= A comprehensive step-by-step guide to basic programming
including graphics, animation, sequential files and debugging ‘
procedures.
* Includes thirty-seven programs to help you get the most out
of your computer.
'For both cassette and disk drives.

> =/ VE

Mo,
= Boag

CoOmputer

BASIC 4.0
Programming
for the
Commodore
PET®/CBM™

MICROPOWER SERIES

BASIC 4.0
Programming
for the

Commodore
PET®/ CBM™

DON CASSEL

Humber College

o

H

c 7 |e=
O

Cover photo is provided courtesy of Commodore Business Machines.

Figures 1.1, 2.1, 2.2, 2.5, 2.6, 8.1, 8.2, and Appendix F are provided courtesy
of Commodore Business Machines.

Edouard J. Desautels, University of Wisconsin—-Madison
Consulting Editor

Copyright © 1983 by Wm. C. Brown Company Publishers. All rights reserved
Library of Congress Catalog Card Number: 83-70351

ISBN 0-697-08265-2

2-08265-01

No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Printed in the United States of America.

To Pamela

Contents

Preface xiii

1 Introduction to the PET/CBM 1

HARDWARE CONFIGURATION 1
MEMORY 2

BASIC 4.0 3

DOS 2.0 4

REVIEW QUESTIONS 4

2 Getting Started on the PET/CBM 5

PET MODELS 5
TURNING ON THE PET 5
KEYBOARD CHARACTERS 7
PET Graphics Keyboard 7
CBM Business Keyboard 8
USING THE CASSETTE TAPE 9
Inserting a Cassette 9
Tape Controls 10
Loading a Program 10
Saving a Program 11
USING THE FLOPPY DISK DRIVE 11
Loading a Program 12
Saving a Program 12
DIRECTORIES 12
BACKUPS 13
REVIEW QUESTIONS 13

3 Elementary BASIC Programming 15

CALCULATOR MODE 15

HOW TO USE CURSOR CONTROLS 16
INSERT/DELETE 16

CLEAR/HOME 17

vii

RUN/STOP 17
BASIC NUMBERS 18
Integers 18
Real Numbers 18
Scientific Notation 20
STRINGS 21
VARIABLES 21
MULTIPLE STATEMENTS PER LINE 22
ARITHMETIC STATEMENTS 23
Add (+) 23
Subtract (—) 23
Multiply () 23
Divide (/) 24
Exponentiation () 24
HIERARCHY AND PARENTHESES 24
PRINT 25
INPUT 27
GOTO 28
REM 29
SIMPLE CALCULATION PROGRAM 29

FAHRENHEIT—CELSIUS PROGRAM 30
IMPROVING YOUR SOLUTION 31
WEIGHTED AVERAGE PROGRAM 32
COMPUTING LOAN PAYMENTS 35
REVIEW QUESTIONS 36

4 Not So Basic BASIC 39

DIM 39
Storing Values in an Array 40
Multi-Dimensional Arrays 41
IF—THEN 42
FOR—NEXT 44
GOSUB—RETURN 46
STOP 47
GENERATING RANDOM NUMBERS 48
NUMBER GUESSING GAME 49
TIME DELAYS 50
IMPROVED WEIGHTED AVERAGE PROGRAM 52
CALCULATING TRIP COSTS 53
REVIEW QUESYIONS 56

5 More on Input and Output 59

READ—DATA 59
CREATING A BAR CHART 60
WEIGHTED AVERAGE WITH DATA 61
RESTORE 62
MORE ABOUT PRINT 63

Cursor Controls 63

TAB 65

SPC 65
METRIC CONVERSION PROGRAM 66
SIMPLE PAYROLL PROGRAM 70
REVIEW QUESTIONS 75

viii Contents

6 Advanced BASIC 77

GET 77
ON—GOSUB 78
ON—GOTO 79
POKE 80
PEEK 82
TI AND TI$ FUNCTIONS 83
TI or Time Function 83
Reaction Timer 84
TI$ or Time$ 84
DEF FN 85
ARITHMETIC FUNCTIONS 87
ABS 87
ATN 87
Cco0s 87
EXP 88
INT 88
LOG 88
RND 88
Creating a Specific Set of Random Numbers 89
SGN 89
SIN 89
SQR 90
TAN 90
Converting Radians to Degrees 90
STRING FUNCTIONS 90
ASC 90
CHR$ 91
LEFT$ 91
LEN 92
MID$ 92
RIGHTS$ 94
STR$ 94
VAL 94
CONCATENATION 94
PLOTTING GRAPHS 95
CONTROLLING DECIMAL POSITIONS 98
Driver Routines 98
CAl CHESS AND PROGRAM GENERALIZATION 99
The Data 101
The Program 102
REVIEW QUESTIONS 108

i Interacting with the User of Your Program 109

USER LEVEL 109
Casual 109
Trained 109
Programming Skills 109
USER DIALOGUES 110
Prompting 110

Contents

DEFAULT RESPONSES 111
MENUS 112

MULTILEVEL MENUS 113
FORM FILLING 114
COMMAND LANGUAGES 115
REVIEW QUESTIONS 116

8 Graphics, Animation, and Sound 117

GRAPHIC CHARACTER SET 117
USING PRINT TO PRODUCE A GRAPHIC 120
Graphic of the PET Keyboard 120
Reaction Timer With Graphics 120
USING POKE TO PRODUCE A GRAPHIC 121
Lunar Lander 122
Chessboard 123
ANIMATION 123
Rocket 1 123
Rocket 2 124
Egg Timer 125
Rolling Die 127
GENERATING SOUNDS 129
MUSIC PLAYER 131
REVIEW QUESTIONS 132

9 Tape Files Extend Your Reach 133

CONCEPTS 133

OPEN, CLOSE 134

PRINTH 135

WRITING BUDGET NAMES ON TAPE 135
INPUTH#H 136

READING THE BUDGET NAMES TAPE 137
HOW TO HANDLE RECORDS WITH MULTIPLE
FIELDS 138

UPDATING A TAPE FILE 139

SUMMARY OF TAPE FILES 139

REVIEW QUESTIONS 142

1 o Disk Files 143

SEQUENTIAL FILES 144
DOPEN and DCLOSE 144
PRINT# and INPUT# 145
Writing Budget Names on Disk 145
Reading Budget Names from Disk 146
How to Handle Multiple Fields on Disk Files 147
Detecting Disk Errors 147
MAINTAINING THE CHECKBOOK 149
Replacing a Current File 149
Using Variable File Names 149
English Code 150
Display Screen Page 151
Deleting Table Entries 151

X Contents

RELATIVE ACCESS FILES 155
Creating a Relative File 157
Accessing a Relative File 157
Updating a Relative File 158
Appending Records to an Existing File 159
How to Use an Index File 160
REVIEW QUESTIONS 162

1 1 How to Debug Your Programs 165

Appendices 179

DESK CHECKING 166
SYNTAX ERRORS 166
TEST DATA PREPARATION 167
IMMEDIATE MODE DEBUGGING 168
TRACING PROGRAM LOGIC 169
Manual Tracing 169
Automatic Program Tracing 172
REVIEW QUESTIONS 178

A BASIC OPERATING COMMANDS 179
APPEND 179
BACKUP 179
CATALOG 180
CLR 180
COLLECT 180
CONCAT 180
COPY 181
DIRECTORY 181
LIST 181
LOAD 181
NEW 182
RENAME 182
RUN 182
SAVE 183
SCRATCH 183
VERIFY 183
B RESERVED WORDS 185
C ABBREVIATIONS 187
D DOS ERROR MESSAGES 189
E PET ASCll AND PEEK/POKE
CODES 191
F ASCIl AND CHR$ CODES 193

Credits 197
Index 199

Contents

Xi

Preface

nis book is an introduction to the BASIC language used on the Commodore PET and CBM micro-
computers. If you are a beginner at programming in the BASIC language, this material will provide
you with a gradual introduction to BASIC stressing a hands-on approach with the PET or CBM.

The BASIC used in this book is BASIC 4.0 released by Commodore since 1981. If your computer
does not have BASIC 4.0, don’t worry because the major part of the language is unchanged from pre-
vious releases of BASIC. Most of the programs in the book will still work on earlier PETs.

A floppy disk is available with this book. It will provide you with the programs presented through-
out each chapter and will be especially valuable to you if the program under discussion is first loaded
from the disk. In cases where small segments of program code are discussed, it would be helpful to type
the code into your computer and RUN it so that you gain a complete understanding of the example.

The first chapter is a very brief introduction to the PET/CBM hardware with BASIC 4.0 and
DOS 2.0 for the floppy disk. Chapter 2 covers the use of the keyboards, tape, and floppy disk. If you
have used the PET or CBM before, you may skip over these chapters or read through them quickly.

Chapter 3 begins with an elementary introduction to the BASIC language, stressing a hands-on
approach. By entering the program code on the computer as you read, you will get immediate feedback
from your computer. Enough BASIC statements are introduced in this chapter so that you can begin
to write some useful programs at this early stage.

Chapter 3 ends with five complete programs that may be run on either the PET or the CBM. In
these five programs, two things are emphasized. One is the need for planning a program. The approach
taken shows how the input and output need to be defined before the program is written and then shows
how to make use of an English code (Pseudo code) to develop the general program logic. Later the
concept of flowcharts is discussed.

The second emphasis in the sample programs is how to apply the language statements just dis-
cussed in the chapter to a variety of situations. Each program is designed to expose you to realistic
situations that require the use of the BASIC statements you have just studied.

Subsequent chapters follow the same pattern as chapter 3, but go into more depth in the language,
as indicated in the Contents. Each chapter has numerous examples and ends with several programs
(included on the disk) that apply the new features of the language. Each program has been completely
developed using the techniques of program design to develop the program logic.

Chapter 7 deviates slightly from this pattern and covers ways that we can communicate with users
of our programs. Since you will sooner or later write programs for other people to use, this chapter
considers effective interaction with users of your program and how to implement these concepts on the
PET or CBM.

xiii

Next we will look at graphics, animation, and sound in chapter 8. These topics will be particularly
interesting to PET users, although they also apply to the CBM. Chapter 9 covers the use of sequential
files on tape and chapter 10 explains both sequential and relative files on disk. Again, there are examples
and programs to try so that the concepts are made clear.

Finally, chapter 11 contains the procedure for debugging your programs. As you will discover,
programs usually don’t work immediately after you have written them. In fact, having a perfectly work-
ing program the first time is the exception rather than the rule. So in this chapter, some techniques for
finding your bugs and correcting them are discussed.

As I mentioned earlier, this is an introduction to BASIC programming on the PET/CBM. This
book does not pretend to be an exhaustive treatment of programming and there is much more to learn
about the PET/CBM beyond this level. However, I hope you will find this book instructive and helpful
as you learn to program and I trust it will provide the necessary foundation for you to move on to more
advanced programming on the PET/CBM.

I want to thank the reviewers of this book, Edouard J. Desautels, University of Wisconsin at Mad-
ison and Alfred Shin, Humber College at Ontario, Canada.

Don Cassel

xiv Preface

Introduction
to the PET/ CBM

This book is about programming the PET /CBM microcomputer using the BASIC 4.0 language. Since
most of the BASIC language is unchanged from BASIC 1.0 to 4.0 the majority of the discussion in this
book will apply to your PET even if you don’t have level 4.0 BASIC.

Possibly you have purchased your PET/CBM to solve a specific problem in your business, school,
or home. Many people have used the PET/CBM successfully for solutions to problems ranging from
accounting to computer-assisted instruction, financial management to developing music skills, personal
income tax calculation to simulations. The list is endless. However, before you can apply the computer
to your problems it is necessary to learn to use the tool effectively. After studying the contents of this
book you will be equipped to solve many of your programming applications with the BASIC language.
But first let’s look at the hardware.

HARDWARE CONFIGURATION

Figure 1.1 shows PET, CBM, and SuperPET microcomputers each with a display screen and a key-
board. Also in this figure are floppy disk drives and printers used with the Commodore computers.
Hidden inside the computer’s case are the electronic components—a microprocessor and memory—
necessary for its operation.

To understand the basics of the PET/CBM it is useful to compare the computer to parts of the
human body. Of course, the similarity is only coincidental. For example, when you want to learn some-
thing new this is often done by reading a book such as you are doing right now. The new information
passes through your eyes and becomes input to your brain, where it is stored in memory. Similarly new
information can be entered into the computer through the keyboard and then stored temporarily in the
PET’s electronic memory or storage.

After you have read something you may think about it by processing it mentally in your conscious
brain. Then you might discuss your conclusions with someone or maybe simply repeat verbally what
you have read. Your voice is then output from the brain. When information has been processed by the
computer’s processor (brain?) then that same information or a new arrangement of it may then be
displayed on the screen, which is the computer’s output device.

These physical components of the computer: display, keyboard, processor, and so forth are called
the hardware. The program that is used to describe the processing steps is called the software. The
program resides in the computer’s memory when it is being used and describes in very precise steps how
the computer is to process the data.

Figure 1.1 PET and CBM hardware configuration

If your brain is anything like mine you will not likely remember everything you have read. One
solution to this is to make notes by writing or typing. This process is another kind of output. Although
the computer never forgets anything entered into its memory it does have limited capacity. Therefore
another form of output is often used to record or store information outside of the computer. One form
of output is the tape cassette. Another is the floppy disk or diskette. Information recorded on the tape
or disk can be stored and read back into the computer at a later time when it is needed, just as you can
read your notes to jog your memory. Tape and disk are commonly used to store programs as well as
other data.

MEMORY

When you type something on the keyboard or read from tape or disk the information goes into the PET’s
memory or RAM (Random Access Memory) as shown in figure 1.2. RAM is a solid state memory
device that is a part of the PET’s circuitry. Programs or data may be read or written into RAM. Nor-
mally only one program at a time goes into memory and when a new program is read from tape or disk
it will replace the previous program in memory.

2 Chapter One

ROM
BASIC 4.0

micro- display

processor : RAM screen

keyboard

tape

Figure 1.2 Components of a PET/CBM system

Common memory sizes in the PET/CBM are 8K, 16K, or 32K, where K represents 1024 char-
acters or, in computer lingo, bytes. The memory size of your computer will determine the size of program
it is capable of running. If you have 8K of memory the computer will not have room for a 16K or 32K
program.

Also shown in figure 1.2 is a component called ROM for Read Only Memory. As the name sug-
gests, ROM may only be read by the computer. The most significant part of ROM is the BASIC in-
terpreter it contains. This interpreter is a program that has been prerecorded in the PET’s ROM and
is used by the computer to run your BASIC programs.

BASIC 4.0

BASIC is the primary language for programming the PET/CBM. It is through BASIC that you give
instructions to the computer to solve a particular problem. While all levels of BASIC on the PET/CBM
are essentially the same, level 4.0 has corrected some errors that had existed on previous machines. In
addition, BASIC 4.0 includes some new commands that can make your life easier as a programmer.
These commands will be discussed at the appropriate time.

Introduction to the PET/CBM 3

DOS 2.0

DOS (for Disk Operating System) is the program in the floppy disk drive that controls the reading and
writing of disk files. DOS 2.0 is the software released by Commodore to work with BASIC 4.0. Any
discussion of disk files will assume the use of DOS 2.0 on your computer.

REVIEW QUESTIONS—CHAPTER 1

1.

»

Name some of the components of a PET or CBM microcomputer.

Compare the concepts of input, process, and output to the human body. Can you think of any
other analogy to compare with the computer?

What is hardware? Give some examples.

What is software? What purpose does it perform in the microcomputer?

What is meant by the term RAM? What sizes of RAM are common for the PET and CBM
microcomputers?

Discuss the function of BASIC on the PET/CBM. What level of BASIC does your
microcomputer have?

What device must your computer have if you will need to use DOS 2.0?

Chapter One

Gelting Started
on the PET/ CBM

lf you have already used a PET then you might wish to skip ahead to chapter 3. Otherwise you should
read this chapter to learn the basic operation of the PET/CBM.

PET MODELS

The PET/CBM comes in two basic models: the PET (Personal Electronic Transactor) and the CBM
(Commodore Business Machine). The PET (figure 2.1) comes with the fullsize graphics keyboard, a
40-column screen, and is available with 8K, 16K, or 32K RAM. The most basic configuration for this
model is with a cassette tape, while the floppy disk and/or printer are popular additions.

The CBM with the 80-column screen (figure 2.2) comes with 32K to 96K of RAM. It is designed
specifically for the business user and does not have graphics on the keyboard. Rather the keyboard
selects either upper or lower case letters, numbers, or special characters. The CBM is generally used
for word processing, accounts payable and receivable, and inventory applications.

TURNING ON THE PET

First be sure the PET’s line cord is plugged into a 3-prong wall outlet. If only a 2-prong outlet is available
an adapter will need to be used to convert the 3-prong electrical cord on the PET to a properly grounded
2-wire system.

Now reach behind the left rear panel of the PET and press the power switch to the ON position.
In a few seconds the screen will come to life and display the following characters:

##% COMMODORE BASIC 4.0 ***
31743 BYTES FREE
READY.

Don’t be alarmed if your PET’s display is slightly different. These differences can be due to the
size of memory or, on older machines, the level of the ROMs currently in the computer. Revision 2
ROMs will display:

#++ COMMODORE BASIC *#**

Figure 2.1 Commodore PET model 4032

Figure 2.2 Gommodore CBM model 8032

6 Chapter Two

revision 3 ROMs show:
COMMODORE BASIC
and revision 4 ROMs show:
#++ COMMODORE BASIC 4.0 ***
ROM size differences will cause the BY TES FREE message to appear something like the following:

4K 3071 BYTES FREE
8K 7167 BYTES FREE
16K 15359 BYTES FREE
32K 31743 BYTES FREE

KEYBOARD CHARACTERS

PET Graphics Keyboard

The keyboard for the PET is illustrated in figure 2.3. This keyboard is arranged with 74 keys for al-
phabetic, numeric, special, and graphic characters. The main keyboard contains 54 keys for upper-case
alphabetic letters from A to Z and special characters suchas $ % ", () that are mainly used as special
programming symbols. This keyboard also contains most of the graphic symbols on the front of each
key. To select the graphic symbol it is necessary to hold down one of the two shift keys or the shift/
lock while you also press the appropriate graphic key.

At the right of the main keyboard is a Return key. Whenever an entry is made to the PET, such
as a BASIC statement or a response to a question from a program, the Return key is pressed to enter
that line into memory.

i‘"‘ cormmodore pET pro vo '

compute

2001 Series

Figure 2.3 PET graphics keyboard

Getting Started on the PET/CBM 7

Beside the Return key is a RUN/STOP key. This key may be used to STOP a program or to
RUN (by holding shift and pressing RUN) a program from disk.

On the left of the main keyboard is an OFF/RVS (reverse) key. When this key is first pressed,
reverse is on. Try this and type some characters. Notice that the character is now dark on a bright
background. Now hold shift and press RVS. This turns reverse OFF. Now type the same characters
and notice the difference.

The key pad to the right contains numbers and some more graphic characters. Along the top of
this number pad are four cursor control keys used to control cursor movement.

CBM Business Keyboard

The fullsize keyboard for the CBM (figure 2.4) is designed primarily for business use and as a result
does not have the graphic characters. On the CBM graphics may be initiated by typing

POKE 59468, 12
Now all upper case will become graphics characters. To return to upper /lower case alphabetic, type
POKE 59468, 14

Both the PET and CBM keyboards have four cursor control keys. Try pressing the down-pointing
arrow and then the right-pointing arrow to see what happens. Notice how the cursor moves in the di-
rection of the arrow each time you press the key. Now press the HOME key. The cursor should return
immediately to the upper left corner or home position of the screen.

Figure 2.4 CBM business keyboard

8 Chapter Two

USING THE CASSETTE TAPE

If you will be using tape to store and load your programs you will want to read this section. However,
if you have the disk drive skip this section and go on to the section using disk which follows.

The cassette drive (figure 2.5) is a convenient low-cost way to load a program that has been pre-
viously written on the PET and saved on cassctte tape. The PET’s RAM can only hold one program at
a time, but the only limit to the number of programs you may have is dependent upon the number of
cassettes and their length.

When purchasing tapes for use on the PET it is best to use relatively short tapes, C-10 to C-30,
and store only one or two programs per side. If you store many more programs on a single tape the
waiting time for a program to load becomes prohibitive. Tapes should be of the low noise, high quality,
and high output variety. Avoid the cheap brands.

Inserting a Cassette

Inserting a tape in the PET’s drive is no different from using a music or audio cassette. First press the
STOP/EJECT key to open the door. Now insert the tape with the open end toward you and the label
facing up. If it won’t go in, don’t force it. You are probably putting it in the wrong way; so turn it around
and try again. Now press the door closed.

Figure 2.5 Cassette tape drive

Getting Started on the PET/CBM 9

Tape Controls

The tape controls are basically like other cassettes except the PET’s tape does not have volume or tone
controls. The controls you will need are:

1. REC—This is the record key, which is used simultaneously with the play key when you want to
save a program from the PET’s RAM onto a cassette tape.

2. REW-—The rewind key is used to ensure that the tape begins at the leader before any program is

reached. It will also be used to rewind the tape after the desired program has been read.

FFWD—The fast forward key lets you advance the tape.

PLAY—This key will be pressed when a program is to be loaded into RAM from the tape.

5. STOP/EJECT—This key can be used to stop reading or saving but is normally used to eject the
tape when you are finished with it.

oW

Loading a Program
To load a program from tape simply type the command

LOAD

and press Return. If the name of the program is known, such as ACCOUNTS, then you could type
LOAD"ACCOUNTS"

and press Return.

In the first case the computer would simply look for the first program on the tape and load it.
When you supply the program’s name the computer will only load a program with that identical name
and will bypass any other program it happens to find on the tape.

After you pressed Return the PET will respond with

PRESS PLAY ON TAPE #1
When you press the play button it then displays

0K
SEARCHING

after a few seconds it should display

FOUND ACCOUNTS
LOADING

or a different program name depending on the tape you are using. Once the program is loaded, which
might take as long as a minute, the message

READY

will appear. If you get a Load Error, rewind the tape and start again from where we typed LOAD.
Now type

RUN

and press Return. Your program will now begin to run.

10 Chapter Two

Saving a Program

When you start writing your own programs they may be saved for future use on a cassette tape. First
the program must be in the PET’s memory. This could be a program you have typed in or it could have
been loaded from another tape. The PET really can’t tell the difference. To save the program, type

SAVE"ACCOUNTS"

This means we are naming the program ACCOUNTS. Make sure a blank cassette is in the drive and
then press Return on the PET. The PET displays

PRESS PLAY AND RECORD ON TAPE #1
Do this, being sure both buttons are pressed simultaneously. The PET says

oK
WRITING ACCOUNTS

When it is finished saving the program the message
READY.
will appear. To ensure the save worked you can now rewind the tape and type VERIFY. Press Return

and follow instructions. The PET now checks each character on the tape with each character in its
memory. If all went well the message

oK
READY.

will appear on the screen.

USING THE FLOPPY DISK DRIVE

The advantage of having a disk drive (figure 2.6) is its greater speed in reading programs or data. A
program that takes a minute to load from tape will require only two or three seconds from disk.

; e
\\N\\‘\\i\}}\\&}} A
Ci‘\\“\\u\\x&n\ﬁm&;\
eGSR

xS
x g "&&\\'x\x&\\\&\x\\
CUUASEA TR RS SRARAN

\\\\\\\\\"&\\\\:\K\i&\\\

dual drive
FlopPpy disk
Modei BOS0

Figure 2.6 Dual drive floppy disk

Getting Started on the PET/CBM 1M1

Loading a Program

To use disk insert a diskette (with the oblong or oval-shaped opening pointing away from you) containing
the program you want to run into drive 0 and gently close the door. If the program you want is the first
one on the disk then simply hold down Shift and press RUN/STOP. This action will both load and run

the program.
If the program is not first on the disk use the following command format:

DLOAD"program name"
If your program is called BUDGET then type
DLOAD"BUDGET"
If your program happened to be on a disk in drive 1 (the left drive) then the format to use is
DLOAD"program name",D1
Saving a Program
To save a program on diskette from the PET/CBM’s memory use the DSAVE command.
DSAVE"program name"
for drive O or
DSAVE“program name,D1
for drive 1.
After you have saved programs on the floppy disk place an adhesive tape over the notch on the
floppy’s container. This tape will protect the disk from writing over your programs or data accidentally.
If you wish to add additional programs at a later time the tape must first be removed before inserting

the diskette into the drive.
To replace a program precede the program name with the at sign as follows:

DSAVE "@ACCOUNTS"™

DIRECTORIES

Diskettes also contain directories, which list their contents. If at any time you want to know what is on
a disk, list the directory of drive 0 with the command:

DIRECTORY DO
and drive 1 with
DIRECTORY D1
The name CATALOG may be used interchangeably with DIRECTORY.
During the display of a directory the scrolling may be stopped by pressing the Space bar (: on the

CBM) to let you more easily read its contents. Pressing space again (9 on the CBM) will continue the
display.

12 Chapter Two

BACKUPS

When you have stored a number of programs on disk it is possible occasionally to destroy them. Usually
this happens inadvertently, but the loss can be rather shattering especially if it represents hours of your
time. Keeping a second copy on another diskette as a backup is well worth the small amount of time
and expense necessary. The COPY and BACKUP commands are used for this purpose. These com-
mands are discussed in Appendix A.

REVIEW QUESTIONS—CHAPTER 2

1. Describe the basic differences between the PET and CBM computers.
2. When the power to the PET is turned on what is meant by the message 31743 BYTES FREE”?

3. How are the graphic characters on the front of the keys selected on the fullsize graphics
keyboard?

4. What is the purpose of the RUN/STOP key?

5. How does the OFF/RVS key work?

6. Explain the commands for loading a program from tape into memory and running it.

7. If you have a program currently in memory how could this program be saved on a cassette tape
with the name PET BOOKS?

8. Explain how to load and save programs to disk using the name PET BOOKS.

9. What is the purpose of a directory? How can you get one from drive 1?

Getting Started on the PET/CBM 13

Elementary
BASIC Programming

What is BASIC? The name BASIC is a copyrighted term of the trustees of Dartmouth College and
is an acronym for Beginner’s All-purpose Symbolic Instruction Code. BASIC was developed by Pro-
fessors John G. Kemeny and Thomas E. Kurtz on a time-sharing computer system in 1963. BASIC was
designed with the purpose of making programming an easier task for the average person who had little
computer background or knowledge. '

As the name implies, BASIC is relatively easy to learn but since 1963 many new enhancements
have been added to the language, extending its usefulness. These developments have led to many new
versions of the language, of which Microsoft BASIC for the PET is one. Learning BASIC for the PET
gives excellent grounding for BASIC in most other computers.

CALCULATOR MODE
One of the features of the PET is its ability to be used as a calculator—a very sophisticated one. In

general, calculator or immediate mode is in use whenever a BASIC statement is typed without a state-
ment number. For instance, type the statement:

PRINT 5*2.7

and press return. This statement is in calculator mode and the answer
13.5

is displayed immediately. If, however, you type the statement

10 PRINT 5*%*2.7

it is in program mode since a statement number (10) is used. This statement is stored directly in the
PET’s memory instead of immediately calculating the answer. Now type

?14/2

and press return. Did the answer 7 appear? The question mark is an abbreviation for the command
PRINT and is 2 much more convenient form of the command. Try a few more calculations of your own

15

to get the feel of the PET’s capability. Don’t worry about making mistakes or doing something that
might damage the machine. Nothing you type in can damage it.

17 e
CRSR CRSR
HOW TO USE CURSOR CONTROLS U p—

Do you recall the cursor controls at the top of the numeric pad? These are the arrows that point up,
down, left and right. Now re-enter the command

714/2

and press return to get the answer. Next use the up cursor control to move back to the command and
the right cursor to move to the 2. Like this!

214 /2¢———— 3. cursor right

2. to here

READY

[:,1% 1. cursor up from here

Notice that the cursor moves over the characters without changing them in any way. Now type a Son
top of the 2. Now when you press Return the answer given is 2.8 replacing the previous answer.
Try

7245*598

The answer should be 146510

INST
DEL

INSERT/DELETE

The Insert/Delete keys are situated at the upper right corner of the number pad. These keys allow you
to make space in a line either to insert characters that were missed or to delete characters that should
not be there.

Move the cursor up to the 9 of 598 from the previous exercise. The screen looks like this:

7245 *5§8 Cursor

Hold the shift key and simultaneously press INST once. Now the screen shows

7245%5=98

| Cursor

leaving a space between the 5 and the 9. Type a decimal point(.) so you get
7245*5.98
and then press Return. The answer 1465.1 replaces the previous result.

16 Chapter Three

To use the Delete, the cursor is moved to the character to the right of the one you wish to delete
and the DEL key is pressed. Try this to change the 5.98 to 5.8 and then press return to get your answer.

Did you move the cursor to the 8? If so, the answer you received should be 1421.1.

Cursor controls can be used to correct any entry on a line. For instance, you might try typing a
sentence and then make changes to it using the cursor controls with the insert and delete.

CLR
HOME

CLEAR/HOME

This key is located at the upper left corner of the number pad. Pressing the HOME key causes the

cursor to move immediately to the upper left corner of the screen, called the Home position. Pressing

shift and CLR together clears the screen and homes the cursor. This is sometimes useful to remove the

displayed results from one program before going on to the next one. Clearing the screen does not clear

program memory but only the screen itself. Memory may be cleared using the NEW command.
Enter the BASIC code:

10 PRINT 10/5+35

when you press Return no answer is given since this is a BASIC statement in program mode, not im-
mediate mode.

Hold shift and press CLR clearing the screen. Now type the command LIST and notice what
happens. The PET displays the command you previously entered. Statement 10 is still available since
it was stored in memory. Type the command RUN and the program is run displaying the result 37.

RUN
STOP

RUN/STOP

Occasionally you may get into a program that has not provided a way to get out. Well-written programs
will always provide a way to terminate the program when you are finished. But sometimes this provision
was not made. In that case you can exit from a program by pressing STOP. The PET confirms your
instruction by displaying

READY.

followed by the flashing cursor.
Now try this program.

10 PRINT 1
20 I=1+1
30 GO TO 10

Type RUN and after a few seconds press STOP. This will bring the program to a screeching halt. In
rare cases a programmer may have disabled the STOP. If this happens the only alternative you have
is to turn off the power and then turn it on again. Since this action erases program memory it should
be used only as a last resort. Hopefully, the program was saved on tape so it can be loaded once again.

The RUN key (shifted) lets you load and run a program from the disk. This is equivalent to typing
a DLOAD and RUN except the RUN key does not permit the entry of a program name.

Elementary Basic Programming 17

BASIC NUMBERS

A large percentage of programs are number-oriented, and those that are not usually need some number
manipulation for their operation. BASIC uses two types of numbers: integers and real (floating point).
Another type of number uses scientific notation, which is simply a variation of the real number. Num-
bers may be used in programs for calculations, comparisons, as data in DATA statements, or as input
from the keyboard. If theory doesn’t interest you, you need only scan the following pages briefly for
now.

Integers

An integer is a number with no fractional part, thus no decimal point. The integer may have a sign for
negative (—) or positive (+) numbers. Some examples of integers are:

1
1
o35 INTEGERS
—25
+31278

Integers have a maximum range from —32767 to +32767. An integer uses only 2 bytes of mem-
ory and can therefore save a lot of memory space in large programs. Why 2 bytes? Well, a byte occupies
8 bits or binary digits. Two bytes then have 2x8 or 16 bits available for use. One of these bits is used
for a sign, leaving 15 for storing numbers. Now each binary digit can store two possible values; 1 or 0.
With 15 bits available this allows a total of 2 to the power of 15 numbers, which is 32768. If one of
these numbers is reserved for the value zero this leaves 32767 as the maximum. Makes sense doesn’t
it?

Integers may also be represented as real numbers.

Real Numbers

A real number can be an integer, a fractional number, or a combination of both. Real numbers, like
integers, may also be signed. For example:

L.
1.5 REAL

276-835 NUMBERS
— 123456789

—.0000001
A real number in the PET uses five bytes of memory and can have eight or sometimes nine digits

not counting the sign or decimal point.
If excessive digits are to the right of the decimal point, roundoff occurs. Try entering

.9876543216
- 987654322 ROUNDING

The 6 is truncated and the last digit, 1, rounds up to 2.

?.9876543211
.987654321

18 Chapter Three

In this case the last 1 is truncated but the remaining 1 is not rounded since the last digit was less than
5.

?.9876543214
.987654322 TRUNCATING

This number rounds incorrectly due to the conversion to floating point done internally in the PET’s
memory.

Real numbers are useful for the majority of applications on the PET whether for business, edu-
cation, or the home. Real numbers can represent dollars, quantities, marks, account numbers, and so
forth.

Now try this interesting exercise: Light travels at a speed of 186,200 miles per second. How many
miles does it travel in a minute? In an hour? Day? Year? The distance light travels in a year is called
a light year. So using the PET as a calculator try these calculations. Using the cursor to change the
Print command each time will make this easier.

Distance light travels in a minute

?7186200%*60
11172000

Distance light travels in an hour

?7186200*60*60
670320000

Distance light travels in a day

9186200*60*60*24 what happened
1.608768E+10 < here?

Distance light travels in a year

7186200*60*60*24*365
5.8720032E+12< and here?

Real numbers can also be small fractional values. For instance, computers do things in very small
fractions of a second. These measurements are in milliseconds (1/1000 of a second), microseconds
(1/1,000,000), nanoseconds (1/1,000,000,000), and the really fast ones in picoseconds (1/
1,000,000,000,000). PETs basically operate in microseconds. Now let’s find out how far light or elec-
tricity travels in these small periods of time.

Distance light travels in a millisecond

718620071000
186.2

Distance light travels in a microsecond

?7186200/1000000
. 1862

Elementary Basic Programming 19

Distance light travels in a nanosecond

2186200/7/1000000000 more strange
1.862E-04 < results

Distance light travels in a picosecond

?7186200/1000000000000
1.862E-07 <

Did you know that the nearest galaxy to Earth is the Andromeda Galaxy? It is 2,300,000 light
years away. Can you use your PET to find out how many miles this is?
Now let’s find out about those weird numbers we got in some of the previous calculations.

Scientific Notation

Real numbers may also be represented in scientific notation if they exceed their defined maximum size.
The result of the calculation for the number of miles light travels in one day exceeded the maximum
size for a real number so the PET automatically converted it to scientific notation. The nanosecond
result was smaller than the smallest real number so it was converted to a small fractional number in
scientific notation. Try typing a 1 followed by nine zeros.

71000000000
1E+09

The result is a number (1E+09) in scientific notation that represents the original number in pow-
ers of ten. This number may be thought of as

1x10°

Some valid scientific notations are:

Scientific Actual

Notation Value

2.7385E8 273850000
1.085215E—7 .0000001085215
—45E12 — 45000000000000
—21E— 15 —.00000000000002 1

The maximum ranges for floating point numbers in scientific notation are
largest +1.70141183E+38
smallest +2.93873588E—39

Now we can understand the previous results. The number of miles light travels in a light year was
5.8720032E+ 12, which is 5872003200000 miles
and the picosecond distance of
1.862E—07, which is .0000001862 miles.
How many Feet? Inches? Centimeters? Millimeters?
Do you know about the Googol? It is a 1 followed by 100 zeros.

20 Chapter Three

STRINGS

A string permits BASIC programs to manipulate data that is not used for arithmetic calculations. Strings
are enclosed in double quotes (*) and may contain any letter, number, special character, graphic symbol,
or cursor control character. Some strings are

“SPACE INVADERS"
“DIFFICULTY LEVEL 1 to 9" gTRINGS

"Want to try again?(Y/N)"

Strings may be up to 255 characters in length, which is more than adequate for most applications.

VARIABLES

A variable is a name that you give to a memory location that is capable of storing a value. It might
help to think of memory as consisting of a number of small boxes (figure 3.1). Every time you need a
place to store a number or name you put a label on one of the boxes and place your value in the box.
Suppose your program requires values to represent speed and complexity. Then one box could be given
the variable name S (speed) and the other C (complexity). To place the numbers in the box (memory)
you use an assignment statement.

/e / /

[s]

10 LET S=6
20 LET C=2

Figure 3.1 Use of variables

Statements 10 and 20 are assignments which give location S a value of 6 and C a value of 2. PET
also lets you do this without the keyword LET as follows:

10 S=6
20 C=2

Variable names for real numbers may be a single letter, a letter followed by a number, or two
letters. Applying these rules gives the following valid names.

A

AS VARIABLE
T NAMES

SM

X1

Integers may be defined by placing a percent sign (%) after the variable name.

A%
D4% INTEGER

HP% NAMES
C%

Elementary Basic Programming 21

Variable names for strings also follow the above rules except that a string name ends with a dollar

sign($). Thus some valid string names are:

NS
ADS$ STRING

R9% NAMES
Qs

Some valid assignments for these names are:

10 A5=236.95

20 T=55

30 HP%=100 ASSIGNMENTS
40 N$=“DESKS”

50 Q$=“PLEASE ENTER A NUMBER FROM 1 TO 10”

236.95 55 100

Desks Please Enter a Number from 1 to 10

When choosing variables names care should be taken to avoid selecting names that are also re-

served words. This problem is particularly prevalent with two-letter variables. When you are unsure of
a word, a quick look at Appendix C can verify if your choice is a reserved word or not.

MULTIPLE STATEMENTS PER LINE

The PET has a useful feature that permits you to enter several commands on one line. This feature may
be used when several small steps are required and it seems unnecessary to type several lines. This feature
also saves storage and may be useful to conserve space in longer programs. To place several statements
on a line simply separate each statement with a colon (:).

22

10 N=1:K=25:X=0

Chapter Three

ARITHMETIC STATEMENTS

We have already seen the use of the LET for assigning values to a variable such as

10 LET N=25

The 10 in this statement is called a statement number. Each statement in BASIC requires a unique
statement number except when multiple statements per line are defined. Statement numbers increase
in value through the program. The value of the increment is up to the programmer but a value of 10
or more is advised since this will leave space to insert additional statements if they are eventually re-
quired.

The LET statement also permits the calculation of values using the common arithmetic operations
as well as a number of mathematical functions. In every case the calculation is specified on the right
of the equal sign and the variable to which the result is assigned is on the left of the equal sign.

Add (+)

Addition is the same as it is in the immediate mode, except for the statement number. The plus sign
specifies the addition of two numeric values, which may be integer, real, or scientific notation.

10 N=25 Result

20 K=14.5

30 J=N+K J is 39.5

40 N=N+1 N is 26 ADD
50 K=K+.25 K is 14.75

60 L=J+20 L is 59.5

70 L=L+N+K L is 100.25

Subtract (—)

Subtraction is handled in the same way as addition. The only real difference is that the result can
sometimes be a negative number. In this case the PET automatically retains the sign on the result.

10 M=40 Result
20 J=55.5
30 F=J-M F is 15.5 SUBTRACT
40 G=M-J G is -15.5
50 H=J-M-20 H is -4.5
Multiply (%)

To multiply the PET uses the asterisk symbol. All the usual rules in mathematics apply.

10 A=12 Result
20 B=5.3

30 C=A*B C is 63.6 MULTIPLY
40 D=A*-5S D is -60

50 E=A*B*D E is -3816

Elementary Basic Programming 23

Divide (/)

Division follows normal rules of mathematics with the dividend on the left of the slash and the divisor
to the right of the symbol.

10 W=48 Result
20 X=12
30 Y=W/X Y is 4 DIVIDE

40 Z2=W/-4.8 2 is -10
50 Z2=Y/W/.25 Z is 1

Exponentiation (1)

Exponentiation is simply raising a number to the power of a second number. This is most common when
we square a number or cube it, multiplying the number by itself two or three times respectively. But
the PET can raise a number to any power, even fractional or negative powers.

10 P=5 Result

20 Q=25

30 R=P]2 R is 25 POWERS
40 S=Q73 S is 15625

S0 T=P]1.6 T is 13.132639

60 U=Q7-2.5 U is 3.2E-04

HIERARCHY AND PARENTHESES

Most arithmetic operations are straightforward but what happens when there is a mixture of different
operations in one statement? When any of the five operators are mixed, BASIC applies a rule of hi-
erarchy to the expression. This rule defines a certain priority to the operators and defines which goes
first.

() Parentheses € highest priority
] Exponentiate

*/ Multiply—Divide

+ — Add—Subtract < lowest priority

Normally arithmetic operations proceed left to right but when operators are mixed the rules of
priority take effect. For instance, the expression

10 N=8-4+3

must be evaluated with the multiply operation first. Therefore the correct answer to this calculation is
—4, not 12 (which would be the case if the PET evaluated from left to right). To change the order
parentheses may be used. Since parentheses have the highest priority, an operation within the brackets
will be done first.

10 N=(8-4)*3
RUN

12 € answer

24 Chapter Three

PRINT

The PRINT statement is used to display information on the screen. Usually the Print displays one line
at a time from left to right, 40 characters per line, and from the top to bottom of the screen. When the
bottom line (line 25) is reached all lines are scrolled up by one line and the first line disappears from
the top of the screen. The format of the print is the keyword followed by a list of variables, constants,
or expressions separated by commas or semicolons.

100 PRINT A,B
200 PRINT N,25
300 PRINT L,"™SUM OF A AND B",A+B

When the parameters are separated by commas each value is displayed in a separate ten position
zone on the screen. The PET therefore has four zones on one line and can have one value in each of
these zones.

Columns
1 10 20 30 40
ZONE 1 ZONE 2 ZONE 3 ZONE 3

- J

Now try this program:

10 A=-2.5

20 B=30

gSN'zINT A,B,A+B don’t forget
-2.5 30 27.5€—u-| gives this

Elementary Basic Programming 25

Each of the three values is allocated ten spaces. The first of these spaces is either blank or, in the
case of a negative number, shows the sign. If a PRINT has more than four values to print they will
overflow to the next line.

Alphanumeric strings are also given a ten-character zone in which to print.

Now try this program:

10 PRINT *"TWO*", "STRINGS™
20 PRINT "ONE LONG STRING®", "SHORT ONE™

RUN
TWO STRINGS € gives
ONE LONG STRING SHORT ONE

Since strings have no sign the first character prints in position 1 of the zone. In some cases, such
as statement 20, a string may exceed the length of a zone. When this happens the string continues into
the second zone without interruption. A subsequent string or value will start in the next available zone.

Closer spacing of values may be achieved with the use of the semicolon between values. When a
semicolon is used instead of a comma for numeric values one space is left between each value plus a
second space for the sign if the number is negative. Alphabetic fields have no space when a semicolon
is used. Example:

10 PRINT 12;24;-7
20 PRINT "SUM OF A + B";12+24
30 PRINT “TWO";"STRINGS"™

RUN
12 24 -7 -
SUM OF A + B 36< gives

TWO STRINGS

Some additional useful features of the Print are the use of a single Print statement to leave a blank
line. This is a command like

10 PRINT<€—— prints empty line

with no variables listed. A second useful feature, which will be considered in more depth later, is the
ability to place cursor controls in a string. For instance, the statement:

10 PRINT “[clrl"™<«—] this ""e\ looks like
character this

where [clr] represents the shifted CLR control, which causes the screen to be cleared and the cursor
homed before subsequent printing is done. This command is great for clearing extraneous characters
from the screen and gives the following output a clear and uncluttered place to display.

Try this program:

10 PRINT "THIS CLUTTERS THE SCREEN"
20 PRINT *"CLUTTER"™ .
30 PRINT "CLUTTER"™ slows things down
40 PRINT "CLUTTER"™
S0 FOR I=1 TO 10

W_—————' press shift clear
60 PRINT "[clrl™

70 PRINT "ON A CLEAR SCREEN YOU CAN SEE YOUR QuTPUT"

26 Chapter Three

INPUT

The INPUT statement is used to let the user of the program supply data for processing by the program.
When an INPUT is encountered during program execution the computer waits for the user to type in
a value or values and then press Return. When Return is pressed the values are entered into the pro-
gram’s variables and the program continues with these values. For example,

10 INPUT N

20 PRINT NT2 value entered
2?25

result printed
625 <& P

When this program is RUN a question mark appears indicating the program is waiting for a value
for N. If 25 is typed and Return pressed, the value 25 is now contained in the variable N and is used

for the calculation in statement 20.

625

UUULUUU UL
JUUU UL UL L
e
LU LU LU LU

L
LI i L
Lo L

L L

10 INPUT N
20 PRINT N 2

25

Elementary Basic Programming

25 Return
Pressed

27

More than one value may be entered by separating them with commas. For instance:

10 INPUT A,B
20 PRINT A*B

expects two values to be entered, one for A and the second for B. These values must be entered with a
comma between them as follows:

? 12,25

One problem with the above examples is that the program’s user may not know what is expected
as input when the program is run. This subject is considered in depth in the chapter “Interacting with
the User of Your Program,” but for now it is sufficient to introduce the use of a character string in the
INPUT statement. In the first example we could have written

10 INPUT "ENTER A VALUE FOR N";N

20 PRINT N cursor stops here
RUN \//

ENTER A VALUE FOR N 7?837.5 <« input N

937.5<

print N

Notice the use of the semicolon in statement 10 to separate the string from the variable N. The
semicolon is necessary to avoid a syntax error and it also lets the user type N’s value directly following
the message which asks for it.

GOTO

A GO TO is a branching statement that causes the program to change the flow of execution and continue
at the statement number identified in the GO TO. GO TO may be written with or without the space.
The statement

100 GOTO 20

causes the program to branch from statement 100, where it is currently, to statement 20 where the
program continues. This statement is called an unconditional branch since branching occurs regardless
of what has been happening up to this point in the program.

10 INPUT "STARTING VALUE, INCREMENT";S,I

20 PRINT S
30 S=S+1 to here
40 GOTO 20

branches from here

28 Chapter Three

o~

This program will accept a starting value and a value by which S is to be increased. The program
proceeds to print S and then increases it by the increment. Statement 40 then branches to 20 where the
new value is printed and the process continues. Since a GO TO is unconditional this program will run
forever (well, not quite, since eventually S will run out of space and an illegal quantity error will ter-
minate the program).

REM

The REMark statement simply makes life easier for you as a programmer. It has no effect on your
program but prints whatever it includes within the program. The REM is useful for including comments
to yourself or anyone else who may read your program. Ideally these comments should make the pro-
gram more readable and understandable to anyone who reads it. Don’t make the mistake of thinking
that since you understand what you have written, you don’t need to use REMs. It’s surprising how much
you will forget after a few days or weeks.

10 REM DISPLAYS SCORE
40 REM CALCULATES TRAJECTORY

SIMPLE CALCULATION PROGRAM

For our first program let’s try something fairly simple. Suppose we want a program that takes two
numbers and adds, subtracts, multiplies, and divides them and then prints the results.

Since this is a relatively small program we might be successful by simply sitting down at the PET
and writing it. However, to develop good program design habits we should engage in some planning
before actually writing the program. A very effective tool for program design is called English code or
Pseudo code. This approach involves writing down a few basic steps that constitute a correct general
solution to the problem. For instance, we might write:

1. Input Values
2. Do Calculations

3. Print Results

These steps are called the top level of our solution. If the problem is more corhplex then these
steps, it may be broken down into smaller parts. Step 1 could break down to:

1. Input Values
1.1 Input First Value
1.2 Input Second Value

Step 2 could break down into:

2. Do Calculations
2.1 Calculate Sum
2.2 Calculate Difference
2.3 Calculate Product
2.4 Calculate Quotient

Elementary Basic Programming 29

Now if we combine all this English code the solution looks like figure 3.2.

This may seem like a lot of work to prepare for a simple program but as programs that you write
become longer and more complex this approach will help you to be organized and produce much more
successful programs. More on this later.

1. Input Values
1.1 Input First Value
1.2 Input Second Value
2. Do Calculations
2.1 Calculate Sum
2.2 Calculate Difference
2.3 Calculate Product
2.4 Calculate Quotient
3. Print Results

Figure 3.2 Simple calculation program English code

Now by following the English code we can write the PET BASIC program in figure 3.3. State-
ments 110 and 120 use INPUT to accept values for A and B, the first and second values. These values
are then used in lines 140 to 170 to find the sum, difference, product, and quotient of A and B. Finally,
statements 190 to 220 print the answers. For good measure 230 goes back to 110 for a new set of values.
We'll discuss looping in English code in later programs. Pay close attention to the method used to print
the results such as:

190 PRINT A;"+";B;"=";S

The semicolons are used to concatenate on the output line the values for A and B with the symbols +
and = followed by the calculated result S. The effect of this statement is an output that looks like an
arithmetic expression.

100 REM SIMPLE ARITHMETIC CALCULATIONS
110 INPUT "ENTER FIRST VALUE'";A
120 INPUT "ENTER SECOND VALUE'";B
130 REM DO CALCULATIONS +,-,%,/
140 S=A+B

150 D=A-B

160 P=A*B

170 Q=A/B

180 REM PRINT RESULTS

190 PRINT A;"+'";B;"=";S

200 PRINT A;"-""3;B;"=";D

210 PRINT A;'*'';B;"=";P

220 PRINT A;'"/'";B;"=";Q

230 GOTO 110

Figure 3.3 Simple calculation program

FAHRENHEIT—CELSIUS PROGRAM

This program is a bit more practical but is also quite easily developed. We would like to input either
Fahrenheit or Celsius degrees and have the computer give us the alternative temperature. Since we
haven’t yet learned decision-making statements for the PET we will write this as two separate programs
combined into one.

30 Chapter Three

The first will be program 100 and will convert Celsius to Fahrenheit. Here is the English code.

Program 100

1. Input Celsius
2. Calculate Fahrenheit
3. Print Results

The second is program 200, which converts Fahrenheit to Celsius. Here is its English code.

Program 200

1. Input Fahrenheit
2. Calculate Celsius
3. Print Results

The program is shown in figure 3.4. The first part is in statements 100 to 150, which converts
Celsius to Fahrenheit degrees and the second part from 200 to 250 converts Fahrenheit to Celsius. To
run part one you may enter either

RUN
or

RUN 100

Either command starts the program at statement 100. The program then asks for a Celsius degree,
which it then converts to Fahrenheit. This process continues as long as you like. To stop it press STOP
and then Return or simply press Return without entering a temperature.

Now to convert the other way enter

RUN 200

which starts the program at statement 200 and proceeds to do the other conversion.

100 REM CONVERT CELSIUS TO FAHRENHEIT

110 INPUT"ENTER CELSIUS DEGREES";C

120 F=C*9/5+32

130 PRINT C;'DEGREES CELSIUS IS";F;"FAHRENHEIT"
140 PRINT

150 GOTO 110

200 REM CONVERT FAHRENHEIT TO CELSIUS"

210 INPUT "ENTER FAHRENHEIT DEGREES'";F

220 C=(F-32)*5/9

230 PRINT F;"DEGREES FAHRENHEIT IS";C;"CELSIUS"
240 PRINT

250 GOTO 210

Figure 3.4 Fahrenheit—Celsius program

IMPROVING YOUR SOLUTION

When you have used this program for a while it becomes apparent that some improvements could be
made. One problem is for conversions to Celsius, which often come out as long fractional values. If you
look up the INT function in the index you will discover a way to improve this output, which is imple-
mented in figure 3.5 in line 220.

Elementary Basic Programming 31

100 REM CONVERT CELSIUS TO FAHRENHEIT

105 PRINT "[clr]"

110 INPUT"ENTER CELSIUS DEGREES'";C

120 F=C*9/5+32

130 PRINT C;'DEGREES CELSIUS IS';F;'FAHRENHEIT"
140 PRINT

150 GOTO 110

200 REM CONVERT FAHRENHEIT TO CELSIUS"

205 PRINT '"[clr]"

210 INPUT "ENTER FAHRENHEIT DEGREES";F

220 C=INT((F-32)*5/9)

230 PRINT F;"DEGREES FAHRENHEIT IS";C;'CELSIUS"
240 PRINT

250 GOTO 210

Figure 3.5 Improved Fahrenheit—Celsius program

INT is a language feature called a function that extracts the integer part of the number or vari-
able contained within its brackets. For example the expression INT(22.7777778) gives the result of 22.
Normally the number is in a variable and appears as follows in the INT function: INT(C). If in this
example we wanted to round the result giving 23 instead of the unrounded answer of 22 the expression
INT(C + 0.5) could be used. An arithmetic expression may also be used in the function as shown in
figure 3.5.

RUN 200
ENTER FAHRENHEIT DEGREES ? 73
73 DEGREES FAHRENHEIT IS 22.7777778 CELSIUS

this would look better
if INT were used

73 DEGREES FAHRENHEIT IS 22 CELSIUS

A second irritation is that whenever you change from part one of the program to part two, as
described earlier, the output from previous operations remains on the screen. This output is cleared in
statements 105 and 205, which use the CLR control character in the character string of the PRINT
statement as follows:

10S PRINT *[clrl®

WEIGHTED AVERAGE PROGRAM

A common need in education is to apply different weights to grades received depending upon the im-
portance of a particular project. Grades themselves may also be given different marking schemes so
that determining a student’s final mark becomes a difficult task. This program will make a start at
solving this problem, although in a somewhat limited way.

32 Chapter Three

To develop any program we need to have a clear mental picture of what we are attempting to
accomplish. In the previous programs this was easy, but real life is not always this easy. For the weighted
average problem a diagram of what we are attempting to do will help us to get a grasp of the problem.
This is what the picture looks like:

Test 1 2 3 4 5
Maximum

Marks 30 25 50 10 75
Weight

Factor 2 1 2 3 2

This information gives us some idea about the types of processing we will need to do in our pro-
gram. In addition to this we need to define the input that is expected and what output is required. The
following illustrates our requirements for input and output.

ENTER FIVE MARKS SEPARATED BY COMMAS
FOR EXAMPLE:
25,15,20,38,7,70< input

? 27,20,38,7,70
MARK MAXIMUM WEIGHT PERCENT

27 30 2 18

20 25 1 8 <—

38 S0 2 15 € output
7 10 3 ‘

21 é—;
70 75 2 18

TOTAL WEIGHTED AVERAGE PERCENT 80
ENTER FIVE MARKS SEPARATED BY COMMAS <— output preparation
FOR EXAMPLE : €— for next grades
25,15,40,7,63
K4

Once we have designed the required input and output and considered the processing requirements
we are ready to develop the English code. Be careful at this stage of development of trying to do too
much. Keep it simple and quite general. In other words do an overview.

Set up Initial Values

Input Five Marks

Calculate Percents

Print Results

Calculate Total WA Percent

W=

As usual, each step of the English code, as necessary, is developed further. Step 1 sets up each of
the maximum values and the weights.

1. Set up Initial Values
1.1 Clear Screen
1.2 Set Maximum Marks
1.3 Set Weights
1.4 Find Total Weight

Elementary Basic Programming 33

Next we will do step 3 since 2 requires no further elaboration.

3. Calculate Percents
3.1 Find Percent for each of the 5 Marks (Relative to 100%)

Notice that it is not necessary at this time to fully define each statement for the program. We are
basically creating an outline to assist in writing the program once we are satisfied with our solution.
Now we are ready to print the results.

4. Print Results
4.1 Print Heading
4.2 Print each of 5 Marks and Related Values

The last step is to calculate the total weighted average percent and print it in step 5.

5. Calculate Total WA Percent
5.1 Find Total Percent
5.2 Print Total

Now we are ready to write the program, which is shown in figure 3.6.

First the program assigns maximums for each test in variables M1-MS5. This indicates test 1 had
a maximum of 30 marks, test 2 of 25, and so on. Next, line 140 allocates the weights for each test.
Weight 2 for test 1, weight 1 for test 2, and so on to weight 2 for test 5.

100 REM WEIGHTED AVERAGE

105 PRINT '"{clr]"

110 REM MAXIMUM MARK FOR EACH TEST

120 M1=30:M2=25:M3=50:M4=10:M5=75

130 REM WEIGHTING FOR EACH TEST

140 W1=2: W2=1: W3=2: W4=3:W5=2

150 TW=W1+W2+W3+W4+W5

160 PRINT "ENTER FIVE MARKS SEPARATED BY COMMAS"
170 PRINT "FOR EXAMPLE:"

180 PRINT "25,15,40,7,63"

190 PRINT

200 INPUT MA,MB,MC,MD,ME

210 P1=INT((MA/M1*100)*W1/TW)

220 P2=INT((MB/M2*100)*W2/TW)

230 P3=INT((MC/M3*100)*W3/TW)

240 P4=INT((MD/M4*100)*W4/TW)

250 P5=INT((ME/M5%100)*W5/TW)

260 PRINT "[clr JMARK",''MAXIMUM",'"WEIGHT",'"PERCENT"
270 PRINT

280 PRINT MA,M1,W1,P1

290 PRINT MB,M2,W2,P2

300 PRINT MC,M3,W3,P3

310 PRINT MD,M4,W4,P4

320 PRINT ME,M5,W5,P5

330 PT=P1+P2+P3+P4+P5

340 PRINT

350 PRINT "TOTAL WEIGHTED AVERAGE PERCENT";PT
360 GOTO 160

Figure 3.6 Weighted average program

34 Chapter Three

Statements 160 to 200 accept the marks for one student and then 210 to 250 calculate the per-
centage for each test by applying the appropriate weight. Lines 260 to 350 then print the results in-
cluding an overall percentage for the student.

One limitation of this program is the need to do a separate calculation for each percent even
though they are similar. Another limitation is the need for five Print statements for the output. Another
problem will surface if marks are entered that exceed the maximum for that test. This program will
cheerfully accept such a mark with no arguments. These problems will be considered in an improved
program in the next chapter.

COMPUTING LOAN PAYMENTS

Which of us doesn’t need to take out a loan on occasion for a new car, an appliance, or vacation? With
today’s high interest rates a small difference in the percentage can make a large difference in monthly
payments. We may also want to try different repayment terms to evaluate our ability to pay each month.
Even with our limited knowledge of BASIC at this stage we can still write a useful program.

First we need a formula to calculate the payment given the other variables. The Periodic Rent of
Annuity formula can be found in Business Math or Accounting books. It is as follows:

where:

a is the amount borrowed

i is the interest rate

n is the number of periods

p is the payment

The approach taken in this program is to initially print some instructions about the program’s
use. Included in these instructions are some sample data to clarify what the program expects from the
user. This method is particularly important here since an entry such as interest rate could be entered
several different ways such as .165, 16.5, or 16.5%, but only 16.5 would give the correct results. Here
is a sample of what we want the input and output to look like:

THIS PROGRAM CALCULATES THE MONTHLY
PAYMENT FOR A LOAN. TO USE THE PROGRAM

ENTER THE APPROPRIATE VALUE WHEN< output

PROMPTED USING THE FOLLOWING FORMAT: messages

AMOUNT BORROWED AS DOLLARS 10000

NUMBER OF YEARS E.G. 3

ANNUAL INTEREST RATE E.G. 16.5~ _ —— prompts
g,

AMOUNT BORROWED“? 10000
NUMBER OF YEARS ? 3¢ 6\“27 input values
ANNUAL INTEREST RATE ? 16.5

MONTHLY PAYMENTS WILL BE 146.874995 <—— output

Since the formula needs the interest as a fraction for the period of the loan, we will need to divide
the input by 100, giving the fraction, and then divide again by 12 to convert to a monthly rate. Since
personal loans are normally taken out for annual periods (one, two, three years, and so on) that is how
the term will be read, although a two-and-one-half year loan could be entered as 2.5. We will then
convert this value into months, which is necessary for the formula.

Elementary Basic Programming 35

Now we are prepared to develop the English code.

Print Instruction Messages

Input Amounts Required

2.1 Input Amount Borrowed

2.2 Input Number of Years

2.3 Input Interest Rate

Convert to Internal Amounts

3.1 Multiply Years X 12 Giving Months

3.2 Divide Interest/100/12 (Converts to Monthly Fraction)
Calculate Payment

Print Payment

To reiterate, the principle in problem solving is to define in general terms your solution and then

to break down these components until you have completely solved the problem. By following each step
defined above, the program is written.

100 REM CALCULATING MONTHLY LOAN PAYMENTS

110 PRINT "THIS PROGRAM CALCULATES THE MONTHLY"
120 PRINT "PAYMENT FOR A LOAN. TO USE THE PROGRAM"
130 PRINT "ENTER THE APPROPRIATE VALUE WHEN "

140 PRINT "PROMPTED USING THE FOLLOWING FORMAT:"
150 PRINT '"'AMOUNT BORROWED AS DOLLARS 10000"

160 PRINT "'NUMBER OF YEARS E.G. 3"
170 PRINT "ANNUAL INTEREST RATE E.G. 16.5"
180 PRINT

190 INPUT "AMOUNT BORROWED';A

200 INPUT ''NUMBER OF YEARS'" ;N

210 INPUT "ANNUAL INTEREST RATE";I

220 N=N*12 :REM CONVERT TO MONTHS
230 I=(1/100)/12 :REM % PER MONTH

240 P=A*(I/(1-(1+I)T-N))

250 PRINT

260 PRINT "MONTHLY PAYMENTS WILL BE'";P

REVIEW QUESTIONS—CHAPTER 3

1.
2.

Sl A

36

What is meant by calculator or immediate mode?

How are the four cursor controls used? Explain how to correct a line such as 7435*18 that
should have been a divide (/) instead of multiply (*), when the cursor is on the first position of
the next line.

Explain how to correct the above command when the 435 should have been 4.35 and the cursor
is already on the same line.

Describe the purpose of the CLR/HOME key.

Discuss two kinds of numbers used on the PET/CBM.

Explain the difference between rounding and truncating.

What is 2 number such as 5.8720032E+ 12 called? What is the equivalent decimal value?
What is a variable? Why is it used in programming? What are the rules for valid variable
names?

Explain how data may be assigned to a variable.

Chapter Three

10. Write BASIC statements for the following algebraic expressions (= = 3.1415).

1.

12.
13.

a)
b)

<)
d)

e)
f)
g)
h)
i)
j)

e
k

=a-b
a=b+c—d—e

a-b

Explain the difference between using commas to separate variables in a PRINT statement and
using semicolons.
How can you clear the screen from within a BASIC program?

What is the purpose of the INPUT statement? Describe what happens when a statement like
10 INPUT “RADIUS”;R is used in a program.

Elementary Basic Programming

37

Not So
Basic BASIC

The previous chapter introduced some of the elements of the BASIC language; enough of them to let

us write some fairly useful programs. But to really take advantage of the PET /CBM’s capability it is
necessary to understand statements that permit decision making, looping, data structuring in arrays,
and the use of subroutines for program organization and efficiency. These additional features of the
language will broaden our horizons considerably and give us the ability to solve a wider range of in-
teresting problems.

DIM

The DIM or Dimension statement permits the storage in our program of multiple data values under
the same variable name. For example, in the last chapter we wrote a program to do weighted averages
which used five variables M1 to M5 for maximum marks, five more W1 to WS for the weight, and MA
to ME for the actual marks. Using DIM these 15 variables could be reduced to 3 or, with a little in-
genuity, to a single variable.

Variables defined with DIM are called arrays and may each have a number of elements or po-
sitions in which to store data. The variables for weighted average could be described in BASIC as
follows:

10 DIM M(5),W(5),MA(S)

The number 5 in parentheses defines the number of elements in each array. Each element of the array
may be referenced by using a subscript with the array name. For instance, position 3 of the array for
maximum marks would be referenced in the program by specifying M(3).

Arrays are particularly useful because the subscript can also be a variable or an expression. This
feature permits array references such as

50 PRINT MACID)
60 P=MACN)/M(NI*100
70 H=WC(K-1)

39

M(1)

M(2) M(3) M(4) M(5) W(1) W(2)

MA

MA(1) MA(2) MA(3) MA(4) MA(5)

Figure 4.1 Visualizing a one-dimensional array

The arrays that we specified in statement 10 can be visualized as shown in figure 4.1. Actually
the PET allocates O as an element, so there are really six elements in each array. For convenience we

will usually ignore the zero element, although at times it may be useful.

Storing Values in an Array

If we wished to store 10 numbers in an array, an array of 10 elements would be defined by a DIM
statement. The following program sets up such an array, reads 10 numbers into the array and then
displays the contents of the array. The 10 numbers are entered in real time from the keyboard, one

value at a time.

10
20
30
40
50
60
70
80
90
100
110
120
130

When this program is run the user is prompted for each of the 10 numbers to be entered into the

DIM KC10)
REM LOAD ARRAY WITH NUMBERS

W(3) W(4) W(5)

I=1

IF 1 IS LESS THAN OR
EQUAL TO 10 THEN
GO TO STATEMENT 40

INPUT *“NUMBER ";KCI)
I=I+1 /
IF I<=10 THEN 40

REM PRINT THE NUMBERS€~\§\N‘§\\\
I=1

PRINT "NUMBER ";I;" = *“;KC(I)

Otherwise
come here

I=1+1

IF I<=10 THEN 90
PRINT "DONE™

END

array. These entries would appear on the screen as follows:

NUMBER ? 35
NUMBER ? 43
NUMBER ? 52
NUMBER ? 55
NUMBER ? 58
NUMBER ? 63
NUMBER ? 71
NUMBER ? 88
NUMBER ? 91
NUMBER ? 95

When the program reaches statement 70 the contents of array K will appear as follows:

K
35 43 52 55 58 63 71 88 91 95
1 2 3 4 5 6 7 8 9 10
40 Chapter Four

Statements 70 to 120 now display these contents to confirm that the numbers are actually in the
array. Here is the output.

NUMBER 1 = 35
NUMBER 2 = 43
NUMBER 3 = 52
NUMBER 4 = 55
NUMBER 5 = 58
NUMBER 6 = 63
NUMBER 7 = 71
NUMBER 8 = 88
NUMBER 9 = 91
NUMBER 10 = 95
DONE

Arrays with one dimension such as we have used here are the most common type used in BASIC
programs and we will have occasion to use them frequently in other programs in this and subsequent
chapters. But first let’s look at arrays that have two or more dimensions.

Multi-Dimensional Arrays

Arrays may be multi-dimensional although more than two or three dimensions are rarely useful. Spec-
ifications in BASIC such as:

10 DIM A(5,4),B(25,3)
are two-dimensional arrays while
10 DIM C(3,5,4),D(2,5,20)

are three-dimensional.

For example, the first array defined above (A(5,4)) refers to a two-dimensional array with five
elements by four elements. This array can be visualized as a rectangular shape containing five rows and
four columns as shown in figure 4.2. Of course, in the PET or CBM’s memory the array does not actually
exist in this physical shape but thinking of a two-dimensional array in this way helps us write programs
that need this kind of array.

A
1 2 3 4
1 A(1,3)
2
3 A(3,2)
4
5 A(5,4)

Figure 4.2 A two-dimensional array A(5,4)

Not So Basic BASIC 41

Two-dimensional arrays can be used to represent many types of data. Here are just a few ex-
amples.

Region
Item
ltem Sales
by
Region
Subject
Student
Student Grades
by
Subject
X Coordinate
Y Game
Coordinate Board
IF—THEN

The GOTO was an unconditional branch but when it is used with an IF statement conditional branching
may be used. The IF also permits the programmer to selectively do one or more operations depending
upon circumstances in the program. Generally the IF statement examines a condition and if the con-
dition evaluates true it does the action specified. If the condition is false the program merely continues
at the next statement. Figure 4.3 identifies the operators available for decision making.

42 Chapter Four

Operator Meaning

Equal to

Greater than

Less than

Greater than or Equal to
Less than or Equal to
Not Equal to

ANV AV

v

Figure 4.3 Logical operators
Some possible IF statements are:

100 IF N=1 THEN 50

200 IF K»245 GOTO S50

300 IF R$="YES"™ THEN 5000
400 IF WCIJX<=M(K) THEN 100

Notice that the THEN or GOTO may be used interchangeably and can cause branching either
forward or backward within the program. All numeric and alphanumeric variables may be compared
in the IF statement although numeric variables may not be compared to alphanumeric variables.

In line 100 above, if the value of N is 1 when statement 100 is reached then branching will go to
statement 50 where the program will continue. If N is any other value than 1 then the program would
continue at the next statement following statement 100.

(7 (<7

N N

50 INPUT A$

100 IF N=1 THEN 100 IF N=1 THEN 50
110 PRINT A$ 110 PRINT A$

Actions do not have to be GOTO’s. They may be almost any other BASIC statement. Note the
following examples:

100 IF K=L THEN PRINT K,J
200 IF N$="JONES"™ THEN C=C+1
300 IF Q=1 THEN INPUT “PLEASE ENTER NAME";N$

An additional feature of PET BASIC is the ability to specify more than one action to be taken
when a condition is true. Each action in the IF statement is separated from the other with a colon(:).

100 IF N =100 THEN N=N+1:PRINT S:G0TO 10
200 IF M$CJI="JULY"™ THEN A$=M$(J):T=T+A:K=0

Not So Basic BASIC 43

Using this feature can reduce a lot of unnecessary branching thus making your programs easier
to follow. Statements written this way also execute faster than if they were individual statements with
individual line numbers. A possible disadvantage to this use of multiple statements is that program
changes and maintenance can become more difficult.

Note the use of M$(J) in statement 200. This example indicates that a string variable may also
be used as an array. The only difference between a numeric array and a string array is that the contents
of the string array will be string data.

The operators AND and OR (figure 4.4) may also be used to combine several conditions in one
IF statement. For instance, if you wanted to branch to statement 20 either when a count had reached
100 or when a code of 3 was found in an array D, the following statement could be used.

200 IF C=100 OR D(I)>=3 THEN 20

The OR evaluates true when either one condition or the other or both are true. AND evaluates
true only when both conditions are true.

ition-2 THEN acti
OR] condition-2 action

IF condition-1 [AND

condition-1 condition-2 Resulting Boolean
Operator Value

AND OR
True True True True
True False False True
False True False True
False False False False

Figure 4.4 Boolean operators

FOR—NEXT

The FOR and NEXT statements are used to provide for looping in a program. Although looping may
be accomplished with a combination of arithmetic, IF and GOTO statements the FOR—NEXT pro-
vides a simpler way of achieving the same thing.

44 Chapter Four

For example if we wanted to print out the numbers from 1 to 10 we could write the program:

Output
10 N=0 1
20 N=N+1 2
30 PRINT N 3
40 IF N<¢10 GOTO 20 4
5
6
7
8
9
10

Using the FOR—NEXT the previous program looks as follows:

Output
10 FOR N=1 TO 10 STEP 1 1
20 PRINT N 2
30 NEXT N 3
4
5
6
7
end of loop adds 1 to N 8
and checks if 10 is reached 9
10

The FOR statement defines the variable to be used (N) for the loop, its starting and ending values,
and the amount to increment (STEP) N when the end of the loop (NEXT) is reached. Any number of
statements may appear inside the loop, including another FOR—NEXT pair. When the increment is
1, as in this case, the STEP may be deleted giving the same effect.

10 FOR N=1 TO 10

Variables used by the FOR must be numeric but can be fractional if required. The following
statements will print the fractional values from 1.5 to 2.2 across one line of the screen.

10 FOR N=1.5 TO 2.2 STEP 0. 1e—

20 PRINT N; increment of 0.1
30 NEXT N \
semicolon overrides

Output the print margin

1. 1.6 1.7 1.8 1.9 2.0 2.1 2.2

Not So Basic BASIC 45

The FOR may also use negative values for its operation. Often negative amounts may appear in
the STEP value although they could be used for starting or ending values as well.

Output
10 FOR I=10 TO 1 STEP —1 10
20 PRINT 1 A 9
30 NEXT 1 8
7
6
) 5
_negatlve 4
increment
3
2
1
GOSUB—RETURN

GOSUB acts much like the GOTO except the PET remembers where it came from and can then RE-
TURN back to the statement following the GOSUB in the program. GOSUB means go to a subroutine
that begins at the statement number specified in the GOSUB itself. A subroutine is a set of BASIC
statements written to perform a specific action. For instance, a subroutine may be written to accept the
input from a user, to plot a graph on the screen, or to check for errors after a disk operation.

At the end of the subroutine a RETURN statement tells the computer to revert to the location
following the GOSUB in the main program. A nice thing about GOSUB is it may go to a subroutine
from many different places in the same program. This is useful since program code that is common to
different parts of the program may be written once as a subroutine but used as often as is needed.

1. leaves Main Program
from here .

3. comes back

GUSUB- 1000 1~ to this line

Subroutine 1000

2. executes S

subroutine RETURN

46 Chapter Four

—

Suppose subroutine 1000 is written to find the sum of values previously stored in an array. The
variable N defines how many values are in the array at any one time and the sum is created in S by the
subroutine itself.

10 DIM B(50)

S0 N=15 < branches to subroutine 1000

another branch

/ to subroutine 1000

start of subroutine 1000

110 N=23
120 GOSUB 1000
130 PRINT S

1000 REM SUM ARRAY find sum of array B

1010 S=0 with | elements
1020 FOR I=1 to N

returns to either
statement 70 or 130

STOP

The STOP command may be used to terminate a program when the program has finished its processing.
STOP may be used as an independent statement as in

200 STOP
which terminates after a sequence of program steps have been completed or it may be used in a decision
150 IF A$="NO" THEN STOP

for examining a user’s response to a question such as “DO YOU WANT TO CONTINUE”, as in the
following sequence of statements

140 INPUT "DO YOU WANT TO CONTINUE";A$
150 IF A$="NO" THEN STOP
160 GOTO 10

Not So Basic BASIC a7

GENERATING RANDOM NUMBERS

Some subroutines, known as functions, are already built into the PET/CBM’s ROM and can be directly
accessed by the program. The first of these we will use is the RND function which is needed to generate
random numbers. Normally RND produces fractional random numbers such as .974626516 and not
integers.

Try these statements on your system:

? RNDC1)
.974626516

? RNDC1)
.747932106

? RNDCTI)
. 435687146

The resulting numbers given here will be different from yours since a random number is given
each time. The use of TI uses the value of the timer to initiate action for the random number (TT is
described fully in chapter 6).

In addition to being fractional these numbers may not be within the range required for a specific
problem. In the game which follows, for example, we want only whole numbers in the range of 1to
100. To limit the range of generated numbers to numbers no greater than 100 we can multiply the
random number by 100.

? RNDCTI)>*100

If the random number had been .974626516 this expression would transform the number into the
value 97.4626516 since multiplying has shifted the decimal point 2 places to the right. Now to convert
to an integer the INT function comes in handy.

? INTC(RNDCTI)>*100)

RND function nested
in the INT function

The expression we now have will generate the random number and take only the integer part of it thus
giving us 97 or some other 2 digit integer. At this point, if we try a number of values we find that we
have created values from O to 99 rather than 1 to 100; so we simply add 1 to the result, which gives the
values required for our game. A statement like

710 N=INTC(RNDCTI>*100)>+1

will be used in the program to generate a random 2-digit number from 1 to 100 and store that number

in the variable N.
The number we started with would now become 98 and be the first random number to be stored

in N. The next might be .428313721 which would result in the number 43 in variable N.

48 Chapter Four

NUMBER GUESSING GAME

Part of the enjoyment derived from having a PET or CBM computer is playing the numerous games
available. This availability should not discourage you from developing your own games, such as the
following example of how a game program may be written. Although the program is quite short, for a
game, it does have many of the characteristics a good game should have. These qualities are user in-
structions, interaction with the player, a certain degree of randomness, and the capability to play the
game repeatedly if the user desires. Figure 4.5 shows the English code.

Number Guessing Game Mainline

1. Play game until done
1.1 Print Instructions Subroutine
1.2 Generate Number Subroutine
1.3 Accept Guess Subroutine

Print Instructions Subroutine
1. If Instructions not wanted then

Return
2. Display Instructions
3. Return

Generate Number Subroutine
1. Generate random number
2. Print prompt

3. Return

Accept Guess Subroutine

1. Accept guesses until correct answer
1.1 Accept guess
1.2 Check answer
1.3 If wrong give a hint

2. Display number of tries

3. Set number of guesses to 0

4. Return

Figure 4.5 Number guessing game English code

This solution shows how to use subroutines effectively for good program organization. These sub-
routines print user instructions, generate the random number, and accept the player’s guess. The pro-
gram statements from 100 to 180 (figure 4.6) control these subroutines and determine if the player
wishes another game.

Several new features of BASIC are used in the program in addition to variations on features
already discussed up to this point.

Not So Basic BASIC 49

100 REM GUESS THE NUMBER

105 DIM G(100)

110 GOSUB 500: REM PRINT INSTRUCTIONS

120 GOSUB 700: REM GENERATE NUMBER

130 GOSUB 800: REM ACCEPT GUESS P mainline logic

140 PRINT:PRINT '""DO YOU WANT TO PLAY AGAIN";

150 INPUT A$

160 IF A$="NO" THEN STOP

170 PRINT

180 GOTO 120

500 PRINT" [rvs JGUESS THE NUMBER[off]"

510 PRINT:PRINT

520 PRINT "DO YOU WANT THE INSTRUCTIONS'";

530 INPUT A$

540 IF A$=""NO" THEN RETURN

550 PRINT:PRINT"I WILL THINK OF A NUMBER FROM 1 TO 100."

560 PRINT"THE OBJECT OF THE GAME IS TO GUESS MY NUMBER IN A MINIMUM OF ";

570 PRINT"GUESSES. GOOD LUCK!"

590 RETURN

700 REM GENERATE NUMBER

710 N=INT(RND(TI)*100)+1€ integer from 1 to 100

730 PRINT

740 PRINT “I'M THINKING OF A NUMBER FROM 1 TO 100"

750 RETURN

800 REM ACCEPT GUESSES count number

810 INPUT "ENTER YOUR GUESS'";K of guesses

820 L=L+1 &

830 G(L)=K<€

840 IF L=1 THEN 910 <€ place guess

850 FOR I=1 TO L-1 first time? in array

860 IF G(I)=K THEN 890 € search array

870 NEXT I for duplicate guess

880 GOTO 910 reduce L if _

890 PRINT "YOU ALREADY GUESSED'";K duplicate guess guess IS

900 L=L-1:GOTO 810« incorrect

910 IF K<>N THEN 950€

g%g PRgNT:PRINT "[rvs]YOU GUESSED THE NUMBER IN[off]'";L;"[rvs]TRIES[off]"
L=

940 RETURN

950 IF K>N THEN PRINT"TRY A LOWER NUMBER'<€—— supply hint

960 IF K<N THEN PRINT"TRY A HIGHER NUMBER' €——— for next guess

970 GOTO 810

Figure 4.6 Number guessing game

TIME DELAYS

After you have played the number guessing game a few times you may wish the computer wasn’t so
fast. In fact the speed at which the computer operates can be a psychological disadvantage since the
user will feel a constant pressure to perform even when there is no need to hurry.

The use of time delay program code to slow down the action of the computer while the player
takes some action is a useful tool in this program. The delay is created by including a FOR-NEXT
loop that simply takes up some processing time before moving on to the next statement. The larger the
value in the loop the longer the delay. This use of the FOR-NEXT shows the optional use of the NEXT
statement without the variable 1. The loop

80 FOR I=1 TO 3000:NEXT

will occupy about three seconds of computer time. The purpose in this program is to give the user some
time to read the instructions before being rushed into guessing a number. Although the program could
be left without a delay there is a psychological benefit to be derived by not creating undue pressure on
the user. Of course in some situations time pressure may be an integral part of the game.

50 Chapter Four

o

.570 PRINT'"GUESSES. GOOD LUCK!"'

Try these two delays in the previous program and see if they don’t improve the operation consid-
erably.

580 FOR I=1 TO 3000:NEXT
720 FOR I=1 TO S500:NEXT

Statement 580 gives a three-second delay after the instructions have been displayed. If three sec-
onds is too short then a larger value like 5000 or more could be tried.

Statement 720 gives the appearance of the computer taking its time to determine a random num-
ber. Although the user will need to wait during this delay it is only about half a second. This has the
effect of making the action more comfortable without actually creating a noticeable delay. Figure 4.7
contains the revised program with the time delays included.

100 REM GUESS THE NUMBER

105 DIM G(100)

110 GOSUB 500: REM PRINT INSTRUCTIONS

120 GOSUB 700: REM GENERATE NUMBER

130 GOSUB 800: REM ACCEPT GUESS

140 PRINT:PRINT "DO YOU WANT TO PLAY AGAIN";
150 INPUT A$

160 IF A$=""NO" THEN STOP

170 PRINT

180 GOTO 120

500 PRINT" [rvs JGUESS THE NUMBER[off]"
510 PRINT:PRINT

520 PRINT "DO YOU WANT THE INSTRUCTIONS';

530 INPUT A$

540 IF A$="NO" THEN RETURN
550 PRINT:PRINT'"I WILL THINK OF A NUMBER FROM 1 TO 100."
560 PRINT"THE OBJECT OF THE GAME IS TO GUESS MY NUMBER IN A MINIMUM OF '";

580 FOR I=1 TO 3000:NEXT: REM TIME DELAY €— . |3 d
590 RETURN 2§:§°"

700 REM GENERATE NUMBER
710 N=INT(RND(TI)*100)+1
720 FOR I=1 TO 500:NEXT: REM TIME DELAY €— | .

730 PRINT 32E§f°"d
740 PRINT "I'M THINKING OF A NUMBER FROM 1 TO 100"
750 RETURN

800 REM ACCEPT GUESSES

810 INPUT "ENTER YOUR GUESS";K

820 L=L+1

830 G(L)=K

840 IF L=1 THEN 910

850 FOR I=1 TO L-1

860 IF G(I)=K THEN 890

870 NEXT I

880 GOTO 910

890 PRINT '"'YOU ALREADY GUESSED";K

900 L=L-1:GOTO 810

910 IF K<N THEN 950

920 PRINT:PRINT "[rvs]YOU GUESSED THE NUMBER IN[off]";L;"[rvs]TRIES[off]"
930 L=0

940 RETURN

950 IF K>N THEN PRINT"TRY A LOWER NUMBER"

960 IF K<N THEN PRINT"TRY A HIGHER NUMBER"

970 GOTO 810

Figure 4.7 Revised number guessing game

Not So Basic BASIC 51

IMPROVED WEIGHTED AVERAGE PROGRAM

Now that we know about arrays let’s take another look at the weighted average program from the
previous chapter. Since there were always five marks to be processed with five weights and five maxi-
mums, each of these could become an array.

In addition to using arrays we would like to permit the user to enter marks for another student
or terminate the program. This places most of the program logic into one large loop that is continually
repeated until all students have been processed. The following English code implements the desired
changes.

1. Set up Initial Values
1.1 Set Maximum Marks
1.2 Set Weights
1.3 Find Total Weight
2. Do Weighted Average Until No More Students
2.1 Input Five Marks
2.1.1 Input Mark(i)
2.1.2 Check for Maximum Allowed
2.2 Calculate Percents and Print
2.2.1 Find Percent for Each of the 5 Marks (Relative to 100%)
2.2.2 Print Each of 5 Marks and Related Values
2.2.3 Compute Total Weighted Percent
2.3 Print Weighted Total
2.4 Accept Another Student (Yes/No)?

100 REM WEIGHTED AVERAGE
110 DIM M(5),W(5),MA(5)

120 REM MAXIMUM MARK FOR EACH TEST
130 M(1)=30:M(2)=25:M(3)=50:M(4)=10:M(5)=75€ set data
140 REM WEIGHTING FOR EACH TEST In arrays

150 W(1)=2:W(2)=1:W(3)=2:W(4)=3:W(5)=2
160 FOR I=1 TO 5

170 TW=TW+W(I)

180 NEXT I

190 PRINT "{clr]"

200 FOR I=1 TO 5

210 PRINT "ENTER MARK'';I;"(MAX";M(I);")'"; € prompt
220 INPUT MA(I)

225 IF MA(I)>M(I)THEN PRINT "EXCEEDS MAXIMUM'":GOTO 210
230 NEXT I

240 PRINT '"[clr]MARK",""MAXIMUM" ,"WEIGHT","PERCENT"

250 PRINT

260 REM COMPUTE PERCENTS AND TOTAL

270 FOR I=1 TO 5

280 P=INT((MA(I)/M(I)*100)*W(I)/TW)

290 PRINT MA(I),M(I),W(I),P

300 PT=PT+P

310 NEXT I

320 PRINT

330 PRINT "TOTAL WEIGHTED AVERAGE PERCENT'";PT

340 PT=0

350 PRINT

360 PRINT

370 INPUT "TYPE (Y) FOR ANOTHER STUDENT';A$

380 IF A$="Y" THEN 190

390 STOP

Figure 4.8 Improved weighted average program

52 Chapter Four

—

The arrays are defined as M(5), W(5), MA(5) respectively. The program in figure 4.8 shows these
arrays and the assignment of the maximum and the weight for each test. Now any reference to the
arrays can be made using a FOR loop and a subscript.

A second improvement to the program prints the maximum mark allowed when asking for input.
For instance, when the second mark is required the program prints:

ENTER MARK 2 C MAX 25) ?

This request is printed from statement 210 where I provides the mark reference number and M(I) gives
the maximum for the second mark.

A final improvement, unrelated to arrays, allows the user to enter data for another student or
terminate the program, which is defined by the major loop at step 2 in the English code.

One additional advantage of arrays is the ease with which the program may be changed to accept
more or even less data per student. This change is made by simply changing the DIM and each FOR
loop. Of course the maximums and weights would also be changed accordingly. You might want to
consider generalizing this program so that any number of marks could be entered depending upon the
user’s needs.

CALCULATING TRIP COSTS

How many times have you planned a trip and spent many hours calculating your anticipated expenses?
This program assists in estimating trip costs assuming that you will be driving to and from your des-
tination.

The principle is quite simple. Costs are based on gas costs for the entire trip plus other daily
expenses such as lodging and meals. Once the basics of the program are understood modification is quite
easy to provide for other personal needs you might have.

The program provides for up to 30 days’ accumulation of data by using 3 arrays for Lodging (LO),
Meals (ME), and Other Expenses (OT). These arrays as shown here define a maximum number of
entries but our program will be designed to use only the portion of the arrays that is required.

Lodging (LO) Meals (ME) Other Expenses (OT)

30 30 30

Inputs to this program come in two categories. First we will need to know the costs for driving.
To keep things simple this will be limited to gasoline costs but could easily be expanded to include other
entries such as oil, tolls, repairs, and so on. To make things more interesting let’s ask the user for the
following inputs:

Initial Trip Inputs

. Number of days on trip

. Total miles driven

. Average miles per gallon
. Average price per gallon

AW N =

Not So Basic BASIC 53

A second group of inputs are the daily expenses. Again there could be many entries here but we
will keep this area quite simple while still allowing for additional entries later. Here are the daily inputs:

Daily Inputs

1. Cost of lodging
2. Cost of meals
3. Other expenses

The outputs required from this program would be an itemized list of the trip and daily costs and
a total cost for the trip. As an additional output the average cost per day might be interesting, so let’s

include it in the output.

Trip Cost Outputs

. Gasoline costs

. Lodging

Meals

. Other Expenses

. Total trip cost

. Average cost per day

O U A WN

Now that the input and output requirements have been defined in general terms let’s dévelop a
screen layout showing specific prompts, inputs, and outputs. This is easier now since we have at least

outlined our needs above.

4)

ENTER TRIP DATA

HOW MANY DAYS IS YOUR TRIP(MAX 30) ? 1
WHAT ARE THE TOTAL MILES DRIVEN ? 350

WHAT IS YOUR AVG. MILES/GALLON ? 25
AVG. PRICE PER GALLON ? 1.25

AN

Initial
Inputs

ENTER EXPENSES FOR DAY 1
COST OF LODGING ? 42.25

COST OF MEALS ? 53.16 <
OTHER EXPENSES ? 14.55

Daily Cost
Inputs for
1 Day

54 Chapter Four

TOTAL TRIP COSTS
GAS 17.50
LODGING 42 .25
MEALS 53.16
OTHER EXPENSES 14.55 & Trip Cost
______ Outputs
TOTAL 127.46
AVG COST/DAY 127 .46

J

Now we are ready to develop the English code for the program logic. An overview of the solution
suggests this will not be a lengthy program, nor will it be very complex, but rather consists of a lot of
input and output operations.

Trip Costs English Code

1. Enter initial trip inputs
2. Enter daily costs

3. Calculate trip costs

4. Display trip costs

Now expand the code:

1. Enter initial trip inputs
1.1 Accept days on trip
1.2 Accept total miles driven
1.3 Accept average miles per gallon
1.4 Accept average price per gallon
2. Enter daily costs until last day
2.1 Accept cost of lodging
2.2 Accept cost of meals
2.3 Accept other expenses
3. Calculate trip costs
3.1 Calculate gas cost
3.2 Sum daily costs until last day
3.2.1 Accumulate lodging costs
3.2.2 Accumulate meal costs
3.2.3 Accumulate other costs
3.3 Calculate total cost
3.4 Calculate average cost per day
4. Display trip costs
4.1 Display costs for gas, lodging, meals and other
4.2 Display total cost
4.3 Display average cost per day

English code lines 2 and 3.2 refer to repetition in the logic needed to control the activities on a
daily basis. These lines are represented by FOR loops in the program in figure 4.9.

A slight improvement has been made when coding the program. That is a subroutine at 470 that
clears the screen and prints down three lines. This has the effect of keeping the screen clear for each
group of activities and moves the cursor down a few lines so the user is looking closer to the center of
the screen rather than at the top all the time.

A second improvement is the use of the TAB feature in lines 390 to 450. TAB positions the cursor
to the position indicated prior to printing the data. The TAB is discussed further in chapter 5.

Not So Basic BASIC 55

100 REM CALCULATE TRIP COSTS
110 DIM LO(30),ME(30),0T(30)

120 GOSUB 470

130 PRINT ''[rvs]ENTER TRIP DATA"

140 PRINT

150 INPUT ""HOW MANY DAYS IS YOUR TRIP(MAX 30)";D
160 INPUT "WHAT ARE THE TOTAL MILES DRIVEN";M
170 INPUT "WHAT IS YOUR AVG. MILES/GALLON";A
180 INPUT "AVG. PRICE PER GALLON";C

190 FOR I=1 TO D

200 GOSUB 470

210 PRINT "[rvs]ENTER EXPENSES FOR DAY[off]";I
220 PRINT

230 INPUT "COST OF LODGING";LO(I)

240 INPUT "'COST OF MEALS' ;ME(I)

250 INPUT "OTHER EXPENSES';OT(I)

260 NEXT I ,

270 REM CALCULATE COSTS

280 GC=M/A*C

290 FOR I=1 TO D

300 LC=LC+LO(I)

310 MC=MC+ME(I)

320 0C=0C+0T(I)

330 NEXT I

340 TC=GC+LC+MC+0C

350 AC=TC/D

360 GOSUB 470

370 PRINT '"[rvs]TOTAL TRIP COSTS"

380 PRINT

390 PRINT ' GAS'';TAB(18);GC

400 PRINT " LODGING'";TAB(18);LC

410 PRINT " MEALS'";TAB(18);MC

420 PRINT " OTHER EXPENSES" ;TAB(18) ;0C
430 PRINT TAB(17);"—————-

440 PRINT "TOTAL'"; TAB(18) TC

450 PRINT "AVG COST/DAY" TAB(18) AC

460 STOP

470 PRINT "[clr]":PRINT:PRINT:PRINT

480 RETURN

Figure 4.9 Calculating trip costs program

REVIEW QUESTIONS—CHAPTER 4

1. Why are arrays important? In what situations should they be used?
2. Write DIM statements for each of the following:
a) a list of costs for 20 products.
b) storage for the names of the months, January to December.
¢) a matrix of distances between 10 different cities.
3. Explain how data is read into an array using a list of costs as defined in question 2a above.
4. Describe the IF statement and the different logical operators used in it. What alternative paths
can be taken when a condition evaluates true or false?

56 Chapter Four

1.

Write a FOR—NEXT statement to generate

a) integer values from 1 to 25

b) even numbers from 2 to 100

¢) a set of real numbers from .001 to .015 in increments of .001

Print the results of each of the above loops.

Describe the benefits of a GOSUB over the GOTO statement.

Explain how random numbers may be generated. Write a statement to produce a random
number between 1 and 10 inclusive. How would you get a random number between 5 and 15
inclusive?

What are some of the characteristics of a good game program?

Why are time delays sometimes necessary in a program? How are they created?

When designing a relatively complex program why is it best to first design the formats for input
and output? What type of information will be needed to define input and output when only the
screen and keyboard are used?

What is the purpose of English or pseudo code? How can it help in program development?

Not So Basic BASIC 57

More on Input
and Output

Mny programs for business and personal use rely on the PET/CBM’s input and output capability.
We have already used the INPUT statement for the input of data from the keyboard and the PRINT
for screen output. In this chapter we are going to look at the READ statement, which will let us read
data that is directly recorded within the BASIC program. Secondly we will examine some more ad-
vanced features of the PRINT statement that will give us greater control over the formatting of screen
output.

READ—DATA

The READ statement is used to access data stored in a DATA statement. The DATA statement permits
the program to store frequently-used data within the program and access that data efficiently. A READ
has a list of one or more variables separated by commas. Each time the READ is executed in the pro-
gram, data is selected from the DATA statement in the order in which it appears. For example, the
statements:

10 READ N,S,AS$
20 DATA 25,1.75,BOX

would cause the value 25 to be read from the DATA statement and assigned to the variable N. S receives
the value 1.75 and AS$ is given the value BOX. Notice that string data may be given with the quotes
(“BOX”) or without (BOX).

When a2 DATA statement or statements contain more data than the READ accesses, the addi-
tional data will be read the next time the program reaches a READ.

59

CREATING A BAR CHART

This program will use DATA statements to provide the values for bar charts to be displayed on the
screen. The program reads a series of five numbers and produces a simple bar graph from them. Each
number represents a quantitative measurement that directly affects the length of the bar representing
that number.

10 FOR I=1 TO 5

20 READ N loops N times

30 FOR K=1 TO N

range
of inner loop

range
of outer loop

40 PRINT "[rvsllspllrvs offl;

S50 NEXT K

60 PRINT: PRINT < leaves space

between each bar

80 DATA 13,5,26,8,34

This program uses nested FOR loops; one to control the reading of the data (outside loop) and
one to print the graph (inside loop). The outside loop varies I from 1 to 5 to read each of the five numbers
from the DATA statement one number at a time. As each number is read in 20 it is stored in N. N is
then used in the K loop (statement 30) to control the printing of the bar.

The bar is printed in 40 by using the reverse space within a character string. This is typed as
quote, reverse, space, reverse off, quote. The semicolon, at the end of the PRINT statement, causes the
reverse characters to continue printing as a solid line without spaces. The number of times it prints is
controlled by the K loop. The output from this program is shown in figure 5.1.

~

Figure 5.1 Simple bar chart output

60 Chapter Five

_/

Figure 5.2 Bar chart output with variable data

One of the problems we sometimes face with the READ statement is not knowing when there is
no more data to read. In the previous program we knew exactly how much data to read but this is not
always the case.

Suppose the data sometimes consists of 5 numbers but other times 8 or 12 numbers. A simple
solution is to place a dummy value at the end of the data to denote the end. The program can then test
for this value with an IF statement. Ordinarily the dummy value should be something that cannot be
confused with real data. Here is another approach to solving the bar graph with the output in figure
5.2.

10 READ N :

20 IF N=99 THEN STOP< terminates program
30 FOR K=1 TO N when last value is read
40 PRINT "(rvsllspllirvs offl;

S0 NEXT K

60 PRINT: PRINT dummy

70 6OTO 10 |

80 DATA 13,5,26,8,34,17,3,99/ o

WEIGHTED AVERAGE WITH DATA

"For one more example let’s look at the weighted average program again and consider an easier way to
assign the maximum marks and weights to the arrays M and W by using DATA statements. The fol-
lowing code reads these values from data statements and assigns them to the array.

10 DIM M(5),W(S) read a maximum
20 FOR I=1 TO § / and a weight
30 READ MCID,UWCI)

40 NEXT 1

50 DATA 30,2,25,1,50,2,10,3,75,2

maximum weight

More on Input and Output 61

The DATA statements contain a maximum mark followed by its weight. Thus the READ ref-
erences M(I) and then W(I) to read each of these values, in order, from the DATA statement into the
arrays, as follows:

Maximums Weights
M w

1 30 1 2

2 25 2 1

3 50 3 2

4 10 4 3

5 75 5 2

50 DATA 30,2,25,1,50,2,10,3,75,2

RESTORE

As data is read from DATA statements the computer keeps track of each value in memory by using an
internal data pointer. Although this pointer is not visible to the BASIC programmer the BASIC inter-
preter in the ROM makes continuous reference to it.

The RESTORE statement can be used in BASIC to set the data pointer back to the first data
item in the DATA statements. This feature can be useful if you need to read through the same set of
data more than once within the program.

It’s not unusual in a Computer Assisted Instruction (CAI) program to give a series of instructions
to a student and then ask questions about that same information. In the following program we will do
a simplified version of CAI by teaching the names of the five oceans on Earth and then asking for the
student to respond by typing in the names. Beware! This is not intended to be an example of good CAI.
Far from it; but it does show how to use the RESTORE statement, which is our current objective.

A DATA statement will be used to supply the names of the oceans. These names are first displayed
as follows:

THERE ARE FIVE OCEANS ON PLANET EARTH.
THEY ARE CALLED:

ATLANTIC
PACIFIC
INDIAN
ARCTIC
ANTARCTIC

NHEWN =

ARE YOU READYCYES/NO) ?

62 Chapter Five

After the names have been displayed the program RESTORE:s the data pointer so that the data
may be read again. When the user has had time to review these names and types YES to the prompt,
the program proceeds to display the question as follows:

program prompt

ENTER UCEXN 1 2 ATLANTIC

CORRECT! <_| S~

program response user response

If the user had entered an incorrect answer the program would then display the correct answer
and proceed to the next ocean. Here is the program:

10 PRINT “THERE ARE FIVE OCEANS ON PLANET EARTH."
20 PRINT "THEY ARE CALLED:" .

30 PRINT

40 FOR I=1 TO S reads and prints

gg ISIE?RTN:T‘ names of oceans

70 NEXT 1

80 GOSUB 200 sets data pointer

?SORESEU?ET 10 5 back to ‘“*Atlantic”’

110 READ N$

120 PRINT "ENTER OCEAN";I; check answer

130 INPUT AS$ d//
140 IF A$=N$ THEN PRINT "CORRECT!": GOTO 16

150 PRINT "“THE CORRECT ANSWER IS ";N$

160 NEXT I

170 DATA ATLANTIC,PACIFIC,INDIAN,ARCTIC,ANTARCTIC
200 INPUT "ARE YOU READY(YES/NO);A$
210 IF A="YES"™ THEN PRINT "[clr]1":RETURN
220 END S—01

clear screen

MORE ABOUT PRINT

In chapter 3 we looked at the basic features of the PRINT statement and found the capability to solve
a variety of problems relating to screen output. Now we are going to add several additional features to
the PRINT that will give us more flexibility in our programming.

Cursor Contirols

The cursor controls discussed in chapter 3 may also be used as commands within a string in the PRINT
statement. These controls are the CLR, HOME, Cursor Down, Cursor Up, Cursor Right, and Cursor
Left keys. These characters must be entered as part of a character string by first pressing the quote (*‘)
and then keying the appropriate cursor character. For example, to clear the screen and position the
print to the fourth line, type the statement:

100 PRINT "[clr dn dn dnl"

The square brackets in this statement indicate the enclosed characters are cursor controls and are
entered by pressing the CLR key once, followed by the Cursor Down Key three times. The square
brackets are not typed, nor are the spaces between clr and dn.

This is how statement 100 would look on your screen:

100 PRINT "| @@ QQQ |*«—— reverse characters

More on Input and Output 63

Keyboard

Graphic on Screen

CLR

HOME

Cursor Down

Reverse Heart

Reverse S

Reverse Q

Cursor Up Reverse Solid Circle

JeETe

Cursor Right Reverse Right Square Bracket

Cursor Left Reverse Vertical Line

T =&

Figure 5.3 Cursor controls in a string

Figure 5.3 shows the cursor controls and the equivalent graphic displayed when they are entered
into a string.
To get a feel for the use of cursor controls in the PRINT statement try the following examples:

100 FOR I=1 TO 10
110 PRINT "[dn rtl*;I;
120 NEXT 1

These statements should give the output:

4 h

. J

across and down the screen. Try some other variations of the cursor controls and see what results you
can achieve.
Now try the code:

100 FOR I=1 TO 1000
110 PRINT "[clr dn rtl"™;l;
120 NEXT 1

When you run this code you’ll get the numbers from 1 to 1000 displaying rapidly like a counter
at the top left corner of the screen. The clear command in the string causes the screen to be cleared
after each print operation and the cursor controls bring it back to the previous position to display the
next number. Thus each new value quickly is cleared from the screen and is replaced by the next, giving
a counter effect.

64 Chapter Five

TAB

TAB is a function of BASIC that is used with the PRINT statement to move the cursor to a specified
location on the line. The format used is

TAB(n)
where n may be any value from 0 to 255. When TAB is used the cursor moves to position n + 1 of the
line. For example, TAB(12) would move the cursor to position 13.

The TAB function is always used in a2 PRINT statement prior to the value that is to be printed.
TAB is followed by a semicolon and then the value to be printed at the location specified.

10 PRINT "12345678901234567890"
20 PRINT '"ABCD";TAB(8);"B"

The above use of TAB will create the following output on the screen.

12345678901234567890
ABCD B

TAB is useful when you want to display outputs at a specific position on the screen, thus leaving a precise
amount of space between each field. Multiple TABs may be used in one PRINT statement as follows:

20 PRINT 'ABCD";:TAB(8);"B'";TAB(20);N;TAB(26);A$
Assuming a value of 28 for N and “XYZ” for A$ the following output would be produced.

Columns

0 1 2 3
123456789012345678901234567890

(ABCD B 28 XYZ

These values seem to follow the pattern discussed above except for N’s value of 28. We would
expect it to be in column 21 but instead it is in column 22. The reason is quite simple. All numeric
values reserve a position for the sign. In this case the sign is plus and so it does not display but rather
leaves column 21 blank. If the value had been —28 then column 21 would be occupied with the minus
sign as expected.

SPC

The SPC (space) function is similar to TAB except that SPC defines the number of spaces to leave
between the previous output on the line and the one to follow.

10 PRINT "12345678901234567890"
20 PRINT "ABCD";SPC(S5);"B"

The above code gives the results:

12345678901234567890
ABCD B

A common problem with both TAB and SPC is the space that replaces the sign for positive numeric
values. Thus the statement

10 PRINT "SUM";SPC(3);S

More on Input and Output 65

will actually leave four spaces; three for the SPC command and one for the sign if S is a positive value.
If S is negative there will be three spaces and a minus sign before the value.

METRIC CONVERSION PROGRAM

The next program we want to tackle is one to convert from English to Metric measure or the reverse.
Figure 5.4 shows the conversion factors needed to do the calculations for the appropriate measurement.
Values to convert from English to Metric are given. Conversion in the opposite direction is achieved by
using the inverse of these values.

By observation we can determine that this table consists of three parts: Linear, Square, and Liquid
and Dry Measure. These parts form a basis for the logical organization of our program. Initially the
program will read the table information from DATA statements and load it onto arrays for use by the
program.

So far in this book we have used English code for the purpose of developing program logic. Ac-
tually, the use of English or Pseudo code for developing program logic is quite new. Prior to its use a
popular program development tool was the flowchart.

One of the advantages of flowcharting is the visual or graphic aspect, which sometimes helps you
to visualize a solution. Since some people are more verbally oriented and others image-oriented the
flowchart might seem to be a good alternative if you are the second type of person. One reason for the
move away from flowcharts has been the stress on a technique called structured programming. That,
however, is a subject for another book.

Figure 5.5 shows the various symbols used for flowcharting.

Figure 5.6 shows the flowchart for the logical solution of this problem.

PROCESS
O DECISION
English Metric Factor
Inches Centimeters 2.54
Feet Meters .3048 CONNECTOR
Yards Meters 9144
Miles Kilometers 1.6093
Square Inches Square Centimeters 6.452
Square Feet Square Meters .0929
Square Yards Square Meters .8361 ‘ SUBROUTINE
Square Miles Square Hectometers 259
Dry Quarts Liters 1.101
Liquid Quarts Liters 9463 ™
Liquid Gallons Decaliters 3785 —) FLOW LINES
Pecks Liters 8.81 ——
Bushels Hectoliters .3524

Figure 5.4 Metric conversion factors

66

Chapter Five

Figure 5.5 Flowchart symbols

‘ START)

Read
Conversion
Data

Display
Menu

- Linear
Conversion

1|

Square
Conversion

71

Liquid
and Dry
Conversion

]

Figure 5.6 Metric conversion flowchart

. Also Valid
Linear
. for Square
Conversion Conversion
Clear
Screen
Display
Title
Product in. to cm.
Conversion ft. to m.
Menu etc.
Quotient cm. to in.
Conversion m. to ft.
Menu etc.

Assign
Code Yes Constant §$
ito4 Source TS
Convert to
' |
Assign
Code Yes 1/Constant K
S$
5to 8 Source TS
Convert to
]
W
Convert
User’s
Data
RETURN
67

More on Input and Output

Liquid
and Dry
Conversion

Clear
Screen
Display
Title

Product
Conversion
Menu

Quotient
Conversion
Menu

Assign
Constant
Source
Convert to

Assign
1/Constant
Source
Convert to

]

Convert
User's
Data

RETURN

Figure 5.6 (continued)

Chapter Five

Convert
User’'s
Data

Compute
Answer

Display
Value and
Answer

RETURN

AS B$ C

1 INCHES 1 CENTIMETERS 1 2.54

2| FEET 2 METERS 2 .3048

3| YARDS 3| METERS 3 9144

4 MILES 4 | KILOMETERS 4 1.6093

5 SQ. INCHES 5| SQ. CENTIMETERS 5 6.452

\ v l

9 DRY QUARTS 9 LITERS 9 1.101
13 ¥ 13 ¥ 13

Figure 5.7 Arrays for conversion data

This program is a natural for arrays and, of course, DATA statements are used heavily. The arrays
are organized as shown in figure 5.7. Notice at this time the program makes no distinction between the
different categories of measure. Array A$ contains the description of English measurements, B$ the
Metric descriptions, and C contains each conversion factor for the related English and Metric conver-
sion.

These arrays are first used to produce the menu for selecting the required conversion. For the
Linear Conversion Menu the statements

360 FOR I=1 TO 4

370 PRINT TAB(C4);I;"-";A$CI);*" TO ";Bs$CI)
380 PRINT

390 NEXT 1

are used to print the sequence:

INCHES TO CENTIMETERS
FEET TO METERS

YARDS TO METERS

MILES TO KILOMETERS

|

W N =
|

The variable I has a two-fold purpose here. One, it is used to print the digits 1 to 4 in the menu
and two, it selects the position of arrays A$ and BS$ for printing the English and Metric descriptions.
The second half of the Linear menu permits conversions from Metric to English and uses the code

400 FOR I=1 TO 4

410 PRINT TAB(4);I+4;" - "“;B$CI);" TO ";A$CI)
420 PRINT

430 NEXT 1

These statements print menu items 5 to 8 as follows:

5 — CENTIMETERS TO INCHES
6 — METERS TO FEET

7 - METERS TO YARDS

8 — KILOMETERS TO MILES

More on Input and Output 69

Again I is used in two ways. This time the expression 144 is used in the Print statement to print
digits 5 to 8 so that when I is 1 the number 5 will print, 2 causes 6 to print, and so on. Subscripts in
this case are still 1 to 4 but the array references are now reversed in the print, giving B$ and then AS.

This basic approach is used for each menu, except that the starting and ending values of the FOR
loop are adjusted to correspond to the location of the names in the arrays. For Square Conversion the
values are 5 to 8 as indicated in the following code.

550 FOR I=5 TO 8

560 PRINT TAB(4);I1-4;"-";A$CI);" TO ";Bs$(I)
570 PRINT

580 NEXT I

590 FOR I=5 TO 8

600 PRINT TABC4);I;"™ - ";8CI);" TO ";A$CI)
610 PRINT

620 NEXT 1

Liquid and Dry Conversion uses the values 9 to 13, thus relating to the positions of these quantities in
the arrays.

Once the appropriate menu has been displayed the user of the program enters one of the values
to select the conversion required. This number is stored in N. From the value of N three things are
accomplished. The variable K is assigned the conversion constant from the array C; S$ is assigned the
description of the source of conversion from either array A$ or BS; and T$ is assigned the description
we are converting to, from either A$ or BS.

For example, if Linear Conversion is selected and N was given 6, indicating meters to feet, K will
be assigned 1/C(N-4), which reduces to 1/C(2) thus referring to the value .3048 in position 2 of array
C. S$ will be given the value at position 2 of BS(METERS), and T$ is assigned position 2 of AS(FEET).
The following code does this operation.

470 IF N<=4 THEN K=C(N):S$=A$(N):T$=B$(N)
480 IF N>4 THEN K=1/C(N-4):5$=B$(N-4):T$=A8$(N-4)

In the second menu, Square Conversion, the values of N may also be 1 to 8 but the positions of
these conversions in the arrays are from 5 to 8. In this case menu responses of 1 to 4 correspond to
positions 5 to 8. By simply increasing N by 4 the program points to the right place. Responses 5 to 8
luckily also point to positions 5 to 8 so no adjustment is needed. Here is the code.

660 IF N<=4 THEN K=C(N+4):S$=A$(N+4):T$=B$(N+4)
670 IF N>4 THEN K=1/C(N):S$=B$(N):T$=A$(N)

Finally Liquid and Dry Conversion can have values of 1 to 10 for N. The first five relate to po-
sitions 9 to 13 of the arrays. This correspondence is achieved using N+8 for the subscript. Menu re-
sponses 6 to 10 use a subscript of N+ 3 to reference array positions 9 to 13.

850 IF N<=5 THEN K=C(N+8):S¢=A8$(N+8):T$=B$(N+8)
860 IF N>5 THEN K=1/C(N+3):S$=B$(N+3):T$=A$(N+3)

The complete metric conversion program is shown in figure 5.8.

SIMPLE PAYROLL PROGRAM

Payroll is a traditional data processing activity that can be implemented successfully on a microcom-
puter. Although no attempt is made here to write a complete payroll program some of the principles
are demonstrated even in this simple version.

One of the needs of a payroll system is to withhold income tax for each pay period. This is done
by using a table that supplies the amount of tax to be deducted for different levels of income. A table

70 Chapter Five

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690

REM METRIC CONVERSION
DIM A$(13),B$(13),C(13)
FOR I=1 TO 13

load arrays

READ A$(I),B$(I1),C(I) €—

NEXT I

REM DISPLAY MAIN MENU

PRINT "[clr 5 dn's]"

PRINT TAB(10);"METRIC CONVERSION"
PRINT:PRINT

PRINT TAB(10);"1 - LINEAR MEASURE"
PRINT

PRINT TAB(10);"2 - SQUARE MEASURE"
PRINT

PRINT TAB(10);"3 - LIQUID & DRY MEASURE"

PRINT:PRINT

INPUT "ENTER ONE OF THE ABOVE CODES";Sl

IF S=1 THEN GOSUB 320

IF S=2 THEN GOSUB 510

IF S=3 THEN GOSUB 700

INPUT '"CONTINUE (YES/NO)";A$
IF A$=""YES'" THEN 160

STOP

REM LINEAR CONVERSION

PRINT "[clr]™

PRINT TAB(10);"LINEAR CONVERSION"
PRINT:PRINT

FOR I=1 TO 4

with conversion data

select menu

<

PRINT TAB(&4)3;I;" - '";A$(I);" TO ";B$(I)

PRINT
NEXT I from to
FOR I=1 TO 4

PRINT TAB(&4);I+4;" - ";B$(I);" TO ";A$(I)

PRINT
NEXT I
PRINT:PRINT

INPUT "ENTER ONE OF THE ABOVE CODES';N

IF N<1 OR N>8 THEN 320

1,2,0r3

<«—— display linear menu

items

1to 4

IF N&=4 THEN K=C(N): S$=A$ (N) : T$=B$ (N)& items 5 to 8
IF N>4 THEN K=1/C(N-4): S$=B$ (N-4) : T$=A$ (N-4)€— N Meny,

GOSUB 890

RETURN

REM SQUARE CONVERSION
PRINT "{clr]"

PRINT TAB(10);''SQUARE CONVERSION"
PRINT:PRINT
FOR I=5 TO 8

1to 4

PRINT TAB(4);I-4;" - ";A$(I);" TO '";B$(I)

PRINT
NEXT I from to
FOR I=5 TO 8

PRINT TAB(4);I;" - '";B$(I);" TO ";A$(I)

PRINT
NEXT I 5t0 8
PRINT:PRINT

INPUT "ENTER ONE OF THE ABOVE CODES';N

IF N<1 OR N>8 THEN 510

1to4in
array

&«— display square menu

IF N{=4 THEN K=C(N+4): S$=A$ (N+4) : T$=B$ (N+4)
IF N)4 THEN K=1/C(N): S$=B$ (N) : T$=A$ (N)

GOSUB 890

RETURN

Figure 5.8 Metric conversion program

More on Input and Output

700 REM LIQUID & DRY CONVERSION
710 PRINT "[clr]" 1to 5
720 PRINT TAB(10);"LIQUID & DRY CONVERSION"

730 PRINT

740 FOR I=9 TO 13

750 PRINT TAB(4);I-8;" - ";A$(I);" TO ";B$(I)

760 PRINT

;;8 ggﬁTlig 0 13 from to <€—— liquid and dry menu
790 PRINT TAB(4);I-3;" — ";B$(I);" TO ";A$(I)

800 PRINT K

810 NEXT I 6 to 10

820 PRINT

830 INPUT "ENTER ONE OF THE ABOVE CODES';N

840 IF N¢1 OR N»>10 THEN 700

850 IF N¢=5 THEN K=C(N+8): S$=A$ (N+8) : T$=B$ (N+8)
860 IF N>5 THEN K=1/C(N+3): S$=B$ (N+3) : T$=A$ (N+3)
870 GOSUB 890 :

880 RETURN convert from description
890 REM CONVERT DATA

900 PRINT "[clr 3 downs]ENTER ";S$
910 INPUT V €— —]
920 A=V*K€——ue_ |

930 PRINT V;S$;" = ";A;T$ do conversion
940 RETURN

950 REM CONVERSION DATA)
960 DATA INCHES,CENTIMETERS,2.54 print results
970 DATA FEET,METERS,.3048

980 DATA YARDS,METERS,.9144

990 DATA MILES,KILOMETERS,1.6093

1000 DATA SQ. INCHES,SQ. CENTIMETERS,6.452
1010 DATA SQ. FEET,SQ. METERS,.0929

1020 DATA SQ. YARDS,SQ. METERS,.8361

1030 DATA SQ. MILES,SQ. HECTOMETERS,259
1040 DATA DRY QUARTS,LITERS,1.101

1050 DATA LIQUID QUARTS,LITERS,.9463

1060 DATA LIQUID GALLONS,DECALITERS,.3785
1070 DATA PECKS,LITERS,8.81

1080 DATA BUSHELS,HECTOLITERS,.3524

value to be converted

Figure 5.8 Metric conversion program (continued)

Gross Amount Withholding Amount Percent
0- 46 0 0
46-127 0 15
127-210 12.15 18
210-288 27.09 21
288-369 43.47 24
369-454 62.91 28
454556 86.71 32
556-999 119.35 37

Figure 5.9 Weekly withholding tax table

of this type for weekly deductions is shown in figure 5.9. The first column represents the maximum gross
salary. Column two is the amount of tax to be withheld and column three gives a percent to be applied
to an amount in excess of the minimum for that category.

The table is used by finding the category for a given gross salary and selecting the tax to be de-
ducted. For instance, a gross of $300.00 would require a tax of 43.47 plus 24% of the remaining $12.00
(derived from 300.00 — 288.00).

A flowchart for the solution is in figure 5.10, the program is in figure 5.11, and a sample output
in figure 5.12. The program first loads the tax table into arrays GA (Gross Amount), WA (Withholding
Amount), and PC (Percentage). Notice that the data and array GA contain only the high value for

72 Chapter Five

Load
Table

Print
Heading

Input
Regular
Hours

Input
Overtime
Hours

Calculate
Gross

Figure 5.10 Flowchart for simple payroll

Search
Table

Store |
inL
1
End
Loop

|

Calculate

Tax

Calculate

Net

Gross, Tax

Proceed?

Print

Net

More on Input and Output

73

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

REM SIMPLE PAYROLL

DIM GA(8),WA(8),PC(8)

REM LOAD TAX TABLES

FOR I=0 TO 8

READ GA(I),WA(I),PC(I)

NEXT 1

REM TAX TABLE DATA

DATA 0,0,0

DATA 46,0,0,127,0,.15,210,12.15,.18
DATA 288,27.09,.21,369,43.47,.24
DATA 454,62.91,.28.556.86.71, .32
DATA 999,119.35, .37

REM PROCESS PAYROLL

PRINT '"[clr]"

READ E,D,N$,R

IF E=999 THEN STOP

PRINT "EMPLOYEE DEPT NAME RATE"
PRINT

PRINT E,D;N$,R

PRINT

INPUT "ENTER REGULAR HOURS WORKED'" ; HW
INPUT "ENTER OVERTIME HOURS'" ; HO
PRINT

GS=HW*R+HO*1,5%R

REM FIND TAX RATE LOCATION IN TABLE
FOR I=1 TO 8

IF GS<{=GA(I) THEN L=I:1I=8

NEXT 1

TAX=WA(L)+((GS-GA(L-1))*PC(L))
NS=GS-TAX

PRINT ''GROSS SALARY'";GS

PRINT

PRINT "'TAX DEDUCTED'" ; TAX

PRINT

PRINT "NET SALARY' ;NS
PRINT:PRINT

INPUT '"PROCEED (YES/NO)";X$

IF X$=""YES" THEN 230

STOP

DATA 123,100,J0SEPH SMITH,8.25
DATA 124,100,JANE SIMON,9.15
DATA 128,110,CARLO ROUSE,8.55
DATA 130,110,PETER SHANE.7.90
DATA 999,9,END,9

Figure 5.11 Simple payroll program

each category. This simplifies the array and yet the lower value is always available in the preceding
array element. Since a problem could occur with the first entry a value of zero is stored in element zero

of each array (Remember arrays begin with element zero in BASIC).

Next each employee’s record is read and displayed on the screen and the user is requested to enter
the regular and overtime hours. The program then calculates Gross Salary (GS) in 330 and looks for
the appropriate position in the table in statements 350 to 370. The location is stored in L. Now line 380

calculates the tax. Finally the Gross, Tax, and Net Amounts are displayed.

74

Chapter Five

.

—
EMPLOYEE DEPT NAME RATE

123 100 JOSEPH SMITH 8.25

ENTER REGULAR HOURS WORKED? 38
ENTER OVERTIME HOURS? 5

GROSS SALARY 375.375
TAX DEDUCTED 64.695
NET SALARY 310.68
PROCEED (YES/NO)?

Figure 5.12 Sample payroll screen output

REVIEW QUESTIONS—CHAPTER 5

g

Nk

Explain the use of READ and DATA statements. Why would they be used instead of the
INPUT statement?

If a program needs to read the same data more than once during processing, give two ways this
may be done in BASIC.

Why would we want to use cursor control characters in string data or in a PRINT statement?
Give an example not used in the chapter of cursor controls used in a string.

Explain the use of the TAB and SPC functions.

Why are flowcharts sometimes used by programmers when developing program logic?

What are the advantages and disadvantages of flowcharts compared to English code? Which of
these methods do you prefer?

Consider the program for metric conversion in this chapter. What other conversions might be
useful in a program of this type? How would you revise the program to include additional
conversion categories?

More on Input and Output

75

Advanced BASIC

Mmy of the statements in this chapter could be implemented using an appropriate combination of
BASIC statements previously discussed. Why then do we bother to use these new statements? The
major reason is that in certain circumstances these new commands are easier to use. In other situations
the new instructions are faster to execute and more efficient than the old way. So let’s get on with the
new bag of tricks! '

GET

The GET statement is used to read a single character from the keyboard without the need to press
Return after the character has been entered (figure 6.1). The GET in a program looks like

100 GET AS

But, since the action is instantaneous a delay loop is required to wait for a user response and to check
the variable for a value. This test is done by comparing A$ to a null string. If A$ is still null (or empty)
a branch back to the GET is taken.

Whenever a key is pressed the value typed enters A$, which is no longer null. At this time the
program will continue at the statement following 100.

A common use for GET is in response to a question requiring YES or NO as an answer. Try the
following example:

100 PRINT "DO YOU WANT INSTRUCTIONS CY/N)?%:
100 GET Z$:IF Zs$="" THEN 110
120 IF Z$="Y" THEN GOSUB 500

First the program prints a message indicating the type of response expected, either a Y representing
Yes or an N for No. Then the GET statement is placed in a waiting loop until the user presses a key.

77

100 GET A$:IF A$="" THEN 100

Huyduuuuay LI L
NI NN LU
A Pressed .‘_H_H_H_H_H_H._H_H_' L_H_”_I
oo yuuyy L

RAM

100 GET

Figure 6.1 GET statement
The value of the key pressed goes into Z$ and statement 120 then tests Z$ for a Y response. If the user

of our program types the entire word YES only the first letter will be accepted and the remainder of
the word is ignored.

ON—GOSUB

The ON—GOSUB is a single statement that replaces a series of IF-~-THEN—GOSUBs when the
values to be tested are numeric and consecutive. Given a menu

1 - RENT
2 - UTILITIES
3 - AUTO
4 - EDUCATION

ENTER ONE OF THE ABOVE CODES”?

we could test the input response with four IF statements that each branch to the appropriate subroutine
for processing. Assuming the program accepted the code with the command

78 Chapter Six

N=1 N

TT111

0,1200,1300,14

f
N
F4

Il
W
z

l
H

110 ON N GOSUB 1
120 .

AUTO

1100 REM RENT

EDUCATION

1190 RETURN

1200 REM UTILITIES

1290 RETURN

Figure 6.2 Using ON—GOSUB

100 INPUT N
the ON statement will process the response with only one statement.
110 DN N GOSUB 1100,1200,1300, 1400

The ON statement examines the variable (N) presented to it and depending on its value branches
to one of the line numbers specified (figure 6.2). If N is 1, branching goes to 1100, the first line number.
For a value of 2 the program branches to 1200 and so on. Any numeric variable name may be used
instead of N and any number of line numbers specified up to a maximum of 255. _

If the variable contained a value of 0 or if it exceeded the number of entries, for example a value
of 5, then the ON continues at the next statement without branching.

Since we used the GOSUB the program will branch to the appropriate subroutine, such as 1300
for a value of 3 in N. When a RETURN is reached in subroutine 1300 control returns to the ON
statement and passes to the next statement following line number 110.

ON—GOTO

The only difference between ON—GOTO and ON—GOSUB is that ON—GOTO does not return from
the location to which it has branched. Otherwise the statements function identically.

Advanced BASIC 79

A=1 l A=3
Vv

0,450

<

40 ON A GOTO 150,200,3
>0 P

o

150 REM CHOLESTEROL 4

LINOLEIC
ACIDS

200 REM SATURATED FAT

Figure 6.3 Using ON—GOTO

SELECT ONE CATEGORY FOR REDUCTION

1 - CHOLESTEROL

2 - SATURATED FAT
3 - OLEIC ACIDS

4 - LINOLEIC ACIDS

The response to this menu might be as follows:
40 ON A GOTO 150,200,300,450

If the response to the menu was 1 to select CHOLESTEROL the program would branch to statement
150, SATURATED FAT to 200, OLEIC ACIDS to 300, and LINOLEIC ACIDS to statement 450
as shown in figure 6.3.

POKE

80 Chapter Six

The POKE statement places a value directly into a specified memory location. For example the state-
ment

10 POKE 32768,83

would place a graphic heart symbol on the upper left corner of the screen. The value 32768 refers to
the memory address and may take on values from 0 to 65535 inclusive, while the number 83 is the value
being stored at this address. Eighty-three is PET/CBM machine code for the heart symbol (see Ap-
pendix E for PET/CBM Codes).

One use of POKE is to set the PET into certain modes such as upper- and lowercase letters. Try
using

POKE 59468, 14

Now, when you type on the keyboard, upper- and lowercase letters will display instead of just
uppercase with graphics. On the more recent PET models typing a letter will result in lowercase, while
a shifted letter will be uppercase, just like a typewriter. Older models may be the reverse of this de-
pending on the level of ROM in the machine. To restore your PET back to graphics mode, type

POKE 59468, 12

When you press Return, any lowercase letters on the screen will revert immediately to graphics.

The CBM is just the reverse of the PET. Normally the CBM is in letter mode but by using POKE
59468,12 it can be placed in graphics mode. Using POKE 59468,14 will get the CBM back to character
mode.

The PET screen contains 1000 positions (figure 6.4) for displaying characters. These positions are
addressed from 32768 to 33767. (The CBM has 2000 positions from 32767 to 34767). You can POKE
any of these positions, as in figure 6.5, to create graphics or special effects. Try entering the following
code for a simple example of this.

32768

33767

Figure 6.4 PET display screen addresses

Advanced BASIC 81

32808
ASCIl code

for ¢

% POKE 32808,90

Figure 6.5 Poking screen memory
go

screen position 1 screen position}B/ top line of screen

v %
10 FOR 1=32768 TO 32768439 7 bottom line
20 POKE 1,83< /
30 POKE 1+9631,83 =

40 NEXT I Ine '? go _ﬁrst p?‘smon
50 FOR 1=32768 TO 33767 STEP 40 In sach row
60 POKE I,83<— 34969
70 POKE I+3€ 83 left column
80 NEXT 75 of screen
right column
of screen

Now clear the screen and RUN this program. You should get a border of hearts around the outside
edge of the screen. Although this could be done with the Print statement the POKE is faster than
printing and permits very precise control of each screen position, which is particularly useful for ani-
mation. We will look at the use of POKEs in much greater detail in the chapter on Graphics and An-
imation.

PEEK

The PEEK returns the contents of an address in memory. If the results from the previous program were
left on the screen so that the border of hearts was still there, the command

PRINT PEEK(32768)
would display the value 83 (figure 6.6), which is the ASCII code of the heart at memory address 32768.

Of course if the heart was no longer there some other value would be displayed. The memory address
could also be a variable as in

PRINT PEEKCI)
PEEK may return a value to a variable such as

120 M=PEEKCI)

82 Chapter Six

32768

PRINT PEEK(32768)

prints 83

Figure 6.6 Peeking at screen memory

where the result is assigned to a variable such as M. PEEK may be used in an IF statement or any
other statement where a numeric value is accepted.

240 IF PEEK(J) = 49 THEN PRINT "YES"

Here is an interesting program using PEEKs and POKEs. It doesn’t do anything practical but it
is a fun program. The program begins by filling the PET’s screen with plus signs (ASCII 43). Then it
randomly changes + signs to * (asterisks) and if it finds an asterisk it is changed back into a + sign.
Try it!

5 6=32767 "

10 FOR I=1 TO 1000 wittsrcf'esns

20 POKE 1+S5,43 randomize
30 NEXT screen location

40 FOR I=1 TO 1000
50 L=INTCRNDCTI)>*1000)+32767 ,— | change + (43)
60 IF PEEK(CL)=43 THEN POKE L,42:60T0 80 to * (42)

70 IF PEEK(L)=42 THEN POKE L,43

80 NEXT ‘\ change * (42)
to + (43)

7/ AND TI$ FUNCTIONS

In order to give you the ability to time operations in your programs the PET and CBM have provided
a built-in clock that can be accessed using the TI and TI$ functions.

TI or Time Function

The TI function accesses an electronic counter that begins counting when the PET/CBM is first turned
on. The increments are in 1/60 of a second, called “jiffies.” Try entering the immediate mode command

?7 TI

and you will get a number something like 67462, meaning it has been 67,462 jiffies since the computer
was powered up. If you divide this number by 60 you get 1124.36667 or about 1124 seconds since the
power was turned on. There are:

60 jiffies per second

36,000 jiffies per minute
216,000 jiffies per hour

Advanced BASIC 83

Reaction Timer

How fast are your reactions? The following program is a simple reaction timer using the TI function
that you can use to check your response time. Essentially the program takes the time prior to a GO
signal and stores it in variable OT (Old Time). When you press any key, time is taken again and stored
in NT (New Time). The reaction time is then the difference between these values divided by 60 to
convert the time to seconds.

print ‘‘Ready’”’ signal

100 PRINT *fclr 10 dn’s]";TABC17);"READY"

110 FOR I=1 to 1500:NEXT<———— time delay display GO
120 PRINT *"[clr 10 dn’sl1"™;TABC18);"[rvs1G O"

130 OT=TI<e start timer

140 GET A$:IF A$=""" THEN 140« get response
150 NT=TI< set new time

160 PRINT "YOUR REACTION TIME IS";(NT-0T)/60;

“SECONDS"™
170 END : time in seconds

TI® or Time$

The TI$ function returns the time in hours, minutes, and seconds in the form of a six-digit character
string. The format of the string is:

“m’n‘d\sd”
\ L—— 0-59 seconds
0-59 minutes

0-23 hours

Initially TIS$ is set to all zeros upon power-up of the computer. You may want it to reflect the actual
time of day and this may be done by assigning the time to TI$. This is done by using immediate mode
as follows. Suppose we want to set TI$ to 10:24 A.M. This would be entered a few seconds before the
actual time has arrived.

TI$="102400"

Now wait until exactly 10:24 and then press return. The function now contains the time specified
in the above expression. If you are entering time during the afternoon remember that this function
records 24-hour time and adjust your figures accordingly.

Now try this brief program.

10 PRINT TIMES$;™C1lt 1t 1t 1t 1t 1t1*;
20 GOTO 10

84 Chapter Six

DEF FN

The Define Function statement permits you to define your own functions for use in a BASIC program.
Using DEF FN is a particular advantage when a formula needs to be used at several different places
in the program. Rather than writing the formula each time it is needed you simply reference the function
described at the beginning of the program.

The format of DEF FN is as follows:

DEF FNname(argument)=formula,
where

—_name is the function name, consisting of one or two characters according to the rules of
variable names.
—argument is a floating point variable that supplies a value for the function to operate upon.

For example, to define a function that calculates simple interest the formula i = prt is used, where

i is the interest

p is the principal

r is the rate

t is the time in years

If we wanted to define a function to find the interest for a given investment the following code could be
used.

e— Function | principal ‘p’
10 DEF FNTCR)=P*R*T D ment

20 R=0.185<—— 185%

30 T=1€—un |
1 year L.
principal

40 PRINT FNICS5000) of $5000
—

If a constant rate and time where used (rather unlikely in this case) the function could be defined as
10 DEF FNI(P)=P*0.185*%1
If the rate was constant but the time variable use
10 DEF FNI(P)=P*0.185*T
For another example consider the need to control the maximum number of decimal positions printed.
In many situations the result of a calculation can have many decimal positions when only 1 or 2 are

really necessary. In some BASICs a Print Using is available for this type of control but BASIC 4.0
doesn’t have this feature.

Advanced BASIC 85

One way of limiting a value to no more than two decimal positions is to multiply the number by
100 and take the integer portion of the result. Then divide this integer by 100 to get back to the original
range of the value.

Example:

37.582394

Multiply by 100 gives

3758.2394

Take the Integer value

3758

Divide by 100 gives

%

37.58

Here is the program to limit results to no more than 2 decimal positions.

100
110
120
130
140
150

DEF FNR(N)=INT(N*100)>/100

FOR I=1 TO 3

READ N

PRINT FNRCN)

NEXT 1

DATA 236.45678,1234.567,5.00123456

This program gives the output

236.45
1234.56

5

Several limitations are obvious from this output. One is that this function controls only the maximum
number of decimal positions. Therefore in the case of the last value no decimals print. The other lim-
itation is that the decimal points do not line up as would be required in reports such as those used for
accounting applications.

86

Chapter Six

ARITHMETIC FUNCTIONS

Functions are subroutines that are already built into the ROM to let you do complicated arithmetic
operations much more easily than if you had to write your own function or subroutine. Arithmetic
functions use a function name and an argument that supplies the value to be acted upon.

For example, the integer function used in a Print statement is

PRINT INT(26.2987)

INT is the function name and 26.2987 is the argument. The function removes the fraction and returns
the integer value of 26 to be printed.

Functions that return numeric values may be used any place a number is valid. Therefore they
may be used in arithmetic statements, IF statements, FOR statements, subscripts, and even in other
functions.

ABS

The ABS function supplies the absolute value of the argument by removing its sign.
Examples:

10 N=ABS(256)
20 K=ABS(-256)

30 J=ABS(-23.05)
40 PRINT N,K,J

gives the output
256 256 23.05
ATN
ATN returns the arctangent in radians of the argument. The returned value will be in the range = 17.

?ATNC30) gives 1.53747533 radians
2180/7*ATN(45) gives 88.72697 degrees

cos

The COS function returns the cosine of the argument. The argument represents a value expressed in
radians.

To find the cosine of .01 radians

2C0SC.01) gives .99995

The cosine of 1 radian is

?2C0SC1) gives .540302306

Advanced BASIC 87

The cosine of 90 degrees

10 R=90*7/180€———______ | convert
20 PRINT COS(R) to radians

prints a cosine of 0.

EXP

This function returns the value of ¢ raised to the power of the argument (e¢**) where e is the value
2.71828183. The argument must be in the range +88.0296910.

?7EXPCO0) gives 1
?EXPC1) gives 2.71828183
2EXPC10) gives 22026.4658

In the case of the EXP function an argument that exceeds the maximum will give an overflow
error while an argument less than the minimum returns a 0 value.

INT

The INT function returns the integer portion of a real number by truncating the fraction. The result
is in real form, not integer(%). In the case of negative numbers INT adds 1 to the integer part after
truncation.

?2INT(27.57) gives 27
?2INTC1.05) gives 1
2INTC€0.05) gives 0
?2INT(-27.57) gives -28

LOG

The LOG function returns the natural logarithm or log to the base e, where ¢ is the value 2.71828183.
If the argument is O or negative an Illegal Quantity message is generated.

?L0GC10) gives 2.30258509
?2L0GC1) gives O
?7L0G(5000) gives 8.5171932

To find log to the base 10 simply divide the natural logarithm by LOG(10). For example:
2L0GC40)/L0OGC10) gives 1.60205999

RND

The RND function generates random numbers between 0 and 1. These numbers can be of value in
games and simulation programs. The function

RND(argument) returns a random number.
RND(-argument) stores a new seed number for the generator.

Storing a new seed begins a new sequence of random numbers.

This step is useful when the PET is first turned on to ensure completely random numbers each
time a program is run.

88 Chapter Six

Now try the program

10 L=RND(-TI)<€«——__ | uses time function

20 FOR I1=1 TO S to store a seed value
30 PRINT RNDC1)
40 NEXT 1

This program displayed the sequence

.574960506
.0214301237
.558740495
.277825403
.0561438672

but if you run this program you will get a different sequence of random numbers.

Creating a Specific Set of Random Numbers

Often we have the need for a set of random numbers within a specific range. Take for example the range
0 to 9. This range can be created by multiplying the random number generated by 10 (1 larger than
the maximum value required) and then taking the integer of this result.

20 N=INTC(RNDC1)*10)

This statement will generate a number in the range from 0 to 9. A number in the range 1 to 9 is created
with the expression

20 N=INTC(RND(C1)*9+1)
The +1 adjusts the values O to 8 generated by the function to become 1 to 9, the range we wanted.
SGN
The SGN function is used to determine the sign of a number. If the number is

positive a + 1 is returned

zero a 0 is returned

negative a — 1 is returned
Examples:

?SGN(25) displays 1

?2SGNC0) displays 0

?2SGN(-12) displays-1

SIN

The SIN function returns the sine of the argument, which is expressed in radians.
Examples:

2SINC.01) displays 9.99983334E-03
?2SINC1) displays .841470985

Advanced BASIC 89

SQR

The square root of a positive number is found with the SQR function.
Examples:

?7SQR(36) displays 6
?SQR(20.25) displays 4.5
?7SQR(4096) displays 64

TAN

TAN returns the tangent of the argument expressed in radians.
Examples:
?TANC.01) displays .0100003333
?2TANCT) displays 1.55740772

Converting Radians to Degrees

If the problem you are solving requires a value in degrees, rather than in radians, the following formula
may be used.

degrees = 180/n *radians
for example

? 180/7 *ATNC(C30)

The reverse situation may be true when using functions like SIN, COS and TAN. To convert from
degrees to radians use

radians = degrees *x /180
for example

? SINC(60*x/180)

STRING FUNCTIONS

Functions in this category are like the arithmetic functions except that character strings are involved
in the operation. A string function may require one, two, or even three arguments depending on the
function. When more than one argument is used each argument is separated from the other with a
comma.

ASC

This function returns the ASCII code equivalent to the single character specified in the argument. ASCII
codes are numeric values between 0 and 255 as listed in the Appendices. .

?ASC("A"™) displays 65
?ASC(C"™1™) displays 49
2ASC("N"™ displays 223
A=ASC("s$") assigns Y 36 to variable A

90 Chapter Six

One of the uses for ASC is to translate characters that have been entered from the keyboard but
are POKE’d onto the screen. In order to do this the keyboard characters must be changed to screen
ASCII characters, which are a different ASCII sequence. The following is a subroutine that converts
the variable B$, which might have been read with

100 GET B$: IF B$ ="*" THEN 100
110 GOSUB 7000

into the ASCII variable C which may then be POKE’d onto the screen.

2000 REM CONVERT B$ TO ASCII SCREEN CHARACTER C

7010 IF ASC(B$)<¢96 AND ASC(B$)>63 THEN
C=ASC(B$)-64:G0T0 7050

7020 IF ASC(B$)<129 THEN C=ASC(B$):60T0 7050

7030 IF ASC(B$)>159 and ASC(B$)<192 THEN
C=ASC(B$)-64

7040 IF ASC(B$)>191 THEN C=ASC(B$)-128

7050 RETURN

If the value A had been entered into B$ this would be the ASCII value 65. Subroutine 7000
identifies this value and subtracts 64 from it in line 7010 creating the POKE value 1. The graphic symbol
Y is ASCII 223 and is converted to POKE value 95 in line 7040 by subtracting 128 from B$ and
storing the result in C.

CHR$

The CHRS function is the inverse of ASC in that it returns the character equivalent of the single ASCII
code specified in the argument. The argument may be a numeric value from 0 to 255.

2CHR$ (*65") displays A
?CHR$('49") displays 1
A=233:?CHRS$(A) displays'§

One value of the CHRS function is its ability to display values that cannot be expressed in a Print
statement. For example, the character (*) is a delimiter and cannot be part of a character string in
BASIC. It can be displayed with

100 PRINT CHR$(34)

LEFTS$

The LEFTS$ function is used to extract the leftmost characters from a string. This function requires two
arguments:

LEFTS$(string, length)
—string is the character string to be used in the operation.
—Ilength is the length of the string to be extracted and must be in the range 0 to 255.

Example:

2LEFT$("“ABCDEFG",3) displays ABC

o -

ABCDEFG

Advanced BASIC 91

A common use for LEFTS is to select the first letter of a user’s response. For example, if a YES
answer is expected to a query we may examine only the first byte of the response for a “Y”. This min-
imizes processing errors due to spelling mistakes, carelessness, or simply not entering the complete word
by the operator of the program.

100 INPUT RS
110 IF LEFT$C(RS,1)="Y" THEN 200

Here is another example:

10 T¢=*Crt rt rt rt rt rtl*v
20 INPUT K
30 PRINT LEFT$(TS$,K):"WORDS*"

This code will accept a value K that determines how many cursor rights are used before printing the
value WORDS. This technique, or variations of it, can be useful to control the amount of spacing prior
to printing a value. Of course other cursor controls or even other values may be substituted to be selected
prior to printing.

LEN

The LEN function returns the length of the string argument supplied. For example;

2LENC"STRING") <— _
displays 6
10 X$="TO THY OWN SELF BE TRUE"
displ 23
20 PRINT LENCX$)< sheys

MID$

The MIDS$ function extracts any specified portion of the character string identified in the argument.
The arguments specify the string, the position to begin extraction, and the number of characters to be
extracted.

MIDS$(string, position, length)

—string is the character string to be used in the operation.

—position is the position of the first character to be extracted from the string. This value must
be from 1 to 255.

—Ilength is the number of characters to be extracted, from 1 to 255.

Example:

10 A$="0OLDNEWREVISE"
20 PRINT MID$(AS$,4,3)€— displays NEW

Length 3
e

OLDNEWREVISE

Position 4

92 Chapter Six

Suppose we want to input a word and print it diagonally across the screen. Try the following code.

10 INPUT AS$

K
20 FOR I=1 TO LENCAS®)

will be 13 for the sample data

selects each letter

30 PRINT "[dn rt]";MIDS(A$,I,1);é——””——ﬂomA$

40 NEXT 1

move down 1 line and leave

one space for each letter

If you enter the input CBM COMPUTERS, the following output will be displayed:

o

~N

__/

MIDS is useful in applications where the program needs to look through a string for a specific
value. For instance, in a CAI application the student might be required to answer a question such as:

WHAT ARE TITAN AND DIONE ?

The response to this might be

TITAN AND DIONE ARE MOONS OF SATURN.

This response might be processed by the following code, which looks for the word MOONS as part of

a correct response.

100 INPUT X$
100 FOR I=1 TO LEN(X$)-4

120 IF MID$(X$,I1,5)="MOONS" THEN 200

130 NEXT I

The FOR loop in this code moves through the X$ string one character at a time looking at groups
of 5 characters for the string “MOONS”. If this is found the program branches to 200 where a positive
message might be printed or the program could then look for the word “SATURN? to see if the student
associated the moons with the planet Saturn. In any event the program is looking only for the occurrence
of these words and in no way analyzes the context in which they have been used.

Advanced BASIC 93

RIGHT$

RIGHTS is similar to the LEFT$ function except that it extracts the rightmost characters from the
string specified in the argument.

RIGHTS$(string, length)
—string is the character string to be used in the operation.
—1Iength is the length of the string to be extracted and must be in the range 1 to 255.

?7RIGHT$ (*ABCDEFG" , 3)€———— displays EFG

10 AS=RIGHT$(BS, 7)\ assigns the 7 rightmost
characters of B$ to A$

STRS

The STRS function returns the equivalent string value of the numeric argument. This operation may
be useful when a numeric result needs to be combined with a character string or used in a string op-
eration.

7STR$(278.05)< displays 278.05

10N=125.78
20 K$=STR$(NI<—
30 PRINT RIGHTS(K$,3)\

converts N to K$

displays .78

VAL

VAL is the reverse of STRS since it returns the numeric equivalent of the string argument.

7VAL("80.175")<— displays 80.175

10 C$="THE ANSWER IS -75"
20 A$=RIGHT$(Cs$,3)
30 PRINT VAL(A$) < displays —75

CONCATENATION

Although not a function, concatenation is a useful string operation that combines two or more strings
to form a single string of characters. The + sign is used as the concatenation operator but should not
be confused with the arithmetic plus sign. Although the same character is used the results are quite
different.

?"“CONCAT" +"ENATION'" €——— displays CONCATENATION

10 INPUT "DAY";D$

20 INPUT "MONTH'";M$

30 INPUT "“YEAR';Y$

40 DAS=M$+* "+D$+" "+YS$
S0 PRINT DAS$

94 Chapter Six

Inputs D$ | 21 M$ | JUNE Ys$ | 1981

Concatenation DA$=M$+ "+D$+","+Y$

e

Gives DA$ JUNE 5?,1981J

An interesting change to this program in statement 50 concatenates the reverse control character
to DAS as follows:

50 PRINT "[rvs1"+DAS$

This simple change causes all of the contents of DA$ (the date) to be printed in reverse characters.

PLOTTING GRAPHS

Drawing graphs on the PET presents an interesting challenge for the programmer. Normally if a graph
is displayed as its values are calculated it will come out sideways on the screen and you will need to
twist your head sideways to read it. Using a technique developed by Robert Barrett (“Creative Com-
puting”, April 1979) the program that follows displays correctly and is much easier to read. This shift
is made by first storing the points of the graph in an array and then displaying them horizontally.

For example, if the function SIN(X) is computed for values of X between 0 and 180 (in degrees)
the program would produce the output shown in figure 6.7.

Figure 6.8 is the flowchart for the solution to this problem and figure 6.9 shows the program.
Notice that lines 140 to 160 in the program show three different functions. Currently 150 and 160 are
Remark statements and so they do not affect the running of the program. To use another function it is
necessary to change line 140 to a Remark and remove the REM from the function you want to try.

994
L])
e O
°
°
° °
° ®
0 —9 L 180
° ° °
® ° o
) °] °
® ® o o
—.0997 eo® %o

Figure 6.7 Plotting SIN(X) between O and 180

Advanced BASIC 95

Clear
Variables
and
Screen

Define
Function
A

L

Define
Scaling
Function

|

Set
XandyY
Dimensions

Compute
Position
of X-Axis

|

Compute
Step
Value

|

Find
X-Axis

Find Points
of Y for
each X

Store in G

FOR

Loop

Clear
Screen

POKE each

value of G

into screen
memory

Nested
FOR
Loops

Find
Smallest
and
Largest Y

FOR

Loop

Figure 6.8 Plotting a graph flowchart

96 Chapter Six

Position
Cursor
Print
XandyY

100 REM PLOTTING GRAPHS

110 CLR< clear variables

120 PRINT"[clr] "

130 DIM G(40,25)

140 DEF FNA(X)=SIN(X)

150 REM DEF FNA(X)=COS(X/20)

160 REM DEF FNA(X)=(X2)] scaling function
170 DEF FNS(X)=INT((X-M)/(S-M)*YA+1.5)

180 YA=22:XA=30<—

try these functions
by removing REM

190 INPUT '"LOW VALUE OF X" ;XL
200 INPUT "HIGH VALUE OF X" ;XH

210 PRINT"[dn rvs]FINDING MAXIMUM SCALE[off]"

220 Y1=INT(-XL/(XH-XL)*XA+1)<

sets the Y-axis
and X-axis

230 D=(XH-XL)/XA
240 FOR X=XL TO XH STEP D
250 Y=FNA(X)

position of Y-axis

270 IF MY THEN M=Y
280 NEXT X

290 I=0

300 X1=FNS(0)

260 IF S<Y THEN S=Y Sv

310 PRINT" COMPUTING GRAPH POINTS

320 FOR X=XL TO XH STEP D&—u—___

find smallest and maximum
of Y values

330 Y=FNS(FNA(X))
340 I=I+1 \ calculate and
350 G(I,X1)=-1 scaI:aYvaIue

360 G(I,Y)=1

370 NEXT X <€
380 PRINT'[clr] "

390 P=32767

400 FOR I=25 TO 1 STEP-1
410 P=P+3

420 FOR J=1 TO 37 horizontal line
430 P=P+1 4(/,,///”'
440 IF G(J,I)=—1 THEN POKE P,64

450 IF J=Y1 THEN POKE P,66<

find Y values between the
range of X (low-high)

vertical line

460 IF G(J,I)=1 THEN POKE P,81
470 NEXT J ﬁg\‘\‘\\\\\\, .
480 NEXT I white dot

490 PRINT '"[home]' ;LEFT$(STR$(S),5)
500 PRINT '‘[home 12 dn's]";XL;(S),5)
510 PRINT TAB(35);XH

520 PRINT"[10 dn's}';LEFT$(STR$(M),5);
530 GETA$:IF A$=""" THEN 530

540 INPUT "' TRY ANOTHER SET OF VALUES
550 IF A$="Y" THEN 110

Figure 6.9 Program to plot graphs (for PET and CBM 4000 series only)

Y[3 left]'";A$

Advanced BASIC 97

Function S in line 170 is a scaling function which has the purpose of scaling each value of Y to
fit within the range of positions available for plotting the graph. The value of X can vary widely so line
220 computes the position of the Y-axis along the X-axis.

Lines 240 to 280 compute values of Y to determine minimum and maximum for the purpose of
scaling the final results. Next, lines 310 to 370 compute the values of Y and store them in the array G
at the appropriate intersection of X and Y. Finally, lines 400 to 520 plot the graph and print its coor-
dinates using a combination of POKEs and Print statements.

CONTROLLING DECIMAL POSITIONS

Earlier in this chapter we saw how to limit the number of decimal positions to no more than two. How-
ever, a number with one or even no decimal positions would not align exactly with numbers containing
two or more decimal positions. This means the decimal points will not align in a straight column, which
may be desirable for some applications such as accounting or financial reports.

The technique discussed here will limit all decimal numbers to two decimal positions regardless
of the number of decimals in the original number. With a slight modification to the program the results
could control output to any number of decimals required. Figure 6.10 shows a variety of decimal num-
bers and indicates the results required of the program.

Original Number Desired Results
1 1.00
2.5 2.50
125 125.00
.05 0.05
.125864 0.12
79.16 79.16
—14.5 —14.50
—.458 —0.45

Figure 6.10 Editing to two decimal places

In this example, note that every number results in two and only two decimal positions. In some
cases, such as the value 1, two decimal positions (.00) are appended to the number, while in other cases
(.125864) decimal positions are truncated to result in two decimals.

Figure 6.11 shows the steps followed to take a number and adjust its decimal positions to two.
First the number is separated into the integer (left) and fractional (right) parts. The fractional part is
then adjusted to two digits, adding a decimal point if necessary and then concatenated back onto the
integer part to create the final result.

Figure 6.12 shows the flowchart for this problem and figure 6.13 is the complete program. In the
program statements 200 to 330 are the subroutine while statements 100 to 190 are a driver routine.

Driver Routines

A driver routine is often used to test a part of a program without the need for having the complete
program in the computer at the time of testing. For instance, if we were writing a complete Accounts
Receivable program the decimal subroutine would be required. Using a driver initially lets us try the
solution of limiting decimal points for a variety of values without the concern for the hundreds of other
statements the full-scale program may eventually have. When we are satisfied with the solution for this
subroutine it may be combined with the full program.

98 Chapter Six

Example 1 Example 2

N .125864 125.0 Original Number

Separate into

N9 .125864 125.0 integ_er and
fractional parts

Yl

L$ 0 R$ | .125864 | LS 125 RS l bo I
Reduce to
B b009 length of 4
| b.0000 l Insert decimal
point
b.12 b.00 Reduce to 2
decimals

12 -00 Remove blank

Concatenate

N$ bbbb0.12 bb125.00 2 parts to
‘ form number

Figure 6.11 Converting to two decimal places

CAl CHESS AND PROGRAM GENERALIZATION

Computer Assisted Instruction is one application area in education that the computer made possible.
Although the program discussed here presents some initial instruction in chess it is generalized to the
extent that by changing the data other subject matter may be presented in a CAl format. Figure 6.14
shows the arrangement of the data for this program.

The approach taken here is to develop the program logic in such a way that it is essentially in-
dependent of the subject to be presented. Rather than using a statement such as

100 PRINT "A RANK IS A HORIZONTAL ROW OF SQUARES"™

the string is placed in a data statement and then read and printed.

Although this approach at first may seem more involved it actually means a lot less work in the
long run. The reason for this is that only one Read and Print is necessary regardless of the amount of
data to be read. Therefore the CAI instruction may be as long as needed without lengthening the pro-
gram itself. Only the data length is increased.

Advanced BASIC 99

Decimal
Subroutine

7

Concatenate
Store N For 0 or 1
in N9 2 zeF;gs to digit fractions
N9 Yes Remove R$ No Assign
Negative Sign contains b.0000
? Set Gto 1 point to R$
| Yes
Extract
ﬁ\);gge(:: depimal
Part 09 point ane
Extract Concatenate
Fractional blanks, L$
Part (R$) and R$
Fraction Reduce to Yes Cglr;%?(tse,nite
> 4 chars 4.cr'1:?rs L$ and R$
? in RS Set Gto O
] No]
®
Figure 6.12 Flowchart for converting to two decimals
100 REM TEST DRIVER FOR DECIMAL NUMBERS _\
110 REM SUBROUTINE
120 FOR I=1 TO 8
130 READ N
140 PRINT N P . .
150 GOSUB ZiO driver routine
160 PRINT N$
170 NEXT I
180 STOP : :
t n
190 DATA 1,2.5,125.0,.05,.125864,79.16,-14.5,-.458) remove negative 519
200 REM

separate left
and right parts

210 REM DECIMAL CONVERSION SUBROUTINE
220 N9=N

230 IF N9<0 THEN N9=ABS(N9):G=1
240 L$=STR$ (INT(N9))
250 R$=STR$ (N9-INT(N9))

int t
260 IF LEN(R$)>4 THEN R$=LEFT$(R$,4)ér//// point for O values
270 R$=R$+"00"
280 IF R$=" 0OO"THEN R$=" .0000"

290 R$=LEFT$(R$,4)< extract decimal

limit length
to 4 chars include decimal

300 R$-RIGHT$ (R$,3)&— " | point and 2 digits —_—
310 N$=RIGHT$(" "4L$+R$,8)€ O bor o
g%g IIKETSEI%I THEN N$=RIGHT$ (" ~"+L$+R$,8) :G=0€— final result

Figure 6.13 Program for converting to two decimals

100 Chapter Six

N 9 Number of lines of Instruction

A$ | TO LEARN THE GAME OF CHESS WE NEED TO
UNDERSTAND SOME BASIC CHARACTERISTICS
OF THE BOARD. THESE ARE RANK, FILE Text
AND DIAGONAL..
of
A RANK IS A HORIZONTAL ROW OF SQUARES.
A FILE IS A VERTICAL ROW OF SQUARES. Instruction
A DIAGONAL IS A SERIES OF SQUARES OF

THE SAME COLOR RUNNING IN AN OBLIQUE DIRECTION.

NQ} 3 No. of Questions
Q$ | WHAT IS THE NAME OF A HORIZONTAL ROW OF SQUARES Question 1
NA | 1 T 1 RANK No. of Answers-Type- Answer
Q$ | DEFINE THE CONCEPT OF A FILE Question 2
NA | 2 T 2 VERTICAL ROW Answers
Q$ | A____ 1S AN OBLIQUE SERIES OF SQUARES OF THE SAME COLOR Question 3
NA | 1 T 1 DIAGONAL Answer

Figure 6.14 One data set for CAl chess

The Data

Each set of data begins with a numeric value (called N in the program) that indicates the number of
lines of instruction to follow. This value is 9 in the sample set of data indicating there are 9 lines of
instruction including a blank line. The actual lines of text then follow in subsequent data statements to
be read into A$ by the program.

Following the text material is another number that tells the program how many questions have
been supplied for this text. In the example the value is 3 and will be followed by a set of three questions
and their answers. The 3 representing the number of questions is read into the variable NQ.

Now we have the first question:

WHAT IS THE NAME OF A HORIZONTAL ROW OF SQUARES?

Advanced BASIC 101

This question is read into Q$ and is followed by a 1 which defines the number of answers (NA). Next
is a number that defines the type of answer to follow. There are three different types:

1—Single answer
2—AND type answer
3—OR type answer

The first type requires a single answer that could be either a word or phrase. In the first question
the answer is RANK. The program will search the answer given by the user to determine if it contains
the word RANK. If it does the answer is considered to be correct.

A type-2 answer indicates that more than one word is required in the answer and that each word
must be present. In the second question:

DEFINE THE CONCEPT OF A FILE?

both words VERTICAL and ROW must be present in the answer for it to be correct. The logic of this
evaluation is based on the Boolean ‘and’ truth table.

Type 3 is based on the Boolean ‘or’ and therefore requires that only one of several possible answers
be submitted. The question:

NAME A MAN THAT HAS ONLY TWO PIECES?

has three possible correct answers. ROOK, BISHOP, or KNIGHT are the possibilities. If any one of
these answers is given, the response is considered correct. The answer given could be in the form of a
single word such as:

BISHOP
or it could be a complete sentence. For example:

A ROOK IS A MAN WITH 2 PIECES.

In either case the program would scan the answer for the correct word within the answer string.

The Program

Random Responses Programs used for CAI typically need to respond to both correct and incorrect
answers from the user. Of course this can be a simple matter of displaying “correct” or “incorrect” but
this tends to become monotonous after a few answers. To add a little variety and spice to your answers
it is possible to use the random function to select one response from a collection of responses.

Figure 6.15 shows how a set of 4 correct answers are set up in array CR$ to be selected for a
response to a correct answer. The random function generates a value between 1 and 4, which then acts
as a subscript to extract the response from the array.

Instring Search Some languages have a statement with the capability of searching a string variable
for the presence of a particular word or set of characters. This is called an Instring Search. Since PET/
CBM BASIC does not have this feature it is necessary to write a subroutine that can accomplish the
same type of search. The need for this approach becomes apparent when we consider the types of re-
sponses we are likely to get from the user of this program. Rather than single-word answers the user
can respond with a sentence, which is a more natural means of communication or, if preferred, with a
single word or phrase.

Figure 6.16 shows how to implement a search for the string IN$ within the longer string AS. If
INS is found the Found Switch (FS) is set to 1 indicating the presence of IN$ in A$. Otherwise the
string is not found and FS remains a 0 value.

102 Chapter Six

CRs$

/,ﬁ_—-1 OK! THAT’S RIGHT
870 C=INT(RND(1)*3)+1<%kl:::::2 THAT’S CORRECT
e, - >3 | YES, YOU’RE RIGHT
N, | 4 [GOOD! YOU UNDERSTAND
880 PRINT *"I[rvs]";CR$(C)
display S
4 T
YES, YOU’RE RIGHT
N\ J
Figure 6.15 Selecting a random correct response
Position 28
_—
AS A FILE 1S A VERTICAL ROW OF SQUARES length=35
.} X - X
; b e
] 7 -,
I - -7
IN$ | VERTICAL length=8
equivalent to
820 FOR L=1 TO LENCAS)-LENCINS)+1 FOR L=1 TO 28

830 IF MID$CAS,L,LENCIN$))=IN$ THEN FS=1:RETURN

840 NEXT L length of word ‘‘Vertical” set Found Switch

Figure 6.16 Instring Search subroutine

Advanced BASIC

103

Checking AND Type Responses When an AND type of response is required it means there are two or
more words expected in the answer. The answer string will be examined for the presence of each of
these words and if all of the words are found the answer is considered correct. Figure 6.17 demonstrates
the solution.

The array A1$ contains each of the words to be searched for in the input string using subroutine
810 for the Instring Search. For each match found (FS = 1) the search moves on to look at the next
word at A13(M). If the word was not found in the input string (FS = 0) then subroutine 910 is called
to produce the incorrect answer response. Finally, if all words are found in the input string the loop
terminates and subroutine 860 produces the correct answer response.

Basically the OR type of response functions in the same way, the primary difference being that
only one of the words in array A1$ needs to be found in the answer string.

The complete program for Computer Assisted Instruction on the game of chess is shown in figure
6.18. Additional instructional material may be added to the DATA statements to provide a continuation
of the lesson.

A1 VERTICAL ROW NA 2
1 2
AS A FILE IS A VERTICAL ROW OF SQUARES

630 FOR M=1 TO NA <—{ number of answers

640 FS=0

650 IN$=A1$(M)=

Instring Search
uses IN$

660 GOSUB 810<—

670 IF FS=0 THEN GOSUB 910:RETURN<€——] incorrect answer

680 NEXT M

690 GOSUB 860< correct answer

700 RETURN

Figure 6.17 Checking AND type responses

104 Chapter Six

100
110
120
130
140

REM CAI CHESS

N=RND(-TI)

CR$(1)=""0K! THAT'S RIGHT"
CR$(2)="THAT'S CORRECT"
CR$(3)="YES, YOU'RE RIGHT"

150 CR$(4)="GOOD! YOU UNDERSTAND"
160 WR$(1)="NO, THAT'S NOT RIGHT"
170 WR$(2)=""SORRY, NOT QUITE RIGHT"
180 WR$(3)="WRONG"

190 WR$(4)=""THAT'S INCORRECT"

200 DIM A1$(20)

210 READ N €

number of lines

220 IF N=999 THEN STOP

230 PRINT "[clr]";

240 REM READ N LINES OF INSTRUCTION
250 FOR I=1 TO N

260 READ A$<—

of text

read and print text

270 PRINT A$€—
280 NEXT 1
290 GOSUB 500<—

300 PRINT "[clr]"

310 REM NO. OF QUESTIONS
320 READ NQ

330 FOR I=1 TO NQ

340 wW=0

350 READ Q$

wait for user
to read text

question

360 READ NA,T<

number of answers and type

370 PRINT Q$
380 REM NO. OF POSSIBLE ANSWERS
390

in array A1$

store answers

FOR K = 1 TO NA
400 READ A1$(K)<&———“’————_—__———

410 NEXT K input ans
420 INPUT A$ put answer

430 ON T GOSUB 550,620,710«

select type
of answer

correct answer

incorrect but less than 3 tries

ASC 13 is return key

440 IF W=0 THEN 470«

450 IF W<3 THEN 420<€—

460 GOSUB 960 : REM PRINT ANSWER(S)
470 NEXT I

480 GOSUB 500

490 GOTO 210

500 REM WAIT FOR RETURN

510 PRINT "[dn] '";TAB(8);"[rvs]PRESS RETURN TO CONTINUE[off]"
520 GET W$:IF W$=''"' THEN 520

530 IF ASC(W$)=13 THEN RETURN<

540 GOTO 520

Figure 6.18 CAl chess program

Advanced BASIC 105

550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

REM SINGLE WORD ANSWER
FS=0
IN$=A1%(1)

GOSUB 810 -
IF FS=1 THEN GOSUB 860:RETURN

correct answer

GOSUB 910<
RETURN

REM 'AND' TYPE RESPONSE
FOR M=1 TO NA <

incorrect answer

FS=0
IN$=A1$(M) at least one
GOSUB 810 L= is incorrect
IF FS=0 THEN GOSUB 910:RETURN
NEXT M €
GOSUB 860

RETURN

REM 'OR' TYPE RESPONSE

check NA answers

FOR M=1 TO NA<€
FS=0
IN$=A1$ (M)

one is correct
GOSUB 810 s :

IF FS=1 THEN GOSUB 860:RETURN

check NA answers
for first correct

NEXT M €

GOSUB 910€
RETURN

REM INSTRING SEARCH

FOR L=1 TO LEN(A$)-LEN(IN$)+1

IF MID$(A$,L,LEN(IN$))=IN$ THEN FS=1:RETURN
NEXT L

RETURN

REM CORRECT RESPONSE TO QUESTION

none were correct

C=INT(RND(1)*3)+1 €
PRINT"[rvs]";CR$(C)

w=0

RETURN

REM INCORRECT RESPONSE TO QUESTION
C=INT(RND(1)*3)+1 €

PRINT"[rvs]'";WR$(C)

W=W+1

RETURN

REM 3 ERRORS - PRINT CORRECT ANS

PRINT "YOUR ANSWER SHOULD INCLUDE THE TERMS'"
FOR K=1 TO NA

PRINT A1$(K);'" ";

1000 NEXT K
1010 PRINT
1020 GOSUB 500
1030 RETURN

Figure 6.18 CAIl chess program (continued)

106

Chapter Six

randomize selection
of response

1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450

N

DATA 9

DATA "TO LEARN THE GAME OF CHESS WE NEED TO"

DATA '"UNDERSTAND SOME BASIC CHARACTERISTICS"

DATA "OF THE BOARD. THESE ARE RANK, FILE"

DATA "'AND DIAGONAL.

DATA 7" 11]

DATA "A [rvs]RANK[off] IS A HORIZONTAL ROW OF SQUARES."
DATA "A [rvs]FILE[off] IS A VERTICAL ROW OF SQUARES."

DATA "A [rvs IDIAGONAL[off] IS A SERIES OF SQUARES OF"

DATA "THE SAME COLOR RUNNING IN AN OBLIQUE DIRECTION."

DATA 3

DATA "WHAT IS THE NAME OF A HORIZONTAL ROW OF SQUARES"

DATA 1,1,'RANK"

DATA "DEFINE THE CONCEPT OF A FILE"

DATA 2,2,"VERTICAL'","ROW"

DATA "A rrrrr IS AN OBLIQUE SERIES OF SQUARES OF THE SAME COLOR"
DATA 1,1,"DIAGONAL"

DATA 10

DATA "THE GAME OF CHESS USES 16 BLACK AND"

DATA "16 WHITE PIECES WITH THE FOLLOWING"

DATA "NAMES AND DISTRIBUTION."

DATA 1" 1

DATA " 1 - KING"

DATA " 1 - QUEEN"

DATA " 2 — ROOKS"

DATA " 2 — BISHOPS"

DATA " 2 — KNIGHTS"

DATA " 8 -~ PAWNS"

DATA 6

DATA '"HOW MANY BLACK PIECES ARE USED IN CHESS"

DATA 1,1,'"16"

DATA ''NAME EACH PIECE.(TYPE EACH NAME FOLLOWED BY A SPACE)"
DATA 6,2,"KING'",""QUEEN","ROOK'",''BISHOP" ,"'KNIGHT", "' PAWN"
DATA ''HOW MANY PIECES ARE WHITE KINGS"

DATA 1,1,'"1"

DATA '""HOW MANY PIECES ARE BLACK QUEENS"

DATA 1,1,'"1"

DATA "NAME A MAN THAT HAS ONLY TWO PIECES"

DATA 3,3,"ROOK'","BISHOP",'KNIGHT"

DATA "HOW MANY WHITE PAWNS ARE THERE" o)
DATA 1,1,"8'"¢ addlttljon:al mate(;lzl
DATA 999,"END-OF-DATA" may be inserted here

renumber end line

Figure 6.18 CAl chess program (continued)

Advanced BASIC

107

REVIEW QUESTIONS—CHAPTER 6

O XN

10.

11.

108

What is the benefit of using a GET statement instead of the INPUT statement? Why is a loop
necessary with the GET?

What are some of the limitations of the GET compared to the INPUT statement?

Consider how you would write a module to get more than one character of input using the GET
statement. How would you handle corrections such as using the delete or cursor keys?

What are some of the benefits of using the ON group of statements? Discuss the pros and cons
of ON—GOSUB versus ON—GOTO.

Describe the purpose of the POKE instruction. What is the only type of data that may be
POKE’d?

Write some BASIC code using POKEs that will draw a (1) horizontal line, (2) vertical line.
What does the PEEK statement do? How is it different from POKE?

Write a small program to cause a circle to move slowly across the screen from left to right.
What is a function? Name some. In general what is the difference between an arithmetic
function and a string function? Give a specific example.

Driver routines are sometimes used in programming. What is a driver routine and how is it
used?

Using the CAI chess program as a model write a program to give instruction in an interactive
mode on a subject you are familiar with.

Chapter Six

Interacting
with the User
of Your Program

As programmers of microcomputers we may frequently write programs that are intended for other
than our own use. Rather the programs we develop are directed to a student audience, to our colleagues,
or for use by others in our home or business. It is therefore crucial that we develop programs in such a
way that they interact with the user at a suitable intellectual level and with an effectiveness that permits
ease and simplicity of operation.

The intellectual level considers both the language and technical ability of the program’s user 2 nd
employs prompting and/or dialogue that is consistent with this level. Effectiveness of operation considers
the methods used to communicate with the user. These methods may include queries, prompting, codes,
menus, form filling, and so on. Suitable choices often determine a person’s success in using the program
and his willingness to use it again.

USER LEVEL

When we develop a program it is usually intended for a specific audience. In general, we should assess
the age, education, training, intelligence, and motivation of the user. After a general assessment it is
useful to place the user in one of the following three categories:

Casual

This is a user who uses a microcomputer infrequently and generally has no training in computers. All
first-time users fall into this category. So do many students and educators.

Trained

A trained user is a person who has been given formal (sometimes informal) training on the use of com-
puters. This training might be limited to the use of a particular program or be as broad as a computer
literacy course.

Programming Skills

This is the most sophisticated user. He or she will have done some programming and be familiar with
programming terminology and language syntax. Since you have been studying programming in this
book you fall into this category.

109

In addition to these three categories a user may operate the program on two different levels. Noted
computer consultant James Martin defines these levels as an active or passive operator. An active op-
erator is one who initiates program action by entering commands. This level is typical of games where
the user enters values which might control the direction and speed of a ball on the screen.

A passive operator is one who takes action based on the program’s initiative—for instance, when
a program asks for the user’s name. Many programs will use both active and passive interaction.

USER DIALOGUES
Prompting

In a sense any information that requires a user response represents prompting. However, our interest
here is when the program displays a statement or question and then waits for the user to type a response.
Prompting is appropriate for all levels of users but the language of the prompt should be directed to the
specific user level. In any case, courtesy should be used. A prompt such as

PLEASE ENTER YOUR NAME ?
is much better than a curt
NAME ?
This kind of prompt is usually implemented as follows:

100 PRINT "“PLEASE ENTER YOUR NAME";
110 INPUT NS$

or more directly and efficiently as
100 INPUT *PLEASE ENTER YOUR NAME"™;N$

With this type of prompt you may get a variety of responses, such as:

JOHN
JOHN SMITH
SMITH

In some programs this doesn’t matter but if it does make a difference the prompt should be more specific.
PLEASE ENTER YOUR SURNAME?

Some prompts may have simple alternatives such as YES or NO, TRUE or FALSE, ADD or
SUBTRACT. In these situations the prompt should indicate which responses are expected.

100 INPUT "DO YOU WANT MULTIPLE CHOICECYES/NO)>";AS$
110 IF A$=""YES"™ THEN 200

This prompt indicates clearly that a YES or NO answer is expected. Some programs also permit
the user to respond with just the first letter of the response. This is done by extracting the first letter of
AS$ using the LEFTS function and then testing for a “Y” or “N”. Using this method single-letter re-
sponses as well as the complete word are acceptable.

100 INPUT "“WOULD YOU LIKE MULTIPLE CHOICECYES/NO)";AS$
110 IF LEFTSCAS,1)="Y" THEN 200

110 Chapter Seven

Some prompts use data from previous operations in the program. An example of this is a program
that generates drill and practice questions for addition. Prior to the prompt the program generates two
values (A and B) which the student then adds mentally or on paper before entering the answer. This
prompt might then use both the print and input statements.

100 PRINT *[clr dn dn dn dn dnl";
110 PRINT "WHAT IS THE SUM OF";A;" +'";B;
120 INPUT S

Note the use of line 100 which clears the screen and moves the cursor down 5 lines before printing
the prompt. This action avoids any distraction from previous questions that would otherwise remain on
the screen.

A more creative solution to this problem might be to print the prompt in the form of a traditional
addition question as follows:

100 PRINT "[clr dn dn dn dn dnl";
110 PRINT "[rt rt rt rtl";A

120 PRINT *"[rt rt rtl+";B

130 PRINT *"[rt rt rtl_g _is a shift @
140 INPUT "[rt rt rtl";S

If A is the value 10 and B is 15 this code displays the following:

10
15

?

Although this solution is a lot more work the results are far superior to previous methods and show
the power of the PET/CBM in implementing an effective solution.

DEFAULT RESPONSES

In many applications where a choice is given to the user, the response can be anticipated. A program
which normally reads a file but has an option to create a file is an example of when a default would be
useful. The prompt might be:

(READ) OR (CREATE) A FILE

Here the user must type in either READ or CREATE as a response. Since we expect that READ
is the most frequent response it may become the default. This is done by printing the default value with
the prompt and then moving the cursor to the left past the default value.

100 INPUT “(READ) OR C(CREATE) A FILETREAD[lt 1t 1t
1t 1t 1t1";:A$ i

2 blanks 6 cursor lefts

This is what the display shows:

(READ) OR (CREATE) A FILE? E\EAD

question mark created
as a result of A$ in cursor position
the INPUT statement

Interacting with the User of Your Program 111

An example of this application is a budgeting program with a main menu that asks for annual,
monthly, or daily budget items. The program then branches to a lower level menu to itemize particular
entries in one of these three categories.

100
110
120
130
140
150
160

170
200
210
220
230
240
250
260
270
280
290
300
310
400

PRINT "[clrlENTER A BUDGET CATEGORY"
PRINT “[dn rvslAlrvs offINNUAL"™
PRINT "“idn rvsIMlrvs offIONTHLY"
PRINT "(dn rvs1DIlrvs offlAILY"

GET A$:IF A$="" THEN 140

FOR I=1 TO 3

IF A$=MID$C"*AMD",1,1) THEN ON I GOSUB
200,400,600

GOTO 100

REM ANNUAL BUDGET ITEMS

PRINT "[clr]SELECT AN ANNUAL ITEM"
PRINT "[dnl1 - HOUSE INSURANCE"™
PRINT "[dnl2 - CAR INSURANCE"

PRINT *[dnl3 - INCOME TAX"

PRINT *"[dnl4 - PROPERTY TAX"

PRINT "[dnlS5 - RETURN TO MAIN MENU"™
GET A$:IF As$=""" THEN 270

N=VALCA$)

IF N=5 THEN RETURN

ON N GOSUB 1000,2000,3000,4000

GOTO 200

REM MONTHLY BUDGET ITEMS

eté.

FORM FILLING

Some application areas such as accounting, CAI, and testing can benefit from a technique called form
filling. This method permits the program’s user to input data in a predefined location on the line. Typ-
ically this location is inside a box, as in an accounting ledger, or in a blank area such as a fill-in-the-
blank type of test question. The following code shows the use of form filling to enter an account number
and date in a precise location within a box. In this code the lowercase “b” represents a blank character.

10
20

PRINT *"[clr rvslbbACCOUNTbbbbbbDATEbbbbblrvs
offl"

PRINT "[rvslblrvs offlbbbbbbbbblirvslblrvs offlbbb
bbbbbbbbblrvslblrvs offl"

PRINT "[rvsl24 spaceslrvs offl"

INPUT "[home dn rtl":;A$

INPUT "[home dn 11 rt’s]1'";D$

A$=LEFT$(A%$,6)

D$=LEFT$(D$,9)

The above code displays a form on the screen something like this:

ACCOUNT DATE

114

Chapter Seven

)

]

H

Y

K

1}

1

Y

H

When the program asks for input the question mark appears in the box under the appropriate
heading and is followed by the flashing cursor. This type of program presents a unique problem since
the INPUT statement accepts all of the characters on the line following the question mark. This also
includes graphic characters.

One solution is to use the GET statement in a loop but a far simpler method is to use the LEFT$
function, which selects the number of characters desired from the input string. This of course means
you need to know how many characters will be entered.

COMMAND LANGUAGES

Command languages are useful for applications such as word processing, where simple prompting or
the use of a menu is either impractical or too unwieldy to enter complex commands.

For instance, a typical command is to change a string from one value to another to correct a
spelling error or to change a word. To change the word “error” in the previous sentence to “mistake”
a command like

C/error/mistake

is entered.

Using a command language requires considerably more experience than simply responding to a
menu, but it is much faster than using a dialogue. Programming for a command language also tends
to be more complex since the program needs to recognize the type of command, often identified by the
first character in the command, and the operands which can legitimately accompany that command.
Often there is no prompt since this type of application requires an active operator who initiates all action.

The following code shows how the preceding command might be analyzed in BASIC.

INPUT C$
IF LEFT$(C$,1)="C" THEN 500

500 REM DECODE CHANGE COMMAND

505 S1¢="": S2¢="" :REM EMPTY STRINGS

510 IF MID$(C$,2,12¢>"/" THEN PRINT *"COMMAND
ERROR"™:GOTO 100

520 L=LENCCS$)

530 FOR I=3 TO L

540 IF MID$(Cs,I1,1)="/" THEN 570

550 S1¢=S1$+MID$(C¢,L, 1)

560 GOTO 580

570 S2¢=RIGHT$(C$,L-I):1I=L

580 NEXT I
590 IF LEN(S2$)=0 THEN PRINT "COMMAND ERROR":
GOTO 100

Statements 510 to 590 ensure that the command format is followed by checking for a slash sep-
arating the command (C) from the first string and then checking for a second string. Statements 530
to 560 extract the first string by concatenating each character to S1$. When the end of the string is
found by 540 the second string is extracted in 570 and stored in S28.

Interacting with the User of Your Program 115

REVIEW QUESTIONS—CHAPTER 7

[eniy

(98

Why is it important to consider the user level of a person who will be using our programs?
What are the three different levels of computer users? How do these levels relate to the types of
people who will be likely to use your programs?

Discuss the types of prompts that may be used for interacting with a user.

What is meant by a default? Write an INPUT statement that asks for an INSERT or DELETE
response providing the insert option as the default.

Define a menu. How is a menu created on the screen? Describe three possible ways of accepting
the user’s response to a menu.

Describe what is meant by a multilevel menu. Give an example of this kind of menu other than
the example given in the chapter.

What is meant by form filling? What are the advantages and disadvantages of this type of user
data entry?

Explain what is meant by a command language.

116 Chapter Seven

Graphics, Animation,
and Sound

0ne of the particularly nice features about the PET/CBM is the availability of the graphic character
set. This set consists of 62 characters directly accessible from the keyboard and four additional char-
acters that are available using the POKE command. By using the reverse of these characters a total of
132 characters are available.

GRAPHIC CHARACTER SET

Figure 8.1 shows the graphic character set with the related ASCII codes while figure 8.2 shows the
graphic characters organized by type.

Most graphics are selected by pressing the appropriate shifted key and can be used in a character
string like any other character. For instance, an upper left corner graphic is selected by pressing a shifted
zero giving:

I._4

By using the corner symbols in keys 0 . — and = the horizontal line (shifted@) and the vertical line
(shifted]) a box may be drawn with the following program.

10 PRINT " "
20 PRINT ™ "
30 PRINT ™ .
40 PRINT " "

Using the reverse key a solid box may be drawn as follows:

10 PRINT "rvs "
20 PRINT "rvs "
30 PRINT *rvs "
40 PRINT "rvs "

117

rvs
rvs

"rvs| rvs off
"“rvs| rvs off

llrvs Ill

10 PRINT "rvs—"

20 PRINT
30 PRINT

A solid outline with an empty interior could be produced by turning reverse on and off.
40 PRINT

© by 28] ~ N
»

gv ‘Et_ _ZN_ m ?& ﬁﬂ\y TL

2 T 2 5 ®© 0 = 2 g &
(o 2) [24] () (o)) (]

» - [(e] © Te] w < © N~

108
23

N
-

>

- = = 9 S o N«
(o [N &) X S ey G

8« & - = & 3 g g 8 &
HEME 08 0 ®58 2
o 3 < 8 g & 38 8 8 R R R
HPEEDERD B8 B
[+ D [+9] N < (o] (2] o [To] (@] ™ Q

o © © © © ~ © m © D @ -}
b e e 9 [22)) 05 £ tIbd B

Chapter Eight

Figure 8.1 Graphic POKE codes

118

Using the appropriate codes, graphics may be POKE’d to the screen instead of using the PRINT.
The POKE code for a solid square (reverse space) is 160, which may be used as follows to produce a
solid box.

10 POKE 32948, 160
20 POKE 32949, 160
30 POKE 32988, 160
40 POKE 32989, 160

This approach may seem more awkward than using PRINT, and for this graphic it really is.
However, POKE has the advantage of executing faster than PRINT, and since the address and value
may both be variables we can take advantage of this characteristic if a pattern is to be duplicated on
the screen. But more on this later.

horizontal vertical wide narrow diagonal

line line bar bar

[]
T
[
©
@

9 D e
9))

Clzis
ezl

solid solid circle
half triangle

363 73 (9 F3 FI 6B
FEREADHH

) (Do

95
@
=

[2]
o]
=
Q

suit

23T
o
0
I ¢
o
=

IS
a0
(~a) (-5 (-9 |vr3|a g8
;Q
®
£0 0
[«lh o)
clelelch

Figure 8.2 Graphic characters by type

Graphics, Animation, and Sound 119

Ly PREINT " Telenaise

il HTY ¥ ¥ ¥) ¥ ¥ ¥ ¥ ¥ T] ¥] ¥ 1
3 OFRINTY FE LD L I D8 1200 1 [g L et L 0
FORE 33697, 54
F‘F::: :!' }."! —!“ i Ll L . 1 i 1 L T i ¥ i H i ¥ i ¥ ! ¢ . ¥) i 1 1] i ¥ : H i !
FRLHTY RN TR T LB R DT P LT p B o o]
i i

Y R ! LS S S N WA S SN N S Y T ,
Ry HLCHCE PRSP WG H B L e R IRET
y R TRHTH J SN SO SN PO SN SRR JRSIOR DO DR N S j

PEHIET [40 1 1B M P L, L2 | [SHIET |
§ . § {

i j i. i, i J H ! . } i

, PR ey

i i

Figure 8.3 Graphic of the keyboard (for PET and CBM 4000 series only)

USING PRINT TO PRODUCE A GRAPHIC

Graphic of the PET Keyboard

The easiest graphics to produce are those that use the graphic character set without the need for the
reverse characters. An example of this is the keyboard shown in figure 8.3. A graphic of this type can
easily be developed on the screen as the program is being written. A simple development aid is to use
the abbreviation for PRINT (?) so that you can keep the graphic on one line as it is developed. Try
typing the following line:

1 0 0 2 _ = u
Now if you LIST this line the PET will have converted it into:

100 PRINT =

Using this approach will give the maximum possible use of each line to develop your graphic. Of course,
after the line has been entered the entire word PRINT will be included when the program is listed. So
this approach will help only when the original input of the graphic is made. Subsequent listing may
result in line overflow, but when the program is run the graphic will still fit the screen.

Reaction Timer with Graphics

Many game and simulation programs will benefit visually from the use of a type of scoreboard that
draws the user’s attention to specific information used in the program. For instance, the popular Lunar
Lander program uses a scoreboard to display a constantly changing rate of descent, altitude, fuel re-
maining, and elapsed time.

The Reaction Timer we developed earlier would be more visually appealing if the GO signal were
placed in a box to draw attention to it. Then the box could also be used to display the reaction time
when a key has been pressed. Figure 8.4 shows a layout of the graphic in the design stage. When graphics
become more complex (this one is still quite simple) it often helps to do a layout on graph paper before
trying to code it in the program.

SIGNAL TIME

Figure 8.4 Reaction Timer graphic layout

120 Chapter Eight

SERCTION T IMER"

- : “v;;: { - e} ,ii
pdatEl BIGHRL L ViRE Y
SN I R | g

TR L2 W
TRE 11" W .
TR L1 0" #@im

FLIT Sl TRY AGE T 0 R
[F LEFTHORE 1o=""" THEM 186

FF

q GIEFLAY RESDY 5IGHAL

S RERALYE Y

GET MEsIF Ag="" THEH S4dg
P =T
AT T T S AR L

Tl m e BT

S LG LI R GI ILTLTR

TIME DELRY
Tesd 1L S0 2 HET
FLIFH

Figure 8.5 Reaction Timer program

Figure 8.5 contains the program for the timer. Once the scoreboard has been drawn the word
‘READY’ is displayed in the box under the title START. This action requires cursor positioning with
subroutine 600 and a TAB(13) in line 520. Using both cursor control and TAB permits the program
to display a value (READY) inside the box without destroying the lines that are currently on the screen.

A time delay is then used before the ‘GO’ signal is displayed. Notice that the string containing
GO in line 544 contains extra spaces to ensure all the letters of START are cleared from the box.

The remainder of the program is basically like before except for line 551. This statement calculates
the elapsed time (ET) and reduces the answer to three decimal places so it will fit in the box.

USING POKE TO PRODUCE A GRAPHIC
The introduction to this chapter mentioned that both PRINT and POKE could be used to produce

graphics. POKE generally operates faster than PRINT and also permits the use of variables, which will
be valuable for the chessboard graphic. Speed is primarily of interest for animation.

Graphics, Animation, and Sound 121

Figure 8.6 Lunar lander working drawing

Lunar Lander

An all-time graphic favorite is the lunar lander, and we will produce it here using POKE statements.
First a graph paper drawing of the LEM is needed to work from. This is given in figure 8.6.

The next step is to determine the ASCII POKE codes for each of the characters in the graphic.
Using figure 8.1 select each code (remembering that some of them are reverse graphic characters) and
write them down in the order that they appear in the design. Now you will have a chart as follows:

32 32 121 32 32
32 32 101 32 32
32 233 160 223 32
32 160 160 160 32
233 149 147 129 223
78 233 120 223 77

Now we have a choice. Either a separate POKE can be used for each character, which requires
30 POKEs, or we could read these numbers as data and POKE them using a variable. This is the
preferred solution as shown in figure 8.7. Notice the nested FOR loops that control the reading and
POKE’ing. The starting value (33064) of the outer value controls the screen addresses which are POKE’d
with the data.

starting address

100 REM LUNAR LANDER each line
110 FOR I=33064 TO 33264 STEP 4o‘f/////

120 FOR K=I TO I+4 <— set 5 addresses
130 READ N per line

140 POKE K,N(\

150 NEXT K = y
150 NEXT 1 2 soroenadress
170 STOP

180 DATA 32,32,121,32,32

190 DATA 32,32,101,32,32

200 DATA 32,233,160,223,32
210 DATA 32,160,160,160,32
220 DATA 233,149,147,129,223
230 DATA 78,233,120,223,77

Figure 8.7 Lunar lander using POKEs (for PET and CBM 4000 series only)

122 Chapter Eight

80 PRINT "[clr]

90 N=32768

94 FOR S=1TO08

95 FOR R=1TO3

100 FOR P=1TO32STEP8
110 FOR P1=1TO4

120 POKE N,160

125 N=N+1

130 NEXT P1

135 N=N+4

140 NEXT P

145 N=N+8

150 NEXT R

160 IF (INT(S/2)*2)<>S THEN N=N+4:GOTO 170
165 N=N-4

170 NEXT

Figure 8.8 Chessboard graphic program (for PET and CBM 4000 series only)

Chessboard

The problem of displaying a chessboard seems at first quite simple. However this simplicity is soon
overshadowed by two problems. The first occurs when we consider the number of POKE statements
needed. If the board is to consist of 3)X3 squares on the screen then we need 3X3X8X8 (a board has
8 squares to a side) POKEs. Obviously 576 POKEs are too many. Since each square is either black
(blank screen) or white (ASCII 160) then possibly we can compute the value to be POKE’d and use
variables.

A second problem may not be apparent until our first attempt to display the chessboard. If each
square on the board is indeed 3X3 then a square that is longer than it is wide will display. The reason
for this surprise is that each character on the screen has about a 4:3 height to width ratio. This problem
may be corrected by making each square on the board 4 characters wide and 3 characters high. The
program is in figure 8.8

ANIMATION

Animation is the process of taking a graphic and causing it to move up, down, left, right, or diagonally
on the screen. Usually animating an object on a microcomputer is done using cursor controls in a PRINT
statement or by recalculation of a series of POKE addresses. Normally, the Hollywood cartoon approach
of creating many frames of an object and displaying them rapidly is not used. The reason to avoid this
approach, if possible, is that it requires an excessive amount of storage and a substantial amount of
time to type in all the images.

Rocket 1

Figure 8.9 is a program to create a rocket blasting off. This is one of the easiest animation techniques
to master. The program begins with a clear screen and positions the cursor 11 lines from the bottom of
the screen by printing the variable A$ which contains cursor down characters.

60 A$="dn dn dn dn dn dn dn dn dn dn dn dn dn dn"
95 PRINT LEFTCAS,15-1);

Graphics, Animation, and Sound 123

At this position the rocket is displayed using PRINT statements. Next the FOR loop causes the
cursor to be positioned one line higher than for the previous output by selecting 15-I characters from
AS. Now when the rocket prints it is one line higher on the screen than before. Since this happens
relatively quickly, motion is produced and the rocket takes off.

(N

I = 15
1 =3
1 =2
I = 1

- S

One other important feature of the program is the last PRINT statement, which simply prints a
blank line of characters. This is necessary to wipe out the previous bottom line of the rocket, which will
otherwise stay on the screen as each new rocket image is displayed.

UL UEIOL UL
H o

C Tl TOHE

PET
FRIHTLEF TE0ME 150 0 s
G R TR { .

PR b -

g H oW

BT A mv

ERO T How|r

ER I A

SR LT i i
FREIHTY "

I 2

Figure 8.9 Rocket 1 program

Rocket 2

Animation can also be produced by using cursor controls directly in the print string. This is a technique
used extensively in the rather amusing program Toker. Although not as easy to read, the program in
figure 8.10 has the advantage of being quite short. A second benefit will be seen when the program is
run. Because of the cursor movement the motion of the rocket is very smooth since multiple PRINTSs
are unnecessary. The only problem with this method is the difficulty in controlling the speed of the
movement, which could be accomplished with a delay loop in the previous program.

124 Chapter Eight

Figure 8.10 Rocket 2 program

To aid in reading this program, since the graphics are difficult to decipher, here is an interpretation
of the characters in statement 20.

PRINT"shift N shift M 1t 1t dn
shift % shift 7 1t 1t dn
shift) shift arrow 1t 1t down
» = 1t 1t dn
: : Uup up up up up 1t 1t *;

Egg Timer

The next program combines the PRINT, POKE, and the TIME feature to produce an animation of an
egg timer or hourglass dropping sand for one minute. In addition to dropping the sand the program
displays a countdown of each second as time passes from 60 to O seconds.

The program (figure 8.11) begins by printing the egg timer in subroutine 2500. This routine uses
cursor downs and TABs to position the timer on the right side of the screen. This image remains on the
screen for the duration of the program.

Next the time counter (T) is set to 60 seconds in line 200 and printed in line 220. After printing
the time the cursor is moved four positions left to prepare for printing the next T value (59). As each
value prints it overprints the previous value, producing a counter effect. Line 210 also stores the current
time (TI) in K for future comparison.

The sand is dropped by POKEing a period into five screen positions within the timer. The address
is derived by considering the screen to be numbered from O to 999 and then adding this value to 32768
to get to the actual address. Statements 230 to 270 produce the dropping effect as follows:

230 FOR I=435 TO 595 STEP 40
245 POKE 1+32768,46

250 GOSUB 3000

260 POKE 1+32768,32

270 NEXT 1

Since each position to receive a grain of sand is directly below the previous one an increment of
40 is used, which moves the grain to this position. Subroutine 3000 serves two purposes. First it acts as
a delay loop so the sand remains on the screen for a reasonable duration before it is cleared in 260 and
the next grain is dropped.

Second, subroutine 3000 checks the time to see if one second (60 jiffies) has passed. A second is
detected by comparing the current value of T to be 60 greater than the previous value that was stored
in K. At this time the second counter T is reduced by one and the new TI value is stored in K. If the
value of T has been reduced below 10 then the cursor is moved one position to the right to compensate
for the one-digit number. The new time is then printed in line 3050.

Graphics, Animation, and Sound 125

PR THT g

PR THT B T IMER#®
SUIE SE

SEM wRwSET TIME S0 SECSkke
=60
PRINT

“{home 8 downs] IIME"

set current time

SRR CT L LI LT T 1 11 1 L] TR
Mgy 1T M B o= IRERCEENE W
LHT el

F

TE=TT O THER 2168

Fb: DT THE
FRIMT
Fh T
FR T FES
L FR T T TRE
FE LR 1P
EE LT T HE:

FOk Dl 1025
CeBE THEM Z8E6

PForo1eés THEH PRIMT "B 2

FRINTT " 1R :
IF To=8 THERH 326G

Figure 8.11 Egg Timer program (for PET and CBM 4000 series only)

126 Chapter Eight

check time

bR IHT HERM PIMe EACH SECHEE

Rolling Die

The rolling of dice presents an interesting problem in animation since it requires the changing of the
die image as it rolls and also the random generation of from one to six dots at the end of the rolling
sequence. To simplify the program somewhat the die will be seen in only two dimensions and will present
only two images (figure 8.12) as it rolls.

o &

Figure 8.12 Two images for the roiling die

To display these images a series of POKEs are used. The addresses POKE’d are adjusted using
a FOR loop to move the alternating images across the screen. You may ask why the dots on the die
surface are not varied randomly as the roll takes place, as they would be with real dice. The reason for
not doing this during the roll is that the time needed to generate the dots is fairly long. A second, equally
important reason is that the motion is fast enough that the dots appear to be changing, since the program
alternates between three dots and two dots during the roll.

The patterns used for POKE’ing the images are in figure 8.13.

233223
160 | 160 | 160 %233| 209 | 160 [223
209 | 209 | 209 y 160 | 209 [105
160 | 160 | 160 95105

Figure 8.13 POKE values for die images

These images are POKE’d in an alternating pattern across the screen with statements 100 to 320.

When the die comes to rest at the right side of the screen the three dots are removed in statements
330-345 in preparation for the random generation of dots (figure 8.14). A value from 1 to 6 is generated
in 350 and stored in N. The ON GOSUB in 360 then selects the appropriate subroutine to generate
from one to six dots. These subroutines have been simplified by combining operations when possible.
For example, a 3 consists of a combination of 1 and 2 so if three dots are to be generated, subroutine
3 simply calls subroutines 1 and 2. A 5 consists of 1 and 4 and a 6 consists of 2 and 4.

Graphics, Animation, and Sound 127

500

FOR I=33168 TO 33198 STEP 15
S=160

GOSUB 1000«

delay

FOR K=I TO I+2

POKE K,S €

POKE K+40,209 (

display first image

POKE K+80,S

NEXT

IF I=33198 THEN 330 <€

die has reached
right of screen

GOSUB 1000
POKE 1—32,;25__-_“‘“‘-——-—______

POKE I-31,223

delay

POKE I+7,233
POKE I1+8,209
POKE 1+9,5 |

POKE 1+10,223

A\

POKE I+47,95

display second image

POKE 1+48,S
POKE I+49,209
POKE 1+50,105
POKE 1+88,95
POKE 1+89,105
NEXT

FOR K=I TO I+2

POKE K+40,5 &
NEXT
N=INT(RND(TI)*6)+1<

remove dots

ON N GOSUB 400,450,500,550,600,650
GET A$:IF A$=""" THEN 370
GOTO 100

REM ONE

POKE I+41,209

RETURN

REM TWO

POKE I1+40,209

POKE I+42,209

RETURN

REM THREE

GOSUB 400<—

roll for 1 to 6

GOSUB 450€
RETURN

REM FOUR

POKE 1,209
POKE I1+2,209
POKE 1+80,209
POKE 1+82,209
RETURN

REM FIVE
GOSUB 410<

3 combines 1 and 2

GOSUB 550 €
RETURN
REM SIX
GOSUB 450«

5 combines
1and 4

GOSUB 550«
RETURN
STOP

1000 FOR J=1TO040:NEXT
1005 PRINT'"[clr]"
1010 RETURN

Figure 8.14 Program to roll a die (for PET and CBM 4000 series only)

128

Chapter Eight

6 combines
2 and 4

Memory POKE Expianation
Address Value
59464 0 to 255 —Frequency Control
59466 0 —Shift Register Off
15 Generate Sound
59467 0 —Control Register
Normal Setting for
Tape
16 Generate Sound

Figure 8.15 Addresses for producing sound

GENERATING SOUNDS

Both the PET and CBM computers are equipped with the ability to produce sounds. Early models
required a separate speaker/amplifier to be attached to the CB2 output on the Parallel User Port. More
recent models have a built-in speaker and thus do not require a separate attachment.

In general, sound is produced by POKE’ing memory addresses to produce the desired sound ef-
fects. The addresses used are listed in the chart shown in figure 8.15. These addresses are valid for all
PET and CBM computers.

The basic approach for producing sound is to set the shift register and the control register to 15
and 16 respectively using POKE commands in the following order:

10 POKE 59467, 16
20 POKE 59466, 15

Now the computer is ready for the command to produce a tone. This requires address 59464 to be
POKE’d with a value to set the tone’s frequency. This value may be anything from 0 to 255 with 0
being the highest tone and 255 the lowest. Each value between this range will produce a slightly different
frequency.

To stop the tone addresses 59466 and 59467 are POKE’d back to zero. Now try this code:

10 POKE 59467,16

20 POKE 59466, 15}”6'_‘ turn sound on
30 POKE 59464,150< set frequency
40 POKE 59467,0

50 POKE 59466,0}6__ turn sound off

When you RUN this short program you will get a short beep. You might even miss hearing it if
you’re not alert. The reason for the short duration is that you are hearing the tone for the length of time
that statement 30 requires for execution on the computer, which is just a fraction of a second.

To make this tone last longer we need a delay loop between statements 30 and 40 as follows:

10 POKE 59467, 16
20 POKE 59466, 15
30 POKE 59464, 150 delay loop
35 FOR I=1 TO S500:NEXT<—]

20 POKE £9487.0 to hoid tone on
50 POKE 59466,0

Now we get tone for about a second. The larger the value in the delay loop the longer the tone
will last.

Graphics, Animation, and Sound 129

Now let’s try placing the POKE inside the loop and using the loop variable for the POKE value.
In this case we must be careful not to go outside of the range of 0 to 255 since we are using this as a
POKE value.

10 POKE 59467, 16
20 POKE 59466, 15
30 FOR I=1 TO 120 | produces
;8 Eg;ﬁ% '.159464, 1€ ;'Varying tone
60 POKE 59467,0

70 POKE 59466,0

This simple code will produce a tone which starts at a high note and slides down to a much lower
one. The reverse of this with a tone beginning at a low one and sliding up to a high note can be produced
by changing the FOR loop to the following:

30 FOR I=120 TO 1 STEP -1

Experiment with this FOR loop by trying different ranges of values and even different STEP
values.

Nested FOR loops can be used to control not only the frequency of the tone but also the number
of times the tone is repeated. Try enclosing the previous FOR loop inside a second loop for 3 repetitions
of the tone sequence.

10 POKE 59467, 16
20 POKE 59466, 15

25 FOR K=1 TO 3¢ oo K-loop
30 FOR I=1 TO 120 i

t d
40 POKE 59464, 1 } vy e mrem Btimes
50 NEXT I<€ in succession

55 NEXT K<€
60 POKE 59467,0
70 POKE 59466,0

Now try this program. What do you think it sounds like? Observe how two loops are used; one to
go up the frequency scale and the second to go down.

10 POKE 59467, 16

20 POKE 59466, 15

30 FOR K=1 TO 25

40 FOR I=240 TO 10 STEP -8
50 POKE 59464,1

60 NEXT I

70 FOR I=10 TO 240 STEP 8
80 POKE 59464,1

90 NEXT I

100 NEXT K

110 POKE 59467,0

110 POKE 59466,0

130 Chapter Eight

MUSIC PLAYER

The examples of sound used so far have been sliding tones that might be used to develop different sound
effects from the PET/CBM. But not all sounds need be of this type. Music is generally produced with
distinct tones, each with precise duration. This is quite readily achieved using the POKE for sound as
we have already discussed.

The basic procedure, as before, is to POKE the control and shift registers, POKE the frequency,
and then go into a wait loop for the duration you want to hold the note. Figure 8.16 shows the values
of the frequency for different notes on the musical scale. For instance, if you wanted a low C then you
would POKE 59464 with the value 255. A middle C would be 126.

Note POKE Value

255
226
200
187
170
150
133
126
110
99
93
83
75
65
62
55
48

Low

Middle

High

MOOW>» O TMTMOO®>»>OTNMOO

Figure 8.16 POKE values for music

The next program, in figure 8.17, uses these values to make a music player out of the PET. The
keyboard is set up as a musical instrument, a piano or organ if you like, with each note associated with
a key as follows:

Key

ASDFGHIJKL : ZXCVBNM
Note CDEFGABCDETFGABCDE

As you can see each note follows consecutively across the bottom two rows on the keyboard. The
keys were selected here for the PET. The CBM should substitute the (;) for the (:) to get a correct
sequence.

The program reads the frequency values from a DATA statement into array C. The keyboard
letters which relate to these values are in variable N$. When a key is pressed, statements 210 to 230
search for the key in N$ and then select the corresponding note from the array. For instance, if L is
pressed (representing the note D) a match is found in position 9 of N§$. Element 9 of the array (value

110) is then used as a POKE value in statement 260 and a D note is played.

Graphics, Animation, and Sound 131

100 REM MUSIC PLAYER

110 PRINT "[clr]"

120 DIM C(17)

130 N$="ASDFGHJKL :ZXCVBNM"

140 GOSUB300

150 FOR I=1 TO 17

160 READ C(I)

170 NEXT I

180 DATA 255,226,200,187,170,150,133,126,110,99
190 DATA 93,83,75,65,62,55,48

200 GETA$:IF A$=""THEN POKE 59467,0:GOTO 200
210 FOR J=1 TO 17

220 IF A$=MID$(N$,J,1) THEN 250

230 NEXT J

240 GOTO 200

250 POKE 59467,16

260 POKE 59464 ,C(J)

270 POKE 59466,15

280 FOR I=1 TO (6-S)*100:NEXT I

290 GOTO 200

300 PRINT:PRINT

310 PRINT "ENTER SPEED FROM 1 TO 5";
320 INPUT S

330 IF F>5 THEN 300

340 PRINT

350 PRINT ""FOR NOTES USE KEYS ";N$
360 PRINT

370 PRINT "PRESS STOP TO QUIT"

380 RETURN

390 END

Figure 8.17 Music player

REVIEW QUESTIONS—CHAPTER 8

Write some print statements to produce a graphic triangle on the screen.

Produce the same triangle as in question 1 using POKE statements.

Draw a graphic with changing values to simulate a display of a digital watch.

Try to change the program above to include stop-watch capabilities.

Using POKEs write a program to fly an airplane across the screen.

Can you make the above airplane drop a bomb when in flight?

What addresses need to be POKE’d to produce sounds on the PET/CBM? How are these
addresses used to produce a steady tone?

How would you produce a beep beep sound?

Write a program that will play a short tune when it is RUN.

Nk WD -

o x

132 Chapter Eight

Tape Files
Extend Your Reach

What kind of record keeping would you like to do on your PET or CBM? Personal or business ac-
counts? Financial records? Student records? Or maybe you are a collector of books, records, stamps,
or even baseball cards. The use of files in the PET or CBM allows you to store data on tape or disk files
that are external to the program. In addition to eliminating or reducing the need for DATA statements,
files permit the data to be accessed by any other BASIC program. This is not the case with the DATA
statement, which may only be accessed by the program containing it.

Files may be stored and accessed in several ways depending upon whether tape or disk is used.
Sequential files are used on either tape or disk and are the easiest technique to master. Direct access
or relative files are only available with disk but represent an important technique to be used for handling
large sets of data. In this chapter we will restrict our discussion to sequential tape files.

CONCEPTS

Sequential files may be thought of as DATA statements that reside on magnetic tape. Data on tape
files are read or written sequentially, starting at the beginning of the file and progressing through each
item of data until the end of file is reached. Figure 9.1 shows how data appears on a tape file. The major
differences between sequential files and DATA statements are the lack of a statement number and the
missing keyword DATA. In other words just the data are present on the file.

RECORD 1 RECORD 2

§ [1 10,“J.C.JACKSON",3,25,1965 I I é

Figure 9.1 A sequential tape file

An important characteristic of tape is its ability to store records sequentially. Since these records
do not form part of the computer’s memory, except as they are read by the program and depending
upon the type of application, files may sometimes exceed the size of the memory capacity.

133

OPEN, CLOSE

Before the program can write data on the tape or read from an existing tape file it is necessary to open
the file. Opening makes the file available to our program, defines whether it will be input or output, and
gives it a number and a name. The OPEN statement is used for this purpose and has the following
format:

10 OPEN a,b,c,”“name”

where: a is an integer from 1 to 255 used to identify the file.
b is 1 for cassette 1 and 2 for cassette 2. Normally only cassette “one” is used.
¢ specifies read or write as follows:
0—tape is input
1—tape is output with an End-of-File (EOF) marker when it is closed.
2—tape is output with an End-of-Tape (EOT) marker when it is closed.
name—is the name used to identify the file.

Let’s try a simple example of how this OPEN statement works. If you wanted to create a tape
file with data representing your budget the following OPEN could be used:

100 OPEN 1,1,1,"BUDGET"

2

file cassette EOF filename
number unit marker

This statement will open file number 1, on cassette number 1, to be written with an EOF marker
following the last record on the file. The file on the tape will be identified with the filename BUDGET.
When this file is read later the program can then check the filename, which is recorded at the beginning
of the file, to ensure that we are reading the correct file.

After the file has been created it must be closed with the CLOSE statement. Closing writes the
EOF or EOT marker on output files and also releases the tape for other operations by the program. For
example, an output file could be closed and then opened for input in the same program.

The CLOSE statement simply identifies the file number:

200 CLOSE 1
A program that reads and processes a tape file will have the following basic structure:
100 OPEN 1,1,0,"BUDGET"

statements to read
and process the file

200 CLOSE 1

134 Chapter Nine

Notice in this example that the third parameter in the OPEN is a zero, which identifies the file
as output.

PRINT#

Data are placed on the tape(output) by the PRINT# statement. The number used after the # symbol
is the file number assigned to the tape in the OPEN statement. In this case a 1 has been used.

100 PRINT#1,AS

This statement indicates that the contents of variable A5 is to be written (printed) on tape number 1.

WRITING BUDGET NAMES ON TAPE

Figure 9.2 contains a program that accepts names of budget items from the keyboard and writes them
sequentially on the tape.

100 REM CREATE NEW FILE

110 PRINT CHR$(147):REM CLEAR SCREEN
120 OPEN 1,1,1,"BUDGET"

130 INPUT "ENTER ITEM NAME (END)'";N$
140 IF N$="END" THEN 170

150 PRINT#1,N$

160 GOTO 130

170 CLOSE 1

Figure 9.2 PRINT Budget item names on tape

The program begins with the message:
PRESS PLAY AND RECORD ON TAPE #1

The program then asks the user for an item name or the word END to indicate all of the data has been
entered. The following is how the screen will appear after a number of entries have been made from
the keyboard.

ENTER ITEM NAME C(END)? RENT
ENTER ITEM NAME C(END)? TELEPHONE
ENTER ITEM NAME C(END)? LIGHT
ENTER ITEM NAME (END)? HEAT
ENTER ITEM NAME (END)? SUPPLIES
ENTER ITEM NAME C(END)? END

Tape Files Extend Your Reach 135

As these names are being entered on the keyboard no activity will be apparent on the tape. Even-
tually, if enough items are entered or END is reached the tape will then write. What is happening here
is that the data is first being stored in a memory buffer in the PET. This buffer can hold a maximum
of 191 characters; so only when it has been filled with data or the file is closed will the PET then write
the data from the buffer to the tape drive. The internal use of a buffer does not usually affect the way
you will write tape programs.

keyboard

memory buffer

supplies heat—— — -~

The budget item names will appear as follows on the tape:

% RENT(cr)TELEPHONE(cr)LIGHT(cr)HEAT(cr)SUPPLIES(cr) §

Since each item is being printed individually by statement 150 a carriage return (cr) will follow
each item. The carriage return is an ASCII code of 13 and is necessary to separate each item of data.
In this example, the carriage return is included automatically since we are printing only one item at a
time to the tape.

INPUTH

Data is read from the tape in a manner similar to the keyboard. But instead of using INPUT the INPUT#
statement is used. The statement,

100 INPUT#1,NA

reads a numeric value from the tape identified as 1 in the OPEN and places the value in the variable
NA. Now the need for the carriage return character on the tape is evident. When the number for NA

136 Chapter Nine

——

is read the carriage return signals the end of this item, just like pressing Return on the keyboard after
keying a number.

When data is read from tape it is necessary to know when all of the data has been read. In other
words we need to know when end of file is reached. There are two ways to do this. The first method
requires that you know exactly the number of items to be read. The second uses the PET’s status (ST)
code, which signals the program when end of file is reached.

To use the first method, suppose we want to read and display 5 numbers from a file called NUM-
BERS. The following program could be used:

100 OPEN 1,1,0,"NUMBERS"
110 FOR I=1 TO 5

120 INPUT#1,NA

130 PRINT NA

140 NEXT I

150 CLOSE 1

This program reads a tape with 5 numbers on it separated by carriage returns as follows:

j;, 5.6 (cr) 45 Ccr) .05 Ccr) 47.8 (crd) 100 Ccr) gf(

READING THE BUDGET NAMES TAPE

Figure 9.3 contains a program to read the budget item names created on tape in figure 9.2. This program
opens the BUDGET file as input, reads each name, and displays it on the screen. Since this program
does not use a fixed number of data items the ST code is used to detect end of file.

A status of 64 is a signal from the operating system that end of file has been reached. The ST
code is tested in statement 260 prior to the input of a new data item. When the code is equal to 64 then
the last item read was the final item on the tape and the program branches to 300, where the file is
closed.

A new approach to clearing the screen is also used in this program. Line 230 prints the CHRS
value of 147 which, as Appendix F shows, is the character code equivalent to the CLR key. This ap-
proach to using the clear or other functions is useful when a printer that does not print the graphics
characters is used with your PET or CBM.

175 REM READ BUDGET NAMES

180 PRINT "REWIND TAPE NO. 1"
190 PRINT "PRESS ANY KEY TO CONTINUE"
200 GET A$:IF A$=""" THEN 200
210 REM READ AND DISPLAY FILE
220 OPEN 1,1,0,"BUDGET"

230 PRINT CHR$(147)

240 PRINT "BUDGET ITEM"

250 PRINT

260 IF ST=64 THEN 300

270 INPUT#1,N$

280 PRINT N$

290 GOTO 260

300 CLOSE 1

Figure 9.3 Program to read budget item names

Tape Files Extend Your Reach 137

The screen display from this program is as follows:

REWIND TAPE NO. 1
PRESS ANY KEY TO CONTINUE
PRESS PLAY ON TAPE #1

The screen then clears and displays the following:
BUDGET ITEM

RENT
TELEPHONE
LIGHT
HEAT
SUPPLIES

HOW TO HANDLE RECORDS WITH MULTIPLE FIELDS

Most data processing files require the use of more than one ficld per record. In a payroll program fields
such as Employee Number, Rate, Hours, Tax, and so forth are necessary for complete information. As
a result each Input or Print operation on tape requires a variable for each of these fields.

We have already seen how each value on tape is followed by a carriage return character. This
character separates the data from a following data item. When multiple fields are used each field in the
record must also be separated by a carriage return. Figure 9.4 shows a program to create a budget file
that contains both an item name and an amount.

100 REM CREATE NEW FILE WITH MULTIPLE FIELDS
110 PRINT CHR$(147): REM CLEAR SCREEN

120 OPEN 1,1,1,"“BUDGET"™

130 INPUT "ENTER ITEM NAME CEND)>";N$

140 IF N$="END"™ THEN 180

150 INPUT "ENTER AMOUNT";A

160 PRINT#1,N$;CHR$(13);A

170 GOTO 130

180 CLOSE 1

Figure 9.4 Create budget file with name and amount

The carriage return character is included after the name by using the CHRS$ function with the
ASCII value 13.

160 PRINT#1,N$;CHR$(13);A
Notice that the fields are separated by semicolons and not commas. Using semicolons keeps the fields
tightly packed and saves space on tape.

Another way to create this file would be to use two PRINT# statements:

160 PRINT#1,N$
165 PRINT#1,A

It is also possible to insert commas between fields as separators:

160 PRINT#1,N$;",";5A

138 Chapter Nine

100 REM READ AND DISPLAY FILE
110 PRINT "REWIND TAPE NO. 1"
120 PRINT "PRESS ANY KEY TO CONTINUE"
130 GET A$:IF A$=""" THEN 130
140 OPEN 1,1,0,"BUDGET"

150 PRINT CHR$(147)

160 PRINT "ITEM",'"AMOUNT"

170 PRINT

180 IF ST=64 THEN 220

190 INPUT#1,N$,A

200 PRINT N$,A

210 GOTO 180

220 CLOSE 1

Figure 9.5 Program to read multiple fields

Figure 9.5 shows how to read this file. Since the field separation has been implemented in the
create program, using the file as input is now quite natural. As before ST is used to detect end of file.

UPDATING A TAPE FILE

Most files store data that change frequently, which is where files are superior to using DATA state-
ments. Instead of changing each program that uses the data, only the data file itself needs to be changed.
These changes are then reflected in each program that accesses the data.

For this exercise we will only consider how to change existing items in the file and not how to add
or delete data. As a further limitation we will limit the file to a maximum of 20 items. Obviously these
are serious limitations but for now this approach will help us to understand the concepts.

The program will read the Budget file into two arrays. The first, N§$ will contain the names, and
the second, A, will hold the dollar amounts. After updating has been done to the necessary items in the
array the file will be rewritten from the array onto tape. Figure 9.6 contains the flowchart for this
program and figure 9.7 contains the program.

SUMMARY OF TAPE FILES

Tape is a slow but inexpensive means for storing data outside of your program. As we have seen from
the programs in this chapter, tape can only be read sequentially. To get to any record in the file the
program must read all of the records prior to the one we really want. For some applications this can be
a time-consuming wait that leads to some frustration on the part of the user of the program.

This problem may be partially minimized by reading all of the file into an array before the pro-
gram begins. Although this will take time initially, no further reading of the file will be necessary by
the program no matter how long it is to be running. Of course, this approach means there must be
sufficient space in memory to store all of the data, which is not always possible.

The last program in this chapter showed the basic method for updating a file by reading it into
memory, making changes to it, and then rewriting it back onto the tape. Again, this approach requires
that there be sufficient space in memory to store the entire file. If there isn’t enough room one solution
might be to divide the file into two or more separate files. But be careful about overwriting one file on
top of another.

Another solution, on the PET, is to use two tape units. This gets a bit complicated but basically
it involves reading records from one file, changing the record contents if required and then immediately
writing the record onto the second tape. With this approach only one record is retained in memory at
one time, rather than the entire file. Although this procedure will work it is slow! If this becomes a
common need maybe this is the time to consider moving to disk.

Tape Files Extend Your Reach 139

Print
Heading

For I=1
To 20

input
Record

Print
Record

—- Next

o e e e N e, e ——— -

Position
Cursor

Figure 9.6 Updating a tape file

140 Chapter Nine

Position
Cursor

Input
item No.

Position
Cursor

Input
Desc & Amt

o e e e e e e e———
|
1

|
1

Open
Output

For N=1
Tol

Print# 1
Record N

Next

100
105
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
500
510
520
530
540
550

REM UPDATE BUDGET FILE
DIM N$(20),A(20)
PRINT CHR$(147);
OPEN 1,1,0,"BUDGET"
PRINT '[clr]NUMBER","ITEM","AMOUNT"

maximum of 20 items

FOR I=1 TO 20
IF ST=64 THEN 200
INPUT#1,N$(I),A(I)
PRINT I,N$(I),A(I)< display each item read
NEXT

CLOSE 1

I=I-1 :REM ADJUST FOR EOF
REM ACCEPT UPDATES

GOSUB 500

PRINT "[rvs]DO YOU WISH TO CHANGE AN ITEM(Y/N)[of£]";
GET A$:IF A$=""" THEN 250
IF A$=""N"" THEN 340

IF A$ "Y' THEN 230
GOSUB 500 '
INPUT "[rvs]ITEM NUMBER[off]';N select item to change
GOSUB 500 —
PRINT "ENTER (DESCRIPTION,AMOUNT)"<€ revise
INPUT N$(N),A(N)

GOTO 230

REM REWRITE UPDATED FILE

GOSUB 500

PRINT "REWIND TAPE #1"

PRINT "PRESS ANY KEY TO CONTINUE"
GET A$:IF A$=""" THEN 380

OPEN 1,1,1,"BUDGET"

FOR N=1 TO I

PRINT#1 ,N$(N);CHR$(13) ;A(N)< rewrite update file
NEXT N

CLOSE 1

STOP

REM POSITION CURSOR

D$=" [22 down's] "

C$=ll 1]
PRINT '"[home]";D$;C$

PRINT C$;"[2 up's]"

RETURN

Figure 9.7 Program to update the budget file

Tape Files Extend Your Reach 141

REVIEW QUESTIONS—CHAPTER 9

1. Describe how data appears on a tape file.

2. Tape files are called sequential files. What is the advantage of a sequential file? What are the
disadvantages?

3. Why is it necessary to use OPEN with tape files? What information does the OPEN specify?

4. What must be done when a program has finished using a tape file? .

5. When data is being PRINTed to tape why is the tape not moving as each item of data is
entered?

6. What commands are used to write data on tape and to read from tape?

7. You are writing a program to record Subscription Number (S), Name (N$), and Termination
Date (T$) for each subscriber to a publication. Write a single print statement to create a tape
record with these three fields.

8. Write a program that permits changes to the termination date on the file in question 7.

142 Chapter Nine

Disk Files

lf tape files extend your reach beyond the capacity of the computer’s main memory then this is even
more true of the floppy disk. The 4040 floppy disk drive can store about 170,000 bytes of data on one
51/4" floppy disk. Since there are two drives, more than 340,000 bytes of data are available at one
time.

CBM owners can use the 4040 or the 8050 disk with about one million bytes of capacity on two
drives. Then there is the hard disk with even greater capacity. In this chapter our discussion will be
limited to the floppy disk units.

Figure 10.1 shows how data or programs are written on the disk. Each floppy disk surface is di-
vided into a number of tracks and each track into a number of sectors. The exact number of tracks and
sectors is not terribly important to our discussion but for the curious there are 35 tracks and a total of
690 sectors on a 4040 disk. A sector can store 256 bytes. In any case the DOS (Disk Operating System)
program in the disk drive takes care of all this technical stuff.

Track

/ Sector

Read/Write
Head

Figure 10.1 Floppy disk
When the floppy disk is inserted in the disk drive the read/write head comes in contact with the

surface of the disk. Under control of the program, data is written to the surface of the disk or read from
the disk into the program. In addition to data files, programs may also be stored on the disk.

143

Record 1]
Record 2 -
Record 3 <

Record 4 —

Record n |

Figure 10.2 A sequential file on fioppy disk

SEQUENTIAL FILES

Using a sequential file on disk is not much different from on tape. Although the physical characteristics
of disk are quite different from tape, records are logically organized in the same way. Each record on
a sequential file logically follows the preceding record as shown in figure 10.2. As for tape a buffer in
memory is filled with data before it is written to the disk.

When we were using tape records we discovered that to get to any record all of the preceding
records needed to be read. This is also true of sequential disk files. In fact all of the limitations for
sequential tape apply to sequential disk. Well, all that is except for one: Speed. Disk, as you will find,
is considerably faster than using a tape file.

DOPEN and DCLOSE

Disk uses its own open and close statements, which simplify the use of disk files. These commands were
first available on PETs or CBMs with BASIC 4.0. If yours is an earlier machine you should refer to
the Commodore manual for the format of the Open and Close statements.

The DOPEN has a number of options for both sequential and relative files. To keep things simple
only the necessary items for sequential files will be shown now. Later additional options will be discussed
for use with relative files. '

DOPEN#fn, “filename”,Dn [W]
R

where fn refers to the file number you will use in the program to reference this file. Normally
a number less than 128 will be used. Most programmers use a single digit number
for a filenumber.
“filename” is the name that will be used to identify this file. When a file is to be read it will
be opened only if the filename matches.
Dn D refers to Drive and n to the drive number. If the disk is on drive 1 then the entry
is D1. If drive O then use DO or simply leave this entry out and it will default to
drive 0.
W the W refers to an output file which will be Written. R refers to an input file that
will be Read. If no entry is made then R is assumed.

144 Chapter Ten

A few examples are in order now to explain how the DOPEN may be used.

200 DOPEN#1,"ACCOUNTS",D1,W

AN

filenumber filename drive write

In this case a file named ACCOUNTS is opened as filenumber 1. The floppy disk will be in drive 1 and
is to be written on as output.

150 DOPEN#5,*"CLASS",H

A file called CLASS is opened as number 5. It will be written on as an output file, and by default is on
drive O.

300 DOPEN#8,'"RECORDS"
This file is number 8, and is called RECORDS. The disk defaults to drive 0 and the file will be read

as input, also by default since R is not specified.
By comparison the DCLOSE statement is quite simple as shown in the following general format:

where

fn is the filenumber to be closed.
For exampie, the statement:
500 DCLOSE#1
will close filenumber 1. No additional entries are normally needed in the DCLOSE statement.

PRINT# and INPUTH

Once the disk file has been opened it can be referenced using the PRINT# and INPUT# statements in
the same way as for tape files. The filenumber in both the PRINT# and INPUT# refers to the equivalent
filenumber used in the DOPEN statement. Here are some sample statements:

100 PRINT#5,A$ writes variable A$ on file 5
200 PRINT#3,K writes numeric value K on file 3
300 INPUT#1,X$ reads string X$ from file 1
400 INPUT#2,S inputs variable S from file 2

Writing Budget Names on Disk

In the tape chapter we wrote a few programs that created and read a sequential tape file for budget
data. Now let’s look at these same programs written for a sequential disk file. The first program writes
a series of names of budget items on disk.

Disk Files 145

Functionally, this program appears the same to the user as the tape program. The program clears
the screen and then prompts the user to enter an item or the word END to terminate the input. Each
name is then written on the disk file. Here is the program:

100 REM CREATE SEQ DISK FILE

110 PRINT CHR$(147):REM CLEAR SCREEN
120 DOPEN#5,''BUDGET' ,DO,W

130 INPUT "ENTER ITEM NAME (END)'";N$
140 IF N$="END" THEN 170

150 PRINT#5,N$

160 GOTO 130

170 PRINT#5,"END"

180 DCLOSE#5

There are a few subtle differences when we are creating a disk file. The first involves the use of
the DOPEN to open the file, give it a name, and assign the disk drive. Once the file is opened things
proceed the same as for tape until the end of the data is reached. Tape files used the status indicator
(ST) to test for end of file on the input. But, since ST is not available for disk, we must create our own
end of file indicator. This program simply writes an extra record, containing the word “END”, on the
disk file to identify the end of file. The data on the disk will look like this:

g?ENT(cr)TELEPHDNE(cr)LIGHT(cr)HEAT(cr)SUPPLIES(cr)END(cr)z

When using a special record to indicate end of file it is quite important to ensure that the choice
of word or value is not something that can legitimately appear as part of the data.

Now, when this file is read the program can test for the word “END” and when it is found it will
indicate end of file has been reached.

Reading Budget Names from Disk

To read the budget names file, a program similar to the tape input program is required. Again there
are some minor differences. One of these changes is how to test for end of file. Here is the program.

200 REM READ AND DISPLAY BUDGET FILE
210 DOPEN#5,''BUDGET",DO,R

220 PRINT CHR$(147)

230 PRINT "BUDGET ITEM"

240 PRINT

250 INPUT#5,N$

260 IF N$="END" THEN 290

270 PRINT N$

280 GOTO 250
290 DCLOSE#5

The end of file is checked in statement 260 immediately after the input is read. If the “END” record

was read then control of the program branches directly to statement 290 where the file is closed and
the program terminates.

146 Chapter Ten

How to Handle Multiple Fields on Disk Files

Disk files also frequently use records consisting of more than one field. This situation is handled in the
same way as tape by writing a carriage return (CHR$(13)) between each field on the record. Don’t
forget to separate each field with a semicolon, not a comma.

End of file on sequential disk requires a separate record as we saw in the preceding examples. But,
since we are recording multiple fields each field must be given a value. In the following program the
Name field (N$) will be given the value “END” and the Amount field (A) will be given a zero value
at end of file.

100 REM CREATE NEW FILE WITH MULTIPLE FIELDS
110 CR$=CHR$(13)

120 PRINT CHR$(147):REM CLEAR SCREEN

130 DOPEN#5,"BUDGET 2" ,W<- defaults to drive O
140 INPUT "ENTER ITEM NAME (END)";N$
150 IF N$="END" THEN 190

160 INPUT "ENTER AMOUNT'" ;A

170 PRINT#5,N$;CR$;A

180 GOTO 140

190 PRINT#5,"END'";CR$;0€ end of file record
200 DCLOSE#5

Note the use of the variable CR$ for the carriage return. Since carriage return codes are used
more than once in the program, line 110 assigns the value once to CR$ which then may be used as
needed. This approach makes it easier to use the return code rather than defining it completely each
time with the CHRS function.

Now let’s look at a program to read this file:

100 REM READ AND DISPLAY BUDGET FILE :
110 DOPEN#5,''BUDGET 2"'< defaults to drive O
120 PRINT CHR$(147) and read

130 PRINT "“ITEM",'"AMOUNT"
140 PRINT

150 INPUT#5,N$,A

160 IF N$=""END'" THEN 190< end of file reached
170 PRINT N$,A
180 GOTO 150
190 DCLOSE#5

This program is really not much different from the tape program except for end of file handling,
which we have already discussed. If at this point you haven’t already entered these programs into your
computer why not give them a try and observe first-hand how they work. Then try and rewrite them to
include some other fields such as date, estimated amount, and actual amount. If you try this it will be
necessary either to use a different filename or first scratch BUDGET 2 from your disk.

Detecting Disk Errors

Occasionally an error will occur when either opening a file or reading or writing to the file. Usually the
error will be the fault of the program, such as trying to write a file that already exists with the same
filename. Rarely will the error be a problem with the floppy disk or the disk drive. In any case when
there is an error the program needs to know about it, since to continue on blindly assuming that nothing
is wrong can be disastrous. In the previous programs we did make that assumption but this is not advised
for serious programs.

Disk Files 147

How do you know when an error occurs on the disk? Well, try entering the command
? DS$

this command will print the disk status string, which should appear as follows:
00, 0K,00,00

This indicates there was no error on the previous disk operation.
There is a similar variable DS that is the numeric equivalent of this message. By typing

? DS
the result would normally be

0

Any value other than zero would indicate an error of some kind had occurred during the last disk op-
eration.

If a program attempted to open a file for output that already existed the contents of DS$ would
be

63, FILE EXISTS,00,00

and DS would be 63. A complete list of error codes is listed in Appendix D.
Now let’s rewrite the last program, which reads and displays the budget file, and include code to
check the disk status after each 1/O operation.

100 REM READ AND DISPLAY FILE

110 DOPEN#5,'"'BUDGET 2"

120 IF DS<>0 THEN PRINT DS$:GOTO 210
130 PRINT CHR$(147)

140 PRINT "ITEM','"'AMOUNT"

150 PRINT

160 INPUT#5,N$,A

170 IF DS<>0 THEN PRINT DS$:GOTO 210
180 IF N$="END" THEN 210

190 PRINT N$,A

200 GOTO 160

210 DCLOSE#5

At statement 115 and 155 the program now tests DS for a zero value which would indicate all is
well. However, if DS is not equal to zero then the program will print out the contents of DS$, which
will give a description of the error that occurred. The program then branches to the close statement at
190 and the program is terminated.

If the program had attempted to open file “BUDGET 1” then the error

65, FILE NOT FOUND,00,00

would have been displayed.

148 Chapter Ten

MAINTAINING THE CHECKBOOK

A common need we all have is to maintain a checkbook for our deposits and withdrawals against a
checking account. To write this program we need to identify how to do several things. First is the need
to create a new file with an opening balance. Next is the need to be able to add additional entries because
of deposits and withdrawals against the account. And third is the ability to delete entries at the end of
a month or similar time period; otherwise the file will continue growing larger and larger.

Actually, these provisions are not uncommon for many types of files. For example, an accounts
payable or receivable file, an inventory file, a file of students, and so on. The list is endless. Although
each application will have different specific needs some of the basics developed here will not need to
change very much.

The procedure for updating a sequential disk file (the checkbook) will be the same as that used
for tape. In other words, this program will also read the file into memory using arrays, update the data
in the arrays, and then rewrite the updated file back onto the disk. The updated file then replaces the
old file, which is scratched from the disk. For this reason it is vitally important that the program be
thoroughly tested since if there are any errors they may cause damage to the disk records, which cannot
then be retrieved.

Replacing a Current File

How do we tell the disk that we want to replace a file instead of writing a new one? This is done by a
code in the DOPEN statement. The code is an “@” used as follows:

100 DOPEN#3,"@CHECKFILE"™,DO,NW

You will recognize this open as a disk open for file number 3 with a filename of “CHECKFILE”. The
file is on drive O and is an output file. Notice the use of the “@” immediately before the filename so
the name appears as “@CHECKFILE”. This use of the “@” indicates we are opening an existing file
that is to be replaced with new or revised data.

Using Variable File Names

The program we are about to write also has another need. We would like to be able to accept any
filename as input to the program. That way we are not limited to just one file but could access any
number of possible files. This is a more realistic approach to disk since one floppy can store a number
of different files. This means we need to use a variable for the filename. Here is an example of how a
filename might be entered and then used in the DOPEN statement:

100 INPUT "ENTER FILENAME";F$
110 DOPEN#3,(F$),D0,NW

This example uses the variable F$ to provide the filename in the open statement. Notice that it is en-
closed in parentheses. Now statement 110 will open whatever file the user specifies in response to the
input query in line 100. But, if this is a file to be replaced, we are expecting the user to include the “@”
as the first character of the filename. This might be acceptable but it would be much cleaner if the
program could take care of this detail. Here’s how it could be done:

100 INPUT "ENTER FILENAME";F$
110 DOPEN#3,("@'"+F$),D0,W

Now line 110 concatenates the “@” to the filename and the user need only enter the name of the
file, which is a more natural response.

Disk Files 149

English Code

Having completed these preliminary discussions we can now begin developing the program logic. For
this program we will once again use English code to develop our logic.

This program makes quite extensive use of subroutines—an approach you should be taking by
now in all of your programs. As much as possible strive for generality in all of your subroutines so they
may be used in other programs as the need arises. Later it will become evident that the solution we have
developed here could be made even more general.

Start-up Menu

1. Create New Checkbook File
2. Update Checkbook File
3. Stop

Create New Checkbook File Subroutine

1. Accept Filename
2. Accept Date and Opening Balance
3. Write Entry on New File

Update Checkbook File Subroutine

1. Accept Filename
2. Load File into Arrays
3. Add, Change Menu Until Done
3.1 If Add Call Add Data to Checkbook
3.2 If Change Call Change Data on Checkbook
4. Rewrite Updated File on Disk
5. Return

Add Data to Checkbook Subroutine

1. Accept Data Until Done
1.1 Accept Date, Desc, With/Dep
1.2 Append to End of Table
1.3 Calculate and Display New Balance
1.4 If Table Full Display *Warning*
2. Return

Change Data on Checkbook Subroutine

1. Display Items Until End of Table
1.1 If Screen Full (20 items) then
1.1.1 Proceed or Change Items?
If Change Call Accept Change or Delete
1.2 Proceed to Next Screen

Accept Changes and Deletions Subroutine
1. If Change Then Call Change Entry

2. If Delete Then Call Delete Entries
3. Return

150 Chapter Ten

Change Entry

Accept Entry Number
Change Item
Readjust Balance
Return

B

Delete Entries

Accept Entry Number

Move Following Items Back in Array
Reset End of Table

Display Screen Page with Changes
Return

kW=

The English code at this level is still quite general. For instance, it doesn’t go into detail about
how each menu is going to appear in the program. Neither does it specify exactly what subscripting
will be used when referencing array elements. This next level of detail will be developed in the program
code itself.

However, there are a few places in the solution that may not be at all clear at this stage. For
example, in the ‘Change Data on Checkbook Subroutine’, reference is made to displaying a screen of
data. Also the ‘Delete Entries’ subroutine makes a casual reference to moving items back in the array.
Both of these statements need clarification.

Display Screen Page

Checkbooks normally have pages with deposits and withdrawals shown and the related balance, date,
and description of the entry. In this program we would like to treat the screen display as a page of data
rather than one line at a time. To do this we need to display contents of the arrays until one page is
shown. Then changes to that page can be accepted.

Figure 10.3 shows how lines from the array are displayed to create one page of output. At the end
of the page is a prompt asking if there are any changes to be made to this page or if the user wishes to
proceed to the next page. If a ‘C’ is entered then a new prompt asks for the type of change, while a ‘P’
response would cause the next page to be displayed on the screen.

The variable L1 is used to count the number of lines displayed on the screen. When LI has reached
20 then the loop is put on hold temporarily until the user can respond to the prompt. When the command
to proceed is given the program then resets LI to zero, restarts the loop, and displays the next 20 lines.
At some point there may be less than 20 lines left to display. In this case the loop will terminate with
fewer than 20 lines on the page.

Deleting Table Entries

Another interesting problem to solve is the deleting of items from the table. This might be done at the
end of a month when last month’s items are deleted—or if not last month’s items then items from several
months or even a year ago. It is the user’s choice.

Assuming entries will be made in date sequence the program will be designed to delete all entries
from a specified position on the page back to the beginning of the checkbook. The user specifies the
position by entering the line number of the entry that has been displayed with the other checkbook
ficlds. Figure 10.4 shows the procedure for deleting table items.

If the user response indicates that items 1 to 4 are to be deleted then all items from item 5 to the
end of the data (NE) are shifted back 4 positions in the arrays. In other words, item 5 is moved back
to position 1, item 6 to position 2, item 7 to 3, and so on.

Disk Files 151

20 lines
per page

-

C-CHANGE P-PROCEED

Figure 10.3 Display screen page

J 1

move 5 to 1 2
3

4

K 5

each item 6
moves back 7
4 positions 8
9

10

200

Figure 10.4 Deleting four table items

Arrays
DAS$,DS$,WD,BAL

Arrays
DA$,DS$,WD,BAL

1 FOR I=1TO NE

NE

200

Delete items

1toN

N

« NE reset to 6
after deletion

€@ NE No. of

Entries

No. of
Entries

When all data up to position NE have been moved, the deletion is complete. Then NE is reduced
by 4 (since four items were deleted) and is now at position 6, referring to the current number of entries
in the table. One problem with this technique is that the more data the arrays contain, the more time
the program will take to do a deletion. Using linked lists would improve this time factor considerably.

The complete checkbook program is shown in figure 10.5.

152 Chapter Ten

100

120
130
140
150
160
170
180
190
200

220
230
240
250
260
270
280
290
300
310
320
330

350
360
== 370

380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

date description withdrawal balance
or deposit

LT

DIM DA$(200),DS$(200),WD(200),BAL(200)
CR$=CHR$(13)

REM MAINTAINING THE CHECKBOOK
REM START-UP MENU<€—
PRINT "{clr]";TAB(15);"CHECKBOOK"

gets things
started

PRINT

PRINT TAB(8);"@ - CREATE NEW CHECKBOOK"
PRINT

PRINT TAB(8);"f8 - UPDATE CHECKBOOK"
PRINT

PRINT TAB(8);"$¥ — EXIT"

GET A$:IF A$ = "" THEN 210

IF A$ = '$" THEN STOP

IF A$ = "@' THEN GOSUB 2§0

IF A$ = "§' THEN GOSUB 380

GOTO 140

REM CREATE NEW CHECKBOOK FILE

nn

GOSUB 750
INPUT 'DATE OF ENTRY(YY/MM/DD)';D$
INPUT "OPENING BALANCE'";BL

subroutine creates
initial disk record

DOPEN#3, (F$) ,DO,W

GOSUB 880
PRINT#3,1<\\\\\
860 <

GOSUB 860

check disk status

PRINT#3,D$;CR$;"OPENING BALANCE';CR$;0;CR$;BL
GOSUB 790 €—

DCLOSE#3
RETURN

subroutine to modify
current file

REM UPDATE CHECKBOOK FILE

REM LEAD CHECK FILE

GOSUB 750 €—

get filename

DOPEN#3, (F$),DO,R
GOSUB 790

PRINT "LOADING FILE '";F$

FOR D=1TO 300:NEXT D€

delay

INPUT#3,NE

FOR I=1 TO NE
INPUT#3,DA$ (1) ,DS$(I),WD(I),BAL(I)
GOSUB 790

load current file
into arrays

REM UPDATE MENU
PRINT "[clr]";TAB(13);"UPDATE MENU"

PRINT

PRINT TAB(8);"A - ADD NEW ENTRIES"

PRINT

PRINT TAB(8);'"C — CHANGE CURRENT ENTRIES"
PRINT

PRINT TAB(8);"X - EXIT"

GET U$:IF U$=""" THEN GOTO 590 }

check item selected
from menu

IF U$ "X'" THEN 650

IF U$ A" THEN GOSUB 840
IF U$ = "C'" THEN GOSUB 1050
GOTO 520

Figure 10.5 Checkbook update program

Disk Files 153

640
650
660
670
680
690
700
710
720
730
aligue /()
750
760
770
780
790
800
810
820
830

840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040

1050 REM CHANGE DATA ON CHECKBOOK

REM SAVE UPDATED FILE ON DISK .

PRINT "REWRITING FILE ";F$<& after updating is finished
DOPEN#3, ("@"+F$),DO,W rewrite file to disk
PRINT#3,NE

GOSUB 790

FOR I=1 TO NE

PRINT#3,DA$(I);CR$;DS$(I) ;CR$;WD(I);CR$;BAL(I)
GOSUB 790
NEXT I
DCLOSE#3 <—
RETURN r
REM ACCEPT FILENAME<& subroutine to get filename
PRINT "[clr]";

INPUT "ENTER FILENAME';F$

RETURN . ,
REM CHECK DISK STATUS <€ subroutine to check
IF DS=0 THEN RETURN disk I/0 status
PRINT DS$

DCLOSE#3

STOP

REM ADD DATA TO CHECKBOOK subroutine to place new data
PRINT "[clr]'; TAB(13);"ENTER NEW DATA" in checkbook file

PRINT

PRINT "CURRENT BALANCE IS ";BAL(NE)

PRINT

PRINT "ENTER DATA AS FOLLOWS:"

PRINT

INPUT "DATE(YY/MM/DD) OR (QUIT)';D$
IF D$="QUIT" THEN 1040

NE=NE+1

DA$(NE)=D$.)

INPUT "DESCRIPTION'";DS$(NE) permits “0™ entry
INPUT "DEPOSIT O[3 lt'S]"5D‘%':;::::::::===” by just pressing Return
INPUT "WITHDRAWAL O[3 1t's]'";W

WD(NE)=D-W €—
BAL(NE)=BAL(NE-1)+WD(NE)
PRINT

determine net,
withdrawal, or deposit

PRINT "NEW BALANCE = '"';BAL(NE)

IF NE = 200 THEN PRINT "*WARNING* - TABLE FULL"
GOTO 900

RETURN

subroutine to change
existing entries

1060 PRINT "[clr]ENTRY DATE","DESC",''WITH/DEP","BALANCE" | gigplay
1070 PRINT current data

1080 FOR I=1 TO NE €~

1090 PRINT I;" "';DA$(I);TAB(15);LEFT$(DS$(I),10);TAB(28);WD(I),BAL(I)

1100 LI=LI+1

1110 IF LI<20 THEN 1130<F————__________________ . .
1120 GOSUB 1150 stop display after 20 lines

1130 NEXT I
1140 GOSUB 1150
1150 REM ACCEPT CHANGES TO THIS PAGE

for changes

subroutine to query changes

1160 IF LI=0 THEN RETURN :
1170 PRINT for current page on display
1180 PRINT ''C - CHANGE OR P - PROCEED"

1190 GET P$:IF P$="" THEN 1190 if no change (P-response) or changes
1200 IF P$="C'" THEN GOSUB 1230 finished, then clear line counter and
1210 LI=0<— return to display next page

1220 RETURN

Figure 10.5 Checkbook update program (continued)

154

Chapter Ten

1230 REM ACCEPT CHANGES AND DELETIONS
1240 PRINT'[up]C - CHANGE, D - DELETE OR X -EXIT" select ““Change”
1250 GET P$:IF P$="" THEN 1250 or “‘Delete”

1260 IF P$="C'"THEN GOSUB 1300

1270 IF P$="D" THEN GOSUB 1460

1280 IF P$="X" THEN RETURN subroutine to make
1290 GOTO 1240 a change

1300 REM CHANGE ENTRY

1310 INPUT'"[up] ENTER NUMBER OF ENTRY "N _ .
1320 PRINT DA$(N)'" "DS$(N)" "WD(N)" "BAL(N) display line
1330 PRINT to be changed

1340 PRINT "ENTER CHANGES AS FOLLOWS:"
1350 INPUT "DATE ";DAS$(N)€-
1360 INPUT "DESCRIPTION '';DS$(N) accept changed data
1370 INPUT "DEPOSIT O[3 1t's]";D

1380 INPUT "WITHDRAWAL O[3 lt's]";W

1390 AD-D_W-WD(N) :REM ADJUSTMENT TO BALANCE
1400 IF AD=0 THEN 1450€ no change to balance
1410 WD(N)=WD(N)+AD

1420 FOR K=N TO NE

1430 BAL(K)=BAL(K)+AD € readjust all following balances
1440 NEXT K

1450 RETURN

1460 REM DELETE ENTRY subroutine to delete
1470 INPUT"[up] DELETE ENTRIES 1 TO ":N | arange of entries
1480 J=1

1490 FOR K=N+1 TO NE
1500 DA$(J)=DA$(K)
1510 DS$(J)=DS$(K) ie
1520 WD(J)=WD(K) ?;glfiﬁn;:ra?(
1530 BAL(J)=BAL(K)
1540 J=J+1

1550 NEXT K

1560 NE=NE-N<€ reset position of table end (NE)
1570 GOSUB 1590

1580 RETURN :
1590 REM DISPLAY 1 PAGE display new
1600 I=20 current page

1610 IF I)NE THEN I=NE
1620 PRINT "[clr]ENTRY DATE'","DESC","WITH/DEP","'BALANCE"

1630 PRINT

1640 FOR K=1 TO I ‘

1650 PRINT K;' ";DA$(K);TAB(15);LEFT$(DS$(K),10);TAB(28);WD(K),BAL(K)
1660 NEXT K

1670 PRINT

1680 RETURN

Figure 10.5 Checkbook update program (continued)

RELATIVE ACCESS FILES

While sequential disk files have a speed advantage over tape, relative files have an even greater benefit.
As we already know, a sequential disk file must be read sequentially from beginning to end. If our files
are quite short there is no apparent disadvantage to this. However, if a file consists of hundreds or even
thousands of records, then waiting for the 2999th record can be time-consuming even on a sequential
disk file. This is when relative files come to the rescue!

The primary advantage of a relative file (also called a random access file) is the ability to access
any record in the file directly, without reading any other records. So the program can read the 2999th
record as the first record in just a fraction of a second.

Disk Files 155

Record Record
Number

N oW N

Figure 10.6 Relative file organization

Figure 10.6 shows a symbolic representation of a relative file. Records in a relative file are num-
bered consecutively from 1 to the last record in the file. To access a given record it is only necessary to
specify the record number desired, and the disk will supply that record to your program.

Relative files are opened much like any other disk file, the one exception being the use of a length
parameter. This parameter determines the length of record to be used in the file and is necessary for
DOS to find any specific record you may ask for. Here is the general format for the DOPEN when used
with relative files.

DOPEN#fn,“filename”,Lx,Dn

where fn refers to the file number.
“filename” is the name used to identify the relative file.

Lx L refers to the maximum record length (x) in the file, including any carriage return
characters. Since records can contain data such as names, addresses, and descrip-
tions that are variable in length the maximum length that all records will need
must be determined. The size permitted may be from 1 to 254 bytes.

Dn D refers to Drive and n to the drive number. If the disk is on drive 1 then the entry
is D1. If drive O then use DO or simply leave this entry out and it will default to
drive 0.

Here is an example of a DOPEN to use when creating a new file.

200 DOPEN#5,"INVENTORY",L20,D0

filenumber filename record drive
length

In this case a file named INVENTORY is opened as file number 5. The floppy disk will be in drive 0
and the relative file will consist of 20 byte records. You may write records that are less than 20 bytes
but may not exceed this length.

The following DOPEN would be used for accessing the above file after it has been created.

200 DOPEN#S,"™INVENTORY"™

filenumber filename

For this open, only the filename is required since the length has already been established on the file.
The drive number will default to 0 and so reference to attribute DO is unnecessary.

156 Chapter Ten

Creating a Relative File

A relative file is created in much the same way as a sequential file. The main difference is the length
attribute in the DOPEN statement. Once the file has been opened data is printed to it in the same way
as when we created a sequential disk file.

The following program creates a relative file called BUDGET.REL on file number 5. The use of
REL at the end of the filename is not mandatory for a relative file but is a way of reminding yourself
that this is a relative file.

100 REM CREATE RELATIVE FILE)

110 CR$=CHR$(13)< carriage return
120 PRINT CHR$(147):REM CLEAR SCREEN

130 DOPEN#5,'""BUDGET.REL" ,L30¢€ record length 30

140 INPUT "ENTER ITEM NAME (END)';N$
150 IF N$="END'" THEN 190

160 INPUT "ENTER AMOUNT';A

170 PRINT#5,N$;CR$;A

180 GOTO 140

190 DCLOSE#5

This program will create the file shown in figure 10.6, provided that the data is entered in response
to each input prompt. The relative file is opened with 30-byte records. At this time BASIC is prepared
to reference record 1. When the first PRINT# is done in statement 170 the data written to the disk will
be automatically referenced as record number 1. When the loop gets back to statement 170 a second
time record 2 is written and so on. Notice that you do not need to count the records in the program.

Two potential problems can occur in this program. First, it is up to the user to ensure records do
not exceed 30 bytes; otherwise some very nasty things will happen to the file. A complete program should
actually check the length of the data before writing it to the disk, but for simplicity’s sake we are not
doing that checking here.

A second possible problem may occur since we are not doing the disk status (DS) check after each
disk operation. Normally this should also be done in a disk program.

Accessing a Relative File

Reading records from a relative file is almost as easy as reading a sequential file. The only difference
is that a relative file needs to know what record you want. This is done with the RECORD# statement.
RECORD# has the following format:

RECORD#fn,n
filenumber record
number

This statement normally precedes the INPUT# statement that reads the record from the relative file.
For example,

200 RECORD#4,12
210 INPUT#4,N$,AS$

would set file number 4 to the 12th record in statement 200 and then read the 12th record in statement
210. It’s as simple as that.
To read the 2999th record you could use:

200 RECORD#4,2999

Disk Files 157

Now here is a program to read record 3 of the BUDGET.REL file we created earlier.

100 REM READ RELATIVE FILE
110 DOPEN#5,'"BUDGET.REL"
120 PRINT CHR$(147)

130 PRINT "ITEM",'"AMOUNT"

140 PRINT
150 RECORD#5 , 3 <_,__-/‘ set to record 3

160 INPUT#5,N$ Ae—u
170 PRINT N$,A input record 3

190 DCLOSE#5

The relative file is opened in statement 110. There is no reference this time to record length since
this has already been established in the file. The disk drive defaults to 0 and the file will be considered
read/write, meaning we can either read from it or write on the file.

Statement 150 supplies the record number to be read and the following statement (160) inputs
the record. The RECORD# statement can also use a variable, since we don’t always want to read record
3 or whatever. Here is an example of a variable in the RECORD# statement:

400 RECORD#4,(CI)

When the variable is used it must be enclosed in parentheses. This suggests that you could use an expres-
sion to compute the record number.)

The previous program could be rewritten to accept a record number from the user (statement
145) and then use this number to access the desired record in statement 150.

100 REM READ RELATIVE FILE

110 DOPEN#S5,"“BUDGET.REL"

120 PRINT CHR$(147)

130 PRINT ™ITEM","AMOUNT"

140 PRINT

145 INPUT "ENTER RECORD NUMBER* ;R
150 RECORD#S5, (R)

160 INPUT#5,N$,A

170 PRINT N$,A

180 DCLOSE#5S

Updating a Relative File

If you went through the program for updating a sequential file the process for updating a relative file
should prove to be a pleasant surprise. First, remember that with relative files we are working with just
the record that needs updating. Therefore we can ignore all of the other records on the file. No searching
for the right record and no rewriting the complete file is necessary.

The steps to be taken for updating a relative file are as follows:

Get the Record Number
Issue a RECORD# command
Input the record

Update the record

Issue a RECORD# command
Rewrite the record

bk -

Steps 1 to 3 should be self-explanatory at this point since they are the same steps for accessing a
record. Step 4, updating the record, is program code to accept changes to the existing data in the record
by modifying one or more of the variables that contain the data.

158 Chapter Ten

P

Step 5 may not seem necessary since we already have issued a RECORD# command in step 2.
However, it is important since DOS will increment the record number it is using and move on to the
next record, which, of course, we don’t want to update. The last step is simply to rewrite the record
using a PRINT# statement as if we were creating a new record. This new record will then replace the
old one on the relative file.

Here is the program:

100 REM UPDATE RELATIVE FILE

110 DOPEN#5,''BUDGEE.REL"

120 PRINT CHR$(147)

130 INPUT "ENTER RECORD NUMBER(0O - TO QUIT)'";R
140 IF R=O#THEN 230

150 RECORD#5, (R) |
160 INPUT#S,N$,A}< read the record
170 PRINT "TYPE CHANGE OR PRESS RETURN"
180 PRINT "ITEM - ";N$:INPUT "[up 9 rt's]";l\1$}E | accept
190 PRINT "AMOUNT - '";A:INPUT "[up 9 rt's]";A changes
200 RECORD#5, (R) }

%%8 gg%nggéN$’CHR$(13)’A <-——-_-—-““—- rewrite the updated record
230 DCLOSE#5

An interesting technique is used in statements 180 and 190 to ease the burden of retyping data
that does not need to be changed. First the message “ITEM—" is displayed with the contents of N§
which is the name of the item. Then the INPUT statement moves the cursor up to the line just printed,
and then to the right 9 columns so that the cursor is over the first character of the data. If there is no
change to N§ then by simply pressing return the data is reentered without any change. A change can
be made by simply typing over the old value on the screen and pressing return. Now the new value will
be in N§.

Appending Records to an Existing File

So far we have written programs that assume that all records on the relative file are created in the
beginning of the file’s life. This is hardly realistic. Many applications require the ability to append (add)
records to the file at any time. An inventory file will most certainly be stocking new items at some time
in the future, a book list will have new books added to it, a student record system will need to be able
to add new records to the file.

Appending a new record to a relative file is no different from creating a new file, except in this
case you don’t specify the record length in the open statement. The open is handled in the same way as
for file updating. What you need to know is the record number of the new record to be appended to the
file. And that is the catch!

How do you know the number of records in the file? So far we don’t. What is necessary is a means
for determining the number of records (N) currently in the file. Once you know this then the new record
is record number N + 1.

One way to identify the number of records in the file is to retain a record as part of the file where
you can count each record as it is stored on the file initially. Figure 10.7 shows the budget file created
in this way.

All of the records in the file are the same as before except they are one record-number higher. In
record 1 is a single numeric value, which is currently 6, to indicate there are six records in the file. When
a new record is added to the file record 1 can tell us that it should be record 7 from 6 +1.

Disk Files 159

Record Record

Number
1 6
2 TELEPHON 15.23Ccr)
3 GAS(cr)B%6.96(or)
4 LIGHTCc[r)32.45Kcr)
5 WATERCck)14.79C(cr)
6 TAXES(cr eCcr)

Figure 10.7 Relative file with a record count in record 1

A program to use this information from record 1 and append new records to the file is shown in
figure 10.8. This is a revision of the update program with the capability now of adding new records to
the file. Notice that each reference to the file uses subroutine 510 to check the disk status in the event
of an 1/0 error.

As soon as the file is opened the record number is read into variable N from record 1 in statements
130 and 140. The first time this file is used N will contain the value 6 as we saw in the previous diagram.

The update part of the program is the same as before so look down at the append subroutine in
statements 400 to 500.

To add a new record, N is increased by 1 in statement 430 and then in 440 and 450 the new record
is written as record N (now 7). Now since we have seven records on the file, record number one must
also be updated. So in statements 470 and 480 record 1 gets written with the new value of N and we
now have seven records counted on the file. Any number of records may be added using this method,
up to the capacity of the disk.

How to Use an Index File

One problem with the previous series of programs is the assumption that we will always know the record
number of the record we want. This may be valid for some applications, for instance when a small
number of items are used, or if the identification numbers are identical to the record number.

However, in many cases there are a large number of items in a file and their identification may
not correspond to the record number. Take, for example, a retail store that sells indoor plumbing fix-
tures. There may be several hundred different items in inventory, let’s say 248 to be exact. These fixtures
are not likely identified by the numbers 1 to 248 but by some other part number. If this part number
is a four-digit number it would suggest we need to plan a relative file with 9999 possible records, many
more than are really necessary for the file.

This problem is resolved by having only 248 records for the relative inventory file but having a
second, sequential file called an index file. The index file (figure 10.9) is simply a list of the part numbers,
which are read into an array. Element 0, which gets the first record from the index file, tells us how
many records are in the relative file. The remaining elements of the array contain part numbers. For
instance, part number 2377 in element 1 indicates that this part is stored in record 1 of the relative file.
Part number 2105 points to record 4 since it is in element 4 of the index.

To find a part in the file the user of the program would first respond to a prompt which asks for
the part number.

ENTER PART NUMBER ?
2213 €« PN

160 Chapter Ten

100

REM *%* RELATIVE FILE *%

from record
1

DOPEN#5,""NUM.REL"

GOSUB 510 get number
RECORD#S,2?—_____,,f———""'—OfWCmds
INPUT#5,N

GOSUB 510« check disk status

PRINT CHR$(147)
PRINT TAB(15) ;"N - NEW RECORD"
PRINT
PRINT TAB(15);"U - UPDATE"
PRINT
PRINT TAB(15);"X - EXIT"
PRINT:PRINT

T :IF A$=""" THEN 230 -
%11?‘ Agi”NE TI?IEN COSUB 400/ append new subroutine

I

%g ﬁ;"g" %ﬁgg (S;ngB 290\ update subroutine
GOTO 160
REM ** UPDATE RECORD *¥*
INPUT "ENTER RECORD NUMBER '"';R
RECORD#5, (R)

INPUT#5,N$,A

GOSUB 510

PRINT "TYPE CHANGE OR PRESS RETURN"

PRINT "ITEM - ";N$:INPUT "[up 9 rt's]";N$
PRINT "AMOUNT - '"';A:INPUT "[up 9 rt's]";A

RECORD#5, (R)
PRINT#5,N$; CHR$ (13) ;A

GOSUB 510

RETURN

REM ** APPEND NEW RECORD *%*
INPUT "ITEM - ":N$
INPUT "AMOUNT - " A

N=N+1

RECORD#5, (N)
PRINT#5,N$;CHR$ (13) ;A€—— append new record
GOSUB 510
gggg%gﬁsﬁj} revise number
COSUB 5],.0< of records
RETURN

REM ** CHECK DISK STATUS *%*

IF DS=0 THEN RETURN

PRINT DS$

DCLOSE#5

STOP

Figure 10.8 Adding records to a relative file

Disk Files

161

Sequential
Index File

Relative Inventory File

Part No. Description Unit Price Quantity

No. of 1 2377 SHOWER HEAD
Records 2 2391 TUB
3 2392 ROMAN TUB
4 2105 FAUCET C21
5 2213 FAUCET C33
6
7
248 248
300

37.50
268.79
488.00

16.73

28.89

23
14

48
15

Figure 10.9 Using an index file

The program then looks up the part number in the index table and gets the appropriate record.

This is the type of code that could be used:

100
110
120
130
140
150
160
170
180

It is possible, using the method of an index file, to use a description to identify records in the
relative file. In this case an alphanumeric array containing descriptions would be used. A look-up of the

REM SEARCH INDEX TABLE C(IN)
FOR I=1 TO N<

IF PN=INCI) THEN 160

NEXT I

PRINT "PART NUMBER '";PN;'" NOT FOUND"
RETURN
RECORD#5, (1)<

N is 248

INPUT#5,PN,DS$,UP,QT
RETURN

description would then point to the appropriate relative record.

REVIEW QUESTIONS—CHAPTER 10

R

162

Describe the organization of a floppy disk.
What kinds of files may be used on disk? Discuss the pros and cons of each.

Describe open and close statements for the disk. What defaults may be used in the open?
How is end of file handled on a sequential disk file?
What is the purpose of DS and DS$? How are they used for disk applications?

Chapter Ten

get relative
record

PN

. The questions that follow refer to the checkbook program in this chapter.

a) Examine the routine that deletes entries from the checkbook. What happens to the balance
when a delete occurs?

b) Subroutine 1300 accepts changes to entries but requires that all of the data be retyped even
if only one component is changed. How could this subroutine be changed so that only
changes need to be retyped?

¢) When more than 20 items are in the checkbook the program scrolls the screen to the next 20
items. How could these begin with a new screen and display from the top?

. What is the purpose of the RECORD statement when using relative files?
. Why is an index file often necessary for use with a relative file?

Disk Files 163

How to Debug
Your Programs

nroughout this book we have spent a lot of time writing BASIC programs for the PET/CBM using

many of the features of the BASIC 4.0 interpreter. In every case the programs we have used were
correctly written (I hope!) and would run as expected. But is this realistic? Admittedly, some of the
programs did not work the first time and required changes and corrections until they did what was
intended. The process of finding and correcting errors is known as debugging the program.

debugging
tool

To debug a program successfully requires the development of new skills to supplement your pro-
gramming skills. By following certain predefined steps, a program may be debugged and made to work
in the way that you originally intended.

Here are the main things we will consider when debugging a program:

Desk Checking

Syntax Errors

Test Data Preparation
Immediate Mode Debugging
Tracing Program Logic

kW

Generally, testing proceeds in this order, but changes to the program at any time may require you
to go back to any of the earlier steps. This may be the result of errors that were overlooked previously
or because of new errors that were introduced during the debugging process.

165

desk
checking

J " |

DESK CHECKING

This is probably the easiest of all debugging techniques and yet the most often overlooked. First use
one of the program planning techniques we discussed. Either a flowchart or English code will help in
the planning stage. It has been proven that programmers who take the time to plan will have substan-
tially fewer errors in their programs.

After careful planning of the solution, write the PET BASIC code. Unless the program is very
simple it should be done on paper, not at the PET or CBM. At this point, take some time to desk check
the code by simply reading what you have written. It is surprising how many errors can be detected at
this stage without the computer’s assistance. Types of errors to look for at this stage are spelling errors,
logic errors, missing or duplicate statements, and statements out of order.

SYNTAX ERRORS

In a formal sense syntax refers to improper punctuation of statements in the language whereas another
term, semantics, refers to the proper understanding of the statement format. This is generally discussed
throughout the book, so a detailed presentation will not be given here.

Basically if you take care to follow the statement formats your program will be correct as far as
BASIC 4.0 is concerned. If you make a mistake the PET/CBM will give you an error message when
you attempt to RUN the program. For example, the statement:

10 FOR I=1,10
may sound OK, but when the program is run the error message
?SYNTAX ERROR IN 10

will be displayed on the PET’s screen. The statement’s syntax is incorrect because the format of a FOR
statement requires the keyword TO instead of a comma between the 1 and 10. Therefore the statement:

10 FOR I=1 TO 10

is the correct one.

Syntax errors are many and varied. In a number of cases, it is difficult to determine what has
caused the error. Although there are precise definitions of errors, we are more concerned with finding
and correcting the errors. The following is a list of errors that are encountered quite frequently by
programmers. Most of these errors are identified by error messages from the BASIC interpreter.

166 Chapter Eleven

Type of Error Example

Explanation

Punctuation

Parentheses

Operator

Mismatch

lllegal Verb

10 N(I K)=A+B

10 PRINT AB

10 N=N+1)*5
20 A=(K+1*5+(J/N)))

10 N+N=K

50 J=B(N+L)

70 K=P*/J

200 N="DON CASSEL"

10 S=SQRT(256)

The comma separating subscripts | and K is missing. Two-
dimensional arrays require two subscripts separated by
a comma.

Two or more variables in input and output statements must
be separated by commas. PET BASIC treats this as
variable AB rather than an error so this type of error is
easy to miss.

Either too few brackets (statement 10) or too many (20)
can be the cause of this problem. BASIC 4.0 flags these
as syntax errors. Make sure that all brackets are
matching pairs.

The equal operator is on the wrong side of the expression.

The multiply operator is missing between B and the
parenthesis. PET assumes B to be an array with (N+L)
the subscript; so again this is an error that is easily
overlooked.

In this example two operators are used together; a
variable is probably missing.

This occurs when an alphanumeric value is assigned to a
numeric variable or vice versa. PET calls this a Type
Mismatch Error.

An iI‘Iegal verb is also a class of syntax error. This
happens when a keyword is misspelled. SQRT is not
legal in PET BASIC.

During program execution, other errors, which are not indicated earlier, may be found. These are
generally self-explanatory errors, such as dividing by zero, trying to calculate the square root of a neg-

ative number, and having arithmetic overflows or subscripts out of range.
For example, in the following case in which a constant is being used:

10 DIM

NDC15)

80 NO(C21)=T * K

it is evident that the subscript of 21 is the culprit; maybe it should have been 12, or possibly NO should

have been dimensioned with more elements. However, if the statement in error had been:

80 NOCI)=T * K

then it would be necessary to trace the values of I to see why it had exceeded the permissible range of

the subscript.

TEST DATA PREPARATION

The first rule of data preparation is that quality and not quantity is what counts. Beginning program-
mers often prepare a lot of data that looks impressive but is actually quite meaningless. Each item of
data should have a specific purpose and therefore test for a specific potential problem. Some of the things

for which data should be prepared are:

1. Sequence error—for tape or disk files.
2. Missing data.

How to Debug Your Programs

167

Positive and negative values.

Valid and invalid codes.

Numbers within a specific range including the first and last numbers of the range.

Too much or too little data when using tables.

Reasonableness. An hourly pay rate over $100.00 is probably unreasonable.

Length. Fields such as phone numbers, account numbers, and social insurance numbers are of
predefined lengths and can be checked.

PPN Ew

Not every program will need to test for all of these items, and some programs will need to test for
other factors. The key is to be aware of possible sources of error and to consider them when testing your
programs.

A final consideration is that test data should be supplied to check every statement of code written
in the program. Don’t assume that the program code will work just because it is obvious or simple.
Errors do not happen solely in complex code; they often occur in the most unlikely places.

IMMEDIATE MODE DEBUGGING

One of the advantages of using a microcomputer like the PET/CBM is the capability of examining the
contents of program variables directly on the screen. Earlier in the book we discussed the use of the
computer as a sophisticated calculator using immediate mode. This same mode can be used to examine
the contents of the program’s variables while debugging the program.

Immediate mode debugging is particularly useful if the program terminates prematurely. For
instance, you are running a test of the following program:

10 DIM A$C100)

20 B$="STRING "
30 FOR I=1 TO 100
40 B$=B$+B$

S0 A$(I)=B$

60 NEXT I

and the program stops with the message
?STRING TOO LONG ERROR IN 40

Now from the program code we decide that B$, which is in statement 40, should contain the string
“STRING STRING”. At least that’s what we intended. This can be immediately confirmed or denied
by using the immediate mode to display the contents of B$ as follows:

? B$
The PET responds with the following display:

STRING STRING STRING STRING STRING STRIN
G STRING STRING STRING STRING STRING STR
ING STRING STRING STRING STRING STRING S
TRING STRING STRING STRING STRING STRING
STRING STRING STRING STRING STRING STRI
NG STRING STRING STRING

168 Chapter Eleven

PN

M

This is obviously not what we wanted. We can also examine I's value:

? 1
6

This tells us that the loop had executed six times when the program terminated. We could try a
lot of other things at this point. For instance, we could change the FOR loop to repeat only three times
and then check B$’s value. It would contain fewer repetitions but still more than the two required.

By now we should have a good idea of what is wrong: the variable B$ is being affected by the
FOR loop when our expectation was that it would be assigned the string “STRING” concatenated to
itself only once. The problem is that statement 40 should precede the loop and not be contained within
it.

The program is changed and now appears as follows:

10 DIM A$C100)
20 B$=""STRING "
30 B$=B$+B$< these two statements are
40 FOR I=1 TO 100€—— now reversed

S0 A$CI)=B$
60 NEXT 1

TRACING PROGRAM LOGIC
Tracing is the process of following the program logic step by step to locate an error. This can be done
manually for relatively easy problems, or program statements can be used to show the flow of the logic.

The key is to know what to expect from your program. If you know what output the program is intended
to produce, then when it does not produce this output, a trace can be used to determine why.

Manual Tracing

Manual tracing is done with a copy of the program listing (so you need a printer), its output (if any),
and a pencil. This method is particularly useful for small programs, simple bugs, or when there is no
output to check.

Fahrenheit-Celsius Program To show how this works, let’s write a program to display a chart of Celsius
and Fahrenheit temperatures. Actually, the chart may be one we eventually want to print but it is a
good debugging technique to display it first. This can save a lot of paper.

The chart is to include Celsius temperatures from 10 to 34 and their equivalent Fahrenheit tem-
peratures as integer values. We expect the output to appear as follows:

C F C F C F C F c F
10 S0 11 S1 12 53 13 55 14 57
15 59 16 60 17 62 18 ©64 19 66
20 68 21 69 22 71 23 73 24 75
25 77 26 78 27 80 28 82 29 84
30 86 31 87 32 89 33 91 34 93

How to Debug Your Programs 169

The program written to solve this problem is as follows:

5 PRINT »

10 FOR I=1 TO S :
20 PRINT "C F u;fé_._———- create heading
30 NEXT 1

40 PRINT start of each line
50 FOR I=10 TO 30 STEP § €

60 FOR C=I1 TO 4 :

70 F=INTCCC*9)/5+32) C = Celsius
80 PRINT C;F; F = Fahrenheit
90 NEXT C

100 PRINT

110 NEXT 1

When this program is run, the output produced is:

C F c F c F C F c F

10 50
15 59
20 68
25 77
30 86

Two problems are evident from this output; first we are getting only one column of Celsius and
Fahrenheit temperatures; second there are no spaces between the lines of output as indicated in the
expected results.

The second problem may be easier to solve at this point. The print statement

100 PRINT

starts each new line of output but does not produce a blank line. This can be achieved by using another
print statement on line 100 as follows:

100 PRINT:PRINT

To locate the problem of missing output, we will perform a manual trace of the program. To do
this, we begin by writing down the names of the variables that are used in this part of the logic. Since
the heading looks OK, we do not need to trace this part of the program.

The variables that might cause the problem are I, C, and the calculation for Fahrenheit in the
statement 70. We will trace the FOR loop to the NEXT at 110. The variables are written down as
follows with an additional column that counts the number of iterations through the logic. The first time
through the program code, the manual trace looks like this:

Iterations |] F

1 10 10 50 4

L‘-W/\WW

170 Chapter Eleven

Each time that we follow the code visually, we write down on the trace the effect that the code
had on each variable. But be careful to do what the program says, not what we think it says. As we
continue, the trace will look like this:

lterations |] F
1 10 10 50
2 15 15 59
3 20 20 68
4 25 25 77
5 30 30 86

WWW—\/\WW

At this point the program ends. It is not absolutely essential to continue the trace to the bitter
end but only long enough to determine what is causing the error in the logic. By reading this trace, it
is evident that C is not taking on all of the expected values. Since C represents Celsius it should take
on each Celsius value. Instead it only takes on the same values as I. If we check the statement that gives
C its value, we might find the error. This is statement:

60 FOR C=1 TO 4

From this expression we can see that C starts at I and goes to 4. Well, if I is 10 then the loop is finished
the first time, since 10 already exceeds the value 4. The FOR should start at I's value and go on for 4
more values to finish the line. In other words when I is 10, C should create temperatures 10, 11,12, 13
and 14. Thus the statement should be:

60 FOR C=1 TO I+4
The program now looks like this with the changes:

5 PRINT * ™;
10 FOR I=1 TO S
20 PRINT »C F "

30 NEXT I

40 PRINT

50 FOR I=10 TO 30 STEP 5

60 FOR C=1 TO I+4< revised

70 F=INTC(CC*9)/5+32)
80 PRINT C;F;

90 NEXT C

100 PRINT:PRINT< extra print
110 NEXT 1

How to Debug Your Programs 171

And the correct output is:
C F C F C F C F C F
10 50 11 51 12 53 13 55 14 57
15 59 16 60 17 62 18 64 19 66
20 68 21 69 22 71 23 73 24 75
25 77 26 78 27 80 28 82 29 84

30 86 31 87 32 89 33 91 34 93

Automatic Program Tracing

Many programs are either too large or too complex for manual tracing except in the most limited cir-
cumstances. In such a case, it is helpful if the program can be used to perform its own tracing. This
can be accomplished by placing PRINT statements at temporary locations within the program.

One use of this method is to determine whether the program reaches a specific location. This can
be done by placing a print statement such as

PRINT "TAX ROUTINE"™

at the beginning of the program code to be tested. If the literal TAX ROUTINE displays on the screen,
we know that the program does indeed reach this point. It is important to use a message that will not
be confused with normal program output. Sometimes reverse characters are useful for tracing. For
example:

PRINT"(rvs1TAX ROUTINE[rvs offl"

When we are certain that the program is executing correctly or that the error has been found, the
print statement will be removed since it has served its purpose.

Another use for this type of statement is to determine the contents of variables as the program is
executing. This is similar to manual tracing except that it is displayed on the screen by the program.
A trace statement might be:

PRINT IN,N$

Each time that the program reaches this location the contents of IN and N$ are displayed. The
programmer then examines these values to see if they are what is expected. 1f not, this gives some
indication of the source of the program error.

It is important to realize that this temporary trace output is displayed with other output. With a
little experience, it is not too difficult to separate visually the normal output from the trace. If this
becomes too much of a problem, some programmers temporarily remove the other print statements so
the trace is easier to follow.

Often, the above trace methods are combined. For instance:

PRINT "ORDER QUANTITY"™,AC,Q

displays both a message and the contents of the variables AC (Account) and Q (Quantity) when this
part of the program is reached.

172 Chapter Eleven

Sales Commission Program To demonstrate this technique of debugging, we will write a sales com-
mission program. In this program a salesperson is paid a commission based on a percentage of the dollar
amount of sales. The percents are as follows:

Sales Amount Commission Percentage
less than $1000 5%

$1000 to $1999.99 7%

$2000 to $2999.99 10%

$3000 or more 12%

Figure 11.1 shows how the program and data might appear before the initial syntax errors have
been corrected. Figure 11.2 shows the output that was printed on the first test run.

10 REM SALES COMMISSION WITH ERRORS
20 PRINT *"fclrl™

30 PRINT "™SALES NO. NAME AMOUNT COMMISSION"
40 PRINT

S0 READ S,N$,A

60 IF S=999 THEN 210

70 IF A¢1000 THEN 130

80 IF A<2000 THEN 140

90 IF A<¢3000 THEN 160

100 C=A*.12

110 GOTO 170

120 C=A*.05

130 GOTO 170

140 C=A*.07

160 C=A*.10

170 PRINT TAB(3);S;TABC(12);N$;TAB(24);A;TAB(35);C
180 L=L+1

190 IF L<10 THEN 50

200 PRINT "“(WAIT) PRESS ANY KEY TO CONTINUE"
210 GET W$:IF W$="" THEN 210

220 60TO 20

300 DATA 100,"J ABEL",500

310 DATA 115,"S BELL'",1500

320 DATA 119,"A CAVE",2300

330 DATA 225,"C CHART",3100

340 DATA 226,"Q CRUZ",1000

350 DATA 278,"D DE LANE",2000

360 DATA 305,"™F FLIN",3000

370 DATA 330,"J FULTON",5000

380 DATA 365,"A GRAY",2300

390 DATA 400,'"L HOBBS'", 1990

400 DATA 444,"W LAKELAND",3300

410 DATA 470,"N PARKER", 1999

420 DATA S500,"R MOORE"™,4000

430 DATA 554,"F PRATT",3900

440 DATA 999,"LAST",0

Figure 11.1 Sales commission program with logic errors

How to Debug Your Programs 173

e D
SALES NO. NAME AMOUNT COMMISSION
100 J ABEL 500 0
115 S BELL 1500 150 &
119 A CAVE 2300 230 T~
225 C CHART 3100 372
226 Q CRUZ 1000 100 T
278 D DE LANE 2000 200
305 F FLIN 3000 360
330 J FULTON 5000 600
365 A GRAY 2300 230
400 L HOBBS 1990 199 —
(WAIT) PRESS ANY KEY TO CONTINUE

SALES NO.

NAME

AMOUNT

444 W LAKELAND 3300

(WAIT) PRESS ANY KEY TO CONTINUE

COMMISSION

396 <

SALES NO.
470 N

(WAIT) PRESS ANY KEY TO CONTINUE

NAME

PARKER

AMOUNT
1999

COMMISSION

199.9

SALES NO.

Figure 11.2 Sales commission program output

Upon examination of the output, several errors are noted. The first, labelled (1), shows that Abel
has no commission calculated. This could be due to a forgotten calculation or an error relating to the

first data record.

The second error (2) shows Cruz with a $100 commission when it should be $70. This error also
occurs for the Bell and Hobbs data, which are computed at 10% when the rate should be 7%.

Lastly, (3) indicates that the screen is cleared and a heading displayed for each line after Hobbs.
The intent was to display ten lines and then wait for the user to review the lines visually. When the user
presses a key to continue, the next ten lines should display. Instead only one line is shown.

An experienced programmer might be able to find these errors without a trace; however, we will

NAME

etc.

AMOUNT

use a trace to discover the source of the errors.

174 Chapter Eleven

COMMISSION

Since it seems likely the Abel commission is due to a calculation error a trace will be placed after
the calculation as foliows:

120 C=A*.05
125 PRINT "LT 1000 COMMISSION";C

Problem 2 suggests a difficulty with salespersons in the less-than-2000 category so another trace
is placed after the 7% calculation.

140 C=A*.07
145 PRINT ™LT 2000 COMMISSION";C

The last error is the problem with headings. Since L is used to count the number of lines, it should
be printed each time we print and count a line. This is done with:

180 L=L+1
185 PRINT "LINE COUNT =",L

All of these trace statements are included for the next run of the program. The listing is shown
in figure 11.3. To save space the data statements are deleted from this printout. Figure 11.4 shows the
output from this test run that we will now consider.

10 REM SALES COMMISSION WITH TRACES

20 PRINT "[clrl™

30 PRINT "SALES NO. NAME AMOUNT COMMISSION"
40 PRINT

50 READ S,N$,A

60 IF S$=999 THEN 210

70 IF A<1000 THEN 130

80 IF A<2000 THEN 140

90 IF A<3000 THEN 160

100 C=A*.12

110 GOTO 170

120 C=A*.05

125 PRINT "“LT 1000 COMMISSION";C
130 GOTO 170

140 C=A*.07

145 PRINT "LT 2000 COMMISSION";C< trace statements

160 C=A*.10

170 PRINT TAB(3);S;TAB(12);N$;TAB(24);A;TAB(35);C
180 L=L+1 __”///)
185 PRINT “LINE COUNT =",L <

190 IF L<10 THEN 50

200 PRINT "(WAIT) PRESS ANY KEY TO CONTINUE"™
210 GET W$:IF W$="" THEN 210

220 G6OTO 20

Figure 11.3 Sales commission program with trace statements

When we examine the results of our trace on the screen (figure 11.4), we are led to the necessary
corrections for the program. The first error was the commission of zero for Abel. If we look at the trace
output for Abel it doesn’t exist. This is a major clue for finding the error, which strongly suggests the
program never reached statement 125, the trace statement. By the process of logical deduction we con-
clude that statement 120 was also not done.

How to Debug Your Programs 175

Now the question we should ask ourselves is, What code is responsible for bringing us to statement
1207 It is the statement that determines Abel has sales of less than $1000. This is statement 70. If you
examine this statement you will see that it goes to statement 130, not 120. This is the error. It is cor-
rected as follows:

70 IF A¢1000 THEN 120

SALES NO. NAME AMOUNT CUMMISSIUH\ data line
100 J ABEL 500 e
LINE COUNT = 1< .
LT 2000 COMMISSION 105 frace lines
115 S BELL 1500 150
LINE COUNT = 2
119 A CAVE 2300 230
LINE COUNT = 3
225 C CHART 3100 372
LINE COUNT = 4
LT 2000 COMMISSION 70
226 Q CRUZ 1000 100
LINE COUNT = &
278 D DE LANE 2000 200
LINE COUNT = 6
305 F FLIN 3000 360
LINE COUNT = 7
330 J FULTON 5000 600
LINE COUNT = 8
365 A GRAY 2300 230
LINE COUNT = 9
LT 2000 COMMISSION 139.3
400 L HOBBS 1990 199
LINE COUNT = 10
(WAIT) PRESS ANY KEY TO CONTINUE
_ J
N
SALES NO. NAME AMOUNT COMMISSION
444 W LAKELAND 3300 396

LINE COUNT = 11
(WAIT) PRESS ANY KEY TO CONTINUE

[
SALES NO. NAME AMOUNT C[.'ll"IMISS.‘»IC]Nw

LT 2000 COMMISSION 139.93
470 N PARKER 1999 199.9
LINE COUNT = 12

Figure 11.4 Program and trace output

176 Chapter Eleven

The second error does produce a trace output. It shows that the calculation for Cruz’s commission
was 70 but that 100 was displayed. Thus the calculation was right but the output was wrong. If we look
at this part of the program , we see the 7% calculated in 140 . The next statement is the trace followed
by a calculation for 100%. Apparently we forgot the GOTO at 150.

150 GOTO 170

The last problem was the new screen display after ten lines. The trace shows a line count for each
line of output beginning at 1 for the first line but proceeding to 10, then 11, and so on. Since we are
allowing only ten lines per screen we obviously forgot to reset the line counter to zero.

Now we remove the trace statements and include the corrections discussed above. At this stage a
final test run is done as shown in figures 11.5 and 11.6. If there is still some concern at this stage of
testing about whether all of the errors have been found or if they have been properly corrected, the trace
statements could be left in the program for one more run.

10 REM SALES COMMISSION PROGRAM
20 PRINT "[clrl™

30 PRINT '"SALES NO. NAME AMOUNT COMMISSION"
40 PRINT

50 READ S,N$,A

60 IF S=999 THEN 210

70 IF A<1000 THEN 120

80 IF A<2000 THEN 140

90 IF A<3000 THEN 160

100 C=A*.12

110 GOTO 170

120 C=A*.05

130 GOTO 170

140 C=A*.07

150 GOTO 170

160 C=A*.10

170 PRINT TAB(3);S;TAB(12);N$;TAB(24);A;TAB(35);C
180 L=L+1

190 IF L<10 THEN 50

200 PRINT "CWAIT) PRESS ANY KEY TO CONTINUE"™
210 GET W$:IF W$="" THEN 210
215 L=0

220 60OTO 20

300 DATA 100,'"J ABEL",500

310 DATA 115,"S BELL", 1500

320 DATA 119,"A CAVE",2300

330 DATA 225,"C CHART",3100

340 DATA 226,"Q CRUZ",1000

350 DATA 278,"D DE LANE",2000
360 DATA 305,"F FLIN'",3000

370 DATA 330,"J FULTON",5000
380 DATA 365,"A GRAY",2300

390 DATA 400,"L HOBBS", 1990

400 DATA 444,"W LAKELAND",3300
410 DATA 470,'"N PARKER™"™, 1999
420 DATA 500,"R MOORE'™,4000

430 DATA 554,"F PRATT",3900

440 DATA 999,"LAST",0

Figure 11.5 Sales commission program—debugged

How to Debug Your Programs 177

~

SALES NO. NAME AMOUNT COMMISSION
100 J ABEL 500 25
115 S BELL 1500 105
119 A CAVE 2300 230
225 C CHART 3100 372
226 @ CRUZ 1000 70
278 D DE LANE 2000 200
305 F FLIN 3000 360
330 J FULTON 5000 600
365 A GRAY 2300 230
400 L HOBBS 1990 139.3
(WAIT) PRESS ANY KEY TO CONTINUE
& J
SALES NO. NAME AMOUNT COMMISSION
444 W LAKELAND 3300 396
470 N PARKER 1999 139.93
500 R MOORE 4000 480
554 F PRATT 3900 468
\- J

Figure 11.6 Sales commission output—debugged

REVIEW QUESTIONS—CHAPTER 11

1. What is meant by desk checking and when would it be used?

Describe what is meant by syntax errors. What is the usual reason for a syntax error?

See how many different kinds of syntax error messages you can create. What is the correction in
each case?

Give eight considerations for preparing test data.

Why is volume of test data not an appropriate concern?

Explain how immediate mode operations may be used for debugging a program.

What are the two kinds of program tracing? When is it best to use each one?

What is a trace statement? How would one be used for debugging a program?

How do you know when a program is completely debugged? Can you ever be absolutely certain?

W o

e R

178 Chapter Eleven

Appendix A
BASIC
Operating Commands

This appendix lists some additional commands available in BASIC 4.0 on the PET and CBM. Most
of these commands are used for disk systems but a few such as LIST, NEW, and RUN are available
to all systems. The commands LOAD, SAVE, and VERIFY are used on tape systems.

The APPEND command is used to write additional data to the end of a sequential disk file. AP-
PEND is used like a DOPEN, but instead of writing over an existing file the PRINT# will add the new
records to the end of the file.

Example:

100 APPEND#3,"“CHECKBOOK",D1

Opens file CHECKBOOK as file number 3 on drive 1.

BACKUP creates a copy of an existing diskette on a second disk. This command is normally used
in immediate mode.
Example:

BACKUP DO TO D1 '

Copies the contents of the disk in drive 0 onto the disk in drive 1.

179

This is an optional command that is equivalent to asking for a DIRECTORY. See DIRECTORY for
a detailed explanation.

The CLR command sets all numeric variables in a program to zero, all string variables to null
(empty string), frees all array space, and resets memory and stack space.
Example:

10 CLR

If used at the beginning of the program all variables are cleared prior to program execution.

COLLECT should be used occasionally to repair unallocated space on a disk. This space occurs
due to improperly closed disk files. Normally COLLECT is used in immediate mode.
Example:

COLLECT DO

“This command concatenates two sequential disk files. File 2 is replaced by the concatenated ver-
sion of both files. File 1 is unchanged.
Example:

CONCAT D1,"MONTH" to D1,"™ANNUAL™

180 Appendix A

The file named MONTH will be concatenated to the file named ANNUAL. ANNUAL now contains
all of its original data plus the data contained on file MONTH. MONTH itself is unaffected by the
operation.

The COPY command copies the contents of a file from one drive to another. The existing copy
of the file is unchanged by the operation.
Example:

COPY '"ACCOUNT.1",D0 TO *"ACCOUNTS",D1

The file named ACCOUNT.1 on the floppy disk in drive 0 is copied to the disk in drive 1 and
given the name ACCOUNTS.

The DIRECTORY command gives a listing of the files on a diskette.

This command lists all or part of a BASIC program. When no line numbers are specified the
entire program is listed. If a single line number is included only that line of the program is displayed.
When two line numbers are included all statements in that range are listed on the screen.

Example:
LIST list the entire program
LIST 150 displays line number 150

LIST 100-200 lists all statements from 100 to 200

Normally the LOAD is used to load a program from tape, tape being the default when no device
number is specified. Prior to BASIC 4.0 a LOAD using device number 8 was used for loading disk
programs. It is recommended that DLOAD be used for disk.

BASIC Operating Commands 181

Example:

LOAD "CHASE"

Loads the program CHASE from tape into memory.

NEW erases the current program from memory. This command should be used when you begin
writing a new program.
Example:

NEW

Normally used in immediate mode to change the name of a disk file. The old name of the file is
replaced by the new name.

Example:

RENAME *“LEAPS'" TO "BOUNDS"™

Changes the current filename LEAPS to BOUNDS.

Used to execute the program that is currently in memory. Including the line number begins ex-
ecution at that line in the program.

Example:
RUN
RUN 100

182 Appendix A

Normally used to save a BASIC program on tape. By including a device number, programs may
be saved on disk but DSAVE is recommended for use with disk.
Example:

SAVE "PHONE"™

Saves the current BASIC program “PHONE” on tape.

This command scratches or erases a file from disk. To ensure that you intend to scratch the file
you must reply to the prompt “ARE YOU SURE?” with a YES response.

Example:

SCRATCH "EXPRESS",D1
ARE YOU SURE? YES

Scratches file EXPRESS from the diskette in drive 1.

Used to verify the correctness of the contents of a program on tape. Normally VERIFY is used
after the SAVE command to ensure the program was recorded accurately. After a program has been
saved, the tape is rewound and the VERIFY command is entered. .

Example:

VERIFY 'PHONE"

BASIC Operating Commands 183

Appendix B
Reserved Words

Ccrtain words in BASIC are intended to be used only for the purpose for which they were intended.
Two-character words can present particular difficulties if they are used as variable names in a program.

ABS GET OPEN SPC
AND GET# OR SQR
ASC GOSUB PEEK ST
ATN GOTO POKE STEP
CHRS IF POS STOP

| CLOSE INPUT PRINT STRS
CLR INT PRINT# SYS
CMD LEFT$ READ TAB
CONT LEN READ# TAN
COS LET REM THEN
DATA LIST RESTORE TI
DEF LOAD RETURN TI$
DIM LOG RIGHTS TO
DS MID$ RND USER
END NEW RUN VAL
EXP NEXT SAVE VERIFY
FN NOT SGN WAIT
FOR ON SIN
FRE

184

Appendix C

Abbreviations

Early in the book we used the question mark (?) to represent the command PRINT. The BASIC
interpreter translated this abbreviation into the equivalent PRINT statement. Most reserved words in
BASIC can be represented by a two- or three-letter abbreviation. When the abbreviation is two letters
usually it will be the normal first letter of the reserved word followed by the second letter shifted. For
example, the word LIST can be entered by typing L[shift] I. The shifted character will display as a
graphic on the PET and an uppercase letter on the CBM.

In the following chart lowercase letters are typed normally while uppercase represents a shifted

character.
WORD ABBREV |WORD ABBREV |WORD ABBREY |WORD ABBREV
ABS aB GET gE OPEN oP SPC sP
AND aN GET# get# OR or SQR sQ
ASC aS GOSUB goS PEEK pE ST st
ATN aT GOTO g0 POKE pO STEP stE
CHRS$S cH IF if POS pos STOP sT
CLOSE clO INPUT input PRINT ? STRS str$
CLR cL INT int PRINT# pR SYS sY
CMD cM LEFTS$ IeF READ rE TAB tA
CONT cO LEN len READ# read# TAN tan
COS cos LET 1E REM rem THEN tH
DATA dA LIST I RESTORE reS TI ti
DEF dE LOAD 10 RETURN reT TIS ti$
DIM dI LOG log RIGHTS rl TO to
END eN MID$ ml RND N USER uS
EXP eX NEW new RUN rU VAL vA
FN fn NEXT nE SAVE sA VERIFY vE
FOR fO NOT nO SGN sG WAIT wA
FRE fR ON on SIN sI

185

Appendix D

DOS

Error Messages

Type Error Error Track Sector
Number Message
Status 00 OK 00 00
01 FILES SCRATCHED # Files 00
Read 20 READ ERROR (Block header not found) T S
Errors 21 READ ERROR (No sync character) T S
22 READ ERROR (Data block not present) T S
23 READ ERROR (Checksum error in data block) T S
24 READ ERROR (Byte decoding error) T 3
27 READ ERROR (Checksum error in header) T S
Write 25 WRITE ERROR (Write-verify error) T S
Errors 26 WRITE PROTECT ON T S
28 WRITE ERROR (Long data block) T S
29 DISK iD MISMATCH T S
Syntax 30 SYNTAX ERROR (General syntax) 00 00
Errors 31 SYNTAX ERROR (invalid command) 00 00
32 SYNTAX ERROR (lL.ong line) 00 00
33 SYNTAX ERROR (Invalid filename) 00 00
34 SYNTAX ERROR (No file given) 00 00
39 SYNTAX ERROR (invalid DOS command) 00 00
50 SYNTAX ERROR (Record not present) 00 00
51 SYNTAX ERROR (Overflow in record) T S
52 SYNTAX ERROR (File too large) T S
File 60 WRITE FILE OPEN 00 00
Errors 61 FILE NOT OPEN 00 00
62 FILE NOT FOUND 00 00
63 FILE EXISTS 00 00
64 FILE TYPE MISMATCH 00 00
65 NO BLOCK T S
66 ILLEGAL TRACK AND SECTOR T S
67 ILLEGAL SYSTEM TRACK AND SECTOR T S
Svstem 70 NO CHANNEL 00 00
Errors 71 DIR ERROR 00 00
72 DISK FULL 00 00
73 DOS MISMATCH 00 00
74 DRIVE NOT READY 00 00

186

X X Pone 54468,12 AppendixE
X Foxs 5846314 PET ASCII
and PEEK POKE Codes

Thc PET and CBM uses internal codes to represent all characters available to the programmer. One
system of coding used is ASCII (American Standard Code for Information Interchange) although Com-
modore uses a variation of this standard. The ASCII codes are given by the ASC function and used by
the CHRS function.

These codes are useful for producing screen graphics, in which case the PEEK or POKE value is
used from the right column of the chart.

ASCHI PEEK | ASCH PEEK | ASCH PEEK | ASCHI PEEK | ASCII PEEK | AsCHl PEEK
7 163 99 | /165 101|184 120 | 183 [O] 119 |7 | B | 113 e[B 86
> «® |6 7 i L
197 69 |{212 84 | iss 121|178 9 I 11 178 114 | 219 ? I 91

/ i
196 68 |/ 199 71 |.181 117 s [D] 116 | 179 115 206 B 78
4 ‘ 3 ‘ N
14
s B
/ g <
£ 195 67 |/194 66 | 182 e | 170 | B 106 |s171 | B 107 | 208 77
X - »] ® n

€192 64 |/ 221 93
70 |/ 200 72 ; 166l 102
&
/ ; J/ (1]
- 210 82 |i217 89 | 161 97 | ,169 105 | 209 81 |220f \ | 92
7 ; [=]
S 164 100|167 98 | 223 95 | 215 87 |'168 N 104

85 124 176

n
o
~

65 213 79 188

—_
~
Y
-
—
o

(e (g () fa)| o) fon
[

74 126

N
o
»

o
w

\\a; B
[¢]

90 202 76 190

369|998 g PI LT [xa

TlElelE

N
-
@

S FIEY| (360 86969 69) (3

211 83 201 73 208 80 172 108 173 109
216 88 203 75 186 122 187 123 189 125
191 127

187

Appendix F
ASCII
and CHRS$ Codes

This appendix shows you what characters will appear if you PRINT CHRS$ (X), for all possible values
of X. It will also show the values obtained by typing PRINT ASC (“x”) where x is any character you
can type. This is useful in evaluating the character received in a GET statement, converting upper- /
. lowercase, and printing character-based commands (like switch to upper-/lowercase) that could not be
enclosed in quotes.

PRINTS CHRS$|PRINTS CHRS$|PRINTS CHRS|PRINTS CHRS$
0 16 32| 8 48

1 7] 33| 1 49

2| fBR 18] - 34| 2 50

3| Bl 19| 35| 3 51

4| KM 20 s 36| 4 52

5 21| o 37| 5 53
6 2] s 38| & 54

7 23| . 3| 7 55

8 24| 40| 8 56

9 25|) 41| o 57

10 % | - 2| : 58

11 27| + 43| ; 59

12 28| | 4| < 60
13 ey 29| — 45| = 61
EEEA 14 30| . 6| > 62
15| E 31| 47| 2 63

188

PRINTS CHRS$
@ 64
A 65
B 66
C 67
D 68
E 69
F 70
G 71
H 72
I 73
J 74
K 75
[76
M 77
N 78
o 79
P 80
Q 81
R 82
s 83
T 84

PRINTS CHRS
U 85
v 86
w87
X 88
Y 89
z 90
[91
&\ 92
] 93
) 94
« 95

Bk g
& !
1] o8
F # 99
8 100

Y. 101
[]& 102
[]° 03
[] C 104

B) 105

PRINTS CHRS

E](124

= 125
0 > 126

PRINTS CHRS
N V127
128

129

130

131

132

1 gl 133
B3 134
tsReL 135
17 bl 136
(4 137

fa X 138

143
BLK 144
Bl 145

146

SN

vowe [

ASCIl and CHR$ Codes

Cu/s/smw?

-

189

PRINTS CHRS$
148
149
150
151
152
153
154
165
156

157

YEL

158

PRINTS CHRS

CYN

159

=3~

161
162
163
164
165
166
167

168

NELUgOuonp™

169

PRINTS CHRS$
170

171
172
173
174
175
176
177
178

179

SDHAIBEATE D el

180

PRINTS CHRS
181

182
183
184
185
186
187
188
189

190

"uflali=i] AR] NN IN 1"

191

190

Appendix F

Index

abbreviation, 187

ABS, 87

add, 23

AND, 44

animation, 123-28
APPEND¥#, 179
appending, 159, 179
arithmetic functions, 87
arithmetic statements, 23
arrays, 39, 69, 152

ASC, 90

ASCII, 82, 90, 136, 138, 191, 193
ATN, 87

BACKUP, 179

backup, 13, 179

bar charts, 60

BASIC 4.0, 3, 15, 144

bit, 18

budget program, 137, 141, 146
byte, 18

CAI chess, 99

calculator mode, 15, 19

carriage return, 136

cassette. see tape

CATALOG, 12, 180

CBM, 1,5, 8, 12, 81, 131

checkbook program, 149-55

chessboard graphic, 123

CHRS, 91, 135, 138, 147, 193

CLEAR, 17

clear screen, 26, 32, 63

clock. see TI; TI$

CLOSE, 134

CLR, 180

COLLECT, 180

comma, 25

command language, 115

computer assisted instruction, 62, 93,
99

CONCAT, 180

concatenation, 94

COPY, 181

COS, 87

cursor controls, 8, 16, 63, 111, 123

DATA, 59

DCLOSE, 145
debugging, 165, 168, 173
decimal positions, controlling, 86, 98
defaults, 111

DEF FN, 85

degrees to radians, 90
DELETE, 17

DIM, 39
DIRECTORY, 12, 181
disk, 2, 11-13

disk errors, 147

disk files, 143

divide, 24

DLOAD, 12

DOPEN, 144, 156
DOS 2.0, 4, 143, 189
driver routines, 98

DS, 148

DSS$, 148

DSAVE, 12

egg timer, 125

end of file, 61, 134, 146

English code, 29, 33, 36, 49, 52, 55,
150

EXP, 88

exponentiation, 24

Fahrenheit-Celsius program, 30, 32
filename, 134, 144, 149

files, 133, 143, 149, 155

file updating, 139, 158

floating point, 20

flowcharts, 66, 67, 73, 140

form filling, 114

FOR-NEXT, 44, 50

functions, 87, 90

GET, 77, 113
GOSUB, 46, 78
GOTO, 28, 79
Graphics, 7, 117
Graphs, 95

hardware, 1
hierarchy, 24
HOME, 8, 17

IF, 42

immediate mode, 15, 19, 168
index file, 160

INPUT, 27, 110

input, 1, 27, 54
INPUT#, 136, 145, 157
INSERT, 16

instring search, 102
integer names, 21
integers, 18

interest program, 85
INT function, 48, 88

K, 3
keyboard, 7
keyboard graphic, 120

LEFTS, 91

LEN, 92

LIST, 181

LOAD, 10, 181

load error, 10

loan payments program, 35
LOG, 88

logical operators, 43
lowercase, 81

tunar lander graphic, 122

memory, 2, 17

menus, 112-14

metric conversion program, 66
MIDS$, 92

multiple fields, 138, 147
multiple statements, 22, 43
multiply, 23

music player, 131

NEW, 17, 182

number guessing game, 49, 51
number pad, 8

numbers, 18

191

“OFF/RVS, 8
ON GOSUB, 78
ON GOTO, 79
OPEN, 134
OR, 44
output, 1

parentheses, 24

payroll program, 70

PEEK, 82, 191

PET, 1,5

plotting graphs, 95

POKE, 80, 91, 119, 121, 125, 127,
129, 191

PRINT, 15, 25, 63, 110, 117

PRINT#, 135, 145

print zones, 25

program, 1, 10

program generalization, 99

prompting, 110

pseudo code, 29, 33, 36, 49, 52, S5,
150

radians to degrees, 90
RAM, 2

random numbers, 48, 83, 89
random responses, 102
reaction timer, 120

READ, 59

real numbers, 18
RECORD#, 157

relative access files, 155

192 Index

REM, 29

RENAME, 182
replacing a file, 149
replacing a program, 12
reserved words, 185
RESTORE, 62
RETURN, 46

return key, 7, 27
RIGHTS, 94

RND function, 48, 88
rocket animation, 123, 124
rolling die, 127

ROM, 2,7

rounding, 18

RUN, 10, 31, 182
RUN/STOP, 8, 17

sales commission program, 173
SAVE, 11, 183

scientific notation, 20
SCRATCH, 183

screen addresses, 81

screen characters, 91

scrolling, 12, 151

semicolon, 26, 28, 30, 45
sequential files, 133, 144
SGN, 89

simple calculation program, 29
SIN, 89, 95

sound, 129

SPC, 65

SQR, 90

ST, 137

STOP, 8, 17, 47
STRS, 94

string functions, 90
string names, 22
strings, 21
software, 1
subtract, 23
SuperPET, 1
syntax errors, 166

TAB, 65

TAN, 90

tape, 2, 9-11, 133, 136
test data, 164

time delays, 50, 129

TI function, 48, 83, 126
TI$ function, 84
tracing, 168, 172, 176
trip costs program, 53
truncating, 19

updating. see file updating
uppercase, 81

VAL, 94

variable names, 21
variables, 21
VERIFY, 11, 183

weighted average program, 32, 52, 61

