This is a provisional copy

of the

MANUAL

for the

CBM 8096

1. System overview of properties of L0OS-96 and changes to BASIC-4

Knowledge of BASIC-4 and the handling of CBM 8032 are required to understand these
instructions which are merely intended as a supplement to the CBM 8032 handbook .

LOS-96 (Loadable Operating System for 96k Machine) is a BASIC/operating system for CBM
8096 (CBM 8032 with 6lk extension board from Commodore). It is compatible with BASIC-4.

LOS-96 is loaded from diskette into the RAM. LOS-96 makes 6U4k memory available for BASIC
(32k for the program, 32k for variables)..

The following points will give a quick overview.

BASIC-stack (unlimited FOR / GOSUB depth)

program change without loss of variables

simplified OVERLAY

ESC-key function for ASCII-CTRL-codes and screen editor
automatic line numbering

deleting groups of lines

BASIC lines up to 250 bytes in length

error message indicating place of error

cassette is no longer supported in the system

default device 8 for LOAD / SAVE / VERIFY

INPUT can read 255 characters

CALL and FUNC for additional loadable machine routines
error in string handling corrected

2. Generel Characteristics

2.1 Auto-Start

If LOS-96 is the first file on a diskette, it can be loaded and started with SHIFT/RUN.
Otherwise LOS-96 has to be loaded with BASIC-4 by DLOAD "LOS*" and started with RUN.
L0S-96 will then try to load the program "START*" from one of the diskettes from unit 8,
and start it. If the program "START*" does not exist, the message FILE NOT FOUND ERROR
will appear. This will have no further consequences on the computer or the floppy. The
computer will wait in direct modus for instructions.

READY (without period) shows that the computer is not working under BASIC-4 (READY.)

2.2 Loading BASIC-4 Programs

BASIC-4 programs will run with LOS-96, if they are solely written in BASIC. However, since
BASIC-4 programs are loaded starting with address 1025 and LOS-96 programs start with
65537, it is imperative to set a comma after LOAD as shown below. This sets the program
to the actual beginning of the BASIC program area:

load , "old program"

ATTENTION:
When 'old' BASIC programs are loaded without comma, LOS-96 will crash, because the BASIC
program will be loaded into the operating system!

s B

2.3 Memory Map physic. logical
128k -—— 65536 131072
vectors and bank
select registers

— 65520 131056
------ (52/53)
strings
ik (48/49)
memory for variables (46/47)
arrays
(44/45)
(42/43)
96k 32768 98304
96k 65536 98304
vectors and bank
select registers
i 65520 98288
(241/242)
program memory BASIC Stack
------- (239/240)
(248 /249)
BASIC program
-— (40/41)
6lk S 32768 65536
64Kk 65536 65536

ROM area (unused) / I/0 ports / screen (like 8032)
32768

32k 32768

extension for BASIC prg
or variable or user prg
or system extensions

= (1252/1253)

operating system ~

operating system 1024
BS-working area

------------------------ 768
input buffer
512
processor stack
256
zero page
0 cmmmmmm e o]

2.4 Logical and physical addresses
The following sketch explains the memory allocation:

26l 64-96 96-132

64k
- ROM 23 PRG : VAR
32k

OPERATING SYSTEM

0
A11 logical addresses can be reached with the BASIC commands POKE, PEEK, SYS and WAIT. All
pointers refer to physical addresses.

2.5 User's Adjustment of Memory Area

The reserved areas for program (32k) and variables (32k) can be extended. A protected area
between the top end of the variable area (52/53) and the address 65520, as well as the top
end of the program area (241/242) and 65520 can be reserved. (Addresses over 65519 will
cause a crash) The bottom ends of the program/variable area can be changed by increasing

-5 -

the pointers to more than 32768, or decreasing them to less than 32768 when only one of
the areas is to be lengthened at the bottom.

2.6 BASIC Stack

The management of GOSUB-RETURN and FOR-NEXT is done by a separate BASIC stack. Therefore
there is no limitation of 26 GOSUB levels such as with the CBM 8032. When a program is
loaded there should be at least 200 bytes free (fre(0)).

2.7 Program Change Without Loss of Variables/ Overlay

Variables do not have to be deleted when a program memory area is extended. However, when
a pointer marks the definition of a function (DEF FN), or READ-DATA, GOSUB-RETURN, FOR-
NEXT, and the program is changed later within the region where the pointer is set, the
pointers will not change automatically, too, so that they will then read nonsense.

After a change, the program can be started warm (CONT or GOTO) or cold (RUN).

2.8 New Keyfunctions with ESC
Pressing ESC key and another key will have the following effects:
ESC +

CURS UP screen scroll down

CURS DOWN screen scroll up

CURS RIGHT delete line to the right of the cursur

CURS LEFT delete line to the left of the cursur

DEL delete line

INST insert line

HOME define the top left corner of the window

CLR define the bottom right corner of the window
TAB find the following blank

TAB (SHIFT) find the following non-blank character

STOP jump into the monitor (executed at interrupt)
RETURN move cursur into first column of following line, delete flages, do not

take over line

2.9 Automatic Line Numbering

When a line (say 1line no. 20) is entered by RETURN, then automatically a number will
appear with the same increment as before on the following line (say previous line was no
10; automatic next no will be 30), unless this number (30) already appears elsewhere or a
number in the interval (20-30) appears elsewhere. In this case no number will be given
automatically. An automatic number can be overwritten by the user.

2.10 Input of Very Long Lines
Lines extending over many screen lines should begin in the first or second columnj; the
following screen lines begin in the third column or later.

2.11 Having Many Statements in a Program Line.
More than one statement can be put in one program line. Statements on different 1linegs can
be joined in one line, and vice versa.

2.12 Error . The line causing the error will be listed and the cursor will mark
the column where the error was detected. #

2.13 Cassette Handling and Floppy Pre-Setting. Cassette handling is eliminated completely.
The default value for LOAD, SAVE, VERIFY is no longer 1 but 8.

2.14 INPUT can read 250 Bytes.

2.15 ROM. ROM switches the ROM operating system (BASIC-4) on and the RAM operating system
(LOS-96) off. RESET is not necessary.

3.1 LOAD
Format: LOAD, ;R% address, "drive:name', device #

-l -

If ', device #' is not given, the device # is supposed to be 8.
Usually, when a program is loaded into the program memory area it is sufficient to
write: load "name"

When load, "name" is typed, the program will be located at the current
beginning of the program memory area.

When load R address, "name" is typed, the programm will be placed starting at
the address.

When load B % address, "name" is typed, the bottom end of the program, which can
reach into the variables' memory area will be loaded.

When load; "name" is typed the program-end-pointer will be set after the last
byte.

Add1t1ona1 BASIC or machine programs can be loaded by placing a load command into a
program.

// NB: The character "B" stands for "commercial at" //

3.2 SAVE

Format : SAVE B fromaddress,toaddress,"drive:name", device no

B fromaddress, toaddress w111 only cause the part between the two given addresses to
be stored. A complete program will be stored by: SAVE "drive no:name", unit no

f fromaddress, toaddress will only cause the part between the two menticned
addresses to be stored. A complete program will be stored by:

SAVE "drive:name", device no

3.3 VERIFY

The default device no. is 8 unless specified otherwise.

3.4 LIST

Format: LIST from - to (normal listing)

or format: LIST from - to (listing, each statement in a new row)
3.5 DELETE

Format : DELETE 100-200 (abbreviated: deL100-200)

Rows 100-200 (for arguments sake) are deleted.

3.6 FRE

Format: A = FRE (m) m=0: program; m/0: variable

A will contain the number of free bytes.

3.7 CLR

Format: CLR list of variables (variables separated by comma)

The variables (single or arrays) will be cleared from memory. CLR without variables
works like CLR in BASIC-4.

3.8 REDIM: changing the length of one-dimensional arrays. Format: like DIM

3.9 RESTORE

Format : RESTORE line, element (, element can be omitted)

The DATA-pointer for READ will be set back to a certain line and a certain element.
line: BASIC line number. element: 1 255

3.10 Machine addresses (POKE, PEEK SYS, WAIT)
The 8096 has got 128k memory, but the orocessor‘ can only address 64k at a time. POKE,
PEEK, SYS, WAIT increase the working memory area.

3.11 Getstring (GET$)

Format : GET$ logical address, string variable, max, end, ignor

Getstring will read from a peripheral device a str‘ingvar‘iable (max. length: 255
characters). Logical address and stringvaraibles must be given. The maximal number of
bytes is given by max. The string is disrupted when the end-code end is encountered.
The initial code which has to be ignored is given by ignore.

GETSTRING should be preferred.to INPUT whenever the delimiters comma, colon and CR
shall not apply or when code O has to be read.

B

3.12 Instring (INSTR)

Format: INSTR(chain, stringvariable, column, mode)

A certain chain is searched for in a string variable. The column gives the position
where the search is started. The mode gives the direction of the search.

3.13 Midstring (MIDSTR)

Format : MIDSTR(strvar, column) = string

Midstring overrides a string (string) with another string (strvar), starting at the
point "column". From there on the first string (strvar) will be overwritten.

3.14 ASC/CHR$
Format: A= ASC(string, column, length)
A$= CHR$(number, length)
CHR$ will change a number into a 1-5 bytee string, and ASC will change such a string
back into a numerical value.

3.15 CATALOGUE$
Format: CATALOGUE$ string, array, device no, drive, sample, mode
CATALOGUE$ transfers the directory of the floppy into an array.

3.16 IF THEN ELSE
Format: IF logical expression THEN yes-possibility ELSE no-possibility
The IF THEN command in BASTIC-4 is now extended by ELSE.

3.17 ON ERROR GOTO / EL, C, EO/ RESUME
Format: ON ERROR GOTO line no

RESUME RESUME NEXT RESUME line no

RESUME ERROR
ON ERROR GOTO: In case of an error the job will be continued at the given line. The
three variables EL (ERROR-LINE), EC (FRROR-CODE), EO (ERROR-OFFSET) contain all
information what kind of error oceured and where in happened. RESUME indicates how the
program is then to be conbinued (repeat faulty statement, go to the next statment, go
to line no., report fault directly and interrupt job).

List of ERROR Messages

EC EQ ERROR (EO)

=1 [9) TOO MANY FILES

-2 14 FILE OPEN

-3 23 FILE NOT OPEN

=l 36 FILE NOT FOUND

=5 50 *SEARCHING

-6 61 FOR

=7 65 *LOAD

-8 70 *VERIFY

-9 77 DEVICE NOT PRESENT
-10 95 *FOUND

-1 102 *OK*

-12 106 *READY*

-13 114 *ARE YOU SURE?

-1 129 *? BAD DISK *

+1 0 NEXT WITHOUT FOR
+2 16 SYNTAX

+3 22 RETURN WITHOUT GOSUB
+4 42 OUT OF DATA

+5 53 ILLEGAL QUANTITY
+6 69 BASIC STACK OVERFLOW
+7 89 OUT OF MEMORY

+8 102 UNDEF'D STATEMENT
+9 119 BAD SUBSCRIPT
+10 132 REDIM'D ARRAY

+11 145 DEVISION BY ZERO

i

+12 161 ILLEGAL DIRECT
+13 175 TYPE MISMATCH
+14 188 STRING TOO LONG
+15 203 FILE DATA
+16 212 FORMULA TOO COMPLEX
+17 231 CAN'T CONTINUE
+18 245 UNDEF'D FUNCTION
3.18 DISPOSE
Format: DISPOSE NEXT DISPOSE RETURN
DISPOSE level DISPOSE NEXT,RETURN, NEXT, etc.

DISPOSE manipulates the BASIC-stack. DISPOSE NEXT removes the loop, in which the
program is, from the stack. DISPOSE RETURN removes the subroutine from the stack. The
program does not return to it and the address is forgotten. DISPOSE level (level
between 1 and n) sets the stack onto the required level.

3.19 INPUT / PRINT - B (row, column)
Format: PRINT 8 (line, column) list of variables
INPUT # (line, column)} variable
line: 0 ... 24; column: 0 ...79;
The argument after PRINT and TNPUT places the cursor onto the specified position on
the screen.

3.20 USING

A$ = USING (format, var-list)

USING is a string function which can insert variables into a string. USING cannot be
used in direct mode. The format specification is a string expression.

3.21 INPUT USING
Format : INPUT R{line, column)

INPUT USTNG (format) input-varaible

INPUT B(line, column) USING (format) input-variable
input-variable: numerical or string variable, single or array.

4. CALL / FUNC

4.1 OVERVIEW

LOS-96 offers an interface to 'foreign' machine programs, which are called by name via
the interpreter. The interface resident in LOS is very simple: when the interpreter
receives the token 'CALL' or 'FUNC', he will jump over the vector in 1507/1508.

4.2 The Table

CALL and FUNC call up a machine program via a name. The names and entrance addresses
of the programs are given in tables. The vector to the table is in 1510/1511.

The btables are structured as follows: the first part contains the addresses of
routines and subtables, the second part contains the corresponding names.

4.3 Calling up CALL or FUNC from the Operating System

When the interpreter notices a CALL statement in the interpreter loop or a FUNC
statement in an evaluation of a function, the interpreter will set cell 94 to 1 (for
CALL) or 2 (for FUNC) and will jump to the CALL routine via vector 1507 /1508

4.4 REM-Routines

The interpreter accepts after REM every byte except 0 (end of line). This property can
be useful when short (less than 250 bytes) machine programs have to be writen directly
into a BASIC program. In this case no further loading or memory reservation is
necessary.

	Page_1_Manual_CBM_8096_provisional_copy
	Page_2_Manual_CBM_8096_provisional_copy
	Page_3_Manual_CBM_8096_provisional_copy
	Page_4_Manual_CBM_8096_provisional_copy
	Page_5_Manual_CBM_8096_provisional_copy
	Page_6_Manual_CBM_8096_provisional_copy
	Page_7_Manual_CBM_8096_provisional_copy

