

DM74LS373/DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

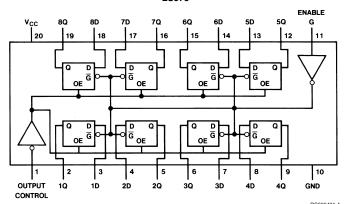
General Description

These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the DM54/74LS373 are transparent D-type latches meaning that while the enable (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was set up.

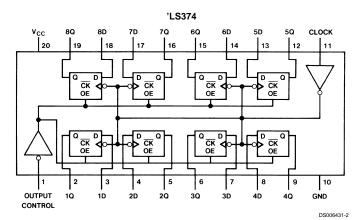
The eight flip-flops of the DM54/74LS374 are edge-triggered D-type flip flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs

A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.


The output control does not affect the internal operation of the latches or flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are off.

Features

- Choice of 8 latches or 8 D-type flip-flops in a single package
- 3-STATE bus-driving outputs
- Full parallel-access for loading
- Buffered control inputs
- P-N-P inputs reduce D-C loading on data lines


Connection Diagrams

Dual-In-Line Packages 'LS373

Order Number DM54LS373J, DM54LS373W, DM74LS373N or DM74LS373WM See Package Number J20A, M20B, N20A or W20A

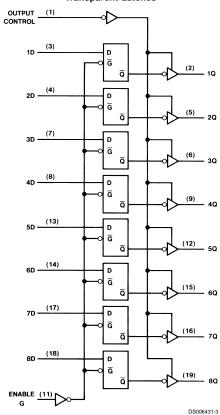
Connection Diagrams (Continued)

Order Number DM54LS374J, DM54LS374W, DM74LS374WM or DM74LS374N See Package Number J20A, M20B, N20A or W20A

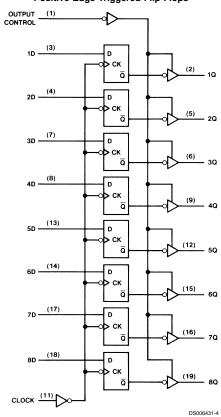
Function Tables DM54/74LS373

Output	Enable	D	Output
Control	G		
L	Н	Н	Н
L	Н	L	L
L	L	Х	Q_{0}
Н	X	Х	Z

H = High Level (Steady State), L = Low Level (Steady State), X = Don't Care \uparrow = Transition from low-to-high level, Z = High Impedance State


DM54/74LS374

Output	Clock	D	Output
Control			
L	1	Н	Н
L	1	L	L
L	L	X	Q_{0}
Н	×	X	z


 $[\]mathbf{Q}_0$ = The level of the output before steady-state input conditions were established.

Logic Diagrams

DM54/74LS334 Transparent Latches

DM54/74LS374 Positive-Edge-Triggered Flip-Flops

Absolute Maximum Ratings (Note 1)

Operating Free Air Temperature Range DM54LS

DM74LS

Supply Voltage 7V Input Voltage 7V

-55°C to +125°C 0°C to +70°C

Storage Temperature Range -65°C to +150°C

Recommended Operating Conditions

Symbol	Parar	neter		DM54LS37	3	[M74LS37	3	Units
			Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Vo	otage	2			2			V
V _{IL}	Low Level Input Vo	Itage			0.7			0.8	V
I _{OH}	High Level Output	Current			-1			-2.6	mA
I _{OL}	Low Level Output C	Current			12			24	mA
t _W	Pulse Width	Enable High	15			15			ns
	(Note 3)	Enable Low	15			15			
t _{SU}	Data Setup Time (N	Notes 2, 3)	5↓			5↓			ns
t _H	Data Hold Time (No	otes 2, 3)	20↓			20↓			ns
T _A	Free Air Operating	Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.

Note 3: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

'LS373 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
V _I	Input Clamp Voltage	V_{CC} = Min, I_{I} = -18 mA				-1.5	V
V _{OH}	High Level Output Voltage	V _{CC} = Min	DM54	2.4	3.4		
		I _{OH} = Max					V
		V _{IL} = Max	DM74	2.4	3.1		
		V _{IH} = Min					
V _{OL}	Low Level Output Voltage	V _{CC} = Min	DM54		0.25	0.4	
		I _{OL} = Max					
		V _{IL} = Max	DM74		0.35	0.5	V
		V _{IH} = Min					
		I _{OL} = 12 mA	DM74			0.4	
		V _{CC} = Min					
I _I	Input Current @ Max	V _{CC} = Max, V _I = 7V	,			0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
I _{IL}	Low Level Input Current	V _{CC} = Max, V _I = 0.4V				-0.4	mA
I _{OZH}	Off-State Output Current	V_{CC} = Max, V_{O} = 2.7V					
	with High Level Output	V _{IH} = Min, V _{IL} = Max				20	μΑ
	Voltage Applied						
I _{OZL}	Off-State Output Current	$V_{CC} = Max, V_O = 0.4V$					
	with Low Level Output	V _{IH} = Min, V _{IL} = Max				-20	μΑ
	Voltage Applied						
I _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 5)	DM74	-50		-225	

'LS373 Electrical Characteristics (Continued)

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
				(Note 4)		
I _{cc}	Supply Current	V_{CC} = Max, OC = 4.5V,		24	40	mA
		D _n , Enable = GND				

'LS373 Switching Characteristics at V_{CC} = 5V and T_{A} = 25°C

		From		l			
Symbol	Parameter	(Input)	C _L =	45 pF	C _L =	150 pF	Units
		То	Min Max		Min Max		1
		(Output)					
t _{PLH}	Propagation Delay	Data					
	Time Low to High	to		18		26	ns
	Level Output	Q					
t _{PHL}	Propagation Delay	Data					
	Time High to Low	to		18		27	ns
	Level Output	Q					
t _{PLH}	Propagation Delay	Enable					
	Time Low to High	to		30		38	ns
	Level Output	Q					
t _{PHL}	Propagation Delay	Enable					
	Time High to Low	to		30		36	ns
	Level Output	Q					
t _{PZH}	Output Enable	Output					
	Time to High	Control		28		36	ns
	Level Output	to Any Q					
t _{PZL}	Output Enable	Output					
	Time to Low	Control		36		50	ns
	Level Output	to Any Q					
t _{PHZ}	Output Disable	Output					
	Time from High	Control		20			ns
	Level Output (Note 6)	to Any Q					
t _{PLZ}	Output Disable	Output					
	Time from Low	Control		25			ns
	Level Output (Note 6)	to Any Q					

Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: C_L = 5 pF.

Recommended Operating Conditions

Symbol	Parameter	D	M54LS37	' 4	D	M74LS37	'4	Units
		Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-1			-2.6	mA
I _{OL}	Low Level Output Current			12			24	mA

Recommended Operating Conditions (Continued)

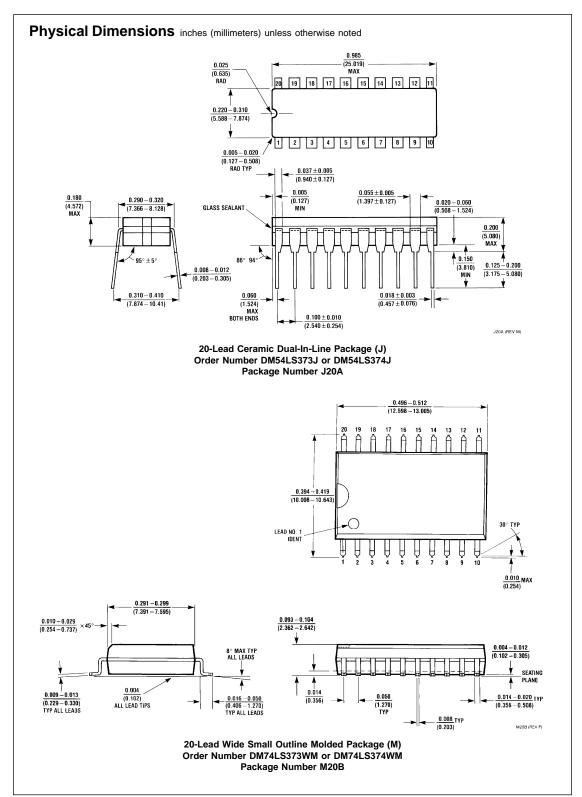
Symbol	Parameter		D	M54LS37	7 4	DM74LS374			Units
			Min	Nom	Max	Min	Nom	Max	
t _W	Pulse Width	Clock High	15			15			ns
	(Note 8)	Clock Low	15			15			
t _{SU}	Data Setup Time (Notes 7, 8)		20↑			20↑			ns
t _H	Data Hold Time (Notes 7, 8)		1↑			1↑			ns
T _A	Free Air Operating Temperatu	ıre	-55		125	0		70	°C

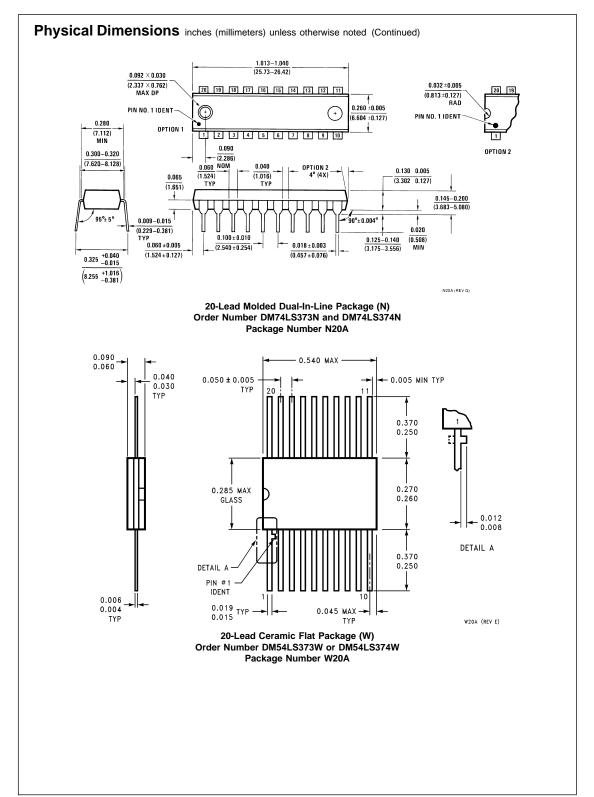
Note 7: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.

Note 8: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

'LS374 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)


Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 9)		
V _I	Input Clamp Voltage	$V_{\rm CC}$ = Min, $I_{\rm I}$ = -18 m	A			-1.5	V
V_{OH}	High Level Output Voltage	V _{CC} = Min	DM54	2.4	3.4		
		I _{OH} = Max	DM74	2.4	3.1		V
		V _{IL} = Max					
		V _{IH} = Min					
V_{OL}	Low Level Output Voltage	V _{CC} = Min	DM54		0.25	0.4	
		I _{OL} = Max	DM74		0.35	0.5	
		V _{IL} = Max					V
		V _{IH} = Min					
		I _{OL} = 12 mA	DM74		0.25	0.4	
		V _{CC} = Min					
I ₁	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
I_{OZH}	Off-State Output	$V_{CC} = Max, V_O = 2.7$	/				
	Current with High	V _{IH} = Min, V _{IL} = Max				20	μΑ
	Level Output						
	Voltage Applied						
I _{OZL}	Off-State Output	$V_{CC} = Max, V_O = 0.4$	/				
	Current with Low	V _{IH} = Min, V _{IL} = Max				-20	μΑ
	Level Output						
	Voltage Applied						
Ios	Short Circuit	V _{CC} = Max	DM54	-50		-225	mA
	Output Current	(Note 10)	DM74	-50		-225	
I _{cc}	Supply Current	$V_{CC} = Max, D_n = GND, OC = 4.5V$			27	45	mA


'LS374 Switching Characteristics at V_{CC} = 5V and T_A = 25°C

			$R_L = 667\Omega$					
Symbol	Parameter	C _L =	45 pF	C _L = '	Units			
		Min	Max	Min	Max			
f _{MAX}	Maximum Clock Frequency	35		20		MHz		
t _{PLH}	Propagation Delay Time		28		32	ns		
	Low to High Level Output							
t _{PHL}	Propagation Delay Time		28		38	ns		
	High to Low Level Output							
t _{PZH}	Output Enable Time		28		44	ns		
	to High Level Output							
t _{PZL}	Output Enable Time		28		44	ns		
	to Low Level Output							
t _{PHZ}	Output Disable Time		20			ns		
	from High Level Output (Note 11)							
t _{PLZ}	Output Disable Time		25			ns		
	from Low Level Output (Note 11)							

Note 9: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. Note 10: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 11: $C_L = 5 pF$.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 co co
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com