. In fact only 4 bytes of RND are transferred, so 
its value, theoretically .811635157, could presumably vary 
within the range .811635137 - .81165196. 
Entry to ROM CHRGET where the fixed address is unimport­
ant, at SEC/SBC #30 etc. Can be used to save zero page 
bytes. If the program has no spaces an earlier entry point 
may be used. 
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$EOD2 $El16 $D3B6 Test RAM and initialise BASIC. This routine is the final call 
made by the system on reset, including switch on, when the 
reset vector at (FFFC) is called. This first sets input/output 
values before jumping to this routine. Note that there is an 
alternative path on reset, used by Jim Butterield's technique 
for resetting BASIC 2 and 4 machines, which enters the 
monitor without disturbing BASIC. In BASIC 1 this leads to 
a diagnostic program, not a monitor. 

$EOE5 
$E10C 

$E131 
$E167 

$E15A 
$E174 

$E12F 
$E152 

$E174 
$E196 

$E19D 
$E1B7 

and 

$D3C7 
$D3EA 

$D417 
$D42A 

$D431 
$D44B 
$DEA4 

$D3F9 

A SYS call to the appropriate address above, or an indirect 
jump to (FFFC) with any ROM, erases RAM memory above 
$0400 and resets all the BASIC pointers, and so is a reliable 
way to return memory to the cold-start situation which obtains 
when the machine is turned on. (Note that an indirect jump 
is represented by opcode $6C=108 decimal. So POKE 108 and 
252 and 255 into consecutive locations and SYS the first of 
these to reset any ROM). See Chapter 13 for an account of 
the events of Reset. Some major locations are: 
Move CHRGET subroutine and RND seed to zero page. 
Start of BASIC becomes $400; RAM test and exit. Note that 
A holds #0 on entry. From $0400, #$55 (I.e. %01010101) is 
written to RAM and read back; then #$AA (%10101010) is 
written and read.*This is a standard type of chip test. When 
the read-back is not equal, or $8000 has been reached, the 
next routine is dropped into: 
Set BASIC string and variable pointers to their start values. 
Print *** COMMODORE BASIC *** (BASIC1), 
### COMMODORE BASIC ### (BASIC2), or 
*** COMMODORE BASIC 4.0 *** (BASIC 4). 
Calculate and print bytes free. 
Tables holding the messages for bytes free and for Commod­
ore BASIC. The second table for BASIC 4 seems to be an 
afterthought. It includes '4.0'. 
Prints 44030 bytes free. (Joke?). 

MACHINE-LANGUAGE MONITOR (MLM). 

$FDll $DI172 'Call' entry to monitor. This prints C* followed by details 
like this· 

• PC IRQ SR AC XR YR SP 
. • B780 E455 32 38 2C 34 FA 

PC points to BASIC; IRQ and SP are taken from the stack and 
are reliable. The 'registers' are garbage from the input buffer. 

$FD17 $D"78 'Break' entry to monitor. This prints B* and pulls the stack 
to determine the contents of the program counter and reg­
isters: it assumes an entry by SYS 1024 or SYS 4 from BASIC 
(or any location hoding a zero byte), or by a machine-code 
routine entering a BRK instruction. SYS to this address will 
remove data from the stack. Note that BASIC 4 differs from 
BASIC 2 in restoring normal devices on BRK, so the monitor 
always prints to the screen. In order to dump monitor inform­
ation, use the call entry: OPEN 128,4: CMD 128, "MONITOR"': 
SYS 54386 which directs output to the printer. PRINT#128: 
CLOSE 128 unlistens the printer. (These figures are for a 
printer with automatic line feed on). 

$FD56 $D4BA Start point: waits for command after. and executes it. 
For example, • M 1000 1010 is processed from here: M is 
searched in a table, analogous to the BASIC keyword table, 
and its address-1 pushed on the stack. RTS then jumps. 

*BASIC 1 has a less thorough test, using #$92 and #$24 (%10010010 and %00100100). 
The intention, to test all the bits, is the same. 
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$FD70 $04D4 

$FD93 $D4F7 

$FDA7 $D50B 

$FDBF $D523 
$FDCA $D52E 
$FDCD $D531 
$FDDO $D534 
$FDD5 $D539 

$FDEO $D51111 

$FE23 $D587 

$FE58 $D5BC 

$FE97 $D5FB 

$FEB9 $D61D 

$FECF $D633 

$FF07 $D66B 

Search table of commands. Compares 8 single byte commands 
with that input. (: ; R M G X L S). If not found, jumps to 
the address USRCMD, ($03FA), which is set up to point at a 
routine to print ? crlf, then jumps to START. This RAM 
address may be altered to include one's own monitor commands 
such as those used by Extramon. 

Display memory. On entry, A holds the number of bytes to 
be displayed, and ($FB) holds the first address. 

Read a byte and store in RAM. Reads a byte into A and 
stores it in ($FB), exiting with ? if the readback doesn't 
equal the byte. Increments the pointer ($FB). 

Sets ($FB) ready to $0202. On exit. A holds #5. 
Print two spaces. 
Print one space. 
Print one carriage return + line feed. 
Increment temporary pointer locations ($FB). 

Three tables for MLM. These are: 
(i) ASCII values of commands: ; R M G X L S, 
(ii) Address high then address low bytes corresponding to 
the address of each command less 1, 
(iii) Text storage of [Rtn] PC IRQ SR AC XR YR SP. 

R (Display registers). Prints 29 characters of the text table, 
followed by the program counter and IRQ as 'words' and 5 
other bytes, all from the input buffer. These record the 
situation as it was at BRK, i.e. SYS 1024 etc. 

M (Display memory). Most of this routine is validation and 
housekeeping. Sets of 8 bytes are displayed using 'Display 
memory' (above) with A=#8. ($FC) holds the upper limit 
beyond which memory won't be displayed, except as part of 
the last 8-byte block of data. 

Note that the registers are not modified by R; only the input 
buffer stores these values, which are loaded by G, the 'go 
run' command. 

: (Modify memory). Reads the memory address into ($FB), 
then reads-and-stores 8 bytes into RAM. This routine is used 
by the latter routine also; in its case ($FB) points to $0202 
and only 5 bytes are stored. This routine stops, printing a 
query, if on readback the byte doesn't have the write value. 
This happens on trying to write to ROM for instance. 

G (Go, Go run). This command has two formats. G alone 
fetches all the registers from $0200-$0208 and loads them, so 
its destination is deterinined by the program counter stored 
in $0200 and $0201. G ABCD overwrites the program counter 
store with $ABCD, but loads the other registers just as G 
does. The effect is that any routine can be called, with any 
values of A, X , Y, processor stack, and IRQ. 

X (Exit to BASIC). Sets the stack pointer to its entry value 
and jumps to BASIC warm start (C389JB3FF) where READY 
is printed and a direct commend awaited. The program and 
its variables are all preserved intact The input buffer reverts 
to its BASIC input buffer role. 
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$ FF11 $ 0675 L / S (Load and Save machine-code routines). These are 
mixed together because of the similarity in syntax. The main 
locations used are these: 

$E76A $0717 

$E775 $0722 

$E784 $0731 

$E780 $073A 

$E797 $0744 

$E7A7 $0754 

$E7B6 $0763 

$B4=index of command in table (i.e. L=6, S=7). 
$96=ST byte. 
$9D=LOAD/ VERIFY select flag - Load=O, Verify=1. 
$D1=length of string (Le. device number + name, or, in the 

case of defaults to tape, name only). 
$D4=device number (8=normal CBM disk, l=cassette #1, etc.). 
($FB) and ($C9) store the low address and high address for 

Save. (Load needs only the low address). 
( $DA) points the start of the string or filename. 

The syntax is shown by these examples: 
.L "M/C SORT", 01 REM LOADS M./C SORT FROM TAPE #1 
.S "1:0LD.033A",08,033A,0381: REM SAVES 033A-0380 ON DISK 
.L : REM LOADS FIRST FILE ON TAPE #1 
.S "O:RAM DUMP",OD,OOOO,0100:REM SAVE TO DEVICE #13 

When the above pointers have been set, the routine at 
F43E/F322/F356 performs LOAD without requesting para­
meters, and the routine F6Bl/F6A4/F6E3 performs SAVE in 
the same way. *These routines can be called from BASIC and 
represent the only feasible way of loading and saving chunks 
of machine-code from BASIC. 

Subroutines used by MLM. The names are Commodore's. 

WROA. Ouput hex digits. Prints contents of ($FB) as 4 hex 
digits, for example 4CD3. 

WROB. Output single byte. Prints the contents of the 
accumulator as 2 hex digits. for example F3. 

WRTWO. Output two characters. X contains the first, Y the 
second, character; in the monitor, these are set, by the 
next routine, to be 48-57 or 65-70, i.e. ASCII 0-9 or A-F. 

ASC. Convert 0-1 5 into ASC II cha racter . This takes the 
contents of A and converts to ASCII - see previous routine. 

T2T2. Exchange contents of ($FB) with ($FO). 

ROOA. Input full hex address. This sets the flashing cursor 
and awaits input of a 16-bit value, e.g. ABD8. The result is 
placed in ($FB). Carry is cleared if there are spaces only. 

ROOB. Input one hex byte. The cursor flashes and a single 
hex byte (e.g. AB) is input to the accumUlator, which holds 
the same value(e.g. AB!). Carry clear means nothing was 
input. 

$E7EO $0780 HEXIT. Convert ASCII numeral to HEX. Accumulator values 
of #30-#39 and #41-#46, which print as 0-9 and A-F, are 
converted to O-#F in the accumulator. 

$E7EB $0798 ROOC. Input character/ await return. Flashes cursor and 
inputs a single character. If this is carriage return, the 
subroutine return is stopped, and the routine exits to check 
the command letter or punctuation symbol presumably present 
at the start of the line. 

$E7F7 $07M ERROPR. Print ? Then go to input the next line. 

*BASIC 1, though without a machine-code monitor - unless TIM ('tiny monitor') or a 
Supermon-style monitor is loaded in - nevertheless has LOAD and SAVE as BASIC commands 
which are usable from BASIC or machine-code. The locations are different: There is no 
index; ST is $02OC; $020B is LC\DjVERIFY; $EE is length; $Fl is device#; low and high 
addresses for SAVE are ($F7) and ($E5); and ($F9) pOints to the start of the filename. 
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$D7AF 

$D804 

$D838 

$DS39 
$DS3B 
$DS42 
$DS47 
$DS4D 
$DS4F 
$DS53 
$DS5B 
$DS67 
$DS6F 

$D873 

$DSA3. 
$D905 
$D911 
$D91A 

DISK COMMAI'IIDS - BASIC 4 ONLY. 

Perform RECORD. This routine validates RECORD#file number , record number 
[,optional byte number]. The byte parameter is tested to ensure it's within 
the range 1- 254; and it defaults to 1 if not explicitly mentioned. The logical 
file number is tested to ensure it is not zero; and the record number can 
take any 2-byte value. It may be written as an expression, but if it is, it 
must be within brackets unless it starts with a number. Thus, these are 
valid: RECORD#2*2, (Q) ,1 and RECORD#2. 145,5. Commodore has introduced some 
new rules for validation into its disk commands, which are not quite the same 
as in BASIC itself. RECORD jumps to $DA31 to send its message to disk. 

4 disk BASIC parameter checking routines. These print ?SYNTAX ERROR if 
the bits set in $033E don't match a bit pattern that is looked for. and so 
indicate that a wrong parameter has been entered, or a correct one omitted. 
$DS2E for example checks that A has bits 0 and 2, at least. on. 

Dummy disk control messages. This table holds commands corresponding to 
10 instructions. The tables are used to construct full messages in the disk 
command buffer. A simple example: BACKUP has 44 D2 3D D1. 44 is ASCII 
V and 3D is ASCII =. D2 and D1 are not ASCII values, but a code showing 
that destination and source drives are to be substituted. The resulting 
string has the same effect as D1=0 which duplicates disk 0 onto disk 1. The 
word 'BACKUP' is not used by the disk unit. 

DIRECTORY or CATALOG ($ D1) 
DOPEN etc. (D1 :F1,E1,EO) 
APPEND (D1 :F1,A) 
HEADER (N D1: F1) or (N D1:F1,DO) 
COLLECT (V D1 ) 
BACKUP (D D2=D1) 
COpy (C D2: F2=D1: F1) 
CONCAT (C D2: F2=D2: F2, D1: F1) 
RENAME (R D1: F2=D1: F1) 
SCRATCH (S D1: F1) 

Some of these commands have alternative forms: HEADER may have length 
4 or 6 in its string, COLLECT lor 2, CONCAT S or 12. depending (for 
example) whether HEADER's ID is given or not. The following table shows 
how the dummy values (which are detected by bit 7 being high) are under­
stood: DO = DOS disk ID (2 bytes) 
D 1 = source drive number 
D 2 destination drive number 
EO read or write 
E1 parameter length (relative files) or S (sequential files) 
F1 = source file name 
F2 = destination file name 

Perform CATALOG or DIRECTORY. Both of these commands jump to this 
address; they are identical. Ths syntax checking test that $033E has bits 
1,2,3,5,6, and 7 all off; only a drive number and string are permitted. The 
validation is performed by the routine $DC6S; to save space I shall not 
mention this with each instruction, although every disk command except 
RECORD uses it. DIRECTORY works like, and closely resembles, the DOS 
wedge program; it 'lists' the directory, not in RAM, but by looking for end­
of-line zero bytes, throwing away the link address, printing the 'linenumber' 
which is the filelength, and printing each character of the name. Thus the 
listing takes place without disturbing RAM. Nevertheless, the directory is 
still stored, as in DOS I, in program form. 

$DSA5 Throwaway 4 (later 2) byte~ then print 'linenumber' 
End-of-line and possible end-of-program subroutine. 
Exit if ST <> 0 
Output a character. I.e. set device/ output/ set default devices. Enables 
the directory to be output to printers etc. 
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$D92F 

$0942 

$0977 

$0991 
$0995 

$0902 

$OA07 

$DA3l 

Find next available secondary address. Sets $D3 (=secQndary address) to 
#62 + by searching all the open files until an unused secondary address is 
discovered. At each loop the trial value is incremented. This saves the user 
the effort of thinking up yet another meaningless secondary eddress. 

Perform OOPEN. Tests for DOPEN # filenumber, "name" and also the options 
for drive number, relative record length, unit number (Le. ON U9 or ,U9 
with unit #9), and sequential read/ write. It sets up a command string and 
jumps to the normal OPEN routine. 

Perform APPEND. This command is not in some disk manuals. The command 
string puts ,A after the file name and this automatically performs OPEN and 
sets the pointers to write sequentially on ot the end of the file. 

Get disk status string OS$. 
Get DS$ (jump table entry). These routines set up a string in memory 
with length held in SOD and pointer to start of ($OE). The value of DS can 
be tested with this machine-code: 

LDY #0 
LDA (OE),Y 
CMP #32 
BCS ERROR ; VALUE IS NEITHER 0 NOR 1. 

Perform HEAOER. This has two forms, with and without a disk ID. As well 
as the usual validation, this command uses the ARE YOU SURE? prompt. On 
exit, DS id checked and ?BAD DISK ERROR appears if DS > 1. 

Perform OCLOSE. The syntax check permits either DCLOSE or DCLOSE# file 
number [ON U8], or other device number. $DAIB closes a numbered file; 
when no file number is given, all open files of the correct device number are 
sought and closed by the routine at $DA 1B. 

Set up disk record pointers. This is called from RECORD. It sends a five 
byte string to the disk which contains: 

ASCII for p Secondary address. Rec.no .. 1ow 
$0353 $0354 $0355 

The default value for byte is 1. Byte is checked to ensure that only values 
from 1-254 are accepted. 

$OAC5 Perform COLLECT. COLLECT (in BASIC<4, VALIDATE corresponded to this) 
has two forms: one has one parameter in the command string, the other two, 
depending on whether a drive is specified or the default is used. 

$OA7E Perform BACKUP. This checks that two drives are specified and an optional 
device number. It sets Y=#$16 and A=#$4 and enters the next routine, which 
is also used by all the other disk commands except RECORD:-

$OA98 Send DOS command string from buffer to disk. On entry, Y holds the offset 
from D839, the table of dummy commands, and A holds the length of the 
dummy command: the true length of the command, after the details have been 
inserted by DBFA, naturally varies with (for example) the length of a pro­
gram's name. 

$OAA7 Perform COPY. COPY sends a disk command string with 8 components, 
irrespective of its syntax (there are several valid versions). 

$OAC7 Perform CONCAT. Like COPY, CONCAT sends a command string with a fixed 
number of variables. In the case of CONCAT this means 12 variables. These 
are arranged (see D838 ff.) in a string like this: 

C D2 : F2 = D2 : F2 , D1 : F1 where D and F are drive. file numbers. 
Note that this string" and the others like it, are sometimes called the 'DOS 
interface' in Commodore documentation, referring to the fact that the data 
which is sent to the disk has to be in one of the standard forms to be 
processed corretly. 
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BASIC 4 

$DAD4 Put source file name into DOS command string. This routine is called within 
DBFA when Fl is encountered in the dummy disk command table; it places 
details, including the file's name, into the command buffer, which starts at 
$0353, and it sets pointers, i.e. ($FD), to this address. 

$DAFD 

$DBOD 

$DB3A 

$DB55 

$DB66 

$DB99 
$DB9E 

$DBD7 

$DBEl 

$DBFA 

$DC4C 
$DC57 

$DC68 

Store 2 parameters in adjacent addresses in the command string buffer. 

Perform DSA VE. This uses three parameters, sharing those of DOPEN at 
D83B. The filename and disk drive only are sent in the command string. Note 
that the filename may be preceded by '@' if save-with-replace is required; 
then the file is saved without the necessity to avoid ?FILE EXISTS ERROR by 
first scratching the file. (However, '@' is reputedly not bug-free, and is to 
be avoided by the cautious user). 

Perform DLOAD. DLOAD uses similar output parameters to DSA VE. The flag 
in $9D is set zero for LOAD, not VERIFY. (This suggests that a disk verify 
command, say DVERIFY, could be written, identical to DLOAD but storing #1 
in the verify flag). 

Perform RENAME. DOS interface is R Dl:F2=Dl:Fl 

Perform SCRATCH. The DOS interface is S drive no. : filename (the filename 
may include * and/or ?). This combination of parameters is checked by the 
parsing routine. To make erroneous deleting of files less easy, a subroutine 
which prints ARE YOU SURE? (at DB9E) waits for 'yes' or 'y'. On exit, DS$ 
is read and if it's been set - printed to the screen if the mode is direct. 

Check comma d is direct mode entry. If it is, the equals flag (Z) is set. 
Print 'are yo sure?' and await reply. Only un shifted y or yes set the flags: 
C is returne clear if y or yes in entered. Otherwise BCS may be used to 
exit or jump past the unwanted code. 
Print ?BAD ISK ERROR if in direct mode. DBDC prints it in any mode. 

Clear DS$ and ST. This routine leaves A,X, and Y unchanged, and sets ST 
and the lengtQ of the string DS $ to zero. Both are effectively zeroised. If a 
DS$ string e~c:i'sted already, its pointers in RAM are set to $FF28. 

Expands dU~my variables to fill DOS command string in buffer $0353 ff. 
On entry, Y holds the offset of the start of the command string from$D839. 
A holds the length of the dummy string. Example: APPEND sets Y=#9,A=#5. 
This corresponds to the data indicated for $D842; q.v. Each dummy value, 
for instance D 1 or EO, is filled from the storage details in $033A ff. 

Set file nam~ length to value in X register; set pointer ($DA) =$0353. 
Process L, S, and W flags. 

Parse disk BASIC command and store parameters. It is this routine which 
permits disk parameters to be entered in any order. A large loop processes 
the string, looking for: # W L R D ON token U I" or (. Anything else 
gives ?SYNTAX ERROR. $033E stores, bitwise, the parameters as they are 
processed. So, if (say) DLOAD#3#4 is entered, which of course is wrong, the 
file number flag will be set on the second look at # and this will cause the 
?SYNTAX ERROR message. The 7 bits of $033E have these meanings: 

MEANING OF BITB BET IN $033E 

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 
1: NO @ WRITE DEBT.DRIVE. BOURCE DRIVE DEVICE # FILE # DEBT. FILE FILE 
0: @ READ NO DEBT. DR. NO BOURCE DR. NO DEV.# NO LFN NO DEBT. NO FILE 

$DE49 Get file name. On entry, ($IF) points to the start of the string. If its length 
exceeds 16, or begins with '@' and exceeds 17, the routine prints ?SYNT AX 
ERROR. On exit, A holds length, X and Y also hold ($IF) pointers. 

$DE87 Get parameter in range 0-255. The value is returned in X and in $62. The 
parameter is taken from BASIC (by CHRGET) and evaluated; if it does not 
begin with 0-9, it must be within parentheses; so all these expressions are 
accepted if the range is right: (X+Y) and 12 and (12+VAL(J$» and 4+X. 
Parameters such as the logical file number are input using this. 

$DE20 ?SYNTAX ERROR; $DE27 ?ILLEGAL QUANTITY ERROR; $DE74 ?STRING TOO 
LONG ERROR; $DB27 ?BAD DISK ERROR. 
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SCREEN, KEYBOARD, AND INTERRUPT PROCESSING ($EOOO ff). 

BASICl BASIC2 BASIC4 

BASICl BASIC2 

$El El $El DE 

$E236 $E229 
$E269 $E257 
$E5DB $E25D 

$E27D $E285 

$EOOO JUMP TABLE FOR 8o-COLUMN CBM ONLY. 
$EOOO JMP E04B: Bell + home cursor + initialise input! output. 
$E003 JMP EOA7: Input from keyboard buffer. 
$E006 JMP E1l6: Input from screen or keyboard via ($E9). 
$E009 JMP E202: Output a character via ($EB). 
$EOOC JMP E442: IRQ servicing: BRK to monitor, hardware interrupt 
$EOOF JMP E455: Clock, cursor, keyboard, tape servicing. 
$E012 JMP E600: Exit from interrupt. 
$E015 JMP E051: Clear screen within window. 
$E018 JMP E07A: Set CRT controller chip to lower! upper case. 
$EOl B JMP E082: Set CRT controller chip to upper case! graphics. 
$EOl E JMP E088: Other CRT controller chip settings. 
$EO 21 JMP E3C8: Screen scroll down. 
$E024 JMP E3E8: Screen scroll up. 
$E027 JMP E4BE: Finds key from keyboard decoding table. 
$E02A JMP E6A7: Rings bell one chime. 
$E02D JMP E036: Store accumulator A in repeat flag. 
$E030 JMP E1El: Set top left of scrolling window. 
$ EO 3 3 JM PEl DC: Set top right of scrolling window. 
$E036 Called from E02D. 

BASIC4 BASIC4 
4O--col. 80-col. 
$EOOO $E60F 

$E04B $E051 
$E257 $E05F 
$E07F $E06F 

$E087 $EOA7 

Initialise inputi output locations in VIA, PIAs, set 
clock to zero, set cursor, etc. 
Clear the screen (within window in 8032). 
Home cursor. 
Position cursor anywhere on screen - $C 6 holds 
horizontal, $D8 vertical, positions. (In BASIC 1, 
$E2 and $F5). 
Get character from keyboard buffer. On exit, the 
character is in A. The number of characters in the 
buffer is held in $9E ($020D in BASIC 1), and is 
assumed to be at least 1. 

$E294 $E29A $EOBC $EOBC Input from keyboard. Gets character(s) from the 
keyboard buffer, echoing them to the screen and 
handling the cursor position, finishing with carriage 

$E2B7 $E2BS $EODA $EODA return. If shift-Stop = Run is pressed, the keyboard 
buffer is replaced by dL"*[Return]run[Return] in 
BASIC 4, LOAD[Return]RUN[Return] in BASIC<4. 

$E2FA $E2F4 $El16 $El16 Input from screen or keyboard. This routine is used 
by the INPUT routine whenever input is to be made 
from non-tape and non-IEEE devices, i.e. CBM's 
internal screen or keyboard. The X and Y registers 
are preserved. When input is from screen, quotes 
and reverse flags are tested for, and the cursor is 

$E349 $E33F $E167 
$E356 $E34C $E174 
$E397 $E38D $E1B3 
$E3A4 $E396 $EIBE 
$E3C4 $E3B4 $EIDE 

$EI6A 
$E177 

$E1AA 
$E1Cl 
$EID2 

updated. 
Switch quote flag (0 to 1 or 1 to 0) if quote found. 
Print screen character; update cursor. 
Set SO-character line indicator. 
Convert 40-column line to 80-character line. 
Back to previous line (when actioning [DEL], [LEFT]) 
Advance cursor; next line if end of window. 
Clear line to end of window. 
Set window to fullest size. 
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lIo-col. 8o-col. Print C BM ASC II character to the screen. This 
routine deals with all the cursor control and screen 

$E3EA $E3D8 $E202 $E202 editing characters. It takes care of cursor process­
ing and automatic screen scrolling. On entry, A holds 
the character to be printed; note that both X and Y 
registers' contents are preserved. BASIC 4, but 
only the SO-column version, has an indirect jump 
enabling users' routines to intercept the output; it 
is via ($EB). 

$E3FF 

$E3FF 
$EIIOA 
$Ell1D 
$EIIIIII 
$EIIIIB 
$EIIS2 
$E1I68 

$EII8F 

$E1I82 
$EII9B 
$EIIAD 
$ES12 
$ES2A 
$ES1B 
$EIIE2 

$E530 
$E548 

$ESS9 

$E3EC 

$E3EC 
$E3F7 
$EIIOA 
$E431 
$E1I37 
$E43E 
$EIISII 

$EII7A 

$EII8D 
$E3I1C 
$E1I98 
$EIIFC 
$ES13 
$ES04 
$EIICD 

$E519 
$E52F 

$ES3F 

$E216 

$E216 
$E221 
$E2311 
$E2SB 
$E261 
$E268 
$E27E 

$E2AII 

$E2B7 
$El711 
$E2C2 
$E326 
$E33D 
$E32E 
$E2F7 

$E343 
$E359 

$E369 

$E2211 

$E2211 
$E22F 
$E2II2 
$E26D 
$E273 
$E287 
$E296 
$E2AO 
$E2DII 
$E2E7 
$ES9S 
$ES9F 
$ESAE 
$ESB7 

$E2FII 

$E307 
$E177 
$E312 
$E3SC 
$E377 
$E3611 
$E3IIB 
$E380 
$E393 
$ESCO 
$ESD6 
$ESE2 
$ESF1 
$ESB7 

$E3BD 

$E3A3 
$E3B6 

$E3C8 

There is different processing for direct mode and 
program mode. 

UNSH IFTED CHARACTERS: 

Carriage return, CHR$( 13) 
Ordinary ASCII character, CHR$(32) - CHR$(127) 
Delete, CHR$( 20) 
Reverse, CHR$( 18) 
Home, CH R $( 19) 
Cursor right, CHR$( 29) 
Cursor down, CHR$(17) 
Tab, CHR$(9) 
Erase beginning of line, CH R$( 22) 
Delete line, CHR$(21) 
Scroll down, CHR$(2S) 
Set top of window, CHR$(lS) 
Text mode, CHR$(14) 
Bell, CHR$(7) 

SH JFTED CHARACTERS: 

Shift-return, CHR$( 1111) 
Shifted ordinary ASCII chr., CHR$(160)-CHR$(2SS) 
Insert, CHR$(148) 
Reverse off, CHR$(1116) 
Clear, CHR$(147) 
Cursor left, CHR$(lS7) 
Cursor up, CHR$( 1 liS) 
Tab set, CH R $( 137) 
Erase to end of line, CHR$( lS0) 
Insert line, CHR$(149) 
Scroll up, CHR$(lS3) 
Set bottom of window, CH R $( 143) 
Graphics mode, CH R$( 1 112) 
Shift-bell (=bell), CHR$( 13S) 

Escape and shift-escape, CHR$(27) and CHR$( lSS) 

Cursor down. 
Process Retum. 

Scroll screen up. BASIC 1 and 2 are identical; and 
BASIC 4 (40 column) almost identical to these. But 
BASIC 4 (80 column) is rewritten (i) To allow the 
screen to scroll up; (ii) To include a pause feature 
which stops screen scroll; (iii) To prevent the IEEE 
'EOI' character being sent, which all other BASICs 
do when the screen scrolls (because one of the VIA 
timers, E81l/ E812, is used to time the delay loop 
when RVS is pressed!) 
Note that BASIC 4 with 40 columns still has this bug 
in the IEEE. (The remedy, of course. is simply to 
avoid scrolling the screen). 
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$E5Cl 
iE5C8 
$E5DB 
$E605 
$E617 

$E66B 

$E5Al 
$E5A8 

$E5CC 

$E61 B 

4o-col. 80-col. 

$E3C9 
$E3DO 

$E3E2 

$E442 

$E3E8 
$E40B 
$E412 

$E442 
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Scroll screen down. 
Check for [Reverse]; if pressed, .5 sec. delay. 
Half-second delay. 
Start new screen line (called by E269). 
Action 'Insert'. 
Open a space in a line with 'Insert' 

MAIN INTERRUPT ENTRY POINT FROM IRQ. 

Save A,X, and Y. Then test for BRK or hardware 
interrupt. An indirect jump is performed according 
to the result of this test. 
BRK. ($92) holds the vector; on setting up BASIC 
this is pointed to the Break entry-point of the 
monitor. (BASIC 1: ($02IB) points to $0000, giving 
?ILLEGAL QUANTITY ERROR unless a BASIC USR 
function is operative). 
Hardware. ($90) holds the vector; on setting up 
BASIC this points to the IRQ servicing routine. It 
is this indirection which makes possible user inter­
ception of the 60-per-second interrupts.* In BASIC 1 
the vector is in ($0219). 

$E685 $E62E $E455 $E455 IRQ servicing routine. Unless the interrupt is 
masked by SEI, or the vector is altered not to point 
here on an interrupt, or the interrupt is programmed 
not to take place, this routine is performed sixty 
times each second. * 

$E685 $E62E $E455 $E455 Update clock. A single JSR call updates the clock 
see $FFEA). 8032 BASIC has a loop to add 1 jiffy 
in every 7. This also checks for the S top key, so 
pointing ($90) to the following routine - ($0219) in 
BASIC 1 - disables the Stop key (and stops the 
clock) • 

$E688 $E631 $E458 $E458 Cursor flash. Several flags are used: 
$A7: If non-zero, the cursor won't flash. 
$A8: Counts to zero; then reverses the cursor. 
$A9: Holds the actual character, not its reverse. 
$AA: Flag = 0 or 1 to indicate flash / not flash. 
$E4: Repeat flag (8032 only). When> 127 countdown 

constant = #2 so flashing is much faster. 
$E6BO $E64D $E47 4 $E4 7 A Prepare for keyboard scan. This sets 'key image' to 

'no key', 'shift key image' to off, clears the four 
bits 0-3 in E810, performs I/O functions (e.g. turns 
off the cassette motors) - details vary with ROM -
and loads X with #$50, (80 decimal), ready to scan 
the 80 characters in the 10 by 8 decode table. 

$E6F7 $E68E $E4B5 $E4CD Loop which scans keyboard. 2 Each key sets 1 bit low 
in $E8l2, which therefore holds only #FF, #FE, #FD, 
#FB, #F7, #EF, #DF, #BF, or #7F. However, it is low 
only when $E810 holds the correct 'row' - a value 
from 0-9. Thus 80 characters are possible, most of 
which are used. In addition, the shift key may be 
pressed, approximately doubling the number of 
keyboard characters available. $E8l0 is incremented 
during this loop; on exit it holds 9 in its right four 
bits, and this default value is in force when $E8l2 is 
loaded into A; this is why characters like =, <, space 
in non-8032 machines, and :,9,6, etc. in 8032, are 
often used in non-ASCII ways. 

*12" screen CBM's interrupts occur 50 tillles per second. 
2A debounce routine (a small loop) is included in the keyboard scanning routine. 
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$E714 $E6C2 $E4E9 $E504 Process new key. The new 'key image', in $A6, is 
compared with the previous key, in $97. If they are 
the same (both may be #FF, signalling no key, or 
both may hold 1-80, corresponding to a character in 
the table). 

$E72C 

$E67E 
$E7AC 

$E6D6 

$E6E4 
$E6EA 

$E4FD 

$E600 
$E606 

$E546 Routine to erase graphics characters by unsetting 
the high bit which shift may have set. 

$E563 Put new character into the keyboard buffer. All 
BASICs except the 8032 BASIC 4 delete the keyboard 
buffer if more than 10 characters are now present; 
this includes BASIC 4 in the 4016 and 4032. The 
8032, however, preserves the current buffer, and in 
addition has a variable length buffer, where the max­
imum number of stored characters is PEEK(227)+1. 

$E600 Return from interrupt; recover A,X, and Y. 
$E606 Poke contents of A into screen. Example: when A 

contains #2, b or B depending on the ROM mode is 
printed on the screen. On exit, Y holds the cursor 
position on its line. Note that BASICs 1 and 2 have 
a loop which awaits the retrace interrupt before 
printing. This prevents 'snow' (with the old PETs) 
and also slows the print. (Some other machines, e. g. 
Sharp MZ- 80K, share this old PET feature). 

$E6A4 Ring bell twice. 
$E6A7 Ring bell once. If $E7 holds #0, this is turned off; 

otherwise, it is a delay constant. A table of 7 values 
plays the chime; these are #OE, H1E, #3E, #7E, #3E, #1E. 
and HOE. 

KEYBOARD DECODING TABLES. 

$E75C $E6F8 $E60B Table of 80 ASCII characters for BASIC 1, BASIC 2, 
and 4016/ 4032. 

CONTENTS OF: 

$E810 $E812 (=59410) 
(59408) #$7F #$BF #$DF #$EF #$F7 #$FB #$FD #$FE #$FF 

$-9 = N/A STOP < SPACE [ RVS N/A 

$-8 - j;J RIGHT > N/A ] @ LEFT N/A 
SHIFT SHIFT 

$-7 + 2 N/A ? , n v x N/A 

$-6 3 1 RTN ; m b c z N/A 

$-5 * 5 N/A : k h f s N/A 

$-4 6 4 N/A I j g d a N/A 

$-3 / 8 N/A P i y r w N/A 

$-2 9 7 i 0 u t e q N/A 

$-1 DEL DOWN N/A ) '\ , $ " N/A 

$-j;J RIGHT HOME +- ( &: % # ! N/A 

NOTES: i. The shift keys are detected separately and are labelled 'right' and 'left' 
here. 

ii. It can be seen from the table that WAIT 59410,4,4 pauses until space or 
shift-space is pressed, WAIT 59410,1,1 waits until RVS or RVSOFF is pressed, 
WAIT 59410,5,255 waits for either space or reverse, and so on. 

iii. The order of characters is the same as in the ROM table. 
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$E810 
(59408) #$7F 

$-9 [20] 

$-8 1* 

$-7 2* 

$-6 3* 

$-5 4* 

$-4 DEL 

$-3 6* 

$-2 5* 

$-1 9* 

$-~ [5] 

lIo--col. 80-col. 

$E6Dl Table of characters for the 8032. Note that tabled 
values with the high bit set have no shifted equival­
ents; they correspond to keys like @ and ] which are 
marked with a single, non-alphabetic, symbol. 

CONTENTS OF: 

$E812 (-59410) 
#$BF #$DF #$EF #$F7 #$FB #$FD #$FE #$FF 

[4] : STOP 9 6 3 ~ N/A 

/ [21] HOME m SPACE x RVS N/A 

[16] [15] ~* , n v z N/A 

RIGHT [25] * b c LEFT N/A 
SHIFT SHIFT 

[* 0 DOWN u t e q N/A 

P i \* y r w TAB N/A 

@ 1 RTN j g d a N/A 

; k ]* h f s ESC* N/A 

[6] i* 7* ~* 7 4 1 N/A 

[14] RIGHT 8* - 8 5 2 N/A 

NOTES: i. * beside a character means that it has no shifted equivalent. Hence some 
characters, e.g. all the numerals, appear twice. 

ii. Note that the contents of E812 (=59410) when E810 holds -9 are not the 
same as those for the earlier ROMs and 40-column BASIC 4. This is the 
reason for the use of different sets of keys when slowing (and pausing) 
screen scroll. 

iii. The quantities in square brackets appear to be unused ASCII values. 

$E72A 
$E73C 

Two tables of 18 constants each for CRT controller. 
Lower case mode (switch-on) and upper case. See 
Chapter 9 on this chip. 

$E7BC $E748 $E65B $E755 Table of 25 low bytes which mark the end of each 
screen line. 

$E7D4 $E761 

$E8!10 
$E820 
$E8110 

$E810 
$E820 
$E8110 

$E76E 

$E674 $E721 

Table of 25 high bytes marking the start of each 
screen line. These are held in RAM in 4O--col umn 
machines to allow alterations for double-length lines. 
Message table. LOAD [Return] RUN [Return] or 
dL "* [Return] run [Return]. 

SYSTEM INPUT / OUTPUT MEMORY MAP. 

$E810 
$E820 
$E8110 

$E810 
$E820 
$E8110 
$E880 

PIA (Peripheral interface adapter) #1. 
PIA #2. 
VIA (Versatile interface adapter). 
CRT controller. 8032 only. 
All these addresses are incompletely decoded. 
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$FOOO $FOOO $FOOO Table of messages for file handling. These are: /too many 
files/file open/filc not open/file not found/[Rtn]searching/ 
for /[Rtn]press play /& record/on tape #/[Rtn]load/[Rtn] 
writing / [Rtn]verify /device not present/not input file/not 
output file/[Rtn]found /[Rtn]ok[Rtn]/[Rtn]ready . [Rtn] /. 
BASIC 4 has these two messages in addition: IIRtn]are you 
sure ?/[Rtn]? bad disk/. 

$FOB6 
$FOBA 
$FOBC 

$FOE4 

$FOF1 

$F111 

$F12C 

$F132 

$F13B 

$F14B 

$FOB6 
$FOBA 
$FOBC 

$FOE2 

$FOEE 

$F10D 

$F128 

$F12D 

$F136 

$F146 

$FOD2 
$FOD5 
$FOD7 

$FOFD 

$F109 

$F128 

$F143 

$F148 
$F151 

$F165 

$F175 

Send 'Talk' on IEEE-488 bus. 
Send 'Listen'. 
Send 'Untalk' or 'U nlisten'. 
This routine, with three entry points, handles handshaking 
on the bus before falling through to the next routine, where 
its prepared character is sent on the bus and causes the 
device to talk or listen or otherwise respond. What happens 
is as follows: the current device number (e.g. 8 for a disk) 
is ORed with the value that A held on entry to this routine, 
and which was pushed on the stack. There are four possible 
values: A=#40 means 'Talk', A=#20 means 'Listen', and A=#3F 
and #5F mean 'Unlisten' and 'Untalk'. Of these, two are set 
on entering the routine at the appropriate entry points; while 
'Unlisten' for example requires LDA 'SF / JSR FOD7. A is ORed 
with the device number and placed into the IEEE buffer in 
$A5; it is sent from here by the next routine. Just before 
entering it, ATN (attention) is set low, Le. true, so that the 
byte is understood as a command. Consequently, after this 
routine, ATN must be set high again. Note that a character 
in the IEEE buffer which has not yet been sent is taken care 
of by the present routine: $AO, the output flag, is non-zero 
if a character is waiting in the buffer $A5, and if this situation 
applies, the character will be sent before processing the IEEE 
command. BASIC l's IEEE buffer is location $0222. 
Puts A into the buffer, sets ATN true, and sends the byte. 

Send one character on IEEE-488 bus. The character which is 
sent is the one previously stored in the buffer. The sequence 
of events is this: (i) Sets Data Valid out false; (ii) Tests for 
activity on the bus ; if none is found,ST is set to #80, to 
signal a device not present error. (iii) Loads the byte from the 
buffer, reverses it, because the IEEE convention is the reverse 
of ASCII, and stores the result in $E822, the output register. 
(iv) Loops while NRFD (not ready for data) is true; then sets 
DAV (data valid) true. (v) Sets the VIA timer and loops as 
long as. NDAC (not data accepted) is true - Le. while the 
byte has not been accepted by the device. If the timer reaches 
65 milliseconds, ST is set to #1. This is a 'Write time out' error 
if it occurs. BASIC 4 has an optional override to cancel this 
mechanism. (v) Data valid is set false; the output register 
is loaded with #FF, the IEEE equivalent of a null byte. 

Send one character and clear A TN. This is typically used to 
send IEEE commands (such as the secondary address, #$60 + 
0-15) when ATN is true and one command only is wanted. It is 
used by loading A with the character, then calling this sub­
routine, which stores A in the IEEE buffer, calls the routine 
immediately before this one, then sets attention high (false). 
Set ATN high (false). 
Optional timeout override (with Stop key test). 

Flag errors into ST. ST=l (write time out), ST=-128 (device 
not present), and ST=2 (read time out) are processed here 
in three rou tines. 

Clear IEEE control lines. 
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$E7DE $F156 $F185 Print message from table starting $FOOO. This is always called 
from F579/ F56E/ F5AD which aborts files, prints Return and a 
query, and follows the message with 'error' and an optional 
linenumber if it's in a program. The Y offset controls the 
actual message. 

$F15B 

$F167 

$F17A 

$F17E 

$F187 

$F1CC 

$F1D6 
$F1DF 

$F1F5 
$F202 

$F227 

$F164 

$F16F 

$F17F 

$F183 

$F18C 

$F1 D1 

$FlD9 
$F1 E1 

$F1F4 
$F1FF 

$F228 

$F193 

$F19E 

$F1AE 

$F1B9 

$F1CO 

$F205 

$F20D 
$F215 

$F228 
$F233 

$F25C 

Send byte; then set NDAC (not data accepted) true. 

Send IEEE character. If the buffer contains a character at 
present, that character is output, and the contents of A put 
in the buffer. Otherwise, the contents of A are put into the 
buffer, and the output flag reset from #0 to #FF. In either 
case, on exit flag $AO holds #FF, and buffer $A5 holds A. 
(BASIC 1: $021D and $0222 respectively). 

Send 'Untalk'. BASIC 4, unlike BASIC<4, sets ATN true 
before entering FOBC/FOBC/FOD7. This corrects a bug; see 
Chapter 14. 
Send 'Unlisten'. All ROMs function identically. 

Get one character from the IEEE-488 bus. The byte is return­
ed in A. This routine uses the identical timing subroutine used 
to output a character; BASIC 4 again has the option of over­
riding the time out. ST=2 if this is not done and the device 
fails to return a byte within 65 milliseconds. The sequence of 
events is: (i) Sets NDAC (not data accepted) true, and NRFD 
(not ready for data) false. (ll) Waits until DAV (data valid) 
has been set true. S T is set =2 if the wait exceeds 65 millisec­
onds (but the timer can be overridden in BAS-IC 4, by poking 
$03FC (1020 decimal) with a 'negative' number). (iii) Sets 
NRFD true, (iv) Checks EOI; if found, ST is set to #40 (64 
decimal) to indicate end-of-file. (v) Takes the byte, reverses 
it, and saves this value on the stack. (vi) Sends NDAC false, 
to indicate that the data was accepted, then waits for DA V to 
become true; finally, NDA C is set true again, and the byte is 
recovered from the stack and placed into A. 

GET a byte. The jump table entry for GET - which gets a 
character into the accumulator without assigning it to a name­
jumps here. The operation of this routine depends on the 
contents of $AF ($0263 in BASIC 1) whiCh holds the input 
device number, for example 1 for cassette #1, 3 for the screen 
and 8 for a disk unit. If the device number is 4 or more. then 
input from the IEEE bus is assumed, and the previous routine 
is used. Otherwise there are three other possibilities. 
GET from the keyboard buffer. 
INPUT a byte. The jump table entry for INPUT is here. Most 
of the logic is identical to GET - hence its position here amid 
GET. The difference is that input from device II is taken from 
the screen. 
GET from the screen. 
GET from cassette #1 or cassette #2. This routine is in two 
parts: the first reads a byte, and the next byte. so that ST 
may be set to #40 (64 dec.) on end of file, simultaneously 
with returning the last byte. The other routine is a subroutine 
which is called by the first routine of the two. It advances the 
buffer pointer and, if necessary, loads another buffer of data. 
GET from an IEEE device. This calls F187/F18C /F1CO, but 
only if ST=O. If the status byte holds any non-zero value, 
the IEEE routine is not called; instead, the carriage return 
character (#OD) is put into the accumulator. (BASIC 1 lacks 
this feature. It returns the value of ST instead). 
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$F230 $F232 $F266 Print one character to any device. The kernel jump table 
command $FFD 2 jumps to this address. Like the previous 

$F23D 
$F243 
$F247 

$F236 

$F239 
$F23F 
$F243 

$F26D 
$F273 
$F277 

GET / INPUT routine, its operation depends on a single byte 
which tells it which device is to receive output. This location 
is the current output device number, held in $BO, or $0264 in 
BASIC 1. The accumulator contains the character to be output. 
So if $B 0 holds 3, LDA #$93/ JSR $FFD2 clears the screen. 
PRINT to screen. 
PRINT to device #>3. Uses IEEE output buffer routine. 
PRINT to device #<3. This writes to tape. The tape buffer is 
one byte, location $B4 ($E9 in BASIC 1), from whence it is 
moved to the buffer appropriate to the cassette#, and, when 
this buffer is full, as measured by the pointer in $D4 ($F1 in 
BASIC 1), the buffer is written to tape. Note that the line­
feed character, with ASCII value lOA (10 decimal) is trapped 
by this routine and cannot be written as data to tape by 
this PRINT routine. 
?NOT OUTPUT FILE ERROR if 'output device' is #0 (i.e. the 
keyboard). 

$F2A4 $F26E $F2A2 Abort all files and I/O activity. This routine (i) Sets the 
number of open files flag to zero (i.e. $AE or $0262 in BASIC 
1). (ii) If the output device number exceeds 3, 'Unlisten' is 
sent; and if the input device number exceeds 3, 'Untalk'. 
The files are not CLOSEd, so files being written to may be 
incompletely processed, and there is some risk of later corr­
uption with disk files. The routine now performs:-

$F299 $F284 $F2B8 Restore default input and output device numbers. This simply 
puts #3 into the output file flag and #0 into the input device 
number flag. ($B 0 and $AF respectively - or $0263 and $0264 
in BASIC 1). 

$F2AB $F28D $F2C1 Search table for logical file number. A holds the logical file 
number on entering this routine. If the file number exists in 
the table, the 'equals zero' Z flag is set, and X holds the 
displacement from the start of the table. 

$F2B8 $F299 $F2CD Set file data from position in table. On entry, X is the offset 
from the start of each table - as found by the previous rout­
ine. The logical file number, device number, and secondary 
address are all taken from their respective tables and put into 
$D2, $D4, and $D3 which are the current values. (In BASIC 1 
these locations are $EF, $F1, and $FO. 

$F2C8 $F2A9 $F2DD Perform CLOSE. $FFC3 in the 'kernel' jump address table 
comes here. The start of this routine fetches the parameters 
used with CLOSE and stores the logical file number, device 
number and secondary address in $D2-$D4. It uses the pre­
vious routines for this. 

$F2D5 $F2B6 $F2EA $D2-$D4 are assumed set up; X holds the position of the file 
data in the three tables. Now the routine branches: 

$F2E1 $F2C2 $F2F6 CLOSE devices #1 and #2 (i.e. cassettes). This involves 
writing a zero byte on the tape, and optionally an end-of­
tape 'header' holding the marker value #5. 

$F307 $F2E1 $F315 CLOSE devices #4 and greater (i.e. all IEEE devices). 
This 'Unlistens' the device; then executes the following:-

$F30A $F2E4 $F318 CLOSE devices #0 and #3; and remove Xth item from all three 
file tables. This is carried out by decrementing the flag 
holding the number of open files; then transferring the 
previous last file details into the Xth position. effectively 
deleting the file records. 
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$F339 

$F33F 

$F362 

$F366 
$F36F 

$F37E 

$F37B 

$F37E 

$F38E 

$F39A 
$F39C 

$F3A5 

$F30F 

$F315 

$F322 

$F326 
$F32F 

$F348 

$F352 

$F355 

$F36D 

$F378 
$F37A 

$F387 

$F395 

$F343 

$F349 

$F356 

$F35A 
$F363 

$F37C 

$F38C 

$F38F 

$F3A7 

$F3B3 
$F3B5 

$F3C6 

$F3D4 

Test 'Stop' key. $FFEI in the 'kernel' jump table comes here. 
This calls an immediately preceding subroutine, then jumps to 
the start of the BASIC STOP and END routine. If the zero 
flag was set, a break occurs; otherwise, Stop wasn't pressed 
and BASIC continues normally. Note that all ROMs test for 
#EF in $E812; Stop is one of the few keys decoded in the 
same way by BASICs 1-4. It also follows that SYS 62275 can 
be used to test for Stop even if that key is otherwise disabled 
by a change in the interrupt vector. 

Send file message from $FOOOff if in direct mode. BASIC 1 has 
an apparently unreliable test for direct mode; BASIC>1 uses 
a short subroutine. The message printed depends on the 
value in Y, which is treated as an offset. (E. g. when Y =#E, 
the message is FILE OPEN). 

Load a BASIC program or other RAM image. This is not the 
BASIC entry point; this routine is called after the parameters 
have been input, and before the pointers are set after the 
load. It handles the process of fetching data into memory. 
(In BASIC 1 it is not fully separate from LOAD, but later 
BASICs have it as a separate subroutine). The device number 
as input with the parameters (e.g. LOAD "HELLO", 2 sets the 
device number parameter to 2, i.e. cassette #2) determines 
the course of this routine:-
?SYNTAX ERROR if device is #0 or #3. 
Load from any 1EEE device. A program name is assumed; its 
length is stored in $Dl and ($DA) points to its start. If $Dl 
holds zero, this routine prints ?SYNT AX ERROR. Several 
messages follow, each using a test for direct mode (see last­
but-one routine) so the screen layout is retained with a load 
from within a program. The IEEE is 'Talk'ed and the secondary 
address sent; now the actual loading begins: 
Fetch data from device. Note that BASIC 1 always sets the 
starting address to $0400. BASIC>1 uses the first two bytes 
from the bus to set the low and high bytes respectively of 
the starting address. In addition, BASIC 4 has a read time 
out defeat at this point, presumably to allow for disk read time. 
Print LOADING or VERIFYING if in direct mode. If the load 
flag ($D 4) =0, load is signalled; 1 is used for verification. 

Loop which loads data into RAM or verifies data already in RAM. 
Firstly, an inner loop handles the input of 1 byte; it tests for 
Stop and repeatedly loops until no time out on read error is 
shown in ST. Secondly, the routine branches, depending on 
whether LOAD or VERIFY is being performed: 
VERIFY. Compare byte with memory; set ST=#$10 (16 dec) if 
the two don't match. Then continue. 
LOAD. Store the byte in RAM. Then continue: 
Increment load address ($FB) or ($F7) in BASIC 1. Check 
bit 6 of ST (EO!) and continue with loop if this is 0. 
Sets the end address when LOAD or VERIFY is finished. 
I.e. transfers the incremented ($FB) contents into ($C9). 
Also Untalks and clears channel. 

Load from cassette. This routine is in three parts: the first 
sets pointers to one of the cassette buffers (which one is in­
dicated by the device number), and prints various messages, 
if the mode is direct, and also waits for the cassette key to 
be pressed. The second part finds the header: this is simply 
a buffer which contains the program or file name and some 
other data. The third part is the actual loading I verifying 
into RAM. BASIC 1, again, is more confusingly written than 
later ROM revisions. 
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$F346 $F3C2 $F401 Perform LOAD. $F3C2 from the 'kernel' jump table comes here. 
This puts " into the load/verify flag. 

$F34B 

$F3FF 
$F408 
$F415 

$F422 

$F433 

$F45C 

$F462 

$F47D 
$F482 

$F49S 

$F4BB 
$F4C3 
$F4CA 
$F4CF 

$F433 

$F3C6 

$F40A 
$F414 
$F421 

$F42E 

$F43E 

$F460 

$F466 

$F47C 
$F483 

$F494 

$F4B7 
$F4BB 
$F4C4 
$F4C9 

$F4CE 

$F405 

$F449 
$F453 
$F460 

$F46D 

$F47D 

$F49F 

$F4AS 

$F4BB 
$F4CO 

$F4D3 

$F4F6 
$F4FD 
$F503 
$F508 

$FSOD 

Entry point from VERIFY; flag is loaded with 1. (Note: this 
value must be 1; it cannot simply be a non-zero quantity, as 
it is used during the processing). 
Now, three fairly distinct operations are carried out. First, 
the parameters are fetched from BASIC and the current BASIC 
pointers are saved. The routine waits until no key on the key­
board is pressed. Secondly, the previous routine is called to 
LOAD or VERIFY the program. Thirdly, on return, there may 
be a ?LOAD ERROR, a READY. message, or, if LOAD or 
VERIFY took place from a program, BASIC is warm started, 
retaining the previous variables (up to a point-see Chapter 
5 on LOAD). 

Print SEARCH ING if in direct mode. 
If length of string is non-zero print FOR and 
print name string. 

Print LOADING or VERIFYING if in direct mode. The actual 
message depends on the LOAD / VERIFY flag. 

Fetch parameters for LOAD, SAVE, or VERIFY. The para­
meters are taken from BASIC or from the input buffer, and 
stored. In BASIC>1 they are: 
$D 1= length of string and ($DA) = pointer to start of string. 
$D3= secondary address. 
$D4= device number. 
In all BASICs these default to " length, 0 secondary address, 
and device #1 (cassette #1). 
Check for comma and evaluate parameter 0- 255. The result is 
returned in the X register. 

Send name string to IEEE-488 bus. This assumes that the 
secondary address and length have been put in $D3 and $01. 
The device is sent 'Listen' and (if it responds) the string. 
Print ?DEVICE NOT PRESENT ERROR. 
Send name string (if it exists) and close IEEE channel. 

Search for a named tape header block. This calls the routine 
to find any header, i.e. the next header on tape. When a 
header is found, its name (which starts at position 5 in the 
buffer) is compared with the stored name at ($DA). This 
process continues until end-of-tape, or until the tape runs 
out, or a match is found, in which case A holds the length 
of the name in the header (which may be shorter than the 
name searched for). 

Perform VERIFY. $FFOB in the 'kernel' jump table comes here. 
Check bit 5 of ST. 
Print ?VERIFY ERROR and exit. 
Print OK. (not from within a program). 

Fetch parameters for OPEN or CLOSE. This routine fetches 
the parameters corresponding to this schema: OPEN arithmetic 
expression [, arith. exp. [, arith. exp. [, string exp.]]]. 
The first of these, which is the logical file number, is com­
pulsory; the rest are optional. In BASIC>l, these are the 
locations which are set: 
$02=logical file number. 
$Ol=length of string, ($DA) its pointer. $D 1 defaults to 0. 
$D4=device number. Default = 1. 
$D3=secondary address. Oefault=O, or #FF with IEEE device. 
BASIC 1 equivalents are: $EF, $EE and « $F9), $Fl and $FO. 
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$F515 
$F51D 

$FS2A 

$F531 
$F539 

$F549 

$F556 

$F563 
$F566 

$F574 

$F50E 
$F516 

$FS21 

$F526 
$F52D 

$F537 

$F539 

$F549 

$F556 
$F559 

$F569 

$F54D 
$F555 

$FS60 

$F5AF 
$F56C 

$F576 

$F578 

$F588 

$F595 
$F598 

$F5A8 

Exit from parameter-fetching subroutine if end-of-statement. 
Check the existence of a comma followed by any character 
except colon or end-of-line. 

Perform OPEN. $FFCO in the 'kernel' jump table comes here. 
This routine first uses the subroutine at F433/F4CE/F50D to 
fetch and store the parameters. If the file number is zero, 
?SYNTAX ERROR is printed. If the file already exists, 
?FILE OPEN ERROR is printed. ST is made equal to zero. 
If there are already 10 open files, the routine prints ?TOO 
MANY FILES and exits. (BASI C 1 has a bug at this point 
which causes an infinite loop - see F53B to F547). 
Store the new logical file number, secondary address, and 
device number to the tables at 0251-025A, 0265-026E, and 
025B-0264. 
If device number is fl or 3, RTS - i.e. nothing more with 
screen file or keyboard file. 
IEEE device: send program name or string to IEEE bus. 
Cassette #1 or #2. The processing here depends on the sec­
ondary address. If it is the default value of 0, tape is read; 
otherwise it is written to. 
OPEN to read named file. (After WAIT: PRESS PLAY ... and 
SEARCHING ... ). 

$F579 $F56E $F5AD Print ?FILE NOT FOUND ERROR IN ... and exit. Aborts files. 

$F58B 
$F592 

$FSAE 

$FSAE 

$F5E3 

$F632 

$F64D 

$F667 
$F67D 

$F583 
$F58A 

$FSA6 

$FSDA 

$F5EB 

$F6'25 

$F63C 

$F656 
$F66C 

$F68D 

$F5C2 
$F5C9 

$FSES 

$F619 

$F62A 

$F664 

$F67B 

$F695 
$F6AB 

$F6CC 

OPEN to read unnamed cassette file (i.e. the next on tape). 
OPEN for write. This writes a header onto the tape; the 
header type character is #4. Also the secondary address, or 
#BF where this is fl, is stored for reference when CLOSEing 
the file - it indicates whether an end-of-tape block is to be 
written or not. 

Load next tape header. This saves the load/verify flag on 
the stack, reads a block. then continues to read blocks 
unless the first character in the buffer is 1,4, or 5. These 
signal program or RAM image header, data header, and, lastly, 
when #5, an end-of-tape header. In either of the first two 
cases, FOUND with 16 characters maximum of the name is 
printed, if load is in direct mode. On exit, A holds #0 if an 
end-of-tape header was read; otherwise, A holds #1. 

Write tape header. On entry, A holds the type-of-header byte 
(see previous routine's notes). Most of this routine is then 
occupied with putting data into the buffer. ($D6) points to the 
start of the cassette buffer, which is filled with spaces by a 
short loop. The following bytes are now stored in the buffer: 

TYPE FLAG LOW THEN HIGH LOW THEN HIGH PROGRAM NAME: 
(#1,#4 OR #5) BYTES OF (FB) BYTES OF (C9) LENGTH=UP TO $D1 

Sets the buffer start and end address and writes to tape. 
(FB) and (C9) point to the low byte and high byte of RAM 
area to be written. $C 3 holds a timing value, #69, controlling 
the amount of tape to which a tone is written before the header 
proper is written. 

Tape address subroutines. When reading a tape, this first 
subroutine takes the start and end addresses from the bytes 
loaded from the header. They are put into (FB) and (C9), 
the start and end addresses respectively. BASIC 1: (F7) & (E5). 
Sets pointer (D6) = 027A or 033A for device #1 or #2. 
Sets (FB) and (C9) from (D6) - set by the previous routine­
to (D6) and (D6) + #$CO (192 decimal). 
Sets (FB) and (C9) to start and end of BASIC. Used in LOAD. 
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$F695 $F684 $F6C3 Perform SYS. $FFDE from CBM's 'kernel' jumps here. The 
routine evaluates any arithmetic expression, rounds it down 
and loads the result into ($11), if its value is within the 
acceptable range for SYS (0-65535). It performs an indirect 
jump to ($11). 

$F69E $F69E $F6DD Perform SAVE. $FFD8 from CBM's 'kernel' jumps here. This 
routine first inputs the parameters from BASIC by calling 
F433/F43E/F47D. This stores the string and its pointers, the 
device number, and the secondary address. Then BASIC's 
start address and end address pointers are transferred to 
the SAVE start and end pointer addresses. All the parameters 
are now set up for SA VEing . 

$F6Bl $F6A4 $F6EO This is the next entry point, which is used by the monitor 
and may be part of a user routine: all that's required is 
the parameters for device number, bottom and top address, 
pointer to name, length of name, and secondary address to 
be set, as though the previous two subroutines had been 
called. Note that the topmost address is not saved; with 
BASIC this doesn't matter, but machine-code dumps from RAM 
may very well crash if they're truncated by a byte. 

$F6B5 $F6AB $F6E7 ?DEVICE NOT PRESENT if device number is #0 or #3. 

$F6CO $F6B3 $F6F2 SAVE to IEEE device. This performs the following steps: 
(i) Secondary address is made 1. 
(ii) ?SYNTAX ERROR if program name has length zero. 
(iii) Send name to IEEE and secondary address. 
(iv) Make (C7) and (C9) the start and end addresses of the 

part or RAM to be SAVEd. 
(v) Send the contents of C7 and CB. On LOAD, these are 

used to determine the address from which bytes will be 
stored in RAM again. 

(vi) Characters are sent one by one until the lower pointer 
has been incremented to equal the higher pointer. Also 
Stop is tested; so SAVE may be aborted by the Stop key. 

(vii) The channel is cleared and the device Unlistened. 

$F6F6 $F70 3 $F7 4 2 SAVE to cassette #1 or #2. This performs the following steps: 
(i) Set buffer pointer to 027A or 033A depending on device #. 
(ii) Print PRESS PLAY AND RECORD ON TAPE #1 or 2. 

Wait for cassette keypress - hopefully of the correct keys. 
(iii) In direct mode, print WRITING and name. 
(iv) Write the header with type character = 1. 

$F70D $F71B $F75A (v) Write the contents of RAM from the lower to the higher 
address. 

(vi) If the secondary address has bit lon, i.e. secondary 
address was 2, write another header with type character 
= 5 to signify an end-of-tape marker. 

$F736 $F729 $F768 Update the clock I Save Stop or Reverse key. $FFEA in the 
'kernel' jump table calls this routine. In addition to adding 1 
to the clock (usually), this saves the contents of $EB12 in a 
special location, $9B or $0209 in BASIC 1. This is used as a 
test for the stop key; it becomes #EF if Stop is pressed. 
Some other keys are also detected; see the keyboard decode 
tables at about E600 for this. Only Stop is constant between 
the B032 and other PET ICBM machines, which is why the 
screen scrolling is slowed by Reverse in non-B032 machines, 
and by the back arrow in the B032. 

$F736 $F729 $F76B Increment the correction clock; if it is #026F, reset to zero 
and skip the jiffy clock increment. 

$F74E $F73B $F77 A Increment the jiffy clock. This is in $BD- $BF ($0200- $0202 in 
BASIC 1) with the most significant byte first. 
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$F75B 

$F774 
$F77C 

$F788 

$F7BB 

$F745 

$F75C 
$F762 

$F76D 

$F770 

$F784 

$F79B 
$F7A1 

$F7AC 

$F7AF 

Compare the jiffy clock's value with the constant held in the 
table below. If identical, reset the jiffy clock to zero by 
putting " into each byte. 
Reset correction clock to zero. 
Get keyboard PIA value (with debounce) and store it: i.e. 
fetches contents of $E812 and puts result in $9B or $0209. 
Table of three bytes. they are #4F, #lA, #01. This is the 
constant for 24 hours. 79*2562 + 26*256 + 1 = 5 184 001, 
which is 24 hours of 1/60th sec + 1 extra 60th second. 

Set Input device. $FFC6 of the 'kernel' jump table comes here. 
On entry, the X register holds the logical file number of an 
open file. This makes an IEEE device a Talker. See the 
description under FFC6 in the table of common kernel routines 
for details. BASIC 4 is slightly different from BASIC<4, since 
it clears DS$ in addition to ST. The DOS wedge program's 
source listings refer to this routine as 'Check out'; three 
errors can occur, causing ?FILE NOT OPEN, ?NOT INPUT 
FILE, or ?DEVICE NOT PRESENT error messages to appear. 

$F7DC $F7BC $F7FE Set Output device. $FFC9 of the 'kernel' jump table comes 
here. On entry, X holds a logical file number. The IEEE 
device corresponding to this file becomes a Listener, provided 
no error is detected. This routine, like the previous one, can 
print one of three possible errors, which are ?FILE NOT OPEN, 
?NOT OUTPUT FILE, and ?DEVICE NOT PRESENT. See the 
description under FFC9 in the table of CBM kernel routines 
for more details. Note that this latter pair of routines, 
'Check in' and 'Check out', only actually influence the peri­
pheral device when this is on the IEEE bus, i.e. with device 
number greater than 3. Tape, screen, and keyboard files are 
merely validated, and the current input device number or 
output device number is set so that prompting messages and 
so forth are not printed where this would be superfluous. 
The input device number is stored in $AF or $0263, and the 
output device number in $BO or $0264 (BASIC>l and BASIC 1 
respectively) . 

CASSETTE TAPE OPERA T I NG SYSTEM 

$FB2D $FB06 $FB4B Increment tape buffer pointer. This short subroutine (i) sets 
($D6) to 027A or 033A, depending on the device number in 
$D4; (ii) increments either $BB or $BC, again depending on 
$D4; (iii) compares the result with #CO (192), so that if Z is 
set on return from the subroutine, the pointer points to the 
end of the buffer. 

$FB3B $FB12 $F857 Test cassette keypress. If a cassette key is pressed when this 
routine is entered, nothing further is done; exit immediately 
takes place. Otherwise, PRESS PLAY ON TAPE #1 or 2 is 
printed to the screen. Now a loop is entered; this repeatedly 

$F851 $F828 $F86D tests the Stop key and the cassette. A cassette keypress 
prints OK and the routine is finished; the Stop key of course 
aborts the tape read. 

$F85E $F835 $F87 A Test cassette keys subroutine. If the Z flag is set, a key is 
pressed; if not,not. So for example LABEL JSR F87A/ BNE LABEL 
loops indefinitely until a key is pressed. $E810 is tested for 
bit 4 (tape #1) or bit 5 (tape #2) high. 

$F871 $F874 $F88C PRESS PLAY AND RECORD ..• This is identical to the routine 
which tests the cassette for a keypress, following this with 
PRESS PLAY ON TAPE .•• except that an additional message, 
AND RECORD, is interpolated before entering the earlier 
routine. 
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$F87F $F8SS $F89A Read Tape. On entry, (FB) and (C9) point to the low and 
high locations in RAM into which tape data is to be loaded. 
(F7) and (E5) are BASIC l's equivalents. This subroutine 
can be used to read any blocks from a CBM tape. 

$F87F $F855 $F89A Sets ST=O, sets load/verify flag to load, and sets (FB) and 
(C9) according to device number 1 or 2 in $D4 or $F1 with 
BASIC 1, to 027A-033A or 033A-03FA. So exactly one block 
will be read into one or other cassette buffer. This routine 
loads a header for F5AE/F5A6/F5E5; the block can be identif­
ied as a header by its first byte, #1, #4, or #5. 

$F88A $F85E $F8A3 This routine skips the call which sets (FB) and (C9) to point 
to a cassette buffer. It loads data direct into RAM from tape. 
It does not read blocks of data, but consecutive bytes written 
one after another. If there is a checksum or other error the 
second copy of the program on tape is likely to be able to 
correct the load; the probability of an unrecoverable error 
increases with program length. 

$F890 $F864 $F8A9 Initialise for tape read. The interrupt is masked and these 
locations zeroised: 

$F8A8 

$F8A3 

$F8B9 

$F8BC 
$F83B 

$FD1B 

$F8DC 

$F8F6 

$F873 

$F882 

$F886 

$F889 
$F890 

$F89B 

$F8A8 

$F8CO 

$F8CA 

$F8ED 

$F8C7 

$F8CB 

$F8CE 
$F8D5 

$F8EO 

$F8ED 

$F905 

$F90F 

$CO,$C1, $C2, $CB, $CE and $B2 

With cassette #1, CAl, and with cassette #2, CA2 is enabled. 

X is loaded with tOE and the tape read/write routine FD1B/ 
F89B/F8EO entered. tOE corresponds to the fourth interrupt 
vector from the table of tape interrupts. 

Write Tape. This first entry point is used to write data files to 
tape; it sets addresses (FB) and (C9) from the cassette device 
number, then: 
Set inter-block time counter, $C3, to 20 decimal, then: 
Write consecutive bytes from RAM to tape. This entry-point 
is used to write headers; however, a larger value, 105 decimal, 
in the counter $C3 ensures a longer delay than obtains with a 
block of data. Timer #2 in the VIA is interrupt-enabled; this 
is used to control the timing of writing onto tape. X is loaded 
with #8 (corresponding to the first interrupt vector from the 
table of tape interrupts) and the following is performed: 

Tape read/write subroutine. This is shared by both of the 
other routines on this page. It sets a new IRQ; with Read, 

* the vector is F95F /F931/F976 (when offset X=#OE), and with 
* Write FCCF/FC54/FC99 (when X=#08). This interrupt will be 

made active when the interrupt mask is cleared with CLI. 
$E813 is decremented; this, like POKE 59411, disables the 
normal retrace interrupt; only the cassette interrupts are now 
enabled. Also, several counters and flags are initialised. 
Now the cassette motor is switched on. This involves setting 1 
bit low; the process is the reverse of FFED/FCA6/FCEB, which 
turns both motors off. 
1/3 rd second delay for motor to pick up speed. (Omitted in 
BASIC 1, which helps explain its greater unreliability). 
Sets timer #2, clears the interrupt disable mask, and waits for 
the IRQ vector to be reset to normal. It tests the Stop key 
and also updates the clock when the retrace interrupt flag is 
high, so the clock (and the Stop key test) are both updated 
in the normal way. The processing is done during the inter­
rupts, at the addresses listed above; see locations marked *. 
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$F913 

$F91E 

$F92E 

$F95F 

$FAA3 

$FAC5 
$FBll 
$FB23 

$FBSB 

$FBDC 
$FBE5 
$FBEC 

$FCOO 

$FC21 

$FCCF 

$FCFB 

$FFED 
$FD7C 

$FD90 

$FSE6 

$FSFO 

$F900 

$F931 

$FA57 

$FA76 
$FABB 
$FACF 

$FB2B 

$FB76 
$FB7F 
$FBS4 

$FB93 

$FBB4 

$FC54 

$FC7B 

$FCA6 
$FCB4 

$FCC6 

$F92B 

$F935 

$F945 

$F976 

$FA9C 

$FABB 
$FBOO 
$FB12 

$FB70 

$FBBB 
$FBC4 
$FBC9 

$FBDS 

$FBF9 

$FC99 

$FCCO 

$FCEB 
$FCF9 

$FDOB 

Await IRQ's return to normal; test Stop key and action it if 
it's pressed. This tests Stop with the usual routine, but mod­
ified because the tape and interrupt vector need to be aborted. 
In addition the IRQ vector is examined - in fact its high byte 
only, which is enough - and the 'equals zero' flag is set true 
when this happens. 

Set VIA timer #1 to new value, synchronized with timer #2 
becoming zero. Timer #1 is set to a multiple of the contents of 
$CB Or $E7 with BASIC I, and the entry value of X. The 
timing is uesd by the tape read routine. 

Read bits from tape: interrupt entry when table offset = #$OE. 
After a timed delay, this routine sets timer #2 to a 65 milli­
second cycle and and reads the tape. $DF builds up a byte 
by rotating each bit in consecutively. When S bits have been 
input, the 'byte received' flag in $B2 is set, and the byte 
stored in RAM. 
Store bytes in RAM. This stores characters from (FB) up to 
(C9). It also performs the tape error checking: 
Flag 'Long Block' error into ST, setting bit 2 of ST (=S dec.). 
Flag 'Short Block' error into ST, setting bit 3 of ST (=4 dec.). 
Comparison and error-storing routine, which puts errors into 
the low end of the stack ($0100 ff.) and compares, where 
necessary, on the second read. 
Flag' U.nrecoverable Read Error' into ST, setting bit 4 of ST 
(=16 decimal). 

Puts (FB) into (C7) - header pointer back to start of buffer. 
Flag contents of A into ST byte. 
Reset flags for new byte. Sets various flags to 0, and the 
bit counter $B7 - 026C in BASIC 1 - to #S. 
Write a tone to tape. Timer #2 is loaded with a value, and 
the cassette output bit is reversed by EOR. This is used to 
write a bit to tape. The timer is loaded with #0060, #OOBO, 
and (next routine) #0110, giving different frequencies. 
Within this routine, the timer's value depends on the contents 
of $DD ($FC in BASIC 1). If this is even, #60 is loaded; if 
it is odd, #BO. 

Write bits to tape: interrupt entry when table offset = #$OA. 
This uses the previous routine to write a tone onto tape. The 
actual frequencies used for bits fl and I, and details of the 
parity bit and inter- byte marker, are quoted in 'The PET 
Revealed' on pp. 136-7. 

Write a block to tape. This is called from 'Write header'. It 
starts by loading the timer with #$7S and writing the corre­
sponding frequency to tape. It resets the flags and delays, 
for a length of time corresponding to the counter in $C3, 
which is decremented with every interrupt. Finally, the IRQ 
vector is replaced by that corresponding to an offset of lOA 
from the table of IRQ vectors, at FC211FBB4/FBF9. When the 
interrupt disable flag is set to fl, this routine performs writing 
during interrupts; meanwhile, $DE counts the blocks remain­
ing to be written. 

Turn off motor/ turn off abnormal interrupts / restore IRQ. 
VIA interrupt enables are returned to normal, i.e. produced 
by the retrace interrupt. 
Turn off motors. (In BASIC 1 this runs into the NMI vector). 
Perform checksum and increment pointer. Checksum is EOR of 
all bytes and is stored in $C3 «$0279 in BASIC 1). 
Check whether low address has been incremented as far as the 
high address; if so, the 'equals zero' flag, Z, is set true. 
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BASICl BASIC2 BASIC" 

$FD38 $FCDl $FD16 Power-on Reset. (FFFC) in the 6502's hardware vectors points 
to this address; this is the first software activity which occurs 
on switching on the macine. It may also be called during the 
course of a program; for example, SYS 64824/64721/64790 from 
BASIC clears RAM and resets all major pointers (it does, how­
ever, also leave the cassette buffers and some other RAM 
untouched). There is an optional branch when this routine is 
called: if bit 7 of $E810 is high (this line is called the 'dia­
gnostic sense line' because of its behaviour in BASIC 1), the 
monitor is called rather than BASIC. This is the reasoning 
behind one of the reset switches of Jim Butterfield, which 
relies on simultaneously holding $E810 high and pulling the 
reset line to the 6502 low. In this way, BASIC is preserved. 
BASIC 1 does not have the monitor; the branch executes a 
diagnostic routine, which was dropped from later BASICs. It 
required some wiring to the ports (see e. g. 'The PET Reveal­
ed' for an account of this. Note that the keyboard connector 
too has to be disconnected from the main board and wired up). 

$FD3F 
$FD9B 

$FD28 

$FCD8 
$FCF3 

$FCF8 

$FCFE 

$FD01 

$FD11 

$FFB1 

$FDlE 
$FD3E 

$FD43 

$FD49 

$FD4C 

The following operations are performed: 
(i) Set the stack pointer to #FF (i.e. top of the stack); clear 
the decimal flag, which may be set; set the interrupt disable 
flag, in BASIC 4 - a precaution which the other ROMs don't 
take; set the I/O registers, calling E1E1/E1D1/EOOO - and, in 
the 8032, tinkling the bell; this also sets the IRQ vector. 
(ii) Point NMI to - /C389/B3FF, where it will simply print 

READY. (BASIC 1 has no NMI vector in RAM). 
Point the BRK interrupt to the B* entry point of the 
monitor. (Not in BASIC 1). 
Point USRCMD of the monitor to print ? when an unrec­
ognised monitor command is entered. 

(iii) Clear the interrupt flag and jump to initialise BASIC or 
exceptionally to C* in the monitor, if the diagnostic sense 
line is high. 

Set vectors except BRK. 
Test PIA for diagnostic sense. 
Diagnostic routines of BASIC 1. These are activated in a wired 
up PET on switchon. Like the tape routine they use interrupt 
vectors rather freely; the table of interrupts in BASIC>l has 
gaps left over in it apparently because of this. Oddly, if an 
error is detected, the routine goes into an infinite loop; there 
are many of these in ROM. Some memory routines are usable 
without hardware; for example,* the entire contents of FDDD­
FDFA (64989-65018) may be moved to RAM, with an RTS poked 
at the end; this routine will perform a checksum on ROM from 
COOQ-E7FF and FOOO-FFFF, the result of which should be zero, 
held in $0279 (633 decimal). 
In BASIC 2, Monitor entry is FDll, BASIC initialisation E1l6. 
In BASIC 4, Monitor entry is D472, BASIC initialisation D3B6. 
NMI vector. BASIC>l performs indirect jump to (0094). 

Table of IRQ vectors for tape handling routines (and diagnos­
tics in BASIC 1). 

Machine-language monitor. In BASIC 4 this has been moved 
to D472, so I have put its ROM details there, following the 
sequence of BASIC4 rather than BASIC 2. 
Millenial copyright statement: C 0978 CBM. 

*This suggestion was made in an IPUG newsletter. 
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$FF93 
$FF96 
$FF99 
$FF9C 
$FF9F 
$FFA2 
$FFA5 
$FFA8 
$FFAB 
$FFAE 
$FFBl 
$FFBII 
$FFB7 
$FFBA 
$FFBD 

$FFCO to $FFEA ----

$F52A 
$F2C8 
$F78B 
$F7DC 
$F27D 
$F1DF 
$F230 
$F346 
$F69E 
$F4BB 
$F695 
$F339 
$F1CC 
$F2A4 
$F736 

$FFED 

$F521 
$F2A9 
$F770 
$F7BC 
$F272 
$F1 E1 
$F232 
$F3C2 
$F69E 
$F4B7 
$F684 
$F30F 
$F1D1 
$F26E 
$F729 

$F560 
$F2DD 
$F7AF 
$F7FE 
$F2A6 
$F215 
$F266 
$F401 
$F6DD 
$F4F6 
$F6C3 
$F343 
$F205 
$F2A2 
$F768 

---- ($FFFA) ----

---- ($FFFC) ----

---- ($FFFE) ----

The 'Kernel': Disk routines only. 

CONCAT. Jump address: DAC7 
DOPEN 0942 
DCLOSE DA07 
RECORD D7AF 
HEADER 0902 
COLLECT DA65 
BACKUP DA7E 
COPY DAA7 
APPEND 0977 
DSAVE DBOD 
DLOAD DB3A 
CATALOG or DIRECTORY 0873 
RENAME DB55 
SCRATCH DB66 
GET DS$ (DISK STATUS) 0995 

Kernel jump table: see next page. 

$FFCO (OPEN) - jump address. 
$FFC3 (CLOSE) - jump address. 
$FFC6 (Set input device) - jump address. 
$FFC9 (Set output device) - jump address. 
$FFCC (Restore default I/O) - jump address. 
$FFCF (Input a byte) - jump address. 
$FFD2 (Output a byte) - jump address. 
$FFD5 (LOAD) - jump address. 
$FFD8 (SAVE) - jump address. 
$FFDB (VERIFY) - jump address. 
$FFDE (SYS) - jump address. 
$FFE1 (Test Stop key) - jump address. 
$FFE4 (Get 1 character) - jump address. 
$FFE7 (Abort all I/O) - jump address. 
$FFEA (Update clock/ store key) - jump address. 

Turn cassette motor(s) off. This subroutine ends with RTS, 
#$60 in hexadecimal, which 'mangles' the low byte of the NMI 
vector. 

NMI vector: 
BASIC 1: $CA60 enters a routine to print a character. 
BASIC 2: $FCFE 
BASIC 4; $FD49 

Reset vector: 
BASIC 1: $FD38 
BASIC 2: $FCD1 
BASIC 4: $FD16 

IRQ vector: 
BASIC 1: $E66B 
BASIC 2: $E61B 
BASIC 4: $E442 
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The 'Kernel ' : Routines common to all CBM BASICs. 

FFCO OPEN Identical to BASIC OPEN. 

FFC3 CLOSE Identical to BASIC CLOSE. 

FFC6 SET INPUT DEVICE LDX #logical file number/ JSR $FFC6 prepares the 
logical file number in X for input. The routine preserves A, X, and Y; file 
details of device and secondary address are taken from the tables. In the 
case of IEEE devices, 'TALK' is sent. This routine also checks that the file 
is ready: if the file isn't open, ?file not open error results; if the file is 
open to tape with non-zero secondary address, ?not input file results; and 
if the high bit of ST is set, ?device not present error results. (Other IEEE 
errors may be reflected in ST and DS). 

FFC9 SET OUTPUT DEVICE LDX #logical file number/ JSR $FFC9 prepares the 
logical file number in X for output. The routine preserves A ,X, and Y; 
file details of device and secondary address are taken from the tables. In 
the case of IEEE devices, 'LISTEN' is sent. This routine also checks that 
the file is ready; if the file hasn't been opened, ?file not open error will 
appear; if the file is open to the keyboard or to a cassette file with zero 
secondary address, ?not output file results; and if the high bit of ST is 
set, ?device not present error results. (Other IEEE errors may be reflected 
in ST and DS). 

FFCC RESTORE DEFAULT I/O Makes the output device 3 (i.e. screen) and the 
input device 0 (i.e. keyboard). The locations involved are $BO and $AF 
respectively ($0264 & $0263 in BASIC 1). In addition, an output device on 
the IEEE is unlistened, and an input device sent the un talk command. 
None of these files are closed by the routine. Note that X and Y registers 
are preserved. (BASIC<4 has a bug: see Chapter 14 on the IEEE bus). 

FFCF INPUT ONE CHARACTER This routine is a subset of INPUT and INPUT#, 
which takes in a single character and - in the case of screen input - prints 
a flashing cursor and advances the cursor on input. (Some monitor source 
code calls it 'RDT'). It sets ST to zero, then, according to the input device 
number ($AF or $0263) separates into keyboard/ cassettes/ screen/ or IEEE 
routines. In each case on return A holds the input character. Note that the 
contents of X and Yare unchanged. If ST<>O, IEEE devices return HOD. 

FFD2 OUTPUT ONE CHARACTER This routine is called by PRINT and PRINT#; 
it outputs the contents of A to any device. In the case of the screen, the 
character is treated as CBM 'ASCII', so e. g. LDA #$93/ JSR $FFD 2 clears 
the screen, if the output device is 3. The output device (location $BO or 
$0264) determines whether cassette, screen, or IEEE output obtains. The 
contents of A,X, and Yare preserved. 

FFDS LOAD Identical to BASIC LOAD. 

FFD8 SAVE Identical to BASIC SAVE. 

FFDB VERIFY Identical to BASIC VERIFY. 

FFDE SYS Identical to BASIC SYS. 

FFEl TEST STOP KEY JSR $FFEI (that's all!) within machine code tests the 
key-image stored by the clock update routine to see whether STOP was 
pressed. If so, files are aborted (effectively by FFCC) and READY appears. 
If $9B ($0209 in BASIC 1) is forced to #FF, this will no longer work. 

FFE4 GET ONE CHARACTER Almost identical to FFCF except that keyboard input 
is taken from the keyboard buffer. So that, for example, the equivalent of 
10 GET X$: IF X$="" GOTO 10 is JSR $FFE4 I BEQ -5, X and Yare retained. 

FFE7 ABORT ALL I/O Sets the number of files open to zero, then in effect calls 
FFCC. The files are not closed. CLR and similar routines call this. 

FFEA UPDATE CLOCK AND STORE KEYPRESS increments the jiffy clock (unless 
the correction clock resets) and saves the keypress which FFEI uses. 
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CHAPTER 16: MATHEMATICAL PROGRAMMING 

16.1 Computation 

Accuracy What do these three expressions have in common? 
.55 + .32 .87 
3/5 * 5 = 3 
.01 + .05 = .06 

The answer - which applies to those machines (PET, Apple, etc.) using Microsoft 
BASIC of single-precision accuracy - is that they are all false. At first sight this is a 
disturbing fact, but all computers with digital storage have this problem, so there is 
no need to be over -concerned. When I say that all computers have this problem, I mean 
that the difficulty is inherent in these machines. A number like 1/3, for example, 
which is expressible as an exact fraction, can't be stored as an expansion in decimal 
or binary form without losing accuracy. Large machines, or those with 16-bit chips or 
more precision in the way they store numbers, are less prone to problems of this sort 
than small ones, but the basic difficulty remains. Chips which perform only calculation, 
as used in the DAI for example, have internal registers which indicate when a result 
has been rounded, and also the lower and upper limits of the result. To ensure that 
no problems are met with in programming the CBM, we need to examine the numbe,r 
storage system. Leaving aside integers, with which no loss of precision is possible, 
floating-point values are stored in RAM as 5 bytes. Chapter 4 shows how numbers 
are stored both as variables and in the floating-point accumulator. The accuracy is 
greater in the accumulators than in variable form, because an extra byte is used to 
retain values which are later rounded when the result is stored further up in RAM as 
a variable's value. Such values are stored like this: 

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 

EXPONENT SIGN BIT AND MANTISSA 2 MANTISSA 3 MANTISSA 4 
MANTISSA 1 

This is a very standard arrangement, in which every increase in the exponent (byte 
1) doubles the value, and where the mantissas are arranged in decreasing order of 
significance. A single bit holds the sign. To make this clear, let's consider some ex­
amples. The non-mathematically minded may like to skip this section (and probably the 
entire chapter too), although I don't recommend this. 

Firstly, the exponent. If a variable, say X, is put equal to a number (X =3, for 
instance), the five bytes which store the number can be peeked from RAM, and we 
can attempt to decode what we see. X=3 and X=6 give these results: 

! I ~~~ I :: I ~ I ~ I ~ I 
The only difference between 3 and 6 as stored is in the exponent. A difference of 1 
doubles/ halves the result. The exception is a zero exponent; the value is then zero. 

Secondly, the sign bit. Two other specimen values give these results: 

-1. 5 
1.5 

The sign change is signalled by the high bit of Mantissa 1. This of course corresponds 
with the minus flag on th~ 6502, which makes for easier programming. There is no 
point in taking up more space than 1 bit, since a sign has only two alternative values. 

Thirdly, the mantissas. Because the highest bit is used for the sign, the num­
ber's value is stored in 4 bytes less 1 bit, making 31 bits in all. The significance of 
these bits is hard to explain: they span a range from 1 to 1.999999... which, when 
muliplied by an exponent, itself of form 2n , takes in the entire range from about 
10-38 to 1038 with accuracy of 1 part in 1010. The following formula will convert any 
numeral stored in this way into its numeric equivalent: 
(-1) i (M1 AND 128) * 2 j(EXP-129) * (1 + «M1 AND 127)+(M2+(M3+M4/256)/256)/256)/128) 
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The following examples may make the meaning of this formula less obscure. They cover 
a limited range, from 3 to 8:-

3 
4 
5 
6 
7 
8 

130 
131 
131 
131 
131 
132 

64 
0 

32 
64 
96 

0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

Numbers between 4 and 7.9999 ... have the same exponent, 131. The sets of figures 
here recur for the whole range of exponents, giving 8,10,12,14 next, 2,2!,3,3t pre­
viously, and so on. The exponent, minus 129, and raised to the power 2, multiplied 
by the mantissa, gives the result, and we can see from the examples of 4 and 8 that 
a constant 1 is added to the mantissas. The following bits are weighted, so that div­
ision of the bytes by 128,256,256, and 256 successively scales down the final bit to an 
appropriately tiny value, and assigns the greatest weight to the earliest bits. The 
examples are translated like this: 

3 2 1'1 mu1 tiplied by 1 + 64/128 = 2*li =3 
4 2 l' 2 1 + 0 = 4*1 =4 
5 21'2 " 1 + 32/128 4*1 1/4 =5 
6 21'2 1 + 64/128 4*li =6 
7 2 l' 2 1 + 96/128 4*1 3/4 =7 
8 2 l' 3 1 + 0 8*1 =8 

To decode a number, using a pocket calculator (or a PET!) the easiest method is to 
start at the lowest byte, divide by 256, add the next, divide by 256, add the next, 
divide by 256, and finally add mantissa 1, less 128 if it exceeds 127, divide by 128 
and add 1. The result, between 1 and 1. 99999 ... must then be scaled up or down 
according to the exponent, and assigned positive or negative sign. This is what the 
formual on the previous page does. Here are some further examples, with their correct 
values at the foot of the page, for those who want to test their grasp of the idea: 

125 124 185 35 163 
136 16 192 0 0 
155 62 188 31 224 

Conversely, let's see how to express a real number in floating-point form. Let's take 
-13.2681 as an example. The minus sign means we must set the high bit of mantissa 1. 
8 is the nearest power of 2 to 13.2681, as 23 =8. So the exponent is 129+3=132. 
13.2681 = 8 * (1+5.2681/8) = 8 * (1+ .6585125). The value following 1 is the number 
which is to be approximated by the mantissa: 

.6585125 * 128 = 84.2896, 

.2896 * 256 = 74.1376, 

.1376 * 256 = 35.2256, and 

.2256 * 256 = 57.7536. 

Therefore, the nearest approximation is: 

11321212 1741351581 

Section 16.9 gives machine-code routines to perform these conversions; this is useful 
when finding the values stored in ROM tables and in RAM. We can put this knowledge 
to work in avoiding rounding errors. Since 31 bits store the value of any number, a 
numeral which does not overrun the final bit will be held exactly. Integers up to about 
2 31 are held without loss of accuracy. The extreme value may be found by tests like 
PRINT 2 150 000 000 = 2 150 000 001, until the answer is -1, meaning 'true', for a large 
enough number, at which point the smallest bit no longer distinguishes the very last 
figure. Calculations on exact integers (i.e. from about - 2 31 to 2 31 are, so far as I 
know, accurate, when addition, subtraction, multiplication and division are involved, 
although obviously functions such as SIN or LOG will involve rounding error. This is 
the reason that loops with integral values execute correctly. FOR J=l TO 100000: NEXT 
executes correctly up to the last value, which is stored as though J=100000 had just 
been entered. Decimals are less immediately obvious. There will be errors if the frac­
tion is not some combination of l. 1/4, 1/8, 1/16, .•• , 2-31. A loop with step-size 1.5, 
or 2.75, or 7.125, or .00390625, will execute correctly; but 3.4 or 9.26 or 12.87 will 

Decimal values are .1234, 144.75, and 99999999 respectively. 
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not, since these are stored as repeating numbers in the binary system, like 1/ 3 in the 
decimal system. There is also a problem of the relative magnitude of the numbers con­
cerned .. 00390625 (=1/256) is stored exactly; but if it is added to a huge integer, 
which also is stored exactly, some precision is lost because of the difference between 
exponents of the two numbers. Some of the smaller number's bits will be lost; in effect 
it will be truncated. 

As an example of the application of this knowledge, the program which follows, 
and a specimen run, divides two decimal numbers, printing the result with no loss of 
accuracy. The program run divides 123 by 19, printing 75 decimal places of the result. 
Its BASIC looks more complex than is really the case: line 20 checks the input values 
of numerator and denominator; lines 30 and 50 are complicated by the need to delete 
spaces before numbers, a frequent irritant with PET BASIC. Line 30 prints the number 
preceding the decimal point; line 40 updates the numerator, removing the equivalent of 
the part just printed by line 20 or 50; and line 50 prints a single digit. The lines with 
N stop the loop after N decimal places. The point is that no error is introduced by the 
calculations in 30 - 50. 

INDEFINITE PRECISION DIVISION: 

10 INPUT "X,Y,N"; X,Y,N 
20 IF X > 21E8 OR Y > 21E8 OR Y <> iNT(Y) OR X<>INT(X) THEN PRINT "ERROR": EN[ 
30 PRINT INTCX/YH "CLEFT). U, 
40 X = (X - INT(X/Y)*Y) * 10 
50 PRINT MID$(STR$(INT(X/Y»,2), 
60 N '" N-l 
70 IF N)l THEN 40 

READY. 

EXAMPLE 
X,Y,N? 123 

11 19 
?? 75 
6.47368421052631578947368421052631578947368421052631578947368421052631 

This decimal repeats every 18 digits (=19 - 1). This is a consequence of the fact that 
19 is a prime number. The sequence of digits repeats indefinitely • and this process is 
similar to that by which pseudo-random numbers are generated, in which each number 
is derived from the previous, and the sequence repeats, but its cycle is large enough 
for the numbers to be considered 'random'. As a more ambitious example, this decimal 
repeats every 330 digits (45678 = 2*3*23*331). 

X,Y,N? 12345 
1? 45678 
'11 75 
0.270261394982267174569814790489951398922895047944305792722973860501773 

If a calculation can be subdivided in this way, there is no risk of rounding error. But 
numbers may simply be too great to be susceptible to this approach. Multiplication is a 
good example; see DBL (Chapter 5) on this. Section 16.9 has a machine-code mUltiplic­
ation program accurate to 250 figures. Not many accountants believe their figures to 
be accurate to a few parts in ten billion, and it is often unnecessary to bother with 
large-figure accuracy. Small figures, paradoxically, may give trouble. I can remember 
a demonstration of an incomplete records accounting system which, at the end of a long 
period of input of figures, announced that the totals didn't balance. The balancing 
amount was revealed to be zero. Obviously the figure was held as .00000001 or some­
thing similar, and a test for 'equality' was used which required all the bits to be 
identical. The result should have been rounded to the nearest penny / cent. Some 
computers (e.g. DEC) have an 'approximate equality' function, definable by the user 
so that two values are considered to be equal if they are within a certain small value 
of each other. The PET equivalent is ABS (X-Y) < .0001, or whichever value is 
selected. Accuracy has to be considered in any serious system involving numbers. New 
ROM issues of BASIC promise to have more precise arithmetic available, using the 6502 
type chip's decimal mode; details of this are not available, but presumably decisions 
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will have to be made on which variables should use this mode, and perhaps how many 
bytes ought to be allocated. In the case of current CBM it may be worth performing 
arithmetic in integers only (i.e. floating-point numbers having integer values). Some 
calculations yielding non-exact values, for example percent markups, will have to be 
rounded at each stage. A trial program will show whether this is necessary. With luck 
it won't be. Some calculations though, which are within CBM equipment's capacity, can 
come past the point where small cumulative errors show: stocktaking ('inventory' in the 
U. S .) may show small errors between totals and subtotals. 

In mathematical work, the rule should be to prefer methods which yield a result 
with the smallest relative error, where there is a choice. Three examples, involving 
the statistical concept of standard deviations, the solution of quadratic equations, and 
series summations should illustrate this idea adequately: 

(i) Standard deviation. This statistical concept is related to the normal distrib­
ution and to the idea of the average or 'mean'. It is a measure of variation, equal to 
the average of the sum of squares of deviations of each item from the joint mean. Let's 
take a simple example: two numbers only have been taken, the result of some measure­
ment, and these are 1000 and 1001. We assume they are completely accurate. Their 
mean is 1000.5, which we can assume is the mean of their total distribution: all we are 
interested in here are computational problems. The deviations from the mean are -.5 
and .5; the squares of the deviations are .25 and .25; so the average of these devia­
tions is H. 25 + .25) = .25. There is obviously no error in this result ascribable to 
the computing technique used. However, by standard algebra, we can prove this 
general result: 1 ~( 2) 

s.d.2 = - * L.(X-i)2 = _ ..... _x __ i2 
n n 

which implies that H 10002 + 10012) - 1000.52 can be used in routine calculations to 
evaluate the standard deviation. The equations are algebraically unimpeachable; but 
the calculation which results falls into the trap of producing a result by subtracting 
one number from a very similar number; in this case, each number is large, and it is 
easy to see that rounding errors might cast doubt on the result: 

s.d. 2 = 1001000.5 - 1001000.25 = .25 ... this time 

(ii) Quadratic equations. These are a common, rather boring, source of demon­
stration programs. Leaving aside the questions of imaginary solutions and repeated 
solutions, the general solution ofax2 + bx + c = 0 is: 

x = -b ± v'(b2 - 4ac) 
2a 

From the viewpoint of rounding errors, it is best to use the form with the negative 
square root, because otherwise, if a or c is a small value, the absolute values of the 
two expression s in the numerator will be close, and a large relative error will result 
after subtraction. The other solution can be found using the fact that, in 

x 2 - px + q = 0, 
both solutions add to p. 

(iii) Series summations. 

10 INPUT "VALUE";V 
20 N=l: T=V:REM T=TERM 
30 PARTIAL RESULT=PA+T 
40 T = - T*V*V/(N+l)/(N+2) 
50 PRINT SIN(V),PA 
60 N = N+2: GOTO 30 

The short BASIC program sums a well-known series, 
SIN(V) = V - y3 + y5 _ y7 + y9 _ ... 

3! 5! 7! 9! 

This series converges for any value of Y, since the 
ratio between numer ators increases with y2 each time, 
whereas the denominators' ratio increases with every term 
without converging. If each term of the series is held 
by a computer with complete accuracy, SIN (10000) will 

be evaluated as accurately as, though more slowly than, SIN (.1). When this is not the 
case, as the program shows with values of 50 or 100 say, the result will be more or 
less swamped by the magnitude of individual early terms. The solution is to transform 
the value into some number which is easier to deal with; here, because of the cyclical 
nature of the sine curve, it is easy to subtract an appropriate multiple of pi from the 
original value, then compute the sine of the result. This is how CBM BASIC works, 
with the result that rounding errors with large arguments are greatly reduced, in fact 
becoming equivalent to the rounding error involved in the subsidiary calculation. 

Transformations are common in statistical work; the standard deviation illustration 
above lends itself to a particularly easy type, since it can be shown that adding a 
constant to every value leaves the standard deviation unchanged. So instead of using 
1000 and 1001, we can calculate the standard deviation of 0 and 1. 
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Solving equations: Newton's method This is one of very many methods to discover 
solutions by iteration rather than analysis. Like all such methods, it is fallible - since 
ingenious exceptional functions can be found which can't be solved. The principle it 
uses is to improve on a guess using knowledge of a function (which may be pictured 
as a graph) and its gradient. Repetition of the process gives a set of approximate 
solutions: if these converge, so that consecutive trials are equal or nearly equal, a 
solution is presumed to have been found. Generally, the user has to supply a starting 
guess, although this could be done by the machine at the expense of computing time. 
Some Hewlett-Packard calculators have a 'Solve' function, where two estimates are 
asked for. The iterative relation is ~ ( _~ __ ---.'-"'---_---:>",,~::;iX.;:;&:!""1 C\'(l>.~~t' o-,.-t' x" ~ j"') 

x = x _ Yn ! 
n+1 n gradient at xn j" __ ~j" :::::1" ('X.,,+, -Xn.) 

(:X:M1 -~,,) 
The gradient is usually assumed to be the derivative, i. e. an analytically-found curve 
giving the gradient at all points; the BASIC routine below calculates the gradient, 
rather than requiring a supplied formula, so that expressions which are hard to diff­
erentiate are still solvable. Line 10 holds the function definition; line 40 calculates the 
gradient, using an arbitrary value for dx which may be changed; line 50 adjusts the 
best estimate so far; and line 60 stops if and when the improvement in the estimate 
is negligible. 

1 HEM *********************************************************** 
2 REM **** NEWTON'S METHOD FOR SOLVING SMOOTH FUNCTIONS **** 
3 REM **** LINE 10 HOLDS THE FUNCTION **** 
4 REM **** CAN USE EG 10 LOG(XAN)-SIN(X)tIF N IS ALLOWED FOR **** 
5 REM ~***************************************.*****~************ 
6 REMEMBER DESCARTES' SIGN RULE: NO. OF CHANGES = NO. OF POSITIVE SOLUTIONS 
10 DEF FN Y(X) = LOG(X) - SIN(X): REM DEFINE FUNCTION TO BE SOLVED = O. 
20 INPUT "GUESS", GUESS : REM USER MUST SUPPLY GUESS 
30 OX = 1/1024 : REM EXACT POWER OF 2 FOR ACCURACY. 
40 GRADIENT AT GUESS = (FN Y(GUESS+DX) - FN Y(GU»/DX: REM STANDARD FORMULA 
50 GUESS=GUESS - FN Y(GUESS)/GRADIENT :REM NEWTON'S FORMULA 
60 IF ABS(GUESS-G1)(lE-7 THEN PRINT: PRINT"SOLUTION:", GUESS: END: REM PICK 

EClSION 
70 PRINT GUESS; 
80 G1=GUESS 
90 GOTO 40 

REM WATCH SUCCESSIVE APPROXIMATIONS. 
REM STORE THE CURRENT GUESS ••• 
REM .t. AND TRY AGAIN. 

EXAMPLE RUNt USING SGUARE ROOT OF 2 

10 DEf FN Y(X) = XA2-2 : REM DEFINE FUNCTION TO BE SOLVED = O. 

GUESS 1 
1.49975598 1.41668019 1.41421656 1.41421356 

SOLUTION; 1.41421356 

Solving equations: inverse interpolation Suppose you have an elaborate formula which 
calculates a single value from several inputs. Such a formula typically is easy to use 
one way round, but difficult to solve the other way. For example, a mortgage calcul­
ation might give a monthly repayment figure for any rate of interest: perhaps 200 at 
5%, 220 at 10%, 250 at 15%. How can the interest rate corresponding to 215 be found? 
The obvious way is to converge on the value by guessing as well as possible, testing 
the guess, and improving on the guess until a satisfactory approximation is found. The 
process is less elegant, but easier to understand, than methods of Newton's type, 
which do exactly the same job. In our example, the interest rate is obviously in the 
range 5 to 10%; we could guess 71%, try this value, and improve it in the light of the 
result. Without a calculator or computer, this is tedious; with a computer, it is not a 
problem. Section 16.4 has an example, involving an actuarial calculation on interest 
rates, which shows the procedure to use. 
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Integration: Simpson's rule Integration is an algebraic process of aggregation, used 
to compute areas, volumes, rates of flow, strengths of fields and so on. Numerical 
integration techniques carry out the process without the need for intermediate analysis. 
Simpson's rule is representative of the type of method. It can be visualised as a means 
to determine the area between a curve and its x-axis. The result it produces is based 
on the supposition that the sample points which it uses are joined by a section of a 
parabola. The rule uses an odd number of values, which we can refer to as Y ,y ,Y , 

d" t d' t Th'" 1 2 3 ... ,Y correspon ilng 0 x-coor rna es x ,x ,x3' ... ,x. e preclslon lffiproves as 
more i-coordinates are taken, up to the itoin1: at whic'h rounding errors caused by 
the large number of calculations accumulate. The formula for Simpson's rule is:-

Estimate of integral = (x step-size)/3 * (Y1 + 4Y2 + 2Y3 + 4Y4 + ... + 4yn - 1+yn) 

Weights of 4 and 2 alternate, except for the end values. The BASIC program listed 
below repeats this calculation, with finer gradations in x, until estimates agree within 
a small margin. Its example run shows that the criterion is too severe for this case; 
all the estimates are nearly identical. This is because the original curve is a quadratic, 
which Simpson's rule solves exactly. The program assigns a step-size, S, in line 30; 
this is repeatedly halved as the calculations proceed. The odd terms (weight 2) are 
summed separately from the even terms (weight 4). From one step-size to the next we 
need only compute the alternate, odd, values, as the diagram shows, so that at each 
stage the even values become the total calculated so far. This cuts down processing 
time, because each value of the function is only calculated once. 

S > 

1 REM ********************************************************************* 
2 REM '* SIMPSON'S RULE. '* 
3 REM * INTECRATES YOUR FUNCTION IN LINE 10. * 
4 REM * SO=SUM OF ODD VALUES; SE=SUM OF EVEN VALUES~ S=STEP SIZE. * 
5 REM * NB: CHANGE LINE 90 IF LESS/MORE PRECISION IS REQUIRED. * 
6 REM * ANOTHER VERSION OF SIMPSON, WITH GRADIENT END-CORRECTION, EXISTS * 
7 REM ********************************************************************* 
8 REM 
10 DEF FN Y(X) = [PI] * (100 - X*X): REM FUNCTION TO BE INTEGRATED 
20 INPUT "INTEGRATE BETWEEN Xl,X2"; Xl,X2 
30 5 = (X2-Xl)/2: SE = FNY<Xl) + FNY(X2) 
40 SE = SE -+ SO : SO = (> 
50 FOR J = Xl+S TO X2 STEP 2*S 
60 SO = FN Y(J) + SO 
70 NEXT 

4*50 - FN Y(X1) - FN Y(X2) ) * S/3 80 I=(2*SE + 
90 IF ABS (I 
100 PRINT I~ 

111) II = I: 
120 S=S/2: IF 
130 GOTO 40 

-II) ( 1E-8 THEN PRINT "INTEGRAL ="; I: END: REM CHOOSE 
REM WATCH APPROXIMATIONS 
REM STORE 

S=O THEN PRINT "DOESN'T CONVERGE": END 
: REM REPEAT FOR IMPROVED VALUE 

THIS INTEGRAL GIVES THE VOLUME OF A SECTION OF A SPHERE; 
EXAMPLE RUN 

INTEGRATE BETWEEN Xl,X2 
47.41092 
47.4109199 
47.4109198 
47.4109202 
47.4109201 

INTEGRAL = 47.4109201 

B.745 10 



Programming the PET ICBM 

16.2 Statistics 

-448- 76: Mathematical programming 

Random numbers These are widely used in simulations of scientific and social phen­
omena, where overall behaviour of a system may be modelled as the outcome of many 
individually unpredictable events. The concept is also widely used to explain statistical 
distributions, using, at the introductory level, coins, dice, and cards. Before the 
widespread use of computers, 'random number tables' had to be prepared; computer 
power enabled pseudo-random numbers to be generated as required, which was more 
efficient than storing large tables. The usual method is to derive each pseudo-random 
number by a formula from the previous number. In this way a repeatable and testable 
series is generated. Recurrence relations are used: the number is multiplied by a 
large number, another large number is added, and the result forced into the correct 
range by taking the remainder after division by yet another number. There is plenty 
of scope for designing series which satisfy statistical tests for randomness. Such 
series always have a period of recurrence, but this is enormously long. Badly thought 
out series may have internal repetitive features of several types. Large computers 
store huge integers exactly and use these in their processing; Microsoft's random 
numbers work on similar, but not identical, lines. The differences are presumably an 
effect of the 31-bit storage method. 

'RND' is explained in Chapter 5, and also in Chapter 15 in the ROM section. 
In view of the widespread confusion about this function (incidentally, it is implemented 
differently in different machines; don't assume that what follows will apply to non-CBM 
equipment) let me summarise its three main features: 

(i) X=RND(O) or PRINT RND(O) are two expressions containing the function 
RND. RND behaves like all other arithmetic functions in BASIC, and can be assigned, 
printed, compared, calculated with, and so on. This should be straightforward to most 
people who have experimented with BASIC. 

RND(O) is a 'truly' random number. * It is generated from four timers inside the 
VIA chip, which decrement every microsecond with the clock, so that any single use of 
this function generates a number between 0 and 1 which is non-repeatable in the usual 
sense. However, because the whole computer is controlled by a single set of timing 
pulses, repeated uses of this function are often non-random, unless (for example) an 
external event like a keypress influences the timing. For example, suppose a BASIC 
program happens to loop in exactly 65 milliseconds. Then RND(O) is exactly the same 
on each call! This is because the timer goes through a complete cycle in 65 thousand 
clock cycles. Try this with the 'random walk' program in Chapter 5. Note that BASIC 
1 has a mistake in its ROM: evidently the VIA was moved at the last minute, and the 
addresses assumed in BASIC 1 were not updated from $9040- $904F . 

(ii) RND (positive argument). The value of this function depends only on the 
stored random number, i.e. usually on the previous value returned by RND. RND(1) 
and RND(99999) in identical circumstances return equal values. A series of calls gener­
ates numbers from zero to one in a predictable sequence, each depending on the last. 
Their period of repetition is large. 

(iii) RND(-ve). This function depends on the argument; it is always the same 
for a given argument. Thus, PRINT RND(-2);RND(-2);RND(-2) prints three identical 
numbers. The point of this is to enable programs containing RND to be tested: if 
RND(-l) say is entered at the start, rather than RND(O), all the subsequent RND(+ve) 
values will repeat when the program is re-run. This is helpful during debugging. 

RND (+ve) works by multiplying by 11879546.4, adding 3.92767778 x 10-8, 
interchanging two pairs of mantissas, setting the exponent to 128 (so the maximum 
value is .9999 ... ), and normalising the result. RND(-ve) skips the two calculations, but 
is otherwise identical. These examples show how RND(-ve) appears in $88-8C, where 
RND is stored. (BASIC 1 uses $DA-DE). Note the small values produced by integers, 
a result of the interchange process: 

Argument Decimal value in location: 
$88 $89 $8A $8B $8C 

-.01 126 116 43 94 142 
-.1 128 76 204 204 204 
-.1234 128 35 35 185 252 
-1 104 0 129 0 0 
-2 104 0 130 0 0 
-3.49 128 118 40 92 224 
-5 104 32 131 0 0 

* 'Random' derives etymologically from the French 'Randir', to gallop. 
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The RAM workspace in which random numbers are stored is immediately after the 
GETCHR routine; on switchon or reset, both are together copied from ROM into RAM, 
so that there is a constant 'seed' value* when the machine is switched on. Section 16.3 
includes examples of random numbers used in simulations. 

Permutations and combinations This statistical topic - sometimes called 'combinatorics'­
uses the so-called 'frequency theory of probability' to construct theoretical models of 
actual distributions. For example, t he possible of combinations of two dice throws can 
be listed by hand (1,1;1,2;1,3; ... ;6,6); there are 36 of them. If we postulate that 
each combination is equally likely to occur, we can construct a model of the distribu­
tion, which can be generalised into the binomial, Poisson and normal distributions. The 
details are too complex to summarise here. From the point of view of computation, it is 
worth knowing that factorials can be rapidly estimated: 

A factoriaI 2 (2! =2*1=2; 3! =3*2*1=6; 4! =4*3*2*1=12; ... ) is a rapidly-increasing 
function which turns up in many combinatorial calculations, since n! is the number of 
ways in which n different objects may be put into n pigeonholes. It is in fact a special 
function called the 'gamma function', but with integer arguments only. Stirling's form­
ula approximates factorials: 

n . ~ 1 1 139 71 
n!=(n/e) ~(2~n) [1 + 12n + 288n2 - 51840n3 + 2488320n4 ... ] 

Rather than use this series directly, we can find loge (n!) which gives results usable 
up to n=101'36 without overflow. The expression in square brackets can be approxim­
ated by exp (1/12n) without much loss of accuracy, giving 

. ~ 1 loge(n!)= n logen -n + 2loge(2~)+ 12n 

. ~ 1 
= (n+2) (logen - 1) + 1.4189 + 12n 

This short BASIC routine calculates the value of pCq, the number of ways in which 
q objects may be selected from p: 

10 DEF FN LF(X) = (X+.5)*(LOG(X)-l) + 1.4189 + 1/(12*X) 
20 INPUT P,Q 
30 PRINT EXP(FN LF(P) - FN LF (Q) - FN LF (P-Q»:REM P!/(Q!(P-Q)!) 
40 GOTO 20 

The normal distribution This well-known distribution, discovered by Gauss, is usually 
represented as a bell-shaped curve with two parameters, the mean and the standard 
deviation (m and s, say) with equation 

(- (x-m) 2 /2s2 ) 
n(x) = ~ex~p ____ ~~,-__ 

s~ 

When the mean is zero and standard deviation one, the expression simplifies to 

n (x) = exp (-ix2 ) 

V121tJ 
Tliis distribution applies to measures (height, weight, length, etc.) in which the final 
result is influenced by a large number of individually small influences. It is not a very 
easy function to deal with; sometimes approximations are easier, such as this sugges­
tion, where -3<=x<=+3: 

XII 5 
n(x) = .451 (l-g!) 

Normal distributions can be simulated in a number of ways. The BASIC routine which 
follows uses an algorithm by Knuth3 to generate a series of 'random' values with spec­
ified mean and standard deviation. The example simulates IQs as measured by one 
type of pencil-and-paper test (others have different standard deviations, so that their 
results vary more). 

*The seed in fact cannot be assumed to be exactly constant. There is a programming 
mistake in the expression which moves GETCHR and the seed value; the loop is one byte 
too short, so the final byte of the seed in not actually transferred. So the seed's 
value depends on the contents of $8C ($DE in BASIC 1). The possible range of values is 
about .811635137 to .81165196. 
2Note that O! (not defined by the muliplicative series) is 1. 
3Donald E. Knuth, 'The Art of Computer Programming'. 7 volumes. 
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KNUTH' 5 ALGORITHM FOR NORMAL DEVIATIONS 

5 SIGMA=15: MEAN =100 
10 V1 2*RND(I)-1 
20 V2 = 2~RNO(I)-1 
30 S = VI A 2 + V2 A 2 
40 IF 5)= 1 THEN 10 

76: Mathematical programming 

49 REM DEVIATE IS: SIGMA * V1 * S9R(-2*LOG(S) IS). 
50 DEVIATE= SIGMA * VI * SQR(-2*LOG(S) IS) + MEAN 
55 PRINT DEVIATE 
60 Vl=V2: COrD 20 

READY. 

104.691999 
85.4889251 
117.303867 
75.6151702 
94.0192871 
81.4072698 
61.5409044 
100.408391 
83.8830424 

Probability distributions The binomial distribution models the occurrence of independ­
ent events, giving the probability of the occurrence of n events on m occasions. If 
p is the probability of the event, and q (=l-p) is the probabiliW- of its non-occurrence, 
then m events occur on m occasions with probability mCn pnq -no 
This is simply the nth term of the expansion of (p+q)m. As we've seen, the expres­
sion mCn can be evaluated approximately using Stirling's formula, so that the entire 
expression for the probability is easily calculable, using the logarithms of men, pn, 
and qn. Example: the probability of throwing 55 sixes in 340 dice throws is 

340C55 (1/6)55 (5/6)285. 

The Poisson distribution models events in the same way as the binomial distribution. It 
is a limiting form of the binomial, as the probability of an event becomes very small 
while the corresponding exposed-to-risk is large. A typical example is the number of 
printing errors on a page. The distribution is a function only of the mean number of 
events; the formula is 

-m n 
p(n) = ~ 

nl 

As an example, suppose there are on average 2 errors per page. (These events are 
to be independent; this distribution won't model road accidents, where 

there is an obvious grouping effect). What is the probability of a pa~ having four 
errors? The formula gives exp(-2)*24 /4l = .09 . 

The Normal distribution is important because (the result is derived from the 'Central 
limit theorem') samples taken from any other finite distribution are themselves normally 
distributed. Consequently many standard statistical tests and methods embody results 
which are true for the normal distribution. The t-test uses observed values to estimate 
ranges of values of the parent population; the chi-squared test estimates the squared 
normlised deviates from the mean (i.e. (y-m) 2); and analysis of variance techniques 

s 
(,ANOV A') attempt to sort out the separate influences of various factors - e. g. type 
of soil and type of fertiliser in crop-yield experiments - assuming a linear model. All 
these methods lend themselves to sausage-machine applications, notably amongst 
students in the US, where the computer packages to run them are freely available. 
Not many users of these facilities understand the statistical theories underlying the 
methods. * 
*In 1981 errors were found in statistical packages in general commercial and education­
al use. The packages date (in part) from the mid nineteen sixties. 
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Non-parametric tests are relatively rough and ready, intended to provide guides where 
accurate measurement and calculation is too time-consuming or intrinsically difficult, 
in some quality control work, for example, and when dealing with subjective estimates 
or orderings. The 'sign test' is an instance: in say twenty consecutive fluctuating 
readings or measurements, about half can be expected to be above average, or to have 
a positive sign change from one to the next. A suitable warning-value can be decided 
by estimating the probabilities of 0,1,2, ... variations. The 'cumulative sum' method 
which tests whether a mean value is correctly adhered to illustrates the same type of 
approach. 

16.3 Simulation 

Computer simulations have been attempted in a wide range of specialisations, with 
results of variable value. Weather forecasting relies on a vast amount of data, process­
ed in vast machines. The earth's surface, or perhaps a hemisphere or other division, 
is notionally subdivided into small units, and a mathematical model employed to project 
present wind speeds and pressures at discrete altitudes within each unit. The results 
seem to be reasonably good, but not completely successful. More speculatively, math­
ematical models of economies have been constructed (by economists with the appropriate 
temperament) and are sometimes used to provide predictions. The results are not 
encouraging. Still more speculatively, 'World models' have been constructed, notably 
by J . Forrester in the early 1970s. These rely on hypothetical connections between 
food supply, population, resources, pollution, and so on, so that each variable in 
one time-period can be estimated, then each variable in the next, and so on. (It is 
assumed that 'pollution' can be measured as a single number). Less general models 
have been constructed by companies, particularly large ones, trying to quantify the 
results to be expected if sales suddenly increase, or interest rates fluctuate, or raw 
materials change in price, or some of the other vast number of factors influencing 
company performance come into play. 'Operations research', as it was called in the 
1960s, dealt with some of these problems; techniques like 'linear programming' and 
the various types of numerical and dynamic programming algorithms date from this time. 
All these techniques, except those involving heavy number-crunching, can be run on 
microcomputers, provided the user is prepared to wait, and provided also that large 
scale data storage is supplied where necessary. A good example of a practical system 
is VisiCalc, a software package developed for microcomputers on a larger machine, 
which provides for row-and-column calculations, and is in effect a high-level language 
to input titles and mathematical formulas. 

It is extremely difficult to judge what proportion of computer simulation effort is 
simply a beguiling intellectual game. As with any model-building activity - notably in 
the fields of politics, economics and religion - results deduced from a model by those 
with an intellectual vested interest tend to be trusted to an excessive extent; results 
which run counter to common sense are, if anything, believed even more fervently. * 
However, microcomputers are perhaps less likely to lead their devotees into absurd 
errors than huge machines. We'll look at five examples of simple simulation; these are 
too small to approach any sort of sophistication, but show the type of thing involved 
in mathematical model-building. The first is a randomising routine, used for such 
purposes as simulating a card-shuffle. The next simulates words by selecting letters 
of the alphabet with their correct frequency. The third solves a well-known 'paradox' 
concerning birthdays; the fourth is a 'Monte Carlo' simUlation of queue formation 
('line' in the U. S. ! ); and the last embodies a simple biological theory of population 

*Jay Forrester's books (published by M.l.T.) include 'World Dynamics' (1971) and a 
lesser-known work modelling towns, which assumes a basis of U.S. suburb style real­
estate. 'Operations Research' by Ackoff and Sasieni (Wiley) covers typical O.R. methods 
and solutions. 'Newer Uses of Mathematics' (ed. J.Lighthill, Penguin in U.K.) and 
'Mathematical Modelling' (Andrews & McLone, Butterworths) offer a survey of methods 
and 16 examples of modelling, respectively, which are interesting to the mathematical 
reader, although not particularly relevant to computers. As is true of most mathemat­
ical works, little attempt is made to determine how far the constructs can be expected 
to apply in real life. There are many books on econometrics and related subjects; 
McGraw-Hill print a number of them. An out-of-print book by Andrew Wilson ('The Bomb 
and the Computer', Barrie & Rockliff, 1968) surveys military games from the 18th cent­
ury to the present, claiming that many German errors in World War I were the result of 
inappropriate Prussian wargaming; and drawing similar conclusions about computer war­
gaming in the Pentagon. 
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growth and decline of predator and host species. 

(i) Random Shuffling. The algorithm used here is again the work of Knuth and 
simply selects one item at a time, reserving it in an early part of its array, so the 
remaining items have an equal chance of selection: 

1 REM THE ARRAY HOLDING THE VARIABLES IS PTRS(N), WHERE N IS THE DIMENSION. 
2 REM ('PTRS' STANDS FOR 'POINTERS', BUT THIS ISN'T A VALID NAME). 
3 REM THE ITEMS ARE PTRS(I) TO PTRS(N), I.E. NOT PTRS(O) WHICH IS SPARE. 
4 REM AFTER CALLING THE ROUTINE, PTRS(I) TO PTRS(M) ARE 'RANDOM'. 
5 REM TO SHUFFLE THE WHOLE ARRAY, PUT N-l IN PLACE OF M. 
10 FOR J 
20 J% 
30 TEMP 
40 PTR(J) 
50 PTR(J%) 
60 NEXT 

1 TO M 
= J + RND(I)*(N-J+l) 
= PTR(J) 
= PTR(J%) 
= TEMP 

:REM PICK RANDOM ELEMENT FROM J+l TO THE END 
:REM AND SWAP IT WITH THE JTH 

(ii) Word generator. The word 'Qume' was selected from a computer-generated 
list of 'meaningless words'. The following program may help you to do the same! The 
data statements are approximate frequencies of the alphabetic characters; they should 
add to 1. (They are guesses only). Line 130 chooses A-Z and space as the options; 
the list can include punctuation if required. Line 200 builds an array of cumulative 
frequencies (.06, .1, .14, .18, .27, ... here) which line 310 compares with random number 
R from 0-1. Thus, R= .18 to R=. 27 causes line 320 to print E, and in general the let­
ters occur with the correct, or at least the specified, frequencies. The result can be 
made more lifelike by incorporating a 'stochastic' technique, i. e. taking account of 
previous letter (s) so that q always precedes u, for example, or capitals only follow 
full stop and space. 

9UAS I -WORDS 

100 ALPHABET$="ABCOEFGHIJKLMNOPQRSTUVWXYZ ,. 
110 DATA .06 •• 04,.04,.04,.09,.02,.03,.02,.05,.01,.005,.03,.03,.05: REM A-N 
120 DATA .05,.02,.005,.03,.05,.07,.02,.01,.01,.005,.01,.005,.2:REM O-SP 
130 N=27 
200 DIM P(N): FOR J=1 TO N: READ P(J); P(J)=P(J)+P(J-l); NEXT 
300 R=RN[I(l) 
310 FOR J=l TO N: IF R>P(J) THEN NEXT 
320 PRINT MID$(AL$,J.l)' 
330 GOTO 300 

(iii) Birthdays. Assuming birthdays are evenly spread throughout the year, how 
large a group of people must be selected to ensure an even chance that none of the 
group shares their date of birth? (I.e. ignoring the year of birth). This BASIC pro­
gram prints a table of results. Line 130 calculates the probability p for n people that 
at least one pair have the same birthday, using the fact that if, say, 10 people have 
been chosen already, the 11th has a 355/365 chance of also being different. 

100 PRINT "NUMBER PROBABILITY 
104 PRINT" OF THAT SOME DATES 
108 PRINT "PEOPLE ARE EQUAL: 
110 FOR N = 5 TO 55 STEP 5 

ALL DATES 
DIFFERENT 
ONLY ONCE IN: 

120 P=I; REM PROBABILITY IS 1 AT START, BUT DECREASES WITH EVERY PERSON. 
130 FOR I = 1 TO N-l: P = P * (365-1)/365: NEXT 
140 PRINT N" "1-P" "1/(P) 
150 NEXT 

(iv) Monte-Carlo Queuing Simulation. A 'Monte-Carlo' simulation generates 
random figures and puts them into a model. Roulette results can be simulated like this; 
a system can be tried out in this way, and can be expected to produce similar results 
in practice if the wheel is random, and the 'random numbers' are random, and the 
experiment is continued into 'the long run'. The example program (next page) models 
a situation where customers are served at several counters. Three variables are input 
at the start: the average time between customers, who are assumed to arrive evenly in 
the time period considered; the average time to serve a customer; and the number of 
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counters. All counters are presumed to be equivalent. Obviously, if the rate of service 
is too slow on average the queue length (which I've taken here to be the number of 
people waiting in line) will increase without limit. But even with adequate service there 
will be occasional queues. The program models consecutive intervals of time. For 
instance, suppose the interval taken is one minute, and the average time between cust­
omers is input as 5. The model assumes there is a one-fifth chance, as it enters its 
new interval, that a customer should enter. (Line 110). Line 160 models the chance of 
a customer leaving from anyone of the counters in use. The program loops indefinitely 
while keeping running totals of the time period, the number of customers processed, 
and the number of people waiting (Le. not being served) at any moment. This output 
shows the appearance on the screen: -
And this shows the result on stopping 
the program and entering GOTO 500 to 
see the summary:-

LENGTH 
o 

NUMBER 
151 

CUSTOMER OUT 
192 CUSTS: 9 QUEUE: 
193 CUSTS: 9 QUEUE; 
194 CUSTS: 9 QUEUE: 

CUSTOMER OUT 

6 TOT CUST: 39 
6 TOT CUST: 39 
6 TOT CUST: 39 

1 
2 

21 
4 

195 CUSTS: 8 QUEUE; 5 TOT CUST: 39 
CUSTOMER IN 

3 
4 
5 
6 
7 
8 
9 
10 

7 
17 
o 
o 
o 
o 
o 

o 

196 CUSTS: 9 QUEUE: 6 TOT CUST: 40 
CUSTOMER IN 
CUSTOMER [JUT 

197 CUSTS: 9 QUEUE: 6 TOT CUST; 41 
198 CUSTS: 9 QUEUE: 6 TOT CUST: 41 

QUEUING THEORY SIMULATION ASSUMIMG RANDOM ARRIVALS: 

o DIM WX(10(l); REM HOLDS DISTRIBUTION OF LENGTHS OF LINE! QUEUE 
10 PRINT "[CLRJ[RVSJ QUEUEING SIMULATION [DOWN)[OOWNJ 
20 INPUT "AVERAGE TIME BETWEEN CUSTOt1ERS"~C 
30 INPUT" AVERAGE TIME TO SERVE",S 
40 r NPUT " NUMBER OF COUNTERS", N 
50 PRINT "[OOWNlTYPICAL NUMBERS WAITING~" 
100 REM ** IN ONE TIME INTERVAL: *** 
110 IF RND(l)(l/C THEN P=P+l: TP=TP+l: PRINT "CUSTOMER IN" 
120 IF p=o GOTD 180 
130 X=P 
140 IF N(X THEN X=N: REM X IS SMALLER OF NO. OF PEOPLE, NO. OF CDUN'I'ERS 
150 FOR J = 1 TO X 
160 IF P)O THEN IF RND(1)(l!S THEN P=P-l: PRINT "CUSTOMER OUT" 
170 NEXT 
180 Q=P-N: IF Q(O THEN Q=O 
190 WX(Q) = WX(Q) + 1 
200 PRINT T, "CUSTS;", p, "QUEUE:'" Q, "TOT CUST;'" TP 
210 T = T + 1 
220 GOTO 100 
500 REM ** GO TO 500 PRINTS DISTRIBUTION OF QUEUES WHEN SIMULATION STOPPED 
510 PRINT"LENGTH NUMBER 
520 FOR J=O TO 20: F'RINTJ' TAB(8); WX(J): NEXT 

(v) Host-parasite population simulation. Simplifying somewhat, we can assume 
that the host population in a given time period increases by a natural rate of increase, 
which is reduced in proportion to the predator population. And we assume that the 
parasites die at some natural rate, unless there are hosts. This program displays the 
results following from the model: 

100 INPUT "STARTING POPULATIONS OF HOST & PARASITE"; H,P 
110 INPUT "RATE OF HOST INCREASE! PARASITE DECREASE"; RH,RP 
120 INPUT "EFFECT OF PARASITE ON HOST AND OF HOST ON PARASITE"; C1,C2 
130 PRINT H,P 
140 DH = (RH - C1*P)*H: DP = (-RP + C2*H)*P: REM LOTKA-VOLTERRA EQUATIONS 
150 H = INT(H + DH): P = INT(P + DP): IF H<O OR P<O THEN END 
160 GOTO 130 
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16. II Accounting and actuarial programs 

The type of programming in this subsection is concerned not so much with detailed 
record-keeping, but with techniques for solving well-defined problems of an arithmetic 
nature. The first example is an illustration of an accounting problem, namely to deduce 
pre-tax income from post-tax income, allowances, and reliefs. The second is an inverse 
interpolation example, used to solve an actuarial problem involving compound interest. 

(i) Tax Gross. Five variables are used by the program, in addition to para­
meters which are set within the program. Lines 10-70 holds the number of tax bands, 
the step sizes of the bands (there are eight in the example) and the income tax rates 
applying to the bands. The figures given are not current. An example of the output, 
from a CBM printer. is shown. Lines 420-462 do the actual printing; the parameters 
A,C,K,S, and T are those input; X (with some rounding and formatting) is the gross 
amount. The point about denominators and numerators is to provide a correction where 
part years apply. where time has been spent abroad. Lines 200-310 perform all the 
calculations; TE is a test variable which is checked within the loop in line 250 (and in 
line 205 for low values). 

113 DATA 8 .. 13, 7513.92513 .. 2~3£1(t. 3(10(1. 5(100, 50130. 1E2a 
213 DATAa,.25,.3,.4,.45,.5 •• 55 •• 6 
313 READNU: DIMBNCNU) : Dlt1RTCNU) 
413 FOR I = 1 Tm-~U 
513 READBN(I):NEXT 
613 FORI=1 TOt·RI 
70 READFH ( I ) : NE>\T 

1713 REM CONTINUE 
2130 TE=S*(A-K)-T*C 
2135 IFTE(=(fTHEN)·::=A: TA=a: GOT0320 
2113 BT=0 
2213 FOR I = 1 Tot~U-1 
2313 TE=TE-BN(I)*(T-S*RT(I» 
2413 BT=BT+BN( 1) 
2513 IFTE(=E:N( 1+1 )*(T-S*fH( 1+1:> ) THENTA=RT ( 1+1): I=NU-1 
2713 t~EXT 
31313 X=TE/(T-S*TA) 
3113 X=(X+BT+C)*T/S 
320 REM END OF CALeS 
4213 PRINT" "NAME$ 
422 PF.:INT 
425 PF.:INT 
430 PF~ItH 
433 PRINT" 
4:35 PRItH" 
437 PF.:HH " 
450 PRINT 

" SALAR'T' : "A 
" ALLOl·JA~K:ES AND DEDUCT I O~t=; : "C 

F.:ELIEFS: "K 
DENot1 I NAT I NG FACTOR:" S 

NUMERAT 1 NG FACTOF~:" T 

455 X=~<* 1130: GOSUB 1 (tl31!:1 : X=X/1 (10 
458 Zl=1:GOSUB2(t(t(t 
460 PRIt~T" I GROSS SALAR'T' ="X"'" 
462 Zl=2:GOSUB20(t0 

·liililililimlilmiiliiilij;jiiii]ijliiii!Jii:iJiiij!iii~·liJllllliiiliililiililliil!!iiJiii!!ii!~ili!Jij;]iiii!ii~~ 

JONES 1978/79 

SALAR'y' : 1131300 
ALL0l4ANCES AND DEDUCT IONS: 123 

RELIEFS: 12 
DEt~OmNATING FACTOR: 19 

NUMERATING FACTOR: 213 

GROSS SALAR'r' = 16896. 86 

llilllliiilliilililillillllllii!!IIIii!!liili!lmiill!.iiii!!iil!iil!illilllliliililiiilliiiliililiiliii!!liilliiIIIEJammmi!illllliiiiri€®: 
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(ii) Compound interest calculations. The program on the next page has a fully 
documented format which explains the workings of inverse interpolation. Its expression 
is a simple one; line 500 has a present value function corresponding to the value, in 
money terms, of a sum of 100 payable in a year's time at interest rate 1%. At five per 
cent the formula gives 100/1.05 = 95.238. Lines 1000 to 2000 repeatedly calculate values 
until either a good estimate is found - its accuracy controlled by the comparison in 
line 1020 - or until it becomes clear that there is no solution. A typical output is this: 

OFFER VALUE? 95 
INTEREST RATE IS 5.26321411 

WHEN PRESENT VALUE = 94.9999493 

AT INTEREST RATE ~ 5.263 
VALUE IS 95.0001425 

AND AT INTEREST RATE = 5.264 
VALUE IS 94.9992401 

from which it is clear that a present value of 95 corresponds to 5.263%. This figure is 
easy to check by solving the equation. The partial example which follows is less simple 
to check, involving such complications as repayments several times during the year, 
the deduction of income tax, and payments of capital gains tax on the difference 
between the redemption amount and the offer price. The formulas are standard ones, 
recognisable to people who use them; I'm not certain that all the details are correct. 
Note though that the input statements and function definitions can be inserted into the 
inverse interpolation program, although, because of the complexity of the expression, 
a subroutine rather than a function definition may have to be used in lines 1000-1040 
when each value is being computed. 

100 REM 
101 REM ############################################################# 
102 REM # # 
103 REM # VALUATION OF A FIXED-INTEREST REDEEMABLE SECURITY # 
104 REM # II 
105 REM ##11#####11############11#11#11################11################## 
106 REM # ASSUMES: REDEEMABLE AMOUNT (C) # 
107 REM # AFTER A NUMBER OF YEARS (N) II 
108 REM II AT TRUE (NOT NOMINAL) RATE OF INTEREST, G # 
109 REM # PAYABLE YEARLY P TIMES # 
110 REM # PURCHASED l/M OF A YEAR AFTER LAST PAYMENT # 
111 REM # WITH INCOME TAX AT RATE T, # 
112 REM # AND CAPITAL GAINS TAX AT RATE T1 # 
113 REM # VALUATION RATE OF INTEREST I. # 
114 REM #######################111#111#11##1##111###11#####1###1#1#111## 
115 REM 
120 DEF FN V(N) = (l+I)-(-N): REM CALCULATE V TO THE N. 
130 DEF FN Sl(P) - «(l+I)~)-l)/(P*«l+I)-(l/P)-l»: REM ACCUM. VALUE PAID PTHLY 
140 DEF FN A(N) = (1 - FN V(N) )/1: REM VALUE OF ANNUITY OVER N YEARS 
150 INPUT" REDEEMABLE AMOUNT"iC 
160 INPUT" AFTER HOW MANY YEARS"iN 
170 INPUT " ACTUAL ANNUAL INTEREST PAYMENT" iG : GaG/C REM G-ACTUAL RATE 
180 INPUT "HOW MANY TIMES PAYABLE PER YEAR" i P 
190 INPUT "NO. OF DAYS SINCE LAST DIVIDEND"iM M-M/365: REM M-FRACTION OF YR 
200 INPUT" RATE OF INCOME TAX"iT T-T/100: REM DECIMAL 
210 INPUT" RATE OF CAPITAL GAINS TAX"iT1: T1-T1/100:REM DECIMAL 
220 INPUT " VALUATION RATE OF INTEREST" i I : I-InDO: REM DECIMAL 
300 IF P-1 THEN PV - (l+I)~ * (C*FNV(N) + G*(l-T)*C*FNA(N) - T1*(C-A)*FNV(N» 
310 IFP<>lTHEN PV-(l+I)~ * (C*FNV(N) + G*(l-T)*FNS1(P)*C*FNA(N) - T1*(C-A)*FNV(N» 

I have insufficient space to consider problems of life assurance, life table calculations, 
etc. in detail. A major difficulty is the need to store large amounts of tabular data; 
some life tables have been calculated in the form of smoothed formulas, usually three 
or so curves which, between them, cover the entire age span. If such a formula is 
considered accurate, naturally there is a great saving in storage space (though not in 
computing time, probably) ill calculating each value as it is needed. I have no informa­
tion on the extent of small computer use in the insurance world. Obviously the com­
panies involved use mainframes for storage of their bulk data; perhaps small machines 
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have their place too. 
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1 REM######I########II########I#I##########III#####II#I#1#####1################# 
2 REM## INVERSE INTERPOLATION DEMONSTRATION USING A PRESENT VALUE FUNCTION. ## 
3 REM## ## 
4 REM## METHOD: REPEATED CALCULATIONS, USING A BINARY CHOP, CONVERGE TO THE ## 
5 REMI# CORRECT VALUE, AND WHEN WITHIN AN ARBITRARILY SMALL AMOUNT OF ## 
6 REM## THIS VALUE, REPORT THE RATE OF INTEREST FOUND. ## 
7 REM## # 
8 REM## LINES 500 - 1040 PERFORM THE MAIN CALCULATIONS. ## 
9 REM###############I##########I#######################II####################### 
10 REM 
500 DEF FN PV(I) - 100 / (1+ 1/100) : REM VERY SIMPLE PRESENT VALUE FUNCTION 
600 INPUT "OFFER VALUE"; V 
700 IL - -10: IH = 50: REM CHOOSE -10% TO 50% AS LARGEST REASONABLE RANGE TO TRY 
980 REM 
981 REM#II#########IIIII######III#II#II#I#III#II#I####I#I#I1######1#########1# 
982 REM# INVERSE INTERPOLATION CALCULATION BEGINS. # 
983 REM##########II#I#II#####I##I#I########################################### 
984 REM# NOTE:1) IL AND IH ARE LOW,HIGH ESTIMATES AT EACH STAGE OF ITERATION,# 
985 REM# STARTING AT -10% AND 50% TO BE SURE TO CATCH MOST VALUES. # 
986 REM# 2) AS INTEREST RATE 'I' INCREASES, VALUE DECREASES; THAT'S WHY # 
987 REM# THE TESTS IN LINES 1030-1040 CHANGE LIMITS THE WAY THEY DO. # 
988 REM# 3) INTEREST RATES APPEAR AS NORMAL EG 12%, AND NOT 0.12# 
989 REM# 4) LIMITS IN 700,ACCURACYIN 1020,DEC.PTS.IN 3010,ARE ALTERABLE.# 
990 REM####################################################################### 
991 REM 
1000 IF IL • IH THEN 2000: REM OUT OF RANGE OF START VALUES - CAN'T BE FOUND 
1010 BEST - (IL + IH) / 2: REM AVGE OF LOW AND HIGH RATES IS BEST ESTIMATE 
1020 IF ABS (FN PV(BEST) - V) < 1 E-4 GO TO 3000: REM CLOSE APPROXIMATION FOUND 
1030 IF FN PV(BEST) < V THEN IH • BEST : GOTO 1000: REM 'BEST' TOO HIGH 
1040 IF FN PV(BEST) > V THEN IL - BEST : GOTO 1000: REM 'BEST' TOO LOW 
1990 REM 
1991 REM######################H############################################## 
1992 REM# REPORT HERE IF THE INTEREST RATE IS AN EXTREME OUT-OF-RANGE VALUE # 
1993 REM##################################################################### 
1994 REM 
2000 REM NOT FOUND - RATE EITHER LESS THAN -10% OR GREATER THAN 50%. 
2010 PRINT "NOT FOUND - "; 
2020 IF BEST - -10 THEN PRINT "RATE IS LESS THAN -10%" 
2030 IF BEST - 50 THEN PRINT "RATE EXCEEDS 50%" 
2040 PRINT:PRINT 
2100 GOTO 600: REM CONTINUE - INPUT NEXT VALUE 
2990 REM 
2991 REM#############H#H##########I####HII#################################### 
2992 REM# REPORT HERE WHEN VALID INTEREST RATE HAS BEEN FOUND. # 
2993 REM# # 
2994 REM# UNROUNDED RATE AND TWO VALUES (FOR 3 D.P. RATES) ARE PRINTED OUT.II## 
2995 REM###################################################I################## 
2996 REM 
3000 PRINT "INTEREST RATE IS"; BEST 
3010 PRINT" WHEN PRESENT VALUE -"; FN PV(BEST) 
3020 PRINT 
3030 I - INT (1000 * BEST) / 1000 : REM THIS TRUNCATES THE VALUE TO 3 DEC. PL. 
3040 PRINT "AT INTEREST RATE -";1 
3050 PV - FN PV(I) 
3060 PRINT " VALUE IS "; PV; "[LEFT]." 
3070 PRINT "AND AT INTEREST RATE -"; 1+.001 : REM NEXT VALUE AT 3 DEC. PL. 
3080 PV - FN PV(I + .001) 
3090 PRINT " VALUE IS "; PV; "[LEFT]." 
3100 PRINT:PRINT 
3110 GOTO 600: REM CONTINUE - INPUT NEXT VALUE 

READY. 
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CBM machines all have sine, cosine, tangent and arctangent as standard. These were 
presumably taken over from FORTRAN by Microsoft, rather than specially written. The 
three angle functions all call the sine routine; tangent is calculated by dividing sine 
by cosine, and is therefore likely to have larger rounding errors, and be slower. The 
arctangent is quite useful in some analytical problems, since its range covers the whole 
real number spectrum from minus to plus infinity. This is a result of the fact that the 
tangent of an angle is the ratio of two unrelated sides; their ratio therefore can take 
any value, unlike sine and cosine. Trigonometrical functions typically have uses in 
engineering, surveying, perspective and drawing calculations. Each function relates 
two sides of a right-angled triangle to an angle; see Chapter 5. Since there are 3 
sides, 6 possible ratios exist, which are, using the shorthand H=hypotenuse, A=side 
adjacen t to the reI evan tangle, and 0 =opposite side, 
.0 A 0 H H A 

S~ne-H Cosine-H Tangent-A Cosecant-o Secant-A Cotangent-o 

Most of this will be known by readers of this subsection already. It is worth recalling 
two simply-drawn examples which provide practice in these functions: the first is an 
equilateral triangle with sides of length two units each, and the second a right-angled 
triangle with two other angles of 45° and sides 1,1, and 1. 414 (=...j 2). Then relation­
ships involving angles of 30°,45°, and 60° are simple to check, e.g. tan(45°)=1, 
cos(600)=L 

All of these functions are defined so that lines may be considered negative in 
length; this convention supplies the familiar repetitive sine curve with theoretical 
foundations. Some values, 0°,90°,180° and so on may give trouble in evaluation if 
division by zero becomes a possibility. We shall see how to program around this, and 
make the calculations crashproof. A potentially confusing point about notation is also 
worth clarifying: the inverse sine function, which gives the anlle corresponding to a 
sine value, and which is called the 'arcsine', is written as sin - x. This is easily con­
fused with the reciprocal of sin x, which is (sin x)-l. 

Crashproofing trig functions There are three methods: 
(i) Request the user to avoid values known to crash; typically 90° or 0° may 

have to be avoided. 
(ii) Test the values input and disallow those which crash, printing either an 

error message or a known correct value instead. Often an expression can be simplified 
in some way: for example sin x/sin 2x will crash if x=O, but the expression can be 
shown to equal 1/2cos x, which is troublefree when x=O. 

(iii) A more thorough implementation of (ii) modifies the function itself so that 
extreme values are replaced by values almost identical, and yielding the correct solu­
tions, but protected against crashing. SIN(X + (X=0)*lE-9) in place of SIN(X) sub­
stitutes SIN (lE-9) for SIN (0) if this function appears in the lower half of a fraction, 
for example. A better example is provided by this crashproofed expression for arccos, 
which uses the relation ARCCOS(X) = ARCTAN (X/SQR(1-X2 » : 

100 DEF FN AC(X) = ATN(X/«X=1)*lE-9 + SQR(l-X*X») * (-1)t(N+1) + [PI]*N+[PI]/2 
110 DEF FN DC(X) = FN AC(X) * 180 / [PI] :REM ARCCOSINE OF X IN DEGREES 
200 FOR N = 0 TO 10: PRINT FN DC(O): NEXT 

The example prints 90,270,450, ... 1710.,1890. 

Trigonometric equations A typical textbook general equation for solution is: 

a sin x + b cos x = c 

By dividing through with sqr(a 2 +b 2 ) and using an expansion of cos(p+q), we can 
establish the general solution as 

x = arccos (c/sqr(a2 +b2 » - atn(-b/a). 

10 DEF FN AS(X) = (-l)tN * ATN (X/SQR(l-X*X» + [PI]*N :REM ARCSINE 
20 DEF FN AC(X) = [PI]/2 - FN AS(X):REM ARCCOS DEFINED IN TERMS OF ARCSIN 
100 INPUT "a,b,c in a sin x + b cos x = c"; A,B,C 
110 FOR N -5 TO 5 :REM PRINT A SPECIMEN RANGE OF SOLUTIONS 
120 THETA FN AC(C/SQR(A*A+B*B» - ATN(-B/A) 
130 THETA THETA*180/[PI]: PRINT THETA "DEGREES": NEXT 
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U Pl"LPIJ 
'f F~EI'1 
10 REM *** ~UNCTlONS OF ANGLES IN DEGREE *** 
11 REM 
20 DEF FN S I ;, X ) 
30 DEF fN CO(X) 
40 :..IEF FN TA( X) 
'19 REM 

= SIN(X*PII180) 
COS(X*PlI180) 
TAN( X*Pl/180) 

REM CALCULATE SINE OF ANGLE IN DEGREES 
REM CALCULATE COSINE OF ANGLE IN DEGREES 
j.:EM CALClJLATE TANGEI'!T nF /liNGLE. IN DEGtiEES 

lu0 ~EM *** INVERSE TRIGONOMETRICAL FUNCTIONS (RADIANS) *** 
101 REM 
llU L!LF FN ASo.) 
120 DEf EN AC(X) 
130 DEi p,! AT(Xi 
199 REM 

= (-1)AN* (ATN (X/SQR(1-X*X» ) + !-"I*N 
= PI/2-(-l,AN * (ATN (X/SQR(l-X*X» ) + PI*N 

ATN(X) + PI*N REM GENERAL ARCTAN 

20u REM *** INVEk5E TRfGONOMETRICAL FUNCTIONS iN DEGREES *** 

FN [lS(X) = FN AS(X)*lBO/PI hEM ARCSINE OF X IN [I£[;t;EES 

F:Hi ARCSIN 
REM ARCCOS 

201 REM 
21(1 DEI-
220 DEF 
23(1 on 
299 REM 

fN DC(X) = FN AC(X)*180/PI REM ARCCOSINE OF X IN DEGREES 
n~ LiT IX i FN AT(:'i*JElO/Pl F;'EM ARCTi'>,J\lC;EI'IlT OF 

300 REM *** FURTHER INVERSE TRiGONOMETRY FUNCTIONS *** 
301 HEl"l 
31u F::~r1 

320 h:FM 
33(1 .:,:~_'" 

At-:C 
AF(C 
ARC 

'c)l-:C ( X ) ARC 
COSEC(X) = ARC 
i .,_J! ( X j AhC 

16.6 Arrays and Matrices. 

CDS(!/Xl 
5IN<1/X) 
TrO,N (l/X i 

X IN Dfl-;lq::ES 

Definitions and rules of manipulation A 'matrix' in the mathematical sense is a two­
dimensional array of numbers. In BASIC these can be conveniently stored as A(R, C) 
say, where Rand C represent the dimensions of the array and mnemonically suggest 
the order rows then columns, which is the usual convention. Matrices may be manip­
ulated mathematically in several conventional ways. Some BASICs (e.g. IBM's) have 
their own MAT statements to facilitate this, but Microsoft BASICs normally don't, 
presumably because of the comparatively small demand. There are difficulties in imple­
menting commands of this sort in any case, because of the need to reduce rounding 
errors when dealing with the very largest matrices, and because of the memory re­
quirements. 

The reasons why matrices can be useful aren't especially easy to understand. 
The best point of entry is probably to look at simultaneous equations: 

a + lOb + lOOe .03 
a + 50b + 2500e = .29 
a + lOOb + lOOOOe = .98 

Here we have three equations connecting three unknowns, a, b, and c. Small sets of 
equations like this one can be solved quite quickly by comparing pairs of equations 
and eliminating unknowns. The interpretation of these equations, in concrete terms, is 
not too difficult; for example, a, b, and c may represent weights in grams, and the 
three combinations of one of the first type of item, ten of the second, and one hund­
red of the third and so on plus the respective weights may have been determined 
empirically. Solving the equations gives the weight of each type of item. Another 
example: suppose an egg + two pieces of bacon costs 75 units, while an egg + one 
piece of bacon costs 50. Assuming the costs are straghtforward calculations, these 
equations represent the situation: 

pe + 2pb = 75 
pe + pb = 50 

And of course the two prices pe and pb are 25 units each. Matrices deal with situa­
tions of this sort by separating out the block of factors from the block of variables, 
and the rules of matrix addition, subtraction, and multiplication are made consistent 
with this scheme. Consequently, matrices are usable whenever calculations of this sort 
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occur: in economics, attempts are made to construct matrices to model flows of raw 
materials and made-up goods between industries; price x quantity calculations may be 
made; * predictions and deductions about migration, genetics, and so on may be made. 
The idea is always similar to that embodied in our simultaneous equations. We can 
represent the first of them in this way: 

[ 1 10 100~ [a] [.03J 1 50 2500 * b = .29 
1 100 10000 c .98 

Which may help to clarify the idea of matrix multiplication: the point is that the row(s) 
of the first matrix are multiplied by the column (s) of the second and added to give the 
corresponding elements in the third. For this reason multiplication is meaningless if in 
A(R,C) * B(R',C') the value C is unequal to R'. Division is not defined directly, but 
is implicit in the idea of multiplication: a square matrix holding only zeros, except for 
its top-left to bottom-right diagonal which holds ones, is called the 'identity matrix' 
and corresponds to 1; any two matrices which multiply to give this are called 'inverses' 
of each other, so each is something like the reciprocal of the other, as the name 
'inverse' implies. As we shall see, matrix inversion is a standard operation required in 
calculations using matrices. Adding matrices is simpler: the matrices must match both 
in the number of rows and the number of columns. Each corresponding element is then 
added. Subtraction is similar. 

Although column vectors (there are two in the matrix equation above) are often 
used in matrix multiplication, the generalision implied in the comments on the identity 
matrix and inversion enables any matrices of form A(R,C) and B(R' ,C') to be multip­
lied, provided C=R'. For example, these 3*2 and 2*2 matrices give a 3*2 result:-

~ -:J · [~ ~J=~: n 
Matrix inversion and simultaneous equations By way of preliminaries, let's first see 
how to input and output an entire matrix, without worrying too much about format: 

o INPUT "NUMBER OF ROWS, COLUMNS"; R,C: DIM A(R,C) 
10 FOR X = 1 TO R: FOR Y = 1 TO C 
20 INPUT A(X,Y) 
30 NEXT Y,X 

:REM INPUT ONE ROW AT A TIME. READ A(X,Y) ALSO USABLE. 

500 FOR X = 1 TO R: FOR Y = 1 TO C 
510 PRINT A(X,Y); :REM PRINT ONE ROW AT A TIME 
520 NEXT Y: PRINT: NEXT X :REM NEW ROW ON A NEW LINE 

Lets also see how to multiply matrices; this is necessary for several purposes, includ­
ing the testing of programs: 

400 REM MULTIPLY A(R,C) BY B(R',C') GIVING R(R,C') AS RESULT 
410 FOR I 1 TO C1 :REM RESULT'S COLUMNS 
420 FOR J = 1 TO R :REM RESULT'S ROWS 
430 FOR K = 1 TO C :REM COMMON COLUMNS AND ROWS 
440 R(J,I) = R(J,I) + A(J,K)*B(K,I) :REM SINGLE ELEMENT ADDS TOGETHER C PRODUCTS 
450 NEXT K,J,I 

Note that a matrix multiplication where the second array is a column, as in the example 
at the top of this page, the outermost loop is redundant, and can be omitted when for 
example the solutions of simultaneous equations are checked by SUbstitution into the 
original equations. If a row array is multiplied by a column array, the result is a 
1 x 1 array; in this case only the innermost loop is required. 

The two matrices (each 4 x 4) are inverses of each other; when multiplied, 
irrespective of the order of multiplication, the result, allowing for rounding errors, is 
the 4 x 4 identity, consisting of Is in the leading diagonal and Os elsewhere. We can 
see how the inverse may be used to solve simultaneous equations, by premultiplying 

*It is important to have a clear idea of the space requirements and processing times to 
expect with matrices. Although they permit exhaustive calculations to be made, often 
(e.g. in economic models) most of the elements are zero, which seems rather wasteful. 
One of Gerry Weinberg's stories (in 'The Psychology of Computer Programming') on this 
subject recounts how an organisation's whole price structure, to be used in invoicing 
etc., was to be held in an array. It turned out to be too big for the machine. 
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[
1 2 3 ~ l75277 -.22847 -.24723 -.0054058~ 
o 12 4 0 :00029949 .083408 .00029949 -.00059898 . 

-1
0 

-5 -7 128 and -.00089847 -.00022462 -.00089847 .0017969 are Inverses. 
o 555 .062332 .015583 .062332 .00033693 

both sides of an equation involving arrays by the inverse of the (square) array which 
holds the coefficients of the equations; if A is the array, so for example 

A {~ = [~ 
then on premultiplying we get these results: 

A-
1 

• A ·m = A-
1 {~] '0 ~ ~ ~ H~ = A-

1 .~~ .od m= A-
1 .~~ 

So the solution of these equations: 

a + 2b + 
12b + 

3c + 4d 
4c 

10 
1 

-a - 5b - 7c + 12d 10 
555c + 8d 0 

can be found by premultiplying the column matrix by the 4x4 inverse at the top right 
of this page, giving a=4.827, b=.08940,c=-.01819 and d=1.262. 

A great deal of work has gone into finding and improving methods of matrix 
inversion to maximise speed and accuracy of different types of matrix. There is no 
room here to begin to summarise this work. Instead, I shall develop a program using 
a mundane algorithm for inversion, which should be usable for quite a number of 
purposes. * It is not particularly elegant, but it does work. We may as well note at 
this point that not all square matrices can be inverted; those corresponding to sim­
ultaneous equations which won't solve, either through inconsistency or insufficiency of 
data, have no inverses. For example: 

x + 2y = 10 
x + Y = 10 

and x + y = 10 
2x +2y = 20 

have non-invertible matrices. Some matrices are described as 'ill-conditioned', by which 
is meant that their inverses exist, but are sensitive to small changes in the original 
matrix, so the inverse tends to have large errors in its elements; the matrix I I 1/2 1/3 1/4 .. J 

1/2 1/3 1/4 1/5 .. . 
1/3 1/4 1/5 1/6 .. . 
... . .. 

provides an illustration. 
The matrix inversion program (in BASIC; see next page) uses row operations to 

convert the original matrix M(R,R) into the identity matrix. Identical operations are 
carried out on the identity matrix. The result is that M becomes the identity matrix 
and I(R, R), the duplicate matrix originally holding the identity, is transformed into 
the inverse. M goes through these stages: 

I~ ~ ~l r~ ~ ~ ~ ~ ~ [~~ g] 
L~ x ~J Li l;J ~ 0 ~ 0 0 1 

The program has four parts, excluding the input routine and any printout and/or 
checking routines. 

(i) Lines 100- 260 constitute a large loop which carries out the first two stages 
in the diagram above. Lines 100-170 perform divisions to convert the leading diagonal 
into 1s, while 

*Donal d Alcock ('Illustrating BAS IC ') has a shorter program which uses Gaussian elim­
ination. CBM and other Microsoft BASICs need to add 405 IF 1+1 > N THEN GOTO 430 
to this program, since Alcock has assumed standard Dartmouth BASIC loop handling. 
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COMPLETED MATRIX INVERSION PROGRAM 

10 INPUT"DIM"; N 
11 DATA 1,2,3,4,0,12,4,0,-1,-5,-7,12,0,0,555,8 
12 DIMMCN,N),I(N,N) 
13 FORY=lTON:FORX=lTON:READ M(X,Y):NEXTX,Y 
14 FORY=lTON:fORX;lTON:PRINTM(X,Y);:NEXT:PRINT:NEXT 
16 FORX=lTON: I(X,X)=l;NEXT 

100 FOR X = 1 TO N 
110 fOR Y '" X TO N 
120 D = M(X,Y) ; IF D=O OR D=l GOTO 170 
130 FOR K = X TO N 
140 M(K,Y) = M(K,Y)/D 
141 NEXT K 
142 FOR K = 1 TO N 
150 !(K,Y) = I(K,Y)/D 
160 NEXT K 
170 NEXT Y 
180 IF X=N GO TO 270 
190 FOR Y = X+l TO N 
200 IF MCX,Y)=OTHEN 250 
210 FORK=XTON 
220 M(K,Y)=M(K,Y)-M(K,X) 
221 NEXT K 
222 FOR K = 1 TO N 
230 I(K,Y)=I(K,Y)-I(K,X) 
240 NEXTK 
250 NEXT Y 
260 NEXT X 

270 FORX=lTON;IFM(X,X)=lTHEN NEXT 
271 IFXON+1THENPRINT"NOT INV"; END 
272 FOR X=N TO 2 STEP -1 
280 FOR Y=X-l TO 1 STEP -1 
290 D=MCX,Y) 
300 FOR K = XTO N 
310 M(K,Y)=MCK,Y) - M(K,X)*D 
311 NEXT K 
312 FOR K = 1 TO N 
320 I(K,Y)=ICK,Y) - I(K,X)*D 
330 NEXT K 
340 NEXT Y 
350 NEXT X 

Depending on the structure of the original matrix, inversion takes something like 30 
seconds for a 10 by 10 matrix and 4 minutes for a 20 by 20 matrix. A 32K machine 
can handle matrices of about 55 square, leaving no room for anything but the inver­
sion program. With BASIC at 1 MHz this takes about three quarters of an hour. 

The program can be tested by (i) Inverting a matrix with a known inverse; the 
identity matrix should invert to itself, with some rounding error; (ii) Reinverting a 
matrix. and checking that the result is close to the original; or (iii) Multiplying by 
the original and checking that the answer is similar to the identity matrix. 

Applications of the technique to simultaneous equations include the calculation of 
coefficients of regression equations in statistics; many more variables can be handled 
than are practicable by manual calculation. Typically this may be useful when an 
algebraic curve is to be fitted to data collected by experiment. Another example is in 
the solution of 'over-determined' simultaneous equations, where there are many obser­
vations of empirical material involving only a few variables. Suppose you have details 
of output involving units of raw material which have been used in different combina­
tions: say a sheet of timber has been made into 15 items of type A, 100 of type B. 
and 30 of type C; and results are available like this for 100 sheets. What is the best 
estimate of the amount used per type of item? Perhaps figures are available of the 
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weekly output from a group producing a mix of different size items of the same type. 
How can you estimate (for sensible pricing) the time taken on size 1, size 2, etc.? 
One method is to premultiply both sides of the matrix expression by the transpose of 
the matrix; the result provides the best least-squares estimates of the variables' values. 
This simple case illustrates the method: 

4 empirically 
obtained equations: 

2x+y=8, Correspond to 
x+y=7, this matrix 

2x+y=9, arrangement: 
x+3y=6. 

As it stands, this is insoluble; the least-squares solution, however, is obtained like 

thi., ~ : ~ ~ ~ ~ ~J ~ : ~ ~ m ::!:~ifi.' to, 

and this matrix expression is solvable. Estimates of the error in the result can be 
calculated. This is, of course, only one of innumerable mathematical techniques which 
are available. It is a relatively easy one to program. If we set NE=number of equations 
and NV=number of variables, this routine calculates the square matrix S which results 
from the multiplication of the transpose of M by M itself: 

1000 FOR C 1 TO NV 
1010 FOR R = 1 TO NV 
1020 FOR K = 1 TO NE 
1030 S(R,C) = S(R,C) + M(K,R)*M(R,K) 
1040 NEXT K,R,C 

16.7 Number Theory. 

Number theory typically deals with large integers; these are available only with 
specially-written routines in Microsoft BASIC, and as the subject is not of wide inter­
est, I shall illustrate a solution only of a small-scale problem, using BASIC to assist 
in the solution. The problem is: find a telephone number (of 3 digits followed by 4) 
which, if the first part is subtracted from the second, and the result squared, equals 
the original seven-digit number. 

I.e. put x=abc, y=ghjk in form. Then we have: 
(Y-X)2 = 10000x + y. There are about 999*9999 combinations which could be test­

ed. (The precise number depends on whether a number like 000 counts). This will take 
a long time; probably a few weeks on the computer. However, a little algebraic shuff­
ling (solving a quadratic for y) produces the more severe restriction that 

40004x + 1 must be a perfect square if the equation is true. 

10 FOR X=O TO 999: REM TEST WHOLE RANGE OF PREFIX NUMBERS 
20 Y=40004*X + 1 
30 IF ABS (SQR(Y) - INT(SQR(Y» < .001 THEN PRINT X 
40 NEXT: END 

This program isn't too long in run-time. Line 30 tests for exactness of the square root; 
the range of yi is about 200 to 6000, so the test should adequately screen out wrong 
values. The actual form of the test isn't really important; the point is to get some 
figures, which can easily be checked. In fact, only 120 prints on the screen, and the 
solution is 120 1216. 

16.8 Curve fitting. 

Least squares methods The object of curve-fitting is to discover some fairly simple 
formula to represent empirical data; the point is to get the representation into a form 
whiCh is easy to handle, rather than (say) as a graph or as a table. The teChniques 
are well-known; related topics include regression and correlation, the formulas of which 
are also readily available in textbooks. The least-squares formula, to be briefly ex­
plained here, is a process which calculates coefficients of a linear expression which 
minimise the sum of squares of predicted and actual results. Usually some attempt is 
made to determine a likely form of a function, which is then fitted to the data and 
checked for significance. This process can be automated partially. There is a BASIC 
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program ('CURFIT') of Jim Butterfield's which fits data to several types of curve and 
reports the results. 

The least-squares method starts with a linear function: 

y = a + bX1 + CX2 + dx 3 + .•• + random error 

Where xn can be for example x 2 or log(x) or some function of x (although this makes 
error estimation more complex). For example. functions of the following types can be 
represented like this. in some cases using transformations to convert some of the data 
items into more usable forms: 

y a + bx straightforward linear relation. 
y a + bx + cz linear relationship with 2 variables, 
y b/x + a + cx + dx2 where x =1/x2 and X3=X:' 
y kxyz 2 where a logarithmiC conversion is needed, which gives 
log y = log k + 10g(xyz2), or y' = a + x', with only one constant to compute. 

The mathematics involved in computing the best estimates of the constants is this:-

For each observation, the difference between the calculated and observed values 
is error = (y - a - bX1 - cX2 - dX 3 - ••• ) 

So the sum of the squares of the errors, which we will minimise by our choice of a.b. 
c, •..• is ~(y-a-bxl-cx2-dx3- ... )2. 

The minimum occurs when the partial derivatives of each with respect to a,b,c, •. 
are all zero . 

So ..E.... 
CIa 

~(y - a - bXl - ... )2=0 or L(y - a - bXl - ... )=0, 

~ :I:(y - a - bX l - ... )2=0 orLxl(y - a - bXl - ... )=0, 
3b 

and so on. 
As a concrete example, not too long, consider the linear relationship where two 

variables determine the answer, of this form: 
y = a + bx + cz. The procedure above gives: 

a.n + b1x + c~z = ~ 
a~x + bu2 + cuz = ~xy 
a:Ez + bI.xz + C~Z2 = ~yz 

With manual methods, values of x and z and the result yare tabulated, along with 
the products xy, XZ, and yz, and the squares x 2 and Z2. The column totals give the 
figures for insertion into the simultaneous equations, which can be solved by matrix 
inversion (giving results identical to the transpose multiplication method). 

Other methods Other methods of curve fitting, adapted for less well-behaved func­
tions, tend to be less easily computerised. The easiest methods assume that a formula 
is exact. and calculate parameters accordingly, perhaps averaging different estimates. 
For example, suppose y =m aX + n b X is to be fitted to data on mortality. Any four 
equally-spaced sets of x and their observed y values correspond to exact values of 
m,n,a, and b. The ratio of y(1)y(3) - y(2)2 and y(2)y(4) - y(3)2 can be shown to 
be ab, and by algebraic juggling values can be extracted from the data. In practice 
graphs are plotted and the results tested for adequacy of fit. Another example: 
to fit data to the hypothetical underlying curve y = a + bx + cdx we can use the 
ratio of y(4)-2y(3)+y(2) to y(3)-2y(2)+y(1) to estimate the value of d 5. In examples of 
this type the initial algebra is probably easier to do manually than by computer. Other 
approximate methods exist, some of them dating from the days before the general 
availability of computers, but there is not sufficient space here to deal with them. 
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16.9 Machine-code programming with mathematics. 

The floating-point accumulators and BASIC number storage We have seen (16.1) how 
numbers are stored in BASIC and in tables in ROM, in 5 bytes of form exponent + 
sign bit + the rest as mantissa. Calculations are performed by Microsoft BASIC largely 
in two locations, called the floating-point accumulators. The more important of the two, 
'Floating-point accumulator #1', which we can call FPAcc.#l, occupies $5E to $63 in the 
zero-page of RAM. (In BASIC 1 the locations are $BO to SB5). Floating-point accumu­
lator #2 occupies $66 to $6B ($B8 to $BD in BASIC 1). Each accumulator is thus six 
bytes long, one byte longer than variable storage. The arrangement of bytes is very 
similar in each case: 

The sign byte is to some extent independent of the high bit in M1: if they are both 
set (i. e. sign byte has its high bit set, typically #FF) and the high bit of M 1 is on, 
the number is considered negative when it is transferred to other parts of RAM. In 
addition to the bytes shown here, there is an overflow byte and a low byte used for 
rounding. Most of the ·results of calculations are stored in FPACC. #1; the other accum­
ulator typically holds the number to be added or multiplied. Immediately below the two 
accumulators are 10 bytes which store numerals from RAM; these are not used in the 
same way for major calculation. These accumulators hold numbers with the maximum 
precision available to BASIC. As we have already noted, some calculations are intrins­
ically less accurate than others; for instance, 7*7*7*7*7*7*7 is evaluated exactly as 
40353607, because the integer is held without error; but 7 t9, which uses an inter­
mediate stage in calculation of finding the logarithm of 7, emerges as 40353607.1. The 
accumulators' contents can be watched by programs similar to those in Chapters 2 and 
13. Is there a method to determine the value held in floating-point form? Not surpris­
ingly, the answer is yes, and the following routine is a simple way to program it. The 
routine is relocatable, and the version below, for BASIC 2, starts at $033A. In this 
case therefore SYS 826 runs the routine, which prints a flashing cursor and awaits 
the input of four hex bytes and the 'Return' key. It prints the value of the 5-byte 
number starting at that location. For example, the following four values, which apply 
to BASIC 2, come from a table which BASIC uses to calculate LOG: 

D8C8 1 
D8CE .434255942 
0803 .576584541 
0808 .961800759 

· , 033A 20 B6 E7 JSR $E7B6 
· , 033D A8 TAY 

· , 033E 20 B6 E7 JSR $E7B6 
· , 0341 20 AE DA JSR $DAAE 
· , 0344 20 E9 DC JSR $DCE9 
· , 0347 20 lC CA JSR $CAIC 

· , 034A A9 OD LDA II$OD 
· , 034C 20 D2 FF JSR $FFD2 
· , 034F DO E9 BNE $033A 

· . 033A 20 B6 E7 AS 20 B6 E7 20 

· . 0342 AE DA 20 E9 DC 20 lC CA 
· . 034A A9 OD 20 D2 FF DO E9 

;$E7B6 inputs a hexadecimal byte (e.g. A4) 
into accumulator A. 

; $DAAE moves 5 bytes pointed to by A (low), 
Y (high) into FPAcc. #1 and unwraps 
the sign byte. 

; $DCE9 converts FPAcc. #1 into an ASCII string. 
;$CA1C prints the string. 
; $FFD 2 prints carriage return. 

Pressing the Stop key will terminate the loop. The routine can be used from within 
the monitor, by changing USRCMD or perhaps more simply by changing some command 
which is comparatively little used in a RAM monitor (e.g. Extramon) to point to this 
routine's start instead. The BASIC 4 version is this: 

027A 20 63 07 A8 20 63 07 20 
0282 08 CC 20 93 CF 20 10 BB 
028A A9 00 20 02 FF DO E9 
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Hexadecimal to decimal conversion and vice versa The machine-code programs which 
are presented here can be called either from BASIC or from a machine-code monitor. 
Some versions of Supermon have a ready-made N command, which is normally disused, 
pointing only to the start of the monitor. For example, if Supermon when loaded in a 
BASIC 2 machine has a table near the end of commands (TFHD etc.) which include N, 
then search a little further forward for a 2-byte address pointing to $FD55. Change 
this to $0339 (1 byte before $033A) and the following routine will run: 

., 033A 20 6F C4 JSR $C46F ;$C46F inputs a screen line into the buffer . 
• , 0330 A9 00 LOA #$00 ; ($77) is set to $0200 . 
• , 033F 85 77 STA $77 ;$CC9F inputs and evaluates BASIC . 
• , 0341 A9 02 LOA #$02 ;$06D2 converts the contents of FPAcc.#1 into 
., 0343 85 78 STA $78 a 2-byte integer, A high, Y low . 
• , 0345 20 9F CC JSR $CC9F ;$E775 prints A as a hex byte (e.g. F5) . 
• , 0348 20 02 06 JSR $0602 ;$FD56 start of monitor 
., 034B 20 75 E7 JSR $E775 
• , 034E 98 TYA 
., 034F 20 75 E7 JSR $E775 
., 0352 A9 00 LOA #$00 
., 0354 4C 56 FO 3MP $F056 

033A 20 6F C4 A9 00 85 77 A9 
0342 02 85 78 20 9F CC 20 02 
034A 06 20 75 E7 98 20 75 E7 
0352 A9 00 4C 56 FD 00 00 00 

This routine is designed to print one single value only, then jump to monitor; a loop 
may be added, to print repeat values, or an RTS to return to BASIC. The routine 
works like this: 

.N 12345 
3039 

printing a single hex figure. This is the BASIC 4 version: 

· . 027A 20 E2 B4 A9 00 85 77 A9 

· . 0282 02 85 78 20 98 BD 20 2D 
· . 028A C9 20 22 D7 98 20 22 D7 

· . 0292 4C BA D4 

The next routine performs conversions the other way, from hex to decimal. Again 
we can take advantage of ROM routines which already exist, and again the routines 
are relocatable, though not between different versions of BASIC. The routine includes 
a loop, so that a series of conversions is possible; the stop key terminates the routine 
and returns to the monitor. This can be incorporated into a monitor, like the decimal­
to-hex program. If it is, this type of keyboard transaction takes place: 

.N BOOO 45056 

.N 0200 512 

.N DAAE 55982 etc. 

This version works with BASIC 2; note the loop at the end, which is always taken: 

033A 20 EB E7 JSR $E7EB ;INPUT CHARACTER (E.G. N FROM MONITOR) 
033D 20 B6 E7 JSR $E7B6 ; INPUT HEX BYTE INTO A 

· , 0340 A8 TAY 
0341 20 B6 E7 JSR $E7B6 

· , 0344 AA TAX 

· , 0345 98 TYA 
0346 20 D9 DC JSR $DCD9 ; PRINTS 256*A + X (DECIMAL) 

· , 0349 A9 OD LDA #$OD 

· , 034B 20 D2 FF JSR $FFD2 ; OUTPUT CHR IN ACC'R 

· , 034E DO ED BNE $033D 
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BASIC 2 and BASIC 4 monitor dumps follow: 

•. 033A 20 EB E7 20 B6 E7 A8 20 ;BASIC 2 
•. 0342 B6 E7 AA 98 20 D9 DC A9 
•. 034A OD 20 D2 FF DO ED 

.. 027A 20 98 D7 20 63 D7 A8 20 

.. 0282 63 D7 AA 9820 83 CF A9 
;BASIC 4 

.. 028A OD 20 D2 FF DO ED 

SYS 829 /SYS 637 from BASIC ignores the subroutine which inputs 'N'. 

ROM routines Mathematical routines in ROM can be classified in several different 
ways. We can distinguish four main types of operation, all of which are necessary to 
a full BASIC: 

(i) Routines which perform calculations using FPAcc. #1 only, leaving the result 
in FPAcc.#1. For example, adding .5, multiplying by 10, rounding, and evaluating 
trigonometrical functions are all operations which may be performed by ROM routines 
using only FPAcc. #1. Some of the results may be in non-standard format: INT leaves 
FPAcc. #1 holding 2 bytes equivalent to the floating-point value. 

(ii) Routines to interchange the accumulators. 
(iii) Routines to interchange floating-point accumulator(s) with RAM variables. 

One set stores the accumulator's contents into a position in RAM determined by point­
ers; another set takes the RAM value, putting it into a floating-point accumulator 
before carrying out calculations on it. 

(iv) Binary operations, in which FPAcc.#l is combined - added, subtracted, or 
whatever - either with FPAcc.#2 or other RAM contents according to pointers; or in 
which FPAcc. #2 is combined - perhaps by division or a power calculation - with a RAM 
value, and the result deposited in FPAcc. #1 . 

The destination of most calculations is FPAcc. #1; it is often necessary to store 
intermediate values, perhaps in the 10 bytes of RAM immediately below the two accum­
ulators which I have already mentioned. 

ROUTINES WHICH USE ONLY FLOATING-POINT ACCUMULATOR #1. 

----ADDRESSES----
BASIC 1 BASIC 2 BASIC 4 
D6DA D6D2 C92D 

D71E 
D8BF 
D81C 
D9B4 
DAED 
DAFD 

DB2A 
DB2D 

DB6D 

DB9E 
DBBB 
DE67 
DEAD 
DF45 

DF88 

DFA5 

E048 

D72C 
D8F6 
D853 
D9EE 
DB27 
DB37 

DB64 
DB67 

DBA7 

DBD8 
DBF5 
DEAl 
DEDA 
DF7F 

DFC2 

DFDF 

E08C 

C97F 
CB20 
CA7D 
CC18 
CD51 
CD61 

CD8E 
CD91 

CDD1 

CE02 
CE1F 
D14B 
D184 
D229 

D26C 

D289 

D32C 

----FUNCTION----* 

FLOATING-TO-FIXED converts FPAcc. #1 into a 2-byte 
integer in ($11) and, with the order of bytes reversed, in 
($61). On exit A holds the high byte, Y the low. 
ADD .5 adds! to FPAcc. #1. 
LOGe converts FPAcc.#l into its logarithm. 
TWO'S COMPLEMENT replaces FPAcc. #1 with its 2's compo 
MULTIPLY BY 10. 
ROUND FPACC .#1 rounds using the extra byte. 
FIND SIGN on exit, A=O (if FPAcc.#l=O),l (if +ve), or 
#FF (if -ve). 
ABS converts FPAcc.#l into ABS(FPAcc.#l). 
COMPARE compares FPAcc.#l with the 5-byte floating-
point value to which A (low byte) and Y (high byte) point 
On exit, A =0 if the numbers are equal, 1 if FPAcc. #1 > 
memory, or #FF if FPAcc. #1 < memory. 
FLOATING-TO-FIXED converts FPAcc. #1 into a 2-byte 
integer in $61 (high) and $62 (low). Unlike D6DA/ D6D2/ 
C92D, the range is not validated. 
INT finds INT of FPAcc. #1, leaving it in floating-point. 
ZEROISE puts nulls in FPAcc. #1 if the exponent is zero. 
NEGATE changes the sign of FPAcc.#l. 
EXP converts FPAcc.#l into e (FPAcc.#l). 
RND entry point (followed by branches for +ve, zero, 
and -ve arguments). 
FORCE RND RANGE ensures random number now stored 
in FPAcc. #1 will be within the range 0-1. 
SINE computes sine of FPAcc. #1, assuming the argument 
is measured in radians. Note that COS leaves pi/2 in 
FPAcc.#2, and therefore TAN does as well. 
ARCTANGENT 

*Zero-page addresses apply to BASICs 2 and 4; BASIC 1 has different values, listed in 
Chapter 15. This list is not intended to be exhaustive. 
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OTHER MA THEMA TICAL ROUTINES IN ROM 

----ADDRESSES---- ----FUNCTION----
BASIC 1 BASIC 2 BASIC 4 
C863 C873 B8F6 
C91C C928 B9AB 
CCB8 CC9F BD98 

CED6 
CED9 

D09D 

D285 
D287 
D654 
D663 
D685 
D275 

D73C 

D8FD 

D95E 

D9DO 
D9E1 

DA74 
DA99 

DACE 
DADE 
DBC5 
DC9F 

DCAF 

DE24 
DE2E 
DF09 
DF9E 
DFEE 

CEC8 
CECB 

D08D 

D27A 
D27C 
D656 
D665 
D687 
D733 

D773 

D934 

D998 

DAOA 
DA1B 

DAAE 
DAD3 

DB08 
DB18 
DBFF 
DCD9 

DCE9 

DE5E 
DE68 
DF43 
DFD8 
E028 

C086 
C089 

C2DD 

C4C9 
C4CB 
C8B2 
C8C1 
C8E3 
C986 

C99D 

CB5E 

CBC2 

CC34 
CC45 

CCD8 
CCFD 

CD32 
CD42 
CE29 
CF83 

CF93 

D108 
D112 
D1ED 
D282 
D2D2 

FETCH INTEGER FROM BASIC and leave its value in ($11 
ADD ASCII DIGIT TO FPACC.#lo ($lF),Y points to it. 
INPUT AND EVALUATE ANY BASIC EXPRESSION. See 
Chapter 15 on this. Note that earlier entry points enable 
tests for string or numeric functions to be included. 
OR performed between two 2-byte integers, 
AND performed between two 2-byte integers, leaving the 
result in FPAcc. #1. 
INPUT AND EVALUATE INTEGER EXPRESSION converts 
a BASIC expression which evaluates to 0-65535 into a 2-
byte integer in $61 (high) and $62 (low). 
POS puts cursor position on line into FPAcc. #lo 
STORE Y REGISTER IN FPACC. #1 in floating-point form. 
LEN. 
ASC. 
VAL. Each of these leaves the result in FPAcc.#l. 
SUBTRACT replaces FPAcc.#l by FPAcc.#2 - FPAcc.#lo 
See Chapter 15 for two entry points, one of which loads 
FPAcc.#2 from pointers, while the other uses current 
contents. 
ADDITION replaces FPAcc. #1 by FPAcc. #2 + FPAcc. #lo 
See Chapter 15 for entry-points. 
MULTIPLICATION replaces FPAcc.#l by FPAcc.#l * FP 
Acc. #2. See Chapter 15 for entry-points. 
LOAD FPACC.#2 loads the 5-byte value to which A (low) 
and Y (high) point into FPAcc. #2. 
DIVIDE BY 10. FPAcc.#2 is overwritten by FPAcc.#1. 
DIVISION replaces FPAcc. #1 by FPAcc. #2 / FPAcc. #lo 
See Chapter 15 for entry points. 
LOAD FPACC.#l from pointers A (low) and Y (high). 
STORE FPACC.#l INTO MEMORY converts FPAcc.#l into 
a 5-byte value stored in RAM. The position at which the 
bytes are stored is determined by pointers; see Ch. 15. 
MOVE FPACC.#2 TO FPACC.#l overwriting FPAcc.#lo 
ROUND FPACC.#l AND MOVE RESULT TO FPACC.#2. 
CONVERT ASCII STRING TO NUMERAL IN FPACC. #lo 
PRINT LINENUMBER prints 256*A + X on next line. 
(The value may be 0-65535). 
CONVERT FPACC.#l INTO ASCII STRING where the 
string is put into a buffer starting at $0100, ready to be 
printed, e.g. as a linenumber. 
SQR where FPAcc. #2 holds .5 
POWER converts FPAcc.#l into (FPAcc.#2) (FPAcc.#l). 
SERIES EVALUATION ROUTINE. See section 16.6 on this. 
COS puts pi/2 into FPAcc. #2; leaves cosine in FPAcc. #lo 
TAN puts pi/2 into FPAcc.#2 and leaves tangent in FPA#lo 

Many ROM routines are arranged so that different entry points give different results, 
according to the arrangement of pointers on entry. For example, SQR loads FPAcc. #2 
with .5, then drops into the power routine, which automatically performs the square 
root; differently set pointers would cause the function to evaluate some other power. 
The routine at D8F9/ D930/ CB5A sets pointers and performs multiplication, having 
the effect of multiplying FPAcc. #1 by loge2. These pointers are particularly important 
in the four major binary calculations of addition, subtraction, multiplication and div­
ision, and in those routines which load data from BASIC and store results back into 
RAM under BASIC control. 
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MATHEMATICAL TABLES IN ROM. 

----ADDRESSES---- ----VALUES----
BASIC 1 BASIC 2 BASIC 4 
CDBC CDA3 BEAO PI 

-32768.005 
1 

D099 D089 C2D9 
D891 D8C8 CAF2 

D9CB 
DC85 
DDE3 

DE72 

DF3D 

E01A 

E078 

EOCD 

DA05 
DCBF 
DElD 

DEAC 

DF77 

E054 

EOBC 

E111 

CC2F 
CEE9 
DOC7 

D156 

D221 

D2FE 

D35C 

D3B1 

SERIES FOR LOGe counter = byte of 3, values are 
.434255942, .576584541, .961800759, 2.88539007. 
FOUR OTHER VALUES: 1/SQR(2), SQR(2), -.5, and 
LOGe 2 = .693147181. 
10 
99999999.9, 999999999.75, and 1000000000. 
.5 
15 constants held as 4-byte signed integers for use in 
string-to-numeral conversions and TI $ calculations. 
First 9 values (for strings) are -100000000,10000000, 
-1000000,100000,-10000,1000,-100,10,and -1. 
Last 6 values (for TI$) are -2160001, 216000, -36000, 
3600, -600: and 60. 
TABLE FOR EXP EVALUATION has 1/loge2 followed by 
series counter = byte of 7, then values: 
.0000214987637, .00014352314, .00134226, .00961401, 
.0555051, .2402263, .693147186, 1. 
2 CONSTANTS FOR RND 
11 879 546.4 is multiplied, 3.927 677 78 E-8 added. 

PI/2, 2*PI, .25 
TABLE FOR SIN EVALUATION has series counter = 5 
followed by: -14.38139, 42.007797, -76.70417, 81.605223, 
-41. 3417021, and 2*PI. 

TABLE FOR ATN EVALUATION has series counter = 11 
followed by: -6.84793412 E-4, 4.85094216 E-3, -.0161117018 
.034209638,-.0542791328, .0724571965, -.0898023954, 
.110932413, -.142839808, .19999912, .333333316, and 1. 

RND SEED of. 811635157 

Examples of the use of ROM routines to perform floating-point addition, subtraction, 
multiplication, and division. As a preliminary, to show how routines can be strung 
together, try the short routine which follows. It searches for a BASIC variable in 
RAM, loads the value into FPAcc. #1, converts the result into an ASCII string, and 
prints the ASCII string. The effect with variable XY, say, is identical to PRINT XY. 

$0302 LDA $0300; RETRIEVE VARIABLE NAME FROM 768-769 
$0305 STA $42 ; AND STORE IT IN ($42) 
$0307 LDA $0301 
$030A STA $43 
$030C JSR $CFC9;SEARCH FOR VARIABLE IN MEMORY [BASIC 2] 
$030F LDA $44 
$0311 LDY $45 
$0313 JSR $DAAE;LOAD POINTED-TO VALUE INTO FPACC.#1 
$0316 JSR $DCE9;CONVERT FPACC.#I'S CONTENTS INTO ASCII STRING IN $0100ff. 
$0319 JMP $CAIC;PRINT THE RESULT 

POKE 768,65: POKE 769,65: SYS 770 prints the current value of AA; locations 0300and 
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0301 hold the ASCII values of the variable's name (the second of these being JOO if 
the name has one character only). Note that some routines (e.g. DAAE) require the 
pointers to be loaded before they are called, whereas other groups of routines may 
have their pointers in common (e.g. DCE9 then CAlC) so there's no need to set the 
pointers. The version is BASIC 2; Chapter 15's list of equivalent addresses permits 
conversion to BASIC 4 or 1. Note that VARPTR (see Chapter 5), in conjunction with 
this and the following routines, provides a powerful way to interact with BASIC when 
performing calculations. Alternatively pure machine-code can be used, allocating 
floating-point values their own 5 bytes of storage in RAM. In this way, mathematical 
problems can be solved much more rapidly than BASIC permits, at the expense of the 
extra effort needed. 

The next example demonstrates addition and subtraction of two BASIC vari­
ables, which I've assumed have single-character names only, so the routine is kept 
short. Typical results look like this:-

A=23.1245: B=12340000 
POKE 768,65: POKE 769,66: SYS 770: REM ADD 

12340023.1 

A=15: B=3.14159265 
POKE 768,65: PCKE 769,66: SYS 770: REM SUBTRACT 

6.14305265 

Only one subroutine needs to be called to Change the operation from addition to sub­
traction. As we'll see, the routine can be converted to multiply and divide (and per­
form other calculations) too. This version is BASIC 2; conversion to either ROM 1 or 
ROM 4 is no problem. 

$0302 LDA $0300; FIRST VARIABLE'S NAME 
$0305 STA $42 
$0307 LDA #$00 ; BOTH VARIABLES HAVE #0 HERE 
$0309 STA $43 
$030B JSR $CFC9; SEARCH FOR VARIABLE 'A' 
$030E LDA $44 
$0310 LDY $45 
$0312 JSR $DAAE; LOAD FPACC.#1 WITH THE VALUE OF A (OR 0 IF NOT FOUND) 
$0315 LDA $0301 
$0318 STA $42 
$031A JSR $CFC9; SEARCH FOR SECOND VARIABLE, E.G. 'B' 
$0310 LOA $44 
$031F LOY $45 
$0321 JSR $0773; LOAD FPACC.#2, THEN ADD RESULT TO FPACC.#1 
$0324 JSR $DCE9; CONVERT FPACC.#1 INTO ASCII STRING, AND ... 
$0327 JMP $CA1C; PRINT IT 

D773 can be replaced by D998/ D77B which first loads FPAcc. #2, then enters the sub­
routine to add the two accumulators. In our example this makes no difference, but we 
could perhaps make use of this by checking the value in FP Acc. #2 or in some other 
way. 

Subtraction can be demonstrated with the identical routine, except that D773 
is replaced by D733, or by the equivalent D998/D736. Again, these are BASIC 2 loc­
ations, which must be converted to the correct values for your ROM. 

Multiplication and division are easy to demonstrate with the same driver pro-
gram; typically, this sort of result will appear: 

A=55: B=-3 
POKE 768,65: POKE 769,66: SYS 770:REM MULTIPLY A WITH B 
-165 

A=123456: B=654321 
POKE 768,65: POKE 769,66: SYS 770: REM DIVIDE B BY A 
5.30003402 

The BASIC 2 locations to multiply are D934 or JSR D998 then LDA 5E / JSR D937. The 
point of loading A with FPAcc.#1's exponent is to exit if the exponent is zero, because 
this is a convention which shows that FPAcc. #1 contains zero, and therefore ought 
always to give a product of zero. Division is performed by DA1B or by D998 then 
LDA 5E / JSR DA IE. Here, the extra test looks for division by zero errors. 
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Example of long-precision calculation The most elegant way to implement extra pre­
cision in calculations (from BASIC) is to assign strings with the two values concerned, 
and return the result in a string. There is insufficient room here to explain how this 
can be done with all four main operations. This example multiplies two integers, with 
no loss of precision, in machine-code. A limit of 128 digits each has been used, so the 
maximum length of the result is 256. The routine is not particularly fast. It uses the 
screen locations to store intermediate results, so the process can be watched running. 
This diagram shows how the screen is used as three buffers; the illustration has 
12345678*11246 set up. The order in which the numbers are entered affects the timing; 
in the same way that 9897 is easier than 11. 

10000000012345678 

$8000 = N.........w 

x11 

~ 100011246 f 
If' 
$8100 =- t'I ... lt:ip\;~ 

x9897 

10000000000000000 

$8200 = .5olu-tior\ 

The first buffer is moved one step at a time to the left, and zero inserted at the right; 
this value is added to the third buffer as many times as the second buffer indicates. 
For example, the first loop starts by adding the contents of $8000ff six times to $8200 
ff; when $8000ff has been moved one byte leftward (multiplying by 10), the result is 
added four times to $8300ff, and so on. The routine works independently of ROM; it 
is not relocatable - line 60 of BASIC pokes in the length of the numbers in use, and 
the very first command, 'AE 83 03', is LDX $0383, which does not relocate; however, 
the changes required are small. Some specimen runs of this program are shown. Add­
ition and subtraction are both easy .with this type of approach. Division is more diff­
icult. 

o REM 
1 REM **** INPUT NUMBERS AS STRINGS **** 
2 REM 
10 INPUT" FIRST NUMBER"; N1$ 
20 INPUT "SECOND NUMBER"; N2$ 
30 IF LEN(N2$) < LEN(N1$) THEN N2$="0"+N2$: GOTO 30. 
40 IF LEN(N1$) < LEN(N2$) THEN N1$="0"+N1$: GOTO 40 
50 N = LEN(N1$) 
60 POKE 899,N-1: POKE 911,2*N-1: POKE 952,2*N-1 
99 REM 
100 REM **** POKE IN ZEROS AND INITIALISE **** 
101 REM 
110 FOR L = 32768 TO~2768+ 2*N-1: POKE L,O: NEXT 
120 FOR L = 33024 TO 33024 + N-l: POKE L,O: NEXT 
130 FOR L = 33280 TO 33280 +2*N-1: POKE L,O: NEXT 
199 REM 
200 REM **** POKE IN VALUES **** 
201 REM 
210 FOR L=32768+N TO 32768 + 2*N-1: POKE L, VAL(MID$(N1$,L-32768-N+1,1»:NEXT 
220 FOR L=33024 TO 33024+N-1: POKE L,VAL(MID$(N2$,L-33024+1,1»: NEXT 
230 SYS 900 
299 REM 
300 REM **** PEEK AND PRINT RESULT **** 
301 REM 
310 FOR L = 33280 TO 33280+ 2*N-1: V$=STR$(PEEK(L»: V$=RIGHT$ (V$,l) 
320 IF V$<>"O" THEN F=l 
330 IF F=l THEN PRINTV$; 
340 NEXT 

0384 AE 83 03 BD 00 81 FO 1A 
038C AA 18 AO 07 B9 00 80 79 
0394 00 82 C9 OA 30 03 38 E9 
039C OA 99 00 82 88 10 ED CA 
03A4 DO E7 CE 83 03 30 17 A2 
03AC 00 AO 01 B9 00 80 9D 00 
03B4 80 E8 C8 EO 07 DO F4 A9 
03BC 00 9D 00 80 FO C2 60 FF 

FIRST NUMBER? 137137137137137 

SECOND NUMBER ? 99999999999 

13713713713576562862862863 

FIRST NUMBER ? 5555555555555555555555555 

SECOND NUMBER ? 7777777777777777777 

43209876543209876538888884567901234567901235 
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The series calculation routine Mathematical functiQns are not evaluated by a table 
lookup method, but by calculating a fixed number of terms of a series; the length of 
the series depends on its speed of convergence. We shall see in this subsection how 
the process works and how to write functions which can use the evaluation routine. 
Firstly, let's see where it is in ROM: in fact there are two routines, one of which is 
called as a subroutine of the other, and which is only once called to evaluate a series 
(by EXP). Most routines call the more complex first routine. The locations are: 

BASIC 1: DEF3 (main routine) & DF09 (subroutine). Pointer is ($CO). 
BASIC 2: DF2D (main routine) & DF43 (subroutine). Pointer is ($6E). 
BASIC 4: D1D7 (main routine) & D1ED (subroutine). Pointer is ($6E). 

In fact, the first routine is largely concerned with housekeeping, i. e. making sure 
that the numerous values which are stored do not get overwritten. The second routine 
performs all the calculations. To use it, load the pointer with the starting byte of the 
series. For example, DE72/DEAC /D156, depending on ROM, holds a table of eight 
floating-point values preceded by a single '7'. The single byte is a counter, which the 
evaluation routine uses to count its multiplications. Slightly confusingly, it uses a total 
of one more constant than appears in the byte - 8 in the present example - where the 
final value is simply added to the cumulative total. Let's take a concrete example, with 
BASIC 4 this time: 

LDA #$56 
STA $6E 
LDA #$Dl 
STA $6F ; POINTER ($6E) NOW POINTS TO $D156, I.E. '7' THEN 8 NUMERALS 
JMP $DIED; EVALUATE SERIES AND LEAVE RESULT IN FPACC.#1 

After this routine, FPAcc. #1 holds 

1 + .693 ... x + .24 ... x2 + .0555 ... xa + ... + .000021 ... x7 

where x = the starting value in FPAcc. #1. The coefficients are taken from the table 
for EXP evaluation, several pages before this one. Note that they appear in reverse 
order, because a recurrence relation like this has been used: 

Result = «( .. «Value1*x + Value2 )*x + Valuea ) * x + Value4 ) ... )+ Valuen . 

USR provides an easy way to observe the results we can get so far, because it puts 
the argument into floating-pOint accumulator #1, jumps to our routine, then prints the 
value now in FPAcc. #1 if we have USR (X), say. We find, on POKEing locations 1 and 2 
so that they point to the short routine above, that if X is in the range 0-1, PRINT 
USR (X) is almost exactly 2X; outside this range the approximation progressively 
worsens. This is how CBM BASIC calculates functions. Of course, functions generally 
aren't restricted so that their arguments appear only in a small range like 0-1; a 
transformation is used with some values, and not others, to put any value into a form 
in which systematic errors are minimised. For example, SIN not only takes the remain­
der after dividing by 2 pi, but also subtracts the result from ±L depending on the 
sign, so that the powers of x converge more rapidly. 

We can write our own series, and calculate our own functions in machine-code, 
using this routine. For example, POKE 1,122: POKE 2,2 [i.e. $027A] and 

$027A LDA #$00 
$027C STA $6E 
$027E LDA #$03 
$0280 STA $6F 
$0282 JMP $DIED; BASIC 4 

with $0300 _1 __ ;DECIMAL VALUE 
$0301 128 
$0302 0 
$0303 0 ;=i IN FLOATING-POINT FORMAT 
$0304 0 
$0305 ~ 
$0306 0 

:~~~~ ~ ;=0 IN FLOATING-POINT FORMAT 

$0309 0 
$030A 0 

is an easy example, PRINT USR(X) g'l.Vmg O+!X = !X. For instance PRINT USR(10) 
prints 5, PRINT USR(44.7) prints 22.35. (The first byte in the table cannot be 0; if 
it is, 256 terms will be evaluated, which is probably not the intention). The maximum 
power of x equals the single byte at the start of the table; so if x 5 provides enough 
accuracy, a single byte of 5 must start a table of 6 values, making 31 bytes in all. 
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It may be worthwhile writing a series routine for functions which are often used in 
some specialised field; the resulting calculations will be faster than a BASIC function 
definition. The point about Microsoft's method is that it does not simply employ an in­
finite series which has been truncated; instead, the maximum error within a defined 
range is kept low by finding an expression of best fit according to least squares cri­
teria. Taking sine (x) as an example, this can be expressed as a series: 

3 5 7 x - x + x - x + 
3T 5! 'IT 

but, given a defined range, we can always improve on the truncated series; thus, 
if x is between 0 and pi/2 only, and we want an approximation only as far as cubed 
terms, this series: 

1. Olx - .0424x 2 - .126x 3 is better than x - x 3 16, having a smaller maximum 
error of about .002 as against .08. 

A fairly routine method to calculate such series approximations is presented here; the 
interested reader should read further in Chebyshev and Legendre polynomials et al. 
The chief problem is that the accuracy is limited to that of the CBM, assuming that 
machine does the calculations; this means it is impossible to get results precise down 
to the last bit. In view of this difficulty, I have selected an easy method, rather than 
one giving the best possible results. The object is to minimise the sum of squares of 
differences between the function and its series approximation over some range, select­
ed in a way that enables any (valid) argument to be processed by the series. To 
minimise over a range, we minimise an integral. As an illustration, we'll take a general 
function f(x) and approximate it by ~ + bx + cx 2) over the range x = 0 to x = 1. This 
shows the method, with the minimum of arithmetic. 

At each value of x, the error = a+bx+cx2-f(x). 
Sr the sum of squares of errors in the range 0 to I is given by: 
1 0(a+bx+cxL f(x»2 dx. 

To minimise the entire expression we integrate the partial differentials with respect to 
a,b, and c; this gives three equations, since there are three unknowns:-

S~ (a+bx+cx2-f(x» dx 0, 

Sox(a+bx+cx2-f(x» dx = 0, 

and f 6X2 (a+bx+cx2-f(x»dx O. 

The expressions in x are easy to integrate; the expressions in f(x) may be integrable 
analytically, or a rule such as Simpson's can be used which will probably be quick 
and easy. The intermediate result is these equations: 

abc 1 ;1 
[Ix + ~2 + 3X3 ]0 - 0 f(x)dx = 0, 

a b c4 1 J1 [2X2 + 3X3 + 4x ]0 - 0 xf(x)dx = 0, 

and [~3+ !!.x4 + ~x5]1 - ! 01 x 2 f(x)dx = o. 
3 4 5 0 

And these can be simplified into this final form: 

all + b/2 + c/3 = S5 f(x)dx, 

a/2 + b/3 + c/4 = J A xf(x)dx, 

and a/3 + b/4 + c/5 = fa x 2f(x)dx. 

These equations can be solved using our matrix inversion program, and estimates of 
a, b, and c found. The matrix is not ideal from the computational point of view, but 
we needn't worry too much about that. Note that the matrix has different elements if 
the limits are not 0 to I; and the limits of the integrals of course differ too. 

Let's finish with a short example: what is the best approximation to eX in the 
form(a + bx) where x varies from 0 to 1 only? The solution for a and b comes from: 

a + b/2 =r~ eXdx = e 1 - eO = e-1, 
and a/2+ b/3 =I~ xexdx = [xeX-ex]fi = 1. 

Which gives eX!: .873 + 1.69Ox in the required range. 
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CHAPTER 17: PROGRAMMING FOR BUSINESS AND EDUCATION 

17.1 Business programming. 

17.1.1 TYfJes of systems 
"If predictions of millions of computers in the English-speaking world are true, 
then the presen t situation is not even a drop in the ocean" (PL) 

At the time of writing there are reported to be about 100,000 microcomputer systems 
in the U.K., of which a substantial proportion are Commodore machines. About 2% of 
users are in user groups. The general level of expertise is not very high; considering 
the complexity of these machines, this is, of course, not surprising. Most CBM hard­
ware is distributed through official CBM dealers, and the presence of such dealers 
helped Commodore to achieve its leading market position. Software is a rather differ­
ent matter. Most microcomputer manufacturers want to make and sell hardware, which 
is in any case logically prior to software; sources of software are far more diffuse 
and various, and may not come into existence for years after the introduction of a 
machine, so there is no guarantee that software which is perfectly feasible technically 
will actually exist. There are broadly four microcomputer markets: business, science, 
education, and personal computing ('home' computing is sometimes distinguished from 
'personal' computing). In the U.K., the home computing market is small, because of 
the cost of the machines; or at least this was the case until Clive Sinclair introduced 
his ZX-80 and -81. On the other hand, this market sector is probably much larger 
than appears from the figures, because many machines bought for 'business', for tax 
reasons, must effectively be used personally. Estimating the proportion of machines in 
serious use is difficult; my own impression is that many microcomputers in 'education' 
are very much underutilised, and that a significant proportion of business machines 
fall into disuse after a fairly short time. Whether failures are principally a hardware 
matter or caused by software remains a further unclear area. However, it is at least 
clear that experienced hardware support and after-sales service are likely to be nec­
essary to a successful sy stem. 

As regards software, the most widely-used business systems appear to be those 
which use data which is not crucial in day-to-day running of a business; mailing lists, 
price lists, in-house telephone directories, address book systems, quarterly requests 
for fees, illustrate the type of thing. Sales and purchase ledgers, order processing, 
and payroll, although potentially almost universal, seem more resistant to micro-comp­
uterisation. From the buyer's viewpoint, systems are very hard to assess, as we shall 
see, so caution is understandable. The situation is not particularly easy for the pro­
grammer and/or analyst either; a good system may be expensive to produce, perhaps 
prohibitively so, and a user may not appreciate the problems which may occur with 
relatively insecure systems. A package may be copied or bootlegged; a client may 
request impossible things; a specification may be changed at the last moment. The 
sections which follow will, I hope, cast some light on these issues, without necessarily 
offering definite solutions. 

17.1.2 One-off ('besRoke ' ) systems 
"It will be nice to have a machine that does exactly what I want" (Anon) 

Most one-off system s rely on previous programming work; in an extreme case, only a 
client's name or company need be changed throughout a set of programs. Normally, 
standard routines or methods can be used. Consequently, such systems can legitimate­
ly vary enormously in price. Another source of variation is the error-trapping and 
validation of the programs. This ought to be tailored to match the level of skill of the 
users. If unmotivated staff are going to be expected to key in large amounts of data, 
properly validated input, the use of menus, and comprehensive instructions have to be 
provided, otherwise there will inevitably be errors. In any case, some form of audit 
trail or record on paper must be printed in case of loss of data. If it can be arranged 
automatic file backup is desirable, since the users may not understand the importance 
of copies of data. Much of this is far less important in the case of programs of the 
sort described in the last section, which (for example) scan an address file by name 
or occupation, or perform some set inland revenue calculation. Normally, the category 
into which a program falls is fairly obvious to a programmer of even moderate exper­
ience: it is usually clear whether or not a proposed system is too large or likely to 
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overstretch the hardware. Sometimes it is impossible to be sure, so a preliminary 
trial may be needed. For example, is it possible to write a system which can plan the 
routing of film cameras and other news equipment by air to several cities (say, some 
capitals in Europe) in an efficient way? 

When computerisation is considered, a client may not appreciate the importance 
of a clear specification of a system's function; in particular, the fact that although 
almost any system can in principle be programmed, a cost-effective approach may 
require the drawing of more-or-less artificial boundaries. For example, mailing-lists 
have 'dead wood' procedures, which remove names after (perhaps) a certain number 
of non-responses, but respondents must be categorised in a common-sense way, en­
suring that Category 'A' are not removed until a larger number of mailings than 
Category 'B'. The fineness of the categorisation can be decided on the basis of ex­
perience. 

As an illustration of requirements which clients may request of software houses. 
let's consider the following typical list (modified from an article by P Crozier in Com­
puter Weekly, Jan. '80): (1) The software should be modifiable by the unskilled lay­
man himself whenever his requirements change; (2) The system should be as foolproof 
as possible. For example, it should be impossible for programs to be run in the wrong 
order, and there should be no chance of data being lost through lack of backup cop­
ies. (3) The system should be simple to operate. A single rule should control the 
operation of the entire system. (4) The system should be a 'fully integrated business 
system'. (5) Other applications programs should work with the system, even when 
they are written by other organisations or individuals. (6) Reports (i.e. printouts of 
significant aspects of the data as it is currently stored) should be obtainable at any 
time. (7) Help must be available - 'within one hour's drive' is the criterion suggested. 
(8) Take account of ongoing costs, not just purchase price. How realistic is a list of 
this sort? In the case of most microcomputers, we can immediately supplement it with 
the requirement that a validation program of some sort should be available which can 
verify that the stored data has not been corrupted. Hashtotal techniques provide one 
method. Without this, a suspicion that the floppy disks may hold 'bad' data may be 
always present. The use of passwords to access the system is also sometimes thought 
to be desirable. Most of the list's desiderata are difficult to achieve, and are much 
more restrictive and stringent than most mainframe systems apply. Let's look at the 
eight points in turn: 

(1) Software modifications. Programs which are parameterised, or which keep 
current parameters on file, are easily modified by users: for example, a set of percent 
increases applicable to a number of classes of items can be soft-coded so that the user 
has the option of altering them. Similarly, titles, headings, and printed comments in 
general may be programmed in a way enabling them to be changed. Apart from these 
rather elementary examples, things are less straightforward. Programmers may not 
wan t their programs to be accessible to the users; this depends on the commercial 
relationship between the software supplier and user. There is a further problem of 
determining responsibility in cases of failure of a modified system. 

(2) Foolproofing. There is no way to make a system completely foolproof; the 
attempt may even be counterproductive, if an elaborate set of checks gives the users 
too much confidence in a system's ability to recover from mistakes. The single most 
valuable insurance against error is a competent user to whom the backup procedure, 
the operating procedures, and the function of individual programs has been explained. 

(3) Simplicity. It is a mistake to assume that the shortest commands are the 
most efficient, i. e. that the number of keystrokes is inversely related to efficiency. 
Single-key triggering of important system functions can be disastrous. This of course 
is the reason for queries like 'Are you sure?' in BASIC 4. A uniform set of data-entry 
conventions is important in any system. These should incorporate the normal validation 
features, but must also make provision for the correction of wrong entries, by (for 
example) redisplaying the contents of a record before it is filed, and allowing any of 
its fields to be called by number to be corrected. See section 17.1.4 for more on this 
subject. 

(4) Fully integrated system. The point here - which is probably more relevant 
to packages - is that aU parts of a system should ideally be developed as the result 
of an overall analysis, and not assembled in a piecemeal fashion which may cause un­
expected failures if the subprograms do not fit together correctly. From the point of 
view of a buyer, there is no way of knowing whether or not a system is 'integrated' 
in this sense, so there seems little point in laying stress on this. 
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(5) Compatibility with other programs. Every system relies upon its files having 
a structure which may well be unique to the program. It is impossible to ensure that 
any system will be generally compatible with all other software. To a limited extent, 
however, this is possible; a number of packaged software products are able to use 
each others' files, notably in word processing packages where the file structure is 
often a relatively simple dump of consecutive ASCII strings. 

(6) Immediate availability of reports. This of course is correct. Easily available 
reports are valuable not only because of their immediate usefulness but also as a 
check on the working of a system. However, there may be some problems with reports 
in which values are reset. A program to provide end-of-period summaries, which reset 
totals to zero in preparation for the next period, cannot be run at any time, so it 
may be necessary to separate the reporting part of a program from the resetting part. 

(7) Availability of experienced help. In any serious system, this is vital. It is 
not very easy to ensure continuity over time. Software people may be reluctant to 
provide continual after-sales service, which might be perceived as a drain on the 
resources of the company. There is a further problem that a system may change over 
a period, so that there may be no software person familiar with some version of a 
program, although this is usually a problem only with packages. Moreover, a company 
may have so many different systems written that keeping track of them all is very 
difficult. In practice, therefore, even 'experienced' help may be less useful than the 
owner of a system hopes. Some software houses offer no maintenance whatsoever. 

(8) Costs. Although it seems obvious that the costs should allow for the poss­
ibility that changes in programs will be wanted, users generally have no way of est­
imating the extent of such enhancements or their costs, which may be large. One way 
around this is the fixed-price or 'turnkey' system. See section 17.1.9 for comments 
on the advantages and drawbacks of such schemes. 

17.1.3 Packages 
"Standard software packages are unlikely to be faulty" (Dept. of Industry guide) 
"Don't ever buy a system without seeing it demonstrated. The reason? 
There's so much under development. The good ones are pleased to 
demonstrate it. The others ... well ... " (MH) 

From a programming point of view, packaged systems are not very different from one­
off systems. The main differences are (i) the target market must be fairly well under­
stood, and (ii) problems of copying and bootlegging may arise. Section 17.1.10 looks 
at this second point. Very often the first is taken care of by one of the partners in 
the software-producing venture: accounting, medical, legal, and games packages have 
been produced with the co-operation of people with expertise in these fields. The 
intention is of course to sell a relatively large number of standardised program pro­
ducts at a price lower than would be possible with a once-only program. All purchas­
ers can be offered similar service terms, and possibly regular updates to their pro­
grams should bugs be found or (for example) government rules changed. This is 
however not as easy as it appears at first sight. If all users want a product which 
has been thoroughly tested ('received its baptism of fire ... ') by other users, it is 
difficult to see who is to undertake the initial testing. And as a product improves, its 
qualitites make it automatically a candidate for copying. Copyproofing is not easy; it 
is possible that Commodore may offer help in this, but they may not. 

It might appear that purchasers have an easy time, but this is not really the 
case. For reasons discussed in 17. 1. 5, reviews of packages are not likely to be of 
much value. Users may be offered old versions of packages, and be completely un­
able to find out how up-to-date is the version being sold them. The exceptions are 
widely-sold packages, such as the -Calc range of programs which started with Visi­
Calc (TM), the characteristics of which are well-known. Word-processing packages are 
also widely known and understood: Wordpro (TM) and Wordcraft (TM) illustrate the 
type of thing obtainable at present. A user should however still test such products, 
if he is concerned to actually use them. He may find that the facilities for name and 
address insertion in letters are inadequate. or that his printer is not catered for, or 
that his operators cannot use it. Also, of course, at any given time there is a 'state 
of the art' to which most packages conform and which may not have been pushed to 
a high level of development. For example, no word processor packages so far as I am 
aware offer proportional spacing, even though modern daisywheel printers are equip­
ped to handle this, on microcomputer systems. Automatic hyphenation, using a library 
of prefixes and suffixes to insert breaks in words (sometimes unsuccessfully: pro-mpt) 
also seems to be non-existent, although it is technically feasible. 
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17.1.Q InRut/Outp~ 
"It can take years to key in data ... " (MH) 

We've seen (Chapter 4) some examples of 'input' statements which use 'GET' to give 
full control over a system's input. The object of this is to avoid INPUT, which has 
many features making it unsuitable for serious applications, such as rejecting commas, 
not distinguishing between shift-space and unshifted space, and allowing unwanted 
cursor-control movements to take place. Systems designed for use by typists may 
need special validation, for example to ensure that the figure '1' is not entered as 
lower-case 'L'. The most thorough utility provided by Commodore is the 'Standard 
User Data Entry Environment', published as assembler source-code in CPUCN, Vol. 3, 
Issue 3, in an article by Paul Higginbottom. BASIC 2 and 4 versions are printed in 
the same article. The routine is too long for description here, but basically is stored 
in high RAM where it inputs strings into a predimensioned string array. The position 
of the fields is not determined by numerical parameters; instead the screen is scanned 
for delimiters, which the published version takes to be '<' and ')' to mark the start 
and end positions respectively. Since it is scanned fro~ $8000 upwards, the fields are 
automatically input in consecutive order. This is the 'Data Entry Editor'; it is only a 
part of the 'Environment' which Commodore say in the article that all software must 
roughly conform to in order to receive 'Commodore approval'. Readers may therefore 
be interested in the following brief summary of the standards: 

(1) A title on the top line(s) should describe the current program. The bottom 
line should be reserved for error messages or prompts ('Enter YES if data OK'), and 
perhaps messages ('Please wait while search continues'). 

(2) 'C' should continue from one screen to the next; shift-return should be the 
code to accept an entire screen of information. [l do not personally believe that the 
use of shift-return in this manner is sensible, because typists don't usually accept 
a distinction between shifted and unshifted carriage return]. 

(3) [CLR] should return every field to its initial value. [HOME] should move 
the cursor to the first field. [UP] and [DOWN] should permit movement between fields. 
[INSERT], [DELETE], [LEFT], and [RIGHT] should allow editing of each field. This 
condition is likely to prove more difficult to program than any other feature. [RET­
URN] validates its field and moves the cursor to the next field if the field was not 
detectably invalid. [S TOP] should provide a 'help' facility (i. e. a display of instruc­
tions, or - this may be more difficult - a return to the main menu). 

A screen can enter 'screen accept/reject mode' when a final [RETURN] or 
cursor down leaves the last field of the screen, or when [SHIFT-RETURN] is pressed 
at any time. In this mode, cursorup, [HOME] or [CLR] are to act as rejections, and 
shift-return as accept. So two consecutive shift-returns at any stage accept data. 
[Personally, I prefer a more meaningful 'YES' or 'NO']. 

A data entry method which is used on large computers is the keying-in of 
identical data by two different punchpersons, each set of data being separately stored 
on file, and compared by the computer. Discrepancies can then be corrected. The 
idea is that neither person keying in data bothers to correct anything. In the case of 
small machines, there may not be storage space to file duplicate data, or time to enter 
the data twice, so such methods are probably unsuitable. 

While numeric data is standard in format, alphabetic data isn't, and it may be 
worthwhile to decide on standards so that reports etc. are uniform in appearance. See 
the examples below, one extracted from a list of standards, the other showing a report 
incorporating them. 

A [Amps] 
C [Centigrade] [Capacitance] 
Cd [Cadmium] 
Hz [Hertz = frequency] 
L [Liters] 
Ni [Nickel] 

~T-94o-090E I 128 Outer Vessel B SL 2.35 300.80 
~T-94o-IIOB 4 103 Condenser B SL 2.20 226.60 
NKT-940-130S 2 507 Peg Stopper B SL 0.57 288.99 
t-J.1T-410-B 3 3 Nitrometer, Lunge C 38.25 114.75 
OVB-20I-010P I 10 Oven,Grlffin 200C D Y 73.44 734.40 
OVH-700-Q 1 3 Floor Stand,Oven/lncubator B L 31.50 94.50 
OVH-72D-C 2 14 Floor Stand,Oven/lncubator B 33.00 462.00 
OVH-740-L I 14 Floor Stand,Oven/lncubator B 34.50 483.00 
OVL-240-504G 5 7 Rack B L 9.43 66.01 
OVL-240-509T 6 72 CI Ips B L 3.43 246.96 
OVL-350-210Y I I Drying Cablnet,220-240V ac F P 122.55 122.55 
OVL-578-o50S I 17 Thermometer B L 3.53 60.01 
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Hardcopy of input data may be produced as the data is input, providing a 
record of a series of transactions: see the example below, which records two trans­
actions only. 

START OF BOOK STOCK IN ENTRY FOR 81 5/81 

CATALOGUE 10. m.n UPDATED STOCK mURE I 10. TO ISSUE. un DESCRIPTIDI OF 1m COST PRICE DELY. CROSS-REF LOCI. 

CKL-72Hm 15 In Shd Level: ,Issue: 15. Theuishrs 35.26 

CKL-7Z1-13IH 11 lei Slaek Level: ,Issue: 11. Injection Parl Seals .68 

END OF BOOK STOCK IN ENTRY FOR 81 5/81 

17. 1 .5 Testing2ystems 
"Some of the faults [in packages] were quite incredible" (RW) 

The quotation above came from a manager of a microcomputer department of a retail 
chain, whose policy was to stock only thoroughly tried and tested products. They 
employed external consultants to report on the good and bad points of software pack­
ages. They found plenty of each, but the relevant fact as far as this section is con­
cerned is that the process was expensive, equivalent to about a year's salary per 
package. This is the reason for the fact (mentioned before) that reviews of packages, 
where they exist, are very likely to be superficial, and are often little more than 
quotations from handouts and press-releases on systems. It is also the reason that 
many users wait until a solid base of users is established before buying a package. 
From the programmer's point of view, bugs are not necessarily undesirable, since a 
clien t 's independence is undermined to some extent if errors appear in his system. 
Moreover, a perfect program is a program eminently suitable for copying and piracy. 
Most mainframe packages are continually modified and upgraded, often with regular 
monthly update sheets circulated to registered users, although one hesitates to 
describe this as deliberate policy. With the computer industry at its present state of 
evol ution, it is difficult to be dogma tic in this area. 

17.1.6 Users and programmers 
"This guy rang and said his computer wasn't working. He'd typed in 
'What is my birthday?' and it hadn't told him" (LS) 

The following short notes are intended to instruct, and warn, of potential hazards in 
the microcomputer arena caused by people rather than machines. 

(1) Salesmen. Many microcomputer salesmen don't really know much about their 
machines, and perhaps can hardly be expected to. Advice from the technically comp­
etent will often be better. 

(2) Typists. A computer like a CBM has a keyboard and is therefore automat­
ically categorised by many office workers as a typist's thing. There are however a 
number of differences in style between typing and data input (for example, with 
regard to error correction) which may make the stereotype inappropriate. In addition, 
don't assume that someone can sit in front of a screen for eight hours a day; this 
may be too much. Four may be better. 

(3) 'Users'. A 'user' can be defined as someone with immediate responsibility 
for a system. It may prove impossible to explain such concepts as disk copying, the 
need for tidiness and cleanliness, or the way a system works. 

( 4) Departments. Inter-departmen tal rivalries and differences in attitude may 
cause problems in any organisations other than the very smallest. Errors or omissions 
which are well-known in one department may never be formally mentioned to the 
people who are working with the microcomputer. 

(5) Computer departments. Big organisations' computer departments may be 
actively opposed to microcomputers, partly for the good reason that they may go 
wrong. (This is why micros are often described as 'calculator with video display' or 
in some such terms when the department's budget requests are submitted). There may 
be a fear of 'distributed processing', or the managers may know nothing of micros. 
It is also quite common for mainframe people to be unable to appreciate the limitations 
of microcomputers, which inevitably lack most big-machine features. 
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(6) Programmers. Some readers may be interested in the general perception 
of programmers and analysts within the computer industry. Computing has evolved 
with little in the way of formal training and qualifications, so assessment of would-be 
computer personnel is fairly difficult. One hears of people describing themselves as 
'very experienced programmer' who turn out to have two weeks' experience on a 
machine. The first belief is that analysts are extraverts and programmers introverts. 
This is at least a clear-cut theory, something which can hardly be said of the assort­
ment of theories on programmers. I've heard it suggested that programming ability 
goes with neatness in form-filling, with the capacity to use jargon, with interest in 
chess and lor bridge, and with the desire to feel control over the machine. Disabled 
people have been recommended as potential programmers. People who are good at 1. Q. 
tests are likely to be a good bet (I imagine), since the pencil-and-paper nature of 
the work and its emphasis on formal logic resembles the tests quite closely. Yet anoth­
er belief is that programming skill can be expected to correlate with fluency in 
English. 

17. 1 . 7 Documentation 
"Make sure you've got paper, paper all the way" (MH) 

There is a British Standard on documentation: BS5515: 1978 is the Code of practice 
for Documentation of Computer-based systems. This is exhaustive, but too compre­
hensive for microcomputer systems. Instead a small subset taken from the code of 
practice will probably serve most purposes, perhaps along these lines: 

(1) Operator's Manual. This might include the procedures for switching on and 
off, and for handling disks, loading paper, loading programs, and so on. It should 
include an explanation of input conventions (e. g. as described in section 17.1. 4), and 
also of error messages, even if these are supposed to be self-explanatory. If there 
are conventions to be followed when inputting data (as in 17.1. 4) these should be 
listed, and a troubleshooting section of a reasonably elementary kind will help avoid 
panics caused by the printer running out of paper and problems of that sort. 

(2) User Manual. This is intended to explain the system, without going to the 
lengths of including program listings and other technical documents. It could include 
an explanation of the file structure, a chart of the processing sequences of the pro­
grams, an explanation of the backup procedures to be adopted and the validation 
techniques to check for successful running, and a hardware section listing the 
suppliers with details of purchase dates, maintenance contracts, contact names, and 
so on. 

(3) System manual. This should provide a complete reference to the working 
of a system. Typically a specification will be included, and a detailed breakdown of 
the file structures used, with field types, field lengths and so on. If the system is 
partly in BASIC, listings, subroutine maps by linenumber, variable tables, and 
details of wedges and IRQ alterations must be listed. Memory-maps of machine-code 
and annotated machine-code listings are needed. Finally, a log of updates and their 
(intended) effects should be kept. 

17.1. 8 Security 
Sufficient security can usually be got by simply locking up the machine, perhaps 

taking home important disks or keeping them locked in lockable diskette cases. Backup 
copies of data should be kept separately, though. Some microcomputers are portable 
enough to be carried away; the PET ICBM range are on the heavy side for this. It 
is not unknown for chips to be taken out, however. Some users may like to ensure 
that no disks are taken into their computer room or taken out. Passwords may be 
useful if several groups of users run programs on the same machines, but these are 
likely to be vulnerable to competent programmers and are effective only with so-called 
'naive users'. Complete duplicate systems are often feasible and may be worthwhile. 

17. 1. 9 Contracts 
A software house typically has a contract with its clients along these lines: 

For a fixed price, a system specification and programs will be produced in (say) 
twelve weeks, 'with no liability for variation'. After the system specification has been 
agreed with the client, work goes ahead; the client is expected to supply test data, 
and on delivery of the system the results produced by the system using the test data 
are supplied to the client, who is expected to check whether the results accord with 
the specification. After an interval (perhaps four weeks) the programs are deemed to 
accord with the specification. 
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There may be penalty clauses if delivery is late; occasionally stories circulate 
of freelance programmers sued for malpractice. But generally something like the 
scheme above is adopted. It is in fact rather unfair on the purchaser; he may have 
to wait much longer than he thought, and be asked to supply test data without any 
real appreciation of how to do this - for instance, it may not occur to him to supply 
data with deliberate mistakes to check that the system rejects them. Also he may be 
asked to approve a specification with only a vague idea of what the resulting system 
will appear like in practice. Finally, the lapse of time allowed to detect bugs may be 
insufficient, some programs never being run. 

17.1.10 COFlying and 'Fliracy' 
We can distinguish copying, where a friend or acquaintance copies a program 

for his own use, from 'piracy' or 'bootlegging', in which the copied program is not 
only copied but also sold. The cassette games market is said to have been killed by 
copying, some companies no longer bothering to sell them because copies quickly cause 
a severe drop in sales. Cassettes can of course be copied by audio methods, so that 
any software protection is simply bypassed. Disk programs are much more copyproof­
able, but the methods are not widely known. In any case, it may only be a matter of 
time before programs to copy 'uncopyable' disks start to appear: this happened in 
1981 to Apple, whose disk operating system is in RAM and more accessible than 
CBM's to disassembly. There are other, more subtle forms of copying too. I met an 
enthusiast at an exhibition who told me that he'd written a trade estimation program, 
which had reappeared, in improved form, but using exactly his methodology, as a 
commercial system. Beyond remarking on this problem, which is also endemic in the 
recorded music field, it is hard to suggest any solutions .• One suggestion is that 
users might be willing to pay for a newsletter of updates, or that an elaborate 
manual for a system might be easier to spot as a copy than a disk; and that a system 
might include spurious routines that perform no useful purpose, but can be looked 
for in a suspected pirate copy. But even if a pirate copy is certainly identified, legal 
action may hardly be worthwhile. 

17.2 Programming in education. 

"They work in an orderly way for hours. The attention-getting capacity 
[of microcomputers] is remarkable" (OL) 

17.2.1 Costs 
Microcomputer costs have continued to drop; VIC is Commodore's low-price 

machine which is intended to compete in the cheap home and education markets. The 
apparent costs have dropped more rapidly than actual costs: when allowance is made 
for external TVs, cassette recorders, RAM packs (more expensive than RAM chips!), 
and other equipment, particularly disks and printers, much of the apparent saving of 
'cheap' systems may disappear. In the U.K. it is official policy to support, or at least 
lean towards, British products; education authorities for example may fund only RML 
hardware and software, and perhaps Acorn machines with BBC BASIC. Something like 
this may happen in the U.S.A. if Japanese hardware becomes more popular. Cost is 
therefore not the only consideration, especially for schools. It has to be said that 
many people in the education sector have an unrealistic attitude to hardware and 
software. Letters are printed in the magazines from teachers who want to introduce 
computing at a cost of £2 per head. There is a widespread belief that schools spend 
vast sums on technical gadgetry: video recorders, televisions, and so on. The fact 
seems to be that wages and salaries take the lion's share of the huge sums paid on 
education, leaving not much for items like microcomputers. Often, parents (via parent­
teacher associations) or companies which allot part of their budget to charities can be 
persuaded to part with money. Sometimes special funds for career training or for 
gifted students can be tapped. The technique, so far as I know, is to (a) appoint an 

*Hardware solutions are successful with most users, and are likely to remain so unless 
imitations become widespread. The 'dongle' is a device fitting one of the ports. In 
its Simplest form it might fit over the user port (which is more likely to be free 
than the IEEE port) and perhaps ground the diagnostic sense pin. This could be checked 
by the program in the same way that the reset routine selects between BASIC and the 
monitor (or - originally - the diagnostic routine), and, if not grounded, er.ase the 
program. More sophisticate versions might include timers and other circuitry. ROMs, 
e.g. in slot 9000-9FFF, can supplement the security of disk systems, and incorporate 
an identification number, although EPROM copiers make them less than foolproof. 
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enthusiast willing to do the work, and (b) encourage this person to approach likely 
sources of funds at as high a level as possible, telling them that the aim is to develop 
their skills in this field or that. 

17.2.2 Programs 
"We found most of Blanksoft's programs were execrable" (MB) 

Computer Aided Learning ('CAL'), programmed learning, and teaching machines were 
first introduced in the sixties, and appear to have been a near-total failure. Present 
technology at least offers the hope of greater success, but this cannot be taken for 
granted. This section discusses some of the qualities which good educational software 
can be expected to possess, and some of its promising applications and topics. 

(1) Multiple-choice questions. Because of their ease of marking, tests of thiS' 
sort are fairly popular. The principle is simple enough: a question is posed, and a 
small number, say four, alternative 'answers' offered. Only one is supposed to be 
correct; the others may be deliberately chosen, perhaps empirically, to resemble the 
correct answer closely, or to be the correct answer to a sligh tty different question. 
The simplest scoring method is to give 1 mark for a correct solution, and deduct 1/3 
of a mark for each incorrect question, where there are four alternative answers. This 
is a so-called 'guessing correction'. The rationale is that a respondent who answers 
questions at random will on average score 0, because three incorrect answers will just 
cancel out a single correct guess. In this way, reckless guessers are not rewarded. 
A language like Pilot (see appendices) can be used to generate programs of this sort, 
although some versions of Pilot may not enable scores to be kept. 

(2) Tests graded by year and subject. A general question-and-answer session, 
provided as an off-the-shelf package, may be valuable. There is no need to adhere 
to a strict format; there may be calculation questions, vocabulary questions, compre­
hension questions. Ideally, therefore, several different programs on (say) second-year 
economics could be available, to be used by a student for self-assessment. Programs 
like this are quite difficult to write, and a standardised approach is vital if any sort 
of reasonable productivity is wanted. 

(3) Packages explaining single concepts. Many scientific, mathematical and 
linguistic concepts can be made the subject of programs. Where the screen editing 
and graphics capacity is used well, the resulting program may be a valuable supple­
ment to a lesson. Examples include: i. A program to demonstrate how histograms (bar 
charts) vary as the scales on which they are plotted, and the number of bars used, 
change. ii. Demonstrations of the relationships between the frequency of a sound and 
its pitch;- including intervals such as thirds and octaves. iii. Simulations using random 
numbers. Any probability distribution can be tried; examples include the normal 
distribution, elementary distributions involving coins and dice, biological population 
models, and mathematical results derived from physics and chemistry. iv. Graph 
plotting: the idea of co-ordinates, the use of rectangular axes, the equations of some 
simpler curves. v. Series summation and the idea of a 'limit'. Special cases can be 
looked at: pi, e, and the golden section. vi. Concepts of calculus: differentiation can 
be taught as the calculation of the limitinggradient at a point, and integration as the 
addition of lengths, areas, or volumes of arbitrary smallness. vii. Mathematical eco­
nomics. Supply and demand curves and deductions from them, {lXed and variable 
costs, average and marginal costs are all readily computerisable as demonstrations. 
More complex simulations, such as the 'business cycle', can be illustrated too. 
viii. Simple linguistic ideas. Languages generally are too complex for microcomputers 
to get much purchase on, but useful programs can be written in restricted areas, 
such as vocabulary and translation testing. A successful program to test knowledge 
of German numbers (printing the correct German version of a written number, high­
lighting the response where it was incorrect) illustrates on sort of approach. 

17.2.3 General attitudes 
It is worthwhile to be aware of the two fundamentally different underlying 

attitudes possessed by converts to the cause of microcomputers in education. Both 
make claims which may be suspected to be excessive. The first group concerns itself 
with supplementary training-courses for teachers, with organising pupils so that each 
of the older pupils is allotted a certain amount of time per week, and with converting 
other teachers. This group is likely to produce popular programs, since the more 
subtle pitfalls require a fairly hard-headed approach to detect and avoid. Their 
arguments in favour of microcomputers read like this: Microcomputers are unparalleled 
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at teaching logical thought. They provide great opportunities for students to display 
their creativity. Learning about microcomputers may be the most important part of 
their schooling ... 

The second group has a more romantic approach, and is less concerned with 
matters of cost or pupil access, or of trying to assess the benefits of computer 
education. One pictures a roomful of 'disadvantaged' children, all concentrating on 
their computers, and in fact playing a number game. This group's argument for micro­
computers reads: It is quite remarkable to see them working in an orderly way for 
hours. With microcomputers, increased equality of education is possible. Children 
who dropped out find their interest reawakened, and their confidence grows ... 

As far as teachers who are not involved in computer studies are concerned, 
microcomputers may be thrust upon them either by way of packages of the sort 
previously described, or in· an administrative role. Programs to help plan timetables 
illustrate this latter category. A few hints show the sort of approach which may need 
to be adopted when planning educational software which has to receive these peoples' 
approval. In the first place, the cosmetic side of programs needs some attention. 
Lively and interesting graphics make a great deal of difference in all subjects, but 
perhaps particularly the more concrete subjects like biology and geography. Good 
graphics effects unfortunately are not easy to achieve. Another aspect of a program's 
appearance is the text: the CBM is fortunate in having lower-case, which is generally 
more readable than capitals only. Attention should obviously be given to the wording: 
it is not only teachers of English who object to being told 'Please get it rite' or 
asked to enter 'Any> A,B,C,D'. Sometimes teachers may be worried about the mach­
ine taking over from them. For example, they may reject a system which gives the 
student references on the topic under discussion. They may take the view that such 
information ought not to be issued too freely. 

A great deal of software has been written, and software directories and indexes 
appear from time to time in the computer press. The U. K. reader interested in finding 
out more should contact this address: 

The Council for Educational Technology 
3 Devonshire Street 
London 
WIN 2BA 
(Tel: (01 )-636-4186) 

Explicitly Commodore-related information can be obtained direct from Commodore 
or their dealers. MUSE (Microcomputer Users in Secondary Education) is what it says. 
Other interested parties include CAL News, based at Imperial College Computer Centre, 
and the Association of London Computer Clubs. I haven't listed addresses for these 
organisations, many of which are rather mobile. 
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TABLE OF OPCODES AND THEIR FUNCTIONS, BIT STRUCTURE, 

Opcode Description Bit structure Flags 

N V B D I Z C 

ADC Add memory with carry to accumulator 011bbbOl N V Z C 
AND Logical AND memory with accumulator 001bbbOl N Z 
ASL Shift memory or accumulator one bit left 00Obbbl0 N Z C 
BCC Branch if carry bit clear 10010000 
BCS Branch if carry bit set 10110000 
BEQ Branch if zero bit set 11110000 
BIT AND with A, storing Z and bits 6 and 7 0010bl00 M7M6 Z 
BMI Branch if N (negative) flag set 00110000 
BNE Branch if zero bit clear 11010000 
BPL Branch if N bit is not set 00010000 
BRK Force break to IRQ 00000000 1 1 
BVC Branch on internal overflow bit clear 01010000 
BVS Branch on internal overflow bit set 01110000 
CLC Clear the carry bit 00011000 0 
CLD Clear decimal flag (for hex arithmetic) 11011000 0 
CLI Clear interrupt disable flag 01011000 0 
CLV Clear internal overflow flag 10111000 0 
CMP Compare memory to accumulator 110bbbOl N Z C 
CPX Compare memory to X register 111 ObbO 0 N Z C 
CPY Compare memory to Y register 1100bbOO N Z C 
DEC Decrement memory location 110bbll0 N Z 
DEX Decrement X register 11001010 N Z 
DEY Decrement Y register 10001000 N Z 
EOR Logical exclusive-OR memory with A 010bbbOl N Z 
INC I ncrement memory location 111 bbl1 0 N Z 
INX I ncrement X register 11101000 N Z 
INY Increment Y register 11001000 N Z 
JMP Jump to new address 01bOll00 
JSR Jump to new address, saving return 00100000 
LDA Load accumulator from memory 101 bbbOl N Z 
LDX Load X register from memory 101bbbl0 N Z 
LDY Load Y register from memory 101bbbOO N Z 
LSR Shift memory or accumulator one bIt nght 010bbbl0 0 Z C 
NOP No operation 11101010 
ORA Logical inclusive-OR memory with A OOObbbOl N Z 
PHA Push accumulator onto stack 01001000 
PHP Push processor status flags onto stack 00001000 
PLA Pull stack into accumulator 01101000 N Z 
PLP Pull stack into processor status flags 00101000 N V B D I Z C 
ROL Rotate memory or A one bit left, inc. C 001bbbl0 N Z C 
ROR Rotate memory or A one bit right, mc. C 011bbbl0 N Z C 
RTI Return from interrupt 01000000 N V B D I Z C 
RTS Return from subroutine called by JSR 01100000 
SBC Subtract memory and C-complement from A 111 bbbO 1 N V Z C 
SEC Set the carry bit UU111UUU 1 
SED Set the decimal flag (for BCD arithmetic) 11111000 1 
SEI Set the interrupt disable flag 01111000 1 
STA Store accumulator into memory 1 0 ll.b.bbO 1 
STX Store X into memory 100bbll0 
STY Store Y into memory 100bbl00 
TAX Transfer accumulator to X register 10101010 N Z 
TAY Transfer accumulator to Y register 10101000 N Z 
TSX Transfer stack pointer to X register 10111010 N Z 
TXA Transfer X register to A 10001010 N Z 
TXS Transfer X register to stack pointer 10011010 
TYA Transfer Y reg ister to A 10011000 N Z 
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HEXADECIMAL VALUES, TIMING AND PROCESSOR FLAGS 

» » » N N N 3" - ::u » ~ ~ -
C" C" C" CD CD CD 3 !!. n - - ~ 
UI UI !II 

., ., :s "2- 3 n ~ ~ a. . . 
CD a. a. 

X -< X -< ii' a. ..... 
X . a. ..... ~ 

60 4 70*4 79*4 65 3 75 4 69 2 61 6 71*5 AOC 
204 30*4 39*4 25 3 35 4 29 2 21 6 31*5 AND 
OE 6 1 E 7 06 5 16 6 OA 2 ASL 

90 22 BCC 
B022 IjC::, 
F022 BEQ 

2C 4 24 3 BIT 
30 22 8M1 
00 22 BNE 
10 22 BPL 

00 7 BRK 
50 22 BVC 
70'2 

~~~ 18 2 
08 2 CLD 
58 2 CLI 
B8 2 CLV 

CO 4 00*4 09*4 C5 3 05 4 C9 2 Cl 6 01*5 CMP 
EC 4 E4 3 EO 2 CPX 
CC 4 C4 3 CO 2 CPY 
CE 6 OE 7 C6 5 06 6 DEC 

CA 2 OEX 
88 2 OEY 

40 4 50*4 59 *4 45 3 55 4 49 2 41 6 51 *5 EOR 
lEE 6 FE 7 E6 5 F6 6 INC 

E8 2 I NX 
C8 2 INY 

4C 3 6C 5 JMP 
20 6 JSR 
AD 4 BO*4 B9*4 AS 3 B5 4 A9 2 Al 6 B1*5 LOA 
AE 4 BE*4 A6 3 B6 4 A2 2 LOX 
AC 4 BC*4 A4 3 B4 4 AO 2 LOY 
4E 6 5E 7 46 5 56 6 4A 2 LSR 

EA 2 NOP 
00 4 10*4 19* 4 05 3 1 5 4 09 2 01 6 1 1 5 ORA 

48 3 PHA 
08 3 PHP 
68 4 PLA 
28 4 PLP 

2E 6 3E 7 26 5 36 6 2A 2 ROL 
6E 6 7E 7 66 5 76 6 6A 2 ROR 

40 6 RTI 
60 6 RT'5 

ED 4 FD*4 F9*4 E5 3 F5 4 E9 2 El 6 Fl *5 SBC 
38 2 SEC 
F8 2 SEO 
78 2 

6 191 
SEI 

80 4 90 5 99 5 85 3 95 4 81 6 STA 
8E 4 86 3 96 4 STX 
8C 4 84 3 94 4 STY 

AA 2 TAX 
A8 2 TAY 
BA 2 TSX 

* +1 if index crosses page SA 2 TXA 
2 +1 if branch is taken, 9A 2 TXS 

+1 more if page crossed 98 2 TVA 
I J I 1 I 



Programming the PET ICBM 

W 
....J 
aJ 
« 
I-

z 
o 
III 
a:: 
w 
> z 
o 
u 
a:: 
w 
I­
Z 

....J 

~ 
U 
w 
o 
« 
X 
w 
J: 

.J 

~ 
U 
w 
o 

Hex 
$00 
$01 
$02 
$03 
$04 
$05 
$06 
$07 
$08 
$09 
$OA 
SOB 
SOC 
$00 
$OE 
$OF 
$10 
$11 
$12 
$13 
$14 
$15 
$16 
$17 
$18 
$19 
$lA 
$1 B 
$lC 
$10 
$lE 
$lF 
$20 
$21 
$22 
$23 
$24 
$25 
$26 
$27 
$28 
$29 
$2A 
$2B 
$2C 
$20 
$2E 
$2F 
$30 
$31 
$32 
$33 
$34 
$35 
$36 
$37 
$38 
$39 
$3A 
$3B 
$3C 
$30 
$3E 
$3F 

Low High 
Dec. Dec. 

0 0 
1 256 
2 512 
3 768 
4 1024 
5 1280 
6 1536 
7 1792 
8 2048 
9 2304 

10 2560 
11 2816 
12 3072 
13 3328 
14 3584 
15 3840 
16 4096 
17 4352 
18 4608 
19 4864 
20 5120 
21 5376 
22 5632 
23 5888 
24 6144 
25 6400 
26 6656 
27 6912 
28 7168 
29 7424 
30 7680 
31 7936 
32 8192 
33 8448 
34 8704 
35 8960 
36 9216 
37 9472 
38 9728 
39 9984 
40 10240 
41 10496 
42 10752 
43 11008 
44 11264 
45 11520 
46 11776 
47 12032 ' 
48 12288 
49 12544 
50 12800 
51 13056 
52 13312 
53 13568 
54 13824 
55 14080 
56 14336 
57 14592 
58 14848 
59 15104 
60 15360 
61 15616 
62 15872 
63 16128 

Hex 
$40 
$41 
$42 
$43 
$44 
$45 
$46 
$47 
$48 
$49 
$4A 
$4B 
$4C 
$40 
$4E 
$4F 
$50 
$51 
$52 
$53 
$54 
$55 
$56 
$57 
$58 
$59 
$5A 
$5B 
$5C 
$50 
$5E 
$5F 
$60 
$61 
$62 
$63 
$64 
$65 
$66 
$67 
$68 
$69 
$6A 
$6B 
$6C 
$60 
$6E 
$6F 
$70 
$71 
$72 
$73 
$74 
$75 
$76 
$77 
$78 
$79 
$7A 
$7B 
$7C 
$70 
$7E 
$7F 

-484- Appendices: Hex IDecimal 

Low High Low High Low High 
Dec. Dec. Hex Dec. Dec. Hex Dec. Dec. 
64 16384 $80 128 32768 $CO 192 49152 
65 16640 $81 129 33024 $Cl 193 49408 
66 16896 $82 130 33280 $C2 194 49664 
67 17152 $83 131 33536 $C3 195 49920 
68 17408 $84 132 33792 $C4 196 50176 
69 17664 $85 133 34048 $C5 197 50432 
70 17920 $86 134 34304 $C6 198 50688 
71 18176 $87 135 34560 $C7 199 50944 
72 18432 $88 136 34816 $C8 200 51200 
73 18688 $89 137 35072 $C9 201 51456 
74 18944 $8A 138 35328 $CA 202 51712 
75 19200 $8B 139 35584 $CB 203 51968 
76 19456 $8C 140 35840 $CC 204 52224 
77 19712 $80 141 36096 $CD 205 52480 
78 19968 $8E 142 36352 $CE 206 52736 
79 20224 $8F 143 36608 $CF 207 52992 
80 20480 $90 144 36864 $00 208 53248 
81 20736 $91 145 37120 $01 209 53504 
82 20992 $92 146 37376 $02 210 53760 
83 21248 $93 147 37632 $03 211 54016 
84 21504 $94 148 37888 $04 212 54272 
85 21760 $95 149 38144 $05 213 54528 
86 22016 $96 150 38400 $06 214 54784 
87 22272 $97 151 38656 $07 215 55040 
88 22528 $98 152 38912 $08 216 55296 
89 22784 $99 153 39168 $09 217 55552 
90 23040 $9A 154 39424 $DA 218 55808 
91 23296 $9B 155 39680 $DB 219 56064 
92 23552 $9C 156 39936 $DC 220 56320 
93 23808 $90 157 40192 $00 221 56576 
94 24064 $9E 158 40448 $DE 222 56832 
95 24320 $9F 159 40704 $DF 223 57088 
96 24576 $AO 160 40960 $EO 224 57344 
97 24832 $Al 161 41216 $El 225 57600 
98 25088 $A2 162 41472 $E2 226 57856 
99 25344 $A3 163 41728 $E3 227 58112 

100 25600 $A4 164 41984 $E4 228 58368 
101 25856 $A5 165 42240 $E5 229 58624 
102 26112 $A6 166 42496 $E6 230 58880 
103 26368 $A7 167 42752 $E7 231 59136 
104 26624 $A8 168 43008 $E8 232 59392 
105 26880 $A9 169 43264 $E9 233 59648 
106 27136 $AA 170 43520 $EA 234 59904 
107 27392 $AB 171 43776 $EB 235 60160 
108 27648 $AC 172 44032 $EC 236 60416 
109 27904 $AD 173 44288 $ED 237 60672 
110 28160 $AE 174 44544 $EE 238 60928 
111 28416 $AF 175 44800 $EF 239 61184 
112 28672 $BO 176 45056 $FO 240 61440 
113 28928 $Bl 177 45312 $Fl 241 61696 
114 29184 $B2 178 45568 $F2 242 61952 
115 29440 $B3 179 45824 $F3 243 62208 
116 29696 $B4 180 46080 $F4 244 62464 
117 29952 $B5 181 46336 $F5 245 62720 
118 30208 $B6 182 46592 $F6 246 62976 
119 30464 $B7 183 46848 $F7 247 63232 
120 30720 $B8 184 47104 $F8 248 63488 
121 30976 $B9 185 47360 $F9 249 63744 
122 31232 $BA 186 47616 $FA 250 64000 
123 31488 $BB 187 47872 $FB 251 64256 
124 31744 $BC 188 48128 $FC 252 .64512 
125 32:'00 $BD 189 48384 $FD 253 64768 
126 32256 $BE 190 48640 $FE 254 65024 
127 32512 $BF 191 48896 $FF 255 65280 
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0 1 2 

BRK ORA (Ind,X) 

BPL ORA (Ind), Y 

JSR AND (Ind,X) 

BMI AND (ind) , Y 

RTI EOR (Ind,X) 

BVC EOR (Ind) , Y 

RTS ADC (Ind,X) 

BVS ADC (Ind) , Y 

STA (Ind,X) 

BCC STA (Ind) , Y 

LDY Imm LDA (Ind,X) LDX Imm 

BCS LDA (Ind) , Y 

CPY Imm ClIP (Ind,X) 

BNE ClIP (Ind),Y 

CPX Imm SBC (Ind,X) 

BEQ SBC (lnd) , Y 

--------- OPCODE LOW NYBBLE ----------

4 5 6 8 9 A C 0 E 

ORA Zer ASL Zer PHP ORA Imm ASL A ORA Abs ASL Abs 

ORA Zer,X ASL Zer,X CLC ORA Abs,Y ORA Abs,X ASL Abs,X 

BIT Zer AND Zer ROL Zer PLP AND Imm ROL A BIT Abs AND Abs ROL Abs 

AND Zer,X ROL Zer,X SEC AND Abs,Y AND Abs,X ROL Abs,X 

EOR Zer LSR Zer PHA EOR Imm LSR A JIIP Abs EOR Abs LSR Abs 

EOR Zer,X LSR Zer,X CLI EOR Abs, Y EOR Abs,X LSR Abs,X 

ADC Zer ROR Zer PLA ADC Imm ROR A JMP Ind ADC Abs ROR Abs 

ADC Zer,X ROR Zer,X SEI ADC Abs,Y ADC Abs,X ROR Abs,X 

STY Zer STA Zer STX Zer DEY TXA STY Abs STA Abs STX Abs 

STY Zer,X STA Zer,X STX Zer,Y TYA STA Abs, Y TXS STA Abs,X 

LDY Zer LDA Zer LDX Zer TAY LDA Imm TAX LDY Abs LDA Abs LDX Abs 

LDY Zer,X LDA Zer,X LDX Zer,Y CLV LDA Abs,Y TSX LDY Abs,X LDA Abs,X LDX Abs,Y 

CPY Zer ClIP Zer DEC Zer INY CliP Imm DEX CPY Abs ClIP Abs DEC Abs 

CliP Zer,X DEC Zer,X CLD ClIP Abs,Y ClIP Abs,X DEC Abs,X 

CPX Zer SBC Zer INC Zer INX SBC Imm NOP CPX Abs SBC Abs INC Abs 

SBC Zer,X INC Zer,X SED SBC Abs, Y SBC Abs,X INC Abs,X 
---

TABLE OF 6502 OPCODES 
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EXAMPLES OF ADDRESSING MODES WITH THE 6502 

Absolute i. CPX $12CF Compares the contents of the X-register with that of 
location $12CF. Both X and $12CF are unchanged, and the N, Z , and 
C flags are reset. The point is that the 'absolute address' is used. 

ii. STA $8000 Stores the accumulator in location $8000. 
iii.JSR WAIT Assembler notation for a subroutine call to 'WAIT', 

which the assembler identifies as a 2-byte address. 
Absolute, X I. LIJA ~FFOO, X The X register is treated as an offset; its value 

(0-255) is added to $FFOO, and the accumulator loaded with the byte 
found at this new address. Thus, if X holds #$F5, in the example 
the accumulator will be loaded with the contents of $FFF5. 

ii. ADC $7100, X Adds the contents of $7100, offset by X, plus the 
carry bit, to A. The result remains in A. This indexed instruction 
(like all such instructions) provides easy access to a range of 
addresses in association with DEX INX and related commands. 

Absolute, Y i. LDX TABLE, Y Absolute addressing indexed by Y is exactly analog-
ous to X indexing, although fewer opcodes have this facility. In 
the example, X is loaded with the byte at TABLE+Y. 

ii. STA $8000, Y Stores the accumulator into a location between $8000 
and $80FF, depending on the current value held in Y. 

Zero page i. LDA $70 Loads A with the contents of location $70. 
ii. SBC $113 Subtracts the contents of $43 from A. 
iii. ROL ZPG 128 Unusual assembler version of what normally appears 

as ROL $80, which rotates the contents of $80 and C, to the left. 
Zero page,X i. INC $15,X Analogous to absolute addressing indexed by X, 

except for the use of the single-byte address to which the offset X 
is added. BUT only zero page addresses are generated: if X holds 
#$OA, then $15,X refers to location $lF. However, if X holds #$FO 
then $15,X is address $05 not $0105. 

Zero page,Y i. LDX $AB,Y Only two instructions can use this mode. Both involve 
ii. STX $10,Y the X register. The operation of register Y on the 

zero page address is exactly similar to the previous example. 
Implied i. BRK A large number of instructions do not operate on external 

ii. CLC RAM or ROM, but on flags, registers, and the stack, which 
iii.PHA are internal to the chip. Other examples: TXS, SEI, CLD, INY. 

Immediate I. LDA '.~. Assembler t"orm of instructIon to load A WIth ASCII $. 
ii. LDA #$30 Loads A with hex 30. The third example is from a 
iii.LDY IMM 118 decimal assembler which quotes the mode, rather than 

let it be deduced by the form of the instruction. Note that immediate 
mode is the only mode handling direct data values. 

Relative i. BEQ $02911 Branches to $0294 if the zero flag is set; the next 
ii. BCS L1 example is an assembler version, branching to a label. 
iii.BVC +117 This last example shows a different convention, which 

corresponds to the way the opcode is stored. Here, there's an offset 
of 11 7 bytes forward from the next instruction. 

Accumulator i. LSR A A few commands act on the contents of A, either rotating it 
ii. ROL or shifting it. It can be considered an implied mode. 

Indexed i. ORA ($OO,X) Displacement X is added to the zero page address, to 
indirect give a new address in the zero page. This address, and its sub-

sequent byte, together point to an absolute address which (in the 
example) is ORed with A. If there is a collection of pointers in the 
zero page, this is useful. When X holds zero, the mode becomes in 
effect straightforward indirect addressing. Example: X holds #5, 
location 5 holds #1, location 6 holds 128. LDA ($OO,X) loads the 
accumulator from $8001. 

Indirect i. LDA ($12), Y The address m ($12), that IS, navmg HiS'S contents 
indexed as its high and $12's as its low byte, plus the offset within Y, is 

accessed and loaded into A. This is useful when dealing with RAM 
data arranged consecutively, e.g. messages and tables. 

Absolute I. JMP ($0090) Only JMP=6C hex uses this mode. In the example, if 
Indirect $90 holds #$2E and $91 holds #$E6, JMP($0090) jumps to $E62E. 
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6502 TIMING: QUICK REFERENCE CHART 

ADDRESSING TIME 
MODE 

Absolute 4 

Abs,X and Abs, Y 4 ( +1 over page) 

Zero Page 3 

Zer,X and Zer, Y 4 

Implied 2 

Immediate 2 

Relative 2 (if no branch) / 
3 (if branch taken 

+1 over page) 

Accumulator 2 

(Ind,X) 6 

(lnd),Y 5 ( +1 over page) STA (Ind),Y=6 

(Absolute) 5 

All figures are clock cycles (one millionth of a second for CBM computers) 

PROCESSOR STATUS REGISTER 

Example: A processor status register (SR with CBM's monitor) of 32 hexadecimal 
means that the Break flag (B) and the zero flag (Z) were set on entering the 
monitor. Some of the combinations may at first sight appear impossible; how 
can the negative bit (N) and the zero bit (Z) be simultaneously on? But the 
BIT opcode can accomplish this; and generally PHP ,can be used to set flags. 

7 6 5 4 321 0 

!NV1 BDI Z ci Low nybble 

0 
High nybble 1 C 

2 Z 
2 
3 B 
6 V 
7 VB 
A N 
B N B 
E NV 
F NVB 

3 ZC 
4 I 
5 I C 
6 IZ 
7 IZC 
8 D 
9 D C 
A D Z 
B D ZC 
C DI 
D DI C 
E DIZ 
F DIZC 
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FURTHER ASPECTS OF THE 6502 

[1] ROR. 6502s made before 1977 may not possess this command. Machine-code is 
therefore sometimes written without it if there are old 6502s in the field. 'Byte' of 
June '81 has an article on an Atari BASIC with ROR replaced by equivalent code. 
[2] JMP. There is a bug in the 6502's processing of the indirect jump ($6C) 
instruction. When the indirect address straddles a page boundary, the high byte 
is taken from the address in its own page. Thus, JMP ($03FF) jumps to the new 
address whose low byte is in $03FF, as it should be, but whose high byte comes 
from $0300, not the correct $0400. No CBM code contains a jump of this sort. * 
[3] Addressing modes. Examination of tables of opcodes shows that there are many 
periodic patterns in the distribution of the codes. Given the way logic circuits work, 
this is not surprising. All those opcodes which have more than one addressing mode 
are dependent on bits 2,3, and 4 to determine the mode; the table following shows 
the relationships. If the addressing mode doesn't exist for an opcode, then that 
part of the table does not of course apply: 

Opcode = xxxbbbxx Values of bbb represent: 

b bb 
o Not post-indexed 00 (Indirect, X) 

01 Zero Page 
10 Immediatel Accumulator 

1 Post-indexed 00 (Indirect), Y or when followed by 00, Relative 
01 Zero Page, X 
10 Absolute, Y or when followed by 00, Implied 
11 Absolute,X 

[4] Pseudo-Opcodes. The sequential tables of opcodesand addressing modes omitted 
columns corresponding to -3, -7, -B, and -F. This is for the good reason that the 
manufacturers do not specify any function of the chip corresponding to these values. 
There are other gaps in the table: in fact, only 151 opcodes are implemented of the 
possible 256 (or more) maximum. Nevertheless, many pseudo-opcodes (for want of a 
better term)appear to exist, though the makers don't encourage correspondence on 
this point. IPUG (Jan '81) published an article by B Grainger on empirical work done 
on the 6502, in which descriptions accompanied by 3 letter 'opcodes' account for 93 
of the 105 mystery values - if they are correct. For those who are interested in 
arcana of this sort, I present later the substance of his article with notes on timing 
and testing pseudo-opcodes and possible applications. In the absence of theoretical 
underpinning it is hard to know where to start on such an investigation; for one 
thing there is no guarantee that a non-standard code will not behave in entirely 
unexpected ways, corrupting registers perhaps, or executing repetitive, meaning­
less loops, like 'Halt and catch fire' on the Z80. 

Jim Butterfield has pointed out that codes ending in bits -11 simultaneously execute 
two commands, those ending in -01 and in -10. (Except that the timing may fail in 
some circumstances, transferring only 6 bits). All codes ending -3,-7, -B, and -F 
are of this type. This means that that a pseudo-opcode ending in -A, say, may 
combine the functions of the two codes ending -8 and -9 next to it. Something 
similar seems to happen in other cases not of this type. The X2 crash, for 
instance, in which an opcode ending -2 causes the chip to loop indefinitely until 
interrupted, appears to operate by virtue of the fact that all the branch commands 
end with -0, and are near neighbours. And the 'SKW' or skip word pseudo-opcode 
which skips over the next two bytes and 'SKB' which skips one byte are each 
found, respectively, in the absolute and zero page area of the opcode table, 
suggesting that some of these pseudo-codes may corrupt one or two memory 
locations. 

*1 have heard that there ilia bug related to one of the registers, but know 
nothing else about this alleged malfunction. 
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6502 PSEUOO-OPCOOES * 

Instruction Abs Abs, X Abs, Y Zer Zer,X Zer,Y (lnd, X) (Ind), Y Imm 

ASO (ASL,ORA) OF 1 F 1B 07 17 03 13 OB 
RLA (ROL,ANO) 2F 3F 3B 27 37 23 33 2B 
LSE (LSR, EOR) 4F 5F 5B 47 57 43 53 4B 
RRA (ROR,AOC) 6F 7F 7B 67 77 63 73 6B 
AXS (STX,STA) 8F 87 97 83 
LAX (LOX, LOA) AF BF A7 B7 A3 B3 
OCM (OEC,CMP) CF OF DB C7 07 C3 D3 
INS (lNC,SBC) EF FF FB E7 F7 E3 F3 
ALR (LSR, EOR) 4B 
ARR (ROR,AOC) 6B 
XAA (TXA, ) 8B 
OAL (TAX,LOA) AB 
SAX (OEX,CMP) CB 

NOP lA,3A,5A,7A,OA,FA 
SKB 80,82, C2, E2, 04,14,34,44,54,64,74,04, F4 
SKW OC,lC,3C,5C,7C,DC,FC 

The table shows some pseudo-opcodes. Those in bold type are more credible than 
those which are not. Probably, most anomalies will occur when addressing modes 
of neighbouring opcodes, or their timings, don't match. For instance, the code 
BF, combining LDX Abs, Y with LDA Abs,X might be expected to give an odd 
resulting addressing mode, particularly if one or both instructions crosses a page 
and so takes another clock cycle to execute. The 'mnemonics' given in the table 
have the following significance: 

ASO ASL then ORA the result with the accumulator 
RLA ROL then AND the result with the accumulator 
LSE LSR then EOR the result with the accumulator 
RRA ROR then ADC the result to the accumulator 
AXS Store the result of A AND X 
LAX LDA and LDX with the same data 
OCM DEC memory and CMP the result with the accumulator 
INS INC memory then SBC the result from the accumulator 
ALR AND the accumulator with data and LSR the result 
ARR AND the accumulator with data and ROR the result 
XAA Store X AND data in the accumulator 
OAL ORA the accumulator with #$EE, AND the result with data, then TAX 
SAX SBC data from A AND X and store result in X 
NOP No operation 
SKB Skip byte (ie branch of +1) 
SKW Skip word of 2 bytes (ie branch of +2) 

Many of the codes show repetitiveness, derived from regularities in the 6502, but 
there are many one off possibilities too: 9B combines TXS and STA Abs, Y will the 
net effect of storing 'A AND X in the stack pointer and bit 0 of A AND X in 
memory'. 

Applications. These commands are not part of the chip's specification, so they 
should best be avoided in machine-code routines for sale or general use. Sometimes 
they are helpful in debugging machine-code, when a jump or branch has been taken 
to a wrong address. Mainly, though, the potential application lies in the fact that 
hidden routines - to print out identification messages, or save a program using a 
special technique, for example - for the programmer's use only can be written in a 
way which disassemblers will be unable to decipher easily. 

*Most of the mnemonics and descriptions are from B Grainger's Jan. '81 IPUG 
article. 
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SUPERMON LISTINGS 

SUPERMON 1. 

A version of Supermon for BASIC 1, by D A Hills, was published in CPUCN 2, #7. It 
is written for the 8K version only, and is not in relocatable form. 

SUPERMON 2. 

For the sake of variety I have written this monitor in the form of two BASIC programs 
on the theory that some people prefer BASIC to the machine-language monitor in the 
CBM. The long program, run first, puts machine-code into position for relocation by 
the following relocating loader: 
155 POKE42,182:POKE43,6:CLR 
160 L=PEEK(52)+PEEK(53)*256 
170 N=L-1466:P=3391 :FORJ=L-1TONSTEP-l 
180 X=PEEK(P):IFX>OGOT0190 
185 P=P-2:X=PEEK(P+l)+PEEK(P)*256:IFX=0G0T0190 
186 X=X+L-65536:X%=X/256:X=X-X%*256:POKEJ,X%:J=J-l 
190 POKEJ ,X:P=P-l :PR I NT" (HOME I" ;X;" (LEFT I ": NEXT J 
200 X%=N/256:Y=N-X%*256:POKE52,Y:POKE53,X%:POKE48,Y:POKE49,X% 
210 PRINT"(CLEARIIDOWN1LlNK TO MONITOR -- SYS";N 
220 PRINT:PRINT"SAVE WITH MlM:" 
230 PR I NT". S ";CHR$(34); "SUPERMON" ;CHR$ (34);" ,0 1"; : X=N/4096:GOSlIB250 
240 X=L/4096:GOSUB250:END 
250 PR I NT",";: FORJ= 1T04: X%=X: X=(X-X%) * 16: I FX%>9THENX%=X%+7 
260 PRINTCHR$(X%+48);:NEXTJ:RETURN 

SUPERMON '4-

This monitor for BASIC 4 consists of a BASIC title program which also calls a machine­
code routine to relocate SUPERMON to the current top-of-memory. SUPERMON is long, 
so the keying-in process is recommended only for those users who do not have access 
to this public-domain program. Type the BASIC program in the usual way (note that 
the spacing of the commands is not critical. Lines 170-220 do the work). Then enter 
the monitor (e.g. with SYS 4) and enter the machine-code. SA VE the code before you 
try it out - a single mistake may cause the program to hang up. In order to save the 
machine-code with BASIC, change the end-of-program pointers to include the entire 
machine-code program, with .M 002A 002A 

•• 002A FO OC xx xx xx xx xx xx 
Where the xx's are unchanged. 

100 PRINT" SUPERMON4 1 " 

110 PRINT" DISSASSEMBLER D BY WOZNIAK/BAUM 
120 PRINT" SINGLE STEP I BY JIM RUSSO 
130 PRINT"MOST OTHER STUFF ,HAFT BY BILL SEILER 
150 PRINT"TIDIED & WRAPPED BY JIM BUTTERFIELD" 
170 L=PEEK(52)+PEEK(53)*256:SYS1536:M=PEEK(33):N=PEEK(341 
180 POKE52,M:POKE53,N:POKE48,M:POKE49,N:N=M+N*256 
210 PRINT"LINK TO MONITOR -- SYS";N 
220 SYS N 

M/c.ode. loacl",i'". 

l 
0600 A9 CB 85 IF A9 
0608 A5 34 85 21 A5 
0610 AO 00 20 38 06 
0618 38 06 FO 11 85 
0620 06 18 65 34 AA 
0628 35 20 43 06 8A 
0630 20 50 06 90 DB 
0638 A5 IF DO 02 C6 
0640 Bl IF 60 48 A5 
0648 C6 22 C6 21 68 
0650 A9 80 C5 IF A9 
0658 60 AA AA AA AA 

Start of SUf'ERt101'1 4 
Data (C:01\'td.. O1U'\aJJ 0 

OC 85 20 
35 85 22 
DO 16 20 
23 20 38 
A5 23 65 
20 43 06 
60 EA EA 
20 C6 IF 
21 DO 02 
91 21 60 
06 E5 20 
AA AA AA 

0680 AD FE FF 00 85 34 
0688 FF 00 85 35 AD FC 
0690 8D FA 03 AD FD FF 

~ 0698 FB 03 00 00 A2 08 
06AO FF 00 DO OE 86 B4 
06A8 AA BD E9 FF 00 48 
06BO FF 00 48 60 CA 10 
06B8 9A FA 00 A2 02 2C 
06CO 00 B4 FB DO 08 B4 
06C8 02 E6 DE D6 FC D6 
06DO 20 98 D7 C9 20 FO 
06D8 A9 00 00 8D 00 00 
06EO 79 FA 00 20 6B D7 
06E8 D7 90 09 60 20 98 
06FO 54 D7 BO DE AE 06 
06F8 4C A4 D7 20 31 D5 
0700 FA 60 E6 FD DO 02 

AD FF 
FF 00 
00 8D 
DD DE 
8A OA 
BD E8 
EA 4C 
A2 00 
FC DO 
FB 60 
F9 60 
01 20 
20 57 
D7 20 
02 9A 
CA DO 
E6 FE 



708 50 A2 02 B5 FA 48 BD OA 880 79 D5 20 17 D7 20 31 D 9F8 85 91 A9 AO BD 4E E8 CE B70 88 DO F8 AS DE 91 FB 20 
710 02 95 FA 68 9D OA 02 CA 888 A2 00 00 A1 FB 20 74 FC AOO 13 E8 A9 2E 8D 48 E8 A9 B78 64 FC 00 85 FB 84 FC AO 

~718 DO F1 60 AD OB 02 AC OC 890 00 48 20 BB FC 00 68 20 A08 00 00 8D 49 E8 AE 06 02 B80 41 20 79 D5 20 17 D7 20 
E 720 02 4C CE FA 00 AS FD A4 898 D3 FC 00 A2 06 EO 03 DO AI0 9A 4C 55 D6 20 CO FC 68 B88 31 D5 4C D8 FD 00 A8 20 
~728 FE 38 E5 FB 8D 1B 02 98 8AO 13 AC lC 02 FO OE AS FF Al8 8D 05 02 68 8D 04 02 68 B90 E6 FE 00 DO 11 98 FO OE 
~730 E5 FC A8 OD IB 02 60 20 8A8 C9 E8 Bl FB BO 1C 20 5C A20 8D 03 02 68 8D 02 02 68 B98 86 B4 A5 B5 DD 10 02 08 

Vl 738 81 FA 00 20 44 D7 20 92 8BO FC 00 88 DO F2 06 FF 90 A28 8D 01 02 68 8D 00 00 02 BAO E8 86 B5 A6 B4 28 60 C9 
~740 FA 00 20 AF FA 00 20 92 8B8 OE BD 51 FF 00 20 45 FD A30 BA 8E 06 02 58 20 34 D5 BA8 30 90 03 C9 47 60 38 60 
~748 FA 00 20 CA FA 00 20 44 8CO 00 BD 57 FF 00 FO 03 20 A38 20 23 D5 85 B5 AO 00 00 BBO 40 02 45 03 DO 08 40 09 

:.0 750 D7 90 15 A6 DE DO 65 20 8C8 45 FD 00 CA DO D4 60 20 A40 20 FE D4 20 31 D5 AD 00 BB8 30 22 45 33 DO 08 40 09 
~758 Cl FA 00 90 60 A1 FB 81 8DO 68 FC 00 AA E8 DO 01 C8 A48 00 02 85 FC AD 01 02 85 BCO 40 02 45 33 DO 08 40 09 
~760 FD 20 A8 FA 00 20 39 D5 8D8 98 20 5C FC 00 8A 86 B4 A50 FB 20 17 D7 20 OE FC 00 BC8 40 02 45 B3 DO 08 40 09 
~768 DO EB 20 C1 FA 00 18 AD 8EO 20 22 D7 A6 B4 60 AD 1C A58 20 35 F3 C9 F7 FO F9 20 BDO 00 00 22 44 33 DO 8C 44 

770 IB 02 65 FD 85 FD 98 65 8E8 02 38 A4 FC AA 10 01 88 A60 35 F3 DO 03 4C BA D4 C9 BD8 00 00 11 22 44 33 DO 8C 
778 FE 85 FE 20 AF FA 00 A6 8FO 65 FB 90 01 C8 60 A8 4A A68 FF FO F4 4C 5B FD 00 20 BEO 44 9A 10 22 44 33 DO 08 
780 DE DO 3D Al FB 81 FD 20 8F8 90 OB 4A BO 17 C9 22 FO A70 81 FA 00 20 44 D7 8E 11 BE8 40 09 10 22 44 33 DO 08 
788 C1 FA 00 BO 34 20 65 FA 900 13 29 07 09 80 4A AA BD A78 02 A2 03 20 79 FA 00 48 BFO 40 09 62 13 78 A9 00 00 
790 00 20 68 FA 00 4C 1B FB 908 00 FF 00 BO 04 4A 4A 4A A80 CA DO F9 A2 03 68 38 E9 BF8 21 81 82 00 00 00 00 59 
798 00 20 81 FA 00 20 44 D7 910 4A 29 OF DO 04 AO 80 A9 A88 3F AO 05 4A 6E 11 02 6E COO 4D 91 92 86 4A 85 9D 2C 
7AO 20 92 FA 00 20 44 D7 20 918 00 00 AA BD 44 FF 00 85 A90 10 02 88 DO F6 CA DO ED C08 29 2C 23 28 24 59 00 00 

~7A8 98 D7 20 63 D7 90 14 85 920 FF 29 03 8D lC 02 98 29 A98 A2 02 20 CF FF C9 OD FO C10 58 24 24 00 00 1C 8A 1C 
~7BO B5 A6 DE DO 11 20 CA FA 928 8F AA 98 AD 03 EO 8A FO AAO 1E C9 20 FO F5 20 F7 FE C18 23 5D 8B 1B A1 9D 8A 1D 
I 7B8 00 90 DC AS B5 81 FB 20 930 OB 4A 90 08 4A 4A 09 20 AA8 00 BO OF 20 78 D7 A4 FB C20 23 9D 8B 1D A1 00 00 29 

7CO 39 D5 DO EE 4C 9A FA 00 938 88 DO FA C8 88 DO F2 60 ABO 84 FC 85 FB A9 30 9D 10 C28 19 AE 69 A8 19 23 24 53 
7C8 4C BA D4 20 81 FA 00 20 940 B1 FB 20 5C FC 00 A2 01 AB8 02 E8 9D 10 02 E8 DO D C30 1B 23 24 53 19 Al 00 00 
7DO 44 D7 20 92 FA 00 20 44 948 20 A1 FA 00 CC 1C 02 C8 ACO 8E OB 02 A2 00 00 86 DE C38 1A 5B 5B AS 69 24 24 AE 
7D8 D7 20 98 D7 A2 00 00 20 950 90 FO A2 03 CC 09 02 90 AC8 FO 04 E6 DE FO 7B A2 00 C40 AE A8 AD 29 00 00 7C 00 
7EO 98 D7 C9 27 DO 14 20 98 958 FO 60 A8 B9 5E FF 00 8D ADO 00 86 B5 AS DE 20 74 FC C48 00 15 9C 6D 9C AS 69 29 
7E8 D7 9D 10 02 E8 20 CF FF 960 DB 02 B9 9E FF 00 8D OC AD8 00 A6 FF 8E OC 02 AA BC C50 53 84 13 34 11 AS 69 23 
7FO C9 OD FO 22 EO 20 DO F1 968 02 A9 00 00 AO 05 OE OC AEO 5E FF 00 BD 9E FF 00 20 C58 AO D8 62 SA 48 26 62 94 

~7F8 FO lC 8E 00 00 0120 6B 970 02 2E OB 02 2A 88 DO F6 AE8 EO FE 00 DO E2 A2 06 EO C60 88 54 44 C8 54 68 44 E8 
~ 800 D7 90 C6 9D 10 02 E8 20 978 69 3F 20 D2 FF CA DO EA AFO 03 DO lA AC lC 02 FO 15 C68 94 00 00 B4 08 84 74 B4 
;:: 808 CF FF C9 OD FO 09 20 63 980 4C 31 D5 20 81 FA 00 20 AF8 AS FF C9 E8 A9 30 BO 21 C70 28 6E 74 F4 CC 4A 72 F2 
I.tJ 810 D7 90 B6 EO 20 DO EC 86 988 44 D7 20 92 FA 00 20 44 BOO 20 E6 FE 00 DO CA 20 E8 C78 A4 8A 00 00 AA A2 A2 74 
Cl.. 818 B4 20 34 D5 A2 00 00 AO 990 D7 A9 04 A2 00 00 8D 09 B08 FE 00 DO C5 88 DO EB 06 C80 74 74 72 44 68 B2 32 B2 
~820 00 00 Bl FB DD 10 02 DO 998 02 8E OA 02 20 34 D5 20 BI0 FF 90 OB BC 57 FF 00 BD C88 00 00 22 00 00 1A 1A 26 
.... 828 OC C8 E8 E4 B4 DO F3 20 9AO OB FC 00 20 64 FC 00 85 B18 51 FF 00 20 EO FE 00 DO C90 26 72 72 88 C8 C4 CA 26 
~830 17 D7 20 31 D5 20 39 D5 9A8 FB 84 FC 20 35 F3 FO 05 B20 B3 CA DO DO FO OA 20 DF C98 48 44 44 A2 C8 54 46 48 
"e 838 A6 DE DO 92 20 CA FA 00 9BO 20 CA FA 00 BO E9 4C BA B28 FE 00 DO A9 20 DF FE 00 CAO 44 50 2C 41 49 4E 00 00 
e 840 BO DD 4C BA D4 20 81 FA 9B8 D4 20 81 FA 00 A9 03 85 B30 DO A4 AD OB 02 C5 B5 DO CA8 DB FA 00 30 FB 00 5E FB e 848 00 8D OD 02 AS FC 8D OE 9CO B5 20 98 D7 20 OB D5 DO B38 9D 20 44 D7 AC 1C 02 FO CBO 00 Dl FB 00 F8 FC 00 28 
~850 02 A9 04 A2 00 00 8D 09 9C8 F8 AD OD 02 85 FB AD OE B40 2F AD OC 02 C9 9D DO 20 CB8 FD 00 D4 FD 00 4D FD 00 
~858 02 8E OA 02 A9 93 20 D2 9DO 02 85 FC 4C E7 FB 00 CD B48 20 CA FA 00 90 OB 98 DO CCO B9 D4 7F FD 00 4A FA 00 

860 FF A9 16 85 B5 20 06 FC 9D8 OA 02 FO 03 20 D2 FF 60 B50 05 AE 1B 02 10 OB 4C 9A C8 33 FA 00 4C 00 8F 68 CC 
868 00 20 64 FC 00 85 FB 84 9EO A9 03 A2 24 8D 09 02 8E B58 FA 00 C8 DO FA AE IB 02 CDO 00 00 4D 00 88 19 00 00 
870 Fe C6 B5 DO F2 A9 91 20 9E8 OA 02 20 34 D5 78 AD FA B60 10 F5 CA CA 8A AC 1C 02 CD8 00 4E 00 8F 5D 32 00 00 
878 D2 FF 4C BA D4 AO 2C 20 9FO FF 00 85 90 AD FB FF 00 B68 DO 03 B9 FC 00 00 91 F CEO AA AA AA AA AA AA AA AA 
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BASIC 2 SUPERMON DATA LOADER. 

Note: M 0028 0028 may give something like: 26 7A 03 04 03 04 03 04, where the start 
address is inconsistent. For compatibility with BASIC change 26 7A to 01 04. 

100 PRI NT "IREVS1SETTING UP DATA FOR SUPERI~ON ••• " 
110 FOR J = 1767 TO 3391: READ X: POKE J+5500,X: NEXT 
120 FOR J = 1767 TO 3391: POKE J, PEEK (J+5500): NEXT 
130 PRI NT"IDOWNllREVS1NOW RUN SUPERMON BASIC LOADER":END 
500 DATA 173,255,254,0,133,52,173,255,255,0,133,53,173,255,252,0,141,250,3,173,255 
501 DATA 253,0, 141,251,3,0,0,0,162,8,221,255,222,0,208,14,134,180,138,10,170,189 
502 DATA 255,233,0,72,189,255,232,0,72,96,202, 16,234,76,247,231,162,2,44, 162,0,0 
503 DATA 0,180,251,208,8, 180,252,208,2,230,222,214,252,214,251,96,32,235,231,201 
504 DATA 32,240,249,96,169,0,0,0,141,0,0,0,1,32,250,140,0,32, 190,231,32,170,231,144 
505 DATA 9,96,32,235,231,32,167,231,176,222,76,247,231,32,205,253,202,208,250,96 
506 DATA 230,253,208,2,230,254,96,162,2,181,250,72,189,10,2,149,250,104,157,10,2 
507 DATA 202,208,241,96,173,11,2,172,12,2,76,250,221,0,165,253,164,254,56,229,251 
508 DATA 133,207,152,229,252,168,5,207,96,32,250,148,0,32,151,231,32L250,165,0,32 
509 DATA 250,190,0,32,250,165,0,32,250,217,0,32,151,231,144,21,166,2£2,208,100,32 
510 DATA 250,208,0,144,95,161,251,129,253,32,250,183,0,32,213,253,208,235,32,250 
511 DATA 208,0,24,165,207,101,253,133,253,152,101,254,133,254,32,250,190,0,166,222 
512 DATA 208,61,161,251,129,253,32,250,208,0,176,52,32,250,120,0,32,250,123,0,76 
513 DATA 251,39,0,32,250,148,0,32,151,231,32,250,165,0,32,151,231,32,235,231,32,182 
514 DATA 231,144,20,133,181,166,222,208,17,32,250,217,0,144,12~165,181,129,251,32 
515 DATA 213,253,208,238,76,247,231,76,86,253,32,250,148,0,32,151,231,32,250,165 
516 DATA 0,32,151,231,32,235,231,162,0,0,0,32,235,231,201,39,208,20,32,235,231,157 
517 DATA 16,2,232,32,207,255,201,13,240,34,224,32,208,241,240,28,142,0,0,0,1,32,190 
518 DATA 231,144,198,157,16,2,232,32,207,255,201,13,240,9,32,182,231,144,182,224 
519 DATA 32,208,236,134,180,32,208,253,162,0,0,0, 160,0,0,0,177,251,221,16,2,208,12 
520 DATA 200,232,228,180,208,243,32,106,231,32,205,253,32,213,253,166,222,208,146 
521 DATA 32,250,217,0, 176,221,76,86,253,32,250,148,0,141,13,2,165,252,141,14,2,169 
522 DATA 4,162,0,0,0,133,184,134,185,169,147,32,210,255,169,22, 133,181,32,252,16 
523 DATA 0,32,252,109,0,133,251, 132,252,198,181,208,242,169, 145,32,210,255,76,86 
524 DATA 253,160,44,32,21,254,32,106,231,32,205,253,162,0,0,0,161,251,32,252,124 
525 DATA 0,72,32,252,194,0,104,32,252,216,0,162,6,224,3,208, 18,164,182,240,14,165 
526 DATA 255,201,232,177,251,176,28,32,252,101,0,136,208,242,6,255,144,14,189,255 
527 DATA 74,0,32,253,77,0, 189,255,80,0,240,3,32,253,77,0,202,208,213,96,32,252,1 12 
528 DATA 0,170,232,208,1,200,152,32,252,101,0,138,134,180,32,117,231,166,180,96,165 
529 DATA 182,56,164,252,170,16,1,136,101,251,144,1,200,96,168,74,144,11,74,176,23 
530 DATA 201,34,240,19,41,7,9,128,74,170,189,254,249,0,176,4,74,74,74,74,41,15,208 
531 DATA 4,160,128,169,0,0,0, 170, 189,255,61,0,133,255,41,3,133,182,152,41, 143, 170 
532 DATA 152,160,3,224,138,240,11,74,144,8,74,74,9,32,136,208,250,200,136,208,242 
533 DATA 96,177,251,32,252,101,0,162,1,32,250,176,0,196,182,200,144,241,162,3,196 
534 DATA 184,144,242,96,168,185,255,87,0,141,11,2,185,255,151,0,141,12,2,169,0,0 
535 DATA 0,160,5,14,12,2,46,11,2,42,136,208,246,105,63,32,210,255,202,208,234,76 
536 DAtA 205,253,32,250,148,0,32,213,253,32,213,253,32,151,231,32,250,165,0,32,151 
537 DATA 231,32,202,253,32,250,217,0,144,9,152,208,19,165,207,48,15,16,7,200,208 
538 DATA 10,165,207, 16,6,32,117,231,76,86,253,76,247,231,32,250,148,0,169,3,133,181 
539 DATA 32,235,231,32,167,253,208,248,173,13,2,133,251,173,14,2,133,252,76,251,241 
540 DATA 0,197,185,240,3,32,210,255,96,169,3,162,36,133,184,134,185,32,208,253,120 
541 DATA 173,255,250,0,133,144,173,255,251,0,133,145,169,160,141,78,232,206,19,232 
542 DATA 169,46,141,72,232,169,0,0,0,141,73,232,174,6,2, 154,76,241,254,32,123,252 
543 DATA 104, 141,5,2,104,141,4,2,104,141,3,2,104,141,2,2, 104,141,1,2,104,141,0,0 
544 DATA 0,2,186,142,6,2,88,32,208,253,32,191,253,133, 181,160,0,0,0,32,154,253,32 
545 DATA 205,253,173,0,0,0,2,133,252,173,1,2,133,251,32,106,231,32,252,24,0,32,1 
546 DATA 243,201,247,240,249,32,1,243,208,3,76,86,253,201,255,240,244,76,253,96,0 
547 DATA 0,0,0,32,250,148,0,32,151,231,142,17,2,162,3,32,250,140,0,72,202,208,249 
548 DATA 162,3,104,56,233,63,160,5,74,110,17,2,110,16,2,136,208,246,202,208,237,162 
549 DATA 2,32,207,255,201, 13,240,30,201,32,240,245,32,254,240,0,176,15,32,203,231 
550 DATA 164,251,132,252,133,251,169,48,157,16,2,232,157,16,2,232,208,219,142,11 
551 DATA 2,162,0,0,0,134,222,162,0,0,0,134, 181,165,222,32,252,124,0,166,255,142,12 
552 DATA 2,170,189L 255,151,O,32,254,213,O,189t 255,87,O,32,254 t 213,0,162,6,224,3,208 
553 DATA 18,164,18L,240,14,165,255,201,232,16~,48,176,29,32,2'4,210,0,136,208,242 
554 DATA 6,255,144,14,189,255,74,0,32,254,213,0,189,255,80,0,240,3,32,254,213,0,202 
555 DATA 208,213,240,6,32,254,210,0,32,254,210,0,173,11,2,197,181,208,89,32,151,231 
556 DATA 164,182,240,43,173,12,2,201,157,208,28,32,250,217,0,144,9,152,208,74,166 
557 DATA 207,48,70,16,7,200,208,65,166,207,16,61,202,202,138,164,182,208,3,185,252 
558 DATA 0,0,0,145,251,136,208,248,165,222, 145,251,32,252,109,0,133,251,132,252,160 
559 DATA 65,32,21,254,32,106,231,32,205,253,76,253,222,0,32,254,213,0,134,180,166 
560 DATA 181,221,162240,12,104,104,230,222240,3 76,254,48,0,76247,231,232 134 
551 DATA 181,166,180,96,201,48,144,3,201,71,96,56,96,64,2,69,3,20~,8,64,9,48,34,69 
562 DATA 51,208,8,64,9,64,2,69,51,208,8,64,9,64,2,69,179,208,8,64,9,0,0,0,34,68,51 
563 DATA 208,140,68,0,0,0,17,34,68,51,208,140,68,154,16,34,68,51,208,8,64,9,16,34 
564 DATA 68,51,208,8,64,9,98,19,120,169,0,0,0,33,129,130,0,0,0,0,0,0,89,77,145,146 
565 DATA 134,74,133,157,44,41,44,35,40,36,89,0,0,0,88,36,36,0,0,0,28,138,28,35,93 
566 DATA 139,27,161,157,138,29,35,157,139,29,161,0,0,0,41,25,174,105,168,25,35,36 
567 DATA 83,27,35,36,83,25,161,0,0,0,26,91,91,165,105,36,36,174,174,168,173,41,0 
568 DATA 0,0,124,0,0,0,21,156,109,156,165,105,41,83,132,19,52,17,165,105,35,160,216 
569 DATA 98,90,72,38,98,148,136,84,68,200,84,104,68,232,148,0,0,0,180,8,132,116,180 
570 DATA 40,110,116,244,204,74,114,242,164,138,0,0,0,170,162,162,116,116,116,114 
571 DATA 68,104,178,50,178,0,0,0,34,0,0,0,26,26,38,38,114,114,136,200,196,202,38 
572 DATA 72,68,68,162,200,4,34,16,32,45,47,51,84,70,72,68,67,44,65,73,78,0,0,0,250 
573 DATA 232,0,251,60,0,251,106,0,251,221,0,252,253,0,253,48,0,253,218,0,253,84,0 
574 DATA 85,253,253,132,0,250,93,0,250,70,0 
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ASCII CODE 

o 00 NUL - NULL CHARACTER 32 20 SPACE 64 40 @ 96 60 , 
1 01 SOH - START HEADING 33 21 ! 65 41 A 97 61 a 
2 02 STX - START TEXT 34 22 " 66 42 B 98 62 b 
3 03 ETX - END TEXT 35 23 # 67 43 C 99 63 c 
4 04 EOT - END TRANSMISSION 36 24 $ 68 44 D 100 64 d 
5 05 ENQ - ENQUI RY 37 25 % 69 45 E 101 65 e 
6 06 ACK - ACKNOWLEDGE 38 26 & 70 46 F 102 66 f 
7 07 BEL - RING BELL 39 27 I 71 47 G 103 67 9 
8 08 BS - BACKSPACE 40 28 ( 72 48 H 104 68 h 
9 09 HT - HORIZONTAL TABULATION 41 29 ) 73 49 I 105 69 i 

10 OA LF - LINE FEED 42 2A * 74 4A J 106 6A j 
11 OB VT - VERTICAL TABULATION 43 2B + 75 4B K 107 6B k 
12 OC FF - FORM FEED 44 2C , 76 4C L 108 6C I 
13 OD CR - CARRIAGE RETURN 45 2D - 77 4D M 109 6D m 
14 OE SO - SHIFT OUT 46 2E . 78 4E N 110 6E n 
15 OF SI - SHIFT IN 47 2F / 79 4F 0 111 6F 0 
16 10 DLE - DATA LINK ESCAPE 48 30 0 80 50 P 112 70 P 
17 11 DCl - DEVICE CONTROL #1 49 31 1 81 51 Q 113 71 q 
18 12 DC2 - DEVICE CONTROL #2 50 32 2 82 52 R 114 72 r 
19 13 DC3 - DEVICE CONTROL #3 51 33 3 83 53 S 115 73 s 
20 14 DC4 - DEVICE CONTROL #4 52 34 4 84 54 T 116 74 t 
21 15 NAK - NEGATIVE ACKNOWLEDGE 53 35 5 85 55 U 117 75 u 
22 16 SYN - SYNCHRONOUS IDLE 54 36 6 86 56 V 118 76 v 
23 17 ETB - END TRANSMISSION BLOCK 55 37 7 87 57 W 119 77 w 
24 18 CAN - CANCEL 56 38 8 88 58 X 120 78 x 
25 19 EM - END MEDIUM 57 39 9 89 59 Y 121 79 Y 
26 lA SUB - SUBSTITUTE 58 3A : 90 5A Z 122 7A z 
27 lB ESC - ESCAPE 59 3B ; 91 5B [ 123 7B { 
28 lC FS - FILE SEPARATOR 60 3C < 92 5C \ 124 7C I 
29 lD GS - GROUP SEPARATOR 61 3D = 93 5D ] 125 7D } 
30 lE RS - RECORD SEPARATOR 62 3E > 94 5E t 126 7E 'V 

31 lF US - UNIT SEPARATOR 63 3F ? 95 5F - 127 7F DEL 

ASCII characters. The American Standard Code on Information Interchange (ASCII) 
is largely followed by CBM equipment. One major difference is its use of the high bit 
as a parity bit, making the number of 'l's in the complete byte even. CBM's version 
of 'ASCII' has no parity bit. 
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BASIC is by far the most popular microcomputer language at present. It is impossible to 
know whether this will remain true, but brief comments on currently available alternat­
ives follow. Many interesting languages have turned out to be comparative failures, 
usually for reasons of commercial pressure; ALGOL, FOCAL and PLl1 illustrate the 
pattern, effectively being dominated by FORTRAN, BASIC, and COBOL respectively. 
Although there is no reason why the entire ROM set of a CBM couldn't be replaced by 
a new language in ROM, in practice most replacements use RAM and also make use of 
BASIC subroutines, which (a) reduces the maximum size of program, and (b) tendsto 
make the language non-transferrable between versions of BASIC. 

COMAL is 24K of machine-code, which is loaded from disk into CBM RAM. Error mess­
ages are read from disk, so this language is practicably of use only with a CBM unit 
with disk drives. It is a public domain program; versions for BASIC 4 and (perhaps) 
BASIC 2 exist. This language was developed in Denmark, where it is reported to be 
in widespread use in education. It permits long variable names (Le. not distinguished 
by the two initial characters only) and has a number of structured features, for ex-
ample an IF ELSE construction of this form: IF .. THEN ELIF .. THEN .. ELIF .. 
THEN .. ENDIF where ELIF means ELSE IF. It also 
formats its listings as the short example program 
(right) illustrates. The CBM version is interpreted 
and is not particularly fast. Its principal purpose 
is to make fairly simple programs readable: it is 

0010 FOR J:=1 TO 10 DO 
0020 PRINT J 
0030 NEXT J 
0040 END 

therefore quite suitable for examiners who wish to mark large numbers of beginners' 
programs. The name stands for 'COmmon ALgorithmic language'. 

COMPILERS which turn BASIC into machine-code are now being marketed. (As an in­
troduction, see M Zimmermann's article on 'Floptran', in BYTE, Oct. '80, and a follow­
up article in July '81). BASIC 'source code' is converted into 'object code' by the 
compiler, which is in RAM. The result might be stored on disk, and LIST as SYS1037, 
which when RUN executes machine-code exactly similar to the original BASIC. Speed 
increases of about ten times are commonly claimed; the improvement occurs because 
much of BASIC's housekeeping, notably of variables, is eliminated. Typically, a line 
or so of BASIC is converted per second when the compiler runs. The resulting code 
is much more difficult to modify than BASIC, which provides some security in the case 
of commercial programs. Usually the code has a standard library of routines, occupy­
ing 4K say; together with the program, which is shorter than its BASIC form by a 
factor of about a half. A longish program may therefore be stored as a shorter amount 
of equivalent machine-code, especially if it contains many REMs, which the compiler 
ignores. There may be problems however: check up on (a) the maximum size of BAS­
IC which the program can handle; it may not be enough for your programs. (b) The 
compatibility with ordinary BASIC: the compiler may not allow integers, or arrays, or 
variable-length strings. It may not cope with commands using wedges, and these may 
be important. It may not stop when the stop key is pressed, or print accurate error 
messages. 

PASCAL (named after Blaise Pascal) is an academic language, which seems to have 
remained quite unpopular. Tiny Pascals (i.e. small implementations, lacking many of 
the features of the full-scale language) can be bought comparatively cheaply, L e. for 
30 to 40 pounds or dollars. 

PILOT is a language used for educational 
programs of the question-and-answer type 
as the demonstration program attempts to 
illustrate. ('T' is text, 'A' inputs answer, 
'M' searches for a match, and so on). It 
is a relatively easy language to write (and 
makes an interesting exercise). The pro­

*RETRY T: WHAT IS THE CAPITAL OF FRANCE? 
A: NAME$ 
M: PARIS 
Y: CORRECT! 
N: NO ... TRY AGAIN 
IN: *RETRY 

cess of matching is usually unsophisticated, which, in view of the difficulties, is not 
surprising. A reply of 'NOT PARIS' or 'LONDON OR PARIS' would probably be judged 
correct when running the sample short program. Nevertheless PILOT is easy to use, 
and quick to produce results. The chief drawbacks may be (a) RAM space is likely to 
be used rapidly by the verbose style of such programs, so disk or tape loading is a 
useful feature of the language. (b) If interpreted, it may be slow. 

PROGRAM GENERATORS at present can write BASIC of a simple file-handling sort. 
Knowledge of the behaviour of files, and systems analysis, are both required, to 
avoid logical errors. Screen and output formatting are not available. 
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address memory location (from 0-65535) jumper wire connecting two parts of a 
addressing mode one of several ways in printed-circuit board (noun or verb). 

which machine-code processes its data K 1024 (or, loosely, 1000) 
algorithm series of unambiguous rules link join two or more programs into one 
ASCII American Standard Code on listing readable form of a program 

Information Interchange literal defined sequence of characters, not 
baud rate rate of data transmission a variable 
batch processing system where preparation LSB least significant byte (Le. of two) 

of data is separate from processing MHz megahertz = million cycles per second 
binary expressed in two forms only machine-code program in a form which the 
buffer RAM locations used for temporary computer can directly run 

storage before processing MSB most significant byte (L e. of two) 
bug mistake in software mode type of processing a computer is 
chain call one program from another currently engaged on; e.g. edit mode 
chip integrated circuit, often on silicon monitor (i) TV -like display hardware, 
clock crystal oscillator timing the MPU (ii) software for machine-code work 
cold start start of a program from scratch MPU micro version of central processing 

with all variables zero or null unit (CPU); in the PET ICBM, its 6502 
compiler program to convert a high-level octal number notation using base 8 

language (e.g. BASIC) into exactly opcode operation code; mnemonic for each 
equivalent machine-code machine-code command, e. g. LDA 

complement reverse bits of bytes package standard software 
conditional dependent on a result parallel data bits sent simultaneously 
crash unwanted program stop peripheral device attached to the comp-
crlf carriage return and line feed ter (noun) 
diagnostic software or hardware which pointer location(s) holding address of 

tests an aspect of system functioning data, variables, RAM limits, etc 
diskette circular magnetic-coated disk in a poke put a value into RAM 

protective envelope for data storage PROM programmable read-only memory 
dump complete list, usually on paper, of RAM random-access memory; may be read 

a system aspect, for examination from, or written to, freely 
enhancements improvements to a system recursion technique in which a program 
EAROM, EPROM electrically alterable I calls itself. See' recursion'. 

erasable-programmable read-only memory return (i) carriage return, (ii) end of a 
floating-point storage system for numbers subroutine 

using scientific notation, Le. an expon- ROM read-only memory; can be read from, 
ent system. rather than 'fixed point' but not written to 

function routine which performs conver- serial data bits sent consecutively 
sions according to some formula software programs held within hardware 

garbage RAM data or pointers, etc., left string set of consecutive characters as 
from previous processing processed by a computer as a unit, 

graphics any pictorial or diagrammatic out- withou t (e. g.) attempting calculations 
put from a computer syntax rules for correct operation of a 

hardcopy output by a printer on paper high-level computer language 
hardware computer machinery teletype (trade mark) early model of 
hashtotal meaningless but repeatable total computer printer with keyboard 

providing check on data accuracy terminal more-or-Iess remote connection to 
hexadecimal number notation with base 16, a computer; usually keyboard & screen 

using 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F token single byte coded form of keyword 
high-level language any language needing translater, -or program which runs a 

processing to be usable by the comput- language by scanning it as it is stored, 
er, especially one with powerful in- without pre-processing 
structions transparent usable without being noticed 

infinite loop loop with no exit TTL transistor-transistor logic (not chip) 
integer whole number validation checking that data is possibly 
interactive processing system where data correct, i. e. not nonsense 

is continually updated on file VOU visual display unit 
interface hardware connections between warm start restart of program, retaining 

devices some or all previous results 
interrupt temporary program stop to pro- wedge interposed piece of software 

cess other data word unit of processing of a computer; 
iteration solution by progressive approx- identical to the 8-bit byte in the CBM 

imation with repetition 
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ADDENDUM 

The FAT- 40 (twelve inch screen, 4O-column CBM) is somewhat underrepresented in this book. Its 
BASIC, sometimes called BASIC 4.41 to distinguish it from the eight inch screen's BASIC 4.40, IS 

similar to other BASIC 4s except for the EOOO ROM, which mainly affects keyboard and screen 
facilities. The jump tables on p.424 in Chapter 15 have some different destinations, for example, 
theHTAB and VTAB useSYS 57457. Also a FAT-4OEOOOROMorEPROMin an eight inch screen 
computer with BASIC 4 equips the machine with FAT 40 facilities such as repeat keys, but not of 
course those associated with the CRT controller or bell. 
The 8096 is an 8032 fitted with 32K extra RAM. Briefly, 32K is added to the top half of memory, from 
$8(XX) to $FFFF. Each of the two sets of 32K in high memory is divided into two sets of 16K, so 
that at any time two of the 16K blocks are in use, making four permutations. So for example a BASIC 
program might reside in low memory, with BASIC itself occupying the high end of memory. The 
extra memory can be accessed by poking location $FFFO; bits 2 and 3 select the current pair of 
16K blocks which are to be active. BASIC itself will be temporarily lost, so SYS commands and 
machine-code have to be used, and the technique is not elementary. Machine-code is therefore 
usually used, as with VisiCalc; however, since BASIC can be soft-loaded (i.e. held in RAM, not 
ROM) any version of Commodore BASIC, including user-modified versions, can be run, if the 
screen is confirgured to the correct column width by the CRT chip. Alternative BASIC's are 
available on disk, including some for 50 and 60Hz displays, and also including BASIC 5. The 
efffect is similar, but more far-reaching, to that obtained by relocating ROM routines into RAM as 
outlined in Chapter 13. 
The 'Super-PET' or series 9000 has 64K extra RAM, in 16 blocks all stored in $9000 to $9FFF and 
selectable by software. The machine has various hardware modifications and several languages, 
all developed at Waterloo University in Canada. At the time of writing, translated versions of BASIC, 
COBOL, Fortan, Pascal and APL have been written. The computer was partly intended for 
computer programming students. 
Commodore have tried a number of experiments with cheaper computers, notably the VIC-20 
and VIC-4O, which have 23 and 40 column screen outputs respectively. The evolution of these 
products has not been free of problems. New features include the RS232 interface, the custom 
video chips, high resolution graphics using RAM, and eight extra keys generating CHR$ (133) to 
CHR$ (140). The Commodore 64 uses a new chip, the 6509, and is likely to be an improvement 
on its predecessors. 

Notes on the text Some of the periodicals mentioned are no longer published; and there 
is an inevitable tendency for hardware to be improved or superseded. 
Typographical errors and omissions include: 
p.7: RESTORE is abbreviated by RE shift-So 
p.14: S=O: E =0 before DIM keeps the array pointers correct. 
p.58: DIM sets up the variable or variables following DIM so that DIM, A,B %,CS for example sets 

A, B %, and CS in that order in RAM. 
p.126: CHR$ (18), not CHR$ (8), produces a reversed program name. 
p.137: The POKE location is 3, 4, or 16 depending on the version of BASIC in use. 
p.250: The lines are horizontal, not vertical. The diagram omits dots produced by the special 

character when values of 128 are included. 
p.265: "s" or "s" homes the cursor; the character as printed clears the screen. 
p.346: BASIC 4's keyboard interrupt doesn't work correctly when the decimal flag is set, so SEI/ 

SED/ perform processing/ CLD/ CLI may by necessary. 

With direct access to Commodore disks, early versions of disk ROM will not set the buffer pointer to 
zero, so B-P may give errors because of this. Note that B-W stores the buffer pointer in byte zero 
before writing the block to disk, which will wreck the chaining of disk files if it is unexpected. B-R 
sets up end-of-file detection based on the same pointer in byte zero. Forthese reasons, U2 and U1 
are preferred. 
LOCKSMITH (p.177), renamed LOCKDISK, is a program by Jim Butterfield. 
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INDEX 

6502 294, 307 ff, 310 ff, 482 ff 
6504 192 (In CBM disk drives) 
6520 383ff ('PIA') 
6522 386 ff ('VIA') 
6845 270 ff ('CRT controller') 

A 

. A extended monitor assembly, 300 
ABS (BASIC) 38 IApprox. equality 444,454 
Accuracy see e.g. 55, 65 [3], 131 [2], 442 
ACT Ltd 199 
A-D Conversion analog to digital, 264 
ADC (6502 opcode) add with carry 323 
Addressing Modes, 6502, 310,320,486,488 
Alcock, D. 58, 460 
Algorithms 21, 128 
Allason, J. 60 
AND (BASIC) I6-bit operator, 39 
AN D (6502 ope ode ) 8-bit operator 324 
Animation 282 Iscreen replacement 283 
APPEND (BASIC 4 disk) 215 Isee CONCAT 
APPEND joins BASIC programs, 41 
Apple " 5, 15, 52, 75, 92, 105, 120, 125, 142, 

144, 156,213,237,236,254,265,272,289 
Arrays 33 Istorage 10 Ipointers 14, 48, 

59, 153 Isee Matrices 
Arrow fast tape system, 236 
ASC (BASIC) opp. of CHR$, 43 
ASC II Commodore 266 IStandard 493 
ASL (6502 opcode) shift left, 324 
Assembler 361 
Assignment Statement see LET 
Assn. of London Computer Clubs 2 
ATN (BASIC) arctangent, 44 
ATN (IEEE Attention), 375, 379 [2] 
AU TO generates linen umbers, e. g. 45 

B 

BASIC: Anomalies 36 Breakl restart see 
CONT, END, STOP Machine-code see 
PEEK, POKE,SYS, USR Pointers 10 1 
altering, e.g. 14,48,59,97,100,135, HIMEM 
and LOMEM 92 Ifree RAM 67 [2] 
RUN 52, 152 [6], 355 see CHRGET 
Storage Keywords (& short forms) Chap­
ters 5 & 7 1 Lines: deletion, see DEL; 
machine-code to fetch and process, 6, 354, 
355; null byte, e.g. at start, 97 [2] 1 
Link pointers, 13-15, and e.g. 120,751[1] 
; combining lines, LIST, search and re­
place &c, 14,42,88, 151,369; Tokens and 
linked list,S, 6, 107 iii 
Subrouti nes use of, e. g. 23 
Syntax 11-12, 32, individual commands 
Chaps. 5 & 7, ambiguities e.g. 143 
Timing 15, 16, 52, 65 [4] 

Baum, A. 298 
BCC (6502 opcode) branch if C clear, 325 
BCD Binary coded decimal mode, e. g. 323 
BCS (6502 opcode) branch if carry set, 325 
B-E (CBM disk) block execute, 187 
Bennet, M. 60 
BEQ (6502 opcode) branch if zero set, 326 
Best, P. 2 
B-F (CBM disk) block free, 189 
Binary chop search 30-31 
Bit 294 
BIT (6502 opcode) test and flag bits, 326 
BMI (6502 opcode) branch if N set, 327 
BNE (6502 opcode) branch if Z clear, 327 
Boolean logic see e.g. NOT, AND, OR in 

BASIC, AND, EOR, ORA in machine-code; 
applications, e.g. files, 165 & 166 

B-P (CBM disk) buffer pointer, now U1, 189 
BPL (6502 opcode) branch if N clear, 328 
Brandon, E. 61 
Brannon, C. 61 
BRK (6502 opcode) save data, jump 328 
Broomhall, H. 167, 226, 233 
Bubble Sort 31. 133, 136 

B Break flag set on BRK, 312 Buffers: IEEE character, 394 1 INPUT, 
• B Extramon. breakpoint setting, 300 392 and see BASIC Storage 1 Keyboard, 
B-A (CBM Disk) block allocate, 188 392 and see Keyboard 1 Tape 392 and 
BACKUP (BASIC 4 disk) 216 I=DUPLICATE see Tape 
?BAD DATA ERROR see GET#, INPUT# Busdiecker, R. 41 
?BAD DISK ERROR 230 Butler, B. 149 
?BAD SUBSCRIPT ERROR 115 Note 2 Butterfield, J. 2,80,93, 120, 176, 185, 192, 
Baker, R. 176 219,222,235,298,488 
Barker, P. 253 BVC (6502 opcode) branch if V clear, 329 
BASIC BASIC 1 ('Old ROM'), BASIC 2 ('UpBVS (6502 opcode) branch if V set, 329 

grade ROM'), BASIC 4 ('Disk BASIC), B-W (CBM disk) buffer write, now U2, 187 
see Chapter 5, Chapter 7/differences: Byte 294 
16 and e.g. arrays, 591 crlf, 112 (1), 17lByte magazine 159,198,289,291,494 
1721 disk, 2141 IEEE, 1391 LIST, 87 1 .BYTE assembler directive 363 
MLM, 2961 OPEN, 1041 PEEK, 1061 screen 
editing, 2751 Shift-Stop, 25 (2) 1 strings, 
59, FRE, LEFT $ 1 Tape, 244 
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C 

C Carry flag of 6502, 372 
.C extended monitor branch calc'n, 300 
Calculations in machine-code; using ROM, 

Chap. 76 / without ROM, Chap. 77 
Calculus diff'l, e.g. 63 / integral, e.g. 447 
Campbe", G. 236 
Carriage return CHR$(13) see Crlf; as 

record separator &c. e.g. 762-3, 773 [2J 
Casentry flowchart structure, 78, 702 
CATALOG (BASIC 4 disk) =DIRECTORY 
CBM Commodore Bu~iness Machines, passim 
CCN (Commodore Club Newsletter) 2, 732, 

787,793,794,235,257,253,278 
Chamberlin, H. 289 
Channel to disk, 785 / see Secondary Addr. 
Channel Data Book 2 
Character set Screen, 266 /screen RAM, 

268 /generator ROM, 267, 272 
Checkdigits, letters e.g. 22- 24, 96 
Chee, C. 277 
Chiswell, R. 267 
Chow, H. 47 
CHR$ (BASIC) opp. of ASC, 46, & eg 240 
CHRGET 365 and eg GOTO, GOSUB, VAL 
CLC (6502 opcode) clear carry flag, 330 
CLD (6502 opcode) clear decimal flag, 330 
CLI (6502 opcode) clear int.disable, 330 
Clock example 2741 see TI and TI$ 
CLOSE (BASIC) 47/ and disk files, eg 277 
CLR (BASIC) Reset variables' pointers, 48 
CLV (6502 opcode) clear V flag, 330 
CMD (BASIC) print, but leave file open 

and listening, 49, 77 [2], 77 3 [7], 379 [7J 
CMP (6502 opcode) compare with A, 337 
COBOL formatting 775, 762 
Codes on/off bits within bytes, 24 
COLLECT (BASIC 4 dis:\t),279 /=VALIDATE 
Colon sta temen t separator (exc. REM, 77 9) 

MLM function, 297 
COMAL 'Common Algorithmic Language' 494 
Combinatorics 449 
Comma data separator ego 54[3J, 69[4J, 772 
Command-O BASIC 4 EPROM, 775, 263 
Commodore Business Machines Sources of 

information, 7-2/ Hardware evolution, 
computers 3 1 disks 766-7 / tape 235 

Compilers 50, 494 
Complement NOT, 991 2's comp.eg. 772,295 
Compulthink 90, 726, 732, 748,752, 798-210 
Compute! magazine 2,41,87,100,193,230, 

236,237,278,282,379 
Computer publications 2, 264, 451 
Computerist's Guide 2 
CONCAT (BASIC 4 disk) 220 Isee COpy 
Concatenation of strings with '+' ego 82 
Cone, D. 193, 230 
Con ic sections demonstration 279 
CONT (BASIC) Continue program, 50 
Contracts, software 478 
Conventions in this book, 1, 274, 322 
Cooke, J. 380 

COpy (BASIC 4 disk) 222 1 See also 193 
Copy protection, piracy 242, 479 
COS (BASIC) cosine function 57 
Council for Educational Techn'ology 487 
CP/M 'control program for micros' 263 
CPUCN 2,80,176,243,264,265,278,490 
CPX (6502 opcode) compare data with X,332' 
CPY (6502 opcode) compare data with Y 332 
Creative Computing 1,87,721,267,282 ' 
C rlf Carriage return and line feed, eg. 

79 [2], 77 2 [1J, 1 77, 172 
Crozier, P. 474 
CRT controller chip 270 
CRUNCH BASIC compression, 52 
Cursor RAM locations 1561 example 45 

D 

D Decimal flag of 6502, 312 
. D Extended monitor disassembly, 300 
D-A Conversion Digital to analog. 264, 293 
DA TA (BASIC) 541examples 24 
Data Compression 22, 28, 29 
Date Processing 24, 25, 132 
David, D. 93 
Davis, R. 794 
DBL Extended precision calculation, 55 
DCLOSE (BASIC 4 disk) writes BAM and 

updates directory on file close, 223 
Debugging BASIC 36, IEEE 382 [2J, 

machine-code 373 
DEC (6502 opcode) decrement address, 333 
Decimal to hex conversion 23,295,465,484 
DEEK double-byte PEEK, 10 
DEF FN (BASIC) 9, 56 
DEL deletes BASIC lines, 57 
Delay loops 64, 98, 124, 147 
Deleting disk files see SCRATCH 
?DEVICE NOT PRESENT ERROR 90, 126, 140 
Device numbers see ego SAVE 
DEX (6502 opcode) decrement X-register 333 
DEY (6502 opcode) decrement Y-register 333 
'Diagnostic Sense' Pin 222 
DIM (BASIC) 58-59/default, assignment 85 
Direct Mode see eg. INPUT, GET, 77 [5J 
DIRECTORY (BASIC 4 disk) 217-8, 363 
DISKS: Channel 15, 168 Disk Drives, 31 

DOS and ROMs, 759, 193; Hardware de­
scription, diagrams, etc. 158 ff; reliab­
ility and maintenance, 210 - 213 
Diskettes = floppy disks, description 160ff 
Formatting new diskettes, 168 
?DISK FULL ERROR note 2r2, 222 
Disk storage Capacity 167/ Directory 160 
/ Header and Block Availability Map (BAM) 
177- 184 I Examples 180 - 184 
Machine-code programming, 794-798 
Pattern Matching with * and ?, 89 

Diskmon Compu/think DOS, 198-210 
Disk-o-Pro 87, 115, 120, 263 
DLOAD (BASIC 4 disk) 224 
Documentation 119, 478 
DOKE double-byte POKE, 107 [2J 
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Dongle hardware security device, 
DOPEN (BASIC 4 disk) 225 

151, 479 FIND 137 

DOS 1+,2+,2.7, 159, 166,213 /summary of 
bugs 211-212/ DOS Support 169 

Double-density graphics see SET 
Downey, J. & Rogers, S. 264 
Dr. Dobbs Journal 1 
DS, DS$ 90, 168, 170, 197,227 / Table 228 
DSAVE (BASIC 4 disk) 229 

Finn, K. 61 
Fisher & Jensen 376, 380, 382 
Flags 6502, see processor status register 
Floating-point Accumulators 442-443, 464 

ROM with FPAcc#l, table, 466 
ROM with FPAcc#l & FPAcc#2, table, 467 
Examples, 468ff / USR to display, 153 
/ other examples of use, 99, 115, 131 

Floppy Disks 158, 160 DUM disk utility maintenance, 169 
Dummy variable see eg. FRE, POS, DEF 
DUMP 60, 137,281-282 

FN FN (BA SI C) signals function, eg. 10, 12, 56 

DUPLICATE see BACKUP 
Dvorak keyboard 257 

E 

· E EXTRAMON command, sets IRQ, 301 
Education 479 ff 
END (BASIC) 62 
EOR (6502 opcode) 8-bit exclusive or, 334 
EPROMs 263 
Erase disk files see SCRATCH 
Error messages 25, 32, 71 
Exchange Sort 133 
EXEC File 93 
EXP (BASIC) eX, converse of LOG, 63 
Expressions, string and numeric eg. 12, 71 0 
Extension TV for PET/CBM 265 
?EXTRA IGNORED 68,77 / suppressed 78 
EXT RAMON Extended monitor 301, 177,298 

Commands ABDEFHINQTUW', 301ff 
Evans, C. 2 

F 

· F Extended monitor 'fill' command, 300 
Factorial example, 63/ fonnula 449 
Falkner, K. 236 
False value 0, eg. IF 75 
FILES: Description 20, 162; opening and 

closing, 166,226 [1J; setting up, 226 [2J; 
to keyboard, screen, 77 [2J, 78, 79; 
use of GET#, INPUT#, PRINT#, 169 ff; 
BASIC 4 syntax, table of L & W, 223 

FOR .. TO .. [STEP] (BASIC) loop, 64 -66 
Formatting 115, 142, 248 ff 
?FORMULA TOO COMPLEX ERROR 142 
Forrester, J. 451 
FORTRAN 102, 130, 162 
Foster, C. 264 
FRE (BASIC) measures free RAM available 

to BASIC, 67/time taken, 67 [3] 
Freeman, R. 159, 198 

G 

.G MLM command, Go Run, 298, 419 
Garbage collection 67 [3] 
GET, GET# 68, 69 [4], 169, 352 
GETCH R see BASIC / put into RAM by 

RESET, 439 / set to start by CLR, RUN 
Glitch, disk 158 
GO (BASIC >1) 16, 70 
GOSUB (BASIC) 71,72[1] /computed, 368 
GOTO (BASIC) 73 /computed, 367 
Grad measurement of angle, 146 
G ra inger, B. 488, 489 
Graphics PRINT 110; Reverse, 111 [2]; 

Example, 272; dumping screen to 
printer, 281-282. 
Machine-code: double-density, SET, 
128, 129, 280 / other, 276 ff / columns, 
278 /table, grouped by type, 273 

Green, N. 111 

H 
?FILE DATA ERROR 77 [2J, 78ii 
?FILE NOT FOUND ERROR 90, 139,222 [2] .H Sup:rmon's Hunt, 300/modified 303 
'FILE TYPE MISMATCH ERROR 90 Hampshire, N. 2, 132, 149, 265 
· eg. Hand Assembly 372 
File numbers, logical file #, see parameters Handshaking with IEEE 380 [4J 
F~le number, .active see INPUT, TAB(' SPC( Hard Coding 25 ' 
File t~pes: Direct track & .sectolr6'5 166, Hardware bugs 36 

185 192 Indexed sequential, Hardware vectors in 6502 see NMI 
Inverted~ 165 Pr~ram, 1~5 Random. RESET, IRQ, ego 440 ' 0' 
Access (mdexed wlth .algorlthm, + spill Hashtotals BASIC utility example, 369 
procedure) 164 ~elatlve, 163, examples HEADER (BASIC 4 disk) 230 / two types, 
173 -174 Sequential, 162, 168, examples 230 [2] / = Disk NEW 

. 171 - ! 72 U ~er, 168 HELP with syntax, SO/with system, 476 
Files: Disk: Direct track &. sector, 185 - Hexadecimal Notation 294 - 295 

192 Pr~ram, 175 Relative, 173.- 174 Hex to decimal conversion 23,295,465,484 
Sequen~lal, 171 - 172 Compu/thmk, Hierarchy of operators, e.g. 37, 99 [3] 

.comparlson table, 200 Higginbottom, P. 476 
Flies: Tape: Program, 237 ff HTAB horizontal tabulation 74 

Sequential, example, headers, blocks, ' 
239 ff 
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I K 

I Interrupt disable flag of 6502, 372 K Kilobytes, table 296, 484 
.1 SUPERMON single-step, 300, =. W in Kernel CBM standard machine-code jump 

EXTRAMON, 307 I Integrate memory, 302 table, BASIC <4 and BASIC 4, 440 
IBM 732, 757, 758, 765 Keyboard 253-267; decoding tables, 427, 
1.0. of Disk see HBADER, 230 428; see IRQ, WAIT 757, PIA 255,383ff, 
IEEE bus: 374,375,378 I References, 3761 Stop disable 254 I Keyboard buffer, 

CBM version: Port, 3,374 IMachine-code 16, 257,' GET (kernel = FFE4) fetches, 
examples, 376,377,379 -382 I Handshaking 68, 254; Examples switching direct mode 
and ATN, 375, 379 [2], 380 [4] I Logical into program mode, 28, 45, 57, 77, 
files, device numbers, secondary address- 757, 257, 259-260; Exists, 68 [7] 
es, see Parameters I Examples include Keywords, BASIC table, 6; see BASIC 
GET#, 69 [3]. SAVE, 727, ST, 739, 387 [5] Kilobaud-Microcomputing magazine, 

I F (BASIC) next line if false, THEN or 7, 93, 759, 776, 798, 235, 262, 375 
GOTO if true, 75 KIM 3, 264 

?ILLEGAL DIRECT ERROR eg, INPUT, 76 Knuth, D. 732, 449, 450 
?I LLEGAL QUAN T ITY ERROR examples Kolbe, W. 244 

include LOG, SQR with -ve argument, and Kraft, P. 2 
ASC, MID $ with string of length zero 

INC (6502 opcode) increment address, 335 L 
INITIALISE (BASIC < 4 disk) 766, 237 
INPUT (BASIC) 76lCrashproofing, 25,77, ,L MLM Load command, 238,298 

254 I Use of GET, 26-281 Standard Data Lake, M. 732 
Languages 494 

Entry Environment, 476 LDA (6502 d ) I d I 33 
I nput buffer Position, description, watching LDX opco e oa s accumu ator, 8 

it in use, 6,76,79,357 IExample, MERGE (6502 opcode) loads X-register, 338 
93-94 I see BASIC LDY (6502 opcode)loadsY-register, 339 

Input file, current eg, 77 [2], 93 Least-squares methods 462-463, 477-472 
INPUT#(BASIC) 78, 774, 763, 769 LEFT$ (BASIC) left substring, 82 
INSTRING$ inserts a BASIC string, 80 LEN (BASIC) length of string, 83 

Leon, R. 769 
INT (B~SIC) rounds down, 87 LET (BASIC) assignment, 84, 755 
Interactive System ,27 ,Levinson, F. 67 
INX (6502 opcode) ,Increments X-re~lster335 Linefeed CHR$(10) ego 79 [2]; see crlf 
INY (6502 opcode) Increments Y-reglster 336 Link Address Pointers see BASIC 
Interrupt, see VIA, IRQ, and NMI Lissajou figures example, 729 
Interpolation, Inverse 446, 455, 456 LIST (BASIC) 5,86; ROM differences, 87; 
IP~~3 (~;9 I~;~G) 2,93, 720, 748,785,226, Printer lower-case, 257; Lists screen edit 

IRQ ' t' ""0 357 t db characters, 88, 357-358; and TRACE, 749 vec or, 't't , ,'genera e y screen L't I 77 
refresh, registered by PIA location E813, ~ era s I 
384-]85' frequency 76 748 255/Uses Liverpool Software Gazette 708, 757, 793 
and exa~ples: 257 ff; t~nes,' 287; graph- LO*AD (B~SIC) 89 /Pattern matching with 
ics, 277: display bytes, 357; keyboard, and " 89 / Progr~m mode examples, 
clock and Stop key, 255, 256,' new key- program length, strIng, and FN DEF bug, 
board single-key BASIC entry 259-267' use of OLD, 85, 90, 725 [5}, 757 
Softw~re uncrash, 262 ' , ?LOAD ERROR 90 

Isaacson, 0.237 Loaders ordinary, 370; relocating, 377 
Iteration example, 738 Locksmith 775 - 776 

J 

LOG (BASIC) converse of exp, 97 
Logical expressions 72 et 0/, 
Logical file number 90, 727,' see parameters 
LOMEM & HIMEM alter BASIC RAM available 

Jackson, M. 20 to a program 92 
Jiffy Clock 747, 748, 757; and see IRQ Lookup Tables 33 
JMP (6502 opcode) jumps to new address, 336; Loops see FOR., .NEXT, 64- 66, 78 I exit 

indirect jump bug, 488; other methods, and nesting, 66,98 / with IF, 64 
see RTI and RTS, ego 744 [1/ LSR (6502 opcode) shift right, 339 

de J ong, M. 267 
J S R (6502 opcode) jum p, savin g return, 

337; popping return address, PLA 342 
Jump Tables see eg, 744 [4}, 379 
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M 

.M MLM command to display memory, 297 
MACH INE-CODE: The 6502 chip, Chap. 77, 

Addressing 370; Flags 372; Program 
counter, stack 373; Hardware vectors 
373; instructions 374; Tables appendices 
Programming, Debugging 373; Opcodes 
Chap ter 72; Program methods, 375 ff in 
Chap ter 77 / with BASIC, 28, 365 ff / 
Disks, 794 ff / Graphics, 276 ff / Key­
board, 255 ff / Mathematics, 465 ff / 
Screen, 6 introductory elementary pro­
grams, 307 -309 
And ROMs, BASIC operation, Chap. 5/ 
Index to ROM routines, Chapter 75/ 
Selected examples, Chapter 73 / 
Conversion between ROMs, 364 

Maclean, W. 80 
Macro Feature of some assemblers, 364 
Malmsberg, D. 278 
Mask see eg. 324 [7], 340 [7] 
Matrix Definitions, examples 458 ff 
Maynard, M. 236 
McCracken, W. 243 
M-E (CBM disk) memory execute, 797 
Mead, T. 708 
Memfix shifts BASIC RAM, 74, 92 
Memory Map RAM and ROM, Chap ter 75 
Memory Move 64, 307, 355 
Menu 27, 474, 476 
MERGE Interconnects BASIC programs, 

Tape 93; Disk 94 
Micro Magazine for 6502 and 6809, 

67, 720, 728, 245, 257 
Micropolis disk drives, 3, 758, 273 
Microsoft Software writers, 5, 8, 9, 57, 58, 

770, 725, 753, 405, 462, 464 
MID$ (BASIC) takes substring, 95, 82 [2] 
Midnite Software Ga zette 257 
Mikro Assembler chip, 362 
MLM (Machine Language Monitor) 296 ff; 

Operation and subroutines, 478, 420; 
Extended monitors: see Monitor 

MMF (Micro-Mainframe) 7, 307 
MOD calculates remainders, 96 
Modem 253 
Modes: (i) Direct and Program, ego 6, 

752 [6]. Chapters 5 and 7 for individual 
keywords / (ii) Lower-case and G raph­
ics, screen modes, ego 5,77,268,272 

Molloy, J. 2 
Monitor for machine-code, see MLM; in 

BASIC, 304 ff; Extended monitors, 
298 -299, and see EXTRAMON and 
SUPERMON 

MOS Technology part of Commodore 
Semiconductor Group, 7 

MPI disk drives, 798 
M-R (CBM disk) memory read, 789 
Mu-PET multi-user disk system, 759 
MUSE (Education users), 79, 487 
M-W (CBM disk) memory write, 790 

N 

N Flag for bit 7, 372 
.N Extramon 'New Locater' command, 302 
Nassi-Schneiderman chart, 79 
NEW (BASIC) sets BASIC pointers to start 

position, 97 / Disk NEW, see HEADER 
Newman & Sproull 282 
NEXT (BASIC) returns to start of previous 

FOR statement, held on stack, 98 
?NEXT WITHOUT FOR ERROR 66 [6] 
NMI (non-maskable interrupt), 262, 373, 440 
Normal Distribution 449 -450 
NOP (6502 opcode) no operation, 340 
NOT (BASIC) unary 16-bit operator, 99 
Numerals: see Accuracy, Calculations, 

Floating-Point Accumulators, Rounding, 
Variables/ String interconversion, see 
STR$ and VAL, and table, 356 

Nybble 294; interchange, eg. 364 

o 
OLD Positions pointers to correspond with 

BASIC in RAM, 700 & 90 [2], 224 [2] 
ON (BASIC) Casentry-like construction, 

with GOTO or GOSUB, 702 
Opcodes 374,' Alphabetic list with full 

details, Chapter 72; 482, 483, 485 
OPEN (BASIC) Sets up file-table entries, 

checks IEEE device, 703; file-table para­
meters, 704; disassembly, 352 

Operators 77; priority, 37 
OR (BASIC) 16-bit logical operator, 105 
ORA (6502 opcode) 8-bit operator, 340 
.ORG Assembler directive (origin), 363 
Osborne & Donahue 2, 763 
?OU T OF DA T A ERROR and READY, 718 
?OUT OF MEMORY ERROR 36 / Calcul-

ations using stack, eg. 75 / Pointers 
inconsistent, ego 48 / Stack depth full, 
ego 72 / Missing null byte, ego 97 

OZZ (Database system) 784, 785 

P 

• P Printer disassembly, 307 
Packages 475 
Parameters for logical files, eg. 704 [2] 
Parametric coordinates ego 137 
Pascal (Computer language) 494 
Password 354 
Pattern matching with CBM disks, 89 
Pause 352 
Peddle, C. 2 
PEEK (BASIC) 106 /BASIC 1, 92, 753 £7] 
Personal Computer World 
Pertec disk drives 798 
PET (Personal Electronic Transactor), 

and CBM passim 
Peterson, T. 379 
PHA (6502 opcode) Push A 'on stack', 341 
PHP (6502 opcode) Push PSR on stack, 347 
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PIA (Peripheral Interface Adaptor), 6520, 
383 ff, 255 

PicChip EPROM, 128 
Pilot (Computer language) 494 
PLA (6502 opcode) Pull stack in to A, 342 
Plotters 284 -288 
PLP (6502 opcode) Pull stack into PSR, 342 
Pointers see BASIC / Listed, 393 -396 
POKE (BASIC) 107; examples 92 
POP Removes BASIC RETURN, 108 
POS (BASIC) 109; example in AUTO 
Power EPROM, 45, 93, 120, 149, 263 
Power-on Reset 351 ff, 439 
Practical Computing " 100, 132, 151 
Prestel 263, 272 
PRINT (BASIC) evaluation, formatting, 

and output command, 110 ff; flowchart, 
112; other notes, 269, 354, 403; TAB ( 
and SPC(, 137 

PRINT# (BASIC) ouput command to single 
specified file, 713; writing to file, eg. 
163, 169; and CMD, INPUT#, 713-114 

PRINT@ see HTAB, VTAB 
Printers 3, 246-253 ICBM, 247-249; 

Secondary addresses, 704, 248; Special 
characters, 249; wide characters, lower 
case, 250 / Non-CBM, ego 773, 251 

Printout Magazine, 2, 87, 700, 727, 128, 
198, 278 

PRINT USING BASIC formatter 115-777 
Probability 46, 449 -453 
Processor Status Register PSR or SR, and 

Flags (NVBDIZC) 372, Chap ters 11 and 
12; Table of each opcode and its effect 
on flags, 482-483; Table of PSRs, 487 

Program Counter (6502 feature), 373 
Program Generators 494 
Programs: Design, 79-20, 72 [2], 477-480 

Types: 77, 22, 473 
Pseudo-opcodes 488 - 489 

Q 

.Q Extramon command (Quick Trace), 301 
Quadratic Equations 445 
Quicksort 734 

R 

RDY 6502 pin, 262 footnote 
READ (BASIC) Inputs from DATA, 778 
RECORD# (BASIC 4 disk) relative file comm-

and, 183,232; Error 50, 223 [1] 
Redefine keyboard programs, 259 ff 
?REDO FROM START eg. GET, INPUT, 76 
Regent multi-user disk system, 159 
Relocating Loaders 371 
REM (BASIC) comment line, 779; 14, 86 [7] 
RENAME (BASIC 4 disk) and bugs, 233 
RENUMBER Notes on BASIC utility, 720 
Repeating Keys 258 
Reserved Words in BASIC, see Keywords 
RESET and power-on, 313, 357, 439 
Reset switches 262 
RESTORE (BASIC) resets DATA pntr, 727 
RETURN (BASIC) jumps to end of last GO-

SUB statement on stack, 122 
Retu rn Key see Crlf 
?RETURN WITHOUT GOSUB ERROR 108,722 
REVERSE Key 170, 177 [2]; sets bit, 269 
RIGHT$ (BASIC) takes substring, 123 
RND (BASIC) 124; see Random Numbers 
ROL (6502 opcode) rotate left with C, 343 
ROM (Read-Only Memory) BASICs 1,2, & 4, 

see BASIC; ROM entry points, Chap. 5, 
Chap. 7, Chap. 75; Examples, see Mach­
ine Code; also SYS 144; USR 753; in­
STRING$ 80; SORT 736; PRINT 771, 775; 
PRINT USING 175; and many others 

ROR (6502 opcode) rotate right with C, 343 
Ross, D. 282 
Rounding 29,87,96 [7], 775-777 
RS232 Serial interface, 773 
RT I (6502 opcode) restores registers and 

address stored on interrupt, 344 
RTS (6502 opcode) restores registers and 

address of JSR, 344; see also JMP 
RUN (BASIC) executes BASIC program from 

optional starting linenumber, 75, 725; 
improving speed, 52, 725, 752 [6] 

Run Key = Shifted Stop key 424 
Russo, J. 47 

S 

.S MLM Save (not last byte!) 238,298,420 
Sasso, L. 769 
SAVE (BASIC) RAM image save between 

.R MLM command, display registers. 297,479 pointers, 726,156,229; +replace, 726,229 
Rabbit Fast tape system, 236 SBC (6502 opcode) subtract borrowing 
Radian Measure of angle, eg. 146 carry flag, 315, 345 
RAM (Random Access Memory) Calculation SCRATCH (BASIC 4 disk) = disk erase, 234 

on power-on, 351; Memory map 392-396; Screen: 3, 76, 771,265 
RAM image, see LOAD, SAVE, VERIFY, Screen RAM & ROM, 4, table 256; pro-
ego 89, 156; Test, 107 iv, 439; RAM data cessing locations, 64, table 284; ROM 
storage, 30; Pointers, see ego LOMEM & locations, usu. $EOOO ff, 424 ff 
HIMEM, 92, and BASIC IChips 3 Screen DUMP, 60 I Screen Editing, 4, 

Random numbers BASIC RND, sign of arg- table 266, BASIC 4 275 I Screen Modes, 
ument significant, 124 [7]; conversion to (lower casel graphics) 717,265,267 I 
range not 0 -1, 124 [2]; machine-code, Screen Scroll, 77, 86, 425; down, 426 
319, 448, comments on pseudo-randomness Screen Speed, BASlr; < 4 fast, 711, 390 
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Search 73, 209-270; binary chop, 30-37 Structured Design 20 
SEC (6502 opcode) sets carry = 1, 346 Strutt, A. & Hobbs, K. 264 
Secondary Addresses and CBM, table 703; STX (6502 opcode) store X-register, 347 

IEEE, 378 ff STY (6502 opcode) store Y-register, 348 
Securityeg. 757, 478 Subroutines Rationale, 722/ BASIC, 23 / 
SED (6502 opcode) sets BCD mode, 743,346 documentation, 23, 708 / machine-code, 
SEI (6502 opcode) sets interrupt disable 327, 337 / multiple entry points, 77 [v], 

flag, prevents maskable interrupts, 346 326 / popping addresses, see Stack / 
Seiler, W. 720, 273 standard subroutines, 79 
Semicolon see PRINT 770-772; in MLM, 297 SUPA 2, 267 
Series summing 445 iii, 477 -472 SUPERMON Extended monitor, 300 ff; 
SET double-density graphics, 728 Loaders: BASIC 2, 490, 492; BASIC 4, 
SGN (BASIC) computes sign as ±1 or 0,730 490 - 497 
Sharp 73,725,728, 747,243,272 Sydenham, P. 2 
Shelley, M. 236 Syntax 77 ff, 37 ff, Chapters 5 and 7 
Shift Keys ego WAIT, 737; distinguishing ?SYNTAX ERROR 36/ MERGE, 93/ REM, 

the keys, 267; sets bit, 269,· Sh-Stop, 424 779/ Pointers, non-zero leading byte, 725 
Shugart disk drives, 3, 758, 293 SYS (BASIC) executes machine-code at loc-
Sil icon Office database system, 784 -785 ation specified in decimal, examples 744; 
Simon s, D. 278 effect on monitor registers, 372 - 373 
Simulation examples, 457 ff Systematic Errors 36 
Simultaneous Equations 459, 462 Systems Notes on types, analysis, pro-
SIN (BASIC) Sine of angle, 737 gramming, timing, estimating storage 
Single-key Entry of BASIC 267 requirements and validation, 77-22 / 
SORT 37, 32/ Bubble, 37, 733, 736/ Ex- Business, 473 - 475 

change, 733/ Quicksort, 735/ Scatter, 
735/ Shell-Metzner, 732, 734/ Tourna-
ment, 732/ Timing, approx., 736 

Sound 1 bit, 288 - 292/ up to 8 bits, 293 T 
SPC( (BASIC) gives spaces, or cursor- . T Memory-move command, 301 

rights, with PRINT, 772, 737 TAB Setting with BASIC 4, 275 
SQR (BASIC) Square root function, 138 TAB( (BASIC) gives spaces or cursor-
Square Root Symbol 138 [3] righ ts, with PRINT, 77 2, 745 
ST (BASIC) Status byte, reserved vari- TAN (BASIC) Tangent of angle, 746 

able, 739 - 740, 770; 69, 90, 387 [5] Tandon disk drives, 3, 213 
STA (6502 opcode) store accumulator, 347 Tandy 92, 728, 755, 265 
Stack Hardware feature of 6502, $0100 - TAPE: Ports, 3 / ROM differences, 16, 

$01FF, 373, 349-350; see PHA, PHP, PLA, 429 ff / Operating error possibilities, 
PLP, TSX, and TXS; in BASIC, stores 90 [3], 726 [2], 235/ Buffers, used 
intermediate calculations, 72; FOR •. NEXT with files & program headers, 69 [2], 
98; GOSUB .. RETURN, 72, 122; Removing 239-240, 392 / Tape blocks, files, 
stack addresses, see POP (BASIC), PLA 239- 240; 78, 739/ Machine-code 
(machine-code); Inserting address on locations and programming, 247 ff / 
stack, see RTS and RTI. SAVE disassembly example, 727 

Statements BASIC, ego 12 TAX (6502 opcode) transfer A to X, 348 
Status Register (SR on MLM), see Process- TAY (6502 opcode) transfer A to Y, 348 

or Status Register Templeton, B. 93, 749, 368 
STEP (BASIC) valid only with FOR .TEXT assembler directive, 363 
STOP (BASIC) Print linenumber, stop, 741 THEN (BASIC) Valid only after IF, 75 
Stop Key How it works, see operation of Thomas, N. 243 

RUN, 725; disabling, 254-257/ machine- nand TI$ (BASIC) Reserved variables, 
code test, kernel FFE1, 440 -447 see Jiffy Clock, IRQ; notes, 747 

STR$ (BASIC) Numeral-to-string conver- T 1M 'Tiny Monitor'; see MLM 
sion function, opp. to VAL, 142 Todd, M. 93, 226 

Strasma, J. 2,213,257,262,299 Tokens 6; Listed by keyword individually 
Strings: BASIC examples, 32, 83, 723; in Chapters 5 and 7; all have bit 7 set 

Storage, uncomputed strings stored by Toolkit 45, 67, 700, 720, 737, 757, 263 
pointer to program, and BASIC 4 has Tournament Sort 132 
extra pointers, 8,9,28,67,80,85; string TRACE BASIC utility 749; how it works, 
arrays, see DIM, FRE, Array Pointers, 359 - 360 
and machine-code bubble sort; most Transactor magazine, 2, 787 
ROM routines on 409 -417 Trigonometry ego 737, 457 
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True non-zero in BASIC, eg. IF 75; 
bit set 1 = true in machine-code, eg. 
AND 324; bit set to 0 = true in IEEE 
bus, eg. 375 

TSX (6502 opcode) transfer stack pointer 
to X, so SP can be found, 349 

Turnbull, T. 152 
TXA (6502 opcode) transfer X to A, 349 
TXS (6502 opcode) transfer X to stack 

pointer, so SP can be changed, 350 
TYA (6502 opcode) transfer Y to A, 350 

U 

VARPTR finds variable (not TI &c), 155 
VDU visual display unit; see Screen 
Vectors, hardware of 6502 440 
VERIFY (BASIC) Loads and compares, 

but does not store, RAM image, 139, 156 
?VERIFY ERROR 756 
VIA Versatile Interface Adaptor, 6522 

chip, 383-390/ Display contents, 383/ 
User Port, 387 / Diagram, 389 / 
Programming, 390 

VIC ('Video Interface Chip'), 7,3, 76, 
78,213,235,254,261,265,267,272 

VisiCalc 263, 451, 475 

W 

U Unit number, BASIC 4 parameter, eg. 223 WAIT (BASIC) tests bits at location, 757 
.U Undo software uncrash, Extramon, 301 Wedge 366 ff; DOS Support (='Universal 
UA -UJ CBM disk jump table, 192 Wedge'), 169, 217; Also 144 [21- 152 [5J 
UNLIST BASIC utility, notes 151 Weinberg, G. 2, 199, 331, 459 
Upper case IG raph ics see Screen Modes Wei zenbaum, J . .2 
User Port position, 3 / Connected to VIA Wilson, A. 451 

Port A, 389 - 390 / Top connectors, see Winchester disks 158 
CBM manual I PAO - PA 7 and CB2 for . WORD assembler directive, 363 
sound, 288 -293; see Diagnostic sense Wordcraft 256, 476 
pin; tape loading and top connectors of Wordpro 175, 475 
user port, 293 Wozniak, S. 298 

Users 477 ff 
USR (BASIC) inputs expression after USR 

into Floating-point Accumulator #1, then X 
jumps to location $0, 153; example, 138; 
need not be JMP at $0, 153 [3J 

USRCMD MLM extension vector, 298 

.X MLM command, 'Exit' to BASIC, 298 
X-register 308 -309 
X2 Crash 262 

V Y 

V Internal overflow flag, 312, 329 Yob, G. 2, 87, 121 
VAL (BASIC) converts string, as far as 

it is a valid representation of a number, 
into numeral, 154 

VALIDATE BASIC < 4 disk command; see Z 

COLLECT Z Zero flag, set when result was 0, 312 
Validation examples, 32 ff Zaks, R. 264, 292 
Variables Rules of naming, 7; longer names Zeller's Congruence for day of week, 24 

with example table, 8; must begin with Zero page 313, 392 ff; temporary save, 
alphabetic, 110; Storage of variables, then restore, 318; example in TRACE 
BASIC pointers, 10; simple 8; subscript- Zimmermann, M. 291, 494 
ed 9-10; floating-point, integer, string, ZXa1 128, 473 
and function definitions, 9 - 10 and e. g. 
442; watching variables form, by con-
fining RAM to screen, 11, 92 iv 
Machine-code, V ARPTR uses LET; ex-
amples fetch variable value, 469; 
PRINT USING inputs values, 117 
Assignment, variables freely redefin-
able, 84; set up in RAM unless on 
right, except arrays, 85 








