MACHXL Software User's Guide

© 1993 Advanced Micro Devices, Inc. P.O. Box 3453 TWX: 910339-9280 Sunnyvale, CA 94088 TELEX: 34-6306 TOLL FREE: 800-538-8450 TEL: 408-732-2400

APPLICATIONS HOTLINE: 800-222-9323 (US) 44-(0)-256-811101 (UK) 0590-8621 (France) 0130-813875 (Germany) 1678-77224 (Italy) Advanced Micro Devices reserves the right to make changes in specifications at any time and without notice. The information furnished by Advanced Micro Devices is believed to be accurate and reliable. However, no responsibility is assumed by Advanced Micro Devices for its use, nor for any infringements of patents or other rights of third parties resulting from its use. No license is granted under any patents or patent rights of Advanced Micro Devices.

Epson® is a registered trademark of Epson America, Inc. Hewlett-Packard®, HP®, and LaserJet® are registered trademarks of Hewlett-Packard Company. IBM® is a registered trademark and IBM PG_M is a trademark of International Business Machines Corporation. Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation. PAL® and PALASM® are registered trademarks and MACH_M and MACHXL TM are trademarks of Advanced Micro Devices, Inc. Pentium_{TM} is a trademark of Intel Corporation. Wordstar® is a registered trademark of MicroPro International Corporation.

Document revision 1.2 Published October, 1994. Printed inU.S.A.

Contents

Chapter 1. InstallationHardware Requirements2Software Requirements3Installation Procedure 4Updating System Files 6AUTOEXEC.BAT7CONFIG.SYS7Creating a Windows Icon for MACHXL	8
Chapter 2. Processing a Design	
Design Flow 12	
Program Module Descriptions 13	
Structure of a MACHXL Design File 15	
Creating a New Design 16	
Using the New Design Form 16	
Creating a New Design with the Text Editor	20
Opening an Existing Design 20	
Using the Text Editor 21	
Compiling the Design 24	
Viewing Compilation Results 25	
Back-Annotating the Design File 25	
Simulating the Design 26	
Downloading the JEDEC File 28	
Standard PLD Programmer 28	
JTAG Programming Cable 28	
Disassembling a Compiled Design 28	
Processing a Simple Design 30	
Creating the Declaration Segment 31	
Writing the Equations 39	
Writing the Simulation Statements 40	
Compiling the Design 41	
Getting a Problem Design to Fit 43	
Chapter 3. Design Examples Multiplexer 50 Comparator 51 Left/Right Shifter 52 Barrel Shifter 53 Simple 3-Bit Counter 54	

Decoder56Up-Down Counter and Up-Counter with Parallel LoadData Acquisition System58Moore State Machine60

Chapter 4. Menu Reference Overview 65 Screen Layout 65 **Choosing Menu Commands** 66 **Preserving Menu Settings** 69 File Menu 70 **Begin New Design** 70 71 Retrieve Existing Design **Change Directory** 72 Set Up 73 Working Environment 73 Compilation Options 75 **Compilation Options Form** 76 MACH Fitting Options Form 77 Simulation Options 87 89 Logic Synthesis Options Go To System 95 Quit 96 Edit Menu 97 Text File 97 **Auxiliary Simulation File** 97 Other File 98 98 Run Menu Compilation 99 Compilation Options 100 Logic Synthesis Options 100 MACH Fitting Options 101 Run-Time Status Display 101 Output Files 102 Simulation 102 Both 103 Other Operations 103 Modify Pin & Node Numbers 104 57

105 **Disassemble From** Intermediate File 105 Jedec 105 **Recalculate JEDEC Checksum 107** View Menu 108 **Execution Log File** 108 **Design File 109** Fitter Reports 109 Fitting 109 Place/Route Data 109 **Timing Analysis** 109 JEDEC Data 110 Simulation Data 110 All Signals 111 **Trace Signals Only** 111 Printing the Simulation History 112 Waveform Display 113 All Signals 113 **Trace Signals Only** 114 Printing a Waveform 114 **Current Disassembled File** 115 Other File 115 **Download Menu** 116 **Download to Programmer** 116 Program via Cable 117 **View Configuration File** 117 **Create/Edit Configuration File 118 Chain File Editor Modes** 120 Completing the JTAG File Editor Form 123 **Program device** 126 Review JTAG results 127 **Review JTAG status** 127 View/edit output file(s) 127 Chapter 5. Language Reference Symbols and Operators 129 **Keywords** 131

Chapter 6. Equations Segment In Depth Pairing 193 Implicit Pairing Rules and Behavior 193 **Output Pairing 195** Input Pairing 196 MACH 1xx Designs 196 MACH 2xx (Except MACH215) Designs 198 MACH 4xx and MACH215 Designs 199 **Explicit Pairing Rules and Behavior** 199 Copying Logic with Braces {} 200 **Output Pairing 200** Input Pairing 203 Polarity 205 The Two Components of Polarity 205 205 **Controlling Polarity from the Equation** Controlling Polarity from the Pin Statement 206 **Controlling Polarity from CASE Statements** 206 Functional Equations 209 **Controlling Three-State Output Buffers** 209 **Controlling Clocks** 210 Specifying a Rising-Edge Clock 211 Specifying a Falling-Edge Clock 211 Specifying a Product-Term Clock 212 **Global Clock Acquisition** 212 **Controlling Set and Reset** 214 Sharing Set and Reset 215 Vectors 216 **Ranges of Pins or Nodes** 216 **Comma-Delimited Vectors** 218 **Radix Operators** 219 **IF-THEN-ELSE Statements** 221 **CASE Statements** 222 **Building State Machines with CASE Statements** 224 **Multiple State Machines** 230 The "Don't-Care" Logic-Synthesis Option 237 MINIMIZE_ON and MINIMIZE_OFF 241 Chapter 7. Simulation Segment In Depth Overview 245 **Creating a Simulation File** 246 Simulation Command Summary 246

Simulation Segment vs. Auxiliary File 248 Considerations 249

Vectors In Simulation 250

SETF and PRELOAD 250 **CHECK and CHECKQ 251** CLOCKF 252252 TRACE_ON Flip-Flops 252 253 Buried Nodes Latches 253 **Output Enable 253 Preloaded Registers** 254 Verified Signal Values 254 **Viewing Simulation Results** 254 All Signals 255 **Trace Signals Only** 257 Text Display, Non-Vectored 258 Text Display, Vectored 259 Waveform Display, Non-Vectored 260 Waveform Display, Vectored 261 Using Simulation Constructs 261 For Loop 261 While Loop 262 If-Then-Else 262 263 **Design Examples** 263 **Boolean Equation Design** State Machine Design 266 Notes On Using the Simulator 267 268 Modeling of Registers and Latches **Programmer Emulation at Power-Up** 268 **Power-Up Sequence** 269 Software Preload Sequence 269 Full Evaluation of Input Pins 270 Clock Polarity 270 271 **Driving Active-Low Clocks** Product Term-Driven Clocks 273 Simultaneous Events 274 **Power-Up Preload On Floating Pins** 274 **Output Buffers 274** Input Signal Ordering 275 Preventing Unexpected Simulation Behavior 276 **Placement Information Missing** 276 Set/Reset Signals Swapped 276 Set/Reset Signals Treated As "Don't Care" 277 Uncontrollable Power-Up Conditions 277

Chapter 8. Using the Fitter Overview 281 The Fitting Process 281 Initialization 281 Normalization 282 **Design Rule Check** 282 **Block Partitioning** 282 283 **Iterative versus Non-Iterative Partitioning** Manual Partitioning 284 **Resource Assignment (Placement and Routing)** 284 **Designing to Fit** 285 Methodology 285 **Analyze Device Resources** 286 286 **Clock Signals** All Devices 286 MACH 3xx/4xx 286 MACH 215/3xx/4xx 287 Set/Reset Signals 288 Available Set and Reset Lines 288 MACH 3xx/4xx 288 Interaction of Set and Reset Signals (All Devices Except MACH215) 288 Reserving Unused Macrocells and I/O Pins 289 **Product Terms** 290 **Strategies for Fitting Your Designs** 291 Fitting with Unconstrained Pinout 293 293 Fitting with Constrained Pinout Interconnection Resources 295 295 **Oversubscribed Macrocells and/or Inputs** Large Functions at the End of a Block 296 Adjacent Macrocell Use 297 **Grouping Logic** 297 **Setting Compilation and Fitting Options** 298 **Reducing Non-Forced Global Clocks** 298 **Gate Splitting** 298 All MACH Devices 300 MACH 3xx/4xx Devices 300 Failure to Fit on Second Pass 302 Understanding Global Clock Signals 303

Balancing Clock Resources and Requirements 303Global Clock Rules304Conditions Forcing Placement at a Global Clock Pin305Manually Forcing a Clock Signal to be Global306Conditions Forcing Non-Global Clocks 307308

Chapter 9. Report Files Overview 311 Log File 312 Fitting Report 318 **Header Information** 318 MACH Fitter Options 318 **Device Resource Summary** 320 Block Partitioning Summary 322 Signal Summary 324 PRESET, RESET and OUTPUT ENABLED Signal Summary 327 **Tabular Information** 328 Fitting Status 338 Place and Route Data Report 339 **Unplaceable Designs** 340 **Unroutable Designs** 340 Place and route processing time 341 Place/Route Resource and Usage tables 341 Signal Fan-Out Table 343 Device pin-out list 344 **Block** information 345 Macrocell (MCell) Cluster Assignments 345 Maximum PT Capacity 350 Node-Pin Assignments 351 IO-to-Node Pin Mapping 353 IO/Node and IO/Input Macrocell Pairing Table 356 Input and Central switch matrix tables 357 Input Multiplexer (IMX) Assignments 357 Logic Array Fan-in 359 Using Place and Route Data to Limit Placements 362 **Timing Analysis Report** 364 TSU 366 TCO 367 368 TPD

Failure Reports 370 Failure to Partition 370 Failure to Place 372 Failure to Route 373 Chapter 10. Device Reference MACH Family Features Summary 377 MACH Features Locator, Part 1 378 MACH Features Locator, Part 2 379 MACH 1xx/2xx Design Considerations 380 **Product Term Cluster Steering** 380 Default Clock 380 XOR with D-Type Flip-Flops 381 **T-Type Flip-Flops** 381 Latches 382 MACH 1xx Latch Emulation 382 MACH 2xx Hardware Latches 383 **Registered Inputs** 384 Node Feedback vs. Pin Feedback 387 **Registered Output with Node Feedback** or Pin Feedback 388 **Combinatorial Output with Node Feedback** or Pin Feedback 391 Global Set and Reset 392 PAL22V10-Compatible Set/Reset Behavior 393 MACH 1xx/2xx Power-Up 393 Synchronous vs. Asynchronous Operation 393 **Powerdown Feature** 393 MACH 3xx/4xx Design Considerations 394 **Cluster Size** 394 Default Clock 395 XOR with D-Type Flip-Flops 395 **T-Type Flip-Flops** 396 Latches 399 MACH 3xx/4xx Hardware Latches 399 MACH 2xx/3xx/4xx vs. MACH 1xx Latch Implementation 400 Registered Inputs (MACH 4xx Devices Only) 401 Zero Hold Time for Input Registers 402 Node vs. Pin Feedback 403

TCR

369

Registered Output with Node Feedback or Pin Feedback 404 Combinatorial Output with Node Feedback or Pin Feedback 407 Flexible Clock Generator 408 Global Set and Reset 409 Set/Reset Compatibility 410 PAL22V10 Register Behavior 411 Controlling MACH 3xx/4xx Set/Reset Behavior 412 Set/Reset in MACH 3xx/4xx Asynchronous Macrocells 413 Higher Block Utilization with the Set/Reset Selector Fuse 414 MACH 3xx/4xx Power-Up 415 MACH 3xx/4xx Asynchronous Macrocell **Power-Up Operation** 416 Set/Reset Design Recommendations 416 Synchronous vs. Asynchronous Operation 417 Synchronous Mode 418 Asynchronous Mode 419 Forcing Configuration as a Synchronous Macrocell 419 **Cross-Programming MACH435 Designs** to the MACH445 Device 421 MACH110 Pin and Node Summary 423 MACH111 Pin and Node Summary 425 MACH120 Pin and Node Summary 427 MACH130 Pin and Node Summary 430 MACH131 Pin and Node Summary 433 MACH210 Pin and Node Summary 436 MACH211 Pin and Node Summary 438 MACH215 Pin and Node Summary 440 MACH220 Pin and Node Summary 442 MACH231 Pin and Node Summary 445 MACH355 Pin and Node Summary 448 MACH435 Pin and Node Summary 453 MACH445 Pin and Node Summary 456 MACH465 Pin and Node Summary 460 Appendix A. State Segment In Depth Overview 468

Defining Moore and Mealy Machines 469 Creating State-Machine Equations 470 **Condition Equations** 471 Transition Equations 471 **Output Equations** 472 State-Machine Example 472 **Default Branches** 474 474 **Global Defaults** Local Defaults 474 **Assigning State Bits** 475 Automatic State-Bit Assignment 475 Manual State-Bit Assignment 476 **Choosing State-Bit Assignments** 477 Example Using Manual State-Bit Assignment 479 Using State Bits as Outputs 480 Initializing a State Machine 481 MACH 1xx/2xx Devices 481 MACH 3xx/4xx Devices 481 Illegal State Recovery 482 **Clocking a State Machine** 484 Example Using State Bits As Outputs, Start-Up, and CLKF 485 **Multiple State Machines** 486

Appendix B. Glossary

Appendix C. Creating a LIM File Overview 359 LIM File Conventions 360 Syntax 360 BLOCK Statement 360 Parameters 362

Appendix D. How to Report a MACHXL Software Problem

1 Installing the MACHXL Software

Contents

>

Hardware Requirements 2	
Software Requirements 3	
Installation Procedure 4	
Updating System Files 6	
AUTOEXEC.BAT 7	
CONFIG.SYS 7	
Creating a Windows Icon for MACHXL	8
-	

The MACHXL® software installation process takes about 10 minutes.

Note: Installing MACHXL software does not affect PALASM software that is installed on the same computer, as long as each application is installed in its own directory. Unless you specify otherwise, PALASM software is installed in a directory named \PALASM and MACHXL software is installed in its own directory, named \MACHXL.

Hardware Requirements

MACHXL software is supported in single-user, non-networked environments. The following hardware is required:

A. An IBM® PC or 100% compatible computer equipped with a 386, 486, or Pentium[™] microprocessor.

B. A minimum of 500 kilobytes (kB) of system RAM available after all device drivers and TSRs have been installed. At least eight megabytes (MB) memory is recommended. More memory may be required for extremely large designs.

C. A minimum of 6 MB of hard disk space available for MACHXL software (separate from disk space used for PALASM software, if installed). An additional 5 MB of free disk space is recommended for processing designs.

- D. A 3-½" floppy disk drive.
- E. An EGA, VGA, or Super VGA monitor and graphics adapter.

≫

Note: If you are using a monochrome screen with a graphics board, use the following commands to set up your system after installing the software:

CD \MACHXL\DAT[Enter]DEL MACHXL.PCX[Enter]SET MODE=MONO[Enter]

(Include the last command in your AUTOEXEC.BAT file also.) Deleting the graphics file MACHXL.PCX forces the software to display a text-based start-up screen that is easier to read on monochrome screens, but has no other effect on software operation.

F. Optionally, a parallel port for programming MACH devices that have JTAG via cable. 5-Volt in-circuit JTAG programming kits for MACH devices with JTAG are available from AMD.

G.

Note: The JTAG cable cannot be used with some software keys. Remove any software keys from the parallel port before attaching the JTAG cable to the parallel port of your PC. Attach the other end to the 10 pin header on your JTAG board, as shown in the MACHPRO programming manual found in the 5-Volt In-Circuit JTAG Programming kit.

Optionally, one of the following printers :

Software Requirements

- IBM ProPrinter
- Epson[®] FX 80 series
- HP® LaserJet® and HP LaserJet Series II

(The HP LaserJet printers must include a font cartridge with line-drawing capability, such as cartridge #HP3659A.)

Note: All printer output from the MACHXL software is text-based except for the simulation waveforms, which use the line-drawing characters of the extended IBM character set.

>

Note: Refer to the README file on disk 1 for information that became available after this user's guide was printed.

Software Requirements

The minimum software requirement, which must be met before installing and running the MACHXL software is listed below.

A. $MS-DOS_{TM}$ version 5.0 or later

Proper software driver files for periphe ral devices В. MACHXL software can be installed and run in a DOS box under Microsoft Windows® version 3.1 or higher. Directions on creating a Windows icon for MACHXL are presented later in this chapter.

Note: Check the README file on disk 1 for the latest information on OS/2â and Windows NT support.

Note: You cannot run the MACHXL software from a floppy disk. You must use the MACHXL installation program to install the MACHXL software; simply copying the files to your hard disk does not work. The steps below guide you through the installation and configuration process.

Installation Procedure

Before you begin, you may want to check the path (typically C:\) to the file COMMAND.COM so you can complete the installation form appropriately. 1.

Place installation disk 1 into drive A or drive B.

2. From the DOS prompt, type

A: INSTALL and press the Enter key

or to install from drive B, type

B:INSTALL and press the Enter key

Wait for the MACHXL title screen to appear.

3. Press any key to proceed with the installation.

The installation menu and form appears; the menu covers part of the form. The menu has two options:

Install MACHXL Software installs the software and related files. You must use this command initially.

Reinitialize MACHXL Setup files reinstates the standard SETUP.MXL file, and updates the CONFIG.SYS and AUTOEXEC.BAT files to let them run MACHXL software. 4.

Select Install MACHXL Software and press the Enter key.

The menu is dismissed and the form is now completely visible, as shown on the next page.

> **Note:** If you do not ask the installation program to update files automatically, the changes added to the dummy files CONFIG.M94 and AUTOEXEC.M94, or to files you specify In this case, you may need to update information in the AUTOEXEC.BAT or CONFIG.SYS files manually before you can use the MACHXL software. See the "Updating System Files" section later in this chapter for details. If no changes are required to AUTOEXEC.BAT or CONFIG.SYS, no changes are made.

>

Note: As of this printing, AMD could not guarantee support in OS/2 and network environments. See the README file on disk 1 for any last minute information on support for Windows NT, OS/2, and network environments.

To change options in the form, use the up- and down-arrow keys 5. to highlight the desired field, type the appropriate information, then press the Enter key. After you press the Enter key, the next field on the form is automatically highlighted.

The default for the field Which parallel port will be used for programming 6. via cable? is lpt1. This is the port used for programming MACH devices with JTAG. To change it, use the up- and down-arrow keys to highlight the desired port (lpt1, lpt2 or lpt3), then press the Enter key.

Updating System Files

Note: You must select a parallel port for programming via cable, even if you do not plan to use this feature. The port selection may be changed after installation through the Download menu, under Download:Program via cable:Program Device, as shown in Chapter 4, "Menu Reference."

[[MACHXL	Installation=
	Installation Mode is on Drive starting at Directory MACHXLN	Install MACHXL Software C
	COMMAND.COM is in directory	C:\
	Which parallel port will be used	for programming via cable? <a>lpt1
	Update AUTOEXEC.BAT ? if 'N' send changes to	Y AUTOEXEC.M94
	Update CONFIG.SYS ? if 'N' send changes to	Y CONFIG.M94
	(C)Copyright 1994 Advanced	Micro Devices - All Rights Reserved

Enter data.[Esc] Cancel, [F1] Help, [F2] Options, [F10] Install7.When you are finished making changes to the data-entry fieldson the form, press the F10 key to confirm your settings.

A window opens in the lower half of the screen and the process begins. Messages keep you informed and prompt you to insert disks as required. A message signals the successful completion of installation.

8. If you did not ask the installation program to change the AUTOEXEC.BAT and CONFIG.SYS files for you, follow the instructions in the "Updating System Files" section, below. Otherwise, proceed directly to step 9.

9. Remove the last installation diskette from the floppy drive and restart the computer by holding down the Ctrl and Alt keys while you press the Del key.

Updating System Files

>

You are asked about updating the AUTOEXEC.BAT and CONFIG.SYS files on the installation form. The following discussions indicate the information that is added during the automatic update. If you did not specify an automatic update, you must ensure that this information appears in the appropriate file.

AUTOEXEC.BAT

>

Note: If you entered the letter N in the update AUTOEXEC.BAT field, you must manually edit the file to include the commands listed below. Remember to edit AUTOEXEC.BAT and restart your computer before invoking MACHXL.

The following information must appear in the AUTOEXEC.BAT file before you can use the MACHXL software.

The PATH statement must include the directory containing the MACHXL executable files (named \MACHXL\EXE by default).

For example, if your old path statement was PATH C:\DOS;C:\UTIL;C:\CAD

...and your system boots on drive c:, your new path statement should look like this:

PATH C:\MACHXL\EXE;C:\;C:\DOS;C:\UTIL;C:\CAD

□ A new variable that indicates the starting directory for the software:

SET MACHXL=C:\MACHXL\

Note: If you are using a monochrome screen, add the following line to your AUTOEXEC.BAT file:

SET MODE=MONO

CONFIG.SYS

>

Note: If you entered the letter N in the update CONFIG.SYS field, you must manually edit the file so that the FILES= variable is set to 35 or greater.

If your CONFIG.SYS file already contains a FILES= environment variable and if the FILES= variable is 35 or greater, no change is required. Depending upon your system, it may be necessary to have FILES= to more than 35 if you have network drivers and TSRs. If the FILES= variable does not exist or is less than 35, add the following line to the CONFIG.SYS file: FILES=35

Creating a Windows Icon for MACHXL

Although MACHXL is not a Windows application, MACHXL may be run in a DOS box under Windows or Windows NT. To create a Windows icon for MACHXL software after you have installed it, follow these steps:

1. Start the Windows File Manager.

2. Drag the file MACHXL.PIF from the \MACHXL\DAT directory to the Program Manager window of your choice. A place holder icon appears in the window. (If you are using Windows NT, drag the MACHXLNT.PIF file instead of the MACHXL.PIF file.)

3. Select this new place holder icon by clicking the mouse button once.

4. Modify the properties of the MACHXL place holder icon by pressing ALT+ENTER. Enter the path to the file MACHXL.PIF or MACHXLNT.PIF. For example, if MACHXL is installed on the C drive in the directory MACHXL, type "C:\MACHXL\DAT\MACHXL.PIF" or "C:\MACHXL\DAT\MACHXLNT.PIF".

5. Choose the Change Icon button, then enter the drive and location of MACHXL and its icon in the \MACHXL\DAT directory. For example, if MACHXL is installed in C:\MACHXL, type

"C:\MACHXL\DAT\-AMD.ICO".

6. The MACHXL software icon (a green AMD logo) is displayed.6. Choose the OK button.

Note: If you have installed MACHXL anywhere other than in c:\MACHXL, you must also update the MACHXL.PIF file. Use the PIF editor to change the path under "Program Filename" to correctly represent your own path to the MACHXL\EXE\MACHXL.EXE file. Save the corrected MACHXL.PIF file.

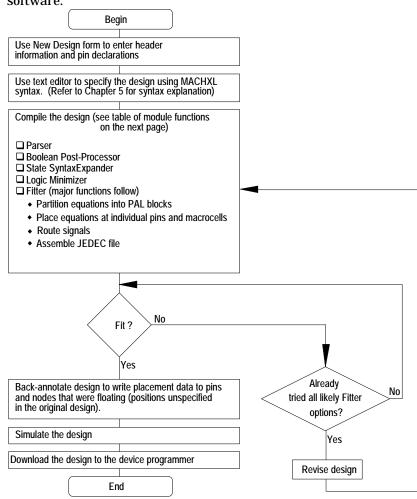
Note: When you start MACHXL software for the first time using the Windows icon, you will end up in the C:\ or in the C:\windows directory. Once you change to a design directory, MACHXL will remember that directory. The next time you start MACHXL software, you will automatically be placed in your design directory.

>

>

Note: For more information on creating Windows icons, refer to your Microsoft Windows documentation.

7


2 Processing a Design

Contents

Design Flow 12		
Program Module Descriptions 13		
Structure of a MACHXL Design File	15	
Creating a New Design 16		
Using the New Design Form 16		
Creating a New Design with the Text	Editor	20
Opening an Existing Design 20		
Using the Text Editor 21		
Compiling the Design 24		
Viewing Compilation Results 25		
Back-Annotating the Design File	25	
Simulating the Design 26		
Downloading the JEDEC File 28		
Standard PLD Programmer 28		
JTAG Programming Cable 28		
Disassembling a Compiled Design	28	
Processing a Simple Design 30		
Creating the Declaration Segment	31	
Writing the Equations 39		
Writing the Simulation Statements	40	
Compiling the Design 41		
Getting a Problem Design to Fit	43	
5 6		

Design Flow

The following diagram illustrates the flow-of-work $\,$ associated with creating, compiling, and simulating a typical MACH \circledast design using MACHXL software.

Design Flow

Program Module Descriptions

Parser	The parser checks the syntax of the input design file (<i>Design</i> .PDS), creates an intermediate file (<i>Design</i> .TRE) containing the design information, and creates a log file (<i>Design</i> .LOG) containing status information and any warning or error messages generated during the parsing process. The log file is generated in the directory that contains the design file to which it refers. See Chapter 9, "Report Files," for a detailed description of the log file.
Boolean Post- Processor	The Boolean Post-Processor runs after the parser and, if the State Syntax Expander is needed, again after that module. The Boolean Post-Processor uses the TRE file output from the preceding module to substitute logical names for vectors and groups, to convert IF-THEN-ELSE and CASE statements into Boolean equations, and to merge multiple equations written for the same signal. Program outputs are appended to the log file.
State Syntax Expander	The State Syntax Expander processes the TRE file output from the Boolean Post- Processor. The State Syntax Expander converts state machine syntax (described in Appendix A) into Boolean equations. State machine designs implemented using CASE and IF-THEN-ELSE statements do not require processing by the State Syntax Expander. Program status information is appended to the <i>Design</i> .LOG file.

Design Flow

Logic Minimizer	The Logic Minimizer uses the TRE file output from the Boolean Post-Processor to perform automatic logic reduction. The Logic Minimizer eliminates redundancy, reduces sum-of-products logic to its most compact form, changes output polarity if necessary to use the fewest product terms possible, and does gate splitting. Program status information is appended to the <i>Design</i> .LOG file.
Fitter	Design.LOG me. The Fitter is a suite of programs in itself: a resource checker, partitioner, placer, router, and report writer. The Fitter creates the JEDEC file used to program the MACH device. Program status information is placed in three Fitter reports: Design.RPT (general information), Design.PRD (place-and-route information), and Design.TAL (timing information). The Fitter reports are generated in the directory that contains the design file to which they refer. See Chapter 9, "Report Files," for detailed descriptions of the Fitter reports.

Structure of a MACHXL Design File

All MACHXL design files have the same general structure, shown below.

	COMMENTS:
 DECLARATION SEGMENT TITLE, PATTERN, REVISION, AUTHOR, COMPANY, and DATE statements A CHIP statement to define the device Pin declarations Optional GROUP and STRING statements 	Required Keyword needed to begin segment (none)
 EQUATIONS SEGMENT Boolean equations to control sum-of-products logic CASE and IF-THEN-ELSE statements Functional equations to control clocks, reset, preset, and output enable State machines implemented with CASE statements (see Chapter 6 for details) 	Optional, but each design must contain an EQUATIONS segment or a STATE segment (and can contain both) Keyword needed to begin segment EQUATIONS
STATE SEGMENT Included for backward compatibility with PALASM 4 designs. See Appendix A for details. SIMULATION SEGMENT Simulation statements (You can include simulation statements directly in the design file, or create a separate SIM file containing the simulation segment. See Chapter 7 for details.)	Optional Keyword needed to begin segment STATE Optional Keyword needed to begin segment SIMULATION

Chapter 5, "Language Reference," lists and describes all of the symbols, operators, and keywords used to create MACHXL designs, including state and simulation syntax.

Creating a New Design

There are two ways to create a design file for use with MACHXL software:

Use the New Design form, which guides you through the creation of the file's Declaration segment.

□ Create the entire design file with a text editor, then from the MACHXL menu, select **Retrieve existing design** to continue processing.

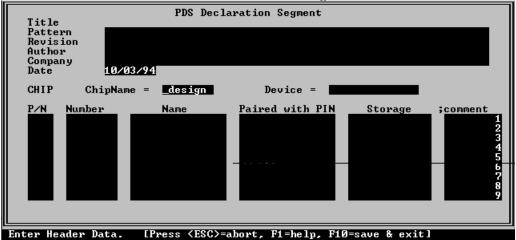
Note: This chapter refers to a design called TEST2.PDS that actually exists in the \MACHXL\EXAMPLES directory. Rather than typing in a new design, you can load and compile the sample file.

Using the New Design Form

To create a new design using the New Design form, follow these steps:

- 1. From the MACHXL menu, select **Begin new design**.
 - The following dialog box appears: Dut format: text

Input format: New file name:


2. Type the name of the new design file in the New file name field. Use any valid DOS file name and use the extension .PDS.

3. Press the F10 key to confirm your new file name and display the New Design form.

The New Design form guides you through the creation of the file's Declaration segment, which contains header information, the device specification, and the pin declarations.

Creating a New Design

The form is described in the table that follows the figure.

Field Name:	Function:	Refer to:		
Title	Enter the title of the design.	TITLE in Chapter 5		
	(Optional)			
Pattern	Enter the pattern number of	PATTERN in		
	the design.	Chapter 5		
	(Optional)			
Revision	Enter the revision number of	REVISION in		
	the design.	Chapter 5		
	(Optional)			
Author	Enter your name.	AUTHOR in		
	(Optional)	Chapter 5		
Company	Enter your company name.	COMPANY in		
	(Optional)	Chapter 5		
Date	Automatically enters today's	DATE in Chapter 5		
	date, but you can overtype			
	with another date.			

Continued...

Conti				
Field Name:	Function:	Refer to:		
ChipName	Enter any name for the chip you will program with this design.	CHIP in Chapter 5		
Device	Press the F2 key to select the MACH device on which the new design will be programmed. The displayed list includes all supported MACH devices.	CHIP in Chapter 5		
P/N	Press the F2 key to select PIN or NODE. Select PIN to begin a PIN statement. Select NODE to begin a NODE statement.	PIN or NODE in Chapter 5		
Number	Enter a question mark (?) to specify a floating pin or node. Enter the pin or node number to specify a pre- placed pin or node (not recommended).	PIN or NODE in Chapter 5 ? in the "Symbols and Operators" section of Chapter 5 "Strategies for Fitting Your Design" in Chapter 8		
Name	Enter a name for the pin or node being declared.	PIN or NODE in Chapter 5		

Continued...

Conti				
Field Name:	Function:	Refer to:		
Paired with PIN	Enter the name of the PIN with which you want to pair the node being declared (makes the node an output register). or Enter the name of the NODE with which you want to pair the pin being declared (makes the node an input	PAIR in Chapter 5		
Storage	register). Press the F2 key to select COMBINATORIAL, REGISTERED, LATCHED, or BLANK (blank defaults to combinatorial, but allows a pin or node to take its storage-type definition from the node or pin with which it is paired)	COMBINATORIAL, REGISTERED, LATCHED in Chapter 5		
Comment	is paired). Press the F2 key to select one of the available comments, or leave this field blank.	N/A Comments have no effect on design processing. Any text that follows a semicolon is treated as a comment.		

>

Note: To get help on filling out the form, press the F1 key. To view a field's available options, press the Tab key as many times as required to highlight the desired field and then press the F2 key to display a list of options. Use the arrow keys to highlight the desired option in the list and then press the Enter key to make your selection.

4. When you are finished filling out the form, press the F10 key. This saves the information you have entered and lets you

continue editing the design using the text editor. The text editor is

the one you specified when you set up the working environment. (See the "Working Environment" section of Chapter 4, "Menu Reference," for more information).

The MACHXL program loads the new design file into the text editor automatically. Details on using the text editor are given in the "Editing the Design File" section, later in this chapter.

Note: If you decide not to save your new design, press the Esc key. The system prompts you to confirm that you want to exit without saving. Type "Y" to confirm.

Creating a New Design with the Text Editor

You do not need to use the New Design form, but can do everything from within the text editor. Details on using the text editor are given in "Editing the Design File" later in this chapter.

Opening an Existing Design

To edit, compile, or otherwise interact with an existing design file from within the MACHXL working environment, you must do the following:

1. Specify the directory in which the design file is stored.

Do this by choosing **Change directory** from the File menu, typing the directory's path, and pressing the Enter key.

For example, to change to the directory that contains the design file referred to throughout this chapter, choose **Change directory**, type \MACHXL\EXAMPLES, then press the Enter key.

2. Specify the desired file.

Do this by choosing **Retrieve existing file** from the File menu. A dialog box appears. You can either type the file name in the space provided, or select the "*.pds" wild card specification. If you select the wild card specification, a list of all files in the current directory that match the specification appears. Use the arrow keys to highlight the desired file name, then press the Enter key.

3. Press the F10 key to confirm your choice and close the dialog box.

For example, to select the design file refer red to throughout this chapter, choose Retrieve existing design, type TEST2.PDS, then press the F10 key.

Using the Text Editor

The MACHXL program calls a text editor under the following circumstances:

 $\hfill\square$ When you save a new design you created using the New Design form

Opening an Existing Design

 $\hfill\square$ When you choose Text File, Auxiliary Simulation File, or Other File from the Edit menu

□ When you choose **Program via cable** from the Download menu to edit a JTAG chain file

The text editor provided with the MACHXL software is invoked with the path and file name \MACHXL\EXE\ED.EXE. If you prefer to use a different editor from the one provided, you can specify that editor's path and file name in the Working Environment form's Editor Program field (File:Set up:Working environment).

Opening an Existing Design

The **Editor Program** field in the Working Environment form, shown below, is highlighted. The highlighted text will be replaced by any characters entered from the keyboard.

The text editor provided with MACHXL emulates many of the original WordStar® key commands. You can also select functions from a menu. Press the Esc key to display the menu. When the menu is displayed, press the Esc key again to hide the menu. Press F1 at any time to view a summary of available commands. When you are finished editing your design, press the F10 key to save your design and exit from the text editor program. For example, to view and edit the design file you selected in the previous section, choose **Text file** from the Edit menu. The editor loads the design file as shown in the following figure.

Compiling the Design

L1 C1	
TITLE	MULTIPLE STATE MACHINES
PATTERN	
REVISION	1.0 J. ENGINEER
COMPANY	ADUANCED MICRO DEVICES
DATE	02/12/93
CHIP MUL	TISTATE MACH435
;=========	TRAFFIC CONTROLLER PIN DEFINITIONS
·	
PIN ? CLOC	CK1 ; CLOCK
PIN ? SENS	SOR ; INPUT
; Outputs f	or controlling signals in the traffic example
	I VOUT[4] VOUT[3] VOUT[2] VOUT[1] PELLOW1 GREEN1 RED2 VELLOW2 GREEN2
, KEDI I	ELLOWI GREENI VEDZ IELLOWZ GREENZ
PIN ? VOUT	[150] REGISTERED ; OUTPUTS
	.01 REGISTERED ; STATE BITS
;==========	

≫

Note: The design file TEST2.PDS uses "floating" pins and nodes (pins and nodes that are not tied to specific pin and node numbers). The symbol for a floating signal is a question mark ("?") in the PIN or NODE statement where the pin or node number would normally be entered.

To save your changes, exit from the editor, and return to the MACHXL menu, press the F10 key. To return to the MACHXL menu without saving your changes:

- 1. Press the Esc key to display the menu bar.
- 2. Type Q to open editor's the Quit menu, shown below.

L 1	C 1	IA	430k	c:\mach	x1\examp	les\test2.j	pds		-
File	Window	Block	Search	Print	Macro	Editing	Other	Quit	
AUTHOR Company Date	ÂDU	ENGINEE JANCED M /12/93	R IICRO DEVIC	ES				all files all file	
СНІР	MULTIST	IATE M	IACH435						

3. Choose Quit all files.

Compiling the Design

- The Compilation Options form allows you to choose the following operations:
- **Run all program modules required to produce a JEDEC file**
- **Run all required modules up to a certain point**

Even if you choose to run a complete compilation, you can terminate compilation by pressing the Esc key. Compilation will terminate after the current program module completes its task.

In this session, you will request a complete compilation (the default setting of the Compilation Options form). If you have changed the setting of the **Provide compilation options on each run?** form (File:Set up:Working environment) from "Y" to "N," you will not perform steps 1 through 3.

1. From the MACHXL menu, select **Compilation** from the Run menu. The Compilation Options form appears.

2. Press the F10 key to accept the default setting, "Run all programs."

The Logic Synthesis Options form appears.

3. Press the F10 key to accept the default settings.

The MACH Fitting Options form appears.

4. Press the F10 key to accept the default settings and begin compiling.

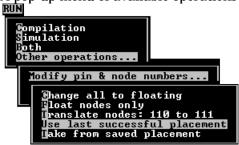
The progress of the compilation/fitting sequence appears in the large text window. After each process module completes its portion of the compilation process, a status message appears on the screen. The status message tells whether the program ran to a successful completion, and gives the number of errors and warnings it generated.

When processing is complete, the log file appears in the view window. Use the PgUp and PgDn keys or the arrow keys to scroll through the log file. Press the Esc key to close the view window when you are done.

Viewing Compilation Results

The View menu, shown below, is an easy way to view the reports generated by the compilation programs.

Execution log file Design file Fitter Reports Jedec data... Simulation data... Maveform display... Current disassembled file Map of Pinout Other file


The most commonly used reports are: Execution Log File Contains status, warning, and error messages, if any, from the compilation and Fitter execution. Fitter ReportsThree reports that contain general
Fitter data, place-and-route data, and
timing data. By default, these files are
saved as Design.RPT, Design.PRD and
Design.TAL, respectively. Refer to
Chapter 8, "Using the Fitter," and
Chapter 9, "Report Files," for details.

Back-Annotating the Design File

The design file used in the preceding examples did not include pin and node placement information, because the pins and nodes were declared as "floating" (using the "?" float operator). If you want to rerun the Fitter, providing specific pin numbers not only speeds the process, but also provides a useful verification that the pinout reported by the Fitter on one run can be refitted on a subsequent run.

The MACHXL software offers a simple way to transfer the placement information to the original design file:

- 1. Choose **Other operations**... from the Run menu.
 - A pop-up menu of available operations appears.
- 2. Choose Modify pin and node numbers... from the pop-up menu.

A pop-up menu of available operations appears.

3. Choose Use last successful placement.

The MACHXL software replaces the floating-pin and floating-node placeholder symbols (?) for each signal in the PIN and NODE declarations with the actual locations used during the last successful fitting of the design. This process is called *back-annotation*.

These changes are made directly to the original design file, TEST2.PDS.

After the back-annotation process is complete, the results are displayed in the view window. Press the Esc key to return to the MACHXL menu.

Simulating the Design

1. Choose **Simulation** from the Run menu.

The Simulation Options form appears. This form gives you the option of using simulation statements contained in the current design file itself, or of using a separate, auxiliary simulation file . Auxiliary simulation files (SIM files) have the same name as the design files to which they pertain, but use the general form *Design*.SIM. For example, the auxiliary simulation file for the current design would have the name TEST2.SIM.

Leave the default setting, "N," for the Use auxiliary simulation file field and move to the Use placement data from field, using the arrow keys.

Tompilation	
Simulation	
SIMULATION OPTIONS	
Use auxiliary simulation file: N	
Use placement data from: Design file	

2. Press the F2 key to display available settings.

The simulation program must know where pin and node signals are positioned in the device. Because the original design file specified floating signals, you must either back-annotate the signal names, as described in step 3 of the previous section, or have the simulator consult the placement file directly, by choosing the appropriate option from the Simulation Options form.

For 1xx/2xx designs

In the previous section you back-annotated the design file with the signal placement information, so you can specify either the design file or the last successful placement as the source of placement data.

For 3xx/4xx designs

In order to generate test vectors, the simulator needs more information than is contained in the design file, so you must specify "last successful placement."

3. Select Last successful placement.

4. Press the F10 key to confirm your selection and begin simulating the design.

When the simulator finishes the job, it displays a completion message.

5. Press the Esc key to dismiss the completion message.

You can now view the simulation results from the View menu. Refer to Chapter 7, "Simulation Segment In Depth," for details on the simulation segment and the output of the simulator program.

Downloading the JEDEC File

When your design has been fit successfully and simulation shows the desired behavior, you are ready to download the JEDEC file to the device programmer.

There are two ways to progam MACH devices:

□ By downloading the finished JEDEC file to a device programmer (for non-JTAG devices: MACH 1xx/2xx and MACH435 devices)

Directly from your PC using the MACH-compatible JTAG cable (for MACH355, MACH445, and MACH465 devices)

Standard PLD Programmer

Use the download software provided with your device programmer to download the JEDEC file. The file is stored in the same directory as the design file, and has one of the following names:

- Design.JED A standard JEDEC fuse data file
- Design.JDC A JEDEC fuse data file with test vectors

Note: Refer to the programmer documentation for instructions on using the programmer.

JTAG Programming Cable

Connect the JTAG cable to the MACH device as described in the 5V In-Circuit Programming Development Kit, available separately from AMD.

Refer to the "Program via Cable" section of Chapter 4, "Menu Reference," in this document for programming instructions.

Disassembling a Compiled Design

Occasionally you may need to view the results of the minimization and expansion processes in a sum-of-products format. To do this, you need the intermediate file and to get this, you must interrupt the compilation process. You can stop compiling a design after any program module, in either of two ways:

□ Select a termination point prior to fitting from the Compilation Options form.

Press the Esc key while the design is being compiled to stop processing after the current program module.

The Parser creates an intermediate TRE file and a LOG file (Design.LOG). The Boolean Post-Processor, State Syntax Expander, and Minimize operate on and modify the TRE file, and add to the log file. (The Logic Minimizer creates a PLA file in addition to updating the TRE file; the Fitter uses the PLA file rather than the TRE file for the remainder of the compilation process.)

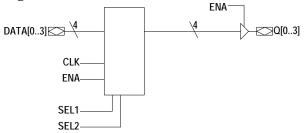
The MACHXL program includes utilities to disassemble the intermediate TRE file. The disassembled file contains Boolean equations, and is especially useful to check the logic of your design before and after minimization. Disassemble the current design as follows:

- Choose Other operations... from the Run menu. 1.
- 2. Choose Disassemble from... from the pop-up menu. Another pop-up menu appears. 3.
 - Choose Intermediate file from the pop-up menu.

RUN	
Compilation Simulation Both Other operations	
Modify pin & node nur Disassemble from	
Intermediate file Jedec	cksum

You can also disassemble the JEDEC file, which is used to reconstruct a design when the other files are missing.

\blacktriangleright	
-	


Note: Many designers verify the functionality of the JEDEC file as follows: 1) Run simulation on the design file and print out the simulation results. 2) Disassemble the JEDEC file with pins and nodes placed. 3) Recompile and simulate the disassembled and print out the simulation results. 4) Compare the two sets of simulation results to ensure identical behavior between design and JEDEC.

MACHXL JEDEC files contain signal names. JEDEC files created using other software may not contain this information. If you are not using a MACHXL JEDEC file, you may need to back-annotate signals between steps 2 and 3, above.

Processing a Simple Design

In this section, you will learn how to create and compile a simple design that fits on a small MACH device (the MACH111) using all default settings for compilation and fitting.

This design example defines the barrel shifter shown in the following block diagram.

Unlike a shift register, which shifts data bits one position to the left or right, the barrel shifter shifts data a selectable number of positions to the left or right.

In this example, the data inputs DATA[0], DATA[1], DATA[2], and DATA[3] are represented by the vector notation DATA[0..3] and the outputs Q[0], Q[1], Q[2], and Q[3] are represented by the vector notation Q[0..3]. ¹ Each data input's value (0 or 1) is mirrored in one of the outputs, but which of the four outputs contains the value of a given data input is controlled by the values of two selector inputs, SEL1 and SEL2.

The values of the two selector inputs, SEL1 and SEL2, can define four binary numbers: 00, 01, 10, and 11. The following table shows, for each of the four possible selector input values, which data input is carried by each output.

_		Q[3] Mirrors Input	Q[2] Mirrors Input	Q[1] Mirrors Input	Q[0] Mirrors Input
Selector	00	DATA[3]	DATA[2]	DATA[1]	DATA[0]
Input	01	DATA[0]	DATA[3]	DATA[2]	DATA[1]
Values	10	DATA[1]	DATA[0]	DATA[3]	DATA[2]
	11	DATA[2]	DATA[1]	DATA[0]	DATA[3]

Creating the Declaration Segment

You can create the entire file using the text editor, or use the MACHXL New Design form to create the declaration segment as described in the "Creating a New Design" section earlier in this chapter.

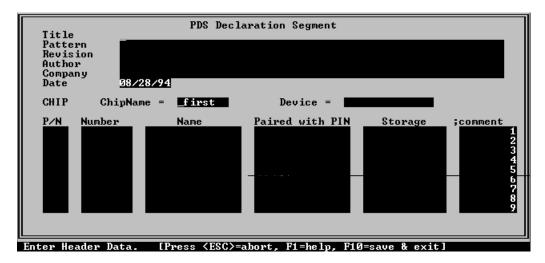
Note: The following exercises show you how to recreate the file BARREL.PDS that was placed in your \MACHXL\EXAMPLES directory during installation. If you take a moment to print this file now, you will be able to refer to it during the following exercises without skipping back and forth through this chapter. ;MACHXL Design Description

----- Declaration Segment -----TITLE Barrel Shifter PATTERN 1 REVISION 1 AUTHOR J. Engineer COMPANY AMD DATE 8/28/94 CHIP Barrel MACH111 ;---------- PIN Declarations ------PIN ? DATA[0..3] PIN ? Q[0..3] REGISTERED ; PIN ? SEL1 PTN ? SEL2 PIN ? RESET PIN ? CLK PIN ? ENA

1. Choose Begin new design from the File menu.

FILE	
Begin new design	
Input format: New file name:	Text first.pds
Quit	

>


2. In the dialog box provided, type the name of your first design, FIRST.PDS.

You can use and mix of upper- and lower-case letters; DOS file names are not case-sensitive.

3. Press the F10 key to open the PDS Declaration Segment form shown below.

The first data field, Title, is automatically highlighted.

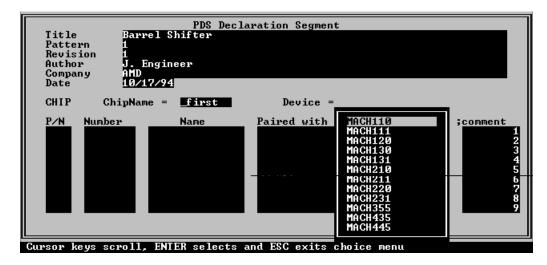
Default values are provided for the Date and ChipName = fields, which correspond to the DATE and CHIP statements in the design file. The default value for **Date** is the current date reported by your computer. The default value for ChipName = is derived from the file name you specified.

4. Type the design title, "Barrel Shifter," and press the Enter key to move the highlight field.

The Pattern field is now highlighted.

≫

Note: You can also use the Tab, up-, and down-arrow keys to move the highlight from one field to the next. Hold down the Shift key while pressing the Tab key to move the highlight to the previous field.


- 5. Type the value "1" for **Pattern** and press the Enter key.
- 6. Type the value "1" for **Revision** and press the Enter key.
- 7. Enter your own name for Author and press the Enter key.
- 8. Type your company name for **Company** and press the Enter key.

9. Press the Enter key twice to accept the default **Date** and **ChipName** = entries.

A list of all supported MACH devices appears in the **Device** = field's drop-down list.

10. Use the up- and down-arrow keys as required to highlight MACH111 in the list, then press the Enter key.

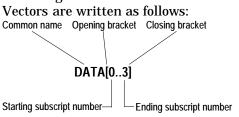
The specified device, MACH111, appears in the **Device** = field as shown on the next page.

11. Press the Enter key again to move to the first field in the $\ensuremath{\,{\rm P/N}}$ (Pin/Node) list.

The P/N field is automatically filled with last pin/node type specified. If the default type is the one you want, press the Enter key to move to the Number field, otherwise press the F2 key to display the list of available P/N types. (Use the empty pin/node type to erase a pin or node statement.)

	PDS Dec	laration Segment		
Title Pattern	Barrel Shifter 1			
Revision Author	1 J. Engineer			
Company	AMDr			
	29/94			
PIN NODE	me = <u>first</u>	Device = MAC	H110	
	Name	Paired with PIN	Storage	;comment
				1 2 3
				3
		-		45
				6 7 8
				8
Cursor keys s	croll, ENTER selects	and ESC exits choic	e menu	

12. Press the F2 key to display the list of available pin/node types.


13. Use the up- and down-arrow keys to highlight "PIN," then press the Enter key to place "PIN" in the **P/N** data field.

14. Press the Enter key again to move to the Number field.

You can specify an actual pin number or *float* the pin by typing a question mark (?) instead of a pin number.² In most cases, the Fitter is more likely to succeed in fitting the design if you float all pins and nodes.

15. Type a question mark in the Number field and then press the Enter key to move to the **Name** field.

You are about to define, with one statement, the four I/O pins that will be used as data inputs to the barrel shifter. You do this by specifying, as the pin name, a *vector* rather than an individual pin name.³ A vector is a common name and a range of subscript values, where the subscript differentiates individual pins or nodes from others having the same common name.

16. Define a vector of four pins by typing the following information in the **Name** field and then pressing the Enter key:

DATA[0..3]

Case is ignored; all of the following entries are equivalent: DATA[0..3], data[0..3], DaTa[0..3].

The four pins so defined can hereafter in the design file be referenced as a group (DATA[0..3]) or a subgroup (DATA[0..1] or DATA[2..3]) or as individual pins (DATA[0], DATA[1], DATA[2], and DATA[3]).⁴

17. Press the Enter key to leave the **Paired with pin** field empty.

18. Press the Enter key to skip over the Storage type field.

Pins DATA[0..3] are used as combinatorial inputs. If you do not specify any storage type, the storage type COMBINATORIAL is implied.

The highlight moves to the **Comment** field. Pressing the F2 key allows you to choose "Input," "Output," or a blank field to fill the comment field. The default is a blank field. Comments do not affect design functionality, and have been omitted in this discussion for the sake of brevity.

19. Press the Enter key to skip over the Comment field.

The pin/node type PIN is automatically inserted in the next **P/N** field because PIN was the last type specified.

20. Press the Enter key to accept the **P/N** type PIN.

21. Type a question mark in the **Number** field and then press the Enter key.

Next, you will define the vector of four outputs, Q[0..3].

22. Type the following and then pre ss the Enter key: Q[0..3]

23. Press the Enter key to leave the **Paired with pin** field empty.

In fact, the pins Q[0..3] will be paired with output macrocells to provide registered outputs, but in this example you will allow the MACHXL software to perform *implicit pairing*. For a detailed discussion of implicit pairing as well as other types of pairing, refer to the "Pairing" section of Chapter 6, "Equations Segment In Depth."

24. Press the F2 key to display available choices for the **Storage type** field.

25. Use the up- and down-arrow keys to highlight "REGISTERED," then press the Enter key.

26. Press the Enter key to skip over the Comment field.

The pin/node type PIN is automatically inserted in the next **P/N** field because PIN was the last type specified.

27. Press the Enter key to accept the P/N type PIN.

28. Type a question mark in the Number field and then press the Enter key.

22. Type the following and then press the Enter key: $_{\scriptscriptstyle\rm SEL1}$

23. Press the Enter key to leave the Paired with pin field empty.

24. Press the F2 key to display available choices for the **Storage type** field.

25. Use the up- and down-arrow keys to highlight the blank field, then press the Enter key.

Both the "Combinatorial" and blank field settings produce the same result in this case, because the default storage type is combinatorial.

27. Complete the pin declarations for the remaining pins, using the printout of the BARREL.PDS file as your guide.

28. When you are finished, press the F10 key to close the PDS Declaration Segment form, save the design file, and load the design file into the text editor.

Writing the Equations

(This section assumes that the text editor was invoked by the MACHXL software as described in step 28 of the "Creating the Declaration Segment" section.)

Position the cursor in the text file after the keyword EQUATIONS, then type the following equations:

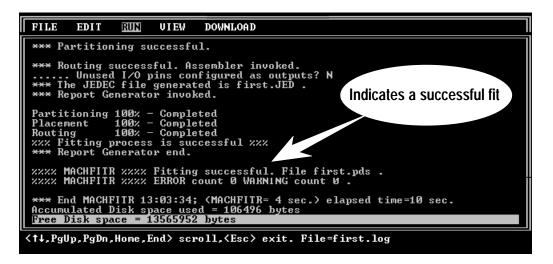
```
Q[0..3].RSTF=RESET
Q[0..3].CLKF=CLK
Q[0..3].TRST=ENA
Q[0]:= /SEL1*/SEL2*DATA[0]
    +/SEL1* SEL2*Q[1]
    + SEL1*/SEL2*Q[2]
    + SEL1* SEL2*Q[3]
Q[1]:= /SEL1*/SEL2*DATA[1]
    +/SEL1* SEL2*Q[2]
    + SEL1*/SEL2*Q[3]
    + SEL1* SEL2*Q[0]
Q[2]:= /SEL1*/SEL2*DATA[2]
    +/SEL1* SEL2*Q[3]
     + SEL1*/SEL2*Q[0]
    + SEL1* SEL2*Q[1]
Q[3]:= /SEL1*/SEL2*DATA[3]
    +/SEL1* SEL2*Q[0]
     + SEL1*/SEL2*Q[1]
     + SEL1* SEL2*Q[2]
```

Writing the Simulation Statements

(This section assumes that the text editor was invoked by the MACHXL software as described in step 28 of the "Creating the Declaration Segment" section.)

1. Position the cursor in the text file after the keyword SIMULATION, then type the following commands: $TRACE_ON data[3..0] g[3..0] sell sel2 clk$

SETF RESET ena SETF DATA[3..0]= #H8 SETF /RESET ena ;---LOADING DATA SETF /SEL1 /SEL2 CLOCKF CLK CHECKQ Q[3..0]= #H8 ;--- Shifting one position to the right, three times SETF /sel1 sel2 FOR X:= 1 TO 3 DO


```
BEGIN
            CLOCKF CLK
       END
CHECKQ Q[3..0]= #H1
       Shifting two positions to the right, four times
;---
SETF sell /sel2
FOR X:= 1 TO 4 DO
       BEGIN
           CLOCKF CLK
       END
CHECKQ Q[3..0]= #H1
       Shifting three positions to the right (same as one to the left),
;---
       four times
SETF sell sel2
FOR X:= 1 TO 4 DO
       BEGIN
            CLOCKF CLK
       END
CHECKQ Q[3..0]= #H1
TRACE_OFF
```

2. Press the F10 key and then the Enter key to close the editor, save all changes, and return to the MACHXL screen.

Compiling the Design

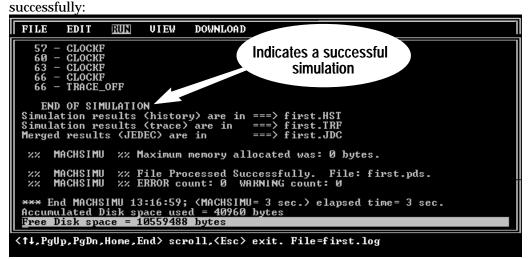
- 1. Choose Compilation from the Run menu.
- 2. Press the F10 key to accept the default compilation options.
- 3. Press the F10 key to accept the default logic synthesis options.
- 4. Press the F10 key to accept the default MACH fitting options.
- 5. Wait for the Fitter to complete its tasks.

The following message will be displayed if the design is processed successfully:

- 6. Press the Esc key to dismiss the message window. Next, you will run the Simulator.
- 7. Choose Simulation from the Run menu.

The Simulation Options form appears as shown on the next page. This form allows you to run simulation using simulation commands stored in a file that is separate from the design file (not needed in this case, because you included simulation commands in the design file). This form also allows you to use pin/node placement data from a source other than the last successful placement (not needed in this case).

Compilation Simulation Use auxiliary simulation file: N Use placement data from: Last successful placement	FILE	EDIT	RUN VIEW DOWNLOAD
			Simulation
Design Information Cur.Directory: C:\MACHXL\EXAMPLES Input Format : Text Design File : first.pds Device Name : MACH110			Cur.Directory: C:\MACHXL\EXAMPLES Input Format : Text Design File : first.pds


8. Press the down arrow to highlight the Use placement data from field.

 9. Press the F2 key to display the available options.
 10. Use the up- and down-arrow keys to select the "Last successful placement" option.

11. Press the Enter key to confirm your choice.

12. Press the F10 key to accept the default settings and run the simulator.

13. Wait for the Simulator to complete its tasks. The following message will be displayed if the design is simula ted

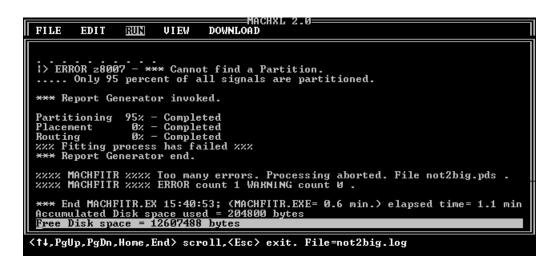
10. Press the Esc key to dismiss the message window. Processing is now complete.

Getting a Problem Design to Fit

In this exercise, you will fit a design that fails to fit using the default compilation and logic synthesis options. The design file, NOT2BIG.PDS, was placed in your \MACHXL\EXAMPLES directory during installation.

1. Choose Retrieve existing design from the File menu.

2. In the File name field of the Retrieve Existing Design form, type


NOT2BIG, then press the F10 key to confirm your choice.

3. Choose **Compile** from the Run menu.

4. Press the F10 key as required to accept all Compilation Options and Logic Synthesis Options settings.

The saved options settings in the file NOT2BIG.MXL, included in the same directory with the NOT2BIG.PDS file, specifies a setting of "N" for the SET/RESET treated as DONT_CARE? field of the MACH Fitting Options form. When you run compilation with this option set to "N," the design fails to partition and the Fitter displays the following message:

Getting a Problem Design to Fit

Of the three Fitter reports (*Design*.RPT, *Design*.PRD, and *Design*.TAL), only one—the .RPT file—contains partitioning information. Open the file NOT2BIG.RPT by choosing **View:Fitter reports:Fitting**. Page down until you locate the "Partitioning Failure Report" near the end of the Fitter report. This section of the NOT2BIG.RPT file, reproduced below, provides information that immediately suggests a solution.

Continued...

...Continued BLOCK B -RESET equation does not fit in the block. BLOCK C -RESET equation does not fit in the block. BLOCK D -RESET equation does not fit in the block. BLOCK E -RESET equation does not fit in the block. BLOCK F -RESET equation does not fit in the block. BLOCK G -RESET equation does not fit in the block. BLOCK H -RESET equation does not fit in the block. The following signals remain to be partitioned (excluding pins used only as inputs

excluding	PTUP	useu	OUTLY	as	Inputs)
	RE	SESI	GJNT			SIGBE
	SI	GBH				SIGBK
	SI	GBN				

Notice that the equation that failed to fit in any block was a Reset equation. The following fragment from the design file NOT2BIG.PDS shows a multitude of .RSTF equations and no .SETF equations.

; Define event FF control inputs = clk = sige; sigbd.CLKF clk1; sigbe.CLKF sigbf.CLKF = clk1; = sigbd; = sigbd; sigbe.RSTF sigbf.RSTF sigbg.CLKF = clk1; = / sige; sigbh.CLKF sigbi.CLKF = clk1; sigbh.RSTF = sigbg; sigbi.RSTF = sigbg; = clk1; sigbj.CLKF sigbk.CLKF = / sigc; sigbl.CLKF = clk1; sigbk.RSTF = sigbj; sigbl.RSTF = sigbj; sigbm.CLKF = clk1; sigbn.CLKF = sigc; sigbo.CLKF = clk1; Continued...

Getting a Problem Design to Fit

Continue	ed
sigbn.RSTF	= sigbm;
sigbo.RSTF	= sigbm;
sigbp.CLKF	= clk1;
sigbq.CLKF	= / sigf;
sigbr.CLKF	= clk1;
sigbq.RSTF	= sigbp;
sigbr.RSTF	= sigbp;
sigbs.CLKF	= clk1;
sigbt.CLKF	= sigf;
sigbu.CLKF	= clk1;
sigbt.RSTF	= sigbs;
sigbu.RSTF	= sigbs;
sigbv.CLKF	= clk1;
sigbw.CLKF	= / siga;
sigbx.CLKF	= clk1;
sigbw.RSTF	= sigbv;
sigbx.RSTF	= sigbv;
sigca.CLKF	= clk1;
sigcb.CLKF	= / sigd;
sigcc.CLKF	= clk1;
sigcb.RSTF	= sigca;
sigcc.RSTF	= sigca;
sigcd.CLKF	= clk1;
sigce.CLKF	= / sigb;
sigcf.CLKF	= clk1;
sigce.RSTF	= sigcd;
sigcf.RSTF	= sigcd;
sigba.CLKF	= clk1;
sigbb.CLKF	= / clk2;
sigbc.CLKF	= clk1;
sigbb.RSTF	= sigba;
sigbc.RSTF	= sigba;

The SET/RESET treated as DONT_CARE? field of the MACH Fitting Options form, when set to "Y," allows better utilization of limited block Set/Reset resources in MACH 3xx/4xx devices.

5. Press the Esc key to close the Fitter report. Then recompile the design, this time setting the SET/RESET treated as DONT_CARE? field of the MACH Fitting Options form set to "Y." The design now fits, as shown in the following log entry:

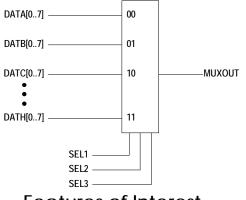
Getting a Problem Design to Fit

MACHXL 2.0
<pre>INFO z5088 - Single-literal clock signal used as product term clock in block F. Clock is SIGB (Pin 33). I> INFO z5088 - Single-literal clock signal used as product term clock in block H. Clock is CLK2 (Pin 41). *** The JEDEC file generated is not2big.JED . *** Report Generator invoked.</pre>
Partitioning 100% - Completed Placement 100% - Completed Routing 100% - Completed %%% Fitting process is successful %%% *** Report Generator end.
xxxx MACHFITR xxxx Fitting successful. File not2big.pds . xxxx MACHFITR xxxx ERROR count 0 WAKNING count 0 .
*** End MACHFITR.EX 16:14:41; (MACHFITR.EXE=19 sec.) elapsed time=45 sec. Accumulated Disk space used = 245760 bytes <u>F</u> ree Disk space = 7200768 bytes
<pre></pre> <pre><</pre>

When you fit a design by allowing the Fitter to treat any unspecified condition (Set/Rest from the MACH Fitting Options form or CASE/IF..THEN..ELSE from the Logic Synthesis Options form) as don't care, you must be especially vigilant in your simulation and other quality-assurance analyses for undesired changes in design functionality. In the exercise you just completed, no adverse effects result from the change to the compilation options. The design fits and is usable on the original target (MACH435) device.

3 Design Examples

Contents

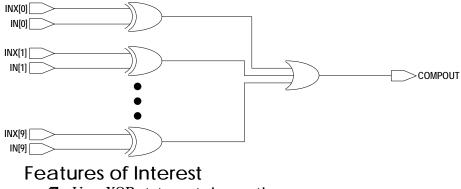

Multiplexer50Comparator51Left/Right Shifter52Barrel Shifter53Simple 3-Bit Counter54Decoder56Up-Down Counter and Up-Counter with Parallel Load57Data Acquisition System58Moore State Machine60

The following design examples show how several commonly used design elements are implemented using the MACHXL language. For your convenience, the MACHXL design files for these design examples are installed on your hard disk when you install the MACHXL software, in the \MACHXL\EXAMPLES directory.

Multiplexer

This 8:1 multiplexer uses three select bits to route one of eight busses. Unlike the multiplexer presented in the "Data Acquisition System" section of this chapter, this multiplexer has been implemented with Boolean equations rather than CASE statements.

To view the MACHXL implementation of this design, open the design file MUX.PDS.


Features of Interest

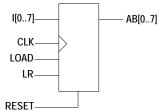
- Uses vectors
- **D** Implements a multiplexer using Boolean logic

Comparator

A fast comparator that compares two ten-bit busses.

The logic diagram for this design appears below. To view the MACHXL implementation of this design, open the design file COMPARA.PDS.

- $\hfill\square$ Uses XOR statements in equations
- □ Uses FOR..TO..DO in simulation


Left/Right Shifter

Shift registers are widely used in communications and computer systems. Shift registers can serialize data, which allows designers to minimize the number of output pins and bus bits. This particular shift register performs three operations:

□ Loads a new eight-bit byte of data (when the control line LOAD is high and the device is clocked)

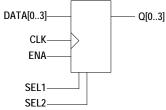
□ Shifts data left (when the control line LOAD is low, the control line LR is high, and the device is clocked)

□ Shifts data right (when the control line LOAD is low, the control line LR is low, and the device is clocked)

To view the MACHXL implementation of this design, open the design file LRSHIFT.PDS.

Features of Interest

□ Uses CASE statements

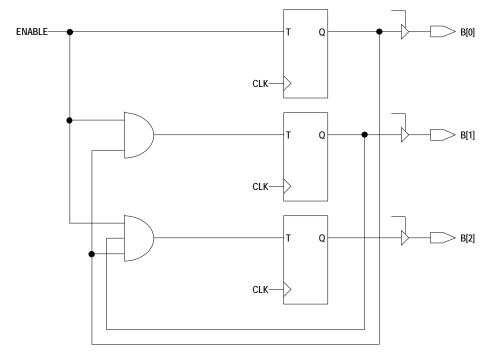

□ Uses vectors on both sides of a Boolean equation (that is, transfers data from one bank of signals to another ng a single statement)

□ Uses vectors of signals in both the Equations and Simulation segments, including CHECK statements using vectors

□ Uses FOR..TO..DO statements for simulation

Barrel Shifter

This design is discussed at length in Chapter 2.


To view the MACHXL implementation of this design, open the design file BARREL.PDS.

Features of Interest

 All behavior specified using sum-of-products Boolean equations
 Uses vectors of signals in both the Equations and Simulation segments

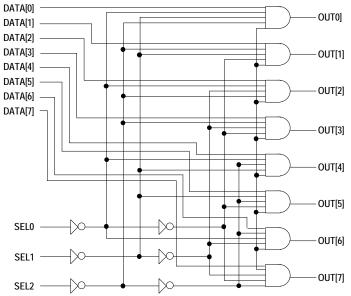
Simple 3-Bit Counter

A counter that increments on each clock cycle when the control line COUNT is high. This counter is similar to the counter modules in the two designs that follow, except that the logic for loading an initial count into the counter is omitted for the sake of simplicity.

Note: T flip-flops are recommended for most counter designs since these require fewer product-terms than do D flip-flops. Parallelloaded counters using D flip-flops require less logic for loading, but these still need more product-terms than an equivalent T flip-flop counter. For large counter designs the user should design one lookahead carry bit for every 15 counter bits. The carry bit will be the only input to the next PAL block from the present PAL block, and input array resources will not be wasted.

Ripple counters may be a good choice for very large counter designs. However, take into consideration the following caveats: Ripple counters are slow and may require extra logic to avoid glitches. Also, functional simulation of these counters will not show timing delays and glitches.

Note: If you set the **Optimize registers for D/T-type** field of the Logic Synthesis Options form (File:Set up:Compilation options) to "Best for device," the Fitter will automatically change D-type flip-flops to Ttype or vice versa to produce the most efficient implementation for the target MACH device.


To view the MACHXL implementation of this design using D-type flip-flops, open the design file 3COUNT_D.PDS. To view the MACHXL implementation of this design using T-type flip-flops, open the design file 3COUNT_T.PDS.

Features of Interest

 $\hfill\square$ For the purpose of comparison, uses individual pin names in places where other examples in this chapter typically use vector notation

Decoder

Decoders, such as the one shown here, can be used for memory addressing, where they select one of several memory devices. They can also be used to demultiplex data and reroute clocks.

To view the MACHXL implementation of this design, open the design file DECODE.PDS.

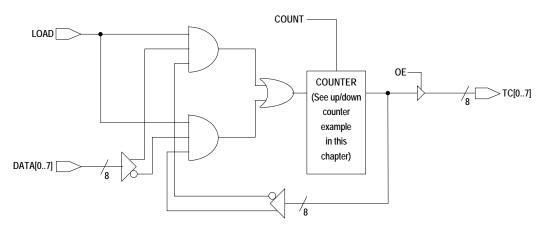
Features of Interest

D In simulation, sets a vector of pins to a hexadecimal value

Up-Down Counter and Up-Counter with Parallel Load

This design is presented in four design files, each of which implements the design in a different way:

D The up-down counter with parallel load is implemented using Boolean equations in the design file UDCNT.PDS.


D The up-counter with parallel load is implemented using

IF..THEN..ELSE constructs in the design file CNTIF.PDS.

D The up-counter with parallel load is implemented using CASE constructs in the design file CNTCASE.PDS.

D The up-counter with parallel load is implemented using Boolean equations in the design file COUNTER.PDS.

In addition to incrementing the current count by one when counting is enabled, the counter can be loaded with a new current count from a bank of input pins or reset to zero at any time.

Features of Interest

□ Shows several ways to implement equivalent logic

Data Acquisition System

This design (shown on the next page) contains the following subsystems:

- □ A demultiplexer
- □ A 4-to-1 multiplexer
- A synchronous counter
- □ A bidirectional multiplexer.

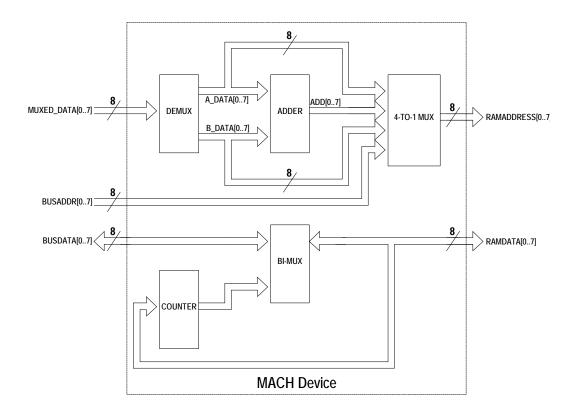
These subsystems are used in many data acquisition applications as well as in computer applications. In this design:

□ Inputs are in the form of multiplexed data, which are demultiplexed inside.

The demultiplexer consists of two sets of registers controlled by different clock-enable logic. Therefore, each bank of registers will register a different set of data. Such demultiplexing techniques are useful to save device pins.

D The adder and the multiplexer provide several addressing choices for this real-time CPU-controlled system.

D The counter loads data from external RAM, increments it, and writes it back to the RAM.


□ The Bidirectional multiplexer provides multiplexing and parallel communication between external buses and memory devices.

The following block diagram shows the overall design in pictorial form. The design file is DATA_AQ.PDS.

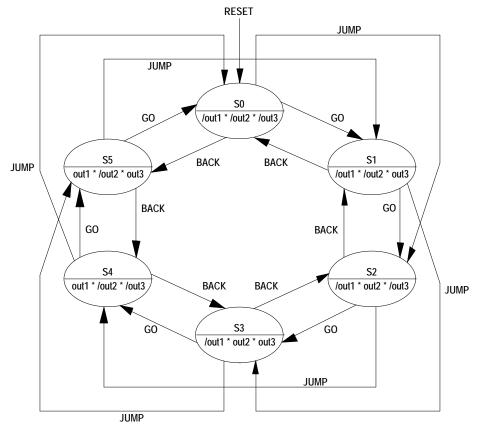
Features of Interest

 $\hfill\square$ A realistic example of a moderately complex design that combines several subsystems on the same device

Data Acquisition System

Moore State Machine

State machines are used in many different applications. There are many state machine models available, the two most common (and the two supported by MACHXL software) being the Moore and Mealy models. Moore machines have a single set of outputs for each state; that is, outputs are determined solely by the machine's current state. Mealy machines can have different outputs in the same state. Mealy machine outputs are determined by evaluating inputs as well as by the machine's current state. The design presented here is not meant to perform any particular function, but rather to illustrate Moore state machine design principles. To increase its usefulness as a learning tool, this design is implemented in three different ways:


□ Using CASE statements as described in Chapter 6, "Equations Segment In Depth" (MOORE_C.PDS)

□ Using the MACHXL state machine language as described in Appendix A, "State Segment In Depth" (MOORE_S.PDS) ⁵

Using Boolean equations (MOORE_B.PDS)

You can implement only one state machine in the STATE segment of any design file. If your design contains multiple state machines, a CASE implementation is usually the best choice.

Moore State Machine

For other examples of Moore and Mealy machines, see Appendix A, "State Segment In Depth."

Features of Interest

- **I** Identical behavior generated using three different models
- **G** Full initialization and illegal state recovery logic in each design

G State syntax example (MOORE_S.PDS) shows how to check state names in the Simulation segment

4 Menu Reference

Contents

Overview 65 Screen Layout 65 **Choosing Menu Commands** 66 Preserving Menu Settings 69 File Menu 70 Begin New Design 70 Retrieve Existing Design 71 Change Directory 72 Set Up 73 Working Environment 73 Compilation Options 75 **Compilation Options Form** 76 MACH Fitting Options Form 77 Simulation Options 87 Logic Synthesis Options 89 Go To System 95 Quit 96 Edit Menu 97 Text File 97 **Auxiliary Simulation File** 97 Other File 98 98 Run Menu 99 Compilation Compilation Options 100 100 Logic Synthesis Options MACH Fitting Options 101 Run-Time Status Display 101 Output Files 102 Simulation 102 Both 103 **Other Operations** 103

Overview

Modify Pin & Node Numbers 104 **Disassemble From** 105 Intermediate File 105 Jedec 105 **Recalculate JEDEC Checksum 107** View Menu 108 **Execution Log File** 108 **Design File 109** Fitter Reports 109 Fitting 109 Place/Route Data 109 **Timing Analysis** 109 JEDEC Data 110 Simulation Data 110 All Signals 111 **Trace Signals Only** 111 Printing the Simulation History 112 Waveform Display 113 All Signals 113 **Trace Signals Only** 114 Printing a Waveform 114 **Current Disassembled File** 115 Other File 115 **Download Menu** 116 Download to Programmer 116 Program via Cable 117 **View Configuration File** 117 Create/Edit Configuration File 118 **Chain File Editor Modes** 120 Completing the JTAG File Editor Form 123 Program device 126 **Review JTAG results** 127 **Review JTAG status** 127 View/edit output file(s) 127

Overview

The MACHXL software environment provides tools to develop, compile, and debug a MACH device design. This chapter describes the MACHXL environment, gives general instructions for choosing menu commands, and describes each of the menus in depth.

Screen Layout

The following figure shows the screen as it appears the first time you run the MACHXL software.

The menu bar extends across the top of the MACHXL screen. You choose commands from menus on the menu bar to perform tasks in the MACHXL environment. The menu bar contains the following five menus:

D The **File** menu provides the file management, working environment, and system commands.

 The Edit menu calls the text editor to edit the current design file. (The text editor is \MACHXL\EXE\ED.EXE by default, but you can change this setting. Refer to "Set Up" in this chapter for details.)
 The Run menu lists all the commands you need to process a design file.

□ The View menu includes commands to display files generated during each process.

D The **Download** menu provides access to the JTAG software and JTAG programmer.

Current design information appears in the lower right corner of the screen (depending on the working environment setup, which you define using the **Set up** command, in the File menu).

The status line at the bottom of the screen provides messages and prompts that change as needed.

Choosing Menu Commands

Whether you are familiar with the environment or not, the menus are easy to work with. The following features are standard:

- □ Pull-down menus
- **D** Pop-up forms
- □ Option lists
- **G** Keyboard commands

Menus contain commands, which you choose by moving the highlight bar to the desired line and pressing the Enter key. A menu command followed by an ellipsis (...) indicates that choosing that command will display a submenu. If the command's title is *not* followed by an ellipsis, the command starts a process (such as compilation) or a function (such as changing the working directory). Some processes and functions display forms that allow you to make additional settings in data fields.

Note: All forms presented in this chapter show the default commands as they appear after first installing the software.

Overview

A sample form is shown below.

	T DIILI		MACHXL	2.0===						
FILE ED	T RUN	VIEW	DOWNLOAD							
				NC OPTI	ANG-					
SIGNAL	PLACEMEN				0110-					
	ing of P		nents		No	Chang	re			
	lacement				Des	sign f	file			
			placement		<f3< td=""><td></td><td></td><td></td><td></td><td></td></f3<>					
Pres	<f9> to</f9>	edit f:	ile containing		Las	st su	cessf	ul pl	lacemer	it 🎆
	OPTIONS	_								
			le as Ptewn Cla	neks?	N					
	Global Clocks routable as Pterm Clocks? N 22U10/MACH1XX/2XX S/R Compatibility? Y									
SET /	SET/RESET treated as DONT_CARE? Y									
	Bun Time Upper Bound in 15 minutes 0									
			ition & place/	route?	X					
	ced part		រូវ		X					
	d placem		obal Clocks?		Ň	÷ 4	; .U.	Numb)er = 1	
	e Routes				Ň	•• I	,	No.	Jer - 1	· III
		(100)	(10)	(100)			33. 6			1 (
Protected:	T+> move	, <fz> c.</fz>	hoice, <f3> save</f3>	e, <f9></f9>	edit	t, <f10< td=""><td>9> foi</td><td>m ok,</td><td><esc></esc></td><td>abort</td></f10<>	9> foi	m ok,	<esc></esc>	abort

Each form provides one or more fields that typically contain

information you can accept or change; the highlighted field is active. Most fields are composed of a field name and a corresponding specification. Three kinds of fields are provided: text, option list, and status.

T Text: Type the specified information, such as a file name, directly into the highlighted (active) text field.

 \square Option list: Press the F2 key to display a list of options for the active field.

When you make a choice, the list is dismissed and the specification on the form is updated. An error is reported if you attempt to type into an option field.

□ Status: You cannot edit or change data in a status field. It is provided for information only.

After you have entered information on a form, press the F10 key to confirm your entries and close the form.

submenus, and	lists and how to fill in a form.
Task	Keyboard
Open a menu on the	Use the arrow keys to highlight the desired
menu bar	menu name.
Choose a command	Type the first letter of the command, which
from open menu,	is capitalized, or use the arrow keys to
submenu, or list	highlight the command, then press the Enter key.
Select a field / move	Use the arrow keys to highlight the desired
to next or previous field	field. (Tab deletes the contents of the field.)
Display options list	Press the F2 key.
Choose a menu	Press arrow keys to highlight item, then
command	press Enter to choose the item.
Enter text	Type new text.
Edit text	Move the cursor and backspace or retype.
	Press the Ins key to toggle between insert
	and overtype modes. Press the Del key to
	delete the currently highlighted character.
Cancel form or list /	Press the Esc key.
return to previous	
menu bar	
Confirm your entries	Press either the Enter or F10 key.
in a form or screen	

The following table describes how to choose options from menus, submenus, and lists and how to fill in a form.

Generally, the following rules apply to forms:

When you enter a form, the first field is active unless it is a status field. You can enter data, change data, or select another field.
 When you leave a form, you are returned to the previous form, submenu, or menu. You can choose another command or exit.
 When you return to a menu or submenu, the command associated with the form remains highlighted.
 The remainder of this chapter consists of discussions of the five menus available from the menu bar—the File, Edit, Run, View, and Download menus—and the commands and submenus available from these menus.

Preserving Menu Settings

Overview

The MACHXL software allows you to control the way your designs are processed by setting menu options. Before you compile a design, you can change the option settings. The MACHXL software preserves menu option settings and other information for each design in a MXL file (*Design*.MXL), so that you do not need to reset the options every time you work on a design. Each MXL file contains information that controls how the corresponding design file is to be compiled and fitted, including settings for the MACH Fitting Options form and the Logic Synthesis form, both of which are described later in this chapter. An MXL file containing default settings (named SETUP.MXL) is copied to the MACHXL\DAT directory when you install the MACHXL software. Each time you compile a design *Design*.PDS, the MACHXL software **D** Creates or updates, as necessary, the MXL file *Design*.MXL in the current working directory

□ Updates the file C:\GLOBAL.MXL to reflect the settings used most recently and creates or updates, as necessary, a local copy of SETUP.MXL in the current working directory.

If you create or open a design named *Design*.PDS and the MACHXL software cannot locate the file *Design*.MXL in the current working directory, it creates the file *Design*.MXL by copying an existing copy of SETUP.MXL. The MACHXL software searches for the file SETUP.MXL in the following order, and copies the first SETUP.MXL it finds:

Current working directory	SETUP.MXL contains settings for the PDS file <i>in current working</i> <i>directory</i> that was created or opened most recently by the
	MACHXL software.
C:\ root directory	GLOBAL.MXL contains settings used most recently, regardless of
MACHXL\DAT	current working directory. SETUP.MXL contains the MACHXL default settings.

Note: If you retrieve an existing design that has a corresponding MXL file, you may see a dialog box asking whether you want to update the design's MXL file. This dialog box appears if the MXL file was created using a version of the MACHXL software that had different compilation options from those of the current version. Answer "Y" to update the MXL file, adding default settings for each current parameter that is not represented in the MXL file; answer "N" to leave the MXL file unchanged and to deselect the file.

File Menu

The File menu appears automatically when you enter the software environment. The following sections describe the menu options available from the File menu.

Begin New Design

This command is automatically highlighted each time you enter the software environment. Each new file you create is stored in the current working directory.

When you choose the **Begin new design** command, a form appears so you can specify the file name:

Input format: text New file name: _

Type the name in the **New file name** field. The file name must adhere to the DOS naming conventions. Use any combination of upperand/or lowercase letters, numbers, the underscore, _, and dollar sign, \$, characters. Use up to eight characters and an optional extension up to three characters in length. The default extension for MACHXL design files is PDS.

After you enter a valid file name, the new design form appears. Refer to "Using the New Design Form" in Chapter 2 for details. After you create and confirm the information requested by the New Design form, the resulting new design file is automatically loaded into the text editor so you can continue developing the design.

Retrieve Existing Design

Choose this command to select an existing design in the current working directory as the current design file. (The current design file is the file acted upon when you edit, compile, simulate, disassemble, or back-annotate from the MACHXL menu environment.)

>

Note: Each time a design file is opened, the MACHXL software updates the file Design.MXL in the directory containing the design file. This MXL file contains the file, menu, and logic synthesis option settings from the most recent session in which the corresponding design file was opened. If this MXL file exists in the current working directory, settings in the file are automatically reinstated when you open the design file.

See "Preserving Menu Option Settings" in this chapter for details on the MXL file.

The form that appears when you retrieve an existing design is similar to the one you complete to create a new design file: Input format: text File name: * . pds

File name

Type the design name in this text field.

Note: Initially, the name field may be blank or may include *.PDS, however, once you create or retrieve a file, the form includes the name of the current design. The wildcard character (*) can be used to list matching files. The DOS single character wildcard character (?) is not supported.

- □ If the field is blank, you can type a name.
- □ If the field contains *.*, a list of all file names appears when you press the Enter key.
- □ You can enter *.PDS to display a list of specific files to select.
- □ Use the up- and down-arrow keys to highlight the desired file from the list. Press the Enter key to make your selection.

After you confirm your specifications by pressing the F10 key, you can choose any command to specify the operation you want to perform. Depending on your working environment setup, current design information may appear in the lower right corner of the screen.

Change Directory

Use this command to define the current working directory. All files are stored in, and retrieved from, the current working directory. All commands operate on the files in the current working directory. When you choose this command, a form appears with a text field that identifies the path to the current directory. C:\MACHAL\EXAMPLES

You can replace all or part of the existing path name with a new one. The new path name must include a valid drive, directory, and subdirectory.

After you confirm the new path by pressing the F10 key, the specified directory becomes the current working directory. Depending on the setup you have defined using the **Set up** and **Working environment** commands, the new path may appear in the lower right corner of the screen.

Set Up

This command allows you to identify software environment and process preferences that best suit the compilation needs of your design file. For example, you can suppress certain forms that might otherwise appear each time you begin compilation or simulation. In addition, you can identify a preferred editor.

To close the Set menu, press the F10 key.

The submenu that appears when you choose this command offers access to the following forms:

- **D** Working Environment
- Compilation Options
- □ Simulation Options
- Logic Synthesis Options

If you choose **Compilation options** the MACH Fitting Options form will appear after you close the Compilation Options form.

Each of the forms is explained below.

Working Environment

This command is used to specify preferences for your working environment. When you choose this command, the form below appears providing text fields that display the specifications currently in effect.

Editor program	This field specifies the path name to the text editor you use to create and edit PDS, simulation, and other text files. The default path name identifies the location of the text editor supplied by AMD (ED.EXE). If you change the path, the specified editor will be used for editing files. If the path you supply is		
	incomplete or incorrect, the editor will not be found.		
Provide compile options on each	This field specifies when to display the Compilation Options form.		
run	 "Y" displays the form each time you choose the Compilation command from the Run menu. (Default setting) 		

Dreuide	 "N" displays the Compilation Options form only when you choose the Set up command from the File menu followed by the Compilation options command from the Set up submenu. When you choose "N," the Compilation Options form does not appear automatically when you choose the Compilation command from the Run menu and the compilation options are not listed at the beginning of the log file.
Provide simulation	This field specifies when to display the Simulation
options on each	Options form.
run	"Y" displays the form each time you choose either the Simulation or Both command from the
	Run menu. (Default setting)
	 "N" displays the Simulation Options form only
	when you choose the Set up command from the
	File menu followed by the Simulation options
	command from the Set up submenu. When you
	choose "N," the Simulation Options form does
	not appear automatically when you choose
	either the Simulation or Both command from the
	Run menu.
Display design	Current design information includes the working
information	directory, input format, design file name, and
window	device type.
	"Y" displays current information in the lower
	right corner of the screen. (Default setting)
	\Box "N" suppresses the information.
Turn system bell	A bell tone can warn you of syntax errors and
on	illegal actions while working with the software. $\Box_{\rm eff}$
	□ "Y" sounds the tone. (Default setting)
Display	"N" suppresses the tone. You can choose to view the information being
execution result	You can choose to view the information being written to the execution log file on the monitor
on each run	screen during compilation. Designs compile faster
	if you do not display execution results.
	\square "Y" displays the information on screen.
	 "I usplays the information of selectin" "N" suppresses the display. (Default setting)
	When you confirm your choices by pressing the F10 key, you
	are returned to the Set up submenu. Specifications take effect
	· ·

as soon as you confirm them, though it may not be obvious until you take a particular action.

Compilation Options

This option allows you to define compilation and MACH fitting options. The Compilation Options form and MACH Fitting Options form (accessed from File:Setup or from **Run:Compilation**) are described in the next two section. ⁶

Compilation Options Form

The Compilation Options form, shown below, allows you to do the following:

D Enter a name for the execution log file (the default name is *Design*.LOG).

□ Select the run mode. The run mode determines whether the **Compilation** command runs all required compilation modules, runs all required modules up to and including the one you select, or reruns only the Fitter.

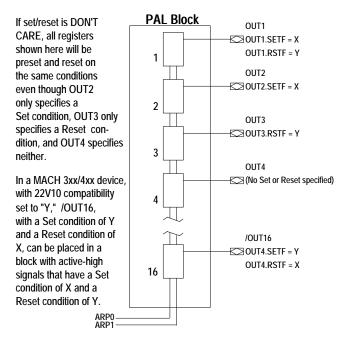
Log file name: Run mode:	COMPILATION OPTIONS TEST.log Run All Programs
Format: Text	Run All Programs Run All Through Parser Run All Through Boolean Postprocessor Run All Through STATE Syntax Expander Run All Through Logic Minimizer ReRun Fitter

Compiling through a specific module is useful, for example, if you want to check the Boolean equations before and after minimization. (You will need to disassemble the intermediate file to see the Boolean equations that resulted from the last compilation operation. Refer to the "Disassemble From" section under "Other Operations" in this chapter for details.) The first time you run the MACHXL software, the **Run mode** field is set to "Run All Programs" by default. Thereafter, the field is set to the setting you used the last time you compiled the current design file (settings for each design file *Design*.PDS are saved in the file *Design*.MXL). To change the setting, proceed as follows:

	 Highlight the Run mode field and press the F2 key to display the list of options. Use the arrow keys to highlight the desired setting.
	3. Press the Enter key to make your
	selection.
	4. Press the F10 key to close the form.
modu. the mo	The MACHXL software automatically runs all program les required to process the current design, up to and including odule you specify. Modules that are not needed are omitted. If you want to run the Fitter again without running the preceding program modules (for example, to try a different set of fitting options following a failure to fit), select "ReRun Fitter." ACH Fitting Options Form The MACH Fitting Options form specifies options unique to fitting MACH device designs.
	MACH FITTING OPTIONS MACH FITTING OPTIONS SIGNAL PLACEMENT: MACH FITTING OPTIONS Use placement data from Design file Save last successful placement <f3> Press <f9> to edit file containing Last successful placement FITTING OPTIONS: Y SET/RESET treated as DONT_CARE? Y Run Time Upper Bound in 15 minutes Ø Iterate between partition & place/route? Y Balanced partitioning? Y Spread placement? Y</f9></f3>

MACH Fitting Options Form for MACH 1xx/2xx Designs

>


Chapter 4: Menu Reference 76

		MACH FITTING OPTI	0NS
	Hand Use Save	PLACEMENT: Ling of Preplacements placement data from last successful placement s <f9> to edit file containing</f9>	<mark>No Change</mark> Design file <f3> Last successful plac</f3>
	Globa 2211 SET/J Run 1 Itera Bala Sprea Reduc	G OPTIONS: al Clocks routable as Pterm Clocks? D/MACH1XX/2XX S/R Compatibility? RESET treated as DONT_CARE? Time Upper Bound in 15 minutes ate between partition & place/route? aced partitioning? ad placement? te Non-forced Global Clocks? te Routes Per Placement?	N Y Q Y Y N if 'Y', Number N
		g Options Form for MACH 3xx/4xx Designs I Clocks routable as Pterm Clocks" field is suppresse	d for
	MACH465 d		
		tions are available from the MACH Fitt	ing
	Options f		0
	•	acement Options	
Handling of	Options	Definitions	
preplacements	No change	Uses all of the pin and node	
	Ū.	placements as specified in the Use	
		placement data from field described	
		below. (Default setting)	
	Float pins,	Floats all signals but keeps block	
	nodes	partitioning information from the	
		last successful placement.	
	Float pins,	Floats all signals and ignores	
	nodes, groups	user-defined partitioning from the	
	Electron toront	last successful placement.	
		Floats all output and buried node	
	nodes, groups	signals and ignores user-defined	
		partitioning from the last successful placement.	
		succession placement.	

≫	Note: The last	option is especially useful for fitting		
	a design while retaining the desired pinout. All			
	pin locations stay unchanged. Input node locations			
		nged, because input nodes are		
		to pins; all other nodes and block		
		discarded to maximize the chances		
	of fitting the des			
Use placement	This option field allows you to specify the			
data from	placement source of the signal placement data to be			
	·	next fitting process.		
	Options	Definitions		
	Design file	Use the pin/node statements in the		
	0	PDS file. (Default setting)		
	Options	Definitions		
		Use data in the PLC file		
	placement	from the last successful placement.		
	1	(Refer to "Save last successful		
		placement," below, for details.)		
	Saved	Use data in the BLC file saved by		
	placement	pressing the F3 key after an		
	1	earlier successful fitting process.		
		(Refer to "Save last successful		
		placement," below, for details.)		
≫	Note: You can	override any of these placement		
		ting the appropriate signal floating		
	option in the Handling of preplacements field.			
Save last	This is a prom	pt message, not a data field.		
successful		during the last successful fitting		
placement	process is automatically stored in a file named after			
	the design with a PLC extension: <i>File name</i> .PLC.			
	The PLC file is overwritten during each successful			
	fitting process. This status field indicates you can			
	permanently store the last successful placement in			
	a file, named af	ter the design with a BLC		
	extension. Press the F3 key after a successful			
	fitting process to create this file.			

Press [F9] to edit file containing	While in the MACH Fitting Options form, you can edit the results of a successful placement to use during the next fitting process. For example, you can edit a pin placement to suit specific design constraints. When the MACH Fitting Options form is displayed, pressing the F9 key invokes the text editor so you can edit the file you specified in the Press [F9] to edit file containing field. Available choices are described below.		
	Options Definitions		
	Last successful Edit the PLC file, which contains placement the results of the last successful placement. (Default setting)		
	Saved Edit the BLC file, which contains		
	placement the results of an earlier successful placement saved by pressing the F3 key.		
≫	<i>Note:</i> The placement file lists a specific location		
	for each pin and node. Ranges of pins and nodes and GROUP_MACH_SEG_x statements used in the design file are reduced to individual pin and node locations in the placement file. Fitting Options		
Global clocks	Defines how global clock signals can be acquired.		
routable as PT clocks? (Appears only when compiling MACH355, MACH435, and	 "Y" specifies that a macrocell that uses a floating, non-grouped, single-literal clock can acquire a global clock signal through either the block clock mechanism or through the central switch matrix. "N" specifies that a macrocell that uses a 		
MACH445 designs)	floating, non-grouped, single-literal clock that is selected as a global lock can only obtain that clock through the block clock mechanism. (Default setting) Refer to "Global Clock Acquisition" in Chapter 6 for details.		

Note: The Global clocks routable as PT clocks? option is not displayed when you are working on a MACH465 design. This is because the MACH465
 device does not allow signals from the global clock pins to be routed through the central switch matrix. Set to "Y" to maintain compatibility with the PAL22V10 and MACH 1xx/2xx devices by swapping the set and reset lines for active low equations. Set to "N" to use set and reset as specified in the design file. Refer to "Set/Reset Compatibility" in Chapter 10 for details. "Y" maintains compatibility with other devices.
 (Default setting) □ "N" uses set and reset as specified in the
 design. This option affects synchronous macrocells only. "Y" means that if only set or only reset is specified, the unspecified signal can be configured at the discretion of the Fitter. In a block that contains synchronous logic, doing this can make it easier to fit the design (see the figure on the next page) but can also produce unexpected behavior. "N" means the unspecified signal is treated as GND. "Y" means that set and reset are treated as "don't cares." (Default setting) "N" uses set and reset as specified in the design.

- Note: In the example above, synchronous signals OUT2, OUT3, and OUT4 have either a Set, a Reset, or both, which the designer did not intend. There are two ways to force the Fitter to refrain from creating unwanted Set/Reset signals:
 - □ Set the Set/Reset treated as Don't Care option to "N"
 - Write a .SETF and a .RSTF equation for each signal, specifying GND as the Set or Reset condition (OUT3.SETF = GND) to prevent the synchronous signal from being placed in a block that has both Set and Reset signals as non-GND.

Run Time Upper Bound in 15 Minutes 0 = run until completion (Default setting)

Positive integer settings represent 15 minute increments:

- 1 = 15 minutes
- 2 = 30 minutes

3 = 45 minutes

99 = 24.75 hours

This option limits the amount of time the Fitter can spend on partitioning and place/route activities, as follows:

Mode 1

...

The **Iterate between parition & place/route** option is set to "Y" and the **Run Time Upper Bound in 15 minutes** option is set to "0." Remaining processing time is

(15 * Run Time Upper Bound setting) - (Elapsed time) Mode 2

The **Iterate between parition & place/route** option is set to "Y" and the **Run Time Upper Bound in 15 minutes** option is set to a value greater than 0. No time limit is imposed on the Partitioner. A time limit

of four hours is imposed on *each* of the first three place/route iterations. No time limit is imposed on the fourth (final) place/route iteration.

Mode 3

The **Iterate between parition & place/route** option is set to "N." The setting of the **Run Time Upper Bound in 15 minutes** option is imposed separately on the Partitioner and the Placer/Router. Maximum total processing time is, therefore, twice the specified time limit:

(15 * Run Time Upper Bound setting) for Partitioner

(15 * Run Time Upper Bound setting) for Placer/Router

Iterate between partition & place/route? The Fitter uses up to four successive partitions rather than performing exhaustive placement/routing on only one partition.

- □ "Y" causes the Fitter to iterate between partitioning and placing/routing. (Default setting)
- □ "N" causes the Fitter to place and route on a single partition chosen as "best" by the Partitioner.

When set to "Y," this option increases the chance of fitting success, improves block partitioning through automatic balancing (assigning roughly equal numbers of signals to each block in the device), and should reduce the need for using a LIM file to control partitioning. The Partitioner finds a suitable partitition and passes the partition to the Fitter for signal placement and routing. If the design does not fit within the allotted time, the Partitioner uses information from the unsuccessful placement/routing attempt to find a different partition, which is then passed to the Fitter for placement and routing. (For MACH 3xx/4xx designs: on the fourth and final partitioning attempt, the Partitioner uses a more aggressive partitioning strategy than it used on the preceding three attempts.)

Iterative partititioning and placement/routing continues until one of the following occurs:

D The design fits successfully

 $\hfill\square$ All acceptable partitions have been exhausted

Balanced Partitioning □ The user-specified time limit expires When set to "Y" (default), this option avoids fully packing the first PAL blocks partitioned and sparsely packing, or leaving empty, the last PAL blocks partitioned. Instead, the Partitioner attempts to put roughly equal numbers of signals in each PAL block.

To inprove the chances of finding a successful fit, do not compile a design that includes GROUPMACH_SEG_*x* statements with the **Balanced Partitioning** option to "Y."

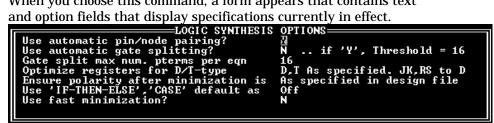
Spread Placement	Within a given partition, this option avoids placing signals at adjacent macrocells if possible.			
	□ "Y" spreads signal placement evenly within the			
	block. (Default setting)			
	\square "N" packs each block from the top (cell 0) down.			
	Use this option if you want to improve the chances			
	of being able to add logic later without changing			
	the pinout.			
Reduce Non-	The Fitter can use global clock pins to implement single-			
forced Global	literal clocks that are not assigned to pins in the design			
Clocks?	file. Using global clock pins speeds device performance			
(Appears only	but may make fitting more difficult in some situations.			
when compiling	□ "N" allows the Fitter to place single-literal, floating			
MACH 3xx/4xx	clock signals at global clock pins, limited only by the			
designs)	availability of global clock pins. (Default setting)			
	□ "Y" forces the Fitter to limit the number of single-			
	literal, floating clock signals it places at global clock			
	pins to four minusNumber (see the explanation for			
	"Number" that follows). If you enter "Y," you can set			
	the Number field to 1 or 2.			

Refer to the "Understanding Global Clock Signals" section of Chapter 8, "Using the Fitter," for more information.

Number (Appears only when compiling MACH 3xx/4xx designs)	 This field is editable only when the Reduce Nonforced Global Clocks? option is set to "Y." This field determines the amount by which nonforced global clock signals will be reduced. Available settings are 1 and 2. "1" reduces the maximum number of non-forced clock signals that the Fitter can place at global clock pins to 3 (4 minus 1). "2" reduces the maximum number of non-forced clock signals that the Fitter can place at global clock signals that
Reduce routes per placement? (Appears only when compiling MACH 3xx/4xx designs)	 clock pins to 2 (4 minus 2). If the Fitter fails to route a given placement in a few tries, it is generally more likely to succeed using a new placement than by trying exhaustive routing on the same placement. "N" selects exhaustive routing for each placement. This improves the chances of finding a successful fit but often increases the amount of time required to process a design. (Default setting)
	"Y" limits the number of routing attempts per placement to the four or five most likely routing combinations. This often results in faster fitting.
>	Note: Do not limit routing attempts if your design uses preplaced signals. Signal preplacement precludes alternative placements, hence you must rely on exhaustive routing to find a successful fit.

Zero Hold Time for Input Registers? (Appears only when compiling MACH445 and MACH465 designs)	 This option controls the zero hold time fuse on MACH 4xx devices that have the zero hold time feature. (See the MACH Family Data Book and the "Zero Hold Time for Input Registers" section of Chapter 10, "Device Reference," for more details. "N" minimizes setup time to the input storage element. This makes device timing compatible with other MACH devices. (Default setting) "Y," programs the input register hold time fuse. This increases the data path setup delay to input storage elements, producing delays that are equivalent to those of the clock path. After you make your selections to the MACH Fitting Options form, press the F10 key to proceed with compilation and/or fitting. nulation Options The form that appears when you choose File:Set up:Simulation options allows you to define the following: Where simulation commands are stored
	 The source of the signal placement data to be us ed during simulation and test vector generation.
	SIMULATION OPTIONS Use auxiliary simulation file: N Use placement data from: Last successful placement
Use auxiliary simulation file	 Simulation commands can be included in the design file itself, or stored in a separate auxiliary file, <i>Design</i>.SIM. "Y" uses the auxiliary simulation file, <i>Design</i>.SIM.
Use placement data from	 "N" uses the SIMULATION segment of the design file, <i>Design</i>.PDS. (Default setting) This option field allows you to identify the source of the signal placement data needed to generate test vectors during simulation. For MACH device designs, test vectors will not be generated if signal placement data is not available. You can choose from three options:

Options Design file	Definitions Use the pin/node statements in the
8	PDS file. Do not use this setting
	unless you specifically want to
	simulate using a different
	placement from that chosen by the
	Fitter.
Last	Use data in the PLC file from the
successful	last successful placement.
placement	(Default setting)
Saved	Use data in the BLC file saved
placement	by pressing the F3 key after an
	earlier successful fitting process.
If the design f	ile specifies any pins as floating, use
this option fie	ld to select the placement data in
either the PL	C or the BLC files.



Note: If a MACH 1xx/2xx design file specifies any pins as floating and you choose the Design file option, test vectors will not be generated during simulation unless you first back annotate signal placement data from either the PLC or BLC files. On MACH 3xx/4xx designs, you must always use placement data from the PLC or BLC files if you want test vectors generated, because these files contain necessary information that is not included in the design file (even if it is back-annotated).

Logic Synthesis Options

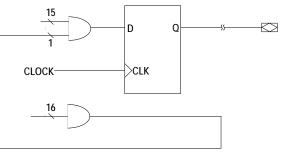
This command allows you to specify preferences for gate splitting, register optimization, polarity, and treatment of unspecified default conditions.

When you choose this command, a form appears that contains text

Logic Synthesis Options Form for MACH 1xx/2xx Designs

LOGIC SYNTHESIS	OPTIONS
Use automatic pin/node input pairing?	Z
Use automatic gate splitting?	N if 'Y', Threshold = 20
Gate split max num. pterms per eqn	20
Optimize registers for D/T-type	D,T As specified. JK,RS to D
Ensure polarity after minimization is	
Use 'IF-THEN-ELSE','CASE' default as	Off
Use fast minimization?	N

Logic Synthesis Options Form for MACH 3xx/4xx Designs


J J	J
Use automatic	If you define an input pin and a node but do not
pin/node input	use the PAIR keyword in either the PIN or the
pairing?	NODE statement, and subsequently write an
(Appears in this	equation for the node in the form <i>Node_name</i> =
form only when	<i>Pin_name</i> , the software will automatically input-
compiling	pair the signals for you if this option is set to "Y."
MACH 4xx	□ "Y" enables automatic input pairin g. (Default
designs. See	setting)
below for	"N" disables automatic input pairing.
MACH 1xx/2xx designs.)	Note that automatic output pairing is always
	enabled for MACH 4xx devices. (Refer to "Pairing"
	in Chapter 6 for details.)
≻	-
	devices.

Use automatic pin/node pairing? (Appears in this form only when compiling MACH 1xx/2xx designs. See above for MACH 4xx designs.)	 If you define an output pin and a node but do not use the PAIR keyword in either the PIN or the NODE statement, and subsequently write an equation for the node in the form Node_name = Pin_name, the software will automatically pair the signals for you if this option is set to "Y." "Y" enables automatic output pairing. (Default setting) "N" disables automatic output pairing. Refer to "Pairing" in Chapter 6 for details.
Use automatic gate splitting? Threshold =	 This text field allows you specify whether or not the Fitter can accommodate equations that exceed the number of product terms available through product term steering, using a technique called "gate splitting." Refer to "Gate Splitting" in Chapter 8 for details. "Y" enables gate splitting. "N" disables gate splitting. (Default setting) This option field defines the threshold number of product terms and the splitting. The splitting is a single splitting.
	product terms allowed in a single equation. The range of settings is 10-16 for MACH 1xx/2xx designs, 12-20 for MACH 3xx/4xx designs. When the Logic Minimizer encounters an equation with more product terms than the threshold allows, gate splitting occurs. Setting the threshold to a lower value does not reduce the number of product terms required to implement a given equation. In fact, doing so can increase the total number of product terms required, because each gate-splitting pass adds one product term to the total number of product terms needed to implement the original equation.
Gate split max num pterms per eqn	When gate splitting occurs, this field determines the maximum number of product terms allowed in any of the subsidiary equations into which the original equation is split.

Example 1

Threshold setting: 16 Gate split max num pterms per eqn setting: 16 Number of product terms in equation: 16 Action taken: None **Example 2**

Threshold setting: 16 Gate split max num pterms per eqn setting: 16 Number of product terms in equation: 31 Action taken: Divide equation into two equations with 16 product terms each, as shown in the following illustration.

Note: Refer to "Synchronous and Asynchronous Operation" in Chapter 10 for more information on the product term availability for synchronous and asynchronous macrocells.

Example 3

Threshold setting: 16 Gate split max num pterms per eqn setting: 16 Number of product terms in equation: 32 Action taken: Divide equation into three equations, two with 16 product terms each and one with 2 product terms.

Optimize registers for D/T- type	 This option field allows you to specify how you want to implement different flip-flop types. There are two reasons to do this: The design file contains flip-flop types that the device supports through emulation using either D- or T-type flip-flops. The design file contains flip-flop types that the device can implement directly, but to improve either utilization or speed, you want to implement those flip-flops using a different flip-flop type. The "Best for device" setting results in the best 	
		all devices, but can result in changing
	the polarity of	equations on MACH 1xx/2xx designs.
	Options	Definitions
	D,T as	Implement D- and T-type equations
	specified. JK, RS to D	as specified. Implement equations specifying JK or RS flip-flops as D- type flip-flops, through emulation. (Default setting)
	D,T as	Implement D- and T-type equations
	specified.	as specified. Implement equations
	JK, RS to T	specifying JK or RS flip-flops as T- type flip-flops, through emulation.
	D,T as	Implement D- and T-type equations
	specified.	as specified. Implement equations
	JK,RS to Best	specifying JK or RS flip-flops as either D- or T-type flip-flops (which- ever type gives the best utilization for the current device).
	Change all	Convert T, JK, and RS flip-flops to
	to D-type	D-type.
	Change all	Convert D, JK, and RS flip-flops to
	to T-type Best for	T-type. Convert flip-flops first to D,
	device	then to T, compare results, then use whichever type gives the best utilization for the current device. ⁷

Ensure polarity after minimization is	This option field allows you to specify the polarity required for the design. You can choose from four options:			
	Options	Definitions		
	As specified	Leave design as specified.		
	in design file	(Default setting)		
	Best for	If the 22V10/MACH1xx/2xx S/R		
	device	Compatibility option in the MACH		
		Fitting Options form is set to "N,"		
		the equation with the fewest		
		product terms is chosen and the		
		macrocell's polarity XOR is used to		
		keep polarity as specified in the		
		design file.		
		If 22V10/MACH1xx/2xx S/R Compatibility		
		is set to "Y," the equation with the		
		fewest product terms is chosen and		
		the polarity does not necessarily		
		remain as specified in the design		
		file.		
	Low, active	Convert to active low polarity.		
	low	1 5		
	High, active	Convert to active high polarity.		
	high	8 F 5		
Use 'IF-THEN-	This option field allows you to specify how the			
ELSE', 'CASE'	software treats default values for the IF-THEN-			
default as	ELSE and CASE statements. You can choose f			
		two options; "Off" is the default.		
	Options	Definitions		
	Don't care	Unspecified default conditions are		
	Don't cure	assumed to be don't cares.		
	Off	Unspecified default conditions are		
	OII	assumed to be false. (Default		
		setting)		
		Refer to "The `Don't Care' Logic Synthesis Option"		
	in Chapter 6 for an explanation of how the "Don't Care" setting affects how your design is minimized			
	and now the	polarity of the equation is determined.		

Use fast minimization? This option allows the user to run an abbreviated version of the Logic Minimizer. If it is "N," a more exhaustive minimization is performed. Set it to "Y" only if an "Out of memory" error is generated or if Logic Minimizer compilation times are unusually long. (The fast Logic Minimizer may produce equations with more product terms than are produced by the

- standard Logic Minimizer.)
- □ "Y" enables fast minimization.
- □ "N" disables fast minimization. (Default setting)

Go To System

This command temporarily transfers you to the operating system. From the operating system, you can use the print command to print a file or perform other tasks.

Note: If your printer requires a device driver, be sure the device driver is loaded before using the print command.

Note: The F9 key has the same function as the FILE:Go to system command.

To leave the operating system and return to the MACHXL environment, type exit and press the Enter key.

Quit

The **Quit** command asks you to confirm before exiting the MACHXL environment.

Are you sure? S/Y/N N

□ "S" saves any changes to the compilation and logic synthesis options made during the current session and terminates the MACHXL program. (Changed settings are saved to the file GLOBAL.MXL in the root directory of the drive on which the MACHXL software is installed.)

□ "Y" terminates the MACHXL program without saving changes to the compilation and logic synthesis options.

 \Box "N" cancels the Quit command.

Note: Pressing the Esc key when a top-level menu is displayed initiates the **Quit** command automatically.

Edit Menu

The **Edit** menu provides text editor commands that operate on the following types of files in the current working directory:

- **Text** file (the current design file)
- Auxiliary simulation file for the current design file
- **O** Other file (any text file)

Text File

This command transfers you to the text editor and loads the PDS file you specified using the **Retrieve existing design** command, in the **File** menu. You can edit information in this file as usual. When you leave the editor, you are returned to the MACHXL environment.

Auxiliary Simulation File

This command transfers you to the text editor and loads the auxiliary simulation file for the current design, if the auxiliary simulation file exists, or allows you to create a new auxiliary simulation file.

Name the simulation file after the design and include a SIM extension. For example, the auxiliary simulation file for the design 16CNTMUX.PDS must be named 16CNTMUX.SIM.

When you leave the editor, you return to the MACHXL environment.

Other File

Use this command to identify a specific file to edit. When you choose this command, a form appears with a text field so you can specify the name of the file.

The intelligent text field in this form allows you to proceed using one of two methods:

 \square Type the complete file name. When you confirm the name, the file is loaded into the appropriate editor and made available on screen.

D Display a list of files using one of the techniques below.

• Press the Enter key to display a list of all files in the current directory.

• Type part of a name, such as *Design*.*, to display a list of specific files, such as all files relating to the named design.

• Type a different drive or directory path to display a list of files elsewhere.

After you select a name from the resulting list, you are transferred to the text editor and the file is automatically loaded. When you leave the text editor, you are returned to the MACHXL environment.

Run Menu

This menu lets you run the most common operations performed on the current design:

- **D** Compilation
- □ Simulation
- **D** Both (Compile first, then simulate)
- **O** Other operations

The **Other operations**... option displays a pop-up menu of less frequently used operations you can perform on the current design (such as back-annotation) and/or on the files that result from processing the current design (such as the intermediate file or the JEDEC file).

The following sections explain each of the menu commands available from the $\ensuremath{\mathsf{Run}}$ menu.

Compilation

Choose the **Compilation** command to run one or more of the program modules described in Chapter 2.

When you choose this command, the MACHXL program either Compiles the current design immediately, if the **Provide compile**

options on each run field in the Working Environment form (accessed from the Set up command in the File menu) is set to "N."

□ Allows you to review and change settings to the forms listed below, if the **Provide compile options on each run** field in the Working Environment form (accessed from the **Set up** command in the **File** menu) is set to "Y."

- Compilation Options
- Logic Synthesis Options
- MACH Fitting Options

The Compilation Options form and the MACH Fitting Options form are described in the next two sections.

>

Note: If you have created a Partitioning Limit (LIM) control file for the design, the Partitioner will limit resource allocation in the device according to your specifications. When a LIM file exists, the Partitioning section of the log file contains the following message: Using Partitioning Control File Design.LIM.

Refer to the "Using Place and Route Data to Limit Placements" section in Chapter 9 for tips on using the Place and Route Data (PRD) file to determine if a LIM file can improve fitting performance in your design. Refer to Appendix C, "Creating a LIM File," for information on syntax and usage.

Compilation Options

The Compilation Options form appears if you set the **Provide** compile options on each run field of the Working Environment form (File:Setup:Working environment) to "Y," otherwise the compilation options previously set in that form (File:Setup:Compilation options) are used. The Compilation Options form is described in the "Compilation Options Form" section in this chapter.

After you make your selections, press the F10 key to close the Compilation Options form.

Logic Synthesis Options

The Logic Synthesis Options form appears (if the **Provide compile options on each run** field in the Working Environment

Run Menu

form (accessed from the **Set up** command in the File menu) is set to "Y") when you select from the Compilation Options form *any option other than* **Run All Through Parser** or **Rerun Fitter**.⁸ The Logic Synthesis Options form is described in the "Logic Synthesis Options Form" section in this chapter. After you make your selections, press the F10 key to proceed with compilation and/or fitting.

MACH Fitting Options

The MACH Fitting Options form appears if you set the **Provide** compile options on each run field of the Working Environment form (File:Setup:Working environment) to "Y," otherwise the MACH Fitting options previously set in that form (File:Setup:Compilation options) are used. The Compilation Options form is described in the "Compilation Options Form" section in this chapter.

After you make your selections, press the F10 key to close the Compilation Options form.

Note: During all processes prior to fitting, you can halt processing after the current module finishes, by pressing the Esc key.

During fitting, you can halt processing by pressing the Esc key once the Place and Route display (cumulative totals for Plc[] and Rte[] on the status line) appears. During the next screen update, the Fitter displays the number of unrouted signals at the bottom of the screen. For example:

157 of 160 signals (98%) routed; # of extra 15 minute increments (0 to exit)

To continue processing, enter an integer greater than zero. To terminate processing, enter zero. If you terminate processing, the report files will contain partial partitioning/placement/routing data. See "Failure Reports" in Chapter 9, "Report Files," for details.

Run-Time Status Display

While compiling and fitting, a message window allows you to view the progress of the operations performed. While fitting, the bottom line of the monitor screen contains the following information:

Time remaining [0 hrs 30 min 52 sec] Plc [502] Rte [0]

The "time remaining" display appears only if you have set a time limit for the Fitter using the **Run time upper bound** field of the MACH Fitting Options form.

The "Plc" display shows how many signal placements have been attempted.

□ If no successful placement has been made, this display is updated periodically. (Processing a complex MACH design can require millions of placement and routing attempts. To speed processing, the run-time status display is updated after every 40,000 attempts.)

□ If a successful placement is made, the exact number of attempts required to make the placement appears in the display field, and the number of routing attempts for the current signal placement appears in the "Rte" display. The "Rte" display shows how many routing attempts have been made with the current signal placement.

Output Files

A log file (*Design*.LOG) contains a log of the Parser, Boolean Post-Processor, STATE Syntax Expander, Logic Minimizer, and Fitter results. (Select **Execution log file** from the **View** menu to view this file.)

An intermediate (*Design*.TRE) file contains the Boolean equations produced by the most recently executed module (except the Fitter). Refer to "Disassemble From" (under "Other Operations," below) for additional details. Fitter reports (*Design*.RPT, *Design*.PRD, and *Design*.TAL) contain details of the fitting procedure. Refer to the "Fitting Report" section in Chapter 9, "Report Files."

Simulation

This command verifies design logic using commands placed in either the simulation segment of a PDS file or in an auxiliary simulation file. However, no timing verification is done.

Depending on the working environment options you have set, the following form may appear:

Use auxiliary simulation file? Y/N N Use placement data from: Design file

□ "Y" indicates you are using a separate simulation file.

 \square "N," the default, indicates simulation commands reside in the PDS file.

You can view the simulation results in text form by choosing Simulation data from the View menu or in wave form by choosing Waveform data from the View menu.

>

Note: You must compile a design before simulating it.

Both

This command saves time when you want to compile and simulate the design in one operation.

D The Compilation Options and MACH Fitting Options forms are identical to the ones described under "Compilation" in this chapter.

□ The "Use auxiliary simulation file?" form is identical to the one described under "Simulation," above.

Other Operations

This option displays a pop-up menu of less frequently used operations you can perform on the current design and/or on the files that result from processing the current design, such as the intermediate (.TRE) file or the JEDEC file.

The following sections explain each of the menu commands available from the **Other operations** menu.

Modify Pin & Node Numbers

This command allows you to transfer actual pin and node placement data (generated by the Fitter) back to a design file in which the corresponding signals were floating (physical locations unspecified). This procedure is commonly referred to as *back-annotation*. When you choose the **Modify pin & node numbers**... command, an option list allows you to choose the source of the placement data. Available options are

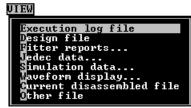
Change all to floating

Float nodes only

Replaces all pin and node locations specified in the current design file (*Design*.PDS) with the float symbol, which is a question mark (?). Replaces all node locations specified in the current design file with the float symbol.

Run Menu

Translate nodes: 110 to 111	Renumbers nodes specified in a MACH110 device design with the correct numbers for a MACH111 device design and changes the CHIP statement from MACH110 to MACH111.
Use last successful placement	Uses pin and node locations from the file <i>Design</i> .PLC, which the Fitter creates after each successful placement.
Take from saved placement	Uses pin and node locations from the file <i>Design</i> .BLC. The BLC file contains placement data from a previous successful compilation. You create a BLC file by opening the MACH Fitter Options form and pressing the F3 key. Access the MACH Fitter Options form from File:Set up or from Run:Compile.


Dis	assemble From
	This command displays a submenu with two choices:
	□ Intermediate file
	□ Jedec
	Intermediate File
	The Intermediate file command disassembles an
	intermediate file that you specify, so you can view the
	results of the minimization and expansion processes.
	When you choose this command, the form shown
	below appears; this form has two text fields. Input file name: TEST2.TRE
	Output file name: TEST2.PL2
Innut filo nomo	Each field is explained below.
Input file name	This field provides the name of the intermediate
	file, which corresponds to the currently specified
	design name followed by a TRE extension. A name
	in this field does not indicate the corresponding file
	exists. You can enter a new name to use a
	different file as input. You can enter *.TRE to
	display a list of all intermediate files in the current
	working directory.
Output file name	This field names the Boolean equation file created
	during disassembly. The name matches the design
	followed by a PL2 extension. You can enter a new
	name to store the results in a different file.
	Once you confirm specifications in the disassembly
	form, the process is initiated.
	Jedec
	The Jedec command converts JEDEC fuse data into
	Boolean equations, which is useful to reconstruct a
	design for which other files are missing. When you
	choose this command, the form shown below appears;
	this form has two text fields and an option field.
	Input file name: TEST2.JED Output file name: TEST2.PL2
	Device name: MACH435
	Each field is explained below.
	-

Run Menu

Input file name	This field provides the name of the JEDEC file, which corresponds to the currently specified design name followed by a JED or JDC extension. A name in this field does not indicate the corresponding file exists. You can enter a new name to use a different file as input. You can enter *.JED or *.JDC to display a list of all JEDEC files in the current working directory.
Output file name	This field names the Boolean equation file created during disassembly. The name matches the design followed by a PL2 extension. You can enter a new
Device name	name to store the results in a different file. This option field allows you to select the device type corresponding to the original design. You can only disassemble designs created for the devices in the option list. (To display the option list, highlight the field and then press the F2 key.) Once you confirm specifications in the disassembly form, the process is initiated.
	Note : When JEDEC fuse data from a JED file is converted to Boolean equations, the comments and simulation vectors in the original PDS file are absent. (Simulation vectors will be present if you use the JDC file instead of the JED file.) When finished, a Boolean equation output file is stored in the current directory under the name you specified.
Re	Calculate JEDEC Checksum Note: You never need to recalculate the JEDEC checksum unless you make changes to the JEDEC file, which is not recommended. This command recalculates the checksum in the JEDEC data file. When you choose this command, the form below appears. Input file name: TEST2.JED Output file name: TEST2.JED Device name: MACH435 Each field is explained below.

Input file name	This field contains the name of the JEDEC checksum file in the current directory, which corresponds to the current specified design name with a JED extension. A name in this field does not indicate the corresponding file exists. You can enter a new name to use a different file as input.
Output file name	This field contains the default name of the output
	file that will be created. The name matches the
	design followed by a JDM extension. You can enter
	a new name to store the results in a different file.
Device name	This option field allows you to select the device
	type corresponding to the original design. You can
	recalculate the checksum for the devices in the
	option list, displayed by pressing the F2 key in this
	field.
	Once you confirm specifications in the recalculation form, the
	process is initiated. When finished, a JDM file is stored in
	the current directory under the name you specified. (The
	JDM file contains all of the original JEDEC information and
	the recalculated checksum.)

View Menu

The **View** menu provides commands to display all files related to the currently specified design. However, you cannot edit files in view mode. When you are done viewing a file, press the Esc key to close the View window and return to the **View** menu.

Brief definitions of available commands and other information about each file are provided below.

Note: The viewer can display files up to 30 kilobytes in size. To view larger files, use the text editor instead of the viewer to open the desired file. To open a file other than the current design file using the text editor, choose **Other file** from the **Edit** menu.

Execution Log File

This command displays the log file *Design*.LOG, which contains all warning, error, and status messages generated by the last compilation. A copy of the Compilation, Logic Synthesis, and MACH Fitting Options forms appears at the beginning of the log file, showing the settings in effect when the design was compiled. The log file is rewritten each time you initiate a new process. If you want to save the log file, rename it before you compile the same design using different compilation, fitting, or logic synthesis options.

Design File

This command displays the current design file in a read-only window.

If you want to modify or print the design file, choose **Design file** from the **Edit** menu rather than the **View** menu.

Fitter Reports

This command provides a submenu that lists the names of the files produced during the MACH fitting process.

Fitting

This file (*Design*.RPT) contains the placement, block, and device pin-out information generated by the MACH Fitter. Refer to "Fitting Report" in Chapter 9, "Report Files," for more information.

Place/Route Data

This file (*Design*.PRD) contains the place and route processing time, place/route resource and usage tables, a signal fan-out list sorted in alphabetical order, a device pinout list, block information, node to I/O pin mappings via the output switch matrix, I/O pin-to-node mappings, I/O pin-tonode and I/O pin-to-input register pairings, and input matrix and central switch matrix tables. Refer to "Place and Route Data Report" in Chapter 9, "Report Files," for more information.

Timing Analysis

This file (*Design*.TAL) contains timing information for the current design, generated by the MACH Fitter. Refer to "Timing Analysis Report" in Chapter 9, "Report Files," for more information.

JEDEC Data

This command displays a submenu that lists commands to view JEDEC fuse and vector data:

D Fuse data only

□ Vectors + fuse data

These submenu options are discussed below.

Fuse data only The fuse data file is created during the assembly or fitting process. The information in this file is in a machine-readable format that you can download to program a device.

Vector + fuse data Vectors are added to the fuse file after a successful compilation and simulation. Information in this file includes the following:

- □ Fuse data from the JEDEC fuse data file
- □ Test vectors added during simulation that can be used to verify a device on a programmer

The JEDEC file is stored as *Design*.JDC.

Simulation Data

This command displays a submenu of commands to view the simulation history and trace files in a text format. Submenu options are:

□ All signals

□ Trace signals only (non-vectored and vectored)

The following information is presented in both history and trace files:

□ Each instance of "g" represents the SETF command in the simulation file.

□ Each instance of "c" represents a complete clock cycle, which is defined by the CLOCKF command in the simulation file.

All Signals

Choosing **All signals** displays the history file, which contains the simulated behavior of all signals defined in the pin statements. Information in this file is divided into two columns. You can track values using the cursor, which is displayed as a thick vertical bar.

□ The left column lists pin names for each pin listed in the declaration segment of the PDS file.

D The right column records the simulation results in text-format wave form.

H = high

L = low

- X = undefined
- Z = output disabled
- ? = discrepancy (commonly called a "check clash")

Trace Signals Only

Choosing **Trace signals only** displays a submenu with two options:

D Non-vectored

Displays separately the value of each signal in a vector. \Box Vectored

Displays a hexadecimal value for the entire vector. Refer to the "Vectors In Simulation" section of Chapter 8, "Simulation Segment in Depth," for more information.

Both options display the trace file, which contains the simulated behavior of only those signals specified using the TRACE keyword in the simulation segment or auxiliary simulation file. You can track values using the cursor, which is displayed as a thick vertical bar. Information is displayed in the same text format as the history file.

□ The left column provides the pin names you specified using the TRACE command.

 \square The right column records high and low signals as a text-format.

H = high

L = low

- X = undefined
- Z = output disabled
- ? = discrepancy

Printing the Simulation History

To print a simulation history that is displayed on the screen, proceed as follows:

1. Press the F2 key to display the Print form shown below.

2. Choose the Printer command to display the list of <u>supported printers</u> (shown below).

3. Choose the desired printer from the list.

4. Press the right-arrow key to open the Format submenu.

5. Use the up- and down-arrows to highlight the desired paper orientation: Portrait or Landscape.

6. Press the right-arrow key to highlight the Run command, then press the Enter key to print the simulation history.

To save the simulation history display to a file, proceed as follows:

- 1. Press the F2 key to display the Print form.
- 2. Choose the File command.
- 3. Type the desired file name, then press the Enter key.
- 4. Press the right-arrow key to open the Format submenu.

5. Use the up- and down-arrows to highlight the desired paper orientation: Portrait or Landscape.

6. Press the right-arrow key to highlight the Run command, then press the Enter key to save the simulation history to the specified file.

Waveform Display

This command displays a submenu that lists the available simulation waveform files. Submenu options are:

□ All signals

D Trace signals only (non-vectored and vectored)

The following information is presented in each file:

 \Box Each instance of g represents the SETF command in the simulation file.

□ Each instance of c represents a complete clock cycle, which is defined by the CLOCKF command in the simulation file.

All Signals

This command displays, in graphic form, the simulated behavior of all signals defined in the pin statements. You can track values using the cursor, which is displayed as a thick vertical bar.

□ The left column provides pin names for each pin listed in the declaration segment in a PDS file.

□ The right column records high and low signals graphically.

Trace Signals Only

Choosing Trace signals only displays a submenu with two options:

□ Non-vectored

Traces separately the value of each signal in a vector. □ Vectored

Overlays a hexadecimal value for the entire vector on the waveform. Refer to the "Vectors In Simulation" section of Chapter 8, "Simulation Segment in Depth," for more information.

Both options display, in graphic form, the simulated behavior of only those signals specified using the TRACE keyword in the simulation segment or auxiliary simulation file. You can track values using the cursor, which is displayed as a thick vertical bar.

□ The left column provides names of the pins you specified using the TRACE command in the simulation segment or file.

D The right column displays the simulation results graphically.

Printing a Waveform

To print a simulation waveform that is displayed on the screen, proceed as follows:

1. Press the F2 key to display the Print form shown below.

2. Choose the Printer command to display the list of <u>supported printers (shown below)</u>.

3.

Choose the desired printer from the list.

4. Press the right-arrow key to open the Format submenu.

5. Use the up- and down-arrows to highlight the desired paper orientation: Portrait or Landscape.

6. Press the right-arrow key to highlight the Run command, then press the Enter key to print the waveform. To save the simulation waveform to a file, proceed as follows:

- 1. Press the F2 key to display the Print form.
- 2. Choose the File command.
- 3. Type the desired file name, then press the Enter key.

4. Press the right-arrow key to open the Format submenu.

5. Use the up- and down-arrows to highlight the desired paper orientation: Portrait or Landscape.

6. Press the right-arrow key to highlight the Run command, then press the Enter key to save the waveform to the specified file.

Current Disassembled File

This command generates an option list containing the name of the current disassembled file, if any, as shown below: $_{\rm TEST2.PL2}$

The disassembled file contains the results of disassembling either the intermediate TRE file or the JEDEC file

Select the name from the list to view the contents of the file in a text window.

Other File

This command allows you to view files not available through explicit commands in the **View** menu, including those in other directories. When you choose this command, the form below appears.

The intelligent text field in this form allows you to display a file using one of three methods:

D Press the Enter key to display a list of all files in the current directory.

D Type part of a name, such as *Design*.*, to display a list of specific files, such as all files relating to the named design.

D Type a different drive or directory path to display a list of files elsewhere.

When you select a name from the list, the corresponding file is displayed in a text window.

Download Menu

DOWNLOAD	
Download to	Programmer
Program via	Cable

The Download menu allows you to program devices with your compiled design.

Download to Programmer

Downloading to a programmer via an RS-232 cable is not supported. Use the communications software provided with your device programmer, or another program of your choice, to download the JEDEC file generated by the MACHXL software to the device programmer.

You can quit the MACHXL program before running your communications software, or you can exit temporarily to the DOS shell using one of the following procedures:

- Choose **Go to system** from the File menu
- **D** Press the F9 key

Program via Cable

Note: This command applies only to MACH devices with JTAG and to the MACH435 device when cross-programmed as a MACH445 device. Refer to the "Cross-Programming a MACH335 Device as a MACH445 Device" section in Chapter 10, "Device Reference," for more information.

This command displays a submenu with four choices:

These menu commands are discussed in the following subsections.

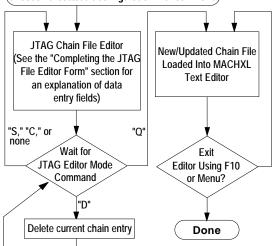
View Configuration File

Choose **View configuration file** to view the configuration file for the current design: *Design*.CHN (also known as the JTAG chain file or the *JTAG scan path file*). If *Design*.CHN does not exist, the legend "<none> " is displayed and you are prompted to supply a file name.

Lines that begin with a semicolon are treated as comments (that is, ignored by the programming software). Except for comments, each line in the chain file is treated as a complete command line (chain entry) by the JTAG programming software.

A typical chain file created with the chain file editor (discussed below) consists of two lines: one comment line giving the date on which the chain file was created and one line, called the chain entry, that contains the actual programming information, as shown in the following figure. Multiple parts can be programmed from a single chain file. The order of the chain entries determines the order in which the parts will be programmed, and represents their position on a circuit board or boards.

The figure below contains a single chain entry, which is for the device named "Shift."


FILE	EDIT	RUN	VIEW	DOWNLOAD D <u>ownload to programmer</u> Program via cable View configuration file	
EDIT	VERSIO Shift	N===> 8 n 6 ;	at Jul	30 22:10:23 1994	
<†↓, Pgl	Jp, PgDn	,Home,I	End> sc:	roll, <esc> exit. File=fjl1.CHN</esc>	
	ad-only t ain entry		low		
	mment li				

Create/Edit Configuration File

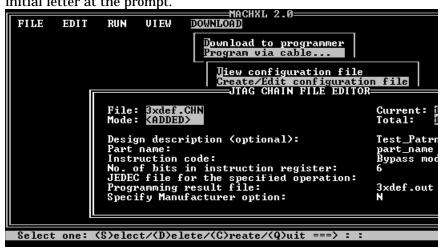
This command runs the JTAG Chain File Editor to create or modify the specified configuration file, *Design*.CHN. The

diagram below shows how the chain file is processed by two editors: first the chain file editor and then the same text editor used to edit MACHXL design files.

(Choose "Create/edit configuration file" command)

You can select an alternate existing or new .CHN file by supplying another file name. The JTAG Chain File Editor form is shown below, with the default settings for editing the new chain file TESTFILE.CHN.

Previously existing chain entries, if any, are read from the .CHN file and can be displayed in the JTAG chain file editor.


Download Menu

Chain File Editor Modes

The JTAG chain file editor has four commands,

- corresponding to its four modes of operation:
- □ (S)elect
- (D)elete
- (C)reate
- □ (Q)uit

If you have not yet created a chain file, only the (C)reate and (Q)uit commands are available. You are prompted to select one of the available modes by a query at the bottom of the screen, as shown in the following figure. You select a mode by typing its initial letter at the prompt.

Instructions for using the chain file editor commands
are given below.

Mode	Description
(S)elect	Use (S)elect when making changes to entries in an
	existing chain file. Choosing (S)elect prompts you
	for the number of the entry in the chain file you
	wish to edit. Press the F10 key after typing the
	number of your choice. You must select the chain
	entry you wish to edit first. Once selected, note
	that the entry for "Mode:" in the upper left corner
	changes to "UPDATING." Use the up- and down-
	arrow keys to move around the form (see "JTAG
	Chain File Editor Menu Choices," below, for more
	information). Once you confirm your new choices
	for the selected chain entry with the F10 key, the
	mode changes to "UPDATED." The JTAG Chain
	File Editor automatically updates the chain file
	with the changed entries.
	To discard your changes while in the (S)elect mode,
	press the Esc key.
(D)elete	Use (D)elete to delete the chain entry currently
	selected.
	To delete a chain entry other than the one
	currently being edited, (S)elect that chain entry
	first.
(C)reate	Use (C)reate to create a new chain file or add new
	entries to an existing chain file. Note that the
	"Mode:" changes to "NEW" when (C) reate is
	selected. Use the up- and down-arrow keys to
	move around the form (see "JTAG Chain File
	Editor Menu Choices," below, for more
	information). Once you confirm your choices for
	the selected chain file by pressing the F10 key, the
	mode will change to "ADDED". The CHAIN FILE
	EDITOR will automatically append the new chain
	entries to the end of the chain file.
	To place a new chain entry between existing chain
	entries, use (C)reate to create the new entry and
	then use the MACHXL text editor to move the
	chain entry when you leave the chain file editor.

Download Menu

(Q)uit	Use (Q)uit to exit the menu-driven JTAG chain file
	editor and load the new/updated chain file into the
	editor you specified from the Working Environment
	Options form (File:Set up:Working environment).
	You can reorder chain file entries, make any last
	minute changes, or add comments at this time.
	When you quit the text editor, you are returned to
	the MACHXL menu.

Download Menu

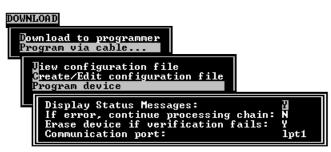
Completing the JTAG File Editor Form

When you choose (Create) or (S)elect, you have an opportunity to provide, review, or revise information for a single chain file using the chain file editor's data fields, shown below and described in the following text.

Field	Description	
File	The name of the chain file you are editing	
Mode	Indicates the mode of operation: UPDATING,	
	ADDED, WAITING, UPDATED, NEW, or	
	ABORTED.	
Current	The number of the chain entry you are editing	
Total	The total number of chain entries in the chain file	
Design	An optional field for entering text describing the	
description	design.	
Part name	The part being added to the chain file. Enter a	
	supported MACH JTAG device (press <f2>), or</f2>	
	type the name of another device.	
Instruction code	press <f2> to choose from the following:</f2>	

Program device	Programs the device with the JEDEC file specified in <filename> and verifies the pattern. (Can only be used with MACH JTAG devices.)</filename>
Verify device	Verifies the pattern programmed into a device against the JEDEC file specified in <filename>. (Can only be used with MACH JTAG devices.)</filename>
Read device	Reads the contents of a device and writes it to <filename>. (Can only be used with MACH JTAG devices.)</filename>
Read user code	,
Read Jtag ID	Reads the device ID code and writes it to <filename>. (Can only be used with MACH JTAG devices.)</filename>
Bypass mode	For programming around one or more devices that are connected sequentially to the JTAG cable: bypasses the current chain file element and the corresponding device. (Can be used with devices other than MACH devices.).
No. of bits in instruction register	Enter the appropriate value, from 0 to 9. Use 6 for the MACH445, MACH465 and MACH355 devices
JEDEC file for the specified operation	Enter the name of the JEDEC file. (Required for Program device, Verify device, and Read device.)
Programmin g result file	An output file name is required for Read user code and Read JTAG ID. The default is *.OUT.

Specify	Choose Y or N. Choosing Y brings up another
Manufacture	menu:
r option	
Turn on security	Choose Y or N (default)
fuse 1	
Turn on security	Choose Y or N (default)
fuse 2	
Set IO pins to	Press the F2 key to choose
be	available options: Z (default), 0,
	1, or X.


Once you have finished editing the chain file, the editor rewrites the chain file, appending the new version to the bottom of the chain file. Previous entries are automatically commented out by the chain file editor by placing a semicolon in the first column. Each chain entry contains instructions for programming, verifying, or reading information from one device. Consider the example Design.CHN file below:

```
;EDIT VERSION ===> Thu May 26 03:53:47 1994
;'my first chain entry' MACH445 p 6 test.jed;
;'my second chain entry' MACH445 p 6 test2.jed / -s 1 -o Z
;EDIT VERSION ===> Fri May 27 12:25:55 1994
'my first chain entry' MACH445 p 6 test.jed;
'my second chain entry' MACH445 p 6 test2.jed / -s 1 -o Z
'new chain entry for 3rd device' MACH465 p 6 myfile.jed
```

Note that an EDIT VERSION date stamp separates the different versions in the .CHN file and that older chain entries are commented out by adding a semicolon in front of them. In the example above, the original two chain entries dated 5/26/94 are commented out and the updated chain entries, dated 5/27/94, contain the original, unchanged, first and second chain entries and a new chain entry. If you wish, use a text editor to delete old chain entries that have been commented out.

Program device

When selected, a submenu of programming options is displayed for confirmation:

The default values for status messages, error handling, and failure to verify are shown above. The JTAG programming port (lpt1, lpt2, or lpt3) is set during installation. If these settings are changed, they become the new defaults. Press the F10 key to program the device.

If a JEDEC file is generated for a MACH device with JTAG, a custom BSDL file (*Design*.BSD) for in-circuit programming is also generated. The customized BSDL file can be used to improve the efficiency of the automatic test vector generation program in boundary-scan test hardware and software systems such as ASSET by Texas Instruments and Victory by Teradyne.

In addition to the information contained in the device-specific but design-independent standard (.BSM) BSDL file—like device pinout, instruction codes, data registers, and the layout of the boundary scan registers—the customized BSDL file contains design-specific implementation data such as the USERCODE, which I/Os and inputs are not used and which I/Os are used only as inputs. For more information on the BSDL file, refer to the *Boundary-Scan Handbook* by Ken Parker (ISBN: 0-7923-9270-1). Sample BSDL file templates (MACHxxx.BSM) and corresponding JTAG data can be found in the \MACHXL\EXE directory. The BSDL file contains JTAG boundary scan information for the MACH device. The JEDEC file contains programming information. Do not modify the original BSDL and JEDEC files.

Review JTAG results

This option displays a submenu of two additional choices: Review JTAG status

Use this option to review the status messages issued during the last JTAG device programming.

View/edit output file(s)

JTAG programming results are redirected to the output file(s) specified in the JTAG chain file. Use this option to view these output file(s). Warning: these output files may contain lines longer than 80 characters; do not use the standard MACHXL editor to change this file.

5 Language Reference

Contents

Symbols and Operators129Keywords131

Symbols and Operators

Operator	Definition	Example
,	Literal separator	IN[1,2,3] IN[14,69]
^	Checks that a pin's three-state output buffer is disabled	CHECK ^OUT2 ^OUT4
#b	Binary radix (defines the following number as base 2)	#b101000
#d	Decimal radix (defines the following number as base 10)	#d20
#h	Hexadecimal radix (defines the following number as base 16)	#h28C
#o	Octal radix (defines the following number as base 8)	#o50
%	Don't care	CHECK %OUT1
1 1	String delimiters	STRING RESET 'A1 * /A2'

Continued...

Symbols and Operators

Continued		
Operator	Definition	Example
()	Expression grouping	$OUT3 = (A^*B) + (C^*D^*F)$
*	AND	OUT4 = A*B
*=	Latched equation	OUT5 *= A*B
+	OR	OUT6 = A + B
+->	Local default (state transition)	$START := C1 \rightarrow S2$
		+ C2 -> S3
		+-> S4
->	State transition	$START := C1 \rightarrow S2$
		+ C2 -> S1
xy	Range of signals in a vector,	INPUT[09]
	where x and y are positive	
	integers	
/	NOT	/A
:	Case constant value	1: BEGIN
		OUT1 = IN1
		END
:+:	XOR ⁹	OUT7 = IN1 :+: IN2
**•	XNOR ¹	OUT8 := IN1 :*: IN2
:=	Registered equation	OUT9 := A*B
;	Comment	;set low before clocking
<	Less than	WHILE A < 2 DO
<=	Less than or equal	WHILE B <= 2 DO
<>	Not equal	IF A <> 2 THEN

Continued...

Keywords

Continued		
Operator	Definition	Example
=	Combinatorial (if not otherwise specified in pin declaration)	OUT = IN1 * /IN2
>	Greater than	WHILE $A > 2$ DO
>=	Greater than or equal	WHILE $B \ge 2 DO$
?	Floating pin or node or	PIN ? OUT3 REG
	Discrepancy ("clash") in simulation	HHHLLL?LL
[]	Term brackets	INPUT[19]
{ }	Substitute	OUT2=A*B*C OUT3={OUT2}*D ;this is converted to :OUT=A*B*C*D
Space, tab	Separator	PIN 2 IN1 REG

Keywords

>

This section describes the keywords reserved by the MACHXL software for special uses. You can only use keywords in your designs in the following ways:

 \Box For the purpose associated with each keyword, as described in the keyword descriptions that follow

□ As part of a special string that the MACHXL software treats as a literal and does not parse, such as the string that defines the author of a design file

The keywords reserved by the MACHXL software for special use are listed below and described in detail in the sections that follow.

- Note: Using a reserved word, symbol or operator as a pin or node name will result in errors
- Note: Using an illegal character (umlauts, @, etc.) in a design file or in signal or node names may cause general protection (GP) errors, if not caught by the Parser program.

Note: Signal names with more than fourteen characters are truncated by the Parser program with a unique identifier. A cross-reference file is used to restore the original name during back-appotation.

during back-annotation.				
CHIP	COMPANY			
.CLKF	CONDITIONS			
CLKF	DATE			
CLOCKF	DEFAULT_BRANCH			
COMBINATORIAL	DEFAULT_OUTPUT			
	CHIP .CLKF CLKF CLOCKF			

Keywords

EQUATIONS FOR-TO-DO GND GROUP IF-THEN-ELSE .J .K LATCHED LOW_POWER_LIST MACH_SEG_X MEALY_MACHINE MINIMIZE_OFF MINIMIZE_ON	REVISION .RSTF .S	SIMULATION START_UP START_UP.OUTF STATE STRING SYNC_LIST .T TITLE TRACE_OFF TRACE_ON .TRST VCC WHILE DO
—	.S .SETF	

ASYNC_LIST

Purpose	Defines signals in the list as asynchronous so that the corresponding macrocells will be configured properly.			
Syntax	GROUP ASYNC_LIST List_of_asynchronous_signals			
Where Used	DECLARATION segment of MACH215 and MACH 3xx/4xx			
	designs			
Remarks	Use signal names that have been defined correctly using PIN			
	and/or NODE statements.			
	If a signal name appears in both a GROUP SYNC_LIST and a			
	GROUP ASYNC_LIST statement, a warning is generated and			
	the signal is treated as if it appeared in neither statement.			
	This keyword affects the Fitter only if the device supports both			
- ·	asynchronous and synchronous macrocells.			
Example	; DECLARATION SEGMENT			
	CHIP TEST2 MACH435			
	 NODE ? BR1 REG NODE ? BR2 REG NODE ? BR3			
	REG			
	GROUP ASYNC_LIST BR1 BR2 BR3			
See Also	GROUP			
	□ SYNC_LIST			

AUTHOR

Purpose	Begins a header statement that identifies the author of a		
•	MACHXL design file.		
Syntax	AUTHOR Author_name		
Where Used	—		
	DECLARATION segment		
Remarks	Use any combination of up to 59 alphanumeric characters in the		
	author's name. The author's name can include the characters a-		
	z, the numerals 0-9, the period, and the underscore character.		
	The software generates a warning if you omit this header		
	statement, but continues processing.		
	Arrange header statements in the order shown below.		
Example	DECLARATION SEGMENT		
Example	TITLE PART 123 DECODER		
	PATTERN 12		
	REVISION 2		
	AUTHOR KAREN OLSEN		
	COMPANY ANYCO LTD DATE 1 JANUARY 1993		
See Also			
JCC AISO	☐ PATTERN		
	□ REVISION		
	□ COMPANY		
	□ DATE		
	□ CHIP		

Error! Style not defined.

CASE			
Purpose	A high-level control-of-flow construct that specifies different		
	actions for different condition values.		
Syntax	CASE Condition_signals		
	BEGIN		
	Value: BEGIN		
	Action_statement END		
	Value: BEGIN		
	Action_statement		
	END		
	OTHERWISE: BEGIN		
	Action_statement		
	END		
	END		
Where Used	EQUATIONS segment		
Remarks	The CASE statement		
	Specifies actions to be performed when the value of the		
	condition signals matches various constant values		
	O Optionally allows a default action to be performed if the value		
	of the condition signals does not match any of the constant		
	values		
	□ Is useful for implementing state machine designs (including		
	multiple state machines) and for address range decoding.		
	You can use groups, vector notation, and strings to specify the		
	condition signals.		
	The set of condition signals is converted into a single, binary		
	value before being compared with the constant values.		
	 Note: Signals for which you fail to specify values in all 		
	conditions are treated as don't cares by default whenever		
	their state is undefined. You can force the software to set		
	such signals to logical zero instead. Refer to the discussion		
	on the CASE statement in Chapter 6, "Equations Segment In		
	Depth," for details.		

Error! Style not defined.

	 can be affected statement as we the design file Statements" s Depth, " for de Observe the follow Follow the CA list of signals Enclose signal separated by of Use the appropriate of constant You can nest CAS ELSE statements within CASE statements within CASE statements within CASE state you need not use actions for every p condition value of conditions are not the logic-reduction You can force the false instead of as 	d by the position of well as by the position ection in Chapter of tails. ving rules: ASE keyword with that form the com l names or vector of commas. For exan priate radix operation value. The defau SE statements with and you can nest ements. the OTHERWISE possible condition focurs for which you dered to be don't can specified are elimen n process. CASE statement of a don't cares. Refe pter 6, "Equations	ferenced in a CASE statement f the reference in the CASE tion of the CASE statement in introlling Polarity from CASE 6, "Equations Segment In the string name, vector, or plete set of conditions signals. notation in parentheses nple: (A,B,C[04]). thor to specify the radix of lt radix is decimal (N 10). nin other CASE or IF-THEN- IF-THEN-ELSE statements statement if you define value. However, if a 1 do not specify an action, the are. Signals for which default inated from the design during to treat unspecified signals as r to the section on the Case Segment In Depth," for
Example	CASE (X,Y) BEGIN 0: END 3: END OTHERWISE: END	BEGIN $C = /A * /B$ $BEGIN$ $C = /A * B$ $BEGIN$ $C = A * B$	<pre>;if X,Y=0 (decimal) ; (X=0 and Y=0) ;if X,Y=3 (decimal) ; (X=1 and Y=1) ;if X,Y=1 or X,Y=2 ;(X=0 and Y=1) or ;(X=1 and Y=0)</pre>
See Also	□ IF-THEN-EL	SE	Segment In Depth" s Segment In Depth"
CHECK			

Purpose	Use CHECK to specify what you expect a pin's logical state to be at any point in the simulation.		
Syntax	CHECK List_of_expected_values		
Where Used	SIMULATION segment or auxiliary simulation file		
Remarks	If the tested pin does not have the value you specify in the		
Remarks			
	CHECK statement, a question mark appears in the simulation		
	history, trace, and waveform output where the discrepancy occurred.		
		the logical state you expect for each pin by preceding	
	the pin name with one of the following symbols:		
	Symbol	Function	
	Null	Indicates that a pin declared as active high should	
	ivan	test as a logical 1. The letter H in the simulation file	
		represents the logical high (1) state.	
	/	Indicates that a pin declared as active high should	
	1	test as a logical 0. The letter L in the simulation file	
		represents the logical low (0) state.	
	^	Indicates that the pin should be in the high-	
		impedance state because its three-state I/O buffer is	
		disabled. The letter Z in the simulation file	
		represents the high-impedence state.	
	%	Indicates that the pin should be in the undefined	
	/0	state. The letter X in the simulation file represents	
		the undefined state.	
	expected values consists of pin, node, or state, and		
string names, as well as vectors, to be verified.			
	Each signal name can be up to 14 characters in length.		
	Include up to 76 characters per line of the CHECK statement and		
	use as many lines as you need.		
	Use a blank space to separate the CHECK keyword from the list		
		ames, and to separate individual items in the list of	
	signal nam		
		al has the same polarity in the CHECK statement as in	
		le declaration, the signal is checked to verify that it is	
		If the polarity is reversed, the signal is checked to	
	verify that	it is a logical 0.	

Error! Style not defined.

A discrepancy, or "clash," occurs when the value of the signal is different from the value expressed for that signal in the CHECK statement. The location of each simulation discrepancy is marked in the simulation output with a question mark and a warning is issued in the execution-log file.

Evomplo	STMULATIO				
Example	CHECK P1 /P2		^P3		
See Also	CHI CHI	ECI	ΧQ		

CHECKQ

Purpose	Use CHECKQ to specify what you expect the logical state of a register's Q output to be at any point in the simulation procedure.		
Syntax	CHECKQ List_of_expected_values		
Where Used	SIMULATION segment or auxiliary simulation file		
Remarks	CHECKQ verifies signal values at the Q output. This makes		
	CHECKQ especially useful for verifying internal signals.		
	In all other regards, CHECKQ functions just like CHECK.		

%P4

Example	SIMULATION CHECKO P1 /P2	
See Also		

CHIP

Purpose	Introduces the statement in which you assign a name to the chip and specify the MACH device used in the design.
Syntax	CHIP Chip_name Device_name
Where Used	DECLARATION segment
Remarks	Every MACHXL design must include a CHIP statement that
	follows the DATE statement and precedes the PIN and NODE
	statements.
	When assigning a name to the chip, observe the following rules:
	□ Use up to 14 alphanumeric characters (the first character
	cannot be numeric)
	Do not use operators, keywords, carriage returns, tabs, or
	blanks
	> Note: The CHIP statement is automatically constructed by the
	Create a New Design form. The form's Device = field allows
	you to choose from a list of all supported devices.
Example	CHIP SYNCHRO MACH435

See Also	 TITLE PATTERN REVISION AUTHOR COMPANY DATE
.CLKF	
Purpose	Defines the conditions under which the the edge-selectable clock
Fulpose	signal occurs.
Syntax	Pin_name.CLKF = Boolean_expression
Where Used	EQUATIONS segment
Remarks	If no clock pin is defined using the .CLKF keyword, registered outputs default to the default clock pin for the
	device.
	An active-high .CLKF equation defines a rising-edge clock
	signal. An active-low .CLKF equation defines a falling-edge
	 clock signal. Note: Multiple functional equations are ORed, then de
	Morgan's theorem is applied. On devices that do not support
	product-term clocks, the Fitter will subsequently generate an
	error message. The Fitter will also generate an error if the
	resulting equation exceeds a single product term.
Example 1	P2.CLKF = I2 * /I3
	P[23].CLKF = CLK1 ; this equation clocks ; both I/Os from pin CLK1
	<pre>P[23].CLKF = CLK[01] ;this equation clocks ;the following equations: ;P[2].CLKF = CLK[0]</pre>
Evennela 2	;P[3].CLKF = CLK[1]
Example 2	;the following code segment clocks a group of I/Os ;DECLARATION SEGMENT
	GROUP CLOCKS A B C
	;EQUATIONS SEGMENT
See Also	CLOCKS.CLKF = $D * E$ NCLKF
See Also	\Box CLKF
	\Box CLOCKF

CLKF

Purpose	Defines the rising-edge clock signal to be used to synchronize a state machine.
Syntax	CLKF = Clock_pin
Where Used	STATE segment
Remarks	If you do not use a CLKF statement, the default clock pin for the
	device is used.
	If you want to clock the state machine with a clock other than the
	default clock, add a CLKF statement to the STATE segment.
	In the PIN statements portion of the design file, you must declare
	a logical name for the clock pin before you can use it on the right
	side of the CLKF statement.
Example	STATE
•	CLKF = CLK2
	 STATE1 := CONDIT_1 -> STATE2
	+-> STATE1
See Also	□ NCLKF

CLOCKF

Purpose	Generates a clock pulse on dedicated clock pins during simulation.
Syntax	CLOCKF List_of clock_pin_names
Where Used	SIMULATION segment
Remarks	Where no clock pin names are specified, the default clock pin for
	the device is used.
	CLOCKF generates three test vectors:
	□ For rising-edge clocks:
	raise clock, propagate output, lower clock.
	□ For falling-edge clocks:
	lower clock, propagate output, raise clock.
	In the simulation trace and waveform files, the letter "c" appears
	in the header over the last vector of each CLOCKF pulse.
Example	SIMULATION ;begin SIMULATION segment SETF INIT CLOCKF CLK1
See Also	
	□ NCLKF

COMBINATORIAL

Purpose	In the case of an I/O pin used for output or a buried node, defines the logic macrocell associated with the pin or node as combinatorial. In the case of an I/O pin use for input, causes the pin signal to bypass the input register.
Syntax	PIN Pin_number Pin_name COMBINATORIAL
Where Used	DECLARATION segment
Remarks	When a pin or node is defined as combinatorial, the corresponding
	signal bypasses the macrocell register.
	May be abbreviated COMB.
	 Note: If you do not specify a pin or node as
	COMBINATORIAL, REGISTERED, or LATCHED, it is
	COMBINATORIAL by default.
Example	;declaration segment
	PIN 11 IN5 COMBINATORIAL ; INPUT PIN 12 IN6 COMBINATORIAL ; INPUT PIN 13 OUT1 REGISTERED ; OUTPUT PIN 14 OUT2 COMBINATORIAL ; OUTPUT
See Also	

COMPANY

Purpose	Begins a header statement that identifies the design author's company.
Syntax	COMPANY Company_name
Where Used	DECLARATION segment
Remarks	Use any combination of up to 59 alphanumeric characters in the company name. The company name can include the characters a-z, the numerals 0-9, the period, and the underscore character. The software generates a warning if you omit this header statement, but continues processing. Arrange header statements in the order shown below.
Example	; DECLARATION SEGMENT TITLE Part 123 Decoder PATTERN 12 REVISION 2 AUTHOR Karen Olsen COMPANY Advanced Micro Devices DATE 1 January 1993

See Also

- □ AUTHOR
- □ CHIP
- DATE
- □ PATTERN
- **REVISION**
- **D** TITLE

CONDITIONS

CONDIN	
Purpose	Identifies the beginning of the condition equations portion of the state machine design.
Syntax	CONDITIONS
5	Condition_equation_name = Boolean_expression
Where Used	STATE segment
Remarks	Use the condition equation names defined after the
	CONDITIONS keyword in state transition and state output
	equations, to define state branching conditions.
	Each condition equation must have a unique name consisting of up to 14 alphanumeric characters. Condition equation names
	cannot contain operators or keywords.
	Parentheses and multiple product terms are allowed. Specify
	unconditional-signals using VCC (logical 1) and GND (logical 0).
	The software generates error messages if you specify conflicting
	or overlapping conditions in the state transition or state output
	equations.
	•
	the signal name in the state transition and state output
	equations without defining a condition equation, as shown in
	Example 2, below.
Example 1	STATE
	1GREEN := CAR_WAITING -> 1YELLOW ;the condition
	+-> lGREEN ;CAR_WAITING is ;defined below
	CONDITIONS
	CAR_WAITING = SENSOR * /INIT
Example 2	 ;declaration segment
Example 2	 PIN 2 I2 COMBINATORIAL ;I2 is an input pin
	····
	STATE
	IGREEN := I2 -> 1YELLOW ;uses I2 pin as condition +-> 1GREEN

See Also	STATE
	DEFAULT_BRANCH
	DEFAULT_OUTPUT

DATE

Purpose	Identifies the date of the design.
Syntax	DATE Date_information
Where Used	DECLARATION segment
Remarks	The DATE statement follows the COMPANY statement.
Romano	Use any combination of up to 59 alphanumeric characters in the
	date. The date can include the characters a-z, the numerals 0-9,
	the period, and the underscore character.
	The software generates a warning if you omit the DATE
	statement, but continues processing.
Example	; DECLARATION SEGMENT
Example	TITLE Part 123 Decoder
	PATTERN 12
	REVISION 2
	AUTHOR Karen Olsen
	COMPANY Advanced Micro Devices
	DATE 1 January 1993
See Also	□ AUTHOR
	□ CHIP
	□ COMPANY
	PATTERN
	□ REVISION
	□ TITLE

DEFAULT_BRANCH

Purpose	Defines the global default branch for a state machine.
Syntax	DEFAULT_BRANCH State_name
•	DEFAULT_BRANCH HOLD_STATE
	DEFAULT_BRANCH NEXT_STATE
Where Used	STATE segment

Remarks	 Include the optional DEFAULT_BRANCH keyword once, anywhere in the STATE segment of a design file. There are three choices for the global default branch: DEFAULT_BRANCH State_name Branch to a specific state. The state name must be properly declared in the STATE segment of the design file.
	 DEFAULT_BRANCH HOLD_STATE Remain in the current state. HOLD_STATE is the default action if a) you do not specify a DEFAULT_BRANCH and b)
	 you do not specify a local default using the +-> operator. DEFAULT_BRANCH NEXT_STATE Branch to the next state. The "next state" in this context is the state defined immediately after the current state in the state transition equations. Note: DEFAULT_BRANCH does not work for undefined
Example	<pre>states. STATE ; begin STATE segment DEFAULT_BRANCH STATE_1 or STATE DEFAULT_BRANCH HOLD_STATE or STATE DEFAULT_BRANCH NEXT_STATE</pre>
See Also	 Appendix A, "State Segment In Depth" DEFAULT_OUTPUT OUTPUT_HOLD

DEFAULT_OUTPUT

PurposeDefines the next output-pin value of a state machine when the
value cannot be determined from the design.SyntaxDEFAULT_OUTPUTWhere UsedSTATE segment

Remarks	Specify the output pin values as you want them to appear at output pins, regardless of whether the pins are defined as act high or active-low. Polarities are adjusted automatically to	
	generate the specified values at the pins.	
	 List the pin name with no prefix to generate a logical 1 at 	t the
	pin.	
	Complement the pin name with a forward slash to generate the pin	ate a
	logical 0 at the pin.	
	> Note: If the output pin and state bit are the same, there is	no
	need to write output equations .	
Example	STATE ;state setup and defaults	
	DEFAULT_OUTPUT /OUT1 OUT2 /OUT3	
See Also	Appendix A, "State Segment In Depth"	
	D DEFAULT_BRANCH	

EQUATIONS

Purpose Syntax	Begins the EQUATIONS segment of the design file. EQUATIONS Boolean_equations
Where Used	 EQUATIONS segment
Remarks	Include the EQUATIONS keyword immediately following the
	DECLARATION segment and before any Boolean equations,
	functional equations, CASE, or IF-THEN-ELSE statements.
Example	EQUATIONS
	OUT1 = IN1 * /IN2 OUT1.CLKF = CLK1
	OUT1.TRST = /OE
See Also	D Boolean Equations and Functional Equations in Chapter 6,
	"Equations Segment In Depth"
	□ CASE
	□ IF-THEN-ELSE
FOR-TO-DO	
Durnoso	Repeats a set of instructions a predefined number of times

Purpose	Repeats a set of instructions a predefined number of times.
Syntax	FOR Variable_name := Start_value TO End_value DO
-	BEGIN
	Action_statement(s)
	END
Where Used	SIMULATION segment

Remarks	 The variable name must be a unique name consisting of 1-14 alphanumeric characters. The variable name cannot be used elsewhere in the design except in another FORTODO loop that is not nested with the first one. The start value must be an integer greater than or equal to zero and less than or equal to the end value. The end value must be an integer greater than or equal to zero. <i>></i> Note: If the start and end values are the same, the action statement is executed once. You can nest FOR-TO-DO constructs within other FOR-TO-DO constructs. <i>></i> Note: You must use the := assignment operator in the FOR-TO-DO statement or the software will generate an error
Example	message.
Example	FOR X := 1 TO 20 DO BEGIN CLOCKF CLK1 END
See Also	 IF-THEN-ELSE (simulation) WHILE-DO
GND	
Purpose	Specifies an unconditional-low signal (logical 0) in a Boolean or state machine equation.
Syntax	Pin_or_node_name<.function> = GND
Where Used	DECLARATION, EQUATIONS, and STATE segments
Remarks	Assign a value of GND to the pin or node to set the pin or node permanently to logical 0.
	Assign a value of GND to a functional equation to hold the
	corresponding function low. (In the case of the .TRST function,
	for example, use GND to disable the three-state output buffer unconditionally.)
Example	OUT4 = GND ;sets OUT4 to logical 0 OUT5.TRST = GND ;disables output from OUT5 ;so the OUT5 I/O pin can be ;used for input
See Also	
GROUP	

Purpose	Assigns a group name to several pins and/or nodes so that a single equation can control the whole group.
Syntax	GROUP Group_name List_of_pin_andnode_names
Where Used	DECLARATION segment
Remarks	 The group name can contain 1-14 characters including the letters a-z, the numerals 0-9, and the underscore character. The GROUP keyword follows the PIN and NODE statements. Separate the group name and signal names in the list of pins and nodes from the GROUP keyword and from each other with blank spaces. The range operator can be used to include vectors of pins or nodes in a group. Use the group name as follows. On the left side of equations in the EQUATIONS segment Note: You can use GROUP to control banks of registers that
Example	use common controls, such as reset or output enable lines.
Example	PIN 3943 OUT[2832] REG GROUP OUTPUT_BANK IN2 OUT3 OUT[2831] EQUATIONS OUTPUT_BANK.CLKF = CLK1 OUTPUT_BANK.TRST = /A * /B Ol = C + D * /E
See Also	 SIMULATION SETF OUT[28] /OUT[31] CLOCKF CLK1 CHECK OUTPUT_BANK = #b10111 MACH_SEG_X ASYNC_LIST LOW_POWER_LIST SYNC_LIST

IF-THEN-ELSE

Purpose

Specifies one set of actions if a condition is true and (optionally) a second set of actions if the condition is false.

Syntax	IF (<i>Condition_expression</i>) THEN BEGIN
	Actions expressed as Boolean equations or other constructs
	END
	ELSE
	BEGIN
	Actions expressed as Boolean equations or other constructs
	END
Where Used	EQUATIONS segment
Remarks	The condition expression can be either \Box A single pin or pade on a Bashar supression. The condition
	□ A single pin or node or a Boolean expression. The condition evaluates as true if the pin or node is logical 1 or if the
	Boolean expression is true. The condition expression
	evaluates as false if the pin or node is logical 0 or if the
	Boolean expression is false.
	A vector consisting of a) a range of pins or b) a comma-
	separated list of pin names, the = assignment operator, and
	test value defined as a binary, octal, decimal, or hexadecimal
	radix number (the default radix is decimal).
	IF-THEN-ELSE statements can be nested inside other IF-THEN- ELSE and CASE statements. (Do not odd on outro END on
	ELSE and CASE statements. (Do not add an extra END or ENDIF statement or an error message will be generated during
	compilation.)
	Parentheses surrounding the condition expression are optional,
	but recommended. You can nest parentheses.
Example	IF (I[07] = #B10001001) THEN BEGIN
	A = B * /C
	END ELSE
	BEGIN A = GND
	A = GND END
See Also	\Box CASE
	□ IF-THEN-ELSE (SIMULATION)
	□ IF-THEN-ELSE in Chapter 6, "Equations Segment In Depth"

IF-THEN-ELSE, SIMULATION Specifies one set of actions if a condition is true and (optionally) a Purpose second set of actions if the condition is false. IF (Condition_expression) THEN Syntax BEGIN Simulation_actions END ELSE BEGIN Simulation_actions **END** SIMULATION segment Where Used Remarks The condition expression can be The index variable used in a FOR-TO-DO statement, an assignment operator, and a test value expressed as a positive integer or zero (but only if the IF-THEN-ELSE statement is nested inside the FOR-TO-DO statement). A single pin or node or a Boolean expression. The condition evaluates as true if the pin or node is logical 1 or if the Boolean expression is true. The condition expression evaluates as false if the pin or node is logical 0 or if the Boolean expression is false. A vector consisting of a) a range of pins or b) a commaseparated list of pin names, an assignment operator, and test value defined as a binary, octal, decimal, or hexadecimal radix number (the default radix is decimal). Valid assignment operators include =, <, >, <=, >=, and <>. IF-THEN-ELSE statements can be nested inside other IF-THEN-ELSE or FOR-TO-DO and WHILE-DO statements. (Do not add an extra END or ENDIF statement or an error message will be generated during compilation.) Parentheses surrounding the condition expression are optional, but recommended. You can nest parentheses.

Example	SIMULATION
	FOR K := 1 TO 5 DO BEGIN IF K = 2 THEN BEGIN SETF INIT /B CLOCKF CLK1 END ELSE BEGIN SETF /INIT CLOCKF CLK1 END END
See Also	 IF-THEN-ELSE FOR-TO-DO WHILE-DO
IPAIR	
Purpose	Alternate form of the keyword PAIR, used for input pairing. (See the section on the PAIR keyword in this chapter.)
.J	
Purpose Syntax	Defines the J-input logic for a J-K flip-flop and simultaneously specifies J-K behavior for the corresponding macrocell. <i>Pin_name.J = Boolean_expression</i>
Where Used	EQUATIONS segment
Remarks	You can place the .J equation anywhere in the EQUATIONS segment. Observe the following rules.
	You must specify output logic for a J-K flip-flop using one .J and one .K equation.
	You can append the .J suffix to group, string, or vector names to assign a J-type equation to several pins or nodes at one time.
Example	OUT1.J = C * /D
See Also	 COMBINATORIAL .K .R .S .T
.K	

Purpose	Defines the K-input logic for a J-K flip-flop and simultaneously specifies J-K behavior for the corresponding macrocell.
Syntax	Pin_name.K = Boolean_expression
Where Used	EQUATIONS segment
Remarks	You can place the .K equation anywhere in the EQUATIONS segment. Observe the following rules.
	You must specify output logic for a J-K flip-flop using one .J and one .K equation.
	You can append the .K suffix to group, string, or vector names to assign a J-type equation to several pins or nodes at one time.
Example	OUT1.K = C * /D
See Also	COMBINATORIAL
	🗖 .J
	\Box .R
	□ .S
	□ .T

LATCHED

Purpose Syntax	Defines a pin or node as a latched output type. PIN <i>Pin_number PinName</i> LATCHED
Where Used	DECLARATION segment
Remarks	When a pin or node is defined as latch, the result of the sum-of- products logic is latched by the macrocell associated with the pin. May be abbreviated LAT.
Example See Also	PIN 23 ACK LAT COMBINATORIAL REGISTERED

LOW_POWER_LIST

PurposeDefines signals that will be configured in the power-down mode.
The power-down mode, available on the MACH111, MACH131,
MACH211, and MACH231 devices, trades off speed for reduced
power consumptions. Refer to the device data sheet for details.SyntaxGROUP LOW_POWER_LIST List_of_power-down_signalsWhere UsedDECLARATION segment of MACH111, MACH131, MACH211,
and MACH231 designs

Remarks	Use signal names that have been defined correctly using PIN and/or NODE statements. Unused macrocells and input pins are automatically configured in the power-down mode; do not include them in the GROUP LOW_POWER_LIST statement.
Example	;DECLARATION SEGMENT
	CHIP TEST2 MACH111
	NODE ? BR1
	NODE ? BR2 NODE ? BR3
	NODE ? BR3
	GROUP LOW_POWER_LIST BR1 BR2 BR3
See Also	□ GROUP

MACH_SEG_x

Purpose	Predefines group names that automatically place all signals
	defined as group members in the same block of a MACH device.
Syntax	GROUP MACH_SEG_I List_of_pins_and_nodes
Where Used	Used as a group name in a GROUP statement. The
	MACH_SEG_x group name can appear in the DECLARATION,
	EQUATIONS, and SIMULATION segments of the design file:
	Define MACH_SEG_x groups in the DECLARATION
	segment.
	Use group names on the left side of equations in the
	EQUATIONS segment.
Remarks	Replace the x in the predefined group MACH_SEG_x group
	names with the letter that represents the PAL block into which
	you want all group signals to be placed. Use the letters A-H for
	8-block devices, the letters A-P for 16-block devices. For example,
	MACH_SEG_A, MACH_SEG_B, MACH_SEG_C, and
	MACH_SEG_D, correspond to the first four PAL blocks of the
	MACH435 device: Block A, Block B, Block C, and Block D.
	Define MACH_SEG_x groups only in the GROUP statement.
	All of the rules that normally apply to the GROUP keyword apply
	to MACH_SEG_x groups.

Example	;DECLARATION SEGMENT
·	 GROUP MACH_SEG_A R[14] P[18]
	 EQUATIONS MACH_SEG_A.TRST = IN2 * /IN3
	SIMULATION
	SETF MACH_SEG_A
See Also	GROUP

MEALY_MACHINE

Purpose Syntax	Identifies a state machine as a Mealy type. MEALY_MACHINE
Where Used	STATE segment
Remarks	Place the MEALY_MACHINE keyword immediately after the STATE keyword.
	 Note: If you do not define the state machine as Mealy or
	Moore, the software uses the MEALY MACHINE default.
	Do not use both MEALY_MACHINE and MOORE_MACHINE
	keywords in the same design file. If you need to implement both
	types of state machines on the same MACH device, you must
	define one of them in the EQUATIONS segment using Boolean
	logic, as described in the "Building State Machines with CASE
	Statements" section in Chapter 6, "Equations Segment In Depth."
Example	STATE ;begin the STATE segment MEALY_MACHINE ;define design as a Mealy machine
See Also	 Appendix A, "State Segment In Depth"
0007450	□ MOORE_MACHINE
	□ STATE ¯

MINIMIZE_OFF

ends.
DN
other
air of
or node.
2

Example	EQUATIONS X = A * /B MINIMIZE_OFF Y = A * C + A * B + A Y.TRST = ENABLE Y.CLKF = CLK1 MINIMIZE_ON Z = /(X+Y)
See Also	 "MINIMIZE_ON and MINIMIZE_OFF" in Chapter 6, "Equations Segment In Depth" MINIMIZE_ON
MINIMIZE_	_ON

Purpose	Used after the keyword MINIMIZE_OFF to restore normal logic reduction for the remainder of the design file or until the next occurrence of MINIMIZE_OFF.
Syntax	
Where Used	EQUATIONS segment
Remarks	If you place a pair of MINIMIZE_OFF and MINIMIZE_ON statements around equation(s) for some pin or node, but other equations for the same pin or node remain outside the pair of MINIMIZE_OFF and MINIMIZE_ON statements, the MINIMIZE_OFF statement will be ignored for that pin or node.
Example	EQUATIONS X = A * /B MINIMIZE_OFF Y = A * C + A * B + A Y.TRST = ENABLE Y.CLKF = CLK1 MINIMIZE_ON Z = / (X+Y)
See Also	 "MINIMIZE_ON and MINIMIZE_OFF" in Chapter 6, "Equations Segment In Depth" MINIMIZE_OFF

MOORE_MACHINE

Purpose	Identifies a state machine as a Moore type.
Syntax	MOORE_MACHINE
Where Used	STATE segment
Remarks	Place the MOORE_MACHINE keyword immediately after the
	STATE keyword.
	 Note: If you do not define the state machine as Mealy or
	Moore, the software uses the MEALY_MACHINE default.
	Do not use both MEALY_MACHINE and MOORE_MACHINE
	keywords in the same design file. If you need to implement both
	types of state machines on the same MACH device, you must
	define one of them in the EQUATIONS segment using Boolean logic. Appendix A, "State Segment In Depth," contains
	information on multiple state machines.
Example	mormation on multiple state mathines.
Example	STATE ; begin the STATE segment
	MOORE_MACHINE ;define design as a Moore machine
See Also	Appendix A, "State Segment In Depth"
	\Box MEALY_MACHINE
	\Box STATE
NCLKF	
NCLKF Purpose	Defines the falling-edge clock used to synchronize a state machine.
Purpose	Defines the falling-edge clock used to synchronize a state
	Defines the falling-edge clock used to synchronize a state machine.
Purpose Syntax	Defines the falling-edge clock used to synchronize a state machine. NCLKF = <i>Clock_pin or product term</i>
Purpose Syntax Where Used	Defines the falling-edge clock used to synchronize a state machine. NCLKF = <i>Clock_pin or product term</i> STATE segment
Purpose Syntax Where Used	Defines the falling-edge clock used to synchronize a state machine. NCLKF = <i>Clock_pin or product term</i> STATE segment Where no clock pin names are specified, the software selects the default clock pin for the device and the default clock mode (rising- edge clock).
Purpose Syntax Where Used	Defines the falling-edge clock used to synchronize a state machine. NCLKF = <i>Clock_pin or product term</i> STATE segment Where no clock pin names are specified, the software selects the default clock pin for the device and the default clock mode (rising- edge clock). NCLKF automatically creates appropriate falling-edge clock
Purpose Syntax Where Used	Defines the falling-edge clock used to synchronize a state machine. NCLKF = <i>Clock_pin or product term</i> STATE segment Where no clock pin names are specified, the software selects the default clock pin for the device and the default clock mode (rising- edge clock). NCLKF automatically creates appropriate falling-edge clock assignments for all state bit registers and the state output
Purpose Syntax Where Used Remarks	Defines the falling-edge clock used to synchronize a state machine. NCLKF = <i>Clock_pin or product term</i> STATE segment Where no clock pin names are specified, the software selects the default clock pin for the device and the default clock mode (rising- edge clock). NCLKF automatically creates appropriate falling-edge clock assignments for all state bit registers and the state output registers used in your design.
Purpose Syntax Where Used Remarks	Defines the falling-edge clock used to synchronize a state machine. NCLKF = Clock_pin or product term STATE segment Where no clock pin names are specified, the software selects the default clock pin for the device and the default clock mode (rising- edge clock). NCLKF automatically creates appropriate falling-edge clock assignments for all state bit registers and the state output registers used in your design. NCLKF = T1_CKBf
Purpose Syntax Where Used Remarks	Defines the falling-edge clock used to synchronize a state machine. NCLKF = Clock_pin or product term STATE segment Where no clock pin names are specified, the software selects the default clock pin for the device and the default clock mode (rising- edge clock). NCLKF automatically creates appropriate falling-edge clock assignments for all state bit registers and the state output registers used in your design. NCLKF = T1_CKBf
Purpose Syntax Where Used Remarks	Defines the falling-edge clock used to synchronize a state machine. NCLKF = Clock_pin or product term STATE segment Where no clock pin names are specified, the software selects the default clock pin for the device and the default clock mode (rising- edge clock). NCLKF automatically creates appropriate falling-edge clock assignments for all state bit registers and the state output registers used in your design. NCLKF = T1_CKBf

NODE

Purpose	Declares a signal other than a pin (typically, a buried or input register) and defines the signal's name, polarity, and storage
	type.
Syntax Where Used	NODE Node_number_or_? Node_name Storage_type [Output_pair_info] DECLARATION segment
Remarks	Find the node number for the node you are declaring in the
Remarks	appropriate MACH device node list in Chapter 10, "Device
	Reference." Substitute the symbol ? for the node number to
	"float" the node (have the software assign it to a specific node
	during the fitting procedure).
	Assign a logical name to the node, observing the following rules.
	 Each name must be unique. Node names can consist of 1.14 elaboratoria characteria
	□ Node names can consist of 1-14 alphanumeric characters
	including the characters a-z, the numerals 0-9, and the underscore character.
	To define the node as active low:
	 Complement the logical name you assign to the node in the NODE declaration statement. (Preferred method)
	Example NODE ? /BR1 REG
	NODE ! /DRI REG
	 BR1 = IN2 * /IN5
	\Box Precede the node name with the forward slash character / (for
	example, /BR2) when you write the Boolean equation that
	defines the node's behavior. Do not leave a space between the
	forward slash and the node name. (Alternate method)
	for ward stash and the node name. (Alternate method)
	Example
	NODE ? BR1 REG
	 /BR1 = IN2 * /IN5
	You can use the range operator to define a vector of nodes with a
	single NODE statement. The vector of node numbers must
	contain the same number of elements as the vector of node
	names. All nodes in the vector share the same polarity and
	storage type.
	The storage type can be any one of the following.
	COMBINATORIAL
	□ REGISTERED

NODE statements must follow the CHIP statement.

Example	NODE 1BR1REGISTERED ;active highNODE 2/BR2REGISTERED ;active lowNODE 38STATEBIT[16]REGISTERED;the last NODE statement defines six nodes, all of;which are active high and registered
See Also	 [] (RANGE OPERATOR) in the "Symbols and Operators" section of this chapter COMBINATORIAL LATCHED PAIR PIN REGISTERED "Vectors" in Chapter 6, "Equations Segment In Depth"
OPAIR	
Purpose	Alternate form of the keyword PAIR, used for output pairing. (See the section on the PAIR keyword in this chapter.)
.OUTF	
Purpose Syntax	Defines the state outputs for Mealy and Moore state machines. ;Moore Machine
- ,	State_name.OUTF = Output_expression ;Mealy Machines
	State_name.OUTF = Condition_1 -> Output_1 + Condition_2 -> Output_2
	 + Condition_n -> Output_n +-> Local_default_output
Where Used	STATE segment
Remarks	 Specify the actual output you want to appear at the pin. Note: The software adjusts automatically for pin polarity if you have set the Ensure polarity after minimization is parameter (in the Logic Synthesis Options menu) to "As specified in design file."
Example 1	STATE MOORE_MACHINE
	 STATE1.OUTF = /CNT2 * CNT1 * /CNT0

Example 2	 STATE MEALY_MACHINE			
	STATE1.OUTF = RUN_UP -> /CNT2 * CNT1 * /CNT0			
	TEST2 -> CNT2 * CNT1 * CNT0 +-> /CNT2 * /CNT1 * /CNT0			
See Also	 +-> (LOCAL DEFAULT) in the "Symbols section of this chapter DEFAULT_OUTPUT MEALY_MACHINE MOORE_MACHINE OUTPUT EQUATIONS in Appendix A, "S Depth" STATE 	Ĩ		
PAIR				
Purpose	 An optional attribute used In the PIN statement to direct input pairs and a node (interchangeable in this contex keyword form IPAIR) In the NODE statement to direct output p node and a pin (interchangeable in this contex alternate keyword form OPAIR) 	ext with t pairing h	the alternate between the	
Syntax	➢ For Input Pairing:			
	PIN ? Pin_name] ≫ For Output Pairing:	PAIR	Node_name	
	NODE ? Node_name Storage_type	PAIR	Pin_name	
Where Used Remarks	DECLARATION segment The default storage type for pins and nodes is COMBINATORIAL. REGISTERED and LATCHED are the only valid storage types for the NODE statement when specifying input pairing. You can specify a specific pin and a specific node or float the pin, the node, or both the pin and the node (by using the ? symbol in place of a pin or node			
	number). If you pair a specific pin with a specific correspond to the same macrocell.	c node, b	oth must	
Example 1	;input pairing with both signals floating PIN ? I1 COMBINATORIAL PAIR R1 NODE ? R1 REGISTERED EQUATIONS 			
	R1 = I1 ; node passes through value of input pi	111		

Chapter 5: Language Reference 158

PATTERN

Purpose Syntax Where Used Remarks	Identifies the pattern (if any) of a MACHXL design file. PATTERN <i>Pattern_name</i> DECLARATION segment Place the PATTERN keyword after TITLE and before REVISION. Use any combination of up to 59 alphanumeric characters in the pattern name. The pattern name can include the characters a-z, the numerals 0-9, the period, and the underscore character.
Example	;DECLARATION SEGMENT TITLE PART 123 DECODER PATTERN 12 REVISION 2 AUTHOR KAREN OLSEN COMPANY ANYCO LTD DATE 1 JANUARY 1993
See Also	 TITLE REVISION AUTHOR COMPANY DATE CHIP

PIN

Purpose	Declares a pin and defines the pin's name, position, polarity, and storage type.
Syntax Where Used Remarks	 storage type. PIN <i>Pin_number Pin_name Storage_type [Pairing_info]</i> DECLARATION segment Find pin number in the appropriate MACH device pin diagram in Chapter 10, "Device Reference." Substitute the symbol ? for the pin number to "float" the pin (have the software assign it to a specific pin during the fitting procedure). Assign a logical name to the pin, observing the following rules. □ Each name must be unique. □ Pin names can consist of 1-14 alphanumeric characters including the characters a-z, the numerals 0-9, and the underscore character. To define the pin as active low: □ Either do this: In the PIN or NODE declaration statement, complement the logical name you assign to the pin. (Preferred method)

Example

NODE ? /OUT2 REG ;declared active low

OUT2 = IN2 * /IN5

Or this:

In the EQUATIONS segment, complement the pin's (node's) logical name when it appears on the left side of the equation. (Alternate method)

Example

PIN ? OUT2 REG ;declared active high

/OUT2 = IN2 * /IN5 ;but converted to active low here You can use the range operator to define a vector of pins with a single PIN statement. The vector of pin numbers must contain the same number of elements as the vector of pin names. All pins in the vector share the same polarity and storage type. The storage type can be any one of the following.

- COMBINATORIAL
- □ LATCHED
- REGISTERED

PIN statements must follow the CHIP statement.

Example

PIN 3 IN1 COMB ;active high PIN 4 /IN2 COMB ;active low PIN 5 10 COMB ;active low

PIN 5..10 STATE_OUT[1..6] REGISTERED
;the last PIN statement defines six pins, all of
;which are active high and registered

See Also

- □ [..] (RANGE OPERATOR) in the "Symbols and Operators" section of this chapter
- COMBINATORIAL
- □ LATCHED
- □ NODE
- **D** PAIR
- □ REGISTERED
- □ VECTORS in Chapter 6, "Equations Segment In Depth"

PRELOAD

Purpose	Allows you to load specified values into registers during simulation.
	PRELOAD List_of_desired_signals
Where Used	SIMULATION segment

Remarks	 Note: The PRELOAD command is supported in software simulation but not in the hardware. Test vectors are turned off at the first occurrence of the PRELOAD command. The list of desired signals can include pin names, node names, state names, condition names, groups, and strings.
	□ You can load a logical 1 into a pin or node by specifying the
	uncomplemented pin or node name.
	□ You can load a logical 0 into a pin or node by specifying the complement of the pin or node name.
	□ You can load a specified state by specifying the state name.
Example	SIMULATION PRELOAD Q1 /Q2

.R

Purpose	Defines the R-input logic for an S-R flip-flop and simultaneously specifies S-R behavior for the corresponding macrocell.		
Syntax	Pin_name.R = Boolean_expression		
Where Used	EQUATIONS segment		
Remarks	You can place the .R equation anywhere in the EQUATIONS segment. Observe the following rules.		
	You must specify output logic for an S-R flip-flop using one .S and one .R equation.		
	You can append the .R suffix to group, string, or vector names to assign an R-type equation to several pins or nodes at one time.		
Example	OUT1.R = C * /D		
See Also	COMBINATORIAL		
	🗖 .J		
	□ .K		
	□ .S		
	T. 🖸		

REGISTERED

Purpose	Defines a pin or node as a registered output type.			
Syntax	PIN Pin_number_or_? Pin_name Storage_type [Input_pairing_info]			
Where Used	DECLARATION segment			

Remarks	 When a pin or node is defined as REGISTERED, the macrocell associated with the pin is configured as a flip-flop. The flip-flop is a D-type flip-flop by default. Write .J and .K equations to configure the macrocell as a J-K-type flip-flop. Write .S and .R equations to configure the macrocell as an S-R-type flip-flop. Write a .T equations to configure the macrocell as a T-type flip-flop. The REGISTERED keyword can be abbreviated REG.
Example	PIN 12 OUT4 REG PIN 13 OUT5 REGISTERED
See Also	 COMBINATORIAL .J .K .R .S .T

REVISION

Purpose Syntax Where Used Remarks	Identifies the revision (if any) of a MACHXL design file. REVISION <i>Revision_name</i> DECLARATION segment Place the REVISION keyword after PATTERN and before AUTHOR. Use any combination of up to 59 alphanumeric characters in the revision name. The revision name can include the characters a-z, the numerals 0-9, the period, and the underscore character.			
Example		CLARATION SEGM TITLE PATTERN REVISION AUTHOR COMPANY DATE	-	PART 123 DECODER 1 JANUARY 1993
See Also		TITLE PATTERN AUTHOR COMPANY DATE CHIP		
.RSTF				

.RSIF

Chapter 5: Language Reference 163

Purpose	Defines the condition under which a flip-flop's programmable reset input is asserted.
Syntax	Pin_or_node name.RSTF = Boolean_expression
Where Used	EQUATIONS segment
Remarks	To assign the same .RSTF equation to all registers in a device,
	write the .RSTF equation for the global node (node 1). Note: Multiple functional equations are ORed, then de
	Morgan's theorem is applied to produce a single product
	term. The Fitter generates an error if the resulting equation exceeds a single product term.
	The pin name on the left side of the .RSTF equation cannot be complemented using the / symbol.
	You can append the .RSTF suffix to group, string, or vector
	names to control the programmable reset of several pins or nodes at one time.
	 Note: The .RSTF function appears as an L in the simulation history file.
Example	OUT2.RSTF = IN1 * /IN2
See Also	"Functional Equations" in Chapter 6, "Equations Segment In Depth"
	□ .SETF
.S	
Purpose	Defines the S-input logic for an S-R flip-flop and simultaneously
Syntax	specifies S-R behavior for the corresponding macrocell. Pin_name.S = Boolean_expression
Where Used	EQUATIONS segment
Remarks	You can place the .S equation anywhere in the EQUATIONS
	segment. Observe the following rules.
	□ You must specify output logic for an S-R flip-flop using one .S and one .R equation.
	D You can append the .S suffix to group, string, or vector names
	to assign an S-type equation to several pins or nodes at one
Example	time. OUT1.S = C * /D
See Also	COMBINATORIAL
	□ .K □ .R

.SETF Purpose Syntax Where Used Remarks	 Defines the condition under which a flip-flop's programmable preset input is asserted. <i>Pin_or_node_name</i>.SETF = <i>Boolean_expression</i> EQUATIONS segment To assign the same .RSTF equation to all registers in a device, write the .RSTF equation for the global node (node 1). <i>Note:</i> Multiple functional equations are ORed, then de Morgan's theorem is applied to produce a single product term. The Fitter generates an error if the resulting equation exceeds a single product term. The pin name on the left side of the .SETF equation cannot be complemented using the / symbol. You can append the .SETF suffix to group, string, or vector names to control the programmable reset of several pins or nodes at one time. <i>Note:</i> The .SETF function appears as an H in the simulation history file. OUT2.SETF = IN1 * /IN2 "Functional Equations" in Chapter 6, "Equations S egment In Depth"
SETF Purpose Syntax Where Used Remarks Example See Also	 Used during simulation to set inputs to specified values. SETF List_of_desired_signals SIMULATION segment The list of desired signals can include pin and node names. You can load a logical 1 into a pin or node by specifying the uncomplemented pin or node name. You can load a logical 0 into a pin or node specifying the complemented pin or node name. You must generate a clock signal using the CLOCKF keyword in order to see the effects of a SETF statement on registered outputs. SETF IN1 /IN2 CLOCKF PRELOAD

Chapter 5: Language Reference 165

SIGNATURE

51010/110			
Purpose	In MACH devices which support JTAG, SIGNATURE allows you		
	to specify the JTAG USERCODE fuses.		
Syntax	SIGNATURE signature		
Where Used	DECLARATION segment		
Remarks	The signature is passed through the MACHXL Fitter programs to the JEDEC file where it is used to program the 32 U fuses. The signature can be a number signature, a character signature, or a		
	null signature (the default).		
	In a number signature the form is <radix><number> where the</number></radix>		
	number can contain N digits. The value of N is determined by the		
	radix as follows:		
	N = 32 for binary representation		
	N = 10 for octal representation		
	N = 9 for decimal representation		
	N = 8 for hexadecimal representation		
	SIGNATURE supports binary, octal, decimal and hexadecimal		
	number radices; the default is decimal. (See the discussion on		
	Radix Operators in Chapter 6, "Equations Segment In Depth.")		
	All characters following the Nth character are truncated, and any		
	untruncated portion of <number> is converted to its 32 bit binary equivalent, with 0 fill on the left. A number signature is</number>		
	represented in JEDEC file by the UH field.		
	Character signatures are truncated after the fourth character, or		
	if less than four characters, expanded to four characters by space		
	filling on the right. The character signature is represented in the		
	JEDEC file by the UA field.		
	The default signature is all zeros.		
	 Note: If a selected MACH device is not a JTAG part, the 		
	MACHXL software ignores the signature.		
	 Note: The SIGNATURE syntax is optional and can be 		
_	ommited.		
Example	SIGNATURE # hf ;hex result is UH ;0000000F		
	SIGNATURE #hz5 ;character signature disguised as hex ;result is UA #hz5		
	SIGNATURE #b101010101010 ; hex result is UH 00000AAA		
See Also	5 Volt In-Circuit Programming Development Kit		

SIMULATION

Purpose Begins the SIMULATION segment of the design file.

Syntax	SIMULATION Simulation control statements
	Simulation_control_statements
Where Used	SIMULATION segment
Remarks	Include the SIMULATION keyword after the EQUATIONS and
	STATE segments, if any. Note: The SIMULATION segment is optional and can be
	omitted from design files that do not contain simulation
	control statements.
Example	SIMULATION SETF INIT
	CLOCKF CLK1 SETF /INIT IN1 IN2 /IN3
	CLOCKF CLK1
	CHECK OUT1 /OUT2 ;check external pins CHECKQ BR6 /BR8 /BR10 ; checkq buried registers
See Also	 Chapter 7, "Simulation Segment In Depth"
	□ CHECK
	CHECKQ
	□ CLOCKF □ FOR-TO-DO
	□ IF-THEN-ELSE (SIMULATION)
	PRELOAD
	□ SETF
	□ WHILE-DO
START_UF	
Purpose	Specifies the starting state for a state machine.

Purpose	Specifies the starting state for a state machine.
Syntax	START_UP := POWER_UP -> State1_name
Where Used	STATE segment
Remarks	The START_UP command is supported for MACH 1xx/2xx
	designs but not for MACH 3xx/4xx designs.
	The device goes to a known state on power-up or initialization.
	I If you have programmed the device to power up with all Q
	outputs high, State1 is automatically programmed to 111.
	I If you have programmed the device to power up with all Q
	outputs low, State1 is automatically programmed to 000.
	Use this initialization routine to ensure that the state machine
	powers up in a known state and branches to a known state
	whenever initialization occurs.

If you do not specify a START_UP state and you have not assigned state bits manually, the software assigns the default startup state bit configuration to the state that corresponds to the first transition equation defined in the design file.

Note: If you assign state bits manually and none of your states corresponds to the default power-up configuration, the state machine will power up in an undefined state. Refer to the section on Illegal State Recovery in Appendix A, "State Segment In Depth."

Example	STATE MOORE_MACHINE START_UP := POWER_UP -> STATE1 + INIT -> STATE1
See Also	\square START_UP.OUTF

START_UP.OUTF

– Purpose	Specifies the starting output for a state machine.
Syntax	START_UP.OUTF := POWER_UP -> List_ of_outputs
-	or
	START_UP.OUTF := List_ of_outputs
Where Used	STATE segment
Remarks	The START_UP command is supported for MACH 1xx/2xx
	designs but not for MACH 3xx/4xx designs.
	When power is applied to the device, the device outputs assume
	the values specified in the list of outputs. Use this initialization routine to ensure that the state machine
	powers up and initializes with its outputs under control.
	 Note: The START_UP.OUTF statement is especially useful in
	registered Mealy machines, in which the outputs trail the
	state transitions by one clock cycle.
Example 1	STATE
	 START_UP.OUTF := POWER_UP -> /OUT1 /OUT2 /OUT
	+ INIT -> /OUT1 /OUT2 /OUT3
Example 2	STATE
Example 2	START_UP.OUTF := /OUT1 /OUT2 /OUT
See Also	□ START_UP
STATE	
Purpose	Begins the STATE segment of the design file.
	0 0 0 0 0

Syntax	STATE State_machine_equations
Where Used Remarks	 STATE segment Include the STATE keyword immediately following the EQUATIONS segment, if any, and before any state equations or the CONDITIONS keyword. Note: A design file can contain both Boolean equations (in the EQUATIONS segment) and state machine equations (in the STATE segment). Make sure the equations from the Boolean portion of the design do not overlap the equations derived from the state machine portion of the design. Note: The STATE segment is optional and can be omitted from design files that contain only Boolean equations or only Boolean and simulation equations.
Example	STATE MOORE_MACHINE START_UP := POWER_UP -> STATE1 + INIT -> STATE1
	<pre>STATE1 := COND1 -> STATE2</pre>
See Also	 COND2 = IN1 * /IN2 Appendix A, "State Segment In Depth" MEALY_MACHINE MOORE_MACHINE START_UP START_UP.OUTF

STRING	
Purpose	Allows you to assign a string name to a character string and use the string name anywhere in the remainder of the design file instead of repeating the character string. The software substitutes the character string for the string name during
	processing.
Syntax	STRING String_name 'Character_string_to_be_substituted'
Where Used	DECLARATION segment
Remarks	The string name can consist of 1-14 alphanumeric characters.
	The string name cannot contain keywords or operators.
	Include the STRING keyword after the PIN and NODE
	statements and before the EQUATIONS and STATE keywords.
	Separate the STRING keyword from the character string with a
	blank space. Surround the character string with single quotes. The software replaces each occurrence of the string name with
	the specified character string during the early stages of
	processing.
	 Note: If the string contains an expression, the effect of
	complementing the string differs based on the contents of the
	string. If the string is enclosed in parentheses, the expression
	is complemented according to DeMorgan's theorem. If not,
	just the first element is complemented.
Example	STRING STR1 'A1 * /A2 * A3' STRING STR2 '/(/A1 * A2 * /A3)'
	EQUATIONS
	 OUT2 = STR1 ; A1 * /A2 * A3 substituted for STR1 + STR2 ; /(/A1 * A2 * /A3) substituted for STR2

SYNC_LIST

Purpose	Defines signals in the list as synchronous so that the corresponding macrocells will be configured properly.
Syntax	GROUP SYNC_LIST List_of_synchronous_signals
Where Used	DECLARATION segment of MACH215 and MACH 3xx/4xx designs
Remarks	Use signal names that have been defined correctly using PIN and/or NODE statements.
	If a signal name appears in both a GROUP SYNC_LIST and a GROUP ASYNC_LIST statement, a warning is generated and
	the signal is treated as if it appeared in neither statement.
	This keyword affects the Fitter only if the device supports both asynchronous and synchronous macrocells.
Example	; DECLARATION SEGMENT
	CHIP TEST2 MACH435
	NODE ? BR1 REG NODE ? BR2 REG NODE ? BR3 REG
	GROUP SYNC_LIST BR1 BR2 BR3
See Also	□ GROUP
	□ ASYNC_LIST

.Т	
Purpose	Defines the T-input logic for a T flip-flop and simultaneously
Suptov	specifies T behavior for the corresponding macrocell. <i>Pin_name</i> .T = <i>Boolean_expression</i>
Syntax Where Used	EQUATIONS segment
Remarks	Signal names must be properly declared in the PIN and NODE
	statements.
	You can place the .T equation anywhere in the EQUATIONS
	segment. Observe the following rules.
	You can specify output logic for an T flip-flop using just one .T equation (but additional functional equations such as .CLKF and .TRST are allowed).
	 You can append the .T suffix to group, string, or vector names
	to assign a T-type equation to several pins or nodes at one time.
Example	OUTI.T = C * /D
See Also	□ COMBINATORIAL
	□ .K □ .R
	\square .S
TITLE	
Purpose	Identifies the title of the design.
Syntax	TITLE Title_name
Where Used	DECLARATION segment
Remarks	The TITLE statement is the first non-comment statement in the design file.
	Use any combination of up to 59 alphanumeric characters in the
	title. The title can include the characters a-z, the numerals 0-9,
	the period, and the underscore character.
	The software generates a warning if you omit the TITLE statement, but continues processing.
Example	; DECLARATION SEGMENT
	TITLE Part 123 Decoder PATTERN 12
	REVISION 2 AUTHOR Karen Olsen
	COMPANY Advanced Micro Devices DATE 1 January 1993
	Date I Dandary 1995

See Also

- □ AUTHOR
- CHIP
- □ COMPANY
- **D** DATE
- D PATTERN
- □ REVISION

TRACE_OFF

Purpose	Turns off the simulation trace function.
Syntax	TRACE_OFF
Where Used	SIMULATION segment
Remarks	 You must include the TRACE_ON keyword in the SIMULATION segment before you include the TRACE_OFF keyword. If you include multiple TRACE_ON keywords and omit the TRACE_OFF keyword, the software inserts TRACE_OFF immediately before each TRACE_ON keyword (after the first one). Therefore, you cannot nest TRACE_ON statements. You can use any number of TRACE_ON, TRACE_OFF pairs in your design file. The polarity of the signal names listed in the TRACE_ON statement determines how the resulting trace will appear: If the signal name in the TRACE_ON statement has the same polarity as the same signal name in the PIN or NODE statement, the trace will go high when the signal goes high. If the signal name in the TRACE_ON statement does not have the same polarity as the same signal name in the PIN or NODE statement, the trace will go low when the signal goes high.
	The software generates a warning if it has to generate a
	TRACE_OFF keyword for you, but continues processing.
Example	SIMULATION TRACE_ON A1 A2 A3 OUT1 OUT2 SETF A1 A2 A3 CLOCKF CLK1
	TRACE_OFF
See Also	□ CHECK
	\Box CHECKQ
	\Box TRACE_ON

TRACE_ON

Purpose –	Turns on the simulation trace function.
Syntax	TRACE_ON
Where Used	SIMULATION segment
Remarks	The trace feature allows you to generate a separate simulation
	file that reports the simulated behavior of only those pins and
	nodes you specify in the TRACE_ON statement, and in the order
	you specify.
	You must include the TRACE_ON keyword in the SIMULATION segment before you include the TRACE_OFF keyword.
	You can use any number of TRACE_ON, TRACE_OFF pairs in your design file.
	If you include multiple TRACE_ON keywords and omit the
	TRACE_OFF keyword, the software inserts TRACE_OFF
	immediately before each TRACE_ON keyword (after the first
	one). Therefore, you cannot nest TRACE_ON statements.
	The software generates a warning if it has to generate a
	TRACE_OFF keyword for you, but continues processing.
Example	SIMULATION TRACE_ON A1 A2 A3 OUT1 OUT2
	SETF A1 A2 A3
	CLOCKF CLK1
	TRACE_OFF
See Also	□ CHECK
	□ CHECKQ
	\Box TRACE_ON

.TRST Purpose	Defines the conditions under which an I/O pin's programmable
	three-state buffer is enabled for output.
Syntax	Pin_name.TRST = Boolean_expression
Where Used	EQUATIONS segment
Remarks	The Boolean expression that defines output enable must fit on one product term.
	You cannot complement the pin name on the left side of the
	equation. For example, /OUT1.TRST = A * /B is not a valid .TRST equation.
	 Note: Multiple functional equations are ORed, then de
	Morgan's theorem is applied to produce a single product term. The Fitter generates an error if the resulting equation exceeds a single product term.
	Use VCC on the right side of the equation to enable the pin's
	output permanently.
	Use GND on the right side of the equation to disable the pin's
	output permanently.
Example	OUT2.TRST = A * /B OUT3.TRST = VCC OUT4.TRST = GND
See Also	□ GND

VCC	
Purpose	Specifies an unconditional-high signal (logical 1) in a Boolean or state machine equation.
Syntax	Pin_or_node_name<.function> = VCC
Where Used	DECLARATION, EQUATIONS, and STATE segments
Remarks	Use the pin or node name, and assignment operator, and VCC to
	set the pin or node permanently to logical 1.
	Use the pin or node name, a functional suffix such as .TRST, an
	assignment operator, and VCC, to hold the corresponding
	function high. (In the case of the .TRST function, for example,
	use VCC to enable the three-state output buffer unconditionally.)
Example	OUT4=VCC;setsOUT4 to logical 1OUT5.TRST=VCC;enables output from OUT5
See Also	\Box GND

WHILE-DO

Purpose	Repeats a set of instructions as long as a specified condition exists.
Syntax	WHILE Condition DO BEGIN Action_statement(s) END
Where Used	SIMULATION segment
Remarks	The condition can be any Boolean expression. Valid assignment operators include =, <, >, <=, >=, and <>. Parentheses surrounding the condition expression are optional, but recommended. You can nest parentheses. You can nest WHILE-DO constructs within other WHILE-DO constructs or within IF-THEN-ELSE and FOR-TO-DO constructs.
Example	SIMULATION WHILE (/IN1 * /IN2) DO BEGIN CLOCKF CLK1 END
See Also	 IF-THEN-ELSE (Simulation) FOR-TO-DO

6 Equations Segment In Depth

Contents

Pairing 193					
Implicit Pairing Rules and Behavior 193					
Output Pairing 195					
Input Pairing 196					
MACH 1xx Designs 196					
MACH 2xx (Except MACH215	198				
MACH 4xx and MACH215 Des					
Explicit Pairing Rules and Beh					
Copying Logic with Braces { } 200					
Output Pairing 200					
Input Pairing 203					
Polarity 205					
The Two Components of Polari	ity	205			
Controlling Polarity from the H	ı	205			
Controlling Polarity from the H	ement	206			
Controlling Polarity from CAS	E Stater	nents	206		
Functional Equations 209					
Controlling Three-State Output	ıt Buffer	S	209		
Controlling Clocks 210					
Specifying a Rising-Edge Clock	۲.	211			
Specifying a Falling-Edge Cloc	k	211			
Specifying a Product-Term Clo	ck	212			
Global Clock Acquisition	212				
Controlling Set and Reset	214				
Sharing Set and Reset 215					
Vectors 216					
Ranges of Pins or Nodes	216				
Comma-Delimited Vectors	218				
Radix Operators 219					
IF-THEN-ELSE Statements	221				
CASE Statements 222					
Building State Machines with CASE Statements 224					
Multiple State Machines	230				
The "Don't-Care" Logic-Synthe			237		
MINIMIZE_ON and MINIMIZ	E_OFF	241			

Pairing

The Fitter supports the MACH device's ability to pair input registers and output registers with I/O pins to provide registered or latched I/O. ¹⁰ Pairing is supported in three broad categories:

Implicit Pairing occurs automatically when an output pin is declared as REGISTERED or LATCHED but not explicitly paired in the design file with a macrocell. (There is no implicit pairing for inputs.)

Automatic Pairing occurs when all four of the following conditions are met: 1) an input or output pin is declared and defined, 2) a node is declared and defined, 3) the pin and node are used in such a way as to imply a paired relationship, and 4) no PAIR keyword is present in the appropriate PIN or NODE statement. (In MACH 4xx designs, there is a fifth condition: the **Use automatic pin/node input pairing** option of the Logic Synthesis Options form must be set to "Y.")

Explicit Pairing occurs when a PIN statement contains the keyword PAIR and references the logical name of an input node (input pairing) or when a NODE statement contains the keyword PAIR and references the logical name of an I/O pin (output pairing). Explicit pairing is the best way to ensure that you get the behavior you expect from your design.

Implicit Pairing Rules and Behavior

Most output equations can be implemented using implicit pairing. The exception is the case in which you want to be able to use both pin and node feedback from the same pin; in such cases, you must use explicit pairing.

Implicit output pairing occurs when the existence of a register or latch is specified in a PIN statement that does not contain the PAIR keyword. Implied output pairing can take either of two forms:

Declaring a pin signal as REGISTERED or LATCHED

□ Referring to a pin's feedback signal as REGISTERED or LATCHED

Implicit pairing emulates PAL22V10 and MACH1xx/2xx device behavior, as shown in the following design example below and diagram. \cdots

PIN	?	IN1	
PIN	?	IN2	
PIN	?	IN3	
PIN	?	OUT1	REGISTERED
PIN	?	OUT2	COMBINATORIAL
PIN	?	CLOCK	

EOUATIONS OUT1 = IN1 * /IN2 OUT1.CLKF = CLOCK OUT2 = OUT1 * IN3 . . . (Node associated by implication) IN1 OUT1 0 D /IN2>CLK CLOCK-RN_OUT1 (Created by Fitter) OUT1 AND/OR Array OUT1 specified in design but RN_OUT1 used -OUT2 IN3 -

When you use the implicitly-paired pin's name on the right side of an equation, feedback is always routed from the register's output (as it would be in a PAL22V10 design).

The term "automatic pairing" describes the case in which the compilation program generates a missing PAIR keyword in a PIN or NODE statement to enable pairing behavior that is implied by a Boolean equation. Automatic pairing occurs only if both the pin and node are declared but not explicitly paired (refer to "Implicit Pairing," above, for information on how the Fitter creates a node that was not declared but was implied in the design file). For MACH 4xx devices, automatic input pairing (not available for MACH 1xx/2xx/3xx devices) can occur only when the Use automatic pin/node input pairing? option of the Logic Synthesis Options form is set to "Y." Automatic output pairing is available for MACH 1xx/2xx/4xx devices at all times. For MACH 1xx/2xx devices, automatic output pairing is available only when the Use automatic output pairing is available only when the Use automatic output pairing is available only when the Use automatic pin/node pairing? option of the Logic Synthesis Options form is set to "Y."

Unlike implicit pairing, which creates an output node for you when you have declared only the output pin, automatic pairing occurs only when you have declared both the pin and the node to be paired.

Output Pairing

Pairing

For MACH 3xx/4xx devices, automatic output pairing is always enabled. For MACH 1xx/2xx devices, automatic output pairing occurs only when the **Use automatic pin/node pairing?** option is set to "Y." Automatic output pairing occurs when you declare a pin and a node and use the identical Boolean expression on the right side of the equations for both signals, as in the following example:

NODE ? BR2 REGISTERED EQUATIONS OUT2 = A * B * /(C + D) BR2 = A * B * /(C + D)	PIN	?				(DUT2		REGISTERED
EQUATIONS OUT2 = $A * B * / (C + D)$	NODE	?				I	BR2		REGISTERED
		3							
BR2 = A * B * / (C + D)	OUT2	=	А	*	В	*	/(C	+	D)
	BR2	=	A	*	В	*	/(C	+	D)

If you compile the example above, regardless of the Use automatic pin/node input pairing? option setting, the software completes the pairing for you by modifying the NODE statement to look like this: NODE ? BR2 REGISTERED PAIR OUT2

Input Pairing

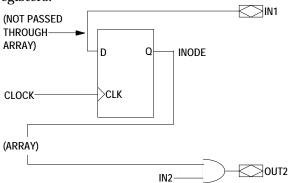
Automatic input pairing occurs when you declare a pin and a node and use the pin signal name, by itself, on the right side of the equation for the node, as shown below:

PIN ? P2 REGISTERED NODE ? N2 REGISTERED

EQUATIONS

N2 = P2

MACH 1xx Designs


MACH 1xx devices have neither input registers nor buried registers that can be paired directly with input pins. Instead, registered input equations are implemented as sum-of-products logic at an output register (that is, as feedback from a standard output macrocell), which therefore becomes unavailable for other purposes.

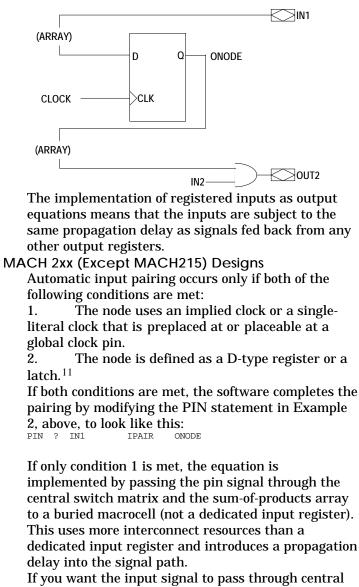
Equations that would be interpreted as input-pairing equations in other devices are implemented, in MACH 1xx devices, as output equations. This includes explicit input-pairing equations, which are automatically rewritten by the MACHXL application as output equations, as shown in the following example.

Example 1

```
CHIP
      EMULATED_INPUT_REG MACH111
PIN
        TN1
     2
              TPATE INODE
PTN
     ?
        TN2
PTN
    ?
        CLOCK
NODE
      ? INODE REGISTERED
PIN ?
       OUT2
              COMBINATORIAL
EOUATIONS
         = TN1
TNODE
INODE.CLKF = CLOCK
          = IN2 * INODE
OUT2
```

The following diagram shows how the design fragment presented on the previous page would be

implemented on a device that has dedicated input registers.


However, because the MACH111 device (like all MACH 1xx devies) does not have input registers, the MACHXL software automatically rewrites registeredinput equations in such a way that the input signals are registered using a general-purpose macrocell. In this example, the buried macrocell ONODE registers the input IN1 using a standard output equation (ONODE = IN1) and the feedback from ONODE is used by OUT2 as if it were the output from a dedicated input register. The following design fragment and the figure on the next page illustrate how this is done.

Example 2

. . .

CHIP	EM	ULATED_	INPUT_REG	MACH111
PIN	?	IN1		
PIN	?	IN2		
PIN	?	CLOCK		
NODE	?	ONODE	REGISTERED)
PIN	?	OUT2	COMBINATOR	IAL
EQUAT: ONODE ONODE OUT2		= IN1 F = CLO = IN2		

Pairing

switch matrix instead of being routed directly to the macrocell, set the Use automatic pin/node pairing? option to "N."

MACH 4xx and MACH215 Designs

Automatic input pairing occurs only if all of the following four conditions are met:

1. The Use automatic pin/node input pairing? option is set to "Y."

2. There are no set or reset equations defined for the node (because the input macrocell has no set/reset capability).

3. The node uses an implied clock or a singleliteral clock that is preplaced at or placeable at a global clock pin.

4. The node is defined as a D-type register or latch (not T-type).

If all four conditions are met, the software completes the pairing by modifying the PIN statement in Example 2, above, to look like this: PIN ? P2 PAIR N2

If condition 1 is met but one or more of the other conditions is not met, the equation is implemented by passing the pin signal through the central switch matrix and the sum-of-products array to a buried macrocell (not a dedicated input register). Such an implementation allows you to make use of the buried macrocell's set and reset functions, but uses more interconnect resources than a dedicated input register and introduces a propagation delay into the signal path.

If you want the input signal to pass through central switch matrix, and to use a buried register rather than an input register, set the Use automatic pin/node input pairing? option to "N."

Explicit Pairing Rules and Behavior

Explicit pairing allows you direct control over feedback paths, and allows you to control registered/latched inputs precisely. The following general rules apply to both input and output pairs that are explicitly defined:

 \Box If you write functional equations for one partner of the pair and not the other, the missing functional equations are automatically applied to both the pin and the node.

□ If you write different equations for a paired pin and node, the Fitter generates a warning message and disregards the PAIR statement.

Copying Logic with Braces { }

If you write an equation for a pin or node, you can copy the expression on the right side of the equation to another pin or node. You do this by placing the name of the pin or node for which the full equation was written, surrounded by braces (the symbols { and }) on the right side of an equation for the pin or node to which you want to copy the equation: P2 = IN3 * /IN4 + IN5 * /IN6 ;defines behavior for pin P2 $N2 = \{P2\}$;copies "IN3 * /IN4 + IN5 * /IN6" ;to node N2

Output Pairing

Use output pairing to associate a node with an output. To perform explicit output pairing, write the PIN statement exactly as you normally do: PIN ? OUT2 REGISTERED

Then, write a NODE statement with the same storage type, add the keyword PAIR, and add the logical name of the output pin with which you want to pair the node: NODE ? BR2 REGISTERED PAIR OUT2

In the EQUATIONS segment of the design file, write equations for either the pin or the node. For example: OUT2 = IN1 * IN2 OUT2.CLKF = CLK2 OUT2.RSTF = INIT

Finally, copy all the primary equation from one paired partner to the other using the { } symbols, as follows: $BR2 = {OUT2}$

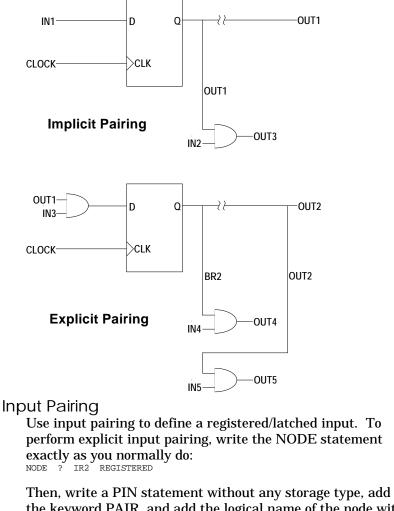
The pin and node are now paired and share identical logic. It is good practice to copy all functional equations as well as the primary equation, as shown on the next page. $\begin{array}{l} \texttt{BR2.CLKF} = \{\texttt{OUT2.CLKF} \} \\ \texttt{BR2.RSTF} = \{\texttt{OUT2.CLKF} \} \end{array}$

Copying all equations explicitly makes your intent clear to someone reading your design. (However, if you copy only the primary equation, the MACHXL software automatically copies all related equations for you.)

Pairing

Note: Feedback routing differs between pins that are implicitly paired and pins that are explicitly or automatically paired. Explicitly and automatically paired pins do not emulate PAL22V10 behavior. To get node feedback, you now must use the node name, not the pin name, on the right side of an equation. Using the pin name on the right side of the equation specifies pin feedback, which may or may not correspond to node feedback, depending on the state of the pin's output buffer.

In the following design example, the feedback signals from pin OUT2 are routed from the pin as well as from the node, to illustrate how to specify each type of behavior.

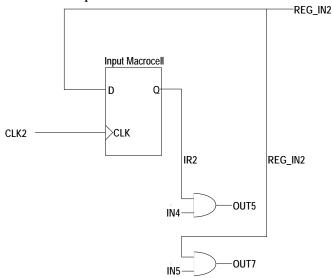

		1	5 51	
CHIP	NODE_FB	MACH435		
PIN	?	IN1		
PIN	?	IN2		
PIN	?	IN3		
PIN	?	IN4		
PIN	?	RESET		
PIN	?	PRESET		
PIN	?	CLOCK		
PIN	?	OUT 1	REGISTERED	;DEFINES PIN AS
REGIS	FERED			
PIN	?	OUT2	REGISTERED	;DEFINES PIN AS
REGIS	FERED			
PIN	?	OUT3	COMBINATORIAL	;DEFINES PIN AS
COMBII	NATORIAL			
PIN	?	OUT4	COMBINATORIAL	;DEFINES PIN AS
COMBII	NATORIAL			
PIN	?	OUT5	COMBINATORIAL	;DEFINES PIN AS
COMBI	NATORIAL			
NODE	?	BR2	REGISTERED PAIR	OUT2 ;DEFINES OUTPUT
PAIRI	NG			
Cont	inued			
Com	macu			

Chapter 6: Equations Segment In Depth 200

Pairing

...Continued EQUATIONS ;----- ILLUSTRATES IMPLIED BEHAVIOR (DEFAULT) ------OUT1 = IN1 ;SINCE NO NODE IS SPECIFIED, THE MACHAL ;SOFTWARE ASSIGNS ONE (B ECAUSE PIN WAS ;DEFINES AS REGISTERED) = IN2 * OUT1 ; BY DEFAULT, FEEDBACK FROM A PIN PAIRED OUT3 ;WITH A NODE BY IMPLICATION (AS WAS PIN ;OUT1) IS ROUTED FROM THE BURIED NODE OUT1.CLKF = CLOCK ;----- ILLUSTRATES EXPLICITLY-SPECIFIED BEHAVIOR ------OUT2 = IN3 * OUT1 = {OUT2} ;USING {} IS THE BEST WAY TO ENSURE ;THAT THE PIN AND NODE USE IDENTICAL BR2 ; EQUATIONS. BR2.CLKF = CLOCK OUT4 = IN4 * BR2 ; YOU MUST USE THE NODE NAME TO GET ;NODE F EEDBACK = IN5 * OUT2 ; IF YOU USE THE PIN NAME, YOU GET FEEDBACK OUT5 ;FROM THE PIN

The next two figures illustrate the default behavior of pin OUT1 as well as the explicitly-specified behavior of pin OUT2.



the keyword PAIR, and add the logical name of the node with which you want to pair the pin: PIN ? REG_IN2 PAIR IR2 In the EQUATIONS segment of the design file, write an equation for the NODE ONLY, using the pin name, by itself, on the right side of the equation. $_{IR2} = _{REG_{LN2}}$

□ Use the node name on the right side of an equation to get registered input from the pin: OUT5 = IR2 * IN4 ;IR2 is registered input

Use the pin name on the right side of an equation to get combinatorial input from the pin: OUT7 = REG_IN2 * IN5 ;REG_IN2 is combinatorial input

The following figure shows how input from pin REG_IN2 is routed to outputs OUT5 and OUT7.

Polarity

An output pin that goes high when the corresponding equation is true is called active high. An output pin that goes low when the corresponding equation is true is called active low.

MACH devices have outputs that can be configured as either active-high or active-low output. This valuable feature is known as programmable polarity.

The Two Components of Polarity

In a MACHXL design file, the active high/low nature of each pin is a function of its polarity definition. Polarity is defined in both the pin statement and the output equation.

The polarity rule for MACHXL design files is defined below.

 \Box If the equation and pin statement have the same polarity, the output is active high.

 $\hfill\square$ If the equation and pin statement have opposite polarity, the output is active low.

Active-low polarity in a MACHXL design file is indicated with a slash, /.

Controlling Polarity from the Equation

Always use active-high (non-complemented) pin names in the pin statements.

PIN	14	01	COMBINATORIAL	;output
PIN	15	02	REGISTERED	;output

With active-high pin statements, the polarity of the output is the same as the polarity of the equation. Create an active-low equation by placing a slash before the pin name on the left side of the equation.

01	=	I1	*	12
/02	=	I1	*	12

;active-high output
;active-low output

Advantage of this Method:

Can be used to control the polarity of pins and nodes.

Note: When the 22V10/MACH1XX/2XX S/R Compatibility? option (not available for MACH 1xx/2xx devices) is set to "N," equations are minimized fully, the polarity of each equation is adjusted using the macrocell's polarity XOR.

When the 22V10/MACH1XX/2XX S/R Compatibility? option is set to "Y," the only way to ensure optimal minimization is to set the Ensure polarity after minimization option to "Best for device" (in which case polarity may differ from that specified in the design file).

Controlling Polarity from the Pin Statement

This method of controlling polarity applies to pins only. Always use the non-complemented pin name on the left side of output equations, as shown below.

OUT1 = 11 * 12 ;These equations have the polarity OUT2 = 11 * 13 ;of pins OUT1 and OUT2, respectively.

/OUT3 = I1 * /I5 ;<-Do not complement the left side like this!

Using this method, the polarity of the output is always the same as the polarity of the pin or node statement. PIN 14 OUT1 COMBINATORIAL ;active-high ou tput

 PIN
 14
 OUT1
 COMBINATORIAL
 ; active-high ou tput

 PIN
 15
 /OUT2
 REGISTERED
 ; active-low output

Advantage of This Method:

It is easy to tell from the pin names in the DECLARATION segment which pins and nodes are active-high and which are active-low.

Controlling Polarity from CASE Statements

When the MACHXL software processes a CASE statement, the CASE statement is converted to as many Boolean equations as are required to express the logic described in the CASE statement. The polarity of each output signal is determined like that of any other output signal: by the interaction between two elements:

D The polarity or the signal's declaration

D The polarity of the first equation encountered for that signal. Suppose that the pins OUTPUTS[1..3] are declared as follows: PIN ? OUTPUTS[1..3]

Suppose also that the first equation for these pins is in the following CASE statement:

CASE (STATEBIT[1..2])

Polarity

```
BEGIN
INPUT1: BEGIN
IF (CONDITION1) THEN
BEGIN
OUTPUTS[1..3] = #B010
END
ELSE
BEGIN
OUTPUTS[1..3] = #B001
END
END
...
END
...
```

The first statement that references the vector OUTPUTS[1..3] is: OUTPUTS[1..3] = #B010

This statement is expanded into the following three Boolean equations:

/OUTPUT[1] = VCC OUTPUT[2] = VCC /OUTPUT[3] = VCC

The pins OUTPUT[1] and OUTPUT[3] are configured as active-low pins because their PIN declarations are uncomplemented while the first equation processed for each pin is complemented.

Polarity

If you want these pins to be configured as active-high pins, you must ensure that the first equation for each pin that the compiler encounters is uncomplemented. You can do this two ways: By inserting dummy equations for each signal before the CASE statement.

The dummy equation OUTPUT[1] = IN1 * /IN1 is ideal in that it provides an uncomplemented equation while at the same time leaving the design's functionality unchanged, insofar as the condition IN1 * /IN1 can never occur.

By inserting a dummy IF..THEN..ELSE statement at the beginning of the CASE statement, as shown in the following example:

```
CASE (STATEBIT[1..2])
BEGIN
INPUT1: BEGIN
;-----
           ----begin dummy statement-----
         IF (IN1 * /IN1) THEN
            BEGIN
              OUTPUTS[1..3] = #b111
            END
;-----end dummy statement-----
         IF (CONDITION1) THEN
             BEGIN
               OUTPUTS[1..3] = #B010
             END
          ELSE
             BEGIN
               OUTPUTS[1..3] = #B001
             END
       END
END ; END OF CASE CONSTRUCT
. . .
```

Functional Equations

Functional equations control output buffers, clocks, preset, and reset. All functional equations take the form

Pin_or_node_name.Function = Boolean_expression Valid substitutions for *Function* are:

.TRST
.CLKF
.SETF

.RSTF

Complemented equations are illegal for all functional equations except .CLKF functional equations.

Controlling Three-State Output Buffers

The MACH device macrocell can be configured to use one of its product terms to control output enable. If you write an output equation for a pin but do not write an output-enable equation for it, its output is unconditionally enabled.

To control the three-state buffer yourself, use a .TRST functional equation with the following syntax.

Pin_name.TRST = Product_term

You have three options when defining a .TRST equation.

□ Enable the output buffer at all times.

D Disable the output buffer at all times.

□ Enable the output buffer under certain conditions.

To enable the output buffer at all times, set the .TRST equation equal to VCC. To disable the output buffer at all times, set the .TRST equation equal to GND. The following example

unconditionally enables pin A and disables pin B.

A.TRST = VCC ;enables output A unconditionally B.TRST = GND ;disables output B unconditionally

To enable the output buffer under certain conditions, set the .TRST equation equal to a Boolean expression. The following example enables pin B when the signal GO is high and STOP is low. GO and STOP must be defined as pins or nodes in the declaration segment of the PDS file.

B.TRST = GO * /STOP

Controlling Clocks

Use a .CLKF functional equation to control the clock signal to flipflops in a MACH device. To control the clock of a flip-flop, you define the clock signal with a pin statement in the declaration segment of the PDS file. Then you use this signal in a .CLKF functional equation.

Pin 20 is a clock pin on the MACH435 device. The following example assigns the name CLK to this pin using a pin statement.

;	E	eclaratic	n Segment	
PIN	20	CLK		
PIN	?	A		; INPUT
PIN	?	В		; INPUT
PIN	?	AREG	REGISTERED	;OUTPUT
;	<u>F</u>	quations	Segment	
AREG = A	+ B			
AREG. CLKF	= CLK			

Place the PIN statement in the declaration segment of the PDS file. You can assign any name that is valid for pins and nodes to the clock pin (it helps to use a name that is readily associated with the clock signal). Then you use the clock signal in a .CLKF functional equation in the equations segment of the PDS file to control the clock of the register associated with output pin AREG.

Note: Each MACH device has a default clock pin that the MACHXL software uses to clock any register for which you do not specify a clock signal. In general, it is best to specify clock signals for all registers explicitly. Refer to Chapter 10, "Device Reference," for details on the default clock pin of your target MACH device.

Specifying a Rising-Edge Clock

To specify a rising-edge clock, do the following:

O Write the PIN statement for the clock pin using an uncomplemented pin name.

□ Write an active-high (not complemented) .CLKF equation.

Example

. . .

PIN 20 CLK PIN ? OUT2 REG ... EQUATIONS OUT2.CLKF = CLK

Specifying a Falling-Edge Clock

To specify a falling-edge clock write an active-low clock equation. There are two recommended ways to do this: **Option A (MACH 3xx/4xx and MACH215 designs only)** Do the following: **O** Write the PIN statement for the clock pin using an uncomplemented pin name.

Complement the left side of the .CLKF equation.

Example PIN 20 CLK PIN ? OUT2

... EQUATIONS

... /OUT2.CLKF = CLK

Option B

Do the following:

REG

U Write the PIN statement for the clock pin using a complemented pin name.

U Write an active-high (not complemented) .CLKF equation.

Chapter 6: Equations Segment In Depth 210

Example PIN 20 /CLK PIN ? OUT2 REG ... EQUATIONS ... OUT2.CLKF = CLK

Specifying a Product-Term Clock

(MACH 3xx/4xx and MACH215 designs only) Asynchronous macrocells can use product-term clocks or clock-pin clocks. To specify a product-term clock, place a Boolean expression on the right side of the .CLKF equation. *Example*

PIN ? IN2 PIN ? IN3 PIN ? OUT2 REG ... EQUATIONS ... OUT2.CLKF = IN2 * IN3

Global Clock Acquisition

Clock signals originating at the MACH device's global clock pins are normally routed differently from signals originating at input or I/O pins. Under certain circumstances, however, you may want to allow the Fitter to route such signals as product-term clocks rather than through the block clock mechanism.

The Global clocks routable as Pterm clocks? setting on the MACH Fitting Options form (set to "N" by default) allows global clock signals to be routed either as global clocks or as product-term clock signals when set to "Y." Clocks routed through the central switch matrix as product terms are somewhat slower than block clocks, but users of such clocks sometimes have more partitioning flexibility.

Note: The MACH465 and MACH 1xx/2xx devices do not allow global clock signals to be routed through the switch matrix but only through the block clock mechanism. When setting fitting options for a design written for one of these devices, the Global clocks routable as Pterm clocks? option does not appear in the MACH Fitting Options form. A floating, non-grouped, single-literal clock may be classified by the software as a global clock under the following circumstances:

□ At least one of the global clock pins is not in use (that is, the number of forced global signals is less than the number of clock pins)

□ The clock signal under consideration is used as a clock more frequently than other clock signals that are eligible (but not forced) to be global clocks

>

Note: Some MACH435 and MACH465 designs are difficult to fit if all of the global clock pins are populated. To prevent the fitter from assigning to global clock pins signals that do not need to be global, set the Reduce Non-forced Global Clocks? option of the MACH Fitting Options form to "Y." (The Reduce Non-forced Global Clocks? option is not available for MACH 1xx/2xx devices.)

However, any single-literal clock must be classified by the software as a global clock when one or more of the following conditions exists:

□ The clock under consideration is preplaced at a global clock pin. (Use this fact to force single-literal clock signals to be global by preplacing them at one of the device's global clock pins.)

□ The clock under consideration is used to clock an input register or latch and there is a global clock available (otherwise, the input pairing is discarded and a warning issued).

□ The clock under consideration is used to clock a macrocell for which both non-GND .SETF and .RSTF equations are defined.

□ (MACH 3xx/4xx devices only) The clock under consideration is used to clock a macrocell to which an equation of 19 or more product terms, after minimization and including the XOR product term, is assigned.

To force a single-literal clock signal to be configured as a global clock, follow these steps:

1. Preplace the signal at one of the global clock pins.

2. Remove any conditions from this signal that would force the signal to be non-global. (Any such condition would conflict with step 1, above, and result in a compiler error.)

3. For devices other than the MACH 1xx/2xx and MACH465 devices (for which the option is not available): set the Global clocks routable as PT clocks? option of the MACH Fitting Options form to "N."

Controlling Set and Reset

Use .SETF and .RSTF functional equations to control the preset and reset functions of flip-flops. The general forms for .SETF and .RSTF functional equations are shown below.

Pin_name.SETF = Pin_or_product_term

Pin_name.RSTF = *Pin_or_product_term*

When the .SETF and .RSTF equations for the same signal share identical or equivalent terms, they are said to "overlap" (meaning that it is possible that both conditions can be true at the same time). Be careful to avoid overlapping Set and Rest conditions in your designs.

The Fitter will not assign any signal with either a Set or a Reset condition, but not both, to a block if such an assignment would cause that signal to inherit a Set or Reset condition that contains a term in common with the Set or Reset signal it already has. This is true even if the SET/RESET treated as DONT CARE option in the Logic Synthesis Options form is set to "Y." Refer to "Set/Reset Signals" in Chapter 8, "Using the Fitter," for additional information.

Sharing Set and Reset

In the MACH 1xx/2xx (except MACH215) devices:

Macrocells within a block share common set and reset signals.

In the MACH 215 and MACH 3xx/4xx devices:

□ All synchronous macrocells in the same PAL block share a common block Set line and a common block Reset line. The block Set line is controlled by a single product term, as is the block Reset line.

□ Each asynchronous macrocell has an individual product term that can be used for either Set or Reset.

Note: For details on how specific MACH devices handle set and reset, refer to the device data book and Chapter 10, "Device Reference."

The following example shows how pins A[0] through A[3] are reset whenever the signal RST is high.

In a MACH 3xx/4xx device, pins A[4] through A[7], although they share the same clock signal used by pins A[0] through A[3], are not affected when RST is asserted. In a MACH 1xx/2xx device, pins A[4] through A[7] inherit the same reset signals used by pins A[1] through A[3].

;	PIN I	Declaration	s	
PIN	?	RST		; INPUT
PIN	?	IN		; INPUT
PIN	?	A[70]	REGISTERED	;OUTPUT
PIN	?	CLK		;CLOCK
GROUP	MACH_SEG_A	A_GROUP	A[70]	

;-----Boolean Equation Segment -----EQUATIONS A[3..0].RSTF = RST A[7..0].CLKF = CLK

Note: This behavior described in the previous example occurs only if the Set/Reset treated as DON'T CARE option on the MACH Fitter Options form is set to "N" (No). Refer to the section titled " Set/Reset Compatibility" in Chapter 10 for details.

Vectors

A vector is a specific set of signals (inputs, outputs, or internal nodes) in which the order of the signals is constant. The most common type of vector

is a range of pins or nodes, but you can use comma-delimited vectors in some language constructs.

Ranges of Pins or Nodes

A range is a set of pins or nodes that have the same root name. Members of the range are differentiated by subscript. For example, in the range NAME[1..5], the members are:

NAME[1]

NAME[2]

NAME[3]

NAME[4]

NAME[5]

Ranges are declared in pin and node statements and referenced in other statements.

You must observe the following rules for range notation.

Reference individual pins or nodes in a range using subscripted pin or node names. Use the format NAME[1] rather than NAME1.
 Reference groups of pins or nodes in the range using the range operator (NAME[1..4]) or by separating individual signal subscripts with commas (NAME[1..4,5,7]).

You can include input and output pins in the same range if your application calls for it, but you cannot include pins and nodes in the same range. Define ranges of contiguous pins by separating the first and last members with two periods. For example, you specify the range of input pins 3 through 6 as follows.

To include non-contiguous pin numbers, you must separate them using commas: 1..4, 8..11

1...1, 0...11

In the pin name field, enter the range name followed by a range that indicates the desired subscripts. Enclose the range in square brackets as follows. NAME[1..4]

Enter the pin numbers using range notation as indicated in the next example.

PIN 3..6 NAME[1..4] COMBINATORIAL

You can use a single question mark, ?, to float the location of all the pins in the range as shown in the next example. PIN ? NAME[1..4] COMBINATORIAL Enter the polarity and storage type attributes for the range as you would for a single pin.

Note: Vectors created using a range of pins or nodes can be referenced throughout the design as complete vectors (NAME[1..4]) or as individual members (NAME[1] and NAME[2]). Commadelimited vectors, described below, cannot be referenced elsewhere; they are used within a single CASE or IF-THEN-ELSE statement only.

Vectors are illegal in the CONDITIONS portion of the STATE segment (if any).

Comma-Delimited Vectors

The comma-delimited vector is used in a single CASE or IF-THEN-ELSE statement and cannot be referenced elsewhere in the design. It takes the following general form:

Name_1, Name_2, Name_3, ..., Name_0

The order of signals within a comma-delimited vector remains fixed, as is the case with a vector declared using a range. For example, both of the following vectors can be used to represent four-bit binary numbers:

Range Vector	Comma-delimited Vector
NAME[14]	BIT1, BIT2, BIT3, BIT4

Furthermore, a comma-delimited vector can include range vectors, as shown here:

PIN1, PIN2, NAME[1..4], PIN7, NAME[8]

Using the flexibility of the comma-delimited vector, you might, for example, declare several four-bit ranges and consider them in different orders, as shown below:

Different Groupi	Different Groupings of Three Four-Bit Ranges				
Comma-delimited vector 1:	NAME[14], NAME[58], NAME[912]				
Comma-delimited vector 2:	NAME[14], NAME[912], NAME[58]				
Comma-delimited vector 3:	NAME[58], NAME[14], NAME[912]				
Comma-delimited vector 4:	NAME[58], NAME[912], NAME[14]				
Comma-delimited vector 5:	NAME[912], NAME[14], NAME[58]				
Comma-delimited vector 6:	NAME[912], NAME[58], NAME[14]				

Radix Operators

A radix is a construct used on the right side of an equation, in an IF..THEN..ELSE statement, or in a CASE statement, to represent a number in binary, octal, decimal, or hexadecimal format. The radix is converted automatically to a binary bit pattern, which is then compared with a vector of pin or node values on the left side of the equation.

The decimal radix (base 10) is the default for CASE statements. You can also use binary, octal, or hexadecimal radices (base 2, 8, and 16, respectively).

To use a radix other than the default, you must precede the test condition with the appropriate radix operator. The table below shows the radix operators for all four radices supported by the software.

Operators	Definitions
#b or #B	Specifies the binary radix, base 2
#o or #O	Specifies the octal radix, base 8
#d or #D	Specifies the decimal radix, base 10
	(default)
#h or #H	Specifies the hexadecimal radix, base 16

If you omit the radix operator altogether, the default, which is decimal form, is assigned.

;represents 1011 (11₁₀)

;represents 1011 (B₁₆)

Examples of each are shown below.	
Syntax	Function
#b1011 or #B1011	;represents 1011 (1011 ₂)
#o13 or #O13	;represents 1011 (13 ₈)

11 or #d11 or #D11

#hB or #HB

Note: When radix notation is used in CASE statements and Boolean equations, numbers that are equal to or greater than 16000 must be expressed in hexadecimal form. Smaller numbers can be expressed in other radices. ¹²

When you use radix notation in a statement, it is automatically expanded to its binary equivalent and compared to the vector specified on the left side of the equation. If the binary equivalent does not have enough digits, leading zeros are added during processing as required.

The first number in the vector is the most significant bit. For example, in the vector ADDRESS[3..0], ADDRESS[3] is the most significant bit. When the example below is used in an IF..THEN..ELSE construct, the radix on the right hand side of the equation is compared to the vector on the left. ADDRESS[3..0] = 3

The binary equivalent of 3_{10} is 11_2 . Since the vector ADDRESS[3..0] contains four signals, the binary number must be "padded" with two zeros on the left (like this: 0011) so that each signal in the vector has a value. The four signals in the vector are compared to their corresponding bits in the expanded radix as indicated below.

- ADDRESS[3] compared to 0
- □ ADDRESS[2] compared to 0

ADDRESS[1] compared to 1

□ ADDRESS[0] compared to 1

If all four conditions evaluate true, the equation is true.

Important

When comparing a vector to a radix, be careful to specify the order of the least and most significant bits correctly. For example, the first line gives different results than the second.

ADDRESS[3..0] = 3

ADDRESS[0..3] = 3

IF-THEN-ELSE Statements

The IF-THEN-ELSE statement is a flow-of-control construct that expresses logical operations in natural language. You can use this construct as an alternative to writing Boolean equations.

The syntax for the IF-THEN-ELSE statement is:

IF Test condition THEN

BEGIN

Action(s)

;performed if test condition = true

END

ELSE BEGIN

Action(s) ;performed if test condition = false

END

If you do not specify the else condition, it is treated as a don't care when the logic is generated (if the Use 'IF-THEN-ELSE', 'CASE' default as option in the Logic Synthesis Options form is set to "Don't Care.")

The following example shows testing the high order bit on an 8-bit address line. If it is equal to 1, the signal named HIBIT is set high and LO_BANK_ENA is set low. If it is equal to 0, HIBIT is set low and LO_BANK_ENA is set high.

----- PIN Declarations -----· _ _ _ 0] ; INPUT REGISTERED ; OUTPUT PTN 2 ADDRESS[7..0] PTN ? HIBIT LO_BANK_ENA REGISTERED OUTPUT PIN ? PIN ? CLK CLOCK Continued...

Chapter 6: Equations Segment In Depth 219

CASE Statements

...Continued

```
;----- Boolean Equation Segment -----
EQUATIONS
IF ADDRESS[7] = 1 THEN
 BEGIN
   HIBIT = 1
   LO_BANK_ENA = 0
 END
ELSE
 BEGIN
   HIBIT = 0
   LO_BANK_ENA = 1
 END
HIBIT.CLKF = CLK
LO_BANK_ENA.CLKF = CLK
```


Note: Refer to "The "Don't Care" Logic-Synthesis Option" section, under "CASE Statements," for information on how the "Don't Care" option affects CASE and IF-THEN-ELSE logic.

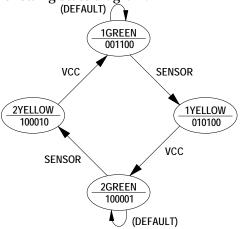
CASE Statements

The CASE statement is a flow-of-control construct that is useful for testing a number of different conditions. The syntax for the CASE statement is as follows. CASE (Condition_signals) BEGIN Value: BEGIN Action END ... **OTHERWISE:** BEGIN Action END

END

The following example asserts enable lines for four peripheral devices named UNIT1 through UNIT4 by checking for their hexadecimal address on an 8bit address line. The declarations are shown first.

;		PIN Decla	arations		
PIN	?	ADD[70]		; INPUT	
PIN	?	UNIT1	REGISTERED	;OUTPUT	
PIN	?	UNIT2	REGISTERED	;OUTPUT	
PIN	?	UNIT3	REGISTERED	;OUTPUT	
PIN	?	UNIT4	REGISTERED	;OUTPUT	
PIN	?	CLK		; CLOCK	
;A sp	ecial t	test conditi	on, indicated k	by a value of	0, 1, 2
;or 3	on the	e address bu	us, is checked.	If this con	dition


CASE Statements

```
; is detected, all four enable lines are asserted. The
;range notation is used to test for this condition, which
;results in a more compact notation.
;-----Boolean Equation Segment -----
EQUATIONS
CASE (ADD[7..0])
  BEGIN
         #h0F:
                  BEGIN
                            UNIT1 = 1
                            UNIT2 = 0UNIT3 = 0
                            UNIT4 = 0
                   END
         #h2F:
                   BEGIN
                            UNIT1 = 0
                            UNIT2 = 1UNIT3 = 0
                            UNIT4 = 0
                   END
         #h5F∶
                   BEGIN
                            UNIT1 = 0
                            UNIT2 = 0
UNIT3 = 1
                            UNIT4 = 0
                   END
         #hFF:
                   BEGIN
                            UNIT1 = 0
                            UNIT2 = 0UNIT3 = 0
                            UNIT4 = 1
                   END
Continued...
```

...Continued OTHERWISE: BEGIN UNIT1 = 0 UNIT2 = 0 UNIT3 = 0 UNIT3 = 0 END END UNIT1.CLKF = CLK UNIT2.CLKF = CLK UNIT3.CLKF = CLK UNIT4.CLKF = CLK

Building State Machines with CASE Statements

The CASE statement is the preferred way to implement state machines in the MACHXL software syntax. The following example implements the traffic light controller state machine shown in the following state diagram.

CASE Statements

This design uses the following pin statements:

	TITLE MULTIPLE STATE MACHINES
	PATTERN A
	REVISION 1.0
	AUTHOR J. ENGINEER
	COMPANY ADVANCED MICRO DEVICES
	DATE 02/12/93
	CHIP MULTISTATE MACH435
	;
	; TRAFFIC CONTROLLER PIN DEFINITIONS
	PIN ? CLOCK1 ; CLOCK PIN ? SENSOR ; INPUT
	; Outputs for controlling signals in the traffic example ; VOUT[5] VOUT[4] VOUT[3] VOUT[2] VOUT[1] ; RED1 YELLOW1 GREEN1 RED2 YELLOW2 GREEN2
	PIN ? VOUT[50] REGISTERED ; OUTPUTS PIN ? ST[1,0] REGISTERED ; STATE BITS
VOUT ST[1,0]	 Both CASE and IF-THEN-ELSE statements allow you to evaluate binary, octal, decimal, or hexadecimal numbers using vectors of signals. The pins statements above define two vectors: [50] Defines the six outputs that control the operation of six lamps. Throughout the design, these lamps are referred to as RED1 (VOUT[5]), YELLOW1 (VOUT[4]), GREEN1 (VOUT[5]), RED2 (VOUT[2]), YELLOW2 (VOUT[1]), and GREEN2 (VOUT[0]). Defines the two state bits required to define the four states used in the traffic controller design. The STRING statement simplifies the job of writing state machine designs using CASE statements, and makes it much easier for a

You can use STRING statements to do the following:

□ Assign logical names to the state-bit values that correspond to each state

Define the output values of each state (or each branch, if your design is a Mealy machine)

C Represent the state bits themselves, to make it easier to assign them new values (to branch to a different state)

The following statements define strings that help manage the traffic controller state machine, including the four **states**: 1GREEN, 1YELLOW, 2GREEN, and 2YELLOW.

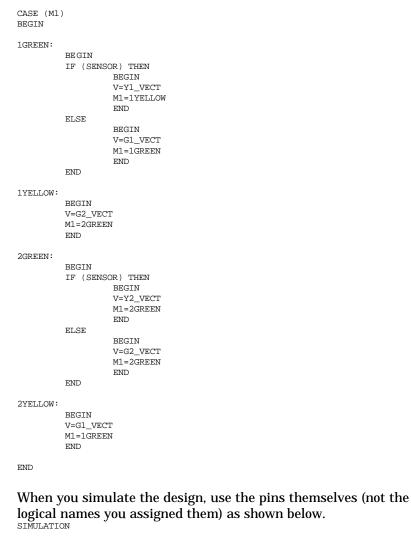
;------

; TRAFFIC CONTROLLER STRING DEFINITIONS ;------

; state assignments

STRING	1green	'0'
STRING	1YELLOW	'1'
STRING	2GREEN	'3'
STRING	2YELLOW	'2'
STRING	M1	'ST[1,0]'
STRING	V	'VOUT[50]'

; output vector definitions


; VOUT[5] VOUT[4] VOUT[3] VOUT[2] VOUT[1] VOUT[0] ; RED1 YELLOW1 GREEN1 RED2 YELLOW2 GREEN2

STRING	G1_VECT	'#B001100'
STRING	Y1_VECT	'#B010100'
STRING	G2_VECT	'#B100001'
STRING	Y2 VECT	'#B100010'

CASE Statements

Remember to clock the registers used in your design: EQUATIONS TRAFFIC CONTROLLER EQUATIONS VOUT[5..0].CLKF=CLOCK1 VOUT[5..0].RSTF =_RESET1 ST[1,0].CLKF=CLOCK1 ST[1..0].RSTF =_RESET1 The general form of a state machine implementation is: CASE (*State_bits*) BEGIN Value_of_state_1: BEGIN Assign values to output pins Assign new state's values to state bits END Value_of_state_2: BEGIN Assign values to output pins Assign new state's values to state bits END Value_of_state_n: BEGIN Assign values to output pins Assign new state's values to state bits END END

The CASE statements used to implement the traffic controller design are shown below.


```
; SIMULATION FOR TRAFFIC CONTROLLER ;
```

TRACE_ON CLOCK1 SENSOR ST[1,0] VOUT[5..0]

CASE Statements

SETF /	RESET1 /CLOCK1 ; RESET REGISTERS _RESET1 OUT[0] VOUT[1] VOUT[5] /VOUT[4] VOUT[3] /VOUT[2] ST[0] ST[1]
,	
CLOCKF CLOCKF CLOCKF CLOCKF	CLOCK1 CLOCK1
CLOCKF CLOCKF CLOCKF CHECK	CLOCK1
CLOCKF CLOCKF CHECK	CLOCK1 CLOCK1 CLOCK1 VOUT[0] /VOUT[1] VOUT[5] /VOUT[4] /VOUT[3] /VOUT[2] ST[0] ST[1]
TRACE_OFF	

Multiple State Machines

This section shows how to combine two state machine designs in a single device. You can combine as many state machines as you like, subject only to the availability of resources in the target device. The two state machines in the design—a traffic controller and an answering machine—were selected because they are common examples of state machines and hence require no explanation.

Note: In the example design that follows, the two state machines are completely independent of one another. However, you can implement state machines that interact with one another. To do this, use the state bits and/or outputs of one state machine as inputs to another state machine.

The example is structured as follows: each state machine's pin declarations are entered first, followed by the string definitions for each. Next, the equations for each state machine are entered. Finally, the simulation statements for each state machine are entered. The procedures you follow to enter multiple state machine designs are identical to those you follow for single state machines. Observe the following rules:

□ Avoid duplicate names for state bits and output vectors (in this example, the state bits for one state machine are called M1 and the state bits for the other M2).

□ Avoid manipulating the wrong state machine's state bits or outputs. (For example, you might type M2 instead of M1 and set the second state machine's state bits from within the CASE statement for the first state machine. Such an error is very difficult to debug.)

```
TITLE
             MULTIPLE STATE MACHINES
PATTERN
            A
REVISION 1.0
AUTHOR
          J. ENGINEER
COMPANY
             ADVANCED MICRO DEVICES
DATE
             02/12/93
CHIP
    MULTISTATE MACH435
TRAFFIC CONTROLLER PIN DEFINITIONS
PIN ? CLOCK1 ; CLOCK
PIN ? SENSOR ; INPUT
; Outputs for controlling signals in the traffic example
; VOUT[5] VOUT[4] VOUT[3] VOUT[2] VOUT[1]
      RED1 YELLOW1 GREEN1 RED2 YELLOW2 GREEN2
;
PIN ? VOUT[5..0] REGISTERED ; OUTPUTS
PIN ? ST[1,0] REGISTERED ; STATE BITS
;-----
        ANSWERING MACHINE PIN DEFINITIONS
;-----
PIN ? CLOCK2 ; CLOCK
PIN ? _RESET1 ; RESET CONTROL
PIN ? _RESET2 ; RESET CONTROL
PIN ? RING ; INPUTS
PIN ? ENDGREETING
PIN ? DIALTONE
PIN ? ENDMESSAGES
PIN ? ST2[1,0] REGISTERED ; STATE BITS
PIN ? ANSWER REGISTERED ; OUTPUTS
PIN ? PLAY REGISTERED
PIN ? RECORD REGISTERED
GROUP M2REG ST2[1,0] ANSWER PLAY RECORD
                                        ; GLOBAL USE
TRAFFIC CONTROLLER STRING DEFINITIONS
; state assignments
               '0'
'1'
'3'
STRING 1GREEN
STRING 1YELLOW
STRING 2GREEN
Continued...
```

Chapter 6: Equations Segment In Depth 229

Cont	inued	
STRING	2YELLOW	'2'
STRING	M1	'ST[1,0]'
		'VOUT[50]'
STRING	V	.001[50]
; output	vector definit	ions
; VOUT[5] VOUT[4] VOU	T[3] VOUT[2] VOUT[1] VOUT[0]
; RED1	YELLOW1 GREEN1	RED2 YELLOW2 GREEN2
STRING	G1_VECT	'#B001100'
STRING	Y1_VECT	'#B010100'
STRING	G2_VECT	'#B100001'
	Y2_VECT	'#B100010'
;======		
;		MACHINE STRING DEFINITIONS
;======		
; state	assignments	
STRING	WAITING	' O '
STRING	PLAYING	'1'
STRING	RECORDING	'2'
STRING	M2NULL	'3'
STRING		'ST2[1,0]'
;		
EQUATION	IS	
;======		
;	TRAFFIC CO	NTROLLER EQUATIONS
	0].CLKF=CLOCK1	
	0].RSTF =_RESET	1
om[1_0]	at we at oaw1	
	CLKF=CLOCK1 .RSTF =_RESET1	
CASE (M) BEGIN	_)	
1GREEN:		
	BEGIN	
	IF (SENSOR) TH	EN
	BEGIN	
	V=Y1_	
Cont		
Contin	lued	

```
...Continued
                 M1=1YELLOW
                 END
        ELSE
                 BEGIN
V=G1_VECT
M1=1GREEN
                 END
        END
1YELLOW:
        BEGIN
V=G2_VECT
M1=2GREEN
        END
2GREEN:
        BEGIN
        IF (SENSOR) THEN
BEGIN
V=Y2_VECT
M1=2GREEN
                 END
        ELSE
                 BEGIN
V=G2_VECT
M1=2GREEN
                 END
        END
2YELLOW:
        BEGIN
        V=G1_VECT
M1=1GREEN
        END
END
;-----
           ANSWERING MACHINE EQUATIONS
:
M2REG.CLKF=CLOCK2
M2REG.RSTF=_RESET2
```

Continued...

...Continued CASE (M2) BEGIN WAITING: BEGIN IF (RING) THEN BEGIN ANSWER=1 PLAY=1 RECORD=0 M2=PLAYING END ELSE BEGIN ANSWER=0 PLAY=0 RECORD=0 M2=WAITING END END PLAYING: BEGIN IF (DIALTONE) THEN BEGIN ANSWER=0 PLAY=0 RECORD=0 M2=WAITING END IF (/DIALTONE * /ENDGREETING) THEN BEGIN ANSWER=1 PLAY=1 RECORD=0 M2=PLAYING END IF (/DIALTONE * ENDGREETING) THEN BEGIN ANSWER=1 PLAY=0 RECORD=1 M2=RECORDING END END Continued...

```
...Continued
RECORDING:
       BEGIN
       IF (/ENDMESSAGES * /DIALTONE) THEN
              BEGIN
              ANSWER=1
              PLAY=0
              RECORD=1
              M2=RECORDING
              END
       IF (ENDMESSAGES + DIALTONE) THEN
              BEGIN
              ANSWER=0
              PLAY=0
              RECORD=0
              M2=WAITING
              END
       END
M2NULL:
       BEGIN
       M2=WAITING
ANSWER=0
       PLAY=0
RECORD=0
       END
END
;-----
SIMULATION
SIMULATION FOR TRAFFIC CONTROLLER
;
TRACE_ON CLOCK1 SENSOR ST[1,0] VOUT[5..0]
SETF
      _RESET1 /CLOCK1 ; RESET REGISTERS
SETF /_RESET1
CHECK VOUT[0] VOUT[1] VOUT[5] /VOUT[4] VOUT[3] /VOUT[2]
      /ST[0] ST[1]
SETF
CLOCKF
      /SENSOR
      CLOCK1
CHECK /VOUT[0] /VOUT[1] /VOUT[5] /VOUT[4] VOUT[3] VOUT[2]
/ST[0] /ST[1]
Continued...
```

Continued SETF SENSOR CLOCKF CLOCK1 CLOCKF CLOCK1 CLOCKF CLOCK1 CLOCKF CLOCK1 CLOCKF CLOCK1 CLOCKF CLOCK1 CLOCKF CLOCK1 CLOCKF CLOCK1 ST[0] ST[1]					
SETF /SENSOR CLOCKF CLOCK1 CLOCKF CLOCK1 CLOCKF CLOCK1 CHECK VOUT[0]/VOUT[1] VOUT[5]/VOUT[4]/VOUT[3]/VOUT[2] ST[0] ST[1]					
CLOCKF CLOCK1 CLOCKF CLOCK1 CLOCKF CLOCK1 CHECK VOUT[0]/VOUT[1] VOUT[5]/VOUT[4]/VOUT[3]/VOUT[2] ST[0] ST[1]					
TRACE_OFF ;===================================					
ANSWER PLAY RECORD SETFRESET2 /CLOCK2 ; RESET REGISTERS SETF /_RESET2 CHECK /PLAY /ANSWER RECORD /ST2[0] ST2[1]					
SETF /ENDMESSAGES /DIALTONE /ENDGREETING /RING CLOCKF CLOCK2 CLOCKF CLOCK2 CHECK /PLAY ANSWER RECORD /ST2[0] ST2[1]					
SETF RING CLOCKF CLOCK2 CLOCKF CLOCK2 CHECK /PLAY ANSWER RECORD /ST2[0] ST2[1]					
Continued					

...Continued SETF /RING CLOCKF CLOCK2 CHECK /PLAY ANSWER RECORD /ST2[0] ST2[1] SETF DIALTONE CLOCKF CLOCK2 CHECK /PLAY /ANSWER /RECORD /ST2[0] /ST2[1] SETF /DIALTONE SETE RING CLOCKE CLOCK2 CLOCKF CLOCK2 PLAY ANSWER /RECORD CHECK ST2[0] /ST2[1] SETF ENDGREETING CLOCKF CLOCK2 CLOCKF CLOCK2 CHECK /PLAY ANSWER RECORD /ST2[0] ST2[1] SETF /ENDGREETING ENDMESSAGES /RING CLOCKF CLOCK2 CLOCKF CLOCK2 CHECK /PLAY /ANSWER /RECORD /ST2[0] /ST2[1] SETF /ENDMESSAGES CLOCKF CLOCK2 CLOCKF CLOCK2 CHECK /PLAY /ANSWER /RECORD /ST2[0] /ST2[1] TRACE OFF END OF DESIGN

The "Don't-Care" Logic-Synthesis Option

When processing a design file with IF-THEN and CASE statements, the MACHXL software provides a logic synthesizing option to process unspecified states as Don't Cares, or to set unspecified states to 0 (i.e., turn OFF these states). This option, Use 'IF-THEN-ELSE', 'CASE' default as appears on the Logic Synthesis Options form. The available settings ("Don't Care" and "Off") affect the logic created and also the operation of the device.

To see how the Use 'IF-THEN-ELSE', 'CASE' default as option affects designs you write, consider the following example.

Design Specification

Lights shall be turned on

- a) when someone is in the room and
- b) when it is night.

If you specify such behavior verbally, your expectation is that the listener will turn on the lights when he or she is in the room at night, and that the listener will turn off the lights at all other times. Your normal expectation corresponds to the "Off" setting of the Use 'IF-THEN-ELSE', 'CASE' default as option. The "Off" setting means that the software assumes all signals are off in all unspecified conditions. The design example below translates the design specification ABOVE into MACHXL syntax.

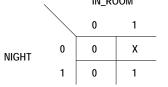
IIIIO IV.	IAU	JUNT Sylitax		
TITLE		DONT CARE TEST	•	
PATTERN		Α		
REVISIO		1 0		
		J. ENGINEER		
COMPANY				
DATE		03/01/93		
CHIP	DO	NT_CARE_TEST	MACH435	
pin		in_room		;input
pin	3	night		;input
pin	8	light_or	n	;output
equatio	ns			
-				
if (in	roc	m * night) ther	ı	
		qin		
		ight on = VCC		;on cover is:
	en	5 =		
	en	u		;light_on = in_room * night
:= (/ :				
TT (/ TI		oom) then		
		gin		
	1:	ight_on = GND		;off cover is
	en	d		;/light_on = / in_room

The disassembled intermediate file BELOW shows how the MACHXL software implements the design example, above, with the option set to "Off."

TITLE DONT_CARE_TEST DIS-ASSEMBLED PATTERN 001 REVISION 001 J.ENGINEER AUTHOR COMPANY AMD Fri Oct 07 14:26:59 1994 DATE CHIP UNSPECIFIED MACH435 PTN 20 СК0_ PIN 23 CK1_ PIN 62 CK2_ PIN 65 CK3 PTN 3 NIGHT PIN 4 IN_ROOM PIN 8 LIGHT_ON

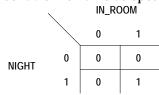
NODE 2 R2_ PAIR LIGHT_ON EQUATIONS LIGHT_ON = IN_ROOM * NIGHT R2_ = {LIGHT_ON}

The behavior of this disassembled design is the same as you would expect from a human listener: the lights are on ONLY if both of the following inputs are true: IN_ROOM and NIGHT.

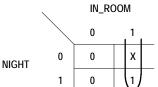

By contrast, when the Use 'IF-THEN-ELSE', 'CASE' default as option is set to "Don't Care," the same design file, after compilation, disassembles as shown below.

; COMPILED WITH OPTION SET TO "DON'T CARE"

TITLE	DONT_CARE_TEST DIS-ASSEMBLED				
PATTERN	001				
REVISION	001				
AUTHOR	J.ENGINEER				
COMPANY	AMD				
DATE	Fri Oct 07 14:29:27 1994				
CHIP	UNSPECIFIED MACH435				
PTN 20) CK0				
Continued					


<i>Co</i>	ntin	ued		
PIN	23	CK1_		
PIN	62	CK2_		
PIN	65	CK3_		
PIN	4	IN_ROOM		
PIN	8	LIGHT_ON		
NODE	2	R2_	PAIR	LIGHT_ON
EQUATI	IONS			
LIGHT_ R2_	_ON	= IN_ROOM = {LIGHT_ON}		

The behavior of this disassembled design is NOT the same as you would expect from a human listener: the state of the lights is a function of IN_ROOM alone, and the input condition NIGHT is ignored altogether. The reason for this behavior can be understood by examining the Karnaugh map of the design as it exists just before logic minimization. The symbol "X" (Don't Care) marks the location of the condition that was not specified in the original design.



Karnaugh Map for LIGHTS_ON = IN_ROOM * NIGHT

When the Use 'IF-THEN-ELSE,' 'CASE' default as option is set to "Off," all "X" symbols in the Karnaugh map are replaced with zeroes, as shown below. Given this Karnaugh map, the Logic Minimizer cannot eliminate either input from the equation for LIGHTS_ON, so the behavior remains as specified.

Karnaugh Map with "Don't Care" Option Set to "Off" When the Use 'IF-THEN-ELSE,' 'CASE' default as option is set to "Don't Care," however, the Logic Minimizer can group the "X" symbol with either an adjacent 1 or 0, as required to minimize the equation. The Karnaugh map below shows how the Logic Minimizer groups the "X" with 1.

Karnaugh Map with "Don't Care" Option Set to "Don't Care" (Minimized) This produces the equation

LIGHTS_ON = IN_ROOM * /NIGHT + IN_ROOM * NIGHT which minimizes to

$$LIGHT_ON = IN_ROOM.$$

MINIMIZE_ON and MINIMIZE_OFF

Place a pair of MINIMIZE_OFF and MINIMIZE_ON statements in the PDS file around any portion of the design you do not want minimized. (The MINIMIZE_ON statement is only required if the design file contains subsequent statements that you want minimized.)

For example, to retain the redundant product terms that are necessary to prevent race hazards in equations used to emulate latch behavior, insert a MINIMIZE_OFF statement before the set of equations.

If the MINIMIZE_OFF precedes an equation, the Logic Minimizer does not perform logic reduction, although it may perform other operations. For example, if the equation is not expressed as a sum of products, the Logic Minimizer does remove parentheses and apply DeMorgan's theorem as required.

Even if preceded by MINIMIZE_OFF, the equation OUT1 = /(X + Y) + /X * Y

will be expanded by the Logic Minimizer to OUT1 = /X * /Y + /X * Y

However, unless the Logic Minimizer is allowed to operate fully on the equation, it will not be reduced to its minimal form: OUT1 = /X

There are two cases in which the Minimizer must reconcile ambiguities: If the MINIMIZE_OFF keyword separates the equations for

paired pins and nodes, the pin equation takes precedence. That is, if the pin equation follows MINIMIZE_OFF, neither the pin nor the node equation will be minimized (even if the node equation precedes MINIMIZE_OFF), and if the pin equation precedes MINIMIZE_OFF, both the pin and the node equations will be minimized.

□ If the MINIMIZE_OFF keyword separates the on and off covers for the same signal, both are treated the same way with respect to minimization and the signal that appears last in the design file determines how both signals are treated.

Example

SIG2 = X MINIMIZE_OFF /SIG2 = X * Y

;SIG2 and /SIG2 equations are not minimized

7 Simulation Segment In Depth

Contents

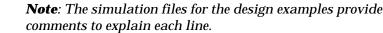
Overview 245 **Creating a Simulation File** 246 Simulation Command Summary 246 Simulation Segment vs. Auxiliary File 248 **Considerations 249** Vectors In Simulation 250 SETF and PRELOAD 250 CHECK and CHECKQ 251 CLOCKF 252 TRACE_ON 252252Flip-Flops Buried Nodes 253 Latches 253 **Output Enable 253 Preloaded Registers** 254 Verified Signal Values 254 **Viewing Simulation Results** 254 All Signals 255 Trace Signals Only 257 Text Display, Non-Vectored 258 Text Display, Vectored 259 260 Waveform Display, Non-Vectored Waveform Display, Vectored 261 Using Simulation Constructs 261 For Loop 261While Loop 262 If-Then-Else 262 **Design Examples** 263 **Boolean Equation Design** 263 State Machine Design 266 Notes On Using the Simulator 267 Modeling of Registers and Latches 268 268 Programmer Emulation at Power-Up **Power-Up Sequence** 269 Software Preload Sequence 269 Full Evaluation of Input Pins 270 Clock Polarity 270 **Driving Active-Low Clocks** 271 **Product Term-Driven Clocks** 273 Simultaneous Events 274 **Power-Up Preload On Floating Pins** 274 **Output Buffers 274** Input Signal Ordering 275

Overview

Preventing Unexpected Simulation Behavior	276
Placement Information Missing 276	
Set/Reset Signals Swapped 276	
Set/Reset Signals Treated As "Don't Care"	277
Uncontrollable Power-Up Conditions 277	

Overview

This chapter describes the features of the MACHXL simulator and provides a design implemented with Boolean equations and state machine implemented with CASE statements to illustrate simulation concepts. The chapter is divided into five major discussions.


D An overview of the MACHXL simulation process

A summary of the simulation keywords and considerations for simulating a design

General information about viewing simulation results

□ Information about using the FOR, WHILE, and IF-THEN-ELSE simulation constructs

Design examples of Boolean equation and a state -machine design simulation

The MACHXL simulator allows you to perform functional verification of MACH-device designs. You define simulation statements in either the simulation segment of the PDS file or in an auxiliary simulation file. After entering the simulation statements, you simulate the design and view the results in either a graphical waveform or text format.

>

Note: Because the MACHXL simulator performs functional verification, additional delays induced by looping back through an array are not reflected in the simulation results. Refer to the Timing Report, generated by the Fitter, for information on the timing characteristics of your design.

Creating a Simulation File

You create an auxiliary simulation file to specify a sequence of simulator statements. A simulation statement consists of a keyword alone, or a keyword and a list of signals. This discussion provides a summary of the simulation keywords, information about the simulation segment and auxiliary file, and considerations for simulating a design.

Simulation Command Summary

The following keywords are provided with the MACHXL simulator. Included here is a brief summary of each command. In the following examples, O1, O2, O3, and O4 are output pin names;Q0 and Q1 are register output names.

Use the following symbols to check for specific signal values:

C Check for the state of a signal as follows:

• If the signal name is uncomplemented in the PIN or NODE statement (for example, OUT2), use the uncomplemented name to check for a 1 at the signal (for example, CHECK OUT2), or use the complemented name to check for 0 at the signal (for example, CHECK /OUT2).

• If the signal name is complemented in the PIN or NODE statement (for example, /OUT2), use the uncomplemented name to check for a 0 at the signal (for example, CHECK OUT2), or use the complemented name to check for 1 at the signal (for example, CHECK /OUT2).

The simulator reports a discrepancy if the actual value differs from the one for which you checked.

□ Precede a pin name with a caret (^) to verify that the corresponding pin's three-state ouput buffer is disabled (for example, CHECK ^OUT2). The simulator reports a discrepancy if the buffer is not disabled.

□ Precede a pin or node name with a percent sign (%) to verify that the corresponding pin's or node's value is undefined (for example, CHECK %OUT2). The simulator reports a discrepancy if the pin's or node's value is not undefined.

\blacktriangleright	Note : Simulation examples throughout this chapter illustrate the use of many of these statements.
CHECK	Use this keyword to verify that values at the pin are equal to expected values. For example: CHECK 01 /02 ^03 %04
CHECKQ	Use this keyword to verify that values at the register outputs are equal to expected values. For example: CHECKQ Q0 /Q1
CLOCKF	Use this keyword to generate a clock cycle for a rising-edge or falling-edge clock. The clock cycle for a rising-edge clock is low-to-high-to-low. The clock cycle for a falling-edge clock is high-to-low-to-high.
FOR LOOP	Use this construct to perform a task a specified number of times.

IF-THEN-ELSE	Use this construct to test a condition and then
	perform one of two tasks, depending on the test
	results.
PRELOAD	For software simulation only, use this keyword to
	load specified values into the register outputs. For
	example:
	PRELOAD Q0 /Q1
	JEDEC TEST VECTOR OUTPUT IS TURNED
	OFF AT THE FIRST OCCURRENCE OF THE
	PRELOAD KEYWORD.
SETF	Use this keyword to assign specific values to inputs
	during simulation. For example: SETF IN1 /OE
SIMULATION	Use this keyword at the beginning of each
	simulation segment or auxiliary simulation file.
TRACE_OFF	Use this keyword to end a simulation section being
	traced by the TRACE_ON keyword. For example:
	TRACE_OFF
TRACE_ON	Use this keyword to define which signals to record
	in the trace file during simulation. For example: TRACE_ON IN1 IN2[03] O1 CLOCK
WHILE LOOP	Use this construct when you cannot predetermine
	how many times to perform a task. The task will
	be performed while a condition is true.

Simulation Segment vs. Auxiliary File

You define the simulator statements in either the simulation segment of the PDS file or in an auxiliary simulation file. Auxiliary simulation files allow you to simulate several similar designs using the same simulation file.

Note: In this chapter, the term simulation file is used to refer to either a simulation segment or an auxiliary simulation file. The simulation segment looks the same as the auxiliary file, except it is part of the design file, as shown below. ;MACHXL Design Description

 ; Simulati SIMULATION	ion Segment
TRACE_ON INPUT CLOCK OUTPUT	;Specify signals for the
	;trace output file
SETF /CLOCK INPUT	;Initialize INPUT to logical
	;1, CLOCK to logical 0
CLOCKF CLOCK	;Apply a full clock cycle
	;to CLOCK.
CHECK OUTPUT	;Verify that the output pin

Creating a Simulation File

CHECKQ /Q0 TRACE_OFF ; is at logical 1
;Verify that the Q0 register
; is at logical 0
;Turn tracing ofF

The auxiliary simulation file is a stand-alone file that must be in the same directory as the design; the file name should match the name of the design file and include a .SIM extension. An example of an auxiliary simulation file is shown below.

SIMULATION TRACE ON INPUT CLOCK OUTPUT (Specify signals for the

TRACE_ON INPUT CLOCK OUTPUT	, specity signals for the
	<pre>;trace output file</pre>
SETF /CLOCK INPUT	;Initialize INPUT to logical
	;1, CLOCK to logical 0
CLOCKF CLOCK	;Apply a full clock cycle
	;to CLOCK.
CHECK OUTPUT	;Verify that the output
	;pin is at logical 1
CHECKQ /Q0	;Verify that the Q0 register
	;is at logical 0
TRACE_OFF	;Turn tracing off

Depending on the working environment you've set up, a message asks if you are using an auxiliary simulation file, either on demand or automatically when you simulate.

Considerations

The following discussions provide general considerations for simulating a design.

- **D** Vectors in Simulation
- □ Flip-Flops
- □ BuriedNodes
- □ Latches
- **D** Output Enable
- **D** Preloaded Registers
- Verified Signal Values

Vectors In Simulation

You can use vectors in the following simulation statements: SETF, PRELOAD, CHECK, CHECKQ, CLOCKF, and TRACE_ON.

Vectors are used in simulation in four ways:

□ In SETF and PRELOAD statements, a vector of pins or nodes is set equal to a user-specified (or implied) value.

□ In CHECK and CHECKQ statements, the vector of pins or nodes is checked against a user-specified (or implied) value.

□ In CLOCKF statements, a clock pulse is applied to a vector of clock pins.

□ In TRACE_ON statements, you list one or more vectors to be added to the trace display. Signals specified in vector format in the TRACE_ON statement are displayed, in the trace output, as hexadecimal numbers. Each hexadecimal number represents the values of four signals in the vector, as shown below.

Hexadecimal number 9°C in the simulation output

Binary equivalent of the hexadecimal number. Each digit in the binary number has the same value as the signal in the same relative position in the vector.

Position in the vector — OUT [0..7] corresponds to position the in binary equivalent of the hex number

SETF and PRELOAD

Valid usage includes the following: SETF Vector PRE

SETF /Vector

SETF Vector = number

equivalent of number₁₀

;sets/preloads all bits high PRELOAD /Vector ;sets/preloads all bits low PRELOAD Vector = number ;sets/preloads bits to binary

PRELOAD Vector

;(unless a different

radix is ;specified)

> Note	: JEDE	EC test	t vecto	r out	put is	turn	ed of	ff aft	er the	first
	rence o									
	Exan	nples			5					
	The fo	llowing	stateme	ent:	Resi	ılts in t	he fol	llowind	g value.	s for
		ndividua							,	
	S[7]	S[6]	S[5]	S[4]	S[3]	S[2] 5	S[1]	S[0]	
SETF SAMPLE[70]	1	1	1	1	1	1		1	1	
SETF /SAMPLE[70]	0	0	0	0	0	0		0	0	
SETF SAMPLE[70] = 5	0	0	0	0	0	1		0	1	
SETF SAMPLE[70] = #hEB	1	1	1	0	1	0)	1	1	
CI	HECK a	and C	HECK	Q						
	Valid	usage	e inclu	des t	he fol	lowir	ıg:			
		K Vecto								;checks
	that all	pins/reg	gisters	corres	pondin	g to ve	ector s	signal	s are h	igh
	CHECI	K IVecto	or			С	HECH	KQ /V	ector	;checks
		pins/reg			pondin	g to ve	ector s	signal	s are lo	W
	CHECI	K Vecto	r = nun	nber		С	HECH	KQ Vé	ector =	number
						;C	hecks	s that	pins/re	gisters
								;CO	rrespoi	nding to
	vector	are								
								;bir	nary eq	uivalent
	of									
								;nı	imber ₁	₀ (unless
	а									
								;dif	ferent i	radix is
	specifie	e d) .								
	Exan	nples								
	The for	llowing	stateme	ent:					ng value	es:
		S[7]		S[5]		S[3]	S[2]	S[1]	S[0]	
CHECK SAMPLE[70]		1	1	1	1	1	1	1	1	
CHECK /SAMPLE[70]		0	0	0	0	0	0	0	0	
CHECK SAMPLE[70] = 5		0	0	0	0	0	1	0	1	
CHECK SAMPLE[70] = #		1	1	1	0	1	0	1	1	
CI	.OCKF									
		s all c	lock s	ignal	s spec	cified	in tł	he ve	ctor.	
	Exan									
	CLOCKF	CLOCKS	[03]							

Creating a Simulation File

The vector must include only clock pins. If you are using product-term clocks, use the SETF keyword instead of the CLOCKF keyword.

TRACE_ON

You can include in a TRACE_ON statement some or all of the signals defined in a vector. Simulation results for signals specified in vector format will be reported and displayed as hexadecimal numbers. Refer to the "Viewing Simulation Results" section in this chapter for additional details.

Flip-Flops

You can set the output state of any flip-flop during simulation by using the PRELOAD command.

Note: JEDEC test vector output is turned off after the first occurrence of the PRELOAD keyword. Flip-flops can be clocked with the CLOCKF command or with a series of SETF statements.

Note: If you are not using the default clock, use the appropriate initialization statement to initialize at the beginning of the simulation.

SETF /< clock_name> ;to initialize a leading-edge clock
SETF < clock_name> ;to initialize a trailing-edge clock

Otherwise, the simulator reports a warning.

Note: Setting the value of inputs to a register in the same SETF statement used to generate a clock pulse to the register can cause simulation errors. Instead, set the inputs in one SETF statement, then use another SETF statement to generate the clock pulse.

Buried Nodes

Buried nodes are treated as any other signal in the history and trace files, but they are not included in the JEDEC output file. The logic states of buried nodes declared in the pin declarations segment are automatically displayed in the history file.

Latches

Creating a Simulation File

For MACH 1xx/2xx designs, the following illegal latch states will result in simulator error messages for an active-low latch.

Latch	Enable	Async. Reset	Async. Preset
1	1	1	
0	0	1	
0	1	0	
0	1	1	

For MACH 1xx/2xx designs, the following illegal latch states will result in simulator error messages for an active-high latch.

Latch	Enable	Async.	Reset	Async.	Preset
0	1	1			
1	0	1			
1	1	0			
1	1	1			

Output Enable

If you do not write a .TRST equation for an output pin, the simulator presumes the output pin to be enabled at all times. If you do write a .TRST equation for an output pin, the simulator presumes the output to be enabled only when the .TRST equation evaluates as true.

Preloaded Registers

You can preload a value into any register during a simulation session. In state-machine designs, this allows you to set the state bits as required to access any state directly. The PRELOAD command sets the Q output of the flip-flop to the specified value.

Note: You can use PRELOAD statements to load a known state to a pin or register during software simulation. However, test vectors are turned off in the JEDEC file as soon as the first PRELOAD statement occurs. For final verification, replace the PRELOAD statement with appropriate SETF/CLOCKF statements so that you can generate JEDEC test vectors and verify design performance using the device programmer.

Verified Signal Values

There are two simulator statements that verify the logic states of signals: CHECK and CHECKQ. The CHECK command verifies that the simulation result(s) at the pin correspond to your predictions of the design's

behavior. If a discrepancy is detected, a question mark is inserted in the simulation history and trace files at the corresponding signal and test vector, and a warning is issued in the execution-log file.

The CHECKQ keyword verifies the value of a specified signal at the output of the register. This command is useful for checking the logical state of buried registers.

Viewing Simulation Results

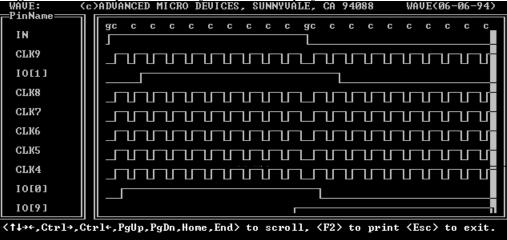
Once a simulation completes successfully, the results are stored in a history, and optionally, a trace file. You can view the results in a text or graphical form using commands that appear in the View menu.

All Signals

The history file shows the results for every pin and node defined in the pin list of the design. The polarity of each pin and node is displayed according to the definition in the pin list. You can view this file in a graphical or text format.

Use the All signals command (View:Simulation Data:All signals) to view the text version of the history file. This display shows the status of all signals defined in the pin list using letters to represent various states.

The simulation display shows the status of all signals defined in the design file using letters to represent various states:


- \square H = high
- \Box L = low
- \Box Z = high impedance
- \square X = undefined (symbol X takes precedence over Z)
- \Box ? = discrepancy (symbol ? takes precedence over X)
- \Box c = CLOCKF statement (appears at the top edge of the display)
- \Box g = SETF statement (appears at the top edge of the display)

An example of a simulation history text display is shown below. (Signals in a vector are listed individually.)

	veeter are instea marviadany.	
	<pre>(c)ADVANCED MICRO DEVICES, SUNNYVALE, CA 94088</pre>	WAVE(06-06-94)
FPinName====		
	 gc c c c c c c c c gc c c c c	ссссс
IN	ЙНННННННННННННННННННННННННННННLLLLLLLLL	LLLLLLLLLLLL
CLK9	LHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHH	LHHLHHLHHLHHLHI
IO[1]	LLLLLHHHHHHHHHHHHHHHHHHHHHHHHHHHH	LLLLLLLLLLLLLL
CLK8	LHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHH	LHHLHHLHHLHHLHI
CLK7	LHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHH	
CLK6	LHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHH	LHHLHHLHHLHHLH
CLK5	LHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHH	
CLK4	LHHIHHIHHIHHIHHIHHIHHIHHIHHIHHIHHIHHIHHI	LHHLHHLHHLHHLHH
10[0]	LLHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	CLERERERE CONTRACTOR CONT
10[9]	LLLLLLLLLLLLLLLLLLLLLLLLLLLLHHHHHHHH	нннннннннннн
10[8]	LLLLLLLLLLLLLLLLLLLLLLLLHHHHHHHHHH	HHHHHHHHHHLLLL
10[7]	LLLLLLLLLLLLLLLLLLLLLHHHHHHHHHHHH	HHHHHHHLLLLLL
10[6]	LLLLLLLLLLLLLLLLLLHHHHHHHHHHHHHHH	HHHHHLLLLLLLLL
CLK1	LHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHH	
CLK2	LHHTHHTHHTHHTHHTHHTHHTHHTHHTHHTHHTHHTHHT	LНН LННLННLННLН]
10[5]	LLLLLLLLLLLLLLLHHHHHHHHHHHHHHHHHH	HHLLLLLLLLLLLL
I0[4]	LLLLLLLLLLLLLHHHHHHHHHHHHHHHHHHHH	CLLLLLLLLLLLLLL
CLK3	LHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHH	CHHLHHLHHLHHLH <u>H</u>
CLKØ	II II ГННГНИГНИГНИГНИГНИГИНГИНГИНГИНГИНГИНГИНГ	CHHTHHTHHTHTH
 <†↓→←,Ctrl→,	Ctrl←,PgUp,PgDn,Home,End> to scroll, <f2> to print</f2>	<esc> to exit.</esc>

Use the All signals command (View:Waveform display:All signals) to view the waveform version of the history file. This command converts the ASCII characters into a graphical display similar to a timing

Note: If the simulation file includes CHECK or CHECKQ keywords, discrepancies between a specified value and the simulated value of a signal are flagged with a question mark, ?, at the location of the discrepancy.

Trace Signals Only

The trace file is only generated if the TRACE_ON command is included in the simulation file. This file shows results for the signals specified as parameters in the command. The polarity of each pin and node is displayed according to the definition in the TRACE_ON command.

Note: If the polarity of the signal in the TRACE_ON statement matches the polarity of the signal in the PIN or NODE statement, the trace waveform will reflect the physical levels at the pin.

Note: If the simulation file includes CHECK or CHECKQ keywords, discrepancies between the specified value and the simulated value of a signal are flagged with a question mark, ?, at the location of the discrepancy.

If a discrepancy occurs in one of the bits of a vector represented as a hexadecimal value, the hexadecimal numeral representing the nibble that contained the discrepancy (or discrepancies) will be replaced with a question mark, ?.

The trace file is useful for the following four situations:

□ If you want to display vectors as hexadecimal values rather than as individual signals

□ If you do not want to display certain pins or nodes that are not relevant to a simulation session

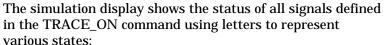
□ If you want to group signals by function, so they can be viewed on the same page of the display

□ If you want to view the reverse polarity of output signals You can view the trace file in a text (choose View:Simulation data:Trace signals only) or graphical format (choose View:Waveform display:Trace signals only).

A submenu offers you two choices:

□ Non-vectored

Choose this option to see the value of each signal in a vector represented separately.


□ Vectored

Choose this option to see the value of the entire vector expressed as a hexadecimal value.

Text Display, Non-Vectored

Choose View:Simulation Data:Trace signals only:Non-vectored to display values for all signals, as shown below. (Signals in a vector are listed individually.)

WAUE:	<pre>cc>ADUANCED MICRO DEUICES, SUNNYUALE, CA 94088</pre>	VAIIFC06-06-
F=PinName=1		
	дс с с с с с с с дс с с с с	сссс
II 10101 II	II сетехнийнийнийнийнийнийнийнийнийнийнийн сетех и и и и и и и и и и и и и и и и и и и	
	LTTTTTTTTTTTTTTTT	
10[6]		
I I0[7]		
I 10[8]		
IO[9]	LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLHHHHHHHH	нннннннннн
I IN I	II LLHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHLLLLLL	LLLLLLLLLLLL
CLKØ	I HLIHHIHHIHHIHHIHHIHHIHHIHHIHHIHHIHHIHHIH	LHHLHHLHHLHHI
CLK1	II HLLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHL	LHHLHHLHHLHHI
CLK2	I HLTHHTHHTHHTHHTHHTHHTHHTHHTHHTHHTHHTHHTH	LHHLHHLHHLHHI
CLK3	HLTHHTHHTHHTHHTHHTHHTHHTHHTHHTHHTHHTHHTH	LHHLHHLHHLHHI
CLK4	HLLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHL	
CLK5	HLLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHL	
CLK6	HLLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHL	
	II HLLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHL	
/tlac Ctula	, ,Ctrl+,PgUp,PgDn,Home,End> to scroll, <f2> to print</f2>	t (Fac) to av
VI+W, GUPI	, ctri, igop, igon, nome, that to scroll, (r2/ to prin	L VESCA IO EX

- \Box H = high
- \Box L = low
- \Box Z = high impedance
- \Box X = undefined (symbol X takes precedence over Z)
- \Box ? = discrepancy (symbol ? takes precedence over X)

 \Box c = CLOCKF statement (appears at the top edge of the display)

 \Box g = SETF statement (appears at the top edge of the display)

Text Display, Vectored

Choose View:Simulation Data:Trace signals only:Vectored to display values of all signals. Vector signals are displayed collectively, as a hexadecimal value, as shown below.

WAVE: ==PinName==	(c)AD	JANCI	ED MI	I CRO	DEVI	CES,	. SUI	NNYVA	ìLE,	CA S	7408	8	WA	JE(0	5-06-
I O LØ9 IN CLKØ CLK1 CLK2 CLK3 CLK4 CLK5 CLK6 CLK7 CLK8 CLK8 CLK9	a SFF LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	°3FF J.H.H.H.H.H.H.H.H.H.H.H.H.H.H.H.H.H.H.H	1FF L H H H H H H H H H H H H H H H H H H	1FF L L L L L L L L L L L L	, 1FF 1 L H H H H H H H H H H H H H H H H H H	ØFF L H H H H H H H H H H H H H H H	OFF LLLLLLLLLLLLLL	, OFF L H H H H H H H H H H H H H H H H H H H	07F 1 H H H H H H H H H H H H H H	07F L L L L L L L L L L L L	07F L H H H H H H H H H H H H H H H H H H	03F L H H H H H H H H H H H H H	03F LLLLLLLLLLLLLLL	с 03F Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	01F L H H H H H H H H H
<†↓→←,Ctrl→,	.Ctrl←	, PgUı	o, Pgl)n,Ho	ome,]	End>	to :	scro	11, <	<f2></f2>	to j	print	: <e< th=""><th>sc> 1</th><th>to ex</th></e<>	sc> 1	to ex

Vecor names that exceed 14 characters in length will be aliased to a shorter form and the aliases listed in the trace file as follows:

file as follows: LONG SIGNAL NAME ALIASES: BEGIN Q_X[]_1 ==> Q_X[4,2,..3,7..6,0..1] ID[]_2 ==> ID[23,15,11,8,7,1..0]

END

The simulation display shows the status of all signals defined in the TRACE_ON command using letters to represent various states:

 \Box H = high

 \Box L = low

 $\Box \qquad Z = high impedance (Any of the four bits in the$

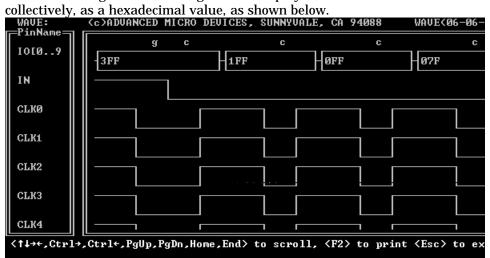
hecadecimal number representing four vectored signals is in the high-impedance state)

 \Box X = undefined (Any of the four bits in the hecadecimal number representing four vectored signals is in the undefined state) (Symbol X takes precedence over Z)

? = discrepancy in any of the four bits of a hexadecimal number (Symbol ? takes precedence over X)
 c = CLOCKF statement (appears at the top edge of

the display) \Box g = SETF statement (appears at the top edge of the display)

Waveform Display, Non-Vectored


Choose View:Waveform Display:All signals:Non-vectored to display values for vector signals individually as shown below.

Using Simulation Constructs

Waveform Display, Vectored

Choose View:Waveform Display:All signals:Vectored to display values for all signals. Vector signals are displayed,

Using Simulation Constructs

The MACHXL simulator provides the following constructs for developing loops and making decisions during a simulation session.

For Loop

The FOR loop is the most basic flow-of-control construct. It is ideal for applications in which you can predetermine how many times you must repeat a set of instructions, as illustrated below.

```
SIMULATION
SETF /OE /CLOCK COUNT
FOR X:= 1 TO 9 DO
BEGIN
CLOCKF CLOCK
END
```

While Loop

When you cannot predetermine how many times to perform a task, you can use the WHILE loop to perform the task while some condition remains true, as illustrated below.

```
SIMULATION
SETF /OE /CLOCK COUNT
WHILE ( /(BIT3 * /BIT2 * BIT1 * /BIT0) ) DO
BEGIN
```

CLOCKF CLOCK END

If-Then-Else

The IF-THEN-ELSE construct is for testing a condition and then performing one of two tasks, depending on the test results. The following example nests two IF-THEN-ELSE loops in a FOR loop. (The signal RST used in this example refers to an input pin, not to the macrocell's asynchronous reset product term.)

```
SIMULATION
FOR I := 1 TO 16 DO
   BEGIN
     IF ( I <= 9 ) THEN ; If I is less than or equal to 9,
                        ;enable count.
       BEGIN
         SETF CNT /RST
         CLOCKF CLOCK
       END
     ELSE
        BEGIN
       IF ( I < 16 ) THEN ; If I is greater than 9 but
                ;less than 16,
                         ; continue with no count.
         BEGIN
           SETF /CNT /RST
           CLOCKF CLOCK
         END
           EGIN ;reset the state machine.
SETF RST
       ELSE
         BEGIN
           CLOCKF CLOCK
         END
        END
END
```

Design Examples

The following discussions illustrate how to simulate a Boolean 4-bit counter and a state machine implemented using CASE statements. The simulation statements are contained in auxiliary simulation files.

Boolean Equation Design

This discussion is based on simulating the basic 4-bit counter design shown below.

CIIII		_ bener	. 141011155				
PIN	3	QA	REGISTERED				
PIN	4	QB	REGISTERED				
PIN	5	QC	REGISTERED				
PIN	6	QD	REGISTERED				
PIN	20	CLOCK					
PIN	?	RST					
NODE	1	GLOBAL					
EQUATIONS							

GLOBAL.RSTF = RST QA.T = VCC QA.CLKF = CLOCK QB.T = QA QB.CLKF = CLOCK QC.T = QA * QB QC.CLKF = CLOCK QD.T = QC * QB * QA QD.CLKF = CLOCK

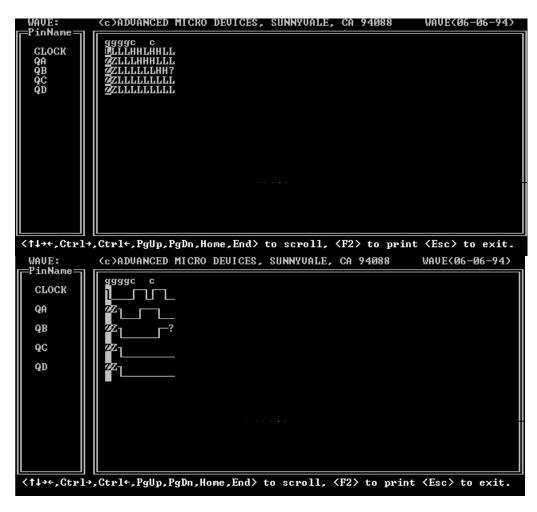
To simulate this design, you can set up a FOR loop that clocks the counter 16 times, as illustrated in the auxiliary simulation file shown in the following example.

IMOLATION

TRACE_ON CLOCK QA QB QC QD ;Generate a trace file with ;the specified signals. SETF /CLOCK RST ;Initialize the clock signal ;to a logical 0 and initialize ;registers with global reset

Continued...

...Continued SETF /RST ;Restore global reset line FOR I:= 1 TO 16 DO ;Clock the counter 16 times. BEGIN ;This FOR loop takes the CLOCKF CLOCK ;place of 16 individual END ; Clockf statements. TRACE_OFF ;Turn tracing off.


The simulation results are recorded in a history and a trace file. You can view either of these files in a text or a graphical mode.

Note: In the waveform display, the letters g and c indicate the occurrence of SETF and CLOCKF statements, respectively. If you know what the simulation results should be during any portion of the simulation session, you can use the CHECK or CHECKQ statements to flag discrepancies. The following simulation purposely checks for a wrong value.

TRACE_ON CLOCK QA QB QC QD ;Generate a trace file with

	;the specified signals.
SETF /CLOCK	;Initialize the clock signal
	;to logical 0.
SETF RST	;Initialize registers with global reset
SETF /RST	;Restore global reset line
CLOCKF CLOCK	;Clock the counter to 0001.
CLOCKF CLOCK	;Clock the counter to 0010.
CHECK /QA /QB /QC /QD	;Check for 0000, this flags
	;a discrepancy.
TRACE OFF	Turn tracing off.

The simulation results mark the location of the discrepancy with a question mark, as shown in the following trace text and waveform figures.

Note: In both displays, the letters g and c indicate the occurrence of SETF and CLOCKF statements, respectively.

State Machine Design

>

The following simulation segment corresponds to the file TEST2.PDS referred to in Chapter 2 and discussed under "Building State Machines with CASE Statements" in Chapter 6, "Equations Segment In Depth." This file is in the \MACHXL\EXAMPLES directory

; ;======	SIMULATION FOR TRAFFIC CONTROLLER
TRACE_0	N CLOCK1 SENSOR ST[1,0] VOUT[50]
SETF	/CLOCK1 : INITIALIZE CLOCK
SETF	_RESET1 ; RESET REGISTERS
SETF	/_RESET1
SETF	/SENSOR
CLOCKF	CLOCK1
SETF	SENSOR
	CLOCK1
CLOCKF	CLOCK1
	CLOCK1
CLOCKF	CLOCK1
SETF	/ SENSOR
	CLOCK1
	CLOCK1
	CLOCK1
	CLOCK1
CLOCKF	CLOCK1
CLOCKF	CLOCK1
TRACE_O	FF
;======	
;	SIMULATION FOR ANSWERING MACHINE
;======	
TRACE_O	N CLOCK2 RING ENDGREETING DIALTONE ENDMESSAGES ST2[1,0
	ANSWER PLAY RECORD
SETE	/CLOCK2 : INITIALIZE CLOCK
	RESET2 ; RESET REGISTERS
	/ RESET2
	/RING /ENDGREETING /DIALTONE /ENDMESSAGES
CLOCKF	CLOCK2
	nued

Notes On Using the Simulator

Conti	nued		
CLOCKF	CLOCK2		
SETF	RING		
CLOCKF	CLOCK2		
CLOCKF	CLOCK2		
SETF	/RING		
CLOCKF	CLOCK2		
SETF	DIALTONE		
CLOCKF	CLOC K2		
SETF	/DIALTONE		
SETF	RING		
CLOCKF	CLOCK2		
CLOCKF	CLOCK2		
SETF	ENDGREETING		
CLOCKF	CLOCK2		
CLOCKF	CLOCK2		
SETF	/ENDGREETING	ENDMESSAGES	/RING
CLOCKF	CLOCK2		
CLOCKF	CLOCK2		
SETF	/ENDMESSAGES		
CLOCKF	CLOCK2		
CLOCKF	CLOCK2		

TRACE_OFF

Notes On Using the Simulator

Note: This section contains information on how the Simulator performs its normal functions. You do not need to know this information to run the Simulator successfully. It is provided as general background information for those who are interested.

The following sections describe specific Simulator behavior, and offer suggestions on how to obtain the best performance from the Simulator.

Modeling of Registers and Latches

The MACHXL Simulator models registers and latches as follows: Registers and latches with unknown SET, RESET, or CLK/LE

signals generate an unknown state at the output Q.

□ The clock triggers only if it rises from a low to a high in the case of an active-high clock, or from a high to a low in the case of an active-low clock.

□ The Simulator reflects the specifications in the *MACH Family Data Book*. For example, in MACH 3xx/4xx designs, it is legal to have SET and RESET signals high at the same time (RESET dominates).

Programmer Emulation at Power-Up

PLD programmers and testers force a default condition on pins set to unknown logic states. On some programmers, the default test condition is programmable. The JEDEC format for the default test condition is "X0" for a low state, "X1" for a high state. This field must be placed before the first test vector and after the number of pins (QP) and the number of fuses (QF) fields.

Nearly all AMD-approved programmers support the default test condition "X0." The Simulator assumes that all pins are forced to a soft-low before power-up, and places an "X0" before the first test vector.

The unknown state cannot be realized in a physical sense in hardware. Individual programmers can set pins high or low, and some programmers are even able to set pins to float (normally not done because the effect of a floating pin cannot be determined for all devices and test cases).

Uninitialized pins are generally set to the default test condition before the power is turned on the device under test. Programmers cannot determine which pins are input and which are outputs, and therefore must use "soft conditions." Under soft conditions, pins are driven high or low by a resistance low enough to drive an input pin but not low enough to override or destroy an output pin.

The Simulator shows the default test condition for uninitialized pins in the history file. However, uninitialized pins remain unknown (marked "X") in the JEDEC test vectors because some testers have a limit on the number of pins that can be toggled in a single test vector.

Power-Up Sequence

The simulator's two-stage power-up routine gives improved simulation of registered device behavior. The routine evaluates the device state before the first user-defined test vector is applied, and takes into account all control signals connected to registers.

Stage 1

□ Load all inputs with the default condition (currently 0) and enter affected signals into the event queue.

□ Load all registers with power-up preload values and enter affected signals into the event queue.

□ Fix registers so they will not change in response to control signals CLK/LE, SET, RESET, and PRELOAD.

D Evaluate until steady state.

Stage 2

D Load all inputs with the default condition (currently 0) and enter affected signals into the simulator's event queue.

Allow registers to be affected by control signals.

Evaluate until steady state.

Software Preload Sequence

A two-stage preload routine gives improved simulation of registered device behavior. Control signals such as SET, RESET, CLK/LE and output enables can affect the register states after they have been preloaded.

Stage 1

 $\hfill\square$ Load all inputs with the preload value and enter affected signals into the event queue.

G Fix registers so they will not change in response to control

signals CLK/LE, SET, RESET, and PRELOAD.

D Evaluate until steady state.

Stage 2

□ Allow registers to be affected by control signals.

□ Evaluate until steady state.

>

Note: JEDEC test vector output is turned off after the first occurrence of the PRELOAD keyword. Use the PRELOAD keyword only for preliminary software verification.

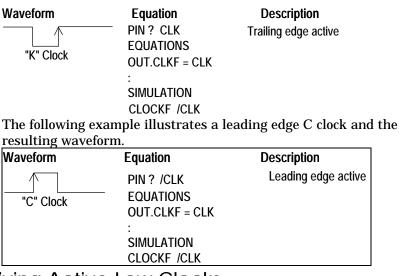
Full Evaluation of Input Pins

□ All input pins are assumed to be initialized to the default conditions at power-up.

The effect of all input pins is evaluated at power-up.

Clock Polarity

In MACH devices that support active low clocks (all MACH 3xx/4xx devices) it is important to distinguish between clock behavior during simulation and clock behavior when the device is programmed. When the device is tested, whether the C or K clock triggers a register at the leading or trailing edge depends only on the state of PIN and .CLKF statements in the design file. If the total number of slashes on these two variables is odd, then it has a falling edge. If it is even, it has is at a trailing edge.


However, during simulation, whether a C or K clock statement triggers a register at a leading or a trailing edge depends on the state of three variables: the PIN statement, the pin's .CLKF statement, and the CLOCKF simulation statement.

 \Box If the total number of slashes on the three variables is an **odd** number then the clock is triggered on a trailing edge.

 \Box If the total number of slashes on the three variables is an **even** number then the clock is triggered on a leading edge.

The following example illustrates a trailing edge K clock and the resulting simulation waveform.

Notes On Using the Simulator

Driving Active-Low Clocks

Active-low clocks can be driven with an active-low clock signal at the pin. An active-low clock (a JEDEC "K" clock) is a high-to-low-to-high pulse.

Polarity conventions are consistent with the polarity convention for the SETF command:

To generate a JEDEC "C" clock force for the following clock types, follow these rules:

□ For an active-high pin, CLK, use the simulation command "CLOCKF CLK"

 $\hfill\square$ For an active-low pin, CLK, use the simulation command "CLOCKF /CLK"

To generate a JEDEC "K" clock force for the following clock types, follow these rules:

 \square $\;$ For an active-high pin, CLK, use the simulation command "CLOCKF /CLK"

□ For an active-low pin, CLK, use the simulation command "CLOCKF CLK"

PIN 1 CLK1	;active-high pin
PIN 2 /CLK2	
SIMULATION	
; For active-high pins	
SETF CLK1	;Generates JEDEC "1" force
SETF /CLK1	;Generates JEDEC "0" force
; For active-low pins	
SETF CLK2	;Generates JEDEC "0" force
SETF /CLK2	;Generates JEDEC "1" force
; Global clock	
CLOCKF	; Generates JEDEC "C" clock on default clock
; For active-high pins	
CLOCKF CLK1	;Generates JEDEC "C" clock
CLOCKF /CLK1	;Generates JEDEC "K" clock
; For active-low pins	
CLOCKF CLK2	;Generates JEDEC "K" clock
CLOCKF /CLK2	;Generates JEDEC "C" clock

Waveform	Test Condition	Description
	0	Drive input low
	1	Drive input high
	С	Drive input low, high, low
	D	Drive input low, fast transition
	К	Drive input high, low, high
	U	Drive input high, fast transition

Errors are generated if a "C" clock is asserted on a pin the state of which is initially high. Errors are generated if a "K" clock is asserted on a pin the state of which is initially low.

Product Term-Driven Clocks

The Simulator supports JEDEC "U" and "D" transitions for dedicated clock pins. A SETF on a pin will generate "U" and "D" JEDEC states only if the pin name is placed on a dedicated clock pin or the pin drives nothing but clock signals. A warning is generated if the pin is used both as a clock and a data input.

The purpose of "U" and "D" clocks is to allow data from all other inputs to be stable before a latch enable or clock transition occurs. Some dedicated clock pins can be used both as clock and as data pins. Be aware that on a JEDEC tester this can cause some data lines to be driven at the same time or later than clock signals.

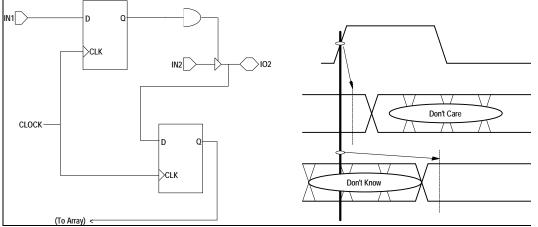
To avoid potential test problems with the simulation command "SETF," the test data and CLK/LE transitions should occur in separate test vectors. "C" and "K" clock transitions should be used to drive pins that affect register clocks.

The Simulator supports both fast-rise and fast-fall transitions for dedicated clock pins on all devices controlled by the SETF syntax. Data from all other inputs must be stable before a latch enable or a clock transition occurs.

Some dedicated clock pins can be used as both clock and data pins. (For example, in the MACH435 device, pins 20, 23, 62, and 65 can be used both as dedicated clocks and data inputs.) When using such pins as data inputs, be aware that some data lines could be driven at the same time or later than clock signals on a JEDEC tester, leading to differences between simulated and observed programmer behavior. To avoid this problem, write simulation SETF and test patterns so that data and CLK/LE transitions occur in separate test vectors. AMD recommends that only CLOCKF commands be used to drive pins that affect register clocks.

Simultaneous Events

While the MACH devices allow the application of SET and RESET signals at the same time, removing both signals at the same time results in an unknown state. Always remove SET and RESET signals in separate test vectors.


Power-Up Preload On Floating Pins

The Simulator requires a physical location to preload pins with a power-up state. If there are floating pins, the register value will be set to "X" (the unknown value) at start-up. As a result, some test cases will generate different results if they are executed with floating pins. The work around is to simulate after back-annotating the design using the "Last successful placement" option

Output Buffers

The Simulator does not always choose the correct input symbol set over the output symbol set when a common clock is used both to load an input register and control the output enable. (1 and 0 form the input set; H and L form the output set.)

When the effect of using a pin in a single test vector for both input and output operations is considered, the problem becomes apparent. When a pin changes from an input logic state (represented by "0" or "1" in the JEDEC signal vector) to an output, the Simulator cannot decide which symbol to use to denote the signal level during the transition period, resulting in possible simulation errors, as shown in the following figure.

To avoid this problem, separate the three-state buffer control from the clock event controlling the output register, by adding an extra input to the product term controlling the three-state buffer.

Input Signal Ordering

Programmers apply inputs to a device in different sequences. Some apply inputs in sequential pin order, some apply them in groups of eight pins at a time, and others use different schemes. With so many possibilities, no simulator can handle all situations.

To minimize the chance of errors, define test vectors with device logic in mind, avoiding potential races in test vector definition so that any variation in the input sequences will produce the same result. In conventional synchronous logic, this is not a problem—all data input transitions are applied before the device is clocked. However, you should avoid simultaneous clock events.

The problem is more difficult for asynchronous logic designs. Control functions like SET and RESET should be applied and removed in separate test vectors with an "idle" state in between, so that even if input changes are skewed, both control functions will not be applied simultaneously. Likewise, data changes should be separated from storage-enabling or clocking events, so that the ordering of input changes is less likely to have an effect on the output.

Preventing Unexpected Simulation Behavior

The following subsections give work- arounds for common simulation problems:

Placement Information Missing

The Simulator needs placement information, generated by the Fitter, in order to model correctly the Set and Reset functions for each register. Always run the Fitter until a successful fit is found before running the Simulator.

Set/Reset Signals Swapped

When the **SET/RESET treated as DONT_CARE** field (MACH Fitting Options form) is set to "Don't Care," the Fitter sometimes swaps the Set and Reset product terms of individual registers to allow them to be grouped together in the same PAL block of the MACH device. You can prevent this by grouping registers that share identical Set and Reset product terms into the same PAL block, using the GROUP MACH_SEG_x statement. Refer to MACH_SEG_x in Chapter 5, "Language Reference," for details.

Set/Reset Signals Treated As "Don't Care"

Setting the SET/RESET treated as DONT_CARE option in the MACH Fitter Options form to "Y" can result in unexpected behavior in registers for which you specified only the Set or only the Reset condition. For example, if you write the following initialization equations:

OUT1.SETF = A * B

OUT1.RSTF = INIT

OUT2.SETF = A * B

and leave the Reset condition for OUT2 unspecified, the Fitter can (if the SET/RESET treated as DONT_CARE option is set to "Y") use the same Set and Reset lines for both OUT1 and OUT2. This results in OUT2 resetting on the INIT condition—an unspecified behavior.

To prevent unexpected behavior, do one of the following: Do not set the SET/RESET treated as DONT_CARE option to "Y"

□ If the Fitter adds a Set or Reset line and such behavior is acceptable, make it explicit by adding the missing .SETF or .RSTF functional equation(s) to your design.

Uncontrollable Power-Up Conditions

Power-up conditions in registers are not under your explicit control. The order in which Set and Reset equations are implemented by the Fitter determines, for each register, which product term (Set or Reset) is associated with the power-up detection circuit.

The Simulator models correctly the configuration information provided by the Fitter, but you cannot control the assignment of the power-up detection circuit. To initialize the device dependably, provide initialization logic in your design, and provide an explicit initialization test vector at the beginning of the SIMULATION segment or auxiliary simulation file, to initialize registers to a known state. Do this in either of the following ways:

Specify a set and reset product term for each macrocell.

Add an initialization product term to the sum-ofproducts logic for each signal you want to initialize.

8 Using the Fitter

Contents

Overview 281 The Fitting Process 281 Initialization 281 Normalization 282 **Design Rule Check** 282 282 **Block Partitioning Iterative versus Non-Iterative Partitioning** 283 284 Manual Partitioning **Resource Assignment (Placement and Routing)** 284 Designing to Fit 285 Methodology 285 **Analyze Device Resources** 286 286 **Clock Signals** All Devices 286 MACH 3xx/4xx 286 287 MACH 215/3xx/4xx Set/Reset Signals 288 Available Set and Reset Lines 288 MACH 3xx/4xx 288 Interaction of Set and Reset Signals (All Devices Except MACH215) 288 Reserving Unused Macrocells and I/O Pins 289 **Product Terms** 290 291 **Strategies for Fitting Your Designs** 293 Fitting with Unconstrained Pinout Fitting with Constrained Pinout 293 Interconnection Resources 295 **Oversubscribed Macrocells and/or Inputs** 295 Large Functions at the End of a Block 296 Adjacent Macrocell Use 297 **Grouping Logic** 297 Setting Compilation and Fitting Options 298

Chapter 8: Using the Fitter 279

Overview

Reducing Non-Forced Global Clocks 298 Gate Splitting 298 All MACH Devices 300 MACH 3xx/4xx Devices 300 Failure to Fit on Second Pass 302 Understanding Global Clock Signals 303 Balancing Clock Resources and Requirements 303 Global Clock Rules 304 Conditions Forcing Placement at a Global Clock Pin 305 Manually Forcing a Clock Signal to be Global 306 Conditions Forcing Non-Global Clocks 307 Resolving Contradictions 308

Overview

The last phase of the compilation process for MACH-device designs is the fitting process. During fitting, the design is mapped to the physical resources of the specified MACH device. The goal of the fitting process is to discover a set of pin/node placements and signal routings that satisfy design requirements.

The Fitting Process

The fitting process consists of four phases. An understanding of each phase can help you choose the best corrective action if the design does not fit.

- □ Initialization
- **D** Block partitioning
- **D** Resource assignment
- **D** Report file generation

Note: Before the Fitter can operate, the Logic Minimizer must process the design. Like all of the earlier process modules, the Logic Minimizer produces a .TRE file that you can disassemble to study the effects of the Logic Minimizer on the design. The Logic Minimizer also produces a .PLA file, which the Fitter uses to complete the compilation process.

Initialization

One or both of the following files are read by the MACH Fitter during the initialization phase:

Design.PLA is produced during compilation and is always read by the Fitter. It contains the target device type, signal information from pin and node statements, and the design description encoded in Boolean sum-of-products form.

D Design.PLC contains data generated during the last successful fitting process or during a previous, saved fitting process. It includes pin and node placement information that reflects the compilation and MACH fitting options you've specified.

Fitter initialization includes the following two processes:

Normalization

Each clock signal is evaluated and classified as a global clock or a non-global clock. The Fitter attempts to place all global clock signals at global clock pins (check the log file for the status of all clock signals after Normalization). Undefined pins/nodes and nodes that are defined but not referenced are discarded from the design during Normalization (warning messages are generated).

Errors are reported if the design exceeds the device's product term, macrocell, pin, or clock resources.

Design Rule Check

Information about the internal architecture of the specified device is loaded and resource checks are performed on the design.

Block Partitioning

After initialization, the design is segmented into individual blocks of the specified MACH device. Segmentation is achieved by assigning logic to specific PAL blocks, based on the following considerations:

□ Individual signal preplacements and GROUP MACH_SEG_x block-grouping preplacements

□ A block's available internal resources (free macrocells, product terms, clock signals, and so forth)

□ The switch-matrix interconnect resources available to the block

Iterative versus Non-Iterative Partitioning

The Partitioner considers commonality of signals, macrocell requirments, Set/Reset requirements, product-term requirements, and other factors to determine which partition is mostlikely to succeed in fitting the design. Only partitions that are likely to succeed (according to the Partitioner's rules) are attempted, regardless of whether you select iterative or non-iterative partitioning.

If the **Iterate between partition and place/route** option of the MACH Fitting Options form is set to "Y," the Partitioner chooses the partition that is most likely to succeed, proceeds to the Resource Assignment phase described below, and attempts a finite number of placements. If none of these placements result in a successful fit, the Partitioner uses the data from the last place-and-route attempt to pick a new partition and then the place-and-route cycle is repeated. This continues until one of the following occurs:

- **D** The design is fitted successfully
- \Box The user-set time limit expires

 $\hfill\square$ All of the likely-to-succeed partitions have been exhausted

If the **Iterate between partition and place/route** option of the MACH Fitting Options form is set to "N," the Partitioner chooses the "best" partition (the one that is most likely to succeed, according to the Partitioner's rules) and performs exhaustive placement and routing until one of the following occurs:

- The design is fitted successfully
- The user-set time limit expires

□ All placements within the "best" partition have been exhausted

Manual Partitioning

>

Note: Except for the purpose of matching a desired pinout, manually preplacing signals at pins should be a last resort. Before attempting this, try setting the **Gate split max num**. **pterms per eqn** option of the Logic Synthesis Options form to a lower value (which affects all equations in the design) or create a LIM file to reduce the number of macrocells and logic array inputs to be allocated in individual PAL blocks. (Refer to Appendix C, "Creating a LIM file," for more information.)

Proper block partitioning is critical for a successful fit. Block partitioning is usually best left to the Fitter, but you can manually guide this process by doing the following:

□ Preplacing portions of the logic in specific blocks using the reserved word, MACH_SEG_*x*, as a name in a GROUP statement (where *x* represents the letter that corresponds to a PAL block). For example, the following statement preplaces signals A2, B3, and C4 in PAL block C: GROUP MACH_SEG_C A2 B3 C4

Preplacing individual signals at physical pins and nodes (not recommended).

Resource Assignment (Placement and Routing)

Placement is the assignment of physical block resources such as I/O pins, XORs, registers, and product-term clusters to logic equations. *Routing* is the assignment of switch-matrix interconnect resources to logic equations.

In the placement phase of the fitting process, individual equations are assigned to physical resources, as follows:

□ Logic equations associated with specific pins are assigned first.

 $\hfill\square$ Buried logic functions are placed in the remaining unused macrocells.

□ Inputs are assigned to any available pins last. These pins can be dedicated inputs pins, clock/input pins, or I/O pins that correspond to macrocells that are either unused or used to implement buried logic functions.¹³

In the routing phase, the Fitter attempts to route input, output, and feedback signals to and from the physical resources assigned in the placement phase. If the Fitter fails to route all signals, another placement is tried. The Fitter continues trying different placements, and different routing options within each placement, until a successful fit is found or the time allotted for fitting is exceeded.

Designing to Fit

≫

A clear understanding of the fitting process and the resources available in the MACH device can help you make sound decisions to achieve the density and performance you need. Study the device data sheet for insights on how best to structure your designs to fit the target MACH device. Decisions you make when entering the design and the logic synthesis, compilation, and fitting options affect the amount of logic that can fit in the device. Some of your decisions also affect design performance.

IMPORTANT: The recommended methodology is to float all signals initially. With all signals floating, the software determines placements and has the greatest chance of achieving a successful fit.

After finding a successful fit you can try modifying the placements to achieve a more desirable pinout.

Methodology

The following sections explain how to evaluate your design in terms of the MACH device's resources

Analyze Device Resources

A preliminary analysis of the device resources required by your design can help you identify potential resource deficiencies early.

Clock Signals

All MACH devices support multiple clock signals. However, clock configurations differ across MACH families. □ MACH1xx/2xx devices have either two or four clock pins. All registers are synchronous: each register must be clocked by one of the global clocks.

□ The MACH215 device has two global clock pins. Registers can be synchronous or asynchronous: each register can be clocked by one of the global clocks or by a product-term clock.

□ MACH 3xx/4xx devices have four global clock pins. Registers can be either synchronous or asynchronous: each synchronous register must be clocked by one of the global clocks; each asynchronous register must be clocked by one of the global clocks or by a product-term clock.

All Devices

The Device-Resource Check portion of the fitting report shows the number of clock pins used in the design. For example, a typical report may show the following:

	marrante	obca	
Remaining			
Clocks:	4	1	3

In the example above, only one clock pin is used, though four were available. Three clock pins remain available in this case.

MACH 3xx/4xx

Each register can be either synchronous or asynchronous. All four global clock signals (and their complements) are available to every synchronous macrocell in the device through the block clock mechanism (but not all combinations of clock polarity are available at the same time).¹⁴ If your design requires more clock signals than there are global clock pins, you can define a product-term clock for some or all of the macrocells (but synchronous macrocells must use global clocks rather than product-term clocks).

MACH 215/3xx/4xx

It is important to understand how the Fitter determines whether a clock signal is global or

Designing to Fit

non-global, because MACH 215/3xx/4xx devices can accommodate no more than four global clock signals. (Refer to "Understanding Global Clock Signals" later in this chapter for more information.)

Note: The log file shows how each clock signal was implemented: as a global clock or as a product-term clock, and why. Refer to "Log File" in Chapter 9, "Report Files," for more information. Given adequate resources and the default menu options, the Fitter will place singleliteral, floating, non-block-restricted clock signals at global clock pins. If your MACH 3xx/4xx design requires fewer than four clocks for synchronous signals, you can facilitate fitting by reducing the number of clock signals that the Partitioner places at global clock pins. (Refer to "Reduce Non-Forced Global Clocks Option" in this chapter for details.) One way to speed partitioning is to blockrestrict single-literal clock signals that are intended to be non-global. (Refer to "MACH_SEG_x" in Chapter 5 for instructions on restricting signals to specific blocks.) Avoid preplacing global clocks where possible. Preplacing global clocks reduces partitioning flexibility and can, in some cases prevent the Fitter from finding a successful fit. Preplacing a global clock signal also reduces the permutations of clock assignments, which can result in a failure to fit or require you to preplace all global clock signals. Set/Reset Signals When designing to fit, you must consider the following: The number of Set and Reset lines available to each macrocell

□ How the Set and Reset signals of synchronous macrocells interact when they are partitioned into a common block

Available Set and Reset Lines

In synchronous mode, each macrocell has a full set of product terms (five before steering product terms from adjacent macrocells) as well as one line for each of the following: block clock, block Set, and block Reset.

MACH 3xx/4xx

In asynchronous mode, the maximum number of product terms available for logic equations in the macrocell (without steering product terms from adjacent macrocells) is reduced from five to three, as follows:

 One of the original five product terms is reassigned to control either set or reset.
 This gives each asynchronous macrocell either a Set or a Reset line (but not both).

□ One of the original five product terms is reassigned to define the clock product term for the macrocell.

The reduction in available product terms affects only the product-term cluster aligned with the asynchronous macrocell. (Refer to "Asynchronous Mode" and "Cluster Size" in Chapter 10 for details.)

Interaction of Set and Reset Signals (All Devices Except MACH215)

The Fitter will avoid partitioning a synchronous signal in a PAL block in which the following conditions would exist:

□ The signal to be partitioned has a Set or a Reset condition, but not both.

Placement in that PAL block would cause the signal to inherit a Set or Reset condition that contains a term in common with the Set or Reset signal it already has. This is true even if the SET/RESET treated as **DONT CARE** option in the Logic Synthesis Options form is set to "Y." For example, the signal OUT2 that has a Reset equation OUT2.RSTF = X * Y will not be placed in a block in which it would inherit the Set condition X * Z, because the term "X" is common to both equations. However, OUT2 could be placed in a block where it will inherit the Set equation /X * Z, because there is no overlap between "X" and "/X." It is important to note that the Fitter does not check exhaustively for overlapping Set and Reset conditions, but only for Set or Reset equations that have terms in common with the pre-existing Set or Reset conditions.

Reserving Unused Macrocells and I/O Pins The addition of logic to a design that previously fit on a given MACH device can sometimes make it impossible to fit the design on the same device. In some cases, the amount of new logic is not enough to prevent a successful fit, but does require changing the pinout. To improve the odds of being able to add logic later, without changing the pinout, many designers add one or more "dummy" product terms to existing equations during design development and Fitting. After the design is fit on a MACH device with the "dummy" product terms, the design file is back-annotated to lock in the pinout, the "dummy" product terms are commented out, and the Fitter is run again.

The process of adding "dummy" product terms is simple: each product ORed with the equation increases the equation's product-term utilization by one. The only potential for difficulty arises because the Fitter discards from the finished design all pins and nodes that are unreferenced (not used in equations), even if they are declared properly using PIN or NODE statements. Equations of the form rpin1 = rpin1 + ... + rpinN

will inhibit the discard of pins rpin1, ..., rpinN, which are otherwise not used in the design file. The variable on the left side of the equation must be referenced (that is, appear on the right side of the same equation) in order not to be discarded. It is important to note that both product term and fanin requirements are imposed on the block where rpin1 ultimately resides and the size of those requirements is equal to the number of distinct variables on the right side of the equation. Therefore, if many pins are to be reserved during early iterations of a fitting process, it is prudent to write several equations using the form given above.

You can reserve an XOR term for the pin referenced on the left side of the equation by changing one of the '+' symbols on the right side to the XOR operator (:+:).

Product Terms

MACH devices have a varying number of product terms. For example, the MACH435 can support up to 640 product terms.

Five product terms are available to each macrocell in the MACH 3xx/4xx device in the synchronous mode (three in the asynchronous mode). Synchronous equations with multiples of five product terms, and asynchronous equations with multiples of three product terms, make the most efficient use of device resources. Equations with more product terms are realized using product-term steering or gate splitting.

□ (MACH 3xx/4xx only) Product-term steering uses resources from more than one macrocell but requires only one pass through the array. Equations with up to 20 product terms (for synchronous operation, 18 product terms for asynchronous operation) in the can be implemented using this method.

□ If you enable the automatic gate-splitting option, equations containing more than the maximum number of product terms are implemented using gate

Strategies for Fitting Your Designs

splitting. This requires multiple passes through the array and results in increased propagation delay. Each method has its advantages. Implementing a design without gate-splitting results in faster designs because propagation delay is reduced to a single pass. On the other hand, gate-splitting facilitates fitting by reducing the maximum number of product terms needed for any one equation. Equations with many product terms are often difficult to fit even if they are within nominal limits (for example, MACH 3xx/4xx devices have 20 product terms for combinatorial and synchronous macrocells, 18 product terms for asynchronous macrocells) because available clusters may have fewer product terms than expected. Refer to "Cluster Size" in Chapter 10 for details.

Strategies for Fitting Your Designs

The MACHXL software attempts every possible signal placement within the partitioning arrangement chosen by the Fitter (unless you specify otherwise, for MACH 3xx/4xx designs only, by setting the **Reduce Routes Per Placement?** option of the MACH Fitting Options form to "Y.")

Manual-assisted fitting consists of grouping certain signals in the same PAL block and/or bindingcertain signals to specific I/O pins. When using MACHXL software, manual-assisted fitting will sometimes:

G Fit a design that fails to fit automatically, especially if the failure to fit was the result of poor partitioning

 \Box Help designs that would fit anyway to fit faster and allow you to specify the desired pinout.

Manual-assisted fitting can be done by placing signals at specific pins or by using GROUP MACH_SEG_x statements to force the Fitter to partition certain signals in the same PAL block. For example, the following statement forces the Fitter to partition signals A2, B3, and C4 into PAL block D: GROUP MACH_SEG_D A2 B3 C4

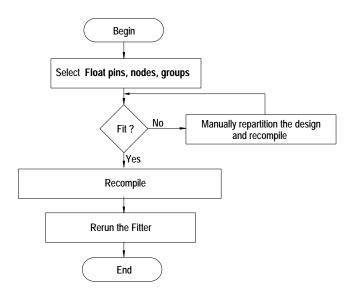
The fitting strategy for MACHXL is different from the strategies used to fit designs using PALASM 4 software. The MACHXL fitting strategies can be divided into two classes:

- Exhaustive fitting
- Image: Manual-assisted fitting

Exhaustive fitting	 To perform exhaustive fitting, float all pins and nodes, and set the following options in the MACH Fitting Options form as follows: Set Reduce Routes Per Placement? to "N"¹⁵ Set Iterate between partition and place/route to "Y" Set Run Time Upper Bound in 15 minutes to "0"
	If the design fails to fit, you will have to modify the design.
Manual-assisted fitting	Manual-assisted fitting will sometimes find a fit for a design that failed to fit using exhaustive fitting. If you already know that the design will fit when partitioned a certain way and/or with fixed pin locations, manual-assisted fitting can greatly increase the speed of fitting. Manual-assisted fitting is also the only way to specify a desired pinout.

There are two fundamental fitting scenarios, each of which requires a different approach:

D Fitting a design with no regard to the resulting pinout.

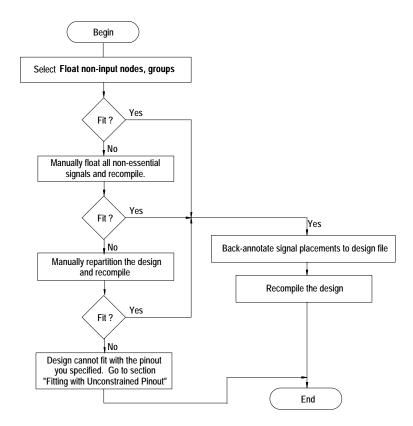

□ Fitting a design in which the mapping of some or all I/O signals is constrained. (This often happens when modifying an existing design or when substituting a different MACH device for the device on which the design was originally implemented.)

Fitting a design with no regard to the resulting pinout is the ideal, and recommended, situation, since it allows the Fitter maximum freedom to find a suitable fit. Fixing the location of signals reduces the Fitter's opportunities to find a fit. On the other hand, if the device can accommodate the design with the specified pinout, fixing the locations of signals can greatly reduce fitting time.

There is a different fitting strategy for each of these scenarios. These strategies are covered in the following two subsections.

Fitting with Unconstrained Pinout

The following diagram illustrates the procedure for fitting a design with unconstrained pinout.


Fitting with Constrained Pinout

The diagram on the next page illustrates the procedure for fitting a design with constrained pinout. Begin with the design file backannotated from the previous fitting pass or manually specify the location of critical pins.

Note: Use GROUP MACH_SEG_x statements (refer to Chapter 5 for details) to partition equations manually into specific PAL blocks, if necessary.

If you are <u>sure</u> the design will fit with all output- and buriedmacrocell positions fixed, you can speed processing by beginning with the Handling of preplacements field on the MACH Fitting Options form set to "No Change." In all other cases, begin with this field set to "Float non-input nodes, groups" to maximize your chances of a successful fit.

Chapter 8: Using the Fitter 293

You can frequently reduce the amount of time it takes to fit a design by setting the **Reduce Routes Per Placement** option in the MACH Fitting Options form (MACH 3xx/4xx only) to "Y." Refer to the "MACH Fitting Options" section of Chapter 4 for more information on this option.

Interconnection Resources

Utilization of interconnection resources is one factor in the fitting process. The software considers device utilization as part of the MACH fitting process. You can reduce device utilization using techniques described in the next three sections. These techniques will improve the efficiency of fitting your design in a MACH device.

Oversubscribed Macrocells and/or Inputs

If the **Balanced partitioning** field of the Logic Synthesis Options form is set to "N," the Partitioner places as many signals as possible in each block before moving on to the next block. This may result in some blocks in which all available macrocells and/or input signals are used, while other blocks are relatively empty.

The easiest way to avoid oversubscribed macrocells is to leave the Balanced partitioning field of the Logic Synthesis Options form set to its default value: "Y." You can also create a Partitioning Limit (LIM) control file to limit, on a block-byblock basis, the number of macrocells and/or inputs partitioned in one or more blocks, in order to balance resource utilization across blocks and speed fitting. (Refer to Appendix C, "Creating an LIM File" for instructions.) In many cases, reducing the maximum number of array inputs and the maximum number of macrocells that can be assigned to a block improves the speed of fitting. There are some cases, however, in which reducing either of these resources can slow or prevent a successful fit. For example, if there are eight signals that share 20 inputs in common, they obviously belong in the same block, since placing any one of them in a different block results in the immediate consumption of 20 array inputs in the second block, if inputs are not common to any other signals. If the other signals that must be placed in the second block require more array inputs than are available, the strategy of reducing the first

block's maximum number of macrocells will result in failure to fit a design that otherwise might have fit successfully. The Place and Route Data (PRD) file shows how each block's resources are utilized. This utilization data is useful in determining whether a LIM file is needed. (Refer to "Using Place and Route Data to Limit Placements" in Chapter 9 for more information.)

Large Functions at the End of a Block

The macrocells at the end of a block have access to fewer product terms than other macrocells.

Cell number 0, the first cell in all MACH devices, can access the product term clusters from adjacent, higher-numbered cells (two clusters for MACH 2xx/3xx/4xx devices; one cluster for MACH 1xx devices), but cannot access any lower-numbered cells (cell 0 being the lowest-numbered cell in the block). Therefore, equations assigned to the first cell in a block can use no more than *n* product terms (MACH 3xx/4xx devices: n = 15; MACH215 device: n = 8; MACH 1xx devices: n = 12).

D The last cell in a block can access the product term cluster from the adjacent lower-numbered cell, but cannot access any higher-numbered cells. Therefore, equations assigned to the last cell in a block can use no more than *n* product terms (MACH 3xx/4xx devices: n = 10; MACH 1xx/2xx devices: n = 8). This is not an issue if you float output and buried nodes, which should never be pre-placed under normal circumstances.

Refer to Chapter 10, "Device Reference," for more information.

Adjacent Macrocell Use

If you want to preplace signals (not recommended unless pinout configuration is important), follow these guidelines:

Do not place large equations at the beginning or end of a PAL block.

□ Signals that share many common inputs should generally be grouped in the same PAL block (the Partitioner does this automatically). Signals that do not share many common inputs should generally be distributed across several PAL blocks to avoid overburdening the switch matrix for a single block.

□ Leave adjacent macrocells empty in a MACH 4xx design when placing functions using double feedback and input registers. Additional interconnection resources are needed for functions that use feedback from the output macrocell and the buried macrocell. This is also true for functions that use input registers. Leave adjacent macrocells empty when placing these functions.

Grouping Logic

Block partitioning is one of the most important phases of the fitting process. In this phase, the software segments the design into groups to be fit into blocks in the MACH device. In general, manual attempts at partitioning through pin grouping (using the GROUP MACH_SEG_x syntax described in Chapter 5) do not help—and may hinder—the Fitter software in its task. If you are updating a design, however, preserving the old signal grouping can sometimes speed fitting. Manual grouping has the best chance of success when both of the following conditions are satisfied:

 \Box The new design makes only minor modifications to the original design.

□ The original design had excess resources in the PAL blocks to which you are making changes.

Fitting success is largely a function of the number of available placement permutations within and between blocks. Logic grouping allows you to place a subset of the logic into a particular block without placing any other restrictions on specific cell placement. If you do attempt manual grouping, try to place logic with common inputs and feedback in the same block. This minimizes the number of signals crossing between blocks, which results in a lower demand for interconnection resources and an increased likelihood of a successful fit.

Setting Compilation and Fitting Options

You can affect the fitting process by changing the setting of various compilation and fitting options. A common design methodology is to use the default settings in the Compilation, MACH Fitting Options, and Logic Synthesis Options forms, then review the results of the compilation process.

Reducing Non-Forced Global Clocks (MACH215 and MACH 3xx/4xx Devices Only) The Reduce Non-forced Global Clocks? option on the MACH Fitting Options form, when set to "Y," allows you to restrict the Fitter's freedom to place such signals at global clock pins. The quantity of singleliteral, floating, non-block-restricted clock signals placed at global clock pins can be no greater than the total number of global clock pins minus the value assigned to the Reduce Non-forced Global Clocks? option.

Gate Splitting

Gate splitting is a technique by which equations that are too large to fit on the product terms available to a single macrocell are split among more than one macrocell. The feedback from the additional macrocells is used to complete the required equation. The advantage of gate splitting is that it allows you to implement equations that otherwise would be too large. The disadvantage is the propagation delay that is introduced by each successive pass of a signal through the AND/OR array.

The Use automatic gate splitting option on the Logic Synthesis Options form controls the splitting of equations into smaller ones with fewer product terms. Reducing the gate-splitting threshold is most useful if most equations are well below the maximum number of product terms the device can place at a macrocell and one or two equations exceed the maximum size. In this case, the Minimizer's default method of operation is to place as many product terms as possible at each macrocell and split the remainder as required.

Example

A MACH211 design consists of six equations having 12 product terms each and two equations having 17 product terms each. (A MACH211 macrocell can implement up to 16 product terms without gatesplitting.) The Fitter can implement each of the six smaller equations as single-macrocell equations, but the two larger equations must be implemented using two macrocells each. In its default mode, the Minimizer will split each of the 17-product-term equations into one equation of 16 product terms and one equation of 2 product terms (the extra product term is required to accept feedback from the second macrocell).

Reducing the gate-splitting threshold to 12 will result in less of an imbalance in the number of product terms placed at each macrocell. Each of the original, 12-product-term equations remains at a single macrocell, while the two larger equations are again split into two macrocells each: one with 12 product terms and one with six product terms. Thus, none of the equations is at the maximum capacity of its macrocell, which improves the odds of fitting the design and makes it easier to add logic to the design later.

Note: Do not reduce the gate-splitting threshold if doing so will cause many equations to be split. If, for instance, the preceding example's six smaller equations had contained 15 product terms each, setting the gate-splitting threshold to 12 would have caused all eight equations to be split, resulting in 16 under-utilized macrocells.

The gate-splitting threshold option operates as follows:

□ If the option is set to "N" (the default setting), your equations will not be changed. The Fitter will fail to fit any equation having more product terms than can be accommodated in a single macrocell using the macrocell's product terms and product terms steered to it from adjacent macrocells.

□ If the option is set to "Y," the Minimizer will perform gate splitting. Every equation that contains more than the threshold number of product terms will be divided into multiple equations with fewer product terms each. The gate-splitting threshold is defined as the lesser of the following:

• The value you set using the Gate split max # pterms per eqn field of the Logic Synthesis Options form

◆ MACH 1xx devices: 12 product terms. MACH 2xx devices: 16 product terms MACH 3xx/4xx devices: 20 product terms for combinatorial signals and signals that are unambiguously synchronous, 18 product terms for all registered signals other than unambiguously synchronous ones. (Refer to "Synchronous vs. Asynchronous Operation" in Chapter 10 for details.)

The number of equations that result from gate splitting depends on a) the number of product terms in the original equation and b) the setting of the **Gate split max # pterms per eqn** field of the Logic Synthesis Options form.

All MACH Devices

The automatic gate-splitting feature eliminates the need for manual gate-splitting and iterative fitting attempts due to signals that have more product terms than the macrocells to which they are mapped.

MACH 3xx/4xx Devices

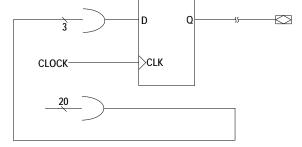
The Minimizer treats as asynchronous (split at 18 product terms) all registered signals that are not forced to be synchronous. If you have an equation with 19 or 20 product terms

Strategies for Fitting Your Designs

that you want implemented without gatesplitting, you must provide conditions that are unambiguously synchronous. (See "Forcing the Synchronous Mode" in Chapter 10 for details.)

Example

Consider the following:


An unambiguously synchronous registered equation with 22 product terms

Use automatic gate splitting field set to "Y"
 Threshold set to 20

Gate split max # pterms per eqn field set to

20

The equation will be split into two equations, one with 20 product terms and one with 3 product terms, as shown below.

It will take two passes through the array to implement the new equations. Using product-term steering for the MACH 3xx/4xx device, you can implement equations

of the following sizes without gate-splitting: ¹⁶ Registered equations in asynchronous macrocells with up to 18 product terms

Registered equations in synchronous macrocells with up to 20 product terms

Combinatorial equations with up to 20 product terms

If you have a MACH 3xx/4xx design that contains equations with more than the number of product terms allowed by the corresponding macrocells, you must set the gate-splitting option to "Y" and set the threshold and Gate split max # pterms per eqn fields to appropriate values. For maximum device speed, you should set the Use automatic gate splitting option to "N" and let the Fitter implement asynchronous equations with 18 or fewer product terms and synchronous or combinatorial equations with 20 or fewer product terms using product-term steering. Equations implemented using this method require only one pass through the array. Product-term steering also decreases the total demand for signal routing resources because no feedback signals are required. After partitioning, the MACHXL placer looks for valid placements that satisfy product term requirements, MACH SEG x restrictions, and any preassignments. After a placement is found, the router attempts to connect all the placed signals to the logic blocks requiring these signals.

If a route is not found, the router checks alternate routes through the input muxes. If these alternate routes still do not succeed, the placer tries a new placement.

The MACHXL Fitter continues trying to fit the design until one of the following occurs:

- $\Box \qquad \text{The design fits}$
- □ All possible placements are exhausted
- **The time limit you specified is reached**

Failure to Fit on Second Pass

In the unlikely event that a design that fit previously fails to fit after back-annotation or using a PLC file, follow these steps:

1. Open the Compilation Options form (File:Set up:Compilation Options).

2. Highlight the Handling of Preplacements field in the MACH Fitting Options form and press the F2 key to display the list of available options.

3. Select the "Float non-input nodes, groups" option and press the Enter key.

4. Press the F10 key to confirm your choice.

5. Recompile the design.

Floating non-input nodes and groups does not affect device pinout but does allow the Fitter greater flexibility than does a fully-specified preplacement.

Understanding Global Clock Signals

(MACH215 and MACH 3xx/4xx Devices Only)

A global clock is a signal that has two essential qualities:

□ It is selected for placement at a global clock pin

I It is routable through the block clock mechanism

If you specify more than four clock signals ¹⁷ in an all-synchronous MACH 3xx/4xx design, the fitting process will fail. ¹⁸ Synchronous macrocells must receive their clock signals through the block clock mechanism that is only available for clocks signals originating at one of the device's four global clock pins.

Balancing Clock Resources and Requirements

Each MACH 3xx/4xx design can use up to four global clock signals. Whether a given clock signal is global or product-term driven depends on the following rules.

If more than four clock signals that qualify for global implementation are defined, the four most-used clock signals are implemented as global clocks, if possible. If clock signals are used an equal number of times, they are selected for global implementation in the order in which they appear in the .PLA file (see the "Initialization" section at the beginning of this chapter for information on the .PLA file). The Fitter then attempts to reduce the number of clock signals that must be placed at global clock pins by removing forcing conditions. For example, if a pin is input-paired and defined as registered, the input pairing forces the corresponding clock signal to be global. If this is the only condition forcing that clock signal to be global, the Fitter removes the input-pairing and prints an appropriate warning message in the log file.

After the available global clocks are defined, all remaining clocks are product-term driven rather than global.

Global Clock Rules

MACH 3xx and 4xx devices permit inputs to the global clock pins to be routed two ways:

□ Signals from global clock pins 0, 1, 2, and 3 are available through the block clock mechanism to clock synchronous macrocells. Signals

from global clock pins 0 and 1 are available through the block clock mechanism to clock asynchronous macrocells.

□ Signals from all four global clock pins can be routed through the central switch matrix for use as logic inputs or product-term clocks. ¹⁹ The same inputs to clock/input pins (all devices except MACH465) can be routed both through the block clock mechanism and through the central switch matrix, simultaneously. (Refer to "Global Clock Acquisition" in Chapter 6 for more information on the routing of global clocks.)

If a clock signal is defined as anything other than a single, combinatorial input pin, the clock must be product term-driven rather than global. (A clock driven by feedback or a registered input is thus a product-term driven clock.)

If a clock signal is defined as a single input pin but the pin is placed manually at a pin other than one of the four global clock pins, the clock must be product-term driven rather than global.

Conditions Forcing Placement at a Global Clock Pin If one or more of the following conditions exists, a clock signal must be placed at a global clock pin:

□ It is the default clock. (That is, it is neither declared nor used in any equations, but is implicitly necessary to clock registers or latches used in the design.) The "MACH 3xx/4xx Design Considerations" section in Chapter 10, "Device Reference," lists the default clock pin for each device.

□ It is declared a pin and clocks or latch-enables either a) a preplaced, input-paired node or b) any other node that satisfies none of the forcing conditions for non- globality. (Refer to the next section for forcing conditions for nonglobality.)

It is declared a pin and controls a signal having both non-ground Set and non-ground Reset conditions. (That is, it clocks or latch-enables a signal that must be placed in a synchronous macrocell because of Set/Rest requirements.)

□ It is declared a pin and controls a signal having more product terms than can be accommodated by an asynchronous macrocell. (That is, it clocks or enables a signal that must be placed in a synchronous macrocell because of product-term requirements.) $\hfill\square$ It is preplaced at a global clock pin and the Global Clocks routable as Pterm Clocks? option of the MACH Fitting Options form is set to "N."²⁰

Manually Forcing a Clock Signal to be Global According to the global clock rules described above, some clocks are forced to be implemented as global clocks, some are forced to be non-global, and others are not forced to be either global or non-global. The portion of the log file (*Design.LOG*) that is generated by the Fitter's Normalization process reports the status of each clock signal. If the log file shows that a clock you intended to be global was implemented as non-global, you can force a clock signal to be global by following these steps:

1. Preplace the signal at a global clock pin.

2. Set the Global Clocks routable as Pterm Clocks? option of the MACH Fitting Options form to "N."²¹

3. Recompile the design.

>

Note: Preplacing clock signals at global clock pins can be useful in some situations, but can also inhibit fitting by reducing partitioning flexibility.

Conditions Forcing Non-Global Clocks

A non-global clock is one that is not global. If a signal's clock is non-global, that signal must be implemented using an asynchronous macrocell.

If one or more of the following forcing conditions exists, a clock signal must be non-global:

□ It is declared a node. This is true because feedback from nodes cannot be routed through the block clock mechanism, and all global clocks must be routable through the block clock mechanism.

□ It is an input-paired pin. This is true because the global clock pins are physically incapable of being input-paired.

□ It appears on the left side of an equation. This is true because global clock pins can be used for input only; the appearance of a signal on the left side of an equation implies output.

 \Box It is block-restricted. (That is, it appears in a MACH_SEG_*x* statement.) This is true because all global clock signals must be available to all blocks.

I It is preplaced at a pin other than a global clock pin.

D In MACH465 designs only, a clock must be non-global if one of the following conditions exists:

• The clock name appears on the right side of any equation other than a .CLKF equation.

• The clock name appears as a term in a multi-literal clock equation.

This is because the MACH465 device does not allow signals from the global clock pin to be routed through the central switch matrix, as they would have to be in order to be available as logic inputs.

Resolving Contradictions

If a clock signal satisfies one or more of the conditions that would force it to be global and simultaneously satisfies one or more of the conditions that would prevent it from being global, the clock cannot be implemented and will cause a failure to fit. Contradictions of this type are most likely to occur when adapting a design from a different MACH device to the MACH465, because the MACH465 is more restrictive than other MACH devices in the use of its global clock pins. Such contradictions result in an error message from the Fitter.

To resolve the failure, you must modify the design to remove the contradiction. If the error occurred because the signal was used in the design to clock both synchronous and nonsynchronous macrocells, you can resolve the problem without affecting functionality by following these steps:

1. Add a non-global clock input pin to the design.

2. On the circuit board, route the external clock sig nal to both the non-global clock pin and global clock pin.

3. Substitute the name of the non-global clock pin for the global clock pin in all equations other than the .CLKF equations for synchronous macrocells.

Understanding Global Clock Signals

9 Report Files

Contents

Overview 311 Log File 312 Fitting Report 318 **Header Information** 318 MACH Fitter Options 318 320 **Device Resource Summary** Block Partitioning Summary 322 Signal Summary 324 PRESET, RESET and OUTPUT ENABLED Signal Summary 327 328 Tabular Information Fitting Status 338 Place and Route Data Report 339 **Unplaceable Designs** 340 Unroutable Designs 340 Place and route processing time 341 Place/Route Resource and Usage tables 341 Signal Fan-Out Table 343 Device pin-out list 344 **Block** information 345 Macrocell (MCell) Cluster Assignments 345 Maximum PT Capacity 350 Node-Pin Assignments 351 **IO-to-Node Pin Mapping** 353 IO/Node and IO/Input Macrocell Pairing Table 356 Input and Central switch matrix tables 357 Input Multiplexer (IMX) Assignments 357 Logic Array Fan-in 359 Using Place and Route Data to Limit Placements 362 Timing Analysis Report 364 TSU 366

Overview

TCO	367	
TPD	368	
TCR	369	
Failure 1	Reports	370
Failure	to Partition	370
Failure	to Place	372
Failure	to Route	373

Overview

The log file, *Design*.LOG, is created when you compile a design. Each compilation and fitting program appends its own log data to the log file. (The reports generated separately by the Fitter contain detailed partitioning, placement, and routing information. Refer to "Fitting Report," "Place and Route Data Report," and "Timing Analysis Report," in this chapter, for details.

When the design is successfully processed, the Fitter supplies the user with three additional reports:

D The Fitter report (*Design*.RPT) contains the following information:

♦ A summary of the Fitter options used during the current fitting pass

• Resource and utilization information

• Block partitioning information in the form of summary of resources used by each block

• Information about placements, fanout and fanin of signals to a block

Output pin-to-node pairing

The Place and Route report (*Design*.PRD) contains the following information:

Place and route processing time

Place/Route Resource and Usage tables

• Signal fan-out table sorted in alphabetical order

- Device pin-out list
- Block information
- Input and Central switch matrix tables

The Timing analysis report (*Design*.TAL) gives a timing analysis for all signals

When the Fitter fails to complete processing a design, it generates partial reports. These reports are described in the "Failure Reports" section of this chapter.

Log File

The log file begins by displaying the menu options in effect when the design was processed, as shown below.

```
COMPILATION OPTIONS
Log file name: BAR_4XX.log
Run mode: Run All Programs
Format: Text File: BAR_4XX.PDS
```

```
MACH FITTING OPTIONS
```

SIGNAL PLACEMENT: Handling of Preplacements Use placement data from Save last successful placement Press <f9> to edit file containing</f9>	No Change Design file <f3> Last successful placement</f3>
FITTING OPTIONS: Global Clocks routable as Pterm Clo 22V10/MACH1XX/2XX S/R Compatibility? SET/RESET treated as DONT_CARE? Run Time Upper Bound in 15 minutes Iterate between partition & place/ro Balanced partitioning? Spread placement? Reduce Non-forced Global Clocks? Reduce Routes Per Placement?	Y N 1
LOGIC SYNTHESIS OPTIONS Use automatic pin/node input pairing? Use automatic gate splitting? Gate split max num. pterms per eqn Optimize registers for D/T-type Ensure polarity after minimization is Use 'IF-THEN-ELSE', 'CASE' default as Use fast minimization?	Change all to D-type

Then, each program module invoked provides details of its own processing. Error messages explain why processing failed. If the error is reported by the Parser, the log file shows the location of the error in the design file, as shown in the file fragment below, in which the pin number or float operator (?) was omitted from line 14.

COMPILATION OPTIONS Log file name: Run mode:	bar_4xx.log				
Format: Text	File: BAR_4XX.PDS				
MACH FITTING OPTION SIGNAL PLACEMENT: Handling of Pro Use placement da Save last succes Press <f9> to ed</f9>	eplacements Ita from	No Change Design file <f3> Last successful placement</f3>			
FITTING OPTIONS: Global Clocks routable as Pterm Clocks? N 22V10/MACH1XX/2XX S/R Compatibility? Y SET/RESET treated as DONT_CARE? N Run Time Upper Bound in 15 minutes 1 Iterate between partition & place/route? Y bar_4xx.pds					
MACHXL 2.0 R6 PARSER (09-23-94) (C) - COPYRIGHT ADVANCED MICRO DEVICES INC., 1993, 1994					

```
*******
                   * MACHXL PARSER LISTING
                                               *
                   **********
LINE #
        |----+----1----+-----2----+-----3----+----4----+----5----++----6----+
 1
  2
         ;Barrel Shifter
        ;Where Shift Registers shift bits only one position to the left or
;to the right, Barrel Shifters can shift data a selectable number of
  3
  4
positions
  5
         ; in one direction.
  б
  7
  8
  9
         ;----- Declaration Segment -----
        |TITLE Barrel Shifter
|PATTERN 1
 10
 11
        REVISION 1
AUTHOR J. ENGINEER
 12
 13
```

...Continued COMPANY AMD 14 DATE 15 9/10/94 16 CHIP Barrel MACH435 17 18 ;----- PIN Declarations ------19 20 21 PIN ? DATA[0..3] 22 23 PIN ? Q[0..3] REGISTERED ; PIN ? SEL1 24 SEL2 pin ? 25 pin ? RESET 26 pin ? CLK 27 | PIN ENA ERROR -----^ (L27/C6) \mid > ERROR P55 $\,$ Unexpected symbol ENA in malformed statement. 28 EQUATIONS 29 30 Q[0..3].RSTF=RESET Q[0..3].CLKF=CLK 31 32 Q[0..3].TRST=ENA 33 34 Q[0]:= /SEL1*/SEL2*DATA[0] +/SEL1* SEL2*Q[1] + SEL1*/SEL2*Q[2] 35 36 37 + SEL1* SEL2*Q[3] 38 39 40 Q[1]:= /SEL1*/SEL2*DATA[1] +/SEL1*/SEL2*Q[2] + SEL1*/SEL2*Q[3] + SEL1* SEL2*Q[0] 41 42 43 44 Q[2]:= /SEL1*/SEL2*DATA[2] +/SEL1* SEL2*Q[3] + SEL1*/SEL2*Q[0] + SEL1* SEL2*Q[1] 45 46 47 48 49 Q[3]:= /SEL1*/SEL2*DATA[3] +/SEL1* SEL2*Q[0] + SEL1*/SEL2*Q[1] + SEL1* SEL2*Q[2] 50 51 52 53 54 55 SIMULATION 56 57

```
...Continued
 58
         TRACE_ON data[3..0] q[3..0] sell sel2
                                                      clk
 59
         SETE RESET
  60
                       ena
         SETF DATA[3..0]= #H8
 61
  62
         SETF /RESET ena
 63
  64
          ;---LOADING DATA
  65
         SETF /SEL1 /SEL2
  66
         CLOCKE CLK
  67
         CHECKQ Q[3..0]= #H8
  68
          ;---
                 Shifting one position to the right, three times
  69
  70
         SETF /sel1 sel2
  71
         FOR X:= 1 TO 3 DO
  72
                 BEGIN
  73
                      CLOCKF CLK
                 END
  74
  75
         CHECKQ Q[3..0]= #H1
  76
  77
                 Shifting two positions to the right, four times
          ;---
  78
          SETF sell /sel2
  79
         FOR X:= 1 TO 4 DO
  80
                 BEGIN
                      CLOCKF CLK
  81
  82
                 END
         CHECKQ Q[3..0]= #H1
  83
  84
  85
          ;---
                 Shifting three positions to the right (same as one to the left),
  86
                 four times
          ;
         SETF sell sel2
  87
  88
         FOR X:= 1 TO 4 DO
  89
                 BEGIN
                      CLOCKF CLK
  90
  91
                 END
         CHECKQ Q[3..0]= #H1
  92
  93
  94
         TRACE OFF
  95
  96
  97
  98
%% MACHPAR %%
                 ERROR count: 1
                                     WARNING count: 0
%% MACHPAR %%
                 File processing terminated.
                                                 File: bar_4xx.pds
```

Other program modules provide descriptive error messages that help identify the cause of the error condition.

Warning messages explain actions taken by the MACHXL software to resolve ambiguities in the design file. For example, the MACHXL software generates a warning message if the design file contains more than one equation for a given pin or node (in which case the equations are ORed). Whenever possible, the MACHXL Fitter implements clocks as global clocks and macrocells as synchronous macrocells. The MACHXL Fitter generates warning messages when it is obliged, due to resource constraints, to

implement ambiguous clock signals (those that are neither forced global nor forced non-global) as product-term clocks, as shown in the log file fragment below.

MACHXL MACHFITR
COPYRIGHT (c) ADVANCED MICRO DEVICES INC., 1993
*** Source file is Discard.pds . Device is MACH465 .
> WARNING z5112 - Signals CLK1_USER (node) and IPIN1 are input paired
but the node is clocked by a product term clock CLOCK1 .
The input pairing is discarded.
> WARNING z5112 - Signals CLK2_USER1 (node) and IPIN21 are input paired
but the node is clocked by a product term clock CLOCK2 .
The input pairing is discarded.
\mid > WARNING z5112 - Signals CLK2_USER2 (node) and IPIN22 are input paired
but the node is clocked by a product term clock CLOCK2 .
The input pairing is discarded.
> INFO z5065 - For outputs, implicit output enables will be set to VCC.

> INFO z5065 - For outputs, implicit output enables will be set to VCC > INFO z5070 - Implicit set/reset equations will be set to DONT_CARE.

Some clock signals that are eligible to be global clocks are instead implemented as non-global clocks due to resource constraints, as shown in the log file fragment below.

*** End of Pla2db.

```
Check preplaced pins/nodes

Check preplaced pins/nodes

Check unreferenced pins/nodes

Check clock rules

List of global clocks:

CLOCK3:

..... Controls a floating input register/latch.

CLOCK4:

..... Controls a floating input register/latch.

SPECIAL_CLOCK:

..... Controls a floating input register/latch.

SPECIAL_CLOCK:

..... Controls a signal with both SET & RESET non-GND.

Continued...
```

...Continued

List of non-global clocks: CLOCK1: Global clock capacity exceeded. CLOCK2: Global clock capacity exceeded. **** End of Normalization. **** End of DRC. **** Partitioning successful. **** Routing successful. Assembler invoked. |> INFO z5088 - Single-literal clock signal used as product term clock in block of clock in glocyl (bip 21)

block C. Clock is CLOCK1 (Pin 31). > INFO z5088 - Single-literal clock signal used as product term clock in block D. Clock is CLOCK2 (Pin 22). Zero Hold Time For Input Registers? N *** The JEDEC file generated is Discard.jed .
*** Report Generator invoked.
Partitioning 100% - Completed
Placement 100% - Completed
Routing 100% - Completed
%%% Fitting process is successful %%%
**** Report Generator end.
%%% MACHFITR %%% Fitting successful. File Discard.pds .
%%% MACHFITR %%% ERROR count 0 WARNING count 3 .

Use the information in the list of global clocks, the list of non-global clocks, and the "INFO z5088" messages to determine if signals you intended to be global clocks were delivered to a macrocell as a product-term clock rather than through the block clock mechanism. Refer to "Understanding Global Clocks" in Chapter 8, "Using the Fitter," for a detailed discussion of clocks, including rules governing how the Fitter chooses signals to be implemented as global or non-global clocks. "Manually Forcing a Clock Signal to be Global" in Chapter 8, "Using the Fitter," explains how to force the Fitter to implement a signal as a global clock.

Fitting Report

The fitting report provides summary information for the user to analyze either success or failure of the current fitting pass. In the event of a failure to partition, place, or route, the fitting report gives a different set of information indicating why the design is not realizable with respect to the device architecture resources and/or fitting options.

The fitting report contains the full information if the fitting pass is successful, partial information if the partitioning, placement or routing are incomplete. Data fields for which data is not available are indicated with an ellipsis (...).

Header Information

The first section of the Fitting Report contains the name of the design file and the date and time the Fitter started to process the design.

MACHXL MACHFITR COPYRIGHT (c) ADVANCED MICRO DEVICES INC., 1993

MACH Fitter Options This section of the fitting report contains a list of options used in the current fitting pass. Each option is presented as it appears in the menu. Only options that affect fitting results are contained in the options list.

The sample "MACH Fitter Options" report fragment below contains default settings for each family of devices.

MACH 1xx/2xx

* MACH FITTER OPTIONS *	

SIGNAL PLACEMENT:	
Handling of Preplacements	No Change
Use placement data from	Design file
FITTING OPTIONS:	
SET/RESET treated as DONT_CARE?	N
Iterate between partitioning and place/route?	Y
Balanced partitioning?	N Y
Spread Placement? Maximun Run Time	15 minutes
Maximun Run Time	15 minutes
MACH 3xx/4xx	

* MACH FITTER OPTIONS *	

SIGNAL PLACEMENT:	
Handling of Preplacements	No Change
Use placement data from	Design file
FITTING OPTIONS:	
Global clocks routable as PT clocks?	N
22V10/MACH1XX/2XX S/R Compatibility?	Y
SET/RESET treated as DONT_CARE?	N
Reduce Unforced Global Clocks?	N
Iterate between partitioning and place/route?	Y
Balanced partitioning?	N
Reduce Routes Per Placement?	N
Maximun Run Time	15 minutes

Note that options not available for MACH 1xx/2xx are not listed.

Device Resource Summary

The Device Resource Summary table displays device-level pin, macrocell, and product term utilization and shows which resources might be available for logic additions and changes. ²²

The "Input Registers" field is not shown for devices that do not have dedicated input registers. Additionally, the "> 1 PT Macrocells" and "1 PT Macrocells" fields are not shown for devices that do not have an XOR product term.

MACH435 (device has dedicated input registers and XOR product term)

* DEVICE RESOURCE SUMMARY *

	Total				
	Available	Used	Availa	ble	Utilization
Dedicated Pins					
Input-Only Pins	2	0	2	>	0%

Fitting Report

Clock/Input Pins	4	1	3	>	25%
I/O Pins	64	12	52	>	18%
Input Registers	64	0	64	>	0%
Central Switch Matrix Outputs	264	12	252	>	4%
Product Term Clusters	128	4	124	>	3%
Logical Product Terms	640	16	624	>	2%
Logic Macrocells	128	4	124	>	3%
> 1 PT Macrocells		4	124		
1 PT Macrocells		0		0	
Unusable Macrocells		0			

MACH111 (device has neither dedicated input registers nor XOR product term)

* DEVICE RESOURCE SUMMARY *

	Total Available	Used	Avail	able	Utiliza	tion
Dedicated Pins						
Input-Only Pins	2	1		1	>	50%
Clock/Input Pins	4	3	1	>	75%	
I/O Pins	32	9	23	>	28%	
Central Switch Matrix Outputs	52	12	40	>	23%	
Product Term Clusters	32	4	28	>	12%	
Logical Product Terms	128	16	112	>	12%	
Logic Macrocells	32	4	28	>	12%	
Input Registers						
Unusable Macrocells		0	• •			

The labels and abbreviations used in the "Device Resources" section of the fitting report are described below.

Dedicated Pins	Reports the number and utilization of dedicated
	input-only pins and clock/input pins in the device.
I/O Pins	Reports the number and utilization of I/O pins in
	the device, whether used for input, output, or both.
Input Registers	Reports the number and utilization of dedicated
(Devices with	input registers in the device.
dedicated input	
registers)	
Central Switch	Reports the number and utilization of outputs from
Matrix Outputs	the central switch matrix.
Product Term	Reports the number and utilization of product term
Clusters	clusters in the device.
Logical Product	Reports the number and utilization of product
Terms	terms in the device's sum-of-products arrays.
Logic Macrocells	Reports the number of and utilization of logic
	macrocells in the device.
>1 PT	Reports the number and utilization of macrocells
Macrocells	having more than one available logic product term.
(Devices with	(Not available if partitioning fails.)
XOR PT)	
1 PT Macrocells (Devices with	Reports the number and utilization of macrocells
XOR PT)	that have only one product term (the XOR product
	term) available. (Not available if partitioning
	fails.)

UnusableReports the number of macrocells that are neitherMacrocells>1PT nor 1PT. (Not available if partitioning fails.)

Block Partitioning Summary

The block partition summary table gives a summary of resources used by each block.

For devices without dedicated input registers, the "Inp Reg" field is deleted and a single number is given in the "Macrocells available" column since these devices do not have the option for "1 PT" and ">1 PT" (see example below).

MACH435 (device has dedicated input registers)

* BLOCK PARTITIONING SUMMARY *

						Ma	crocells	s # (of PT
		Logic	I/O	Inp	Macr	ocells	availa	ble	clusters
	Fanin	PTs	Pins	Reg	Used	Unusable	1PT :	>1PT	available
Maximum	33	80	8	8			16		16
Block A	12	16	8	0	4	0	0	12	12
Block B	0	0	4	0	0	0	0	16	16
Block C	0	0	0	0	0	0	0	16	16
Block D	0	0	0	0	0	0	0	16	16
Block E	0	0	0	0	0	0	0	16	16
Block F	0	0	0	0	0	0	0	16	16
Block G	0	0	0	0	0	0	0	16	16
Block H	0	0	0	0	0	0	0	16	16

> Four rightmost columns above reflect last status of the placement process.

MACH111 (device has neither dedicated input registers nor XOR product term)

*******	*******	******	*****						
	PARTITION								
*******	*******	******	*****						
								# of PT	
		Logic	I/O	Mac	rocells		Macroce	lls clus	ters
	Fanin	PTs	Pins	Used	l Unusa	ble	available	ava	ilable
 Maximum	26	64	16				16	1	- .6
 Block A	12	16	9	4	0		12		- .2
Block B	0	0	0		0	0	16	1	.6

> Two rightmost columns above reflect last status of the placement process.

>

Note: When partitioning fails, the partitioning module returns information extracted from the last partition acquired. The information from this table can be used to determine the distribution of objects between blocks.

When partitioning fails, the Block Partitioning Summary columns "Macrocells Unusable," Macrocells >1PT," and "Macrocells 1PT," are not listed.

The labels and abbreviations used in the "Block Partitioning Summary" section of the fitting report are described below.

Fanin	Number of distinct signals that fanin from the
	central switch matrix into the block.
Logic PTS	Number of product terms used by data terms in
-	logic equations placed in the block. (Does not
	include clock or Set/Reset product terms associated
	with asynchronous macrocells.)
I/O Pins	Number of I/O pins used for input, output or both
	in the block.
Inp Reg	Number of input registers used in the block.
Macrocells used	Number of macrocells used in the block.
Macrocells	Number of macrocells in block that are not used
unusable	and cannot be used with the current
	placement. (This column does not appear if the
	design fails to fit.)
Macrocells	Number of macrocells in the block that have only
available 1 PT	one product term.
Macrocells	Number of macrocells in the block that have more
available >1 PT	than one product term.

of PT clusters available

Remaining number of product-term clusters usable by signals partitioned to the block.

Signal Summary

This section of the fitting report provides a detailed representation of Fitter placements. It can be used to determine block fanout and fanin information.

MACH 3xx/4xx

* SIGNAL SUMMARY *

* SIGNAL SUMMARY * ******															
	Pin/Node Logic														
	Signals Block Loc PTs XOR Type Fanout														
-1															
	DATA[0]	в	15			input		A							
	DATA[1]	В	14			input		A							
	DATA[2]	В	13			input		A							
	DATA[3]	В	12			input		A							
	ENA	A	3			input		A							
	Q[0]	A	6	4		i/o pin									
	Q[1]	A	4		4	. i/o pi	n								
	Q[2]	A	10	4		i/o pin									
	Q[3]	A	8	4		i/o pin									
	RESET	A	5			input		A							
	SEL1	A	9			input		A							
	SEL2	A	7			input		A							
	RN_Q[0]	A	A12	4	G	implied	D/S	A							
	RN_Q[1]	A	A8	4	G	implied	D/S	A							
	RN_Q[2]	A	A4	4	G	implied	D/S	A							
	RN_Q[3]	A	A0	4	G	implied	D/S	A							

Note: For MACH 1xx/2xx devices, XOR information is not applicable and will be deleted.

The labels and abbreviations used in the "Signal Summary" section of the fitting report are described below.

Signals	Name of the signal. A node name that is the same as a pin name indicates that the node was created by the Fitter to provide a register or latch for a pin declared as REGISTERED or LATCHED, for which no corresponding node was declared in the design. By contrast, a node name than is the same as the pin name but preceded by "RN_" (for "referenced node") indicates that the node was created by the Fitter to provide a register or latch for a pin declared as REGISTERED or LATCHED, for which no corresponding node was declared in the design, and that the register/latch feedback was referenced
	in the design by another signal.
Pin/Node	"Pin" if the signal corresponds to a pin; "Node" if
	the signal corresponds to a node.
Block	Letter corresponding to the PAL block in which the signal is placed.
Loc	Tells where the signal was placed. If placed at a pin, this field contains the physical pin number. If placed at a macrocell, this field contains the node designation (consisting of a block letter and a node number) of the macrocell. If placed at an input register, this field has the form Xir -Input node number where X is a block designator. Example Bir-2 \leftarrow indicates input node 2 in block B
PTs XOR	(Refer to the pin and node summary for the target MACH device in Chapter 10, "Device Reference," for a list of node numbers.) The number of product terms connected to the signal. "G" if the XOR is unused; "P" if the XOR is used as a product term or for polarity control.
	product term of for polarity condition.

Туре	Type of signal: buried, input, output, I/O pin, opair (output macrocell paired with an output pin), ipair (input macrocell paired with an input pin), or implied. "Implied" indicates a node that was created by the Fitter and either a) named (because it was referenced as register feedback by another signal) or b) unnamed (because it was created to provide a register or latch for a pin declared as REGISTERED or LATCHED but never referenced as register feedback).
Fanout	Block(s) to which the logic signal is routed.

PRESET, RESET and OUTPUT ENABLED Signal

Summary

(MACH 1xx/2xx devices only)

This section summarizes product term driven PRESET, RESET and OUTPUT ENABLE signals of the design. It shows how these functional signals are used in various PAL blocks and can be used as a reference to swap members between blocks.

* PRESET, RESET and OUTPUT ENABLE signal SUMMARY *

PRESET signal summary:

All PRESET signals that have the same boolean equation in the design are represented by a unique number in the PRESET Signal Summary table. A selected name in the group is represented in "Pin or Node name" field. The "Block" field records all the blocks that have the same preset signal. RESET and OUTPUT ENABLE signals work the same way.

Tabular Information

This section of the fitting report can be used to diagnose incomplete partitions, incomplete placements and incomplete routing.

MACH215 and MACH 3xx/4xx

* TABULAR INFORMATION * **********

DEDICATED PINS

			Logic	Clock
Pin L	Signal	Туре	Fanout	Fanout
20	CLF			A
23		•••		
41		••		
62		••		
65 83		••		
83		••		

	als - Equations V			
	Source : Fa			
.	DATA[0]:	Q[0]{A}		
	{A}	Q[0][11]		
	DATA[1]:	Q[1]{A}		
	{A}			
	DATA[2]:	Q[2]{A}		
	{A}	0[2][7]		
	DATA[3]: {A}	Q[3]{A}		
	RN 0[0]:	Q[1]{A}	Q[2]{A}	Q[3]{A}
	{AAA}	Q1-1()	Q [2] []	6101(11)
	RN_Q[1]:	Q[0]{A}	Q[2]{A}	Q[3]{A}
	{AAA }			
	RN_Q[2]:	Q[0]{A}	Q[1]{A}	Q[3]{A}
	{AAA}	0[0][7]	0[1][1]	0[0][1]
	RN_Q[3]: {AAA}	Q[0]{A}	Q[1]{A}	Q[2]{A}
	SEL1:	Q[0]{A}	Q[1]{A}	Q[2]{A}
	:	Q[3]{A}	× r + 1 (++)	8151[11]
	{AAA A}	~(-)		
Conti	nuad			

Conti	inued			,					- 1				
	SEL2:		2[0]{A				Ç	2[1]{	A }			Q[2]{A}	
	:		Q[3]{A	.}									
		AA A}		1				(- 1			0[0][7]	
	RESET:		Q[0]{A				Ç	2[1]{	A }			Q[2]{A}	
	-		Q[3]{A	-}									
		AA A}		,				(- 1			o (o) (o)	
	ENA:		Q[0]{A				Ç	2[1]{	A }			Q[2]{A}	
			Q[3]{A	-}									
	ĮА	AA A}											
lock A s	singular	list (Inp	ut dri	ves	onl	уо	ne	logi	c e	qua	tion)	
DA	ATA[0]:	(Q[0]		;Co	omp	are	wit	:h "	Blc	ck l	A singular list'	,
DA	ATA[1]:	(2[1]		;50	ect.	ion	for	MA	CH	1 xx ,	A singular list" /2xx as shown in	2
DA	ATA[2]:											at follows	
	ATA[3]:		2[3]		;ti	his	on	e.					
					,								
	CLOCK MU		Di-		D-1							does not appea	. .
10CK CIC ny	UCKS	Signar	5111		POT			;11	IS I	sec	<i>L</i> 101	does not appea	т. т <u>п</u>
					1				an	1	10		
								;MA	CH	TXX	/ 2.XX	report files	
k0			20	н									
k1			• •	•									
k2			• •	•									
	from									i	Not	e how this sect:	ion
iffers LOCK A I	LOGIC MA	 CROCELLS &				ERS				-		e how this sect: "BLOCK A LOGIC	ion
k3 iffers LOCK A I ACROCEL	LOGIC MA				GIST			;se	cti		the		
iffers LOCK A I	LOGIC MA		INPUT	RE	GIST	S				on	the in t	"BLOCK A LOGIC	
iffers LOCK A I ACROCEL	LOGIC MA		INPUT T	RE U	GIST PI A	S			mpl	on e t	the in t hat	"BLOCK A LOGIC he MACH 1xx/2xx	
iffers LOCK A I ACROCEL	LOGIC MA	CROCELLS &	INPUT T Y P	RE U S E	GIST PI A V A	rs X		;sa C	mpl S	on e t R	the in t hat	"BLOCK A LOGIC he MACH 1xx/2xx follows.	
iffers LOCK A I ACROCEL	LOGIC MA	CROCELLS &	INPUT T Y P	RE U S E	GIST PI A V A	rs x o	P	;sa C	mpl S L	on et R	the in t hat P E	"BLOCK A LOGIC he MACH 1xx/2xx follows.	
iffers LOCK A I ACROCEL	LOGIC MA L S"		INPUT T Y P	RE U S E	GIST PI A V A	rs x o	P	; sa C 0	mpl S L	on et R	the in t hat P E	"BLOCK A LOGIC he MACH lxx/2xx follows. I	
LOCK A I ACROCEL	LOGIC MA <i>LLS"</i> de	CROCELLS & Signal	INPUT T Y P E	U S E D	GIST PI A V A L	X O R	P L	; sa C O K	mp1 S L T	on et R S	the in t hat P E N	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout	
iffers LOCK A I ACROCEL Noc	LOGIC MA <i>LS"</i> de 2	CROCELLS & Signal RN_Q[3]	INPUT T Y P E D/S	RE U S D 	GIST PI A V A L 	X O R G	Р L 	; sa C O K Ck0	mpl S T G	on et R S	the in t hat P E N 	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A	
iffers LOCK A I ACROCEL	LOGIC MA <i>LS"</i> de 2 3	CROCELLS & Signal RN_Q[3]	INPUT T Y P E D/S	U S E D 4	GIST PT A V A L 11 15	S X O R G	Р L Н	; sa C O K Ck0	mpl S T G	on R E S B0	the in t hat P N 8 	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A	
iffers LOCK A 1 ACROCEL Noc	de 2 3	CROCELLS & Signal RN_Q[3]	INPUT T Y P E D/S 	U S D 4	GIST PT A V A L 11 15 15	S X O R G	Р L Н	; sa C O K Ck0	mp1 S T G	on e t S B0	the in t hat P E N 8 	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A	
iffers LOCK A I ACROCEL	de 2 3 5	Signal RN_Q[3]	INPUT T Y P E D/S 	U S D 4	GIST PT A V A L 11 15 15 15	S X O R G · ·	Р L Н	;sa C O K Ck0	mp1 S T G	on et R S B0	the in t hat P E N 8 	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A	
iffers LOCK A I ACROCEL	de 2 3 5 6	Signal RN_Q[3] 	INPUT T Y P E D/S D/S	U S E D 4 4	GIST PT A V L 11 15 15 15 16	S X O R G · G	Р L Н Н	; sa C O K Ck0 Ck0	mp1 S T G G	on R E S B0	the in t hat P E N 8 10	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A A A	
Noc LOCK A 1 ACROCEL Noc 1 2 4 4 5	LOGIC MA <i>LS</i> " de 3 4 5 6 7	Signal RN_Q[3] RN_Q[2]	INPUT T Y P E D/S D/S 	U S D 4 4	GIST PT A V L 11 15 15 15 15 16 15	S X O R G · ·	Р L Н	;sa C O K Ck0	mp1 S T G G	on et R S B0	the in t hat P E N 8 10 	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A	
iffers LOCK A I ACROCEL Noc 1 2 2 3 5 5	LOGIC MA <i>LS"</i> de 2 3 5 6 7 8	CROCELLS & Signal RN_Q[3] 	INPUT T Y P E D/S D/S D/S 	U S E D 4 4	GIST PT A V A L 11 15 15 15 16 15 15	S X O R G · G	Р L Н Н	; sa C O K Ck0 Ck0	mp1 S T G	on t R S B0	:the in t hat P E N 8 10 	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A A A	
iffers LOCK A 1 ACROCEL	LOGIC MA LS" de 2 3 5 6 7 8 9 	CROCELLS & Signal RN_Q[3] RN_Q[2]	INPUT T Y P E D/S D/S D/S 	U S E D 4 4	GIST PT A V A L 15 15 15 16 15 15 15	CS X O R G · · G G · ·	P L	;sa C O K Ck0	mp1 S T G	on e t R E S B0	ethe in t hat P E N N 8 10 	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A A A	
iffers LOCK A 1 ACROCEL	LOGIC MA <i>LS</i> " de 2 3 5 6 7 9 0	Signal 	INPUT T Y E D/S D/S D/S	U S E D 4 4 4	GIST PT A V A L 15 15 15 15 16 15 15 15	SS X O R G · · G G	P L H H	; sa C O K Ck0 Ck0	mp1 S T G G G	on t R S B0 B0	ethe in t hat P E N N 8 10 	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A A A	
Noc Noc Noc 1 2 2 4 3 5 6 8 7 9 8 11 9 12	LOGIC MA <i>LS</i> " de 2 3 4 5 5 8 9 0 1 	CROCELLS & Signal RN_Q[3] 	INPUT T Y P E D/S D/S D/S D/S 	U S E D 4	GIST PT A V A L 15 15 15 15 15 15 15 15 16 15	CS X O R G · · · G · · · G · ·	P L	; sa C O K Ck0 Ck0	mp1 S T G G G	on t R S B0	the in t hat P E N 8 10 4 	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A A A	
iffers LOCK A 1 ACROCEL ACROCEL 0 2 1 2 2 4 3 9 1 2 5 7 6 8 1 0 9 11 10 12	LOGIC MA LS" de 2 3 4 5 6 6 7 8 9 2 1 2 2 4 2 4 2 4 2 4 2 4 2 4 2 2 4 2 	CROCELLS & Signal RN_Q[3] RN_Q[2] RN_Q[1]	INPUT T P E D/S D/S D/S D/S 	U S D 4 4 4 4	GIST PI A V L L 15 15 15 15 15 15 15 16 15 15	CS X O R G · · · G · · · G · ·	P L H H	; sa C O K Ck0 Ck0	mp1 S T G G G	on t R S B0 B0	the in t hat P E N 8 10 4 	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A A A A A	
iffers LOCK A 1 ACROCEL ACROCEL 0 2 1 2 2 4 3 9 1 2 4 6 8 10 9 12 10 12 11 12	LOGIC MA <i>LS</i> " de 2 3 4 5 8 9 1 3 3 	CROCELLS & Signal RN_Q[3] RN_Q[2] RN_Q[1]	INPUT T Y E D/S D/S D/S D/S 	RE U S D 4 4 4	GIST PT A V L L 15 15 15 15 15 15 15 15 15 15 15 15	CS X O R G · · · G · · · · ·	P L H · · · · · ·	; sa C O K Ck0 Ck0	mp1. S T G G G	on t R S B0	the in t hat P E N 8 8 10 4 4 	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A A A A A	
iffers LOCK A I ACROCEL	LOGIC MA <i>LS</i> " de 2 3 5 6 7 9 9 1 4	CROCELLS & Signal RN_Q[3] RN_Q[2] RN_Q[1] RN_Q[0]	INPUT T Y E D/S D/S D/S D/S D/S	U S E D 4 4 4 4	GIST PT A V A L 15 15 15 15 16 15 15 16 15 15 15 15 15	CS X O R G · · · G · · · G · ·	Р L H · · · H · · H · · H · ·	; sa C O K Ck0 Ck0 Ck0 Ck0 Ck0	mp1. S L T G G G G G G	on t R S B0	the in t hat P E N 8 8 10 4 4 	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A A A A A	
iffers LOCK A I ACROCEL	LOGIC MA <i>LS</i> " de 2 3 5 6 7 9 9 1 4	CROCELLS & Signal RN_Q[3] RN_Q[2] RN_Q[1]	INPUT T Y E D/S D/S D/S D/S D/S	U S E D 4 4 4 4	GIST PT A V A L 15 15 15 15 16 15 15 16 15 15 15 15 15	CS X O R G · · · G · · · G · ·	Р L H · · · H · · H · · H · ·	; sa C O K Ck0 Ck0	mp1. S L T G G G G G G	on t R S B0	<pre>the in t hat P E N 8 10 4 6</pre>	"BLOCK A LOGIC the MACH 1xx/2xx follows. I Fanout A A A A A	

...Continued

A14 1	б.	 		 		 			15								
A15 1	7.	 		 					10						• •		
Air-0 13	ο.	 		 													
Air-1 13	1.	 		 		 •											
Air-2 13	2.	 		 		 •											
Air-3 13																	
Air-4 13																	
Air-5 13																	
Air-6 13	б.	 		 		 •											
Air-7 13	7.	 • •	• •	 • •	•	 •	•	•	•	•		••	•	•	• •	 •	•

;Note differences from the "BLOCK A I/O Pins"

section BLOCK A I/O PINS ;in the MACH 1xx/2xx report sample that follows this one. Pin onode inode Signal Type Fanout

	inoue	orginar	TIPC	1 0110	Juc	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	···· ··· ···	ENA Q[1] RESET Q[0] SEL2	input i/o pin input i/o pin input	A A A		
		Q[3] SEL1		 А		
9 10 6			i/o pin	A		
	 OGIC ARRAY FANI		1/0 pin			
CSM	Signal	Source	CSM	1	Signal	Source
			1 1			
nxA0					SEL2	pin 7
nxA1	DATA[2]	pin 1			RN_Q[1]	mcell A-8
nxA2	DATA[3]	pin 1			RN_Q[2]	mcell A-4
nxA3	RESET	pin				
nxA4	DATA[0]	pin 1				
nxA5						
nxA6	SEL1	pin				
nxA7						
nxA8	ENA	pin				
nxA9	DATA[1]	pin 1				
nxA10						
mxA11						
nxA12					RN_Q[3]	mcell A-0
nxA13						
nxA14						
nxA15	RN_Q[0]	mcell A	12 r	nxA32		
nxA16						

...Continued

in	onode	inod	e Signal	Туре	Fanout
12			DATA[3]	input	A
13			DATA[2]	input	A
14			DATA[1]	input	A
15			DATA[0]	input	A
16					
17					
18					
19					

; similar information listed for other blocks used, if any

MACH435 report file key:

A	-	Asynchronous mode
AVAL	-	Additional product terms available within the current
		steering allocation, plus those potentially available
		through resteering of free clusters.
в0	-	Block Asynchronous Reset/Preset product term 0
B1	-	Block Asynchronous Reset/Preset product term 1
C	-	Combinatorial
Ck0	-	Block clock generated from pin 20 or pin 23
Ck1	-	Block clock generated from pin 20 or pin 23
Ck2	-	Block clock generated from pin 62 or pin 65
Ck3	-	Block clock generated from pin 62 or pin 65
clk	-	Clock
CSM	-	Central Switch Matrix
D	-	D-type flip flop
G	-	Ground
Н	-	High
implied	-	Node occupying the macrocell drives the output pin
		but not defined in the design file.
inode	-	Input node
Inp	-	Input
ipair	-	Input paired node
I/O	-	Input or Output
L	-	Low
L	-	Latch
LOC	-	Location
mcell <x></x>	-	Source is macrocell from block <x></x>
Mux	-	Multiplexer
mx	-	Block Array input multiplexer
onode	-	Output node
Continued.		
aeae	-	

...Continued

opair	- Output paired node
P	- Product Term
Pol	- Polarity
PT(s)	- Product term(s)
Reg	- Register
Res	- Reset control
RN_ <pin_name></pin_name>	- Output node paired with < pin_name> created by Fitter.
S	- Synchronous mode
Set	- Preset control
Т	- T-type flip flop
XOR	- Exclusive OR gate
<x>ir</x>	- Input register in block <x></x>
	- Not available or Not applicable
Partitioning	100% - Completed
Placement	100% - Completed
Routing	100% - Completed
%%% Fitting p	process is successful %%%

MACH 1xx/2xx (except MACH215)

Block A singular	list	(Input	drives	only	one	logic	equation)
DATA[0]:		Q[()]				
DATA[1]:		Q[1	1]				
DATA[2]:		Q[2	2]				
DATA[3]:		Q[3	3]				

BLOCK A LOGIC MACROCELLS

BLOCK	C A DOGIC P	ACKOCEDDS										
					ΡT	S						
			т	U	А							
L			Y	S	V	Ρ	С	S	R	Ρ		
0			P	Е	А	0	L	Е		Е	I	
С	Node	Signal	Е	D	L		L	K	Т	S	Ν	Fanout
-												
A0	2	RN_Q[0]	D	4		4	H (Ck3		1	2	A-
Al	3				8							
A2	4				8							
A3	5	RN_Q[1]	D	4	8	Η	Ck3		1	5	A-	
A4	б				8							
A5	7				8							
Aб	8	RN_Q[2]	D	4	8	Η	Ck3		1	8	A-	
A7	9				4							
A8	10				4							
A9	11	RN_Q[3]	D	4	8	Η	Ck3		1	15	A-	
Con	tinued											

A10 A11 A12 A13 A14 A15	13 14 15 16 17		· · · · · · · · · · · · · · · · · · ·		12 12 12 12	•	· · · ·	•••	··· ··· ···
BLOCF	CA I/	O PINS Output							
		Enable							
1	2	1					i/o pin		
-							input		
4							input		
5	5	1					i/o pin		
6					~ ~	-	input		
7					SEL	1	input	A-	
8	8	1			Q[:	2]	i/o pin		
9				DA	TA[3]	input	A-	
14						•			
	11	1			Q[3]	i/o pin		
16	• • •			• • •		•	••	• •	
17	• • •		• • • • • • • •				• •	••	
18	• • •		• • • • • • • • •				• •		
19	• • •		• • • • • • • •				• •		
20 21	• • •			• • •	• • • •	•	••	••	
21	• • •			• • •	• • • •	•	••	• •	

The information from the tabular form shown above will be incomplete in cases where partitioning, placing, routing fail. Pin and node numbers are not available on failure to partition. Signal names partitioned on the last attempt of the partitioner will appear in the table. Data fields for which data is not available are indicated with an ellipsis (...).

	bels and abbreviations used in the "Tabular Information"
	n of the fitting report are described below.
DEDICATED	For MACH architecture these are pins that are
PINS	dedicated inputs and or clocks.
Pin	Physical pin number.
Signal	String of up to 14 characters
	representing the signal name.
Туре	Dedicated types are "clk/inp,"
	"input," or (MACH465 only) "Clock."
Logic Fanout	Indicates to which block the logic
-	signal fans out as logic.
Clock Fanout	Indicates to which block the clock
	signal fans out through the block
	clock mechanism.
Signals -	For each signal <i>s</i> , lists all signals that reference
Equations	signal s. Below the list of equations that reference
Where Used	signal <i>s</i> is a list (enclosed in braces) of the PAL
	blocks that contain each of the referencing signals.
	PAL block letters are listed in the same order in
	which the signals to which they correspond are
	listed.
BLOCK-x	(Where <i>x</i> denotes the letter that corresponds to the
CLOCKS MUX	PAL block.)
(MACH 3xx/4xx	
devices only)	
Block Clocks	Clock mux outputs "CK0""CK3."
Signal	String of up to 14 characters
- J	representing the signal name.
Pin	Physical pin number.
Pol	Polarity "H" (active high) or "L"
	(active low).
BLOCK-x	(Where x denotes the letter corresponding to the
LOGIC	PAL block.) An exhaustive list of logic macrocells
MACROCELLS	and input registers.
& INPUT	(The legend "& INPUT REGISTERS" is omitted
REGISTERS	from reports for devices that have no dedicated
	input registers.)
	mput registers.

LOC	Relative node number, in the block,
	for logic or input cell. Input cell
	numbers are preceded by a
	" <block>ir"</block>
Node	Software node number of macrocell.
	This is the same number as in the
	JEDEC Specification and the
	MACHXL language.
Signal	String of up to 14 characters
•	representing the signal name.
TYPE	Synchronous/Asynchronous devices:
	Given in the form < register_type>
	<macrocell_type>, where</macrocell_type>
	register_type is "D," "T," "L" (latch)
	or "C" (combinatorial) and
	macrocell_type is "S" (synchronous),
	"A" (asynchronous), or "."
	(combinatorial). For example, "D/S"
	refers to a D-type flip-flop
	implemented in a synchronous
	macrocell.
	Synchronous devices:
	Given in the form < register_type>,
	where register_type is "D," "T," "L"
	(latch) or "C" (combinatorial). For
	example, "T" refers to a T-type flip-
	flop.
PTS USED	Number of product terms used by
	equation placed in this cell.

PTS AVAL	Additional product terms available
	within the current steering
	allocation, plus those potentially
	available through re-steering of free
	clusters. If the macrocell is not used,
	this field contains the maximum
	number of product terms (its own
	and those that can be steered to it).
	If the macrocell is used, this field
	contains the number of product
	terms available after all clusters are
	routed.
XOR	"G" means the XOR gate of the
(MACH 3xx/4xx	cluster aligned with the signal's
devices only)	macrocell is connected to ground.
<i>"</i>	"P" means one of the XOR gates is
	connected to a product term or is
	used for polarity control. The
	symbol "." means the status is
	unknown.
POL	Signal polarity "H" (active high), "L"
TOL	(active low), or "." if no signal placed
	at this location. Polarity is "H" if the
	polarity of PIN (NODE) statement
	matches that of equation, otherwise
	polarity is "L.".
CLK	Block clocks CK0CK3 from clock
ULN	
	mux (synchronous mode), "P" for
	product term (asynchronous mode), and "." for none.
сгт	
SET	Set signal: "P" for product term, "G"
	for ground, "B0" for block set/reset
	ARP1, "B1" for block set/reset APR2,
	and "." for none. "B0" and "B1" occur
	only in synchronous modes.

RES	Reset signal: "P" for product term, "G" for ground, "B0" for block set/reset ARP1, "B1" for block set/reset ARP2, "." for none. "B0" and "B1" occur only in synchronous modes.
PIN	Indicates which pin (by number) is connected to this node. If the node is buried, the entry is "."
Fanout	Indicate to which block the node
BLOCK <i>x</i> I/O PINS	signal fans out. (Where x corresponds to the PAL block.) There is one table for each physical block. For MACH architecture this is a list of I/O pins in a block.
Pin	Physical pin number.
onode	Indicates output nodes connected to
	I/O pin. This is the software node
	number as in the JEDEC
	Specification and the MACHXL
	language.
inode	Indicates input nodes connected to
(Not for	I/O pin. This is the software node
MACH355 or	number as in the JEDEC
MACH 1xx	Specification and the MACHXL
devices)	language.
Output Enabled	The "OUTPUT ENABLE" field is
	added for MACH 1xx/2xx devices. Its
	value can be represented by V(Vcc),
	G(Gnd) or a product term. In the
	case of a product term, a number is
	shown in this column which is the
	entry in OUTPUT ENABLE signal
	summary table under "PRESET,
	RESET and OUTPUT ENABLE
	signal summary."
Signal	String of up to 14 characters
÷	representing the signal name.
Туре	Type of pin "output", "input" or "i/o
	pin".
	1

Fanout	Indicates to which block the pin signal fans out.
BLOCK-x Logic Array Fanin	(Where x denotes the letter that corresponds to the PAL block.) This table contains routing information for each signal that fan in to the block.
CSM	Central Switch Matrix fanout to
	logic array of a PAL block. String of up to 14 characters representing the signal name.
Source	Given in the format < source_type> <location>, where source_type is the macrocell inode pin and location is the physical location. (Source drives physical.)</location>

Fitting Status

This group of statements ends the fitting report. In the case of a successful fitting pass (no errors generated), the partitioning, placement, and routing statements show 100% completion.

Partitioning 100% - Completed Placement 100% - Completed Routing 100% - Completed

%%%Fitting process is successful%%

Note: Compilation can fail even if all three status fields (Partitioning, Placement, and Routing) show 100% completion, if the assembler fails to assemble the design.

In the case of an unsuccessful fitting pass, the last successful module (partitioning or placement) shows 100% completion, the unsuccessful module shows a completion of less than 100%, and any subsequent module shows 0% completion. Refer to "Failure Reports," later in this chapter, for more information.

Place and Route Data Report

A Place and Route Data (Design.PRD) file is generated by the MACHXL Fitter when partitioning is successful. This file contains detailed tables and listings showing:

- 1. Place and route processing time
- 2. Place/Route Resource and Usage tables
- 3. Signal fan-out table sorted in alphabetical order

Place and Route Data Report

- 4. Device pin-out list 5. **Block** information a. Logic block macrocell assignments and PT cluster steering Maximum PT capacity per block b. c. Node to I/O Pin mappings via the output switch matrix I/O Pin-to-node mappings d. I/O Pin-to-node and I/O Pin-to-input register pairings e. Input and Central switch matrix tables 6. Input Multiplexer assignments a. b. Logic block fan-in through Central Switch Matrix
 - >

Note: No information is reported for blocks that are unused. Note: Some tables in the PRD file may extend beyond 78 columns. If you cannot view all of the report columns using the viewer accessed from the MACHXL View menu, use the text editor to examine the file instead. If the MACHXL Fitter successfully placed and routed the design, then the designer can use the information in these tables and listings to determine where more logic product terms or input signals can be placed.

Unplaceable Designs

If the MACHXL Fitter cannot place all the signals in the design, then the PRD file will show the best placement the Fitter found and will also list the unplaced signals. The designer can then verify that the signal cannot fit into the specified block, and can then study the macrocell assignments in the other logic blocks to determine if there is space in the other blocks to which the unplaceable signals can be moved.

Unroutable Designs

The Placer will attempt to move signals around to use different routing resources, but will be constrained by preplacements. The PRD file will mark the signals and the blocks to which they cannot route. The designer can reduce the amount of logic in the design to release more routing resources for the remaining signals, or can increase the amount of processing time allocated for the Fitter if it timed out.

Place and route processing time

This section shows the start and duration of the place and route process.

For example: Start: Fri Oct 07 10:06:17 1994

End : Fri Oct 07 10:06:18 1994 \$\$\$ Elapsed time: 00:00:01

C:\MACHXL\DAT\MACH435 Design [Bar_4xx.pds]

Place/Route Resource and Usage tables

The place/route resource usage table shows total available resources, how many were required and how many were successfully allocated and used.

The sample placement completion section below shows the number of macrocells and I/O pins available per block (that is, 16 macrocells and 8 I/O pins in block A), how many signals were assigned to the blocks (that is, 8 logic signals or signals requiring product terms partitioned to block A, with 6 I/O pins required), and how many were actually used. This means you can put up to 8 more logic signals, if product term clusters are still available, and 2 more inputs through the unused I/O pins in block A.

*	Placement	Completion	

	Ì	Macro +-	ocells Available Signals to Place	+	IO Pins + IO Pins 	Used	lable Logi	.c
Arra	ay Ing	puts						
			+- Placed				+- Arra	ıy
Inpu	its Us	sed						
_								
A	16	8	8 => 100%	8	6 => 75%	33	18 =>	54%
в	16	7	7 => 100%	8	7 => 87%	33	18 =>	54%
C	16	9	9 => 100%	8	8 => 100%	33	27 =>	81%
D	16	8	8 => 100%	8	7 => 87%	33	26 =>	78%
E	16	5	5 => 100%	8	8 => 100%	33	16 =>	48%
F	16	4	4 => 100%	8	7 => 87%	33	22 =>	66%
G	16	7	7 => 100%	8	8 => 100%	33	16 =>	48%
H	16	5	5 => 100%	8	8 => 100%	33	17 =>	51%
İ								

Place and Route Data Report

The logic array input figure indicates the maximum number of signals that can be routed into a block, and how many are used. In the preceding example, 33 signals can be routed into a MACH435 block, and the design uses 18 of the block inputs for the 8 logic signals placed in block A. This means that up to 15 more signals can be routed into block A, but this is dependent on their being routed through the switch matrix. The Input/Clock signal count figure indicates the number of input or clock signals in the design, and how many were successfully assigned to either I/O, dedicated input, or clock/input pins.

* Input/Clock Signal count: 24 -> placed: 24 = 100%

The next table shows the number of dedicated input and clock/input pins in the device, and how many were used.

Input Pir	ıs	:	2	2 =	> 100%
Clock, C	lk/Input Pi	ns :	4	4 =	> 100%

The routing completion display measures how many signals have been routed, as a percentage of the total number of signals to be routed. If a signal is not routed, then the signal in the fan-out table (next section) will have a '~' in front of the block that it could not route to.

The number of placement and routing attempts (counting from 0) is shown under the routing completion data. * Routing Completion: 100%

* Attempts: Place [265] Route [0]

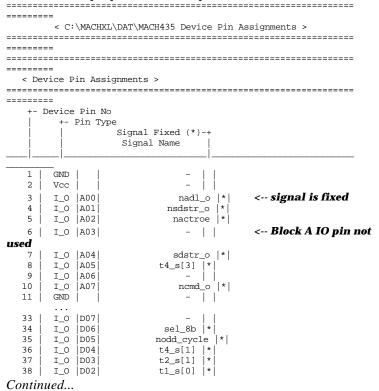
Example

If routing was successful on first routing attempt of the 265th placement attempt, you would see Place[264] Route [0], because placing and routing attempts are numbered from 0.

Signal Fan-Out Table

The fan-out table contains a list of signals in the design, sorted in alphabetical order, and the blocks that each signal fans-out to. A sample fan-out table is as follows:

======= Signal 1	Fanout Table	
========		
+- Signal Numbe		
	+- Block Location ('+' for dedicated inputs) +- Sig Type +- Signal-to-Pin Assignment	
Signal Name	Fanout to Logic Blocks	
1 _16byte 2 8byte	G INP 70 =>D.F H INP 78 =>FG.	
3 buswon	A NOD N/A => A B C . E	
4 clk40	+ Cin 65 =>	
 58 rn_t4_s[0] t4_s[0]]	$ \texttt{D} \texttt{NOD} $ $\texttt{N}/\texttt{A} \mathrel{=>} \texttt{A}$. D => Paired w/: [
59 rn_t4_s[1] t4_s[1]]	D NOD N/A => A D => Paired w/: [
 95 t4_s10	A NOD N/A => F	
96 t4_s[0] rn_t4_s[0]]	D IO $ 40 $ => => Paired w/: [
97 t4_s[1] rn_t4_s[1]]	D IO 36 => Paired w/: [
98 t4_s[2] rn_t4_s[2]]	D IO 39 => => Paired w/: [


The signals are printed in alphabetical order, followed by the block the signals are assigned to. If the signal is assigned to a dedicated input or clock pin, then this field is marked with a '+'. This is followed by the signal type, which can be one of the following:

	the following.
Cin	Clock/Input signal
CLK	Clock only signal
INP	Input signal
NOD	Internal/buried signal node
10	IO signal
OUT	Output signal (no feedback)
Rin	Registered input signal
	This is followed by the blocks that the signals are assigned to.
	In the preceding example, internal node signal BUSWON

fans-out to blocks A, B, C, and E. This means that BUSWON requires one block array input from each of these blocks. Some signals may not have fan-out entries, such as OUTPUT signals, or IO signals that are fed back through the nodes that they are paired with. In the preceding example, IO signal T4_S[1] does not have feedback, but it is paired with the node RN_T4_S[1], which fans out to blocks A and D.

Device pin-out list

This list shows the device pin type, and whether a signal has been fixed or preplaced to that pin or not.

Con	tinued		
39	I_0 D01	t4_s[2] *	
40	I_0 D00	t4_s[0] *	
41	Inp	en_xfer *	
42	Vcc	-	
65	CkIn	clk40 *	
66	I_0 G00	t3_s[0] *	
67	I_O G01	t3_s[1] *	
82	I_O H00	error[0] *	
83	Inp	stream_pos *	
84	Vcc	-	

Block information

Each MACH block has macrocells, I/O pins, and block array inputs associated with it. The following sections will describe how these resources are used. Information on these resources is printed only if they are used.

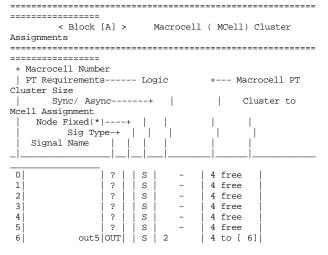
Macrocell (MCell) Cluster Assignments

This section shows how the macrocells in a block and their associated product term clusters are allocated. A MACH435 macrocell can steer 5 product terms (4 PT and 1 XOR used as logic) from its own macrocell, the preceding macrocell and the succeeding 2 macrocells. Macrocell 1 can therefore use its own PT cluster, and can also steer the PT clusters from macrocells 0, 2, and 3 for a maximum of 20 product terms. If the designer assigns (that is, preplaces) a 20 PT signal to macrocell 0 in a block, then this placement is not realizable in a MACH435 because macrocell 0 does not have a preceding macrocell.

Example

The following macrocell cluster assignment listing shows synchronous output signal SDSTR_O which has 17 logic product terms assigned to macrocell 8 in block A. In the MACH435, since the signal is synchronous, the PT cluster size for macrocell 8 is 4, and it is steered to macrocell 8. The single XOR product term is also steered to macrocell 8, and is used as a logic PT. See the Cluster to Mcell (macrocell) and XOR to Mcell Assignment columns.

MACH355 and MACH 4xx


<pre>< Block [A] > Macrocell (</pre>	Maoll) aluston Assignment
<pre> BIOCK [A] > Macrocerr (</pre>	_
+ Macrocell Number	
PT Requirements Logic	XOR+ + Macrocell PT
Cluster Size	
Sync/ Async+	Cluster to
Acell Assignment Node Fixed(*)+	
Size	+- XOR PI
Sig Type-+	XOR to
Acell Assignment	1 1 1 1
Signal Name	
-	
0 t4_s[3] IO S 5 [0] as logic PT	4 LO [0] 1 XOR LO
1 ? S	- 4 to [2] 1 XOR to
2] as logic PT	1 1 00 [2]] 1 100 00
2 nsdstr_0 0UT S 17	4 to [2] 1 XOR to
[2] as logic PT	
	4 to [2] 1 XOR to
[2] as logic PT	
	4 to [2] 1 XOR
Eree 5 ? S	- 4 to [3] 1 XOR
Iree	4 CO [5]] 1 XOR
	4 to [4] 1 XOR to
[6] for 1 PT sig	
7 ? S	- 4 to [8] 1 XOR to
[8] as logic PT	
	4 to [8] 1 XOR to
[8] as logic PT 9 nactroe IO A 2	:+: 1 2 to [8] 1 XOR to
[9]	
	- 4 to [8] 1 XOR to
[8] as logic PT	
L1 ? S	- 4 to [9] 1 XOR
free	
	4 free 1 XOR to
[12] for 1 PT sig	
13 ? S Eree	- 4 free 1 XOR
	- 4 free 1 XOR
free I I I I I I I I I I I I I I I I I I	, ,
L5 ? S	- 4 free 1 XOR
free	

Macrocell 8 provides 5 of the 17 product terms required by signal SDSTR_O, so the remaining 12 product terms must be steered from the adjacent macrocells. Macrocells 7 and 10 are unused, therefore an additional 10 product terms can be steered to macrocell 8.

Asynchronous I/O signal NACTROE is assigned to macrocell 9, and this changes the macrocell PT cluster size from 4 to 2. NACTROE requires 2 logic product terms that are XORed with another PT. The single XOR PT is obtained from macrocell 9, and because the 2 logic product terms in macrocell 9 were steered to fulfill the PT requirements of signal SDSTR_O in macrocell 8, NACTROE's logic requirements are satisfied by steering product terms from macrocell 11.

Node signals BUSWON and T4_S10 are fixed to macrocells (note '*' in Node Fixed column), and the I/O and Output signals in block A are also fixed (see Device Pin Out List). With the output switch matrix, the Placer can still move signals (except the fixed nodes) among macrocells to find macrocells with enough product terms to fulfill the signals' logic requirements.

Since the MACH 1xx and MACH 2xx parts do not have XOR gates in the macrocells, references to it will be removed in this section for these devices: MACH210/MACH211/MACH220/MACH231

7	in_out5	Rin	*	S	0		4	free
8	out6	OUT	i	S	1		4	to [8]
9	İ	?	İ	S	i i	-	4	free
10	out12	OUT		S	1		4	to [10]
11	ĺ	?		S		-	4	free
12	out13	OUT		S	1		4	to [12]
13	ĺ	?		S		-	4	free
14	ĺ	?		S		-	4	free
15	ĺ	?		S		-	4	free

Additional output enable (OE) PT banking information is provided in the following table for MACH 1xx parts. A MACH 1xx block has 4 OE PTs available for the macrocells in the block. In the case of the MACH110, 8 macrocells can choose between 2 OE PTs, and the other 8 macrocells can choose between the other 2 OE PTs. In the rightmost column of the MACH 2xx table above, we see that macrocells 0 to 7 can choose between OE PTs 0 and 1, and macrocells 8 to 15 can select between OE PTs 2 and 3. All MACH 1xx macrocell output buffers can be enabled or disabled without using the output enable product terms.

MACH110/MACH111/MACH120/MACH130/MACH131

<pre>< Block [A] > Macrocell (MCell) Cluster</pre>
Assignments
+ Macrocell Number PT Requirements Logic + Macrocell PT Cluster Size
Sync/ Async+ Cluster to
Mcell Assignment
Node Fixed(*)+ +- OE PT
key
Sig Type-+ Blk OE
PTs
Signal Name
 _
0 io_am[1] IO S 6 4 to [0] 2 => 40
(0) 1 1 io_am[4] IO S 1 4 to [0] 2 => 40 (0) 1
2 ? S - 4 to [1] - => -

3	1	? S	-	4 to [4] - => -
4	_	io_am[2] IO S 9		4 to [4] 1 => 30
0 (5	1)	io_am[3] IO S 1		4 to [4] - => -
0 6	1	? S	_	4 to [5] - => -
0 7	1	? S	_	4 free - => -
0	1			
8 (2)	3	io_am[0] IO S 1		
9 2	3	? S	-	4 free - => -
10 2	3	? S	-	4 free - => -
11 2	3	? S	-	4 free - => -
12		? S	-	4 free - => -
2 13	3	? S	-	4 free - => -
2 14	3	? S	_	4 free - => -
2 15	3	? S		4 free - => -
2	3	1.1.5		1 1 1100 ->

The MACH 1xx design example above has 5 logic equations with 3 unique OE PT equations. Each of the 3 OE PT equations has been assigned a key value and are listed as follows:

- 0 = 90
- 1 = 30
- 2 = 40

Key values help identify valid locations for placing signals, as described below.

IO signal IO_AM[1] with 6 PTs has been assigned to macrocell number 0, and has the 3rd OE PT equation, 2, with the key value 40. The Placer indicates that block OE PT 0 has been allocated to this signal by putting the 0 in parentheses.

IO_AM[4] uses the same OE PT equation as IO_AM[1] (ie., key value 40), and the macrocell assignment table shows IO_AM[4] being assigned to node 1 (the second macrocell in the PAL block, because internal nodes are numbered starting at 0) with OE PT 0 also selected for this macrocell. IO_AM[2] has a different OE PT equation, (ie., key value 30) and has been assigned to macrocell 4 and

block OE PT 1. IO_AM[3] requires only 1 PT, but since it does not require an OE PT equation (that is, the output signal is always enabled or disabled), it can be assigned to any macrocell capable of supporting 1 PT equations. The table above shows the Placer assigning IO_AM[3] to macrocell 5. Note that none of the block OE PTs has been selected for this signal.

IO_AM[0] requires only 1 PT, and if it did not have an OE PT equation, could have been assigned to macrocell 7. Since it has an OE PT equation with key value 90, the only valid locations for this signal are macrocells 8 through 15 since they provide a new set of block OE Pts (2 and 3). The table shows the Placer assigning IO_AM[0] to macrocell 8 and selecting block OE PT 2 for IO_AM[0].

Maximum PT Capacity

This table indicates the maximum number of product terms a signal can have with the current macrocell assignment.

Example

With the current macrocell assignment shown in the example in the preceding Macrocell Cluster Assignment section, T4_S[3] can support only 5 product terms. Signal NSDSTR_O in macrocell 2 can support up to 20 product terms because it has PT clusters from macrocells 1, 2, 3, and 4 steered to it, and the XOR product terms from these macrocells can also be used as extra logic product terms.

<pre>< Slock [A] > Maximum PT Capacity </pre> <pre>+ Macrocell Number + Macrocell Number PT Requirements Logic XOR+ Sync/ Async+ Sig Type-+ g Type-+ Si</pre>	
<pre></pre>	
<pre>+ Macrocell Number PT Requirements Logic XOR+ Sync/ Async+ Node Fixed(*)+ Signal Name Maximum PT Capacity - </pre>	< Block [A] > Maximum PT Capacity
<pre>+ Macrocell Number PT Requirements Logic XOR+ Sync/ Async+ Node Fixed(*)+ Sig Type-+ Signal Name Maximum PT Capacity </pre>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Sync/ Async+ Node Fixed(*)+ Sig Type-+ Signal Name I Signal Name I I	+ Macrocell Number
Sync/ Async+ Node Fixed(*)+ Sig Type-+ Signal Name I Signal Name I I	PT Requirements Logic XOR+
Node Fixed(*)+ Sig Type-+ Signal Name Signal Name Signal Name Signal Name Assignation O t4_s[3] IO S O t4_s[3] IO S O t4_s[3] IO S I ? S => can support up to [10gic PT(s) 1 => can support up to [10gic PT(s) S 2 4 nadl_o IO S 2 => can support up to [1 logic PT(s) => can support up to [1 logic PT(s) => can support up to [1 logic PT(s) => can support up to [1 logic PT(s) => can support up to	
Sig Type++ Signal Name Signal Name Maximum PT Capacity - - Maximum PT Capacity - - Maximum PT 0 t4_s[3] IO S 5 => can support up to [5] logic PT(s) => can support up to [20] logic PT(s) => can support up to [20] logic PT(s) => can support up to [10gic PT(s) => can support up to [1 logic PT(s) => can support up to [1 logic PT(s) => can support up to [1 logic PT(s) => can support up to [1 => can support up to [1 => c	
$ \begin{vmatrix} \text{Signal Name} & & & & & \text{Maximum PT} \\ \text{Capacity} \\ - & & & & & & & & \\ \hline 0 & t4_s[3] & IO & & S & & 5 & => \text{ can support up to} \\ \hline [& 5] \log \text{ic PT}(\text{s}) \\ 1 & & ? & & S & & & => & [& 0] & \text{PT capacity} \\ 2 & nsdstr_o OUT & & S & 17 & => \text{ can support up to} \\ \hline [& 20] \log \text{ic PT}(\text{s}) \\ 3 & ncmd_o & IO & & S & 2 & => \text{ can support up to} \\ \hline [& 20] \log \text{ic PT}(\text{s}) \\ 4 & nadl_o & IO & & S & 2 & => \text{ can support up to} \\ \hline [& 4] & \log \text{ic PT}(\text{s}) \\ 5 & & ? & & S & & & => \text{ can support up to} \\ \hline [& 1] & \log \text{ic PT}(\text{s}) \\ 6 & t4_s10 & \text{NOD} * & S & 1 & => \text{ can support up to} \\ \hline [& 1] & \log \text{ic PT}(\text{s}) \\ 7 & & ? & & S & & & => & [& 0] & \text{PT capacity} \\ 8 & sdstr_o OUT & & S & 17 & => \text{ can support up to} \\ \hline [& 17] & \log \text{ic PT}(\text{s}) \\ 9 & nactroe & IO & & A & & 2 & :+: & 1 & => \text{ can support up to} \\ \hline [& 4] & \log \text{ic PT}(\text{s}) \\ 10 & & ? & & S & & & => \text{ can support up to} \\ \hline [& 4] & \log \text{ic PT}(\text{s}) \\ 11 & & ? & & S & & & => \text{ can support up to} \\ \hline [& 4] & \log \text{ic PT}(\text{s}) \\ 12 & & \text{buswon} & \text{NOD} * & S & & 1 & => \text{ can support up to} \\ \hline [& 15] & \log \text{ic PT}(\text{s}) \\ 13 & & ? & & S & & & => \text{ can support up to} \\ \hline \end{cases}$	
Capacity $\begin{array}{c c c c c c c c c c c c c c c c c c c $	Signal Name
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
<pre>[5] logic PT(s) 1 </pre>	
<pre>[5] logic PT(s) 1 </pre>	$0 + 4 e^{3} + 10 + 5 + 5$
1 ? S - => [0] PT capacity 2 nsdstr_0 OUT S 17 => can support up to [20] logic PT(s) => can support up to 3 ncmd_0 IO S 2 => can support up to [5] logic PT(s) => can support up to 4 nadl_0 IO S 2 => can support up to [4] nadl_0 IO S 2 => can support up to [5] ? S - 6 t4_s10 NOD * S 1 => can support up to [1] logic PT(s) - 6 t4_s10 NOD * S 1 => can support up to [1] logic PT(s) - 7 ? S 1 => can support up to [1] logic PT(s) - 9 nactroe IO A 2 +:1 => can support up to [5] logic PT(s) - 10 ? S - 11 ? S - 12 buswon NOD * S 1 => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s)	[5] logic PT(s)
<pre>[20] logic PT(s) 3 ncmd_o IO S 2 => can support up to [5] logic PT(s) 4 nadl_o IO S 2 => can support up to [4] logic PT(s) 5 ? S - => can support up to [1] logic PT(s) 6 t4_s10 NOD * S 1 => can support up to [1] logic PT(s) 7 ? S - => [0] PT capacity 8 sdstr_o OUT S 17 => can support up to [17] logic PT(s) 9 nactroe IO A 2 :+: 1 => can support up to [5] logic PT(s) 10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to</pre>	1 2 3 - - - 0 PT capacity
<pre>[20] logic PT(s) 3 ncmd_o IO S 2 => can support up to [5] logic PT(s) 4 nadl_o IO S 2 => can support up to [4] logic PT(s) 5 ? S - => can support up to [1] logic PT(s) 6 t4_s10 NOD * S 1 => can support up to [1] logic PT(s) 7 ? S - => [0] PT capacity 8 sdstr_o OUT S 17 => can support up to [17] logic PT(s) 9 nactroe IO A 2 :+: 1 => can support up to [5] logic PT(s) 10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to</pre>	2 $redetr o O I I I S 17 = concurrence of the second se$
<pre>3 ncmd_o IO S 2 => can support up to [5] logic PT(s) 4 nadl_o IO S 2 => can support up to [4] logic PT(s) 5 ? S - => can support up to [1] logic PT(s) 6 t4_s10 NOD * S 1 => can support up to [1] logic PT(s) 7 ? S - => [0] PT capacity 8 sdstr_o OUT S 17 => can support up to [17] logic PT(s) 9 nactroe IO A 2 :+: 1 => can support up to [5] logic PT(s) 10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to</pre>	[20] logic PT(s)
<pre>[5] logic PT(s) 4 nadl_o IO S 2 => can support up to [4] logic PT(s) 5 ? S - => can support up to [1] logic PT(s) 6 t4_s10 NOD * S 1 => can support up to [1] logic PT(s) 7 ? S - => [0] PT capacity 8 sdstr_o OUT S 17 => can support up to [17] logic PT(s) 9 nactroe IO A 2 :+: 1 => can support up to [5] logic PT(s) 10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to</pre>	
<pre>4 nadl_o IO S 2 => can support up to [4] logic PT(s) 5 ? S - => can support up to [1] logic PT(s) 6 t4_s10 NOD * S 1 => can support up to [1] logic PT(s) 7 ? S - => [0] PT capacity 8 sdstr_o OUT S 17 => can support up to [17] logic PT(s) 9 nactroe IO A 2 :+: 1 => can support up to [5] logic PT(s) 10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to</pre>	[5] logic PT(s)
<pre>[4] logic PT(s) 5 </pre>	4 $nadlol TO S 2 => can support up to$
<pre>5 ? S - => can support up to [1] logic PT(s) 6 t4_s10 NOD * S 1 => can support up to [1] logic PT(s) 7 ? S - => [0] PT capacity 8 sdstr_o OUT S 17 => can support up to [17] logic PT(s) 9 nactroe IO A 2 :+: 1 => can support up to [5] logic PT(s) 10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to</pre>	[4] logic PT(s)
<pre>[1] logic PT(s) 6 t4_s10 NOD * S 1 => can support up to [1] logic PT(s) 7 ? S - => [0] PT capacity 8 sdstr_o OUT S 17 => can support up to [17] logic PT(s) 9 nactroe IO A 2 :+: 1 => can support up to [5] logic PT(s) 10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to</pre>	
<pre>6 t4_s10 NOD * S 1 => can support up to [1] logic PT(s) 7 ? S - => [0] PT capacity 8 sdstr_0 OUT S 17 => can support up to [17] logic PT(s) 9 nactroe IO A 2 :+: 1 => can support up to [5] logic PT(s) 10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to</pre>	
<pre>[1] logic PT(s) 7 </pre>	
7 ? S - => [0] PT capacity 8 sdstr_o OUT S 17 => can support up to [17] logic PT(s) 9 nactroe IO A 2:+:1 => can support up to [5] logic PT(s) 10 ? S - 12 buswon NOD * S 1 13 ? S -	[1] logic PT(s)
<pre>[17] logic PT(s) 9 nactroe IO A 2 :+: 1 => can support up to [5] logic PT(s) 10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to</pre>	7 ? S - => [0] PT capacity
<pre>[17] logic PT(s) 9 nactroe IO A 2 :+: 1 => can support up to [5] logic PT(s) 10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to</pre>	8 sdstr o OUT S 17 => can support up to
<pre>[5] logic PT(s) 10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to</pre>	[17] logic PT(s)
<pre>[5] logic PT(s) 10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to</pre>	9 nactroe IO A 2 :+: 1 => can support up to
10 ? S - => can support up to [4] logic PT(s) 11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S -	
<pre>[4] logic PT(s) 11 </pre>	
11 ? S - => can support up to [10] logic PT(s) 12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S - => can support up to	[4] logic DT(c)
12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S -	11 ? S - => can support up to
12 buswon NOD * S 1 => can support up to [15] logic PT(s) 13 ? S -	[10] logic PT(s)
[15] logic PT(s) 13	12 buswon NOD * S 1 => can support up to
13 ? S - => can support up to	[15] logic PT(s)

14 | ? | | S | - |=> can support up to [15] logic PT(s) 15 | ? | | S | - |=> can support up to [10] logic PT(s)

Macrocell 1 is unusable because even though it is unused, all the PT clusters available to it have been steered to other macrocells. Its maximum PT capacity is therefore 0.

Node-Pin Assignments

An output switch matrix (OSM) lets a macrocell go to different I/O pins. The MACH355 and MACH 4xx OSM lets a macrocell go to 4 I/O pins. The following is a sample macrocell-to-I/O pin table in the PRD file.

MACH435

=======		=======	:		
	=======				
< Blo	ck [A] > Node-Pin As	signmen	nts		
	cell Number				
	Fixed(*)+				
INOUC	Sig Type+ to	Block		vin l	
Device P		2100.1	[11] 10 1	1	
Sign	al Name pin	Nur	mbers		
Numbers					
_					
0	t4_s[3] IO => (5) (67	0 (8)
1	? =>	5 6	67	0	8
9 10		c	7 0	11	0
2 10 3	nsdstr_0 OUT => (4)	0	/ 0	, _)	9
3	ncmd_o IO =>	6 (7) 0	1	9 (
10) 3	4		,	1	
4	nadl_o IO =>	7 (0) 1	2	10 (
3) 4	5				
5	? =>	7 (0 1	2	10
3 4 6	5 t4_s10 NOD * =>	0	1 2	3	3
4 5	6	0 .	1 2	2	3
7	? =>	0	1 2	3	3
4 5	6				
8	sdstr_0 0UT	1	2 3	(4)	4
5 6 (7)				
9	nactroe IO =>	1 (2) 3	4	4 (
5) 6	7	2		5	-
10 6 7	8	۷.	5 4	5	5
11	? =>	2	3 4	5	5
6 7	8			- 1	-

12 buswon NOD * => 3 5 6 6 4 7 8 9 13 | ? | | => | 3 4 5 6 | б 7 8 9 14 | ? | | => | 4 5 6 7 | 7 10 8 | ? | | => | 4 5 б 7 | 7 15 9 10 8

Each macrocell can be routed to some but not all pins in the PAL block. This table lists, for each macrocell, the available block pins and the corresponding physical device pins to which it can be routed. The block pin and device pin to which it actually was routed are enclosed in parentheses. The sample table above shows that output signal T4_S[3] in macrocell 0 was assigned to block A I/O pin 5 (the corresponding physical device pin number is 8). Macrocell 0 could have been routed to either block pins 5, 6, 7 or 0 (device pins 8, 9, 10, or 3). Note that internal signals/nodes are not assigned to I/O pins.

MACH 1xx macrocells are directly connected to IO pins; therefore each node has only 1 destination pin and each pin has only one node source: MACH 1xx

	========			
	< Block [A] > Node	-		
	=======================================			
	ocell Number			
Node	<pre>Fixed(*)+</pre>			
	Sig Type+ to	Block [A] IO P:	in	
Device Sig	nal Name pin	Numberg	1	
Jumbers		Numberb	I	
0 2)	io_am[1] IO =>	(0)		(
1	io_am[4] IO =>	(1)		(
3)		(_/	1	
2	? =>	2		
1 3	? =>	3	1	
5		3	I	
4	io_am[2] IO =>	(4)		(
5)				
5	io_am[3] IO =>	(5)		(
7) 6	? =>	б	I.	
3	1 • 1 1 • 1	0	1	
7	? =>	7		
)	io_am[0] IO =>	(8)	1	,
8 4)	io_am[0] IO =>	(8)		(
9	? =>	9	1	
L5				
10	? =>	10		
.6 .1	? =>	11	1	
.7	1 • 1 1 • 1		I	
2	? =>	12		
8		10		
L3 L9	? =>	13	I	
L4	? =>	14	1	
20'				
5	? =>	15		

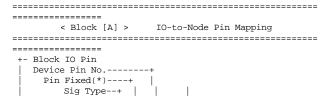
For MACH 2xx parts, the odd numbered nodes are internal nodes only (ie., they cannot connect to IO pins).

Designers can specify input registers for MACH 2xx designs. An input register in a MACH 2xx will use one of the internal macrocell nodes. If a MACH210 design has an input pin INP_PIN paired with an input register IREG_NOD, then the Placer will assign INP_PIN to one of the IO pins and will then assign IREG_NOD to the internal node associated with that IO pin. In the node-pin assignment table below, IREG_NOD (with registered input type Rin) has been assigned to internal node 1 (the second macrocell in PAL block A).

MACH 2xx

====				
	< Block [A] >	No	de-Pin Assignments	
====				:
+ 1	Macrocell Number			
11	Node Fixed(*)+			
i	Sig Type+	to	Block [A] IO Pin	
Devi	ice Pin			
- E	Signal Name	pin	Numbers	
Numk	pers	- '	1	
_				
0	nd_de[0] NOD	=>	0	2
1	ireg_nod Rin	=>	(internal node)	
2	out_am[1] IO	=>	(1) (3)
3	nd_am[1] NOD	=>	(internal node)	
4	nd_am[2] NOD	=>	2	4
5	?	=>	(internal node)	
6	?	=>	3	5
7	?	=>	(internal node)	
8	?	=>	4	6
9	?	=>	(internal node)	
10	?	=>	5	7
11	?	=>	(internal node)	
12	?	=>	б	8
13	?	=>	(internal node)	
14	?	=>	7	9
15	?	=>	(internal node)	

IO-to-Node Pin Mapping

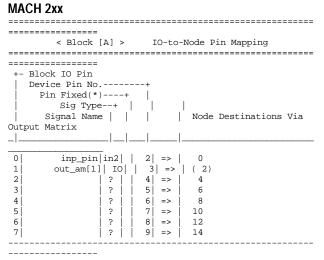

This table shows what macrocells an I/O pin can connect to through the OSM; this is a complementary view to the Node-Pin Assignments table. As in the Node-Pin Assignments table, actual mappings are indicated by placing parentheses around the node number to which the signal was actually routed. If a signal is assigned to an I/O pin, then it can take its logic from 8 different nodes in the MACH355 and MACH 4xx devices.

In the table below, I/O signal NADL_O is fixed to I/O pin 0, and is connected to macrocell 4.

	======= k [A] > IO-to	-Node Pin	Mapp	ing			
			=====		=====	=====	====
+- Block							
	e Pin No						
Pin	Fixed(*)+						
	Sig Type+ qnal Name		Node	Dogt	inati	ons V	
∣ 51 Dutput Ma	5 1 1	1 1	Node	Dest	Inati	ons v	Ia
l 		1 1					
-							
0	nadl_o IO *	3 =>	0	1	2	3	(4
5 6	7						
1	nsdstr_o OUT *	4 =>	(2)	3	4	5	6
78	9						
	nactroe IO *	5 =>	4	5	б	7	8
(9) 10	11				-		
3		6 =>	6	7	8	9	10
L1 12	13		(0)	0	1.0		1.0
4	sdstr_o OUT *	/ =>	(8)	9	10	11	12
5	15 t4_s[3] I0 *	0 -	10	11	10	12	14
	1	0 =>	10	± ±	12	15	Τ.I
6		9 =>	12	13	14	15	0
L 2	3	- 1					0
7	ncmd_o IO *	10 =>	14	15	0	1	2
(3) 4	5						

Block A I/O pins 3 and 6 are unused, therefore you can add 2 more signals requiring I/O pins to block A, but these signals can only be connected to the macrocells listed in the table for the I/O pins.

MACH 1xx macrocells are directly connected to IO pins; therefore each node has only 1 destination pin and each pin has only one node source: MACH 1xx



Signal Name Node Destinations Via Output Matrix
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

0	ontinued
3	2 5 => 3
4	io_am[2] IO 6 => (4)
5	io_am[3] IO 7 => (5)
6	? 8 => 6
7	? 9 => 7
8	io_am[0] IO 14 => (8)
9	? 15 => 9
10	? 16 => 10
11	? 17 => 11
12	? 18 => 12
13	? 19 => 13
14	? 20 => 14
15	21 => 15

Note that the type for the INP_PIN signal is IN2 in the following report. The "IN2" designation means that INP_PIN is an input pin with a registered input in a MACH 2xx device.

IO/Node and IO/Input Macrocell Pairing Table This table shows Input, I/O or output signals that are paired to input registers or nodes. In the following example, the I/O signal NADL_O which is fixed to I/O pin 0 in block A (or device pin number 3) is not paired with an input register but is paired with the node signal RN_NADL_O.

< Block [A] > IO/Node and IO/Input Macrocell						
Pairing Table						
+- Block IO Pin						
Device Pin No+						
Pin Fixed(*)+						
Sig Type+						
Signal Name Input Macrocell and						
Node Pairs						
0 nadl_0 I0 * 3 => Input macrocell [
IO paired w/ node [
rn_nadl_o]						
1 nsdstr_o OUT * 4 => Input macrocell [
2 nactroe IO * 5 => Input macrocell [
-] IO paired w/ node [
rn nactroe]						
3 ? 6 => Input macrocell [
-]						
4 sdstr_0 OUT * 7 => Input macrocell [
-]						
5 t4_s[3] I0 * 8 => Input macrocell [
-]						
IO paired w/ node [
rn_t4_s[3]]						
6 ? 9 => Input macrocell [
-]						
7 ncmd_0 I0 * 10 => Input macrocell [
-]						
II II II II II II II II II II II II II						
rn_ncmd_o]						

The IO/Node and IO/Input Macrocell Pairing Table for the MACH 2xx parts will show the link between the 2 signals INP_PIN and IREG_NOD. Since OUT_AM[1] does not have an input macrocell, it does not have an input macrocell entry.

< Block [A] > IO/Node and IO/Input Macrocell
Pairing Table
+- Block IO Pin
Device Pin No+
Pin Fixed(*)+
Sig Type+ Signal Name Input Macrocell and
Node Pairs
_
0 inp_pin in2 2 => Input macrocell [
ireq nod]
1 out_am[1] IO 3 => Input macrocell [
-]
2 ? 4 => Input macrocell [
-]
3 ? 5 => Input macrocell [
-]
4 ? 6 => Input macrocell [
5 ? 7 => Input macrocell [
-] 6 ? 8 => Input macrocell [
6 ? 8 => Input macrocell [-]
7 ? 9 => Input macrocell [
-]
·

Input and Central switch matrix tables

These sections of the report contain information on utilization of the Input Switch Matrix (ISM) and the Central Switch Matrix (CSM).

Input Multiplexer (IMX) Assignments Each block in the MACH355 and MACH 4xx devices has input multiplexers (IMX) that provide inputs into the central switch matrix. The MACH435 has 8 IMXs per block, where each IMX is physically located between 2 macrocells and is used to select any 3 of 4 signals to pass on to the central switch matrix: the 2 macrocell nodes, one I/O pin, and the corresponding input register associated with the I/O pin. In MACH 3xx/4xx designs, the IMX value represents all feedback from the pin and its associated macrocells. This value is reported for MACH 1xx/2xx designs even though MACH 1xx/2xx do not have an input multiplexer.

Example

In the MACH435 example below, each IMX in a block and the signals that go through the IMX are shown. In IMX 0, I/O signal UPB[1] is fixed to block D I/O pin 0, and feedback from it through the I/O pin path is required (note '*' in Signal Fixed to Pin/ Mcell column). The product terms for UPB[1] are in macrocell 3 and connected to I/O pin 0 through the OSM; node feedback is not required from UPB[1]. Even though 4 signals are used in IMX 0, this is still a valid placement because only 2 signals have to be fed back through the IMX to the central switch matrix (see '*' in Feedback Required column).

< Block [D] > Input Multiplexer (IMX) Assignments							
+ IO pin/Input Register, or Macrocell IMX No. + Block IO Pin or Macrocell Number MACHXL Node/ + Signal using the							
Pin or Macrocell	5						
Pin Number +- Sign	al Fixed						
(*) to Pin/ Mcell							
Sig Type +-	Feedback						
Required							
IMX 0 [IOpin 0 40 IO upb[1] * *]							
[RegIn 0 154 Rin bufreg[1] *]	paired W/[
upb[1]] [MCell 0 50 IO upb[0]]	1						
[MCell 0 50 IO upb[0]] [MCell 1 51 IO upb[3]]]						
[MCEII I 51 10 upb[51] .	J						
IMX 1 [IOpin 1 39 IO upb[2] *	1						
[RegIn 1 155 Rin bufreg[2] *]							
upb[2]]	pulled w/l						
	1						
[MCell 2 52 IO upb[7]] [MCell 3 53 IO upb[1]]	1						
	1						
IMX 2 [IOpin 2 38 IO upb[5] *:	1						
[RegIn 2 156 Rin bufreg[5] *]							
upb[5]]	-						
[MCell 4 54 IO upb[2]]]						

	[MCell	5 55 NOD	fmtregsel [*]
IMX 3 upb[4]]		3 37 IO 3 157 Rin	upb[4] *] bufreg[4] *] paired w/[
app(1)]		6 56 IO 7 57 NOD	upb[4]] txvcihdrlsbsel *]
IMX 4	[RegIn [MCell	4 36 INP 4 158 8 58 NOD 9 59 NOD	upadr[0] *] -] txvcihdr[3] *] txvcihdr[7] *]
Contin	ued		

Conti	inued		
IMX 5	[IOpin 5	35 IO	upb[0] *]
	[RegIn 5	159 Rin	bufreg[0] [*] paired w/[
upb[0]]			
	[MCell 10		upb[5]]
	[MCell 11	61 NOD	txvcihdrmsbsel *]
		241 = 2	
IMX 6	[IOpin 6		upb[3] *]
	[RegIn 6	160 Rin	bufreg[3] *] paired w/[
upb[3]]			
	[MCell 12	62	-] coment1 *]
	[MCell 13	63 NOD	coment1 *]
7101 7		221 70	
IMX /	[IOpin 7		upb[7] *]
	[RegIn 7	161 Rin	bufreg[7] *] paired w/[
upb[7]]			
	[MCell 14		bufregsel *]
	[MCell 15	65	-]

If all 4 signals going through an IMX have to be fed back, the MACH435 IMX architecture cannot support this and one of the signals must be moved to another macrocell or I/O pin to alleviate congestion in this IMX. If all signals are fixed to pins or nodes, or all IMXs in the block are up to their limits, then the Placer will generate the message "Input Multiplexer congestion in block [x]" and the designer will have to remove signals from the block to correct the problem. Logic Array Fan-in

The Logic Array Fanin table shows the signal that uses each mux in a logic block.

For example, in the MACH435, each logic block has 33 muxes, each of which chooses one of 18 signals from the central switch matrix. The set of 18 signals per mux will overlap with other muxes in the same block, and may cause the design to be unroutable if some signals are fixed.

In the Logic Array Fan-In table, the signals using each of the 33 muxes and the current placements of these signals are shown, along with the relative MACHXL node and pin numbers in a logic block. Ellipses (...) indicate unused muxes.

======	=======					
< Block [H] > Logic Array Fan-in						
======						
======						
+- C	Central Switch Matrix No.					
	Signal Source MACHXL Node/Pin					
Number						
Mux00						
Mux01						
Mux02						
Mux03						
Mux04	intrst IO Pin H 7 75					
Mux05						
Mux06	nucsfdbkrtn IO Pin H 6 76					
Mux07						
Mux08						
Mux09	rn_nuchbuserr Mcell C 6 40					
Mux10	$rn \pm 1 \le 101$ Mcell D 4 54					
Mux11						
Mux12						
Mux13						
Mux14	rn_error[1] Mcell H 2 116					
Mux15	rn_s[2] Mcell F 2 84					
Mux16						
Mux17						
Mux18						
Mux19						
Mux20						
Mux21	nucds32rtn IO Pin H 5 77					
Mux22						
Mux23	rn_error[0] Mcell H 0 114					
Mux24						
Mux25						
Mux26						
Mux27						
Mux28						
Mux29						
Mux30						
Mux31						
Mux32						

Chapter 9: Report Files 364

Example

The table above shows macrocell node 5 in block G (G5) being selected by MUX00. Suppose that G5 is one of the 18 inputs into mux 0, 20, and 27 of block H. If these muxes are used to select some other signals as array inputs into block H, then the signal assigned to G5 cannot be routed to block H. If the signal is not fixed to macrocell G5, then the Placer can try to move the signal to another macrocell in an attempt to look for muxes that are currently unused. If the Placer has attempted all possible placements for unrouted signals, then the design is unfittable. The unrouted signal will be listed in the Logic Array Fan-In section, and will also be marked with the symbol '~' in the Signal Fan-Out table described earlier.

Example

The following design was 96% routed (but failed to route completely). The unrouted signal is B[4] and the block that it cannot route to is block D. The fanout entry for B[4] to block D is preceded by a '~'. * Routing Completion: 96% (252 of 260 signals routed) ==> Design unplaced and/or unrouted

Warning: { Unplaced and/or unrouted design.} Errors : {No alternate placements for signals feeding the unrouted block [A].}						
* Attempts: Place [2144] Route [2]						
#\$ Warnings or errors \$#						
Signal Fanout Table						
+- Signal Number						
+- Block Location ('+' for dedicated						
inputs)						
+ Sig Type Signal Name Fanout to Logic Blocks						
1 a[1] A IO => A > Paired w/:						
[an1[1]]						
2 a[2] B IO => . B => Paired w/:						
[an1[2]]						
3 a[3] C IO => C => Paired w/:						
•••						

19|b[3] |B|INP|=> A B C D E F G . => Paired w/: - none -20|b[4] |B|INP|=> A B C~D E F G . => Paired w/: - none -Continued...

```
...Continued
21|b[5]
          |B|INP|=> A B C D E . G . => Paired w/:
- none -
. . .
_____
_____
< Block [D] > Logic Array Fan-in
_____
_____
*** [ 1] Unrouted Signals
     [b[4]]
 +- Central Switch Matrix No.
      Signal Source MACHXL Node/Pin
 Numbers
_____
Mux00| g[8] IO Pin G 7 | 73
Mux01| ... |
```

To improve routability, do one of the following: □ Float node signals which will let the Placer assign these signals to macrocells which may have access to unused routing paths, consequently freeing routing paths for use by the unrouted signals □ Reduce the amount of logic in block D, thereby releasing some routing resources for signal B[4]

Remove the logic in block D that required the B[4] signal, therefore removing B[4] from the list of signals to route to block D

The first option does not affect any fixed pin assignments because only nodes are being floated.

Using Place and Route Data to Limit Placements You can create a LIM file to limit the number of macrocells and logic array inputs that can be used in each PAL block in a design. Instructions on creating LIM files are given in Appendix C. Review the Place and Route Data file (Design.PRD) to determine if some blocks are highly utilized while others are sparsely utilized. Then create a LIM file to limit the number of signals per block to some number less than the maximum supported by the block.

Example

Each MACH435 block can have up to 33 logic array inputs, as shown in the Placement Completion section of the PRD file below.

Start: Fri Oct 29 12:32:39 1993 End : Fri Oct 29 12:32:39 1993 \$\$\$ Elapsed time: 00:00:00 Design [pr_test.pds]

* Placement Completion

+- Block + IO Pins Available +- Macrocells Available + IO Pins Used +- Signals to Place + Logic Array Inputs							
			+- Placed				+- Array Inputs Used
				İ_			
A	16	8	8 => 100%	8	6 => 75%	33	18 => 54%
в	16	7	7 => 100%	8	7 => 87%	33	18 => 54%
С	16	9	9 => 100%	8	8 => 100%	33	27 => 81%
D	16	8	8 => 100%	8	7 => 87%	33	26 => 78%
Е	16	5	5 => 100%	8	8 => 100%	33	16 => 48%
F	16	4	4 => 100%	8	7 => 87%	33	22 => 66%
G	16	7	7 => 100%	8	8 => 100%	33	16 => 48%
Н	16	5	5 => 100%	8	8 => 100%	33	17 => 51%

The Router may take a long time to find a 100% routing solution if all 33 inputs into a block are used. With all 33 array inputs used, the Router cannot assign inputs that are blocked to unused array input muxes (because there are none), and will have to call the Placer to reassign signals to try different routing resources.

To increase the number of routing resources available for logic array inputs to such blocks, specify a MAX_FANIN value that is less than the maximum fanin (see Appendix C, "Creating a LIM File," for more details). Use the Place/Route Resource Usage Table in the PRD file to determine which blocks have a logic array input number near or at the maximum.

Timing Analysis Report

The Timing Analysis report (Design.TAL) summarizes the number of propagation delays associated with each signal in the design. (The actual time associated with a propagation delay is provided in the device data book.) Signals incur an additional propagation delay for each feedback through the device's central switch matrix.

Delay values are only estimates and do not reflect timing differences between storage types.

□ Signals will be listed in descending order (higher to lower) with respect to delay.

□ This information is provided even if partitioning, placing, or routing fails.

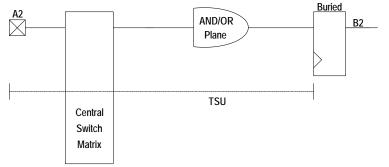
The MACH Fitter computes four distinct delay types: TSU, TCO, TPD, and TCR. The value of each delay type represents the number of passes the corresponding signal makes through the switch matrix and combinatorial logic. The total delay is calculated from one pin or register to another pin or register.

These delay types are defined in the following table. Delay Types, Timing Analysis Report

Туре	Description
Tsu	Set-Up Time
	The number of passes through the switch matrix
	made by a signal between an input pin and the
	logic input of a clocked storage element. (TSU is 0
	for input pairing.)
Tco	Clocked Output-to-Pin Time
	The number of passes through the central switch
	matrix made by a signal between the output of a
	clocked storage element and an I/O pin. (TCO is 0
	for a register driving a pin directly.)
Tpd	Propagation Delay Time
	The number of passes through the central switch
	matrix made by a signal between an input pin and
	an output pin (calculated for combinatorial
	equations only).

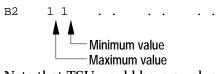
Tcr Clocked Output-to-Register Time The number of passes through the central switch matrix made by a signal between the output of one clocked storage device and the logic input of another.						
In the timing analysis report, the delay types are labeled TSU, TCO, TPD,						
and TCR. The format of the report is:						
TSU # pageo	TCO TPD # passes # passes	TCR				
	Min. Max.		Min. Max.	Min. Max.		

Each signal is evaluated for each applicable delay type. For each delay type, a minimum and a maximum value is calculated.


The following sections contain examples of each delay type.

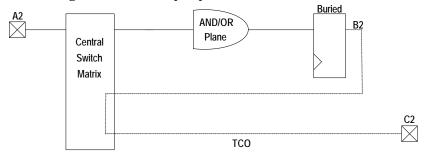
Note: All timing metrics are calculated from the perspective of the register referenced in the timing report.

TSU


TSU represents the number of switch matrix passes between an input pin and a register setup before clock.

For example, the equation illustrated above would appear in the design file as follows:

```
PIN ? A2 COMB
NODE ? B2 REG
...
EQUATIONS
B2 = A2
```

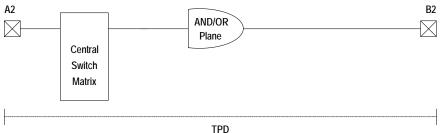

After fitting, the timing analysis report for signals B2 looks like this: TSU TCO TPD TCR

Note that TSU would have a value of zero for pins paired with an input register, because input pairing does not entail a pass through the central switch matrix.

TCO

TCO represents the number of switch matrix passes between a clocked register and an output pin.

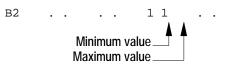
For example, the equation illustrated above would appear in the design file as follows:

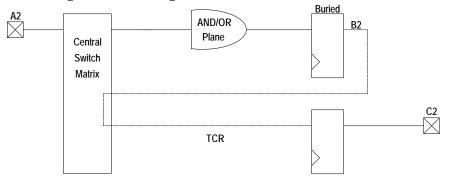

PIN ? A2 COMB NODE ? B2 REG PIN ? C2 COMB ... EQUATIONS B2 = A2 C2 = B2

After fitting, the timing analysis report for signals C2 looks like this: TSU TCO TPD TCR

TCO has a value of zero when a register drives a pin directly.

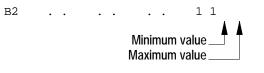
TPD


TPD represents the number of switch matrix passes between an input pin and an output pin.


PIN ? A2 COMB PIN ? B2 COMB ... EQUATIONS B2 = A2

After fitting, the timing analysis report for signal B2 looks like this: TSU TCO TPD TCR

TCR


TCR represents the number of switch matrix passes between a clocked register and the register it drives (before clock).

For example, the equation illustrated above would appear in the design file as follows:

PIN ? A2 COMB NODE ? B2 REG PIN ? C2 REG ... EQUATIONS B2 = A2 C2 = B2 After fitting, th

After fitting, the timing analysis report for signals C2 looks like this: TSU TCO TPD TCR

Failure Reports

The following sections describe the reports that result from the following three conditions:

- **G** Failure to Partition
- **G** Failure to Place
- □ Failure to Route

Failure to Partition

On failure to partition the fitting report will include the following sections:

- 1. Fitter Options
- 2. Device Resource Checks

3. Block Partitioning Summary. The column labeled "Macrocells Used" contains the accurate count from the last partitioning attempt. The "Macrocells Unusable" columns does not appear, as this information is meaningless in the case of a design that could not be partitioned successfully.

- 4. Signal Summary.
 - Pin Signals

The location of a signal that was not placed (either partitioned or not partitioned), is indicated with a question mark (?).

Node Signals

The block number of a signal that was not partitioned is replaced with a question mark (?). The location of a signal that was neither partitioned nor placed is indicated with a double question mark (??). The location of a signal that was partitioned but not placed is indicated by the block number followed by a question mark (for example, D?).

5. Tabular Information containing information on the last best partition encountered. Tabular Information will include signal names but will include only the preplacement and block assignment information available at the time of the partitioning failure. All global clock placement available at the time of failure is listed in the individual "Clock Mux" section for each block. Equation polarity is shown in the tables labeled "BLOCK x LOGIC MACROCELLS & INPUT REGISTERS." Data fields for which data is not available are indicated with an ellipsis (...).

6. Reason for failure to place an offending signal, listed by block. A typical message is "PRODUCT TERM DOES NOT FIT IN THE BLOCK. Insufficient clusters. It requires 3 but only 1 available." ²³

7. List of all unpartitioned signals. 8. Percent completion of the partitioning process. A sample of the Partitioning Failure Report is given below. Signal 'BCA[1]' cannot be placed in any block partition for the following reasons: Block FANIN LIMIT (33) exceeded. BLOCK A -PRODUCT TERM does not fit in the block. Insufficient clusters. It requires 1 but only 0 available. BLOCK B -PRODUCT TERM does not fit in the block. Insufficient clusters. It requires 1 but only 0 available. BLOCK C - $\ensuremath{\texttt{PRODUCT}}$ TERM does not fit in the block. Insufficient clusters. It requires 1 but only 0 available. BLOCK D -Block FANIN LIMIT (33) exceeded. PRODUCT TERM does not fit in the block. Insufficient clusters. It requires 1 but only 0 available. BLOCK E -PRODUCT TERM does not fit in the block. Insufficient clusters. It requires 1 but only 0 available. BLOCK F -PRODUCT TERM does not fit in the block. Insufficient clusters. It requires 1 but only 0 available. Continued...

...Continued BLOCK G -PRODUCT TERM does not fit in the block. Insufficient clusters. It requires 1 but only 0 available. BLOCK H -PRODUCT TERM does not fit in the block. Insufficient clusters. It requires 1 but only 0 available. The following signals remain to be partitioned BCA[0] BCA[10] BCA[15] BCA[1] BCA[5] BCA[6] BCB[0] BCB[10] BCB[15] BCB[1] BCB[5] BCB[6] BCC[10] BCC[1] BCC[0] BCC[15] BCC[5] BCC[6] PCA[10] PCA[15] PCA[5] PCB[10] PCB[15] PCB[5] PCC[5] RN PCA[10] PCC[10] PCC[15] PCC[5] RN_PCB[10] RN_PCA[15] RN_PCA[5] RN PCB[15] RN_PCC[10] RN_PCB[5] RN_PCC[15] RN_PCC[5] 81 of 129

Failure to Place

On failure to place the fitting report will include the following sections:

- 1. Fitter Options
- 2. Device Resource Checks
- 3. Block Partitioning
- 4. Signal Summary
- 5. Tabular Information

Information on the best placement yet encountered. Tabular Information will include signal names, placement information of pin and node numbers successfully assigned. This report will include as much routing information (such as central switch matrix numbers) as possible. Data fields for which data is not available are indicated with an ellipsis (...).

6. Unplaced Signals

The signals that could not be placed and the blocks where placement failed.

7. Failure Report

Reason for failure to place offending signals by block, as shown below.

* PLACEMENT FAILURE REPORT *

Signal "OUT[1]" cannot be placed or routed in BLOCK-A for the

following reason:

<Pterm steering limitation> or <Output steering limitation>

Failure to Route

On failure to route the fitting report will include the following sections:

1. Fitter Options

- 2. Device Resource Checks
- 3. Block Partitioning
- 4. Signal Summary.

5. Tabular Information containing information on the last best placement encountered. Tabular Information will include signal names, complete placement information of pin and node numbers. Report will include routing information on signals successfully routed, such as central switch matrix numbers. Information that is not available will be indicated in the table by a series of dots "...".

6. The name of the offending signal. The signal that could not be routed and the block were routing failed.

7. Reason for failure to route offending signal.

* ROUTING FAILURE REPORT *

Signal "OUT[1]" cannot be placed or routed in BLOCK-A for the following reason:

<Input Switch matrix limitation> or <Central Switch matrix limitation>

. . .

10 Device Reference

Contents

MACH Family Features Summary 377 MACH Features Locator. Part 1 378 MACH Features Locator, Part 2 379 MACH 1xx/2xx Design Considerations 380 Product Term Cluster Steering 380 Default Clock 380 XOR with D-Type Flip-Flops 381 **T-Type Flip-Flops** 381 Latches 382 MACH 1xx Latch Emulation 382 MACH 2xx Hardware Latches 383 **Registered Inputs** 384 Node Feedback vs. Pin Feedback 387 Registered Output with Node Feedback or Pin Feedback 388 **Combinatorial Output with Node Feedback** or Pin Feedback 391 Global Set and Reset 392 PAL22V10-Compatible Set/Reset Behavior 393 MACH 1xx/2xx Power-Up 393 Synchronous vs. Asynchronous Operation 393 Powerdown Feature 393 MACH 3xx/4xx Design Considerations 394 Cluster Size 394 Default Clock 395 XOR with D-Type Flip-Flops 395 **T-Type Flip-Flops** 396 Latches 399 MACH 3xx/4xx Hardware Latches 399 MACH 2xx/3xx/4xx vs. MACH 1xx Latch Implementation 400 Registered Inputs (MACH 4xx Devices Only) 401 Zero Hold Time for Input Registers 402 Node vs. Pin Feedback 403 Registered Output with Node Feedback or Pin Feedback 404 **Combinatorial Output with Node Feedback** or Pin Feedback 407 Flexible Clock Generator 408 Global Set and Reset 409 Set/Reset Compatibility 410 PAL22V10 Register Behavior 411 Controlling MACH 3xx/4xx Set/Reset Behavior 412 Set/Reset in MACH 3xx/4xx Asynchronous Macrocells 413

Higher Block Utilization with the Set/Reset Selector Fuse 414 MACH 3xx/4xx Power-Up 415 MACH 3xx/4xx Asynchronous Macrocell Power-Up Operation 416 Set/Reset Design Recommendations 416 Synchronous vs. Asynchronous Operation 417 Synchronous Mode 418 Asynchronous Mode 419 Forcing Configuration as a Synchronous Macrocell 419 **Cross-Programming MACH435 Designs** to the MACH445 Device 421 MACH110 Pin and Node Summary 423 MACH111 Pin and Node Summary 425 MACH120 Pin and Node Summary 427 MACH130 Pin and Node Summary 430 MACH131 Pin and Node Summary 433 MACH210 Pin and Node Summary 436 MACH211 Pin and Node Summary 438 MACH215 Pin and Node Summary 440 MACH220 Pin and Node Summary 442 MACH231 Pin and Node Summary 445 MACH355 Pin and Node Summary 448 MACH435 Pin and Node Summary 453 MACH445 Pin and Node Summary 456 MACH465 Pin and Node Summary 460

MACH Family Features Summary

MACH Family	Implements (S)ync only (A)sync only (B)oth	Output Latches	Input Latch/Reg	Max # PT Without Gate Splitting
MACH1xx	S			12
MACH 2xx (except MACH215)	S	1	✓d	16
MACH215	Bp	1	✓e	12
MACH 3xx	B ^{a,b,c}	1		20

MACH Family Features Summary

MACH 4xx Ba,b,c 🗸 🍾e	20
----------------------	----

Notes to Family Features Table

e.

a.

In asynchronous mode, the macrocell register can be clocked by a pin clock. In asynchronous mode, the macrocell register can be clocked by a product term clock. b.

In asynchronous mode, the macrocell register has only one register control product term that C. can be used either for SET or RESET.

d. I/O pins on these devices use the internal macrocells as input registers or latches through a direct connection.

I/O pins on these devices have dedicated input registers/latches.

MACH Features Locator, Part 1

MACH Device	# Inputs, Outputs, I/Os	# Pins	Implements (S)ync (A)sync (B)oth	Output Latches	Input Latch/Reg	PT Cluster Size	Individual OE Control	Max Number of PT Clusters
MACH110	38	44	S			4	See note g	3
MACH111	38	44	S			4	See note g	3
MACH120	56	68	S			4	See note g	3
MACH130	70	84	S			4	See note g	3
MACH131	70	84	S			4	See note g	3
MACH210	38	44	S	1	✓d	4	See note g	4
MACH211	38	44	S	1	✓d	4	See note g	4
MACH215	38	44	Bp	1	✓e	4	1	3
MACH220	56	68	S	1	✓d	4	See note g	4
MACH231	70	84	S	1	✓d	4	See note g	4
MACH355	102	144	B ^{a,b,c}	1		5 ^f	1	4
MACH435	70	84	B ^{a,b,c}	1	✓e	5 ^f	1	4
MACH445	70	100	B ^{a,b,c}	1	✓e	5 ^f	1	4
MACH465	142	208	B ^{a,b,c}	1	✓e	5^{f}	1	4

MACH Features Locator, Part 1

Notes to Features Locator Table, Part 1

a. In asynchronous mode, the macrocell register can be clocked by a pin clock.

b. In asynchronous mode, the macrocell register can be clocked by a product term clock.

c. In asynchronous mode, the macrocell register has only one register control product term that can be used either for SET or RESET.

d. I/O pins on these devices use the internal macrocells as input registers or latches through a direct connection.

e. I/O pins on these devices have dedicated input registers/latches.

f. The product term cluster can be used as a group of four product terms logically XORed with the one XOR product term or as a single group of five product terms. In the asynchronous mode, the number of product terms in the cluster is reduced by two (that is, two product terms are reserved for SET, RESET, and CLOCK functions). The cluster can be steered to adjacent macrocells to allow the adjacent macrocell to implement a larger equation. If not needed by an adjacent macrocell, a single product term can remain at the original macrocell to implement an equation consisting of one product term. Refer to the "Cluster Size" section in this chapter for more information.

g. I/O pins are enabled in banks (see the device logic diagram in the data sheet for more information).

MACH Features Locator, Part 2

MACH Device	XOR Gate	5 Volt In-Circuit Programing	Output MUXes	Input MUXes	Maximum Number of Inputs Into a Logic Block	Number of Clock Pins (Default Clock Pin)	Special Function Fuses
MACH110					22	2 (35)	
MACH111					26	4 (35)	√i
MACH120					26	4(50)	
MACH130					26	4 (65)	
MACH131					26	4 (65)	✓i
MACH210					22	2 (35)	
MACH211					26	4 (35)	✓i
MACH215					22	2 (13)	
MACH220					26	4 (50)	
MACH231					26	4(65)	✓i
MACH355	1	1	1	1	33	4(8)	√i
MACH435	1		1	~	33	4 (20)	
MACH445	1	1	1	1	33	4 (13)	√ h,j
MACH465	1	1	1	1	34	4 (187)	√ h,j

MACH Features Locator, Part 2

Notes to Features Locator Table, Part 2

h. Special function fuse: Zero Hold Time Fuse

i. Special function fuse: Power-Down (Slew Rate Control) Fuse

j. Signature Fuse

The following sections contain information that is specific to the MACH 1xx and 2xx devices.

Product Term Cluster Steering

Each macrocell is associated with a *cluster* of four product terms. However, the macrocell's cluster of product terms can be steered, by the Fitter, to an adjacent macrocell to allow that macrocell to implement equations that have more than four product terms. For most MACH 1xx macrocells, the maximum number of product terms that can be implemented is 12 in the: the 4 original product terms plus 4 product terms from the adjacent macrocells on either side. ²⁴ The first and last macrocells in a block have only one adjacent macrocell and can consequently implement equations of eight or fewer product terms. ²⁵

The MACH 2xx family can implement up to 16 product terms per equation.¹ The first and last macrocells in a MACH 2xx block can implement equations of 12 or fewer product terms.

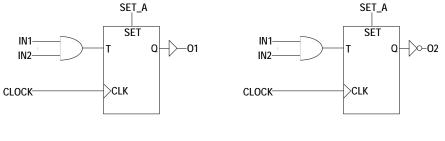
Default Clock

The MACHXL software uses the default clock pin to clock any register for which you do not specify a clock signal. The default clock pin for each device is listed in the "Pin and Node Summary" section at the end of this chapter. In general, it is best to specify clock signals for all registers explicitly.

If you place a clock signal at the default clock pin and also use the default clock to clock registers for which no .CLKF equations are written, the Fitter will merge the named clock signal and the default clock signal. (Note the difference between this and MACH 3xx/4xx behavior, described under "Default Clock" in the MACH 3xx/4xx Design Considerations" section.)

XOR with D-Type Flip-Flops

The MACH 1xx/2xx devices do not contain hardware XOR capability. Designs specifying XOR equations are converted to sum-of-products equations during minimization. This usually increases the number of product terms required to implement the design.


T-Type Flip-Flops

The MACH 1xx/2xx devices have programmable polarity after the macrocell. For this reason, the implementation of active-low T-type

equations differs in form, but not in functionality, from that of MACH 3xx/4xx devices. Consider these complementary equations: ;active high 01.T = INI * IN2 01.SETF = SET_A ;active low /02.T = INI * IN2 ;different logic fro m active high 02.SETF = SET_A ;but same initialization equation

When initialized, the MACH1xx/2xx device's active-high output goes high and the active-low output goes low. Each time the equation IN1 * IN2 becomes true, both outputs change state.

The following figure shows how the complementary equations are implemented on MACH 1xx/2xx devices that have inverters after the macrocell.

Active High

Active Low

Latches

MACH 1xx and 2xx devices implement latches differently.

MACH 1xx Latch Emulation

MACH1xx devices have no hardware latches; you must implement latches using combinatorial logic, as shown in the following example. ***** ;**** TITLE Latch Design File PATTERN Latch.PDS REVISION 1.1 AUTHOR J. Engineer COMPANY ADVANCED MICRO DEVICES, INC. 9/16/93 DATE CHIP Ltch_Tst MACH111 PIN 20 LE PIN 5 RST PIN 4 SET PIN 8 Q2 PIN 3 D ;****** Continued...

Minimize_on

In order to prevent the "extra cover" product term from minimizing out, you must add MINIMIZE_OFF and MINIMIZE_ON statements around the equations used to implement latches as shown here. These MINIMIZE_OFF and MINIMIZE_ON statements are only required when you implement latches using combinatorial logic; they are not required when you use the hardware latches available on MACH 2xx/3xx/4xx devices.

MACH 2xx Hardware Latches

MACH 2xx hardware latches differ slightly from MACH 3xx/4xx hardware latches. However, the MACHXL software automatically compensates for this hardware difference. You do not need to write equations differently for MACH 2xx and MACH 3xx/4xx devices, except that the .CLKF equation for MACH 2xx latches must specify an active-low clock as shown in the example below:

OUT2.CLCF = /CLK OI /OUT2.CLKF = CLK

Note: MACH 2xx devices do not support all combinations of Set, Reset, and clock signals. The following combinations are illegal:

RESET=0, SET=1, LE=0 RESET=1, SET=0, LE=0 RESET=1, SET=1, LE=0 On the MACH210 device, the following combination is also illegal: RESET=1, SET=1, LE=1

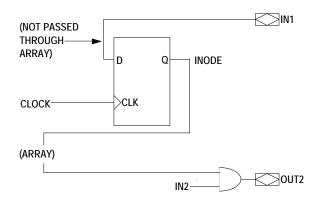
The following table describes the behavior of MACH 2xx devices when programmed with the JEDEC file produced by MACHXL software.

Active Low clock equation?	If LE input pin level is:	Then latch assumes state:
Yes	Low	Transparent
Yes	High	Latched
No	Illegal	N/A
No	Illegal	N/A

Registered Inputs

MACH 1xx devices have no provision for registering or latching input signals without routing the input through the AND/OR array. You can emulate an input register using an output register as shown in the following design example.

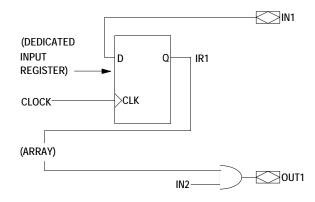
CHIP	EMULATED_	_INPUT_REG	3	MACHI	L10			
PIN	?	IN1						
PIN	?	IN2						
PIN	?	CLOCK						
NODE	?	INODE	REGISTERE	D	;DEFINES	NODE	AS	REGISTERED
PIN	?	OUT2						
EQUATIONS	5							
Continu	ued							


Contin	ue	ed			
INODE	=	IN1			;INODE REGISTERS THE INPUT SIGNAL
INODE.CLKF	=	CLOCK			
OUT2	=	INODE	*	IN2	;OUT2 USES THE REGISTERED SIGNAL

The following figure shows how the preceding design example is implemented.

Note that this technique results in an extra propagation delay through the AND/OR array and precludes further use of the macrocell register at which signal INODE is placed. MACH 2xx (except MACH215) devices are similar to MACH 1xx devices in that they do not have dedicated input registers. However, MACH 2xx devices can route input signals directly to a macrocell without passing through the AND/OR array, saving a propagation delay.

The following figure shows how the MACH 2xx device saves a propagation delay when implementing the same design example shown above for the MACH 1xx example. 26



Note that the register used here is a buried register that would otherwise be available for general use. In the MACH 2xx family,only the MACH215 has dedicated input registers.

The input registers in the MACH215 device are connected directly to the pin when the design specifies an input register, as illustrated in the following design example.

CHIP INPUT_REG MACH215	
PIN ? IN2 PIN ? CLOCK	IR1 ;SPECIFIES INPUT PAIRING
PIN ? OUT1 COMBINATO	RIAL
NODE ? IR1 REGISTERE	D ;INPUT REGISTER
EQUATIONS	
IR1 = IN1 ;ASSIGNS : IR1.CLKF = CLOCK OUT1 = IR1 * IN2	PIN VALUE TO INPUT REGISTER

The following figure illustrates the registered input used in the preceding design example.

Note: In the MACH215 device, the input register is a separate flipflop from the buried macrocell used in other MACH 2xx devices and thus does not have individual set or reset controls. Refer to "Pairing" in Chapter 7 for additional information.

Node Feedback vs. Pin Feedback

MACH devices support two types of feedback:

□ NODE feedback routed from the Q output of the flip-flop associated with the pin

□ PIN feedback directly from the pin

MACH 1xx/2xx devices have an output polarity mux after the register, so you can specify different polarity for the pin and the node. If the pin/node name is uncomplemented in the PIN/NODE statement, then uncomplemented pin feedback has the same polarity as the pin and uncomplemented node feedback has the same polarity as the node.

Feedback signals are routed as follows (to emulate PAL22V10 behavior):

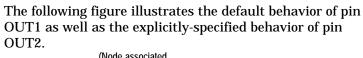
G Feedback from any unpaired output pin defined as registered is routed from the **node**.

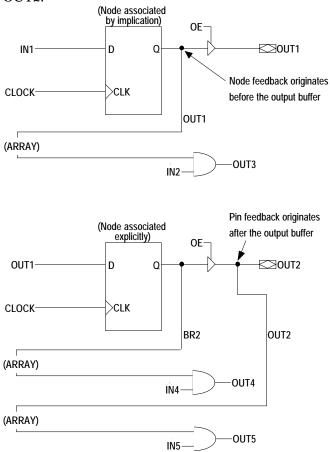
 \Box Feedback from any unpaired output pin defined as combinatorial is routed from the **pin**.

You can specify two additional types of feedback routing:

□ Node feedback from a pin defined as combinatorial.

D Registered pin feedback from a pin defined as registered.

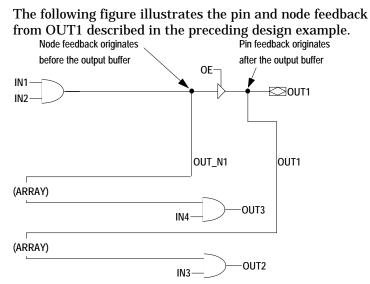

The following sections describe each of the possible feedback routings in detail.


Registered Output with Node Feedback or Pin Feedback

In the following example, the register associated with pin OUT1 is not specified in the design, but is implied by the fact that the MACH 1xx/2xx device emulates the PAL22V10. The register associated with pin OUT2 is explicitly specified with a PAIR statement. Note that when you explicitly pair a pin and a node, the default feedback routing no longer applies. In this case, you must specify feedback from the node as shown in the design example, otherwise feedback comes from the pin. The feedback signals from pin OUT2 are routed both ways to illustrate how to specify each type of feedback.

CHIP	NODE_FB	MACH210
PIN	?	IN1
PIN	?	IN2
PIN	?	IN3
PIN	?	IN4
PIN	?	RESET
PIN	?	SET
PIN	?	CLOCK
PIN	?	OE
Con	tinued.	

Cont	inued		
PIN	?	OUT1	REGISTERED
PIN		OUT2	REGISTE RED
PIN		OUT3	COMBINATORIAL
PIN		OUT4	COMBINATORIAL
PIN		OUT5	COMBINATORIAL
NODE PAIRING		BR2	REGISTERED PAIR OUT2 ;SPECIFIES OUTPUT
EQUATION	IS		
;	ILLUSTRATES	S IMPL	IED BEHAVIOR (DEFAULT)
OUT1	= IN1		SINCE NO NODE IS SPECIFIED, THE MACHXL SOFTWARE ASSIGNS ONE (BECAUSE PIN WAS) DEFINED AS REGISTERED)
OUT3	= IN2 *	OUT1	BY DEFAULT, FEEDBACK FROM A PIN PAIRED ;WITH A NODE BY IMPLICATION (AS WAS PIN ;OUT1) IS ROUTED FROM THE NODE
OUT1.CL	KF = CLOCK		
OUT1.TRS	ST = OE		
;	ILLUSTRATES	S EXPL	ICITLY-SPECIFIED BEHAVIOR
OUT2	= OUT1		
BR2	= {OUT2}	•	;SURROUNDING THE PIN NAME IN BRACES {} ;COPIES THE EXACT EXPRESSION FROM THE ;RIGHT SIDE OF THE PIN'S EQUATION TO THE ;NODE, SO YOU DON'T HAVE TO RE-TYPE IT.
BR2.CLKH	F = CLOCK		
OUT2.TRS	ST = OE		
OUT4	= IN4 *	BR2	;YOU MUST USE THE NODE NAME TO GET ;NODE FEEDBACK
OUT5	= IN5 *	OUT2	; IF YOU USE THE PIN NAME, YOU GET FEEDBACK ; FROM THE PIN


Combinatorial Output with Node Feedback or Pin Feedback

When no output pair is declared or generated, only pin feedback is available from pins declared as combinatorial. When declared as part of an output pair, node feedback is also available (node feedback from a combinatorial pin remains available regardless of the state of the pin's output buffer). The following design example defines an equation (OUT1 =IN1 * IN2) and routes feedback as follows:

from the node to output OUT3

from the pin to output OUT2

CHIP	PIN_FB	MACH210	
PIN	?	IN1	
PIN	?	IN2	
PIN	?	IN3	
PIN	?	IN4	
PIN	?	OE	
PIN	?	OUT1	COMBINATORIAL
PIN	?	OUT2	COMBINAT ORIAL
PIN	?	OUT3	COMBINATORIAL
NODE	?	OUT_N1	COMBINATORIAL PAIR OUT1
EQUATIO	NS		
OUT1	=	IN1 '	IN2
OUT1.TR	ST =	OE	
OUT2	=	OUT1 '	IN3
OUT3	=	OUT_N1 '	IN4

Global Set and Reset

A global node is available to specify set and reset behavior for all synchronous macrocells in the MACH device. In all MACH devices, node 1 is the global node. Note that the global node, which is implemented in software, does not correspond to a physical location in the device.

To use the global node, define it in the pin/node declaration portion of the design file as follows:

NODE 1 User_defined_name

Then write a .SETF and/or a .RSTF functional equation to control the corresponding global functions. (Each global equation must consist of a single product term.)

If you write global .SETF and .RSTF equations and also write individual .SETF and .RSTF equations for one or more macrocells, the global .SETF and .RSTF equations take precedence.

PAL22V10-Compatible Set/Reset Behavior

The level at the pin connected to a PAL22V10 macrocell after a set, reset, or power-up operation is determined by the pin's polarity, as shown in the following table. Note that the power-up reset line is active only when power is initially applied to the part. If the reset product term is active and the set product term is inactive, an active-high pin goes low, while an active-low pin goes high.

Levels detected at pins on Set, Reset, and Power-Up for PAL22V10 macrocel	ls
---	----

S (P	ET T0)	RESET (PT1)	Power-Up RESET	Level at Pin if Macrocell Active High	Level at Pin if Macrocell Active Low
	0	1	0	L	Н
	1	0	0	Н	L
	0	0	1	L	Н

MACH 1xx/2xx Power-Up

MACH 1xx/2xx devices have a power-up register initialization feature that forces active-high registers low and active-low registers high when power is applied (see the device data sheet for guidelines).

Synchronous vs. Asynchronous Operation

The MACH 1xx/2xx (other than the MACH215 device) are always synchronous, use common clock pins, and do not support product-term clocks.

The MACH215 device supports synchronous or asynchronous logic. It has one common clock pin and supports one product-term clock per output macrocell. Input registers use either of the two global clocks.

Powerdown Feature

MACH111, MACH131, MACH211, and MACH231 devices have the ability to power down unused macrocells and other macrocells specified in the design file. Each powered-down macrocell is represented in the JEDEC file by an E-field bit set to 1. The JEDEC file will contain E-field bit(s) set to 1 only under the following circumstances:

 $\square \quad \text{All unused cells are set to 1.}$

□ All cells used for input are set to 1.

□ All cells listed in the GROUP LOW_POWER_LIST list are set to 1.

All output cells not listed in the GROUP LOW_POWER_LIST list are set to 0.

See the LOW_POWER_LIST entry in Chapter 5, "Language Reference."

Powered-down macrocells reduce a device's overall power consumption. In addition, a macrocell's slew rate is altered by the power-down state. Refer to the device data sheet for specific information on the slew rate.

MACH 3xx/4xx Design Considerations

The following sections contain information that is specific to the MACH 3xx and 4xx devices.

Cluster Size

Each MACH 3xx/4xx macrocell is associated with a "cluster" of five product terms that is available for various uses. These five product terms (three in asynchronous-mode macrocells) available to implement logic equations or to be steered to adjacent macrocells. Depending on a number of factors, the size of clusters available for steering can contain 2, 3, 4, or 5 product terms. The XOR product term can be used to implement XOR logic or as a regular product term. If a single-product term equation is implemented using the macrocell's XOR product term, the cluster from that macrocell that is available for steering to adjacent macrocells is reduced by one product term. The nominal cluster size of synchronous and asynchronous macrocells is as follows:

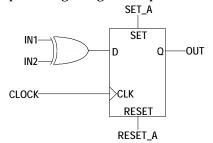
□ Synchronous macrocells begin with five product terms available to implement logic equations.

□ Asynchronous macrocells begin with three product terms available to implement logic equations. This is true because one product term is reserved for use as a product-term clock and another is reserved for use as a Set or Reset product term.

Default Clock

The MACHXL software uses the default clock pin to clock any register for which you do not specify a clock signal. For example, pin 20 is the default clock pin for the MACH435 device. In general, it is best to specify clock signals for all registers explicitly. If you want to have the MACHXL software use the default clock automatically, do NOT write a pin statement for the default clock pin or the compiler will report an error. (Note the difference between this and MACH 1xx/2xx behavior, described under "Default Clock" in the MACH 1xx/2xx Design Considerations" section.)

XOR with D-Type Flip-Flops

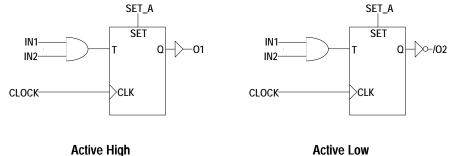

MACH 3xx and 4xx devices have an XOR gate for each product-term cluster. The XOR gate can be used as follows:

- **D** To implement XOR logic without using extra product terms
- **D** To control output polarity before the register

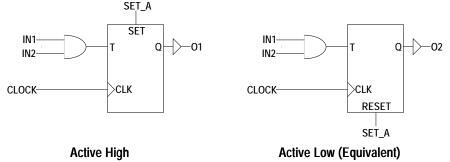
The following design example illustrates the use of the XOR gate.

• • •			
CHIP	XOR	MACH435	
	2	T 3 T 1	
PIN	?	IN1	
PIN	?	IN2	
PIN	?	RESET_A	
PIN	?	SET_A	
PIN	?	CLOCK	
PIN	?	OUT	REGISTERED
EQUATION	IS		
OUT = IN	1 :+: IN2		; THE :+: OPERA TOR SPECIFIES XOR
OUT CLKE	= CLOCK		
		-	
OUT.RSTF	= RESET_	A	
OUT.SETF	= SET_A		

The following figure illustrates the XOR gate as used in the preceding design example.


T-Type Flip-Flops

The MACH 3xx/4xx devices do not have an inverter after the macrocell, unlike MACH 1xx/2xx devices. For this reason, the implementation of active-low T-type equations differs in form, but not in functionality, from that of MACH 1xx/2xx devices.


Consider these complementary equations: ;active high Ol.T = IN1 * IN2 Ol.SETF = SET_A

;active low
/O2.T = IN1 * IN2 ;different logic from active high
O2.SETF = SET_A ;but same initialization equation

The figure below shows how the complementary equations are implemented on a device, such as the MACH 1xx/2xx, that has an inverter after the macrocell.

The MACH 3xx/4xx devices have no inverter after the macrocell, so they must implement the same equation for both the active-high and active-low forms. The MACHXL software routes the initialization signal (in this example, SET_A) to the Set or Reset line to produce, respectively, the equivalents of active-high or active-low behavior. The following figure shows how the same complementary equations are implemented on a MACH 3xx/4xx device:

These equations, as implemented on the MACH 3xx/4xx device, can be expressed as follows:

;active high
O1.T = IN1 * IN2
O1.SETF = SET_A

;active low 02.T = IN1 * IN2 ;same logic as active high 02.RSTF = SET_A ;but different initialization equation

The rules for handling T-type flip-flops can be summarized as follows:

□ For T-type flip-flops that feed active-low I/O pins, Set and Reset are always swapped.

□ For active-low T-type flip-flops implemented on buried nodes, references to the buried node are always inverted (regardless of the 22V10/MACH1xx/2xx S/R Compatibility option setting).

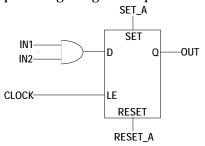
Example

Feedback from the active-low T-type signal TSIG (implemented on a buried node) is referenced as TSIG on the right side of an equation for the signal OUT2. In the JEDEC file, the reference to TSIG appears as /TSIG.

Note: After disassembling a JEDEC file, references to TSIG will appear as /TSIG.

Latches

MACH 2xx/3xx/4xx devices implement latches in hardware. MACH1xx devices require that you implement latches using combinatorial logic.


MACH 3xx/4xx Hardware Latches

The following design example illustrate the use of latches. CHIP LATCH MACH435

PTN	?	TN1	
PIN	:		
PIN	?	IN2	
PIN	?	RESET_A	
PIN	?	SET_A	
PIN	?	CLOCK	
PIN	?	OUT	LATCHED
EOUATIO	ONS		
~			
OUT /OUT.CI	= IN1 LKF = CLC	* IN2 OCK	
OUT.RS	STF = RES	Set_a	

OUT.SETF = SET A

The following figure illustrates the latch as used in the preceding design example.

≫

Note: The MACH 3xx/4xx devices implement latches in hardware differently from the MACH 2xx devices, but the MACHXL software automatically compensates for this hardware difference. You do not need to write equations differently for MACH 2xx and MACH 3xx/4xx devices.

In the MACH 3xx/4xx devices, hardware latches are transparent when the LE input is high. However, the MACHXL software automatically inverts the LE input, so that equations written for MACH 2xx devices behave the same on the MACH 3xx/4xx devices. The following table describes the behavior of MACH 3xx/4xx latches when using MACHXL software.

Slash before .CLKF equation?	If LE input pin level is:	Then latch assumes state:
Yes	Low	Transparent
Yes	High	Latched
No	Low	Latched
No	High	Transparent

MACH 2xx/3xx/4xx vs. MACH 1xx Latch

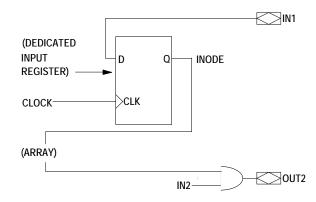
Implementation

When converting MACH1xx designs containing latch logic to MACH 2xx/3xx/4xx designs, take advantage of the MACH 2xx/3xx/4xx device's hardware latches. The following design example shows how to implement latch

behavior using the MACH 3xx/4xx hardware latches.

Q1.RSTF = RST Q1.SETF = SET

Registered Inputs (MACH 4xx Devices Only)

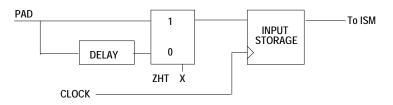

The input registers in MACH 4xx devices are connected directly to the pin, as illustrated in the following design example. (MACH 3xx devices do not have input registers.)

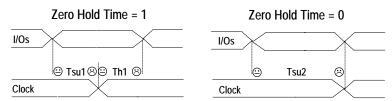
CHIP	INPUT_REG	3	MACH4	35			
PIN	?	IN1	PAIR	INODE	3		
PIN PIN DIN	? ? ?	IN2 CLOCK OUT2	COMPT		- 7 T		
PIN	: 2	INODE	COMBI		;DEFINES	TNIDITT	DECTOTED
1100013	•	TINODE	10010	LUCU	OUL THEO	TINFOI	VEGTO LEK

EQUATIONS

INODE	=	IN1		;ASSIGNS	PIN	VALUE	то	INPUT	REGISTER
INODE.CLKF	=	CLOCK							
OUT2	=	IN1 *	IN2						

The following figure illustrates the registered input as used in the preceding design example.





Note: In MACH 4xx devices, the input register is a separate flip-flop from the buried macrocell used in the MACH 2xx device and thus does not have individual set or reset controls. Refer to the "Pairing" section in Chapter 7 for additional information.

Zero Hold Time for Input Registers

All MACH 4xx devices (except the MACH435) have a zero hold time (ZHT) fuse. This fuse controls the time delay associated with the data path to all input registers and latches in MACH 4xx devices (except the MACH435). The ZHT fuse gives you the ability to control the hold time requirements of the input register. If the fuse is programmed, the input register has the same timing characteristics as an input register in devices without the ZHT option, such as the MACH435 device. If the fuse is not programmed, the input register requires a longer setup time while needing no hold time.

When programmed, the ZHT fuse increases the data path delays to input storage elements, matching equivalent delays in the clock path. When the fuse is erased, the setup time required by the input storage element is minimized and the device timing is compatible with the MACH435 device. This feature facilitates doing worst-case designs for which data is loaded from sources which have low (or zero) minimum output propagation delays from clock edges. It also simplifies datapath interfaces to microprocessor and other devices which provide data late in the clock cycle and do not hold data constant long into the next clock cycle. See the MACH Family Device Data Book for more details.

Node vs. Pin Feedback

MACH 3xx/4xx devices support two types of feedback:

□ NODE feedback routed from the Q output of the flip-flop associated with the pin

D PIN feedback directly from the pin

By default, feedback signals are routed as follows (to emulate PAL22V10 behavior):

 $\hfill\square$ Feedback from any unpaired output pin defined as registered is routed from the **node.**

 \square Feedback from any unpaired output pin defined as combinatorial is routed from the **pin**.

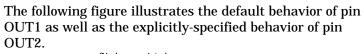
You can specify two additional types of feedback routing:

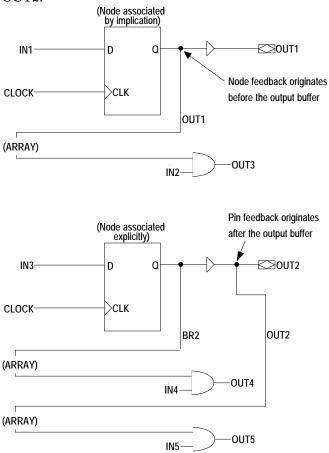
□ Node feedback (before the three-state output buffer) from a pin defined as combinatorial.

□ Registered pin feedback from a pin defined as registered.

The following sections describe each of the possible feedback routings in detail.

Registered Output with Node Feedback or Pin Feedback

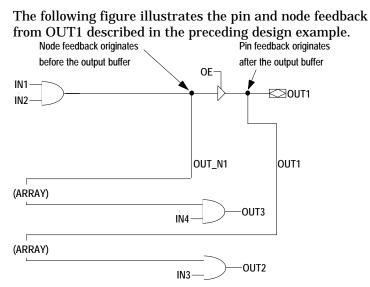

In the following example, the register associated with pin OUT1 is not specified in the design, but is implied by the fact that the MACH 3xx/4xx device emulates the PAL22V10 by default.


The buried register associated with pin OUT2 is explicitly specified with a PAIR statement. Note that when you explicitly pair a pin and a node, the default feedback routing no longer applies. In this case, you must specify feedback from the node as shown in the design example, otherwise feedback comes from the pin. The feedback signals from pin OUT2 are routed both ways to illustrate how to specify each type of feedback.

CHID NOD	E FB MACH	125					
	_						
PIN	?	IN1					
PIN	?	IN2					
PIN	?	IN3					
PIN	?	IN4					
PIN	?	RESET					
PIN	?	SET					
PIN	?	CLOCK					
PIN	?	OUT1	REGISTERED				
PIN	?	OUT2	REGISTERED				
PIN	?	OUT3	COMBINATORIAL				
PIN	?	OUT4	COMBINATORIAL				
PIN	?	OUT5	COMBINATORIAL				
NODE	?	BR2	REGISTERED PAIR	OUT2	;DEFINES	OUTPUT	
PAIRING							

Continued...

...Continued EQUATIONS ;----- ILLUSTRATES IMPLIED BEHAVIOR (DEFAULT) ------SINCE NO NODE IS SPECIFIED, THE MACHXL OUT1 = IN1 ;SOFTWARE ASSIGNS ONE (BECAUSE PIN WAS OUT3 = IN2 * OUT1 ;DEFINED AS REGISTERED) OUT3 = IN2 * OUT1 ;BY DEFAULT, FEEDBACK FROM A PIN PAIRED ;WITH A NODE BY IMPLICATION (AS WAS PIN ;OUT1) IS ROUTED FROM THE NODE OUT1.CLKF = CLOCK ;----- ILLUSTRATES EXPLICITLY-SPECIFIED BEHAVIOR ------OUT2 = IN3 $BR2 = {OUT2}$;SURROUNDING THE PIN NAME IN BRACES $\{\,\}$;COPIES THE EXACT EXPRESSION FROM THE ;RIGHT SIDE OF THE PIN'S EQUATION TO THE ;NODE, SO YOU DON'T HAVE TO RE-TYPE IT. BR2.CLKF = CLOCK OUT4 = IN4 * BR2;YOU MUST USE THE NODE NAME TO GET ;NODE FEEDBACK OUT5 = IN5 * OUT2; IF YOU USE THE PIN NAME, YOU GET FEEDBACK ;FROM THE PIN


Combinatorial Output with Node Feedback or Pin Feedback

When no output pair is declared or generated, only pin feedback is available from pins declared as combinatorial. When declared as part of an output pair, node feedback is also available (node feedback from a combinatorial pin remains available regardless of the state of the pin's output buffer). The following design example defines an equation (OUT1 =IN1 * IN2) and routes feedback as follows:

from the node to output OUT3

from the pin to output OUT2

CHIP	PIN	I_FB	MACH435	5			
PIN	?		IN1				
PIN	?		IN2				
PIN	?		IN3				
PIN	?		IN4				
PIN	?		OE				
PIN	?		OUT1		COMBINATORIAL		
PIN	?		OUT2		COMBINATORIAL		
PIN	?		OUT3		COMBINATORIAL		
NODE	?		OUT_N1		COMBINATORIAL	PAIR	OUT1
EQUATIONS	5						
OUT1	=		IN1	*	IN2		
OUT1.TRS1	- 1		OE				
OUT2	=		OUT1	*	IN3		
OUT3		=	OUT_N1	*	IN4		

Flexible Clock Generator

The MACH 3xx/4xx architecture contains a flexible clocking scheme for each PAL block. Each PAL block has its own clock generator that can provide up to four different clock signals to the block. The process through which up to four global clock signals are made available to all macrocells in the block is commonly referred to throughout this user's guide as "the block clock mechanism." Each PAL block's clock generator receives its clock signals from two sources:

□ The MACH 3xx/4xx device's four global clock pins

D The complements of the four global clock pins

Therefore, eight clock signals are available to each PAL block's clock generator.

Each PAL block's clock generator can select the polarity of each clock signal as low-to-high or high-to-low. Through the block clock mechanism, a total of four global clock signals can be made available to macrocells in a given block. For example, if the signals assigned to the four global clock pins are named CLKA, CLKB, CLKC, and CLKD, each block's flexible clock generator can select a different set of four signals, as shown in the example below.

Block	Signal at block clock 0	Signal at block clock 1	Signal at block clock 2	Signal at block clock 3	
А	CLKA	CLKB	CLKC	CLKD	
В	CLKA	/CLKA	CLKC	CLKD	
С	/CLKB	CLKA	CLKC	/CLKC	
etc.					

All 16 macrocells in each PAL block (if synchronous), and all input registers, have access, through the block clock mechanism, to the block clocks 0 through 3. Asynchronous macrocells have access, through the block clock mechanism, to block clocks 0 and 1 only. However, asynchronous macrocells can receive clock signals as product-term clocks, and hence can receive signals from any global clock pin that can route its signal through the central switch matrix.²⁷

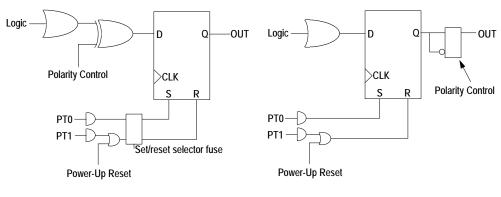
Global Set and Reset

A global node is available to specify set and reset behavior for all synchronous macrocells in the MACH 3xx/4xx device. In all MACH devices, node 1 is the global node. Note that the global node, which is implemented in software, does not correspond to a physical location in the device.

To use the global node, define it in the pin/node declaration portion of the design file as follows:

NODE 1 User_defined_name

Then write a .SETF and/or a .RSTF functional equation to control the corresponding global functions. (Each global equation must consist of a single product term.)


If you write global .SETF and .RSTF equations and also write individual .SETF and .RSTF equations for one or more macrocells, the global .SETF and .RSTF equations take precedence.

Set/Reset Compatibility

The Fitter Options form contains the following option: 22V10/MACH 1xx/2xx S/R compatibility.

Set this option to "Y" when processing MACH 3xx/4xx designs to maintain set/reset compatibility with devices that have macrocells similar to the MACH1xx/2xx and the PAL22V10. Setting this option to "Y" has another result: equations are minimized to have the same form and polarity that they would have if implemented on a PAL22V10 device.²⁸

The MACH 3xx/4xx macrocell controls polarity before the register, while the PAL22V10 controls polarity after the register, as shown in the figure below. The Fitter achieves compatibility by programming the set/reset selector fuse.

MACH 3xx/4xx Macrocell Register

PAL22V10 Macrocell Register

The set/reset selector fuse swaps the register control terms so that the product terms PT0 and PT1 can be used as either set or reset control terms. By programming the set/reset selector fuse correctly, the MACH 3xx/4xx macrocell can emulate the set and reset behavior of a PAL22V10 register. This section describes how the Fitter determines the proper state of the set/reset selector fuse.

PAL22V10 Register Behavior

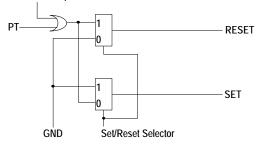
The level at the pin connected to a PAL22V10 macrocell after a set, reset, or power-up operation is determined by the pin's polarity, as shown in the following table. Note that the power-up reset line is active only when power is initially applied to the part. (See the "MACH 3xx/4xx Power-Up" section later in this chapter.) If the reset product term is active and the set product term is inactive, an active-high pin displays a low level while an active-low pin displays a high level.

Levels detected at pins on Set, Reset, and Power-Up for PAL22V10 macrocells

SET (PT0)	RESET (PT1)	Power-Up RESET	Level at Pin if Macrocell Active High	Level at Pin if Macrocell Active Low
0	1	0	L	Н
1	0	0	Н	L
0	0	1	L	Н

Controlling MACH 3xx/4xx Set/Reset Behavior When moving designs with PAL22V10-type macrocell

registers to the MACH 3xx/4xx, the Fitter software will assign the first reset logic term in the block to PT1 (which is logically ORed with the power-up reset line). If you specified set/reset compatibility, the Fitter programs the Set/Reset selector fuse to produce PAL22V10-combatible behavior (see the following two tables).

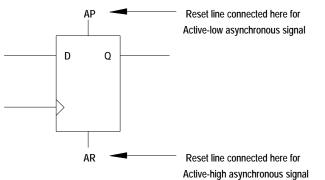

Set/Reset Selector Fuse State When Macrocell Register Has Active-High Polarity

PT0	PT1	Power-Up RESET	Level at Pin if Macrocell Active High	Set/Reset Selector Fuse Setting
0	1	0	Н	1
1	0	0	L	1
0	0	1	L	1
		Polarity	ector Fuse State When Macro	cell Register Has Active-
PT0	PT1		Level at Pin if Macrocell Active Low	Set/Reset Selector Fuse Setting
РТ0 0	PT1	Polarity Power-Up	Level at Pin if Macrocell	Set/Reset Selector
PT0 0 1	PT1 1 0	Polarity Power-Up	Level at Pin if Macrocell	Set/Reset Selector

PT0 and PT1 are the register control product terms. The Set/Reset selector fuse directs the appropriate register control terms to make the MACH 3xx/4xx register respond like the PAL22V10 register on set, reset and power-up operations. If the reset term is assigned to PT0 and the set term is assigned to PT1, the Fitter programs the Set/Reset

selector fuse to 1 for active-high registers, 0 for active-low registers.

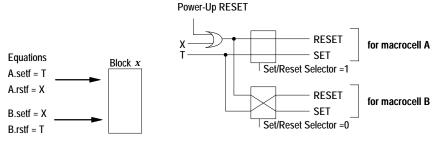
Set/Reset in MACH 3xx/4xx Asynchronous Macrocells The Fitter will configure macrocells as asynchronous to implement signals that have a product-term clock. When a MACH 3xx/4xx macrocell is configured as asynchronous, one product term performs register initialization. This product term is programmed as either the set or reset control line, as shown in the figure below. To achieve PAL22V10 set/reset compatibility, the Fitter must use the Set/Reset selector fuse to direct the control product term to the correct register control line based on the polarity of the asynchronous signal. Power-Up RESET



Set/Reset for MACH 3xx/4xx Asynchronous Macrocells

Example

The reset product term for an active-high asynchronous signal is directed to the reset line, while the reset product term for an active-low asynchronous signal must be directed to the set control line, as shown in the following figure. Set/reset behavior is thus the same as on the PAL22V10.


MACH 3xx/4xx Design Considerations

If you do not require PAL22V10 set/reset compatibility, and want the set logic to set the register high and the reset logic to reset the register low, respectively, independent of polarity, set 22V10/MACH1xx/2xx S/R Compatibility option to "N" (File:Set up:Compilation options).

Higher Block Utilization with the Set/Reset Selector Fuse

The MACHXL software automatically uses the Set/Reset Selector register control term swapping feature to provide higher block utilization under certain conditions. For example: If a design has two synchronous signals A and B, and the set and reset control terms for A are the same as the reset and set control terms for B, respectively, these two signals can be put into the same block. By programming Set/Reset Selector accordingly, these two signals can use the same block set and reset control terms, as shown below.

Partitioner can put equations A and B into the same block

The Set/Reset selector fuse settings shown above are for A and B active high. If A were active low and B active high, the

Set/Reset selector fuses for signals A and B should be both 0 to maintain PAL22V10 register set and reset behavior compatibility.

MACH 3xx/4xx Power-Up

The MACH 3xx/4xx has a power-up register initialization feature that forces the registers to either 0 or 1 when power is applied to a part according to certain guidelines given in the device data sheet. A register initializes to either 0 or 1, depending on how the Fitter partitions and fits the design. If a signal has both set and reset logic defined, the Fitter has to configure as synchronous the macrocell to which it is mapped. If the Fitter packed signals with complementary set and reset logic into the same block, a set product term for one signal is used as a reset for another signal. As shown in the figure above, product term X (which is ORed with the powerup line) resets signal A and sets signal B. Assuming that signals A and B are both active-high signals, on power-up register A is reset to 0 while register B is set to 1. If you use GROUP MACH_SEG_X statements to force the Fitter to put signals with common reset and set product terms into the same block, the Fitter assigns the common reset product term to PT0 which is logically ORed with the power-up line and the set to PT1. If the Maintain 22V10 Set/Reset compatibility Y/N option is set to "Y," the Set/Reset selector fuse is programmed as shown in the tables titled "Set/Reset Fuse State When Macrocell Register Has Active-High Polarity" and "Set/Reset Fuse State When Macrocell Register Has Active-Low Polarity." On device power-up, the registers reset as shown in the tables. If the Maintain 22V10 Set/Reset compatibility Y/N option is set to "N," the registers reset to 0 on power-up, and the level detected at the pin is low.

MACH 3xx/4xx Asynchronous Macrocell Power-Up Operation

The Fitter configures a macrocell as asynchronous if

□ A signal requires a product term clock

□ A signal has a set or a reset logic term (but not both) and the partitioner decides to put it into a block which already has synchronous signals using the block-level set and reset terms. In an asynchronous macrocell on the MACH 3xx/4xx the power-up line is logically ORed with the single product term that serves as either the SET or RESET term. When the power-up line is activated on device power-up, the asynchronous register is initialized as if the control product term were activated.

Example

If an active-high registered signal with a SET product term is assigned to an asynchronous macrocell, on device power-up, the register is set (Q is high) and the level detected at the pin will be 1. If the PAL22V10 set/reset compatibility option is set to "Y" and the signal is active-low, the Set/Reset selector fuse is programmed to direct the SET product term to the register's reset line. When the device powers up or the SET product term is active, the register is reset (Q is low) and the level detected at the pin is 0.

Set/Reset Design Recommendations

To reduce the chance of unexpected behavior, write all the necessary set and/or reset product terms for registered signals. After device power-up, activate the set and reset logic explicitly to initialize the registers as specified before commencing normal device operation. These precautions guard against instances where system power-up does not adhere to the power-up reset guidelines given in the device data sheet.

Synchronous vs. Asynchronous Operation

The MACH 3xx/4xx can support both synchronous and asynchronous logic on an individual macrocell basis in the same design and within the same PAL block. Each macrocell has a special control for configuring it either as a synchronous macrocell or as an asynchronous macrocell. The major differences between the synchronous and asynchronous modes are:

D Number of product terms available for sum-of-products logic

Clocking flexibility

□ Reset/Set control

In either mode, the macrocell has its own, individuallyprogrammable output enable product term.

It is important to note that the Fitter sometimes implements equations that appear to be either synchronous or asynchronous using macrocells of the opposite type.²⁹ If it is important that an equation be implemented in a specific mode, you can force the Fitter to implement it the way you want by providing a forcing condition in the equations for that signal in your design file. Refer to "Forcing Configuration as a Synchronous Macrocell" in this chapter for more information.

>

Note: To maximize device efficiency, the Fitter prefers to implement clocks as global clocks rather than as product-term clocks and prefers to configure macrocells as synchronous macrocells rather than as asynchronous macrocells.

Synchronous Mode

All synchronous mode macrocells in the same PAL block are initialized with a single, common, asynchronous Reset or Set product term. However, each macrocell in the PAL block can swap the Set/Reset function on an individual macrocell basis, so that the same initialization signal either sets or resets each synchronous macrocell.

Each synchronous macrocell in a PAL block must be clocked by one of the four block clock signals available to the block containing the macrocell. Refer to "Global Clock Rules" elsewhere in Chapter 7 and "Flexible Clock Generator" in this chapter for additional details.

The Fitter is forced to configure a macrocell in the synchronous mode if *any* of the following conditions is true:

□ There is a non-GND Set condition *and* a non-GND Reset condition.

□ After minimization, the primary equation has more than 18 product terms.

□ The macrocell is clocked by a signal preplaced at a global clock pin that is not accessible to asynchronous macrocells through the block clock mechanism ³⁰ if either of the following conditions exists:

• The device is a MACH465 device.

• The Global clocks routable as PT clocks? option of the MACH Fitting Options form is set to "N."

Each synchronous macrocell has five product terms available in its own product term cluster for sum-of-products logic. Using product-term steering, a synchronous macrocell can support logic requiring up to 20 product terms.

Asynchronous Mode

In asynchronous mode, each logic macrocell operates with independent clock control and set/reset control. The Fitter is forced to configure a macrocell in the asynchronous mode if the specified clock was implemented (for any reason, including resource constraints) as a nonglobal clock. (Note that the opposite is not true: the Fitter may, based on other constraints, configure a macrocell as asynchronous, even though the macrocell is clocked by a global clock.)

When a macrocell is configured as an asynchronous macrocell, one of the five product terms in the macrocell's product term cluster is reassigned from sum-of-products use to define the macrocell's individual product-term clock. Specify the clock signal using the following general form: *Pin/node name*.CLKF = *Boolean expression*.

When a macrocell is configured as an asynchronous macrocell, one of the five product terms in the macrocell's product term cluster is reassigned from sum-of-products use to define either the macrocell's individual set function or its reset function. Specify the desired function using either of the following statements:

Pin/node_name.SETF = *Boolean_expression*

Pin/node_name.RSTF = *Boolean_expression*

Each asynchronous macrocell has three product terms available in its own product term cluster for sum-of-products logic. Using product-term steering, an asynchronous macrocell can support logic requiring up to 18 product terms.

Forcing Configuration as a Synchronous Macrocell The simplest way to force a signal to be synchronous is to include the signal name in a GROUP SYNC_LIST in the declaration segment of the design file. The following discussion describes how the Fitter determines, in the absence of a GROUP SYNC_LIST statement, whether a signal should be implemented as a synchronous signal. For more information on GROUP SYNC_LIST and GROUP ASYNC LIST, refer to Chapter 5, "Language Reference." Other than its effect on gate-splitting (and on the fact that synchronous registers must be clocked by global clock pins), it does not matter whether the Fitter implements your synchronous equation in a synchronous or asynchronous macrocell. Both types of macrocell provide equivalent behavior as long as sufficient resources are available to implement the required logic. Therefore, forcing the Fitter to configure a macrocell as synchronous is useful for only one purpose: to influence the Minimizer as it makes gate-splitting decisions.

The Minimizer's decision process is simple:

□ If an equation is combinatorial, it is split at whichever is lower: 20 product terms or the user-defined gate-split threshold.

□ If an equation is registered, the Minimizer considers the mode (synchronous or asynchronous) of the macrocell to which the equation will be mapped:

• If the equation is forced to be synchronous, it is split at whichever is lower: 20 product terms or the user-defined gate-split threshold.

◆ All other registered equations are limited to the maximum capacity of an asynchronous macrocell (18 product terms), in case the Fitter maps them to a macrocell that is configured in the asynchronous mode. (Hence, such equations are split at whichever is lower: 18 product terms or the user-defined gate-split threshold.)

If you have an equation with 19 or 20 product terms and you do not want the Minimizer to split the equation, provide at least one forcing condition for the synchronous mode by doing one of the following:

Place the equation's clock at global clock pin 2 or 3.
 In addition, if the device is not a MACH465 device, set the
 Global clocks routable as PT clocks? option of the MACH Fitting
 Options form to "N." (This is generally the simplest solution.)

□ Provide a non-GND .SETF condition and a non-GND .RSTF condition for the equation. (This solution is necessary when there are several macrocells to be forced synchronous and the clock signals for these macrocells cannot all be placed on global clock pins 0 and 1.)

Cross-Programming MACH435 Designs to the MACH445 Device

The L field fuses of MACH435 and MACH445 JEDEC files are identical. Therefore, a MACH435 JEDEC file can be converted to a MACH445 JEDEC file which can then be used to program a MACH445 device. This is called cross programming. To cross program a MACH435 design to a MACH445 using AMD's MACHXL and MACHPRO software, use MACH445 when asked for "Part Name" and the name of the MACH435 JEDEC file when asked "JEDEC file for the specified operation" on the Create/Edit configuration file menu (see section E). Note that the pinout will change if a MACH435 JEDEC file is cross programmed as a MACH445 device. When restricted to IOs and dedicated inputs on input/clocks the pin manning form a MACH425

dedicated inputs or input/clocks the pin mapping from a MACH435 to MACH445 device is a one-to-one relationship as shown below: There are 64 IOs for both MACH435 and MACH445.

BLOCK A-435 3, 4, 5, 6, 7, 8, 9, 10

BLOCK A-445 93, 94, 95, 96, 97, 98, 99, 100 BLOCK B-435 19, 18, 17, 16, 15, 14, 13, 12 BLOCK B-445 12, 11, 10, 9, 8, 7, 6, 5

BLOCK C-435 24, 25, 26, 27, 28, 29, 30, 31 BLOCK C-445 19, 20, 21, 22, 23, 24, 25, 26 BLOCK D-435 40, 39, 38, 37, 36, 35, 34, 33 BLOCK D-445 38, 37, 36, 35, 34, 33, 32, 31

BLOCK E-435 45, 46, 47, 48, 49, 50, 51, 52 BLOCK E-445 43, 44, 45, 46, 47, 48, 49, 50

MACH 3xx/4xx Design Considerations

BLOCK F-435 61, 60, 59, 58, 57, 56, 55, 54 BLOCK F-445 62, 61, 60, 59, 58, 57, 56, 55 BLOCK G-435 66, 67, 68, 69, 70, 71, 72, 73 BLOCK G-445 69, 70, 71, 72, 73, 74, 75, 76 BLOCK H-435 82, 81, 80, 79, 78, 77, 76, 75 BLOCK H-445 88, 87, 86, 85, 84, 83, 82, 81 There are 2 input-only pins for both MACH435: 41 83 and the MACH445: 54 4 There are 4 clock/input pins for both MACH435: 20 23 62 65 and the MACH445: 13 18 63 68 There are 8 ground pins for MACH435: 1, 11, 22, 32, 43, 53, 64, 74 There are 16 ground pins for MACH445: {1, 2, 16, 17, 29, 30, 40, 41, 51, 52, 66, 67, 79, 80, 90, 91 There are 6 VCC pins for MACH435: 2, 21, 42, 44, 63, 84 There are 8 VCC pins for MACH445: 14, 15, 39, 42, 64, 65, 89, 92 There are 6 JTAG pins for MACH445: 3, 27, 28, 53, 77, 78 with no counterpart in MACH435.

Pin #	Default Name	Macro- cell	Pin Feedback
1	GND	N/A	N/A
2	I/O_0	2	A0
3	I/O_1	3	A1
4	I/O_2	4	A2
5	I/O_3	5	A5
6	I/O_4	6	A6
7	I/O_5	7	A5
8	I/O_6	8	A6
9	I/O_7	9	A7
10	10	N/A	N/A
11	I1	N/A	N/A
12	GND	N/A	N/A
13	CLK0/I2	N/A	N/A
14	I/O_8	10	A8
15	I/O_9	11	A9
16	I/O_10	12	A10
17	I/O_11	13	A11
18	I/O_12	14	A12
19	I/O_13	15	A13
20	I/O_14	16	A14
21	I/O_15	17	A15
22	VCC	N/A	N/A
23	GND	N/A	N/A

MACH110 Pin and Node Summary

MACH110 Pin and Node Summary

Pin #	Default	Macro-	Pin
	Name	cell	Feedback
24	I/O_16	18	B15
25	I/O_17	19	B14
26	I/O_18	20	B13
27	I/O_19	21	B12
28	I/O_20	22	B11
29	I/O_21	23	B10
30	I/O_22	24	B9
31	I/O_22	25	B8
32	I3	N/A	N/A
33	I4	N/A	N/A
34	GND	N/A	N/A
35	CLK1/I5 ³¹	N/A	N/A
36	I/O_24	26	B7
37	I/O_25	27	B6
38	I/O_26	28	B5
39	I/O_27	29	B4
40	I/O_28	30	B3
41	I/O_29	31	B2
42	I/O_30	32	B1
43	I/O_31	33	B0
44	VCC	N/A	N/A

Pin/Node Table, MACH110, Continued

MACH111 Pin and Node Summary

Note: Node 1 is the global Set/Reset node . Node numbers for other nodes are listed below under Macrocell. Pin/Node Table, MACH111

Pin #	Default	Macro-	Pin
	Name	cell	Feedback
1	GND	N/A	N/A
2	I/O 0	2	A0
3	I/0_1	3	A1
4	I/O_2	4	A2
5	I/O_3	5	A5
6	I/O_4	6	A6
7	I/O_5	7	A5
8	I/O_6	8	A6
9	I/O_7	9	A7
10	I_0	N/A	N/A
11	CLK2/I1	N/A	N/A
12	GND	N/A	N/A
13	CLK0/I2	N/A	N/A
14	I/O_8	10	A8
15	I/O_9	11	A9
16	I/O_10	12	A10
17	I/O_11	13	A11
18	I/O_12	14	A12
19	I/O_13	15	A13
20	I/O_14	16	A14
21	I/O_15	17	A15
22	VCC	N/A	N/A
23	GND	N/A	N/A
24	I/O_16	18	B0
25	I/O_17	19	B1
26	I/O_18	20	B2
27	I/O_19	21	B3

MACH111 Pin and Node Summary

Pin #	Default	Macro- cell	Pin Faadhaala
	Name		Feedback
28	I/O_20	22	B4
29	I/O_21	23	B5
30	I/O_22	24	B6
31	I/O_22	25	B7
32	I_3	N/A	N/A
33	CLK3/I4	N/A	N/A
34	GND	N/A	N/A
35	CLK1/I5 ³²	N/A	N/A
36	I/O_24	26	B8
37	I/O_25	27	B9
38	I/O_26	28	B10
39	I/O_27	29	B11
40	I/O_28	30	B12
41	I/O_29	31	B13
42	I/O_30	32	B14
43	I/O_31	33	B15
44	VCC	N/A	N/A

Pin/Node Table, MACH111, Continued

Pin #	Default Name	Macro- cell	Pin Feedback
1	GND	N/A	N/A
2	I/O_0	2	A0
3	I/O_1	3	A1
4	I/O_2	4	A2
5	I/O_3	5	A5
6	I/O_4	6	A6
7	I/O_5	7	A5
8	GND	N/A	N/A
9	I/O_6	8	A6
10	I/O_7	9	A7
11	I/O_8	10	A8
12	I/O_9	11	A9
13	I/O_10	12	A10
14	I/O_11	13	A11
15	I0/CLK0	N/A	N/A
16	I1/CLK1	N/A	N/A
17	I2	N/A	N/A
18	VCC	N/A	N/A
19	GND	N/A	N/A
20	I3	N/A	N/A
21	I/O_12	25	B11
22	I/O_13	24	B10
23	I/O_14	23	B9
24	I/O_15	22	B8
25	I/O_16	21	B7
26	I/O_17	20	B6
27	GND	N/A	N/A
28	I/O_18	19	B5

MACH120 Pin and Node Summary

Chapter 10: Device Reference 426

MACH120 Pin and Node Summary

Pin #	Table, MACH120, Default	Macro-	Pin
rm#			
	Name	cell	Feedback
29	I/O_19	18	B4
30	I/O_20	17	B3
31	I/O_21	16	B2
32	I/O_22	15	B1
33	I/O_23	14	BO
34	VCC	N/A	N/A
35	GND	N/A	N/A
36	I/O_24	26	C0
37	I/O_25	27	C1
38	I/O_26	28	C2
39	I/O_27	29	C3
40	I/O_28	30	C4
41	I/O_29	31	C5
42	GND	N/A	N/A
43	I/O_30	32	C6
44	I/O_31	33	C7
45	I/O_32	34	C8
46	I/O_33	35	C9
47	I/O_34	36	C10
48	I/O_35	37	C11
49	I4/CLK2	N/A	N/A
50	I5/CLK3 ³³	N/A	N/A
51	I6	N/A	N/A
52	VCC	N/A	N/A
53	GND	N/A	N/A
54	I7	N/A	N/A
55	I/O_36	49	D11
56	I/O_37	48	D10
57	I/O_38	47	D9
58	I/O_39	46	D8
59	I/O_40	45	D7

Pin/Node Table, MACH120, Continued

MACH120 Pin and Node Summary

Pin/Node I	Pin/Node Table, MACH120, Continued						
Pin #	Default	Macro-	Pin				
	Name	cell	Feedback				
60	I/O_41	44	D6				
61	GND	N/A	N/A				
62	I/O_42	43	D5				
63	I/O_43	42	D4				
64	I/O_44	41	D3				
65	I/O_45	40	D2				
66	I/O_46	39	D1				
67	I/O_47	38	D0				
68	VCC	N/A	N/A				

Pin/Node Table, MACH120, Continued

MACH130 Pin and Node Summary

Note: Node 1 is the global Set/Reset node . Node numbers for other nodes are listed below under Macrocell.

Pin/Node T	able, MACH130		elow under M
Pin #	Default Name	Macro- cell	Pin Feedback
1	GND	N/A	N/A
2	VCC	N/A	N/A
23	I/O_0	2	A0
3 4	I/O_0 I/O_1	23	A0 A1
4 5	I/O_1 I/O_2	3 4	A1 A2
5 6	I/O_2 I/O_3	4 5	A2 A3
0 7	I/O_3 I/O_4	5 6	A3 A4
8	I/O_4 I/O_5	0 7	A4 A5
9	I/O_3 I/O_6	8	A5 A6
9 10	I/O_0 I/O_7	9	A0 A7
10	GND	N/A	N/A
12	I/O_8	10	A8
12	I/O_9	10	A9
14	I/O_10	12	A10
14	I/O_11	12	A10
16	I/O_11 I/O_12	13	A11 A12
10	I/O_12 I/O_13	15	A12
18	I/O_14	16	A13
10	I/O_14 I/O_15	17	A14
20	10/CLK0	N/A	N/A
20 21	VCC	N/A	N/A
22	GND	N/A	N/A
23	I1/CLK1	N/A	N/A
20 24	I/O_16	33	B15
25	I/O_17	32	B13 B14
26	I/O_18	31	B13
27	I/O_19	30	B12

MACH130 Pin and Node Summary

Pin/Node Table, MACH130, Continued					
Pin #	Default	Macro-	Pin		
	Name	cell	Feedback		
28	I/O_20	29	B11		
29	I/O_21	28	B10		
30	I/O_22	27	B9		
31	I/O_23	26	B8		
32	GND	N/A	N/A		
33	I/O_24	25	N/A		
34	I/O_25	24	N/A		
35	I/O_26	23	N/A		
36	I/O_27	22	N/A		
37	I/O_28	21	N/A		
38	I/O_29	20	N/A		
39	I/O_30	19	N/A		
40	I/O_31	18	N/A		
41	I2	N/A	N/A		
42	VCC	N/A	N/A		
43	GND	N/A	N/A		
44	VCC	N/A	N/A		
45	I/O_32	34	C0		
46	I/O_33	35	C1		
47	I/O_34	36	C2		
48	I/O_35	37	C3		
49	I/O_36	38	C4		
50	I/O_37	39	C5		
51	I/O_38	40	C6		
52	I/O_39	41	C7		
53	GND	N/A	N/A		
54	I/O_40	42	C8		
55	I/O_41	43	C9		
56	I/O_42	44	C10		
57	I/O_43	45	C11		
58	I/O_44	46	C12		
59	I/O_45	47	C13		
60	I/O_46	48	C14		
61	I/O_47	49	C15		

Pin/Node Table, MACH130, Continued

MACH130 Pin and Node Summary

Pin #	Default	Macro-	Pin
	Name	cell	Feedback
62	13/CLK2	N/A	N/A
63	VCC	N/A	N/A
64	GND	N/A	N/A
65	I4/CLK3 ³⁴	N/A	N/A
66	I/O_48	65	D15
67	I/O_49	64	D14
68	I/O_50	63	D13
69	I/O_51	62	D12
70	I/O_52	61	D11
71	I/O_53	60	D10
72	I/O_54	59	D9
73	I/O_55	58	D8
74	GND	N/A	N/A
75	I/O_56	57	D7
76	I/O_57	56	D6
77	I/O_58	55	D5
78	I//O_59	54	D4
79	I/O_60	53	D3
80	I/O_61	52	D2
81	I/O_62	51	D1
82	I/O_63	50	D0
83	I4	N/A	N/A
84	VCC	N/A	N/A

Pin/Node Table, MACH130, Continued

MACH131 Pin and Node Summary

Note: Node 1 is the global Set/Reset node . Node numbers for other nodes are listed below under Macrocell. Pin/Node Table, MACH131

Pin #	Default	Macro-	Pin
	Name	cell	Feedback
1	GND	N/A	N/A
2	VCC	N/A	N/A
3	I/O_0	2	A0
4	I/O_1	3	A1
5	I/O_2	4	A2
6	I/O_3	5	A3
7	I/O_4	6	A4
8	I/O_5	7	A5
9	I/O_6	8	A6
10	I/O_7	9	A7
11	GND	N/A	N/A
12	I/O_8	10	A8
13	I/O_9	11	A9
14	I/O_10	12	A10
15	I/O_11	13	A11
16	I/O_12	14	A12
17	I/O_13	15	A13
18	I/O_14	16	A14
19	I/O_15	17	A15
20	I0/CLK0	N/A	N/A
21	VCC	N/A	N/A
22	GND	N/A	N/A
23	I1/CLK1	N/A	N/A
24	I/O_16	33	B15
25	I/O_17	32	B14
26	I/O_18	31	B13
27	I/O_19	30	B12
28	I/O_20	29	B11

MACH131 Pin and Node Summary

Pin/Node T	able, MACH131,	Continued	
Pin #	Default	Macro-	Pin
	Name	cell	Feedback
29	I/O_21	28	B10
30	I/O_22	27	B9
31	I/O_23	26	B8
32	GND	N/A	N/A
33	I/O_24	25	B7
34	I/O_25	24	B6
35	I/O_26	23	B5
36	I/O_27	22	B4
37	I/O_28	21	B3
38	I/O_29	20	B2
39	I/O_30	19	B1
40	I/O_31	18	B0
41	I2	N/A	N/A
42	VCC	N/A	N/A
43	GND	N/A	N/A
44	VCC	N/A	N/A
45	I/O_32	34	C0
46	I/O_33	35	C1
47	I/O_34	36	C2
48	I/O_35	37	C3
49	I/O_36	38	C4
50	I/O_37	39	C5
51	I/O_38	40	C6
52	I/O_39	41	C7
53	GND	N/A	N/A
54	I/O_40	42	C8
55	I/O_41	43	C9
56	I/O_42	44	C10
57	I/O_43	45	C11
58	I/O_44	46	C12
59	I/O_45	47	C13
60	I/O_46	48	C14
61	I/O_47	49	C15
62	13/CLK2	N/A	N/A
63	VCC	N/A	N/A
Continue	d		

Pin/Node Table, MACH131, Continued

MACH131 Pin and Node Summary

Pin #	Default	Macro-	Pin
	Name	cell	Feedback
64	GND	N/A	N/A
65	I4/CLK3 ³⁵	N/A	N/A
66	I/O_48	65	D15
67	I/O_49	64	D14
68	I/O_50	63	D13
69	I/O_51	62	D12
70	I/O_52	61	D11
71	I/O_53	60	D10
72	I/O_54	59	D9
73	I/O_55	58	D8
74	GND	N/A	N/A
75	I/O_56	57	D7
76	I/O_57	56	D6
77	I/O_58	55	D5
78	I//O_59	54	D4
79	I/O_60	53	D3
80	I/O_61	52	D2
81	I/O_62	51	D1
82	I/O_63	50	D0
83	I4	N/A	N/A
84	VCC	N/A	N/A

Pin/Node Table, MACH131, Continued

Pin #	Default Name	Output Macro- cell	Input Register	Pin Feedback
1	GND	N/A	N/A	N/A
2	I/O_0	2	3	A0
3	I/O_1	4	5	A2
4	I/O_2	6	7	A4
5	I/O_3	8	9	A6
6	I/O_4	10	11	A8
7	I/O_5	12	13	A10
8	I/O_6	14	15	A12
9	I/O_7	16	17	A14
10	10	N/A	N/A	N/A
11	I1	N/A	N/A	N/A
12	GND	N/A	N/A	N/A
13	CLK0/I2	N/A	N/A	N/A
14	I/O_8	32	33	B14
15	I/O_9	30	31	B12
16	I/O_10	28	29	B10
17	I/O_11	26	27	B8
18	I/O_12	24	25	B6
19	I/O_13	22	23	B4
20	I/O_14	20	21	B2
21	I/O_15	18	19	B0
22	VCC	N/A	N/A	N/A
23	GND	N/A	N/A	N/A
24	I/O_16	34	35	C0
25	I/O_17	36	37	C2

MACH210 Pin and Node Summary

MACH210 Pin and Node Summary

Pin #	Default Name	Output Macro- cell	Input Register	Pin Feedback
26	I/O_18	38	39	C4
27	I/O_19	40	41	C6
28	I/O_20	42	43	C8
29	I/O_21	44	45	C10
30	I/O_22	46	47	C12
31	I/O_22	48	49	C14
32	13	N/A	N/A	N/A
33	I4	N/A	N/A	N/A
34	GND	N/A	N/A	N/A
35	CLK1/I5 ³⁶	N/A	N/A	N/A
36	I/O_24	64	65	D14
37	I/O_25	62	63	D12
38	I/O_26	60	61	D10
39	I/O_27	58	59	D8
40	I/O_28	56	57	D6
41	I/O_29	54	55	D4
42	I/O_30	52	53	D2
43	I/O_31	50	51	D1
44	VCC	N/A	N/A	N/A

Pin/Node Table, MACH210, Continued

Pin #	Default Name	Output Macro-	Input Register	Pin Feedback
4		cell	3.7/4	57/4
1	GND	N/A	N/A	N/A
2	I/O_0	2	3	A0
3	I/O_1	4	5	A2
4	I/O_2	6	7	A4
5	I/O_3	8	9	A6
6	I/O_4	10	11	A8
7	I/O_5	12	13	A10
8	I/O_6	14	15	A12
9	I/O_7	16	17	A14
10	IO	N/A	N/A	N/A
11	CLK0/I1	N/A	N/A	N/A
12	GND	N/A	N/A	N/A
13	CLK1/I2	N/A	N/A	N/A
14	I/O_8	32	33	B14
15	I/O_9	30	31	B12
16	I/O_10	28	29	B10
17	I/O_11	26	27	B8
18	I/O_12	24	25	B6
19	I/O_13	22	23	B4
20	I/O_14	20	21	B2
21	I/O_15	18	19	B0
22	VCC	N/A	N/A	N/A
23	GND	N/A	N/A	N/A
24	I/O_16	34	35	C0
25	I/O_17	36	37	C2
26	I/O 18	38	39	C4

MACH211 Pin and Node Summary

MACH211 Pin and Node Summary

Pin #	Default Name	Output Macro- cell	Input Register	Pin Feedback
27	I/O_19	40	41	C6
28	I/O_20	42	43	C8
29	I/O_21	44	45	C10
30	I/O_22	46	47	C12
31	I/O_22	48	49	C14
32	I3	N/A	N/A	N/A
33	CLK2/I4	N/A	N/A	N/A
34	GND	N/A	N/A	N/A
35	CLK3/I5 ³⁷	N/A	N/A	N/A
36	I/O_24	64	65	D14
37	I/O_25	62	63	D12
38	I/O_26	60	61	D10
39	I/O_27	58	59	D8
40	I/O_28	56	57	D6
41	I/O_29	54	55	D4
42	I/O_30	52	53	D2
43	I/O_31	50	51	D1
44	VCC	N/A	N/A	N/A

Pin/Node Table, MACH211

	able, MACH215			
Pin #	Default Name	Output Macro- cell	Input Register	Pin Feedback
1	GND	N/A	N/A	N/A
2	I/O_0	2	3	A0
3	I/O_1	4	5	A2
4	I/O_2	6	7	A4
5	I/O_3	8	9	A6
6	I/O_4	10	11	A8
7	I/O_5	12	13	A10
8	I/O_6	14	15	A12
9	I/O_7	16	17	A14
10	I0	N/A	N/A	N/A
11	I1	N/A	N/A	N/A
12	GND	N/A	N/A	N/A
13	CLK0/I2 ³⁸	N/A	N/A	N/A
14	I/O_8	32	33	B14
15	I/O_9	30	31	B12
16	I/O_10	28	29	B10
17	I/O_11	26	27	B8
18	I/O_12	24	25	B6
19	I/O_13	22	23	B4
20	I/O_14	20	21	B2
21	I/O_15	18	19	B0

MACH215 Pin and Node Summary

MACH215 Pin and Node Summary

Pin #	Default Name	Output Macro- cell	Input Register	Pin Feedback
22	VCC	N/A	N/A	N/A
23	GND	N/A	N/A	N/A
24	I/O_16	34	35	C0
25	I/O_17	36	37	C2
26	I/O_18	38	39	C4
27	I/O_19	40	41	C6
28	I/O_20	42	43	C8
29	I/O_21	44	45	C10
30	I/O_22	46	47	C12
31	I/O_22	48	49	C14
32	I3	N/A	N/A	N/A
33	I4	N/A	N/A	N/A
34	GND	N/A	N/A	N/A
35	CLK1/I5	N/A	N/A	N/A
36	I/O_24	64	65	D14
37	I/O_25	62	63	D12
38	I/O_26	60	61	D10
39	I/O_27	58	59	D8
40	I/O_28	56	57	D6
41	I/O_29	54	55	D4
42	I/O_30	52	53	D2
43	I/O_31	50	51	D1
44	VCC	N/A	N/A	N/A

Pin/Node Table, MACH215, Continued

Pin #	Default Name	Output Macro- cell	Input Register	Pin Feedback
1	GND	N/A	N/A	N/A
2	I/O 0	2	3	A0
3	I/O_1	4	5	A2
4	I/O ²	6	7	A4
5	I/O_3	8	9	A6
6	I/O_4	10	11	A8
7	I/O_5	12	13	A10
8	GND	N/A	N/A	N/A
9	I/O_6	24	25	B10
10	I/O_7	22	23	B8
11	I/O_8	20	21	B6
12	I/O_9	18	19	B4
13	I/O_10	16	17	B2
14	I/O_11	14	15	B0
15	I0/CLK0	N/A	N/A	N/A
16	I1/CLK1	N/A	N/A	N/A
17	I2	N/A	N/A	N/A
18	VCC	N/A	N/A	N/A
19	GND	N/A	N/A	N/A
20	I3	N/A	N/A	N/A
21	I/O_12	26	27	C0
22	I/O_13	28	29	C2
23	I/O_14	30	32	C4
24	I/O_15	32	33	C6
25	I/O_16	34	35	C8

MACH220 Pin and Node Summary

Note: Node 1 is the global Set/Reset node . Node numbers for other nodes are listed below under Output Macrocell and Input Register.

MACH220 Pin and Node Summary

Pin #	Default	Output	Input	Pin
	Name	Macro-	Register	Feedback
		cell		
26	I/O_17	36	37	C10
27	GND	N/A	N/A	N/A
28	I/O_18	48	49	D10
29	I/O_19	46	47	D8
30	I/O_20	44	45	D6
31	I/O_21	42	43	D4
32	I/O_22	40	41	D2
33	I/O_23	38	39	D0
34	VCC	N/A	N/A	N/A
35	GND	N/A	N/A	N/A
36	I/O_24	50	51	E0
37	I/O_25	52	53	E2
38	I/O_26	54	55	E4
39	I/O_27	56	57	E6
40	I/O_28	58	59	E8
41	I/O_29	60	61	E10
42	GND	N/A	N/A	N/A
43	I/O_30	72	73	F10
44	I/O_31	70	71	F8
45	I/O_32	68	69	F6
46	I/O_33	66	67	F4
47	I/O_34	64	65	F2
48	I/O_35	62	63	F0
49	I4/CLK2	N/A	N/A	N/A
50	I5/CLK3 ³⁹	N/A	N/A	N/A
51	I6	N/A	N/A	N/A
52	VCC	N/A	N/A	N/A
53	GND	N/A	N/A	N/A
54	I7	N/A	N/A	N/A

Pin/Node Table, MACH220, Continued

MACH220 Pin and Node Summary

Pin #	Default Name	Output Macro- cell	Input Register	Pin Feedback
55	I/O_36	74	75	G0
56	I/O_37	76	77	G2
57	I/O_38	78	79	G4
58	I/O_39	80	81	G6
59	I/O_40	82	83	G8
60	I/O_41	84	85	G10
61	GND	N/A	N/A	N/A
62	I/O_42	96	97	H10
63	I/O_43	94	95	H8
64	I/O_44	92	93	H6
65	I/O_45	90	91	H4
66	I/O_46	88	89	H2
67	I/O_47	86	87	H0
68	VCC	N/A	N/A	N/A

Pin/Node Table, MACH220, Continued

MACH231 Pin and Node Summary

Note: Node 1 is the global Set/Reset node . Node numbers for other nodes are listed below under Macrocell. Pin/Node Table. MACH231

Pin #	Default	Output		Pin
"	Name	Macro-		Feedback
		cell		
1	GND	N/A	N/A	N/A
2	VCC	N/A	N/A	N/A
3	I/O_0	2	3	A0
4	I/O_1	4	5	A2
5	I/O_2	6	7	A4
6	I/O_3	8	9	A6
7	I/O_4	10	11	A8
8	I/O_5	12	13	A10
9	I/O_6	14	15	A12
10	I/O_7	16	17	A14
11	GND	N/A	N/A	N/A
12	I/O_8	32	33	B14
13	I/O_9	30	31	B12
14	I/O_10	28	29	B10
15	I/O_11	26	27	B8
16	I/O_12	24	25	B6
17	I/O_13	22	23	B4
18	I/O_14	20	21	B2
19	I/O_15	18	19	B0
20	I0/CLK0	N/A	N/A	N/A
21	VCC	N/A	N/A	N/A
22	GND	N/A	N/A	N/A
23	I1/CLK1	N/A	N/A	N/A
24	I/O_16	34	35	C0
25	I/O_17	36	37	C2
26	I/O_18	38	39	C4

Pin #	Default	Output		Pin
	Name	Macro-		Feedback
		cell		
27	I/O_19	40	41	C6
28	I/O_20	42	43	C8
29	I/O_21	44	45	C10
30	I/O_22	46	47	C12
31	I/O_23	48	49	C14
32	GND	N/A	N/A	N/A
33	I/O_24	64	65	D14
34	I/O_25	62	63	D12
35	I/O_26	60	61	D10
36	I/O_27	58	59	D8
37	I/O_28	56	57	D6
38	I/O_29	54	55	D4
39	I/O_30	52	23	D2
40	I/O_31	50	51	D0
41	I2	N/A	N/A	N/A
42	VCC	N/A	N/A	N/A
43	GND	N/A	N/A	N/A
44	VCC	N/A	N/A	N/A
45	I/O_32	66	67	E0
46	I/O_33	68	69	E2
47	I/O_34	70	71	E4
48	I/O_35	72	73	E6
49	I/O_36	74	75	E8
50	I/O_37	76	77	E10
51	I/O_38	78	79	E12
52	I/O_39	80	81	E14
53	GND	N/A	N/A	N/A
54	I/O_40	96	97	F14
55	I/O_41	94	95	F12
56	I/O_42	92	93	F10
57	I/O 43	90	91	F8

Pin/Node Table, MACH231, Continued

Pin #	Default Name	Output Macro- cell		Pin Feedback
58	I/O_44	88	89	F6
59	I/O_45	86	87	F4
60	I/O_46	84	85	F2
61	I/O_47	82	83	F0
62	13/CLK2	N/A	N/A	N/A
63	VCC	N/A	N/A	N/A
64	GND	N/A	N/A	N/A
65	I4/CLK3 ⁴⁰	N/A	N/A	N/A
66	I/O_48	98	99	G0
67	I/O_49	100	101	G2
68	I/O_50	102	103	G4
69	I/O_51	104	105	G6
70	I/O_52	106	107	G8
71	I/O_53	108	109	G10
72	I/O_54	110	111	G12
73	I/O_55	112	113	G14
74	GND	N/A	N/A	N/A
75	I/O_56	128	129	H14
76	I/O_57	126	127	H12
77	I/O_58	124	125	H0
78	I//O_59	122	123	H8
79	I/O_60	120	1221	H6
80	I/O_61	118	119	H4
81	I/O_62	116	117	H2
82	I/O_63	114	115	H0
83	I4	N/A	N/A	N/A
84	VCC	N/A	N/A	N/A

Pin #	Default Name	Macro- cell	Pin Feedback	
1	I/O_13	15	A13	
2	I/O_14	16	A14	
3	I/O_15	17	A15	
4	VCC	N/A	N/A	
5	TD1	N/A	N/A	
6	15	N/A	N/A	
7	GND	N/A	N/A	
8	I0/CLK0 ⁴¹	N/A	N/A	
9	I1/CLK1	N/A	N/A	
10	I/O_16	33	B15	
11	I/O_17	32	B14	
12	VCC	N/A	N/A	
13	I/O_18	31	B13	
14	I/O_19	30	B12	
15	GND	N/A	N/A	
16	I/O_20	29	B11	
17	I/O_21	28	B10	
18	I/O_22	27	B9	
19	I/O_23	26	B8	
20	I/O_24	18	B0	
21	I/O_25	19	B1	
22	VCC	N/A	N/A	
23	GND	N/A	N/A	
24	I/O_26	20	B2	

Note: Node 1 is the global Set/Reset node . Node numbers for other

Pin/Node Table, MACH355, Continued						
Pin #	Default	Macro-	Pin			
	Name	cell	Feedback			
25	I/O_27	21	B3			
26	I/O_28	22	B4			
27	I/O_29	23	B5			
28	I/O_30	24	B6			
29	I/O_31	25	B7			
30	GND	N/A	N/A			
31	TMS	N/A	N/A			
32	TCK	N/A	N/A			
33	VCC	N/A	N/A			
34	I/O_32	49	C15			
35	I/O_33	48	C14			
36	I/O_34	47	C13			
37	I/O_35	47	C12			
38	GND	N/A	N/A			
39	I/O_36	45	C11			
40	I/O_37	44	C10			
41	I/O_38	43	C9			
42	I/O_39	42	C8			
43	VCC	N/A	N/A			
44	I/O_40	41	C7			
45	I/O_41	40	C6			
46	GND	N/A	N/A			
47	I/O_42	39	C5			
48	I/O_43	38	C4			
49	I/O_44	37	C3			
50	I/O_45	36	C2			
51	I/O_46	35	C1			
52	I/O_47	34	C0			
53	VCC	N/A	N/A			
54	GND	N/A	N/A			
55	GND	N/A	N/A			
56	VCC	N/A	N/A			
57	I/O_48	50	D0			
58	I/O_49	51	D1			

Pin/Node Table, MACH355, Continued

Pin/Node Table, MACH355, Continued					
Pin #	Default	Macro-	Pin		
	Name	cell	Feedback		
59	I/O_50	52	D2		
50	I/O_51	53	D3		
61	I/O_52	54	D4		
62	I/O_53	55	D5		
63	GND	N/A	N/A		
64	I/O_54	56	D6		
65	I/O_55	57	D7		
66	VCC	N/A	N/A		
67	I/O_56	58	D8		
68	I/O_57	59	D9		
69	I/O_58	60	D10		
60	I/O_59	61	D11		
71	GND	N/A	N/A		
72	I/O_60	62	D12		
73	I/O_61	63	D13		
74	I/O_62	64	D14		
75	I/O_63	65	D15		
76	VCC	N/A	N/A		
77	ENABLE	N/A	N/A		
78	I2	N/A	N/A		
79	GND	N/A	N/A		
80	I/O_71	73	E7		
81	I/O_70	72	E6		
82	I/O_69	71	E5		
83	I/O_68	70	E4		
84	I/O_67	69	E3		
85	I/O_66	68	E2		
86	GND	N/A	N/A		
87	VCC	N/A	N/A		
88	I/O_65	67	E1		
89	I/O_64	66	E0		
90	I/O_72	74	E8		
91	I/O_73	75	E9		
92	I/O_74	76	E10		

Pin/Node Table, MACH355, Continued

Pin/Node Table, MACH355, Continued						
Pin #	Default	Macro-	Pin			
	Name	cell	Feedback			
93	I/O_75	77	E11			
94	GND	N/A	N/A			
95	I/O_76	78	E12			
96	I/O_77	79	E13			
97	VCC	N/A	N/A			
98	I/O_78	80	E14			
99	I/O_79	81	E15			
100	I3/CLK3	N/A	N/A			
101	I4/CLK4	N/A	N/A			
102	GND	N/A	N/A			
103	TRST	N/A	N/A			
104	TDO	N/A	N/A			
105	VCC	N/A	N/A			
106	I/O_80	97	F15			
107	I/O_81	96	F14			
108	I/O_82	95	F13			
109	I/O_83	94	F12			
110	GND	N/A	N/A			
111	I/O_84	93	F11			
112	I/O_85	92	F10			
113	I/O_86	91	F9			
114	I/O_87	90	F8			
115	VCC	N/A	N/A			
116	I/O_88	89	F7			
117	I/O_89	88	F6			
118	GND	N/A	N/A			
119	I/O_90	87	F5			
120	I/O_91	86	F4			
121	I/O_92	85	F3			
122	I/O_93	84	F2			
123	I/O_94	83	F1			
124	I/O_95	82	F0			
125	VCC	N/A	N/A			
126	GND	N/A	N/A			

Pin/Node Table, MACH355, Continued

Pin #	Default	Macro-	Pin
	Name	cell	Feedback
127	GND	N/A	N/A
128	VCC	N/A	N/A
129	I/O_0	2	A0
130	I/O_1	3	A1
131	I/O_2	4	A2
132	I/O_3	5	A3
133	I/O_4	6	A4
134	I/O_5	7	A5
135	GND	N/A	N/A
136	I/O_6	8	A6
137	I/O_7	9	A7
138	VCC	N/A	N/A
139	I/O_8	10	A8
140	I/O_9	11	A9
141	I/O_10	12	A10
142	I/O_11	13	A11
143	GND	N/A	N/A
144	I/O_12	14	A12

Note: Node 1 is the global Set/Reset node . Node numbers for other nodes are listed below under Even Macro, Odd Macro, and Input Register.
Pin/Node Table MACH435

Pin #	Default Name	Even Macro	Odd Macro	Input Register	Pin Feedback
1	GND	N/A	N/A	N/A	N/A
2	VCC	N/A	N/A	N/A	N/A
3	IO_0	2	3	130	A0
4	IO_1	4	5	131	A1
5	IO_2	6	7	132	A2
6	IO_3	8	9	133	A3
7	IO_4	10	11	134	A4
8	IO_5	12	13	135	A5
9	IO_6	14	15	136	A6
10	IO_7	16	17	137	A7
11	GND	N/A	N/A	N/A	N/A
12	IO_8	32	33	145	B7
13	IO_9	30	31	144	B6
14	IO_10	28	29	143	B5
15	IO_11	26	27	142	B4
16	IO_12	24	25	141	B3
17	IO_13	22	23	140	B2
18	IO_14	20	21	139	B1
19	IO_15	18	19	138	B0
20	I0/CLK0 ⁴²	N/A	N/A	N/A	N/A
21	VCC	N/A	N/A	N/A	N/A
22	GND	N/A	N/A	N/A	N/A

Pin #	Default	Even	Odd	Input	Pin
	Name	Macro	Macro	Register	Feedback
23	I1/CLK1	N/A	N/A	N/A	N/A
24	IO_16	34	35	146	C0
25	IO_17	36	37	147	C1
26	IO_18	38	39	148	C2
27	IO_19	40	41	149	C3
28	IO_20	42	43	150	C4
29	IO_21	44	45	151	C5
30	IO_22	46	47	152	C6
31	IO_23	48	49	153	C7
32	GND	N/A	N/A	N/A	N/A
33	IO_24	64	65	161	D7
34	IO_25	62	63	160	D6
35	IO_26	60	61	159	D5
36	IO_27	58	59	158	D4
37	IO_28	56	57	157	D3
38	IO_29	54	55	156	D2
39	IO_30	52	53	155	D1
40	IO_31	50	51	154	D0
41	12	N/A	N/A	N/A	N/A
42	VCC	N/A	N/A	N/A	N/A
43	GND	N/A	N/A	N/A	N/A
44	VCC	N/A	N/A	N/A	N/A
45	IO_32	66	67	162	E0
46	IO_33	68	69	163	E1
47	IO_34	70	71	164	E2
48	IO_35	72	73	165	E3
49	IO_36	74	75	166	E4
50	IO_37	76	77	167	E5
51	IO_38	78	79	168	E6
52	IO_39	80	81	169	E7
53	GND	N/A	N/A	N/A	N/A
54	IO_40	96	97	177	F7
55	IO_41	94	95	176	F6
56	IO_42	92	93	175	F5

Pin/Node Table, MACH435, Continued

Pin #	Default	Even	Odd	Input	Pin
	Name	Macro	Macro	Register	Feedback
57	IO_43	90	91	174	F4
58	IO_44	88	89	173	F3
59	IO_45	86	87	172	F2
60	IO_46	84	85	171	F1
61	IO_47	82	83	170	F0
62	I3/CLK2	N/A	N/A	N/A	N/A
63	VCC	N/A	N/A	N/A	N/A
64	GND	N/A	N/A	N/A	N/A
65	I4/CLK3	N/A	N/A	N/A	N/A
66	IO_48	98	99	178	G0
67	IO_49	100	101	179	G1
68	IO_50	102	103	180	G2
69	IO_51	104	105	181	G3
70	IO_52	106	107	182	G4
71	IO_53	108	109	183	G5
72	IO_54	110	111	184	G6
73	IO_55	112	113	185	G7
74	GND	N/A	N/A	N/A	N/A
75	IO_56	128	129	193	H7
76	IO_57	126	127	192	H6
77	IO_58	124	125	191	H5
78	IO_59	122	123	190	H4
79	IO 60	120	121	189	H3
80	IO_61	118	119	188	H2
81	IO_62	116	117	187	H1
82	IO_63	114	115	186	H0
83	I5	N/A	N/A	N/A	N/A
84	VCC	N/A	N/A	N/A	N/A

Pin/Node Table, MACH435, Continued

Note: Node 1 is the global Set/Reset node . Node numbers for other nodes are listed below under Even Macro, Odd Macro, and Input Register.
Pin/Node Table MACH445

Pin #	Default Name	Even Macro	Odd Macro	Input Register	Pin Feedback
1	GND	N/A	N/A	N/A	N/A
2	GND	N/A	N/A	N/A	N/A
3	TDI	N/A	N/A	N/A	N/A
4	I5	N/A	N/A	N/A	N/A
5	I0_8	32	33	145	B7
6	IO_9	30	31	144	B6
7	IO_10	28	29	143	B5
8	IO_11	26	27	142	B4
9	IO_12	24	25	141	B3
10	IO_13	22	23	140	B2
11	IO_14	20	21	139	B1
12	IO_15	18	19	138	B0
13	I0_CLK0 ⁴³	N/A	N/A	N/A	N/A
14	VCC	N/A	N/A	N/A	N/A
15	VCC	N/A	N/A	N/A	N/A
16	GND	N/A	N/A	N/A	N/A
17	GND	N/A	N/A	N/A	N/A
18	I1_CLK1	N/A	N/A	N/A	N/A
19	IO_16	34	35	146	C0
20	IO_17	36	37	147	C1
21	IO_18	38	39	148	C2
22	IO_19	40	41	149	C3
23	IO_20	42	43	150	C4

Pin #	Default	Even	Odd	Input	Pin
	Name	Macro	Macro	Register	Feedback
24	IO_21	44	45	151	C5
25	IO_22	46	47	152	C6
26	IO_23	48	49	153	C7
27	TMS	N/A	N/A	N/A	N/A
28	TCK	N/A	N/A	N/A	N/A
29	GND	N/A	N/A	N/A	N/A
30	GND	N/A	N/A	N/A	N/A
31	IO_24	64	65	161	D7
32	IO_25	62	63	160	D6
33	IO_26	60	61	159	D5
34	IO_27	58	59	158	D4
35	IO_28	56	57	157	D3
36	IO_29	54	55	156	D2
37	IO_30	52	53	155	D1
38	IO_31	50	51	154	D0
39	VCC	N/A	N/A	N/A	N/A
40	GND	N/A	N/A	N/A	N/A
41	GND	N/A	N/A	N/A	N/A
42	VCC	N/A	N/A	N/A	N/A
43	IO_32	66	67	162	E0
44	IO_33	68	69	163	E1
45	IO_34	70	71	164	E2
46	IO_35	72	73	165	E3
47	IO_36	74	75	166	E4
48	IO_37	76	77	167	E5
49	IO_38	78	79	168	E6
50	IO_39	80	81	169	E7
51	GND	N/A	N/A	N/A	N/A
52	GND	N/A	N/A	N/A	N/A
53	ENABLE	N/A	N/A	N/A	N/A
54	I2	N/A	N/A	N/A	N/A
55	IO_40	96	97	177	F7
56	IO_41	94	95	176	F6
57	IO_42	92	93	175	F5

Pin/Node Table, MACH445, Continued

Pin #	Default	Even	Odd	Input	Pin
	Name	Macro	Macro	Register	Feedback
58	IO_43	90	91	174	F4
59	IO_44	88	89	173	F3
60	IO_45	86	87	172	F2
61	IO_46	84	85	171	F1
62	IO_47	82	83	170	F0
63	I3_CLK2	N/A	N/A	N/A	N/A
64	VCC	N/A	N/A	N/A	N/A
65	VCC	N/A	N/A	N/A	N/A
66	GND	N/A	N/A	N/A	N/A
67	GND	N/A	N/A	N/A	N/A
68	I4_CLK3	N/A	N/A	N/A	N/A
69	IO_48	98	99	178	G0
70	IO_49	100	101	179	G1
71	IO_50	102	103	180	G2
72	IO_51	104	105	181	G3
73	IO_52	106	107	182	G4
74	IO_53	108	109	183	G5
75	IO_54	110	111	184	G6
76	IO_55	112	113	185	G7
77	TRST	N/A	N/A	N/A	N/A
78	TDO	N/A	N/A	N/A	N/A
79	GND	N/A	N/A	N/A	N/A
80	GND	N/A	N/A	N/A	N/A
81	IO_56	128	129	193	H7
82	IO_57	126	127	192	H6
83	IO_58	124	125	191	H5
84	IO_59	122	123	190	H4
85	IO_60	120	121	189	H3
86	IO_61	118	119	188	H2
87	IO_62	116	117	187	H1
88	IO_63	114	115	186	H0
89	VCC	N/A	N/A	N/A	N/A
90	GND	N/A	N/A	N/A	N/A
91	GND	N/A	N/A	N/A	N/A

Pin/Node Table, MACH445, Continued

Pin #	Default Name	Even Macro	Odd Macro	Input Register	Pin Feedback
92	VCC	N/A	N/A	N/A	N/A
93	IO_0	2	3	130	A0
94	IO_1	4	5	131	A1
95	IO_2	6	7	132	A2
96	IO_3	8	9	133	A3
97	IO_4	10	11	134	A4
98	IO_5	12	13	135	A5
99	IO_6	14	15	136	A6
100	IO_7	16	17	137	A7

Pin/Node Table, MACH445, Continued

Note: Node 1 is the global Set/Reset node . Node numbers for other nodes are listed below under Even Macro, Odd Macro, and Input Register.
Pin/Node Table. MACH465

Pin #	Default Name	Even Macro	Odd Macro	Input Register	Pin Feedback
1	GND	N/A	N/A	N/A	N/A
2	TDI	N/A	N/A	N/A	N/A
3	IO 16	48	49	281	C7
4	IO_17	46	47	280	C6
5	IO_18	44	45	279	C5
6	IO_19	42	43	278	C4
7	IO_20	40	41	277	C3
8	IO_21	38	39	276	C2
9	IO_22	36	37	275	C1
10	IO_23	34	35	274	CO
11	VCC	N/A	N/A	N/A	N/A
12	GND	N/A	N/A	N/A	N/A
13	IO_24	64	65	289	D7
14	IO_25	62	63	288	D6
15	IO_26	60	61	287	D5
16	IO_27	58	59	286	D4
17	IO_28	56	57	285	D3
18	IO_29	54	55	284	D2
19	IO_30	52	53	283	D1
20	IO_31	50	51	282	D0
21	I2	N/A	N/A	N/A	N/A
22	I3	N/A	N/A	N/A	N/A
23	GND	N/A	N/A	N/A	N/A
24	VCC	N/A	N/A	N/A	N/A
25	VCC	N/A	N/A	N/A	N/A
26	GND	N/A	N/A	N/A	N/A

Pin #	Default	Even	Odd	Input	Pin
	Name	Macro	Macro	Register	Feedback
27	GND	N/A	N/A	N/A	N/A
28	VCC	N/A	N/A	N/A	N/A
29	VCC	N/A	N/A	N/A	N/A
30	GND	N/A	N/A	N/A	N/A
31	I4	N/A	N/A	N/A	N/A
32	IO_32	66	67	290	E0
33	IO_33	68	69	291	E1
34	IO_34	70	71	292	E2
35	IO_35	72	73	293	E3
36	IO_36	74	75	294	E4
37	IO_37	76	77	295	E5
38	IO_38	78	79	296	E6
39	IO_39	80	81	297	E7
40	GND	N/A	N/A	N/A	N/A
41	VCC	N/A	N/A	N/A	N/A
42	IO_40	82	83	298	F0
43	IO_41	84	85	299	F1
44	IO_42	86	87	300	F2
45	IO_43	88	89	301	F3
46	IO_44	90	91	302	F4
47	IO_45	92	93	303	F5
48	IO_46	94	95	304	F6
49	IO_47	96	97	305	F7
50	TMS	N/A	N/A	N/A	N/A
51	TCK	N/A	N/A	N/A	N/A
52	GND	N/A	N/A	N/A	N/A
53	GND	N/A	N/A	N/A	N/A
54	IO_48	112	113	313	G7
55	IO_49	110	111	312	G6
56	IO_50	108	109	311	G5
57	IO_51	106	107	310	G4
58	IO_52	104	105	309	G3
59	IO_53	102	103	308	G2
60	IO_54	100	101	307	G1

Pin/Node Table, MACH465, Continued

Continued...

MACH465 Pin and Node Summary

Odd Pin Pin # Default Even Input Name Macro Macro Register Feedback 61 IO_55 98 99 306 G0 62 GND N/A N/A N/A N/A 63 VCC N/A N/A N/A N/A IO_56 64 128 129 H7 321 65 IO_57 H6 126 127 320 IO_58 66 124 125 319 H5 67 IO_59 122 123 318 H4 68 IO_60 120 121 H3 317 69 IO 61 118 119 H2 316 70 IO_62 116 117 315 H1 71 IO_63 114 115 H0 314 72 I5 N/A N/A N/A N/A 73 I6 N/A N/A N/A N/A 74 CLK1 N/A N/A N/A N/A 75 N/A N/A VCC N/A N/A 76 GND N/A N/A N/A N/A 77 GND N/A N/A N/A N/A 78 VCC N/A N/A N/A N/A 79 VCC N/A N/A N/A N/A 80 N/A N/A N/A GND N/A 81 GND N/A N/A N/A N/A 82 VCC N/A N/A N/A N/A 83 CLK2 N/A N/A N/A N/A 84 I7 N/A N/A N/A N/A 85 **I8** N/A N/A N/A N/A IO 64 130 322 86 131 I0 87 IO_65 132 133 323 I1 IO_66 88 134 135 I2 324 89 IO_67 136 137 325 I3 IO_68 138 139 I3 90 326 IO 69 I5 91 140 141 327 92 IO_70 142 143 328 I6 93 IO_71 329 I7 144 145 94 VCC N/A N/A N/A N/A

Pin/Node Table, MACH465, Continued

Continued...

MACH465 Pin and Node Summary

Pin #	Default	Even	Odd	Input	Pin
	Name	Macro	Macro	Register	Feedback
95	GND	N/A	N/A	N/A	N/A
96	IO_72	146	147	330	JO
97	IO_73	148	149	331	J1
98	IO_74	150	151	332	J2
99	IO_75	152	153	333	J3
100	IO_76	154	155	334	J4
101	IO_77	156	157	335	J5
102	IO_78	158	159	336	J6
103	IO_79	160	161	337	J7
104	GND	N/A	N/A	N/A	N/A
105	GND	N/A	N/A	N/A	N/A
106	ENABLE	N/A	N/A	N/A	N/A
107	IO_80	176	177	345	K7
108	IO_81	174	175	344	K6
109	IO_82	172	173	343	K5
110	IO_83	170	171	342	K4
111	IO_84	168	169	341	K3
112	IO_85	166	167	340	K2
113	IO_86	164	165	339	K1
114	IO_87	162	163	338	K0
115	VCC	N/A	N/A	N/A	N/A
116	GND	N/A	N/A	N/A	N/A
117	IO_88	192	193	353	L7
118	IO_89	190	191	352	L6
119	IO_90	188	189	351	L5
120	IO_91	186	187	350	L4
121	IO_92	184	185	349	L3
122	IO_93	182	183	348	L2
123	IO_94	180	181	347	L1
124	IO_95	178	179	346	LO
125	I9	N/A	N/A	N/A	N/A
126	I10	N/A	N/A	N/A	N/A
127	GND	N/A	N/A	N/A	N/A
128	VCC	N/A	N/A	N/A	N/A

Pin/Node Table, MACH465, Continued

Pin #	Default	Even	Odd	Input	Pin
	Name	Macro	Macro	Register	Feedback
129	VCC	N/A	N/A	N/A	N/A
130	GND	N/A	N/A	N/A	N/A
131	GND	N/A	N/A	N/A	N/A
132	VCC	N/A	N/A	N/A	N/A
133	VCC	N/A	N/A	N/A	N/A
134	GND	N/A	N/A	N/A	N/A
135	I11	N/A	N/A	N/A	N/A
136	IO_96	194	195	354	M0
137	IO_97	196	197	355	M1
138	IO_98	198	199	356	M2
139	IO_99	200	201	357	M3
140	IO_100	202	203	358	M4
141	IO_101	204	205	359	M5
142	IO_102	206	207	360	M6
143	IO_103	208	209	361	M7
144	GND	N/A	N/A	N/A	N/A
145	VCC	N/A	N/A	N/A	N/A
146	IO_104	210	211	362	N0
147	IO_105	212	213	363	N1
148	IO_106	214	215	364	N2
149	IO_107	216	217	365	N3
150	IO_108	218	219	366	N4
151	IO_109	220	221	367	N5
152	IO_110	222	223	368	N6
153	IO_111	224	225	369	N7
154	TRST	N/A	N/A	N/A	N/A
155	TDO	N/A	N/A	N/A	N/A
156	GND	N/A	N/A	N/A	N/A
157	GND	N/A	N/A	N/A	N/A
158	IO_112	240	241	377	07
159	IO_113	238	239	376	O6
160	IO_114	236	237	375	O5
161	IO_115	234	235	374	O4
162	IO_116	232	233	373	O3

Pin/Node Table, MACH465, Continued

Odd Pin Pin # Default Even Input Name Macro Register Feedback Macro 163 IO_117 230 231 372 02 164 IO 118 228 229 371 01 165 IO_119 226 227 370 00 166 GND N/A N/A N/A N/A 167 VCC N/A N/A N/A N/A 168 IO_120 256 257 385 P7 169 IO_121 254 255 384 P6 170 IO_122 252 253 P5 383 IO_123 250 251 P4 171 382 IO_124 **P**3 172 248 249 381 IO_125 173 246 247 P2 380 174 IO_126 244 245 379 **P1** IO_127 **P0** 175 242 243 378 176 I12 N/A N/A N/A N/A 177 I13 N/A N/A N/A N/A N/A 178 CLK3 N/A N/A N/A 179 VCC N/A N/A N/A N/A 180 GND N/A N/A N/A N/A 181 GND N/A N/A N/A N/A 182 VCC N/A N/A N/A N/A 183 VCC N/A N/A N/A N/A 184 GND N/A N/A N/A N/A 185 GND N/A N/A N/A N/A 186 VCC N/A N/A N/A N/A 187 CLK044 N/A N/A N/A N/A 188 I0 N/A N/A N/A N/A 189 I1 N/A N/A N/A N/A 190 IO_0 2 258 A0 3 191 IO_1 5 259 A1 4 192 IO_2 6 7 260 A2 9 193 IO 3 8 261 A3

Pin/Node Table, MACH465, Continued

Pin #	Default Name	Even Macro	Odd Macro	Input Register	Pin Feedback
194	IO_4	10	11	262	A4
195	IO_5	12	13	263	A5
196	IO_6	14	15	264	A6
197	IO_7	16	17	265	A7
198	VCC	N/A	N/A	N/A	N/A
199	GND	N/A	N/A	N/A	N/A
200	IO_8	18	19	266	B0
201	IO_9	20	21	267	B1
202	10_10	22	23	268	B2
203	IO_11	24	25	269	B3
204	IO_12	26	27	270	B4
205	IO_13	28	29	271	B5
206	IO_14	30	31	272	B6
207	IO_15	32	33	273	B7
208	GND	N/A	N/A	N/A	N/A

Pin/Node Table, MACH465, Continued

A State Segment In Depth

Contents

Overview 468			
Defining Moore and M	lealy Ma	chines	469
Creating State-Machin	ne Equat	ions	470
Condition Equations	471		
Transition Equations	471		
Output Equations	472		
State-Machine Examp	le	472	
Default Branches	474		
Global Defaults	474		
Local Defaults 474			
Assigning State Bits	475		
Automatic State-Bit A	ssignme	nt	475
Manual State-Bit Assi	gnment	476	
Choosing State-Bit As	signmen	ts	477
Example Using Manua	al State-	Bit Assig	gnment 479
Using State Bits as Ou	utputs	480	-
Initializing a State Ma	achine	481	
MACH 1xx/2xx Device	es	481	
MACH 3xx/4xx Device	es	481	
Illegal State Recovery	482		
Clocking a State Mach	nine	484	
Example Using State	Bits As (Dutputs,	Start-Up,
and CLKF 485		-	•
Multiple State Machin	nes	486	

Overview

State syntax is supported for backward compatibility with PALASM 4 designs only. AMD recommends that you implement new state machine designs using CASE statements, as described in Chapter 5. The state-machine design file must include a program segment identified with the keyword STATE. This is called the state segment.

Note: It is possible to modify state equations with Boolean equations by including both equation and state segments, in any order.

Syntax	Definition
State	This identifies the state machine
	segment of the PDS file.
Machine-type	This identifies the state-machine
	type as either Moore or Mealy.
Start Up	This defines the state of the
-	machine at power-up.
Global Defaults	This defines the default transitions
	if none of the specified conditions
	for a state are satisfied.
Transition Equations	This section defines the transitions
-	from one state to the next.
Output Equations	This section defines the outputs for
	each possible state.

The state segment consists of the following syntax elements.

Defining Moore and Mealy Machines

Continued	
State Assignments	This optional section defines each
-	state as a unique pattern of state
	bits.
Condition Equations	This section defines the set of
-	inputs that represents each
	condition.

Defining Moore and Mealy Machines

State-machine designs are divided into two basic types: Moore and Mealy.
□ Outputs in a Moore machine are dependent only on the present state.

Outputs in a Mealy machine are dependent on the present state and the present inputs.

You begin the state segment with the keyword STATE on a new line. Then you define the state-machine type using one of the state-machine-type keywords.

MOORE_MACHINE

or

MEALY_MACHINE The default is Mealy.

The default is Mealy

A state-machine design must be either all Moore or all Mealy. The MACHXL software does not allow you to mix types in the same state machine. If even one state uses outputs that are input-dependent, you must convert the entire design to a Mealy machine.

Note: You can add Mealy features to a Moore Machine by writing a Boolean equation segment that further decodes the state machine's inputs and outputs.

Another reason to convert a Moore design to Mealy is to reduce the total number of states in a design. If you are running short of flip-flops in which to store state bits, you may be able to reduce the number of states, and thus the number of state bit flip-flops required, by implementing the design in Mealy form. To reduce the number of states, the application must include cases in which multiple states can be collapsed down to a single state that produces different outputs depending on the inputs.

Do not convert a Mealy design to the Moore model unless Mealy-specific features are deleted. If the Mealy design includes multiple transitions to the same state, each having different outputs, the equivalent Moore design will require additional states. In some cases, a Moore design will not fit on a given device, while the same design implemented in Mealy form will fit.

Creating State-Machine Equations

There are four	types of state-machine equations. They have the				
following funct					
Transition equations	For each state, the equations specify what				
(required)	the next state will be under various				
-	conditions. See Condition Equations below.				
Output Equations	These equations specify the outputs of the				
(optional)	state machine. No output cases are				
-	required when the state bits themselves are				
	the outputs.				
Condition Equations	These equations specify a condition name				
(normally required)	for each set of input values used to				
	determine a transition. You can use input				
	names directly only if a single input				
	controls the transition; otherwise, you must				
	use condition names.				
State-Assignment	These equations specify the bit code to be				
Equations (optional)	assigned to each state name used in the				
	design. If these equations are omitted, the				
	software will assign the bit codes				
	automatically.				
Conditio	n Equations				
You mu	ist replace each set of inputs that controls a transition				
with a	logical name, called a condition.				
The cor	ndition equations, preceded by the keyword				
CONDI	TIONS, must appear either before the keyword				
STATE	or after all state-segment statements. CONDITIONS				
are wri	tten as simple Boolean equations.				
CONDI	TIONS				
Condition 1 = Boolean Expression					
Condition $2 =$ Boolean Expression					
 Conditi	on n = Boolean Expression				
If a condition consists of a single input, you can use the inp					
	nstead of a condition equation.				

If two conditions evaluate true at the same time, the software issues an overlapping condition error message. >> ERROR Overlapping state transition conditions

To remove the overlapping conditions, you must write the equations so that no more than one equation can be evaluated as true at any time.

Transition Equations

You must write at least one transition equation for each state. Within each state's transition equation, you must also write one expression to define each possible transition to a next state.

Use default branches to define the next state if the inputs fail to match any of the transition conditions defined for the present state. Global defaults specify the default procedure for the entire state-machine design. Local defaults specify the default procedure for one state only.

Present_state	:= Condition	n_name -> Next_state
+	Condition_name	-> Next_state
+->	State_name ;(th	is is the default branch)

Output Equations

To specify outputs for a Moore machine, you need to specify only the present state and the desired outputs, since the outputs are not affected by input conditions. The syntax for a Moore machine output equation follows.

State_name.OUTF = Output_expression

To specify outputs for a Mealy machine you must specify the input condition along with the present state. The syntax for Mealy machine output equations is as follows.

State_name.OUTF = Condition_1 ->

Output_expression_1

+ Condition_2 -> Output_expression_2

+-> Output_expression_n ;default output The software allows you to specify the desired output pin values for each state or transition, without regard to the polarity of the device. The output equations are adjusted automatically to produce the requested behavior. If you define the output pins as active low by using complemented pin names in the pin statements, the output pin will have the opposite value of the equation.

State-Machine Example

...

Defining Moore and Mealy Machines

The following example shows a 3-bit up/down counter described in state-machine language. The declaration segment is shown below.

;-------Declaration Segment ------TITLE COUNTER STATE MACHINE ... CHIP _CTR MACH435 ;------- PIN Declarations ------PIN ? CLOCK ;CLOCK PIN ? ENABLE ;ENABLE PIN ? UP_DWN ;INPUT PIN ? CNT0 COMB ;OUTPUT PIN ? CNT1 COMB ;OUTPUT PIN ? CNT2 COMB ;OUTPUT *Continued...*

Defining Moore and Mealy Machines

Cont					
; State Segment STATE MOORE_MACHINE					
ZERO	:= UP -> ONE + DOWN -> SEVEN + STOP -> ZERO				
ONE	:= UP -> TWO + DOWN -> ZERO				
TWO	+ STOP -> ONE := UP -> THREE + DOWN -> ONE				
THREE	+ STOP -> TWO := UP -> FOUR + DOWN -> TWO				
FOUR	+ STOP -> THREE := UP -> FIVE + DOWN -> THREE				
FIVE	+ STOP -> FOUR := UP -> SIX + DOWN -> FOUR				
SIX	+ STOP -> FIVE := UP -> SEVEN + DOWN -> FIVE				
SEVEN	+ DOWN -> SIX				
ONE.OU TWO.OU THREE.C FOUR.O FIVE.OU SIX.OUT	+ STOP -> SEVEN ZERO.OUTF = /CNT2 * /CNT1 * /CNT0 ONE.OUTF = /CNT2 * /CNT1 * CNT0 TWO.OUTF = /CNT2 * CNT1 * CNT0 THREE.OUTF = /CNT2 * CNT1 * CNT0 FOUR.OUTF = CNT2 * /CNT1 * /CNT0 FIVE.OUTF = CNT2 * /CNT1 * CNT0 SIX.OUTF = CNT2 * CNT1 * /CNT0 SEVEN.OUTF = CNT2 * CNT1 * CNT0				
DOWN	TIONS = ENABLE * UP_DWN = ENABLE * /UP_DWN = /ENABLE				

Default Branches

You use default branches to define the next state should the inputs fail to match any of the transition conditions defined for the present state.

The software supports two types of defaults.

□ Global defaults specify the default branch for all states except those for which local defaults are defined.

□ Local defaults specify the default branch for one state only. You can include both local and global defaults in your design. Local defaults will override global defaults.

Global Defaults

Global defaults are defined after the machine-type definition. The global default statement can specify the default branch in one of three ways. The statement below causes the state machine to remain in the same state if the inputs do not match any of the defined transition conditions for that state. DEFAULT_BRANCH HOLD_STATE

The following statement causes the state machine to branch to the specified state if the inputs do not match any of the defined transition conditions for that state. DEFAULT_BRANCH State name

The next statement causes the state machine to branch to the next state if the inputs do not match any of the defined transition conditions for that state. The next state is defined as the state whose transition equation follows the transition equation for the present state in the PDS file. There is no next-state branch possible from the state whose transition equations appear last.

DEFAULT_BRANCH NEXT_STATE

Local Defaults

Unlike global defaults, local defaults always specify a branch to a specific state. Local defaults can be used alone or in combination with global defaults.

In combination with global defaults, local defaults provide a mechanism for defining default branches that differ from the norm.

Used alone, local defaults offer a way to specify each default branch explicitly. Local defaults allow you to see all possible branches from a given state at one glance.

```
Local defaults appear as the last line in a transition equation,
using the special symbol +->, which is formed by typing the
characters +, -, and >.
Present_state := Condition_name -> Next_state
```

+ Condition_name -> Next_state + Condition_name -> Next_state . . . +-> State_name ;default branch

Assigning State Bits

In some applications, you must control the assignment of the statebit code. However, most of the time the state-bit code is not important as long as it allows the device to differentiate between states.

Automatic State-Bit Assignment

You can allow the software to assign state bit-codes to state registers automatically. To do this, simply omit the state assignment equations. When the file is compiled, the software displays the following type of message to the screen and writes it to the log file.

```
|> WARNING E1351 Automatically assigning state bit
_ST0 to ? NODE.
|> WARNING E1351 Automatically assigning state bit
_ST1 to ? NODE.\
|> WARNING E1351 Automatically assigning state bit
_ST2 to ? NODE.
STATE REGISTERS USED
Continued...
```

Defining Moore and Mealy Machines

...Continued

PIN NUMBER	R: PIN NAME:
? NODE_	_ST0
? NODE	_ST1
? NODE	_ST2
	ACCTORNER HODE

STATE NAME:	STATE ST2	REGISTERS ST1	VALUES: ST0
	_512	_511	_510
ZERO	0	0	0
ONE	0	0	1
TWO	0	1	0
THREE	0	1	1
FOUR	1	0	0
FIVE	1	0	1
SIX	1	1	0
SEVEN	1	1	1

The warning message lists the pins to which state bits were assigned and the state-bit code for each state. In the 3-bit counter example, three-state registers are used to allow for 8 possible states. These are defined as nodes and named _ST0, _ST1 and _ST2.

State ZERO is assigned the bit code 0,0,0 which means all the state registers are low. State ONE is assigned bit code 0,0,1. A bit code for each state is listed with the message. The first state defined in the transition equations is the first to be assigned a state code. If there is no start-up statement, the software assigns the first state all zeros when the device specifies power-up reset, and all ones when the device specifies power-up preset.

Manual State-Bit Assignment

You can control state-bit assignment manually using state assignment equations. To do this, you must define a pin or node for each of the state bits. You do this in the declaration segment of the PDS file just as you would define any pin or node. Then, in the STATE segment, you write an equation for each state specifying the value of the state bits in Boolean format. *State_name* = Boolean expression

If you don't need to use the state bits as outputs and the device you are using contains buried flip-flops, you can assign state bits to them. This will save output pins that can be used for other purposes.

Choosing State-Bit Assignments

The state-bit assignments you choose have a large impact on the number of product terms that will be required to implement your design. If you choose assignments so that the state-register bits change by only one bit at a time, as the state machine goes from state to state, the number of product terms will often be reduced.

For example, consider a design consisting of four states, A, B, C and D, where the transition between states is alphabetical. One possible assignment is to use a simple binary count as follows.

State	Bit Assignment	
А	00	
В	01	
С	10	
D	11	

Notice that this assignment causes two bits to change as the machine moves from state B to state C.

Defining Moore and Mealy Machines

The following is a better assignment for product-term reduction.

State	Bit Assignment
Α	00
В	01
С	11
D	10

Notice that this assignment causes only one bit to change as the machine moves from B to C.

If you need to use the state bits as outputs to identify when the machine is in a particular state, you can minimize the number of required outputs by choosing state bits appropriately.

For example, consider a design that has six states, A through F, where you need to identify states C, D and E. The following assignment allows you to identify these states using only one output pin.

State	BIT2	BIT1	BIT0
Α	0	0	0
В	0	0	1
С	1	0	1
D	1	1	1
Е	1	1	0
F	0	1	0

This assignment lets you use BIT2 as an output to identify when the machine is in any of the three states of interest. BIT2 can be assigned to an output pin and BIT1 and BIT0 can be assigned to buried nodes, freeing output pin resources.

Example Using Manual State-Bit Assignment The following example uses state-assignment equations to manually assign the state bits to nodes named BIT0, BIT1 and BIT2.

;----- Declaration Segment ------ TITLE COUNTER STATE MACHINE WITH STATE BIT ASSIGNMENT

CHIP _CTR MACH435

Defining Moore and Mealy Machines

;	PTN T	eclaration
	? CLOCK	
	? ENABI	
PIN	? UP DV	N ; INPUT
PIN	? CNT0	COMB ; OUTPUT
PIN	? CNT1	COMB ; OUTPUT
PIN	? CNT2	COMB ; OUTPUT
NODE	? BITO	REGISTERED ;OUTPUT
NODE	? BIT1	REGISTERED ;OUTPUT
NODE		REGISTERED ;OUTPUT
;	State	Segment
STATE		
	ACHINE	
DEFAULT	LBRANCH ZERO)
ZERO	:= UP -> + DOWN ->	
ONE	= UP ->	
ONE	+ DOWN ->	
TWO	:= UP ->	
100	+ DOWN ->	
THREE		
	+ DOWN ->	TWO
FOUR	:= UP ->	FIVE
	+ DOWN ->	THREE
FIVE	:= UP ->	SIX
	+ DOWN ->	FOUR
SIX	:= UP ->	SEVEN
	+ DOWN ->	
SEVEN	:= UP ->	ZERO
	+ DOWN ->	SIX
	/	
ZERO	,	T2 * /BIT1 * /BIT0
ONE		T2 * /BIT1 * BIT0 T2 * BIT1 * /BIT0
TWO	,	T2 * BIT1 * BIT0
		T2 * /BIT1 * /BIT0
		12 / DIII / DIIV
Conti	nued	

Continued						
FIVE	=	BIT2	*	/BIT1	*	BIT0
SIX	=	BIT2	*	BIT1	*	/BIT0
SEVEN	=	BIT2	*	BIT1	*	BIT0
ZERO.OUTF	=	/CNT2	*	/CNT1	*	/CNT0
ONE.OUTF	=	/CNT2	*	/CNT1	*	CNT0
TWO.OUTF	=	/CNT2	*	CNT1	*	/CNT0
THREE.OUTF	=	/CNT2	*	CNT1	*	CNT0
FOUR.OUTF	=	CNT2	*	/CNT1	*	/CNT0
FIVE.OUTF	=	CNT2	*	/CNT1	*	CNT0
SIX.OUTF	=	CNT2	*	CNT1	*	/CNT0
SEVEN.OUTF	=	CNT2	*	CNT1	*	CNT0
CONDITIONS						
UP = ENABLE * UP_DWN						
DOWN = ENABLE * /UP_DWN						

Using State Bits as Outputs

Combining the state and output functions allows you to use less resources than if you use separate state bits and output bits. This can sometimes allow you to implement a design in a device that could not otherwise accommodate it.

Due to practical considerations, you can occasionally create a state-machine design where all of the outputs are also used as state bits. To do this, your design must meet three conditions.

□ All state bits must be stored in flip-flops that are associated with output or I/O pins.

□ The desired output in each state must be different from the desired output in every other state.

□ The outputs in the design that combine state bits and outputs cannot be combinatorial, since the state bits must be registered.

To use state bits as outputs, you write state-assignment equations. Make sure the state bits are assigned to registered pins in the declaration segment of the PDS file. Then you simply omit the output equations from the design.

Initializing a State Machine

You use initialization routines to ensure the state machine powers up in a known state or branches to a known state whenever the initialization condition occurs.

MACH 1xx/2xx Devices

The START_UP command allows you to specify the starting state for devices that always power up with all bits high or

all bits low, or that can be programmed to power up in any configuration.

The following is the syntax for Moore and Mealy machines: START_UP := POWER_UP -> State_name The following is the syntax for Mealy machine output initialization:

START_UP.OUTF := POWER_UP -> *Outputs* The power-up parameter has the following effects.

□ In devices that initialize with all flip-flops high or all flip-flops low, the START_UP command assigns the appropriate all-high or all-low state-bit code to the specified state.

□ In devices with programmable power up, the START_UP command programs the device to power up in the specified state. If you specify a particular state-bit code using the manual state-bit assignment syntax, the software programs the flip-flops to initialize with the specified values. If you do not include a start-up statement, the device will power up in the state that appears in the first transition equation in the PDS file.

MACH 3xx/4xx Devices

The START_UP and POWER_UP keywords (described in the previous section) are not supported for the MACH 3xx/4xx devices.

In certain modes of operation, the MACH 3xx/4xx devices pose challenges to the designer who wants to initialize a state machine to a known state of state registers, output pins, or both. These challenges arise from the following causes:

□ Unpredictable power-up state for individual registers

□ The possibility, related to the problem of unpredictable power-up, that the state machine can power up in an undefined state

If the **22V10/MACH1XX/2XX S/R Compatibility?** option in the MACH Fitting Options form is set to "Y," the Fitter is free to swap Set and Reset lines for macrocells to which active-low equations are mapped. In addition, the Fitter is free to swap Set and Reset lines in order to get a successful fit, even if there is no active-low equation. Power-up initialization is done by asserting the Reset line upon orderly power-up. If the Set and Reset lines were swapped for some macrocells,

those macrocells will power up in a high state instead of the expected low state.

It is possible, but tedious, to refer to the Block Partitioning Summary of the Fitter Report (see Chapter 9 for details on the Fitter Report) to determine if the Fitter swapped the Set and Reset lines for any of the macrocells in which you have an interest. If swapping has occurred, you can rewrite the design so that all relevant equations are written with the same polarity (if all are active high, the state machine will power up all zeroes; if all are active low, the state machine will power up all ones).

Sometimes it is simpler to accept the possibility that the state machine may start up in a undefined state, and use an illegal state recovery scheme to drive the machine to a known state, as described in the next section.

Illegal State Recovery

An illegal, or undefined, state condition occurs whenever the state machine's state bits assume a state for which no transition equation exists. If the power-up state is unknown, the state machine can start up in an unknown state from which no transition conditions are defined. Unless your design uses all possible state-bit combinations, it is possible that the device will power up in an unknown state. In this case, you must provide additional Boolean logic to force the state machine to a known starting state if for any reason it reaches an unknown state. If the number of possible states is only slightly greater than the number of defined states, the easiest way to do this is simply to define the remaining possible states and write, for each one, an equation specifying an unconditional transition to the desired starting state. If the number of undefined states is large, the following remedy may be easier than writing a large number of state definition and state transition equations:

Write a simple Boolean equation in the EQUATIONS segment of the PDS file to detect an illegal state condition and force the state machine into a known state. You must write one equation for each state bit. The general form of the equation is:

Desired_state-bit_value = /(ORed list_of_all_valid_state-bit_patterns) Consider the case of a state machine with two states: STATE1 = /BIT1 * /BIT2

STATE2 = /BIT1 * BIT2

SIAIE - / DIII DII

There are two possible conditions under which the state machine will be in an illegal state:

Illegal State Recovery

BIT1 * /BIT2 BIT1 * BIT2 To write a set of equations that force the state machine to STATE1 whenever an illegal state condition occurs, write two equations, one for /BIT1 (BIT1 = 0 in STATE1) and /BIT2 (BIT2 = 0 in STATE1): /BIT1 = /((/BIT1 * /BIT2) + (/BIT1 * BIT2)) /BIT2 = /((/BIT1 * /BIT2) + (/BIT1 * BIT2)) For the sake of simplicity, and in large designs, it helps to define a STRING statement for each state's state-bit pattern, and use these in the illegal state recovery equations. The following code fragment shows how this is done.

```
STRING STATE_1 '(/BIT1 * /BIT2)'

STRING STATE_2 '(/BIT1 * BIT2)'

...

EQUATIONS

/BIT1 = /(STATE_1 + STATE_2)

/BIT2 = /(STATE_1 + STATE_2)

...

STATE

...
```


Caution: You must add logic to control or suppress unwanted outputs until the state machine enters a known state.

Note: You cannot use the automatic state bit assignment feature if you want to implement illegal state recovery, because you must reference the state bits by name in the EQUATIONS segment of the design file, and thus must define them explicitly in the STATE segment.

Clocking a State Machine

The clock input to the state registers is normally connected to the default clock. For devices with multiple clock sources or clocks formed by product terms, there are two ways to use a clock other than the default.

The clock source equation is placed in the state segment of a PDS file and is used to specify a clock signal for all flip-flops in the state machine.

The following is syntax for clock source equations. CLKF = Clock Signal

The .CLKF function equation is placed in the equation segment of the PDS file. To use this method, you must declare the state registers, manually assign the state bits, and write a .CLKF equation for each register in the state machine.

Example Using State Bits As Outputs Start-Up, and CLKF

The following example modifies the 3-bit counter design to add a power-up routine, use the state bits as outputs, and specify a clock signal other than the default.

Illegal State Recovery

Notice that the state bits have been defined as pins instead of nodes and the output equations have been removed.

ZERO	:= UP	->	ONE
	+ DOWN	->	SEVEN
ONE	:= UP	->	TWO
	+ DOWN	->	ZERO
TWO	:= UP	->	THREE
	+ DOWN	->	ONE
THREE	:= UP	->	FOUR
	+ DOWN	->	TWO

Continued...

...Continued

FOUR	:= UP -> + DOWN ->				
FIVE	:= UP ->				
	+ DOWN ->	FOUR			
SIX	:= UP ->	SEVEN			
	+ DOWN ->	FIVE			
SEVEN	:= UP ->	ZERO			
	+ DOWN ->	SIX			
ZERO :	= /BIT2 *	/BIT1	*	/BIT0	
ONE :	= /BIT2 *	/BIT1	*	BIT0	
TWO :	= /BIT2 *	BIT1	*	/BIT0	
THREE :	= /BIT2 *	BIT1	*	BIT0	
FOUR :	= BIT2 *	/BIT1	*	/BIT0	
FIVE :	= BIT2 *	/BIT1	*	BIT0	
SIX :	= BIT2 *	BIT1	*	/BIT0	
SEVEN :	= BIT2 *	BIT1	*	BIT0	
CONDITIONS					
UP = ENABLE * UP_DWN					
DOWN = ENABLE * /UP_DWN					

Multiple State Machines

The MACHXL state machine language extensions do not support multiple state machines. Refer to "Building State Machines with CASE Statements" in Chapter 5.

Glossary

ACTIVE EDGE initiates an action. A low-to-high or high-to-low signal transition that

ACTIVE HIGH One of the two possible polarity attributes for input, output, and I/O pins. An active-high output is high when the corresponding Boolean equation is true. An output pin is active high when the polarity of the pin's logic equation agrees with the polarity of the pin's PIN declaration statement.

ACTIVE LOW An active-low output is high when the corresponding Boolean equation is false. An output pin is active low when the polarity of the pin's logic equation is opposite to the polarity of the pin's PIN declaration statement.

ASSEMBLY The procedure of creating a JEDEC file to implement a design (specified in a PDS file) on the target device. A keyword used in a GROUP statement to list all ASYNC_LIST signals that are to be configured as asynchronous macrocells. ASYNCHRONOUS REGISTER On devices that support the asynchronous mode, each macrocell register can be configured by the Fitter as synchronous or asynchronous, depending on several factors. The principal factor is the register's clock input: if a) the clock definition includes more than one literal or b) specifies any input other than a global clock pin, the register is *always* asynchronous. A register that uses a single-literal clock definition may nevertheless be implemented as asynchronous by the Fitter, if a) the clock pin specified in the design is not a global clock pin, or b) the clock pin is floated but the number of single-literal clocks in the de sign exceeds the number of available global clock pins. (Refer to SYNCHRONOUS REGISTER for comparison.)

AUXILIARY SIMULATION FILE A file, separate from the design file, that contains simulation commands used to simulate the design. This file must have the same name as the design file, with the extension .SIM. (Refer to SIMULATION SEGMENT for comparison.)

BACK ANNOTATION The MACHXL software allows designers to assign logical names and behavior to signals without assigning those signals to specific locations in the target device. Back annotation is a software function

that copies to the appropriate PIN or NODE statement in the original design file the actual pin or node location assigned by the Fitter to the corresponding signal.

BANKA collection of pins or nodes within a PAL block.BLOCKRefer to PAL BLOCK.

BLOCK CLOCK MECHANISM Each MACH 3xx/4xx PAL block has its own clock generator that can provide up to four different clock signals to the block. The process whereby up to four global clock signals are made available to all macrocells in the block is commonly referred to througout this user's guide as "the block clock mechanism.

BLOCK FANIN The collection of pins or nodes that is routed to a PAL block through the central switch matrix.

BLOCK FANOUT The collection of blocks to which a pin or node is routed through the central switch matrix.

BLOCK PARTITIONING Refer to PARTITIONING.

BLOCK-RESTRICTED A pin or node is block-restricted if it appears in the list of a GROUP MACH_SEG_x statement. A block-restricted pin or node can be placed only in the user-specified PAL block.

BOOLEAN POST-PROCESSOR A MACHXL program that runs after the Parser and again after the STATE Syntax Expander (if needed). The Boolean Post-Processor substitutes logical names for vectors and groups, converts CASE and IF-THEN-ELSE statements into Boolean equations, and merges multiple equations written for the same signal.

BURIED MACROCELL A macrocell the output of which is not routed to an I/O pin. Buried macrocells are useful for implementing internal logic, and are commonly used to store state bits.

CASE A construct used to express logical operations in natural language, as an alternative to writing out the equivalent Boolean equations. The preferred way to express state machine designs.

CENTRAL SWITCH MATRIX PAL blocks in a MACH device communicate with each other through the central switch matrix. Feedback signals from a PAL block that only go to the same PAL block must still pass through the central switch matrix. The inputs to the central switch matrix are called *array* or *switch-matrix-to-block* inputs.

CHECK COMMAND A simulation command that compares the pin's simulated value against a user-defined expected value.

CHECKQ COMMAND A simulation command that compares the simulated value of a register's Q output against a user-defined expected value.

CLKF Defines the rising-edge clock used to synchronize a state machine defined in the STATE segment.

CLOCKF COMMAND A simulation command that generates a pulse on a global clock pin during simulation.

CLUSTER The group of product terms that is physically aligned with a MACH macrocell. The product term cluster can be steered to an adjacent macrocell to increase that macrocell's capacity to implement large equations. In MACH 3xx/4xx devices, the XOR product term can be separated from the cluster and used by the original macrocell to implement a single product term equation, while the remaining product terms in the cluster are steered to an adjacent macrocell. In addition, in asynchrnous mode, two product terms are used for Set and Reset and are consequently unavailable for logic equations.

COMBINATORIAL EQUATIONSEquations that combine signals forimmediate output instead of storing the resulting value in a register or latch.CONDITIONa) The set of signals that is evaluated to

determine a state machine's next state and/or its outputs. b) A STATE syntax keyword that precedes the equations used to define conditions. c) Any set of signals that is evaluated before performing some action.

CONDITION EQUATIONS The equations that define conditions in a design that uses STATE syntax.

CONDITIONAL BRANCH A state branch that can only occur in the presence of certain input conditions.

CONTROLLABILITY The degree to which signals in a part of a circuit can be made to take on specific values through manipulation of primary inputs; used in testability analysis.

CRITICAL PATH EVALUATION The identification and analysis of signal paths, the delays of which could limit the speed of the circuit. CURRENT DESIGN FILE The design file that you specified to work on, using the **Begin new design** or **Retrieve existing design** commands.

DECLARATION SEGMENT The portion of the design file in which the designer provides design identification, specifies the target device, declares pins and nodes, defines string substitutions, and defines groups of signals. DEDICATED CLOCK PIN Refer to GLOBAL CLOCK PIN.

DEDICATED INPUT PIN A pin that can be used only as a signal input to the device's sum-of-products logic array(s).

DEFAULT BRANCH The state branch that occurs when the inputs do not match any of the transition conditions specified for the present state. DEFAULT VALUE The value used unless you specify a different one. DESIGN FILE A text file that contains the designer's instructions for producing specific behavior in the target device. The MACHXL software processes the design file to create a JEDEC file that is used to program the target device. The design file's name takes the general form *Design_name*.PDS.

DISASSEMBLE The process of producing Boolean equations equivalent to the original design file from a) the intermediate file or b) the JEDEC file.

DO LOOPA set of instructions that is performed repeatedlyuntil some condition occurs.(See also IF-THEN-ELSE and WHILE-DO.)EDITORThe program used to create and modify designfiles and other text files.

EQUATIONS SEGMENT The portion of the design file in which the designer defines the behavior of pins and nodes declared in the DECLARATION segment using Boolean equations and/or CASE and IF-THEN-ELSE statements.

EXPAND	Refer to STATE SYNTAX EXPANDER.
FIELDS	Areas in the MACHXL menu forms where you
enter data.	·

FITTER The compilation module that automatically manages the internal arrangement of resources. The Fitter software automatically distributes product terms to the macrocells and adjusts the distribution as required by the design.

FLIP-FLOP A clocked memory device that stores a binary value. The flip-flop's stored value is a function of the input value(s) present when the clock pulse occurs.

FLOAT verb To declare a pin or node without specifying a location, by typing a question mark (?) instead of entering a pin or node number in the PIN or NODE statement. Floating pins and nodes allows the Fitter maximum flexibility to find a successful fit, and is the best fitting strategy in most cases.

FOR-TO-DO LOOP COMMAND A simulation construct that repeats a set of commands a fixed number of times.

FUNCTIONAL EQUATION A special equation used in the EQUATIONS segment to define clock, set, reset, or output-enable behavior.

GATE SPLITTING The process of dividing equations that are too large to fit in the number of product terms available (through product-term steering) to a single macrocell. Also, the process of dividing equations that exceed the user-defined threshold value into subsidiary equations as specified by the maximum number of allowable product terms per equation.

Glossary

These subsidiary equations use smaller groups of product terms, the results of which are routed, as feedback signals, to a single macrocell. Gate-splitting buys equation size at the expense of speed, since each pass through the sumof-products array entails an additional propagation delay (or clock cycle). GLOBAL CLOCK PIN A pin that can be used to clock synchronous registers. Some MACH devices contain multiple global pins. In some devices, inputs to the global pins can be routed, in the same design, to the clock inputs of synchronous registers as well as to the sum-or-products array(s). Refer to the device data sheet for details.

GLOBAL NODE A logical node, which may do es not correspond to an architectural feature, for which functional equations can be written. In the MACH 3xx/4xx family of devices, the global node can be used to control the set and reset behavior of synchronous registers. If no functional equations are written for the global node, the behavior of the synchronous registers is controlled by either a) the functional equations written for one or more of the synchronous registers in each PAL block or b) the default behavior of the device.

GND a) The reserved word used in MACHXL designs to denote an unconditionally false condition. b) A permissible logical name for the Ground pin(s) of a MACH device.

GROUP A logical name assigned to any number of pins or nodes. Any time the group name appears on the left side of an equation, the MACHXL software performs the operation described in the equation on all pins or nodes in the group. (Refer also to MACH_SEG_x.)

GRP FILE The partitioner creates the file *Design*.GRP, which contains as many GROUP MACH_SEG_x statements as are required to define the partitioning used to fit the design *Design*.PDS.

HISTORY FILE An output file generated by the Simulator that shows the values of every declared pin and node at each stage of the userdefined simulation sequence. The history file is stored under the name *Design_name*.HST.

HST FILE Refer to HISTORY FILE.

IF-THEN-ELSE COMMAND A conditional branching construct used in the SIMULATION segment to control the simulation sequence.

IF-THEN-ELSE STATEMENT A construct used to express logical operations in natural language, as an alternative to writing out the equivalent Boolean equations.

INITIALIZE The process of establishing an initial condition or starting state. For example, setting logic elements in a digital circuit, or the contents of a storage location, to known states so that subsequent application of digital test patterns drive the logic elements to another known state. Initialization sets counters, switches, and addresses to zero or other starting values at the beginning of, or at prescribed points in, a computer or state machine routine.

INPUT-PAIRED A pin and node that are associated to produce a dedicated, registered input. Input-paired pins and nodes are *always* defined by using the PAIR keyword in the PIN statement of the paired pin. (Refer to OUTPUT-PAIRED for comparison.)

INPUT SWITCH MATRIX MACH 3xx/4xx devices have input switch matrices through which I/O pins, logic macrocells, and input macrocells are routed to different feedback paths. These feedback paths are equivalent to inputs to the central switch matrix. Each I/O pin of a MACH 3xx/4xx device has one input switch matrix, consisting of three two-to-one muxes, where a) the pin is an input to each of the muxes and b) two logic macrocells and an input macrocell comprise the remainder of the mux inputs.

INTERMEDIATE FILE A file created or modified by programs invoked by the **Compile** command, prior to assembling the JEDEC file.

INVERTER An architectural feature that reverses the logical state of a signal.

JDC FILE A file that contains JEDEC fuse data and JEDEC test vectors. The JDC file is generated by the Simulator.

JDM FILE A file that contains JEDEC fuse data and the recalculated JEDEC checksum. The JDM file is generated by the **Recalculate JEDEC Checksum** command.

JED FILE A file that contains JEDEC fuse data. The JED file is generated by the Fitter.

JEDEC An acronym for Joint Electrical Device Engineering Council.

JEDEC FILE Contains the fuse-programming information used by the device programmer to program a device.

KEYWORD An instruction that tells the MACHXL software how to interpret the information that follows the keyword.

LATCHED EQUATION A logic equation that defines the behav ior of a pin or node declared as LATCHED in the corresponding PIN or NODE statement.

LOCAL DEFAULT Used in the STATE segment only. A default branch that applies only to the state in which it is defined.

LOG FILE A file containing all processes and messages generated during a software processing session.

LOGIC EQUATION Defines the output of one sum-of-products as a function of external inputs and/or internal feedback signals. A logic equation is always associated with a pin or a node. The actual behavior of the pin or node is a function of a) the output of the sum-of-products and b) the functional equations expressed or implied for the same pin or node. LOGIC MINIMIZER A MACHXL program that performs logic reduction on the intermediate file.

LOW_POWER_LISTA keyword used in a GROUP statement to list allI/Os used in the design that are to be configured in the power-down mode.MACH_SEG_xA keyword used in a GROUP statement topartition all signals specified in the GROUP statement into a single PALblock. The x represents the PAL block into which the signals will bepartitioned (replace x with A, B, C, ..., etc., the specify the desired PALblock).

MACHXL A menu-driven program that controls design entry and compilation for MACH3xx/4xx devices. The MACHXL software provides backward compatibility with designs developed using PALASM 4 software.

MACROCELL An architectural feature of MACH devices that controls signal routing through or around its internal flip-flop, inverters, and feedback lines using fuse-programmable muxes (refer to the device data sheet for information on the macrocells of specific devices).

MEALY STATE MACHINE A state machine in which the outputs are dependent on a) the present state and b) other inputs or feedback signals. MOORE STATE MACHINE A state machine in which the outputs are dependent on the present state only.

MUX Abbreviation for "multiplexer." In MACH devices, the mux selects one signal from a set of two or more available signals. The *selected* signal continues through the mux, while the *deselected* signals terminate at the mux.

NCLKF Defines the falling-edge clock used to synchronize a state machine defined in the STATE segment.

NEXT STATE The state to which a state machine will branch on the next clock pulse, depending on the inputs present when the clock pulse occurs.

NOMINAL DELAY The mean time signals take to propagate through a logic element or wire. The effect of an input change to an element on the output does not occur until after the nominal delay. OPTION LIST A list that appears when you press the F2 key in an option field of a software form. You select an option from the list or change the specification in the selected field.

OUTPUT ENABLE EQUATION A functional equation (in the form *Pin_name*.TRST) that enables output from the pin when true and disables output from the pin when false.

OUTPUT-PAIRED A pin and node that are associated to produce registered output at an I/O pin. Output-paired pins and nodes are defined in one of two ways: a) explicitly, by using the PAIR keyword in the NODE statement of the paired node, or b) implicitly, by declaring a pin as REGISTERED and allowing the MACHXL software to pair it with a macrocell register. After disassembly, all output pairs become explicit regardless of how they were implemented in the original design file. (Refer to INPUT-PAIRED for comparison.)

OUTPUT SWITCH MATRIX MACH4xx devices have an output switch matrix through which logic macrocells are routed to I/O cells. The output switch matrix can route a logic macrocell to at most one pin, but can choose from among several pins.

PAIR Refer to INPUT-PAIRED and OUTPUT-PAIRED. PAL BLOCK A collection of PAL-like structures that function as independent PAL devices on a single chip. The PAL blocks communicate with each other through the central switch matrix.

PALASM 4 A menu-driven program that controls design entry and compilation for PAL and MACH 1xx/2xx devices. The MACHXL software provides backward compatibility with designs developed using PALASM 4 software.

PARSER The MACHXL compilation program that checks the syntax of the design file and creates the intermediate file that is processed by subsequent compilation programs.

PARTITION a) An individual PAL block, or the set of signals placed therein. b) *verb* To place signals into specific PAL blocks. (This is usually done automatically by the Fitter, but can be done manually. Refer to MACH_SEG_*x*.)

PDS FILE Refer to DESIGN FILE.

PIN a) A keyword used to declare a pin's logical name, placement (or float status), storage type, and other attributes. b) A physical I/O pin to which a logical name can be assigned and for which behavior can be defined in the design file.

PL2 FILE A design file disassembled from an intermediate or a JEDEC file.

PLA FILE The intermediate file created by the Logic Minimizer and processed by the Fitter. PLACEMENT The process of associating signals with specific pins and nodes. PLC FILE A file, generated by the Fitter following a successful fit, that contains the placement information for each signal used in the design. PRD FILE A file, generated by the Ditter following a successful fit, that contains the placement/routing information for the design. PRELOAD A simulation command that sets a register's Q output to the specified value (0 or 1). PRESENT STATE The current state of a state machine. A hardware feature that forces the flip-flop's Q PRESET register high regardless of the sum-of-products logic present at the flip-flop's D (or T) input. (Also called "Set.") PRIMARY EQUATION Refer to LOGIC EQUATION. PRODUCT TERM A set of signals that is ANDed to produce a resulting value. PRODUCT-TERM STEERING An architectural feature of MACH devices that allows the Fitter to fit, without gate-splitting, an equation of up to 20 product terms on a single macrocell, by "borrowing" the product terms of adjacent macrocells. PROGRAMMABLE POLARITY The ability to provide as output either a) the sum-of-products result of a logic equation or b) the complement of the sum-of-products result, depending on the polarity of the equation as expressed in the design file. (Refer to ACTIVE HIGH and ACTIVE LOW for additional details.) PROGRAMMED FUSE Equivalent to a "1" in the JEDEC file. Sometimes referred to as a "blown" fuse. (Refer to UNPROGRAMMED FUSE for comparison.) **Q OUTPUT** The true output of a flip-flop. /Q OUTPUT The complement output of a flip-flop. The number system according to which a number RADIX is to be interpreted. Radices supported by MACHXL software are binary, octal, decimal, and hexadecimal (base 2, 8, 10, and 16, respectively). RANGE A vector consisting of a set of pins or nodes that have the same root name but are differentiated by their subscripts. Uses the general form *Root_name*[x..y], where x and y are positive integers.

REGISTER a) A bank of flip-flops sharing the same clock signal. b) An individual flip-flop. c) *verb* To synchronize signals by allowing values to change only in response to a common clock signal.

REGISTERED EQUATION A logic equation the result of which is stored in a register.

RESERVED WORD A word used by the MACHXL software to identify design segments and information, device names, commands, functions, and pin defaults. Some reserved words are keywords that identify the block of information that follows the keyword. Keywords and operators are listed at the beginning of Chapter 5, "Language Reference."

RESET A hardware feature that forces the flip-flop's Q register low regardless of the sum-of-products logic present at the flip-flop's D (or T) input.

ROUTING The process of finding paths between placed pins and nodes for input, output, feedback, clock, set, and reset signals.

RPT FILE The file containing the Fitting report.

RUN-TIME LOG A file (*Design_name*.LOG) that contains the messages generated by the compilation programs.

SET A hardware feature that forces the flip-flop's Q register high regardless of the sum-of-products logic present at the flip-flop's D (or T) input. (Also called "Preset.")

SETF COMMAND A simulation command that loads specified inputs with specified values.

SIMULATION PROGRAM Checks the functionality of a compiled design. SIMULATION SEGMENT The portion of a design file that contains simulation commands. (Refer to AUXILIARY SIMULATION FILE for comparison.)

STATE ASSIGNMENT An equation that defines a state as a unique combination of register values.

STATE BIT ASSIGNMENT Refer to STATE ASSIGNMENT.

STATE BRANCH The transition of a state machine from one state to another.

STATE DIAGRAM A graphical representation of state machines in which individual states appear as ovals (sometimes called "bubbles") and branches appear as arrows connecting two ovals.

STATE EQUATION An equation in the STATE segment that defines branches from the present state.

STATE MACHINE DESIGN A design file that includes either a) one or more state machines implemented using CASE and IF-THEN-ELSE

Glossary

statements, or b) a single state machine implemented using the STATE syntax.

STATE OUTPUT EQUATION An equation in the STATE segment that defines the state machine's outputs for a given state.

STATE SEGMENT An optional segment in the design file that contains all STATE syntax.

STATE SYNTAX An alternate method of specifying state machine designs (the preferred method is to use CASE and IF-THEN-ELSE statements). STATE syntax is supported in MACHXL software for compatibility with existing PALASM designs.

STATE SYNTAX EXPANDER The program that converts STATE syntax (if any) into Boolean equations.

STRING a) A keyword used to assign a logical name to a character string that will be substituted, wherever the logical name appears, by the Parser. b) The character string thus defined.

SUM-OF-PRODUCTS An OR gate that sums the values of one or more product terms.

SYNC_LIST A keyword used in a GROUP statement to list all signals that are to be configured as synchronous macrocells.

SYNCHRONOUS REGISTER Each macrocell register can be configured by the Fitter as synchronous or asynchronous, depending on several factors. A register that a) uses a single-literal clock that is placed at a global clock pin, and b) shares the Set and Reset lines common to all synchronous registers in its PAL block, is synchronous. (Refer to ASYNCHRONOUS REGISTER for comparison.)

TAL FILEThe file containing the Timing Analysis report.TARGET DEVICEa) The device specified in the CHIP statement of aPDS design file.b) More generally, the device on which a design is to be

implemented.

THREE-STATE BUFFER An output buffer that enables or disables the output signal path. When applied to an I/O pin, the three-state buffer can be used to disable output to a pin temporarily so the pin can be used as an input. The three-state buffer is controlled by the OUTPUT ENABLE EQUATION, if any, associated with the pin. If no output enable equation exists, the buffer assumes a default state as follows: always enabled if an output equation is associated with the pin, always disabled if no output equation is associated with the pin.

TNC FILE Contains a conversion table listing the original version of each signal name that was truncated during compilation and/or simulation. The TNC file is used, during back-annotation, to generate pin

placements for the original signal names rather than overwriting the original names with the truncated names.

TOGGLETo reverse logical state in response to a clockpulse.

TRACE A tool that allows you to view simulation results for a specified group of signals rather than for all signals declared in the design file.

TRACE FILEA subset of the history file that shows results for
only those signals specified in the TRACE_ON statement.

TRANSITION A state machine's process of changing from one state to another.

TRE FILE The intermediate file create by the Parser and modified by the Boolean Post-Processor, STATE Syntax Expander, and Logic Minimizer.

TRF FILECreated by the Simulator the design includes aTRACE_ON statement.The TRV file contains simulation information foreach signal listed in the TRACE_ON statement.

TRV FILE Created by the Simulator if vector signals are included in the TRACE_ON statement. The TRV file contains vector values expressed as hexadecimal values rather than as individual signal states. UNCONDITIONAL BRANCH A state branch that occurs whenever a state machine enters a certain state, regardless of the input conditions.

UNPROGRAMMED FUSE Equivalent to a "0" in the JEDEC file. Sometimes referred to as an "intact" fuse. (Refer to PROGRAMMED FUSE for comparison.)

UTILIZATION The percentage of the device's resources occupied by a design for which a successful fit was found.

VCC a) The reserved word used in MACHXL designs to denote an unconditionally true condition. b) A permissible logical name for the VCC pin(s) of a MACH device.

VECTOR A set of signals in which the order of signals is always constant. A vector can consist of a range, a comma-delimited list of signals, or a comma-delimited list of signals and ranges.

WHILE-DO LOOP A simulation construct that repeats a set of commands while the specified condition remains true.

Glossary

C Creating a LIM File

Contents

Overview359LIM File Conventions360Syntax360BLOCK Statement360Parameters362

Overview

The MACHXL partitioning limits (LIM) control file specifies the maximum number of macrocells and logic array inputs (signals to route to a block) available to a design. If a limit less than the maximum available is set, the partitioner places only the specified number of signals per block, and leaves the remaining logic array inputs or macrocells available as reserves for future design additions. Limiting the number of logic array inputs will also increase the number of routing resources available to the limited array inputs, therefore increasing the routing chances for all the signals. Refer to the "Using Place and Route Data to Limit Placements" section in Chapter 9, "Report Files," for tips on using the Place and Route Data (PRD) file to determine if a LIM file can improve fitting performance in your design.

LIM File Conventions

If no LIM file exists, the Partitioner fills blocks with array inputs (fanin), product term-driven signals, clusters, and I/O pins, to the physical limits of the device. If a LIM file exists, the Partitioner limits fanin, signals, cluster, and I/O pins on a block-by-block basis as specified in the LIM file. For a design file *Design*.PDS, the LIM file must have the name *Design*.LIM and reside in the same directory as the design file in order to be recognized by the Partitioner. When a LIM file exists, the Partitioning section of the log file contains the following message: Using Partitioning Control File *Design*.LIM.

The LIM file contains one or more block limit specifications, each of which takes the following general form: BLOCK *Block letter or range of letters* MAX_FANIN *Value* MAX_SIGNAL *Value* MAX_CLUSTER *Value* MAX_IO_PIN *Value*

> Note

Note: Comments are not permitted. Blank lines are ignored.

Syntax

The LIM file must be an ASCII text file containing only alphanumeric characters. The LIM file is not case-sensitive (that is, "BLOCK," "Block," and "block" are equivalent).

BLOCK Statement

The set of parameters for each block or group of blocks must begin with the BLOCK statement. The BLOCK statement consists of a line containing the BLOCK keyword followed by the letter designations of one or more blocks. Subsequent lines contain the parameter settings to be applied to the specified block or blocks. *Example (Limits applied to Block A only)*

BLOCK A	
MAX_FANIN	30
MAX_SIGNAL	15
MAX_CLUSTER	15
MAX_IO_PIN	8

Ranges of letter designations (ascending or descending) are allowed in the BLOCK statement. A range is defined by a letter designator followed by two or more periods and another letter designator. *Example (Limits applied to Blocks C, B, and A)*

Syntax

30
15
15
8

BLOCK commands can include both individual block letter designations and ranges. *Example (Limits applied to Block A and Blocks F, G, and H)* BLOCK A F..H MAX_FANIN 30 MAX_SIGNAL 15 MAX_CLUSTER 15 MAX_IO_PIN 8

Note: If the LIM file contains multiple sets of parameters for the same block or group of blocks, the last set of parameters is used. No warning is generated.

Syntax

Parameters

Each of the four valid parameters has an acceptable range of values (device specific).

Note: If no value is given or if invalid values are given, the Partitioner uses the physical limit of the device. No warning is generated. If multiple parameters of the same type are given for the same block or group of blocks, the last value is used. No warning is generated.

The acceptable range of values for each parameter is given in the following table.

Parameter	Acceptable	
	Values	
MAX_FANIN	0-33 ⁴⁵	
MAX_SIGNAL	0-16	
MAX_CLUSTER	0-16	
MAX_IO_PIN	0-8	

D Reporting MACHXL Problems

As much as we try to test fully test our software, we cannot rule out the possibility that you might experience a problem with either design implementation or with the software itself. If you have a problem, please follow the guidelines below.

If you are having an installation problem, please contact AMD Applications and Hot Line Support at the number below.

AMD Applications and Hot Line Support

U.S. (toll-free) 800-222-9323 U.K. 44-(0)256-811101 FAX: 44-(0)256-843963 Germany (toll-free) 0130-813875 France (toll-free) 0590-8621 Italy (toll-free) 1678-77224

If you are having trouble implementing your design in MACHXL syntax, please contact AMD Applications and Hot Line Support at the number listed above, or contact your local AMD sales office Field Applications Engineer.

For more complex design problems, please help our MACH Applications group help you by completing the MACHXL Software Problem Report file (FORM.SPR) found in the MACHXL root directory. After filling out your name and address:

- **D** Document all options used for the design file, including:
- ♦ Logic Synthesis Options
- Compilation Options
- Fitting Options
- **Tell us what version of MACHXL software you are using.**

D Record the name of your design file and the nature of your problem.

G Whether or not the design fitted successfully, "ZIP" the entire design directory and

• Send it with the completed FORM.SPR problem report file to your local AMD Field Application Engineer, or

• Upload the "ZIP" file to the AMD U.S. Corporate Applications Bulletin Board. (Your AMD FAE can help you upload the "ZIP" file.) *Please contact us (FAX: 408-774-8461, or email: machsup@mach1.amd.com) and let us know you are uploading a file.*

Or

Mail your "ZIP" file to

Advanced Micro Devices Attn: MACH Applications, M/S 1028 1160 Kern Sunnyvale, CA 94086-3453 Tel: 800-538-8450 or 408-732-2400 FAX: 408-774-8461

However, if you have encountered an "internal" or "unknown" error

message or suspect you've encountered a "bug," we'd like your help in resolving it.

In addition to filling out the software problem report with the information listed above, also indicate:

- □ In what module the error occurred
- □ What brand of PC and version of DOS you're using
- **D** The name of the design that failed

□ What message was displayed. For example: "Error message 'X#### xxxxx '"

Send the completed problem report to AMD U.S. Corporate Applications Bulletin Board Please contact us (FAX: 408-774-8461, or email: machsup@mach1.amd.com) and let us know you are uploading a file. Or:

Advanced Micro Devices Attn: MACH Applications, M/S 1028 1160 Kern Sunnyvale, CA 94086-3453 Tel: 800-538-8450 or 408-732-2400 FAX: 408-774-8461

Index

#b, 129, 219 #d, 129, 219 #h, 129, 219 #o, 129, 219 %, 129 '', 129 (), 130 *, 130 *=, 130 +, 130+->, 130 ,, 129 ->, 130 .., 130 .CLKF, 140, 210 .J, 154 .K, 155 .OUTF, 164 .R. 170 .RSTF, 172, 214 .S, 173 .SETF, 174, 214 .T, 183 .TRST, 187, 209 /, 130 /Q OUTPUT, 499 :, 130 :+:, 130 :=, 130 ;, 130 <, 130 <=, 130 <>, 130 =, 131 >, 131 >=, 131

?, 131
[], 131
^, 129
{ }, 131
{ }, copying logic with, 200
22V10/MACH1XX/2XX S/R
compatibility?, 82

A

ACTIVE EDGE, 487 ACTIVE HIGH, 487 active high, 205 ACTIVE LOW, 487 active low. 205 active-low clocks, in simulation, 271 all signals, 112, 114 AND, 130 As specified in design file, 95 ASSEMBLY, 487 Assigning State Bits, 475 ASYNC_LIST, 133 asynchronous macrocells, 393, 417, 419 Set and Reset, 413 asynchronous operation, 393, 417 **ASYNCHRONOUS REGISTER, 487** AUTHOR, 134 Author. 17 Author entry field, 17 AUTOEXEC.BAT, updating, 7 automatic input pairing MACH 1xx designs, 196

MACH 2xx (except MACH215) designs, 198 MACH 4xx and MACH215 designs, 199 automatic pairing, 193 Automatic State-Bit Assignment, 475 auxiliary file vs. simulation segment, 248 AUXILIARY SIMULATION FILE, 488 auxiliary simulation file, 26, 103 auxiliary simulation file, editing, 98

В

BACK ANNOTATION, 488 back-annotating signals, 105 back-annotating the design file, 25 Balanced partitioning, 85 **BANK**, 488 Begin new design, 70 Best for device, 95 Best type for device, 94 binary radix, 129, 219 BLC file, 80 **BLOCK**, 488 block clock, 409 BLOCK CLOCK MECHANISM, 488 block clock mechanism, 408 **BLOCK FANIN, 488 BLOCK FANOUT, 488 BLOCK PARTITIONING, 489** block partitioning, 282 block utilization, 414 **BLOCK-RESTRICTED, 489**

BOOLEAN POST-PROCESSOR, 489 Boolean Post-Processor, 13 Both, 104 braces, copying logic with, 200 BURIED MACROCELL, 489 buried nodes, in simulation, 253 Bypass mode, 125

С

canceling a form, 68 caret, 129 CASE, 135, 489 building state machines, 224 case constant value, 130 CASE statements, 222 CENTRAL SWITCH MATRIX, 489 chain file editor modes, 121 chain file, JTAG, 118 Change all to D-type, 94 Change all to T-type, 94 Change directory, 73 CHECK, 137, 247 using vectors, 251 CHECK COMMAND, 489 CHECKQ, 138, 247 using vectors, 251 CHECKQ COMMAND, 489 checksum, 108 CHIP, 139 ChipName, 18 ChipName entry field, 18 choosing a command, 68 choosing a menu command, 68 choosing menu commands, 66 clash, 131 CLKF, 141, 489 CLKF, example, 485

clock block, 409 block mechanism, 408 falling-edge, 211 flexible generator, 408 global, acquisition, 212 product-term, 212 rising-edge, 211 clock generator, MACH 3xx/4xx, 408 CLOCKF, 141, 247 using vectors, 252 **CLOCKF COMMAND, 490** Clocking a State Machine, 484 clocks, controlling, 210 CLUSTER, 490 cluster size, 394 COMBINATORIAL, 142 combinatorial, 131 COMBINATORIAL EQUATIONS, 490 combinatorial output, 391, 407 comma. 129 comma-delimited vectors, 218 Comment. 19 comment, 130 Comment entry field, 19 COMPANY, 143 Company, 17 Company entry field, 17 compatibility set and reset, 410 Compilation, 100 **Compilation options**, 76 compilation options, 101 **Compilation Options form**, 77 compilation results, 25 compiling the design, 24, 41 CONDITION, 490

CONDITION EQUATIONS, 490 condition equations, 471 CONDITIONAL BRANCH, 490 CONDITIONS, 144 CONFIG.SYS, updating, 7 configuration file, JTAG, 118 confirming entries, 68 constrained pinout, 293 CONTROLLABILITY, 490 copying equations, 201 copying logic with braces { }, 200 creating a new design, 16 using the new design form, 16 using the text editor, 20 CRITICAL PATH EVALUATION, 490 cross-programming, 421 Current, 124 CURRENT DESIGN FILE. 491 current design information, 66

D

DATE, 145 Date, 17 Date entry field, 17 decimal radix, 129, 219 DECLARATION SEGMENT, 491 Declaration segment, 15 creating, 31 DEDICATED CLOCK PIN, 491 DEDICATED INPUT PIN, 491 DEFAULT BRANCH, 491 Default Branches, 474 default clock, 380, 395 **DEFAULT VALUE, 491** DEFAULT_BRANCH, 146 DEFAULT_BRANCH HOLD_STATE, 474 DEFAULT_BRANCH NEXT_STATE, 474 **DEFAULT_BRANCH** State name, 474 DEFAULT_OUTPUT, 147 design back-annotating, 25 compiling, 24, 41 creating new, 16, 20 disassembling, 29 opening existing, 20 processing, 30 simulating, 26 Design description, 124 design examples barrel shifter, 53 comparator, 51 counter, 3-bit, 54 counter, up-down, 57 data acquisition system, 58 decoder, 56 left/right shifter, 52 Moore state machine, 60 multiplexer, 50 up with parallel load, 57 DESIGN FILE, 491 Design file, 79, 89 design file, 15 design file, viewing, 110 design flow, 12 designing to fit, 285 Device, 18 Device entry field, 18 Device name, 107, 108 device programmer

JTAG. 28 standard. 28 **DISASSEMBLE**, 491 Disassemble from, 106 disassemble from intermediate file, 106 disassemble from Jedec. 106 disassembled file, 29, 30 disassembled file, viewing, 116 disassembled intermediate file. 29 disassembled JEDEC file. 30 disassembling a compiled design, 29 discrepancy, 131 Display design information window, 76 displaying an options list, 68 DO LOOP, 491 Don't care, 96, 129 don't care, 82 don't care logic-synthesis option. 237 Download menu, 66, 117 download to programmer, 117 downloading the JEDEC file, 28 drive B, installing from, 4

E

E-field, 393 Edit menu, 65, 98 editing placement files, 80 editing text, 68 EDITOR, 491 Editor program, 75 Ensure polarity after minimization is, 95 entering text, 68 Epson FX 80, 3 EQUATIONS, 148 equations functional, 209 writing, 39 **EQUATIONS SEGMENT, 491 EQUATIONS segment**, 15 equations segment, 39 evaluation of input pins, in simulation, 270 execution log file, 25 execution log file, viewing, 109 exhaustive fitting, 292 EXPAND, 491 explicit pairing, 193 explicit pairing rules and behavior, 199 expression grouping, 130

F

F2 key, 20 F9 key, 97 falling-edge clock, 211 features locator, 378, 379 feedback, 387, 403 node, 387, 403 pin, 387, 403 feedback routing, 201 FIELDS, 492 File, 124 File menu, 65, 70 FILES= environment variable, 8 FITTER, 492 Fitter, 14 Fitter report overview, 281 fitter report, 25 fitting adjacent macrocell use, 297 analyze device resources, 286

block partitioning, 282 constrained pinout, 293 grouping logic, 297 initialization, 281 interconnection resources, 295 large functions at the end of a block, 296 methodology, 285 placment and routing, 284 product terms, 290 Set/Reset signals, 288 setting options, 298 strategies, 291 unconstrained pinout, 293 fitting a problem design, 43 fitting options, 78 fitting process, 281 fitting report, 103 flexible clock generator, 408 FLIP-FLOP, 492 flip-flops T-type, 381, 396 flip-flops, in simulation, 252 FLOAT. 492 Float Pins, Nodes, 79 Float Pins, Nodes, Groups, 79 floating pin or node, 131 floating pins and nodes, 23 flow-of-work. 12 font cartridge, 3 FOR Loop, 261 FOR loop, 247 FOR-TO-DO, 148 FOR-TO-DO LOOP COMMAND, 492 forcing synchronous, 419 FUNCTIONAL EQUATION, 492 functional equations, 209 Fuse Data Only, 111

G Gate split max num pterms per eqn?, 92 GATE SPLITTING, 492 gate splitting, 298 global clock acquisition, 212 GLOBAL CLOCK PIN, 493 Global clocks routable as PT clocks, 81 Global clocks routable as PT clocks?, 81 Global Defaults, 474 GLOBAL NODE, 493 global set and reset, 392, 409, 410 global Set/Reset node, 423, 425, 427, 430, 433, 436, 438, 440, 442, 445, 448, 453, 456, 460 GND, 149, 493 Go to system, 96 greater than, 131 greater than or equal, 131 GROUP, 150, 493 grouping logic, 297

Н

halting compilation/fitting, 102 Handling of preplacements, 79 Hardware Requirements, 2, 8 hexadecimal radix, 129, 219 High, active high, 95 HISTORY FILE, 493 HP LaserJet, 3 HP LaserJet, 3 HP LaserJet Series II, 3 HST FILE, 494 I IBM ProPrinter, 3 IF-THEN-ELSE, 151, 247 **IF-THEN-ELSE COMMAND**, 494 If-Then-Else in simulation, 262 **IF-THEN-ELSE** STATEMENT, 494 **IF-THEN-ELSE** statements, 221 **IF-THEN-ELSE**, simulation, 153 **Illegal State Recovery**, 482 implicit pairing, 193 implicit pairing rules and behavior, 193 **INITIALIZE, 494** Initializing a State Machine, 481 Input file name, 106, 107, 108 input pairing, 203 input signal ordering, in simulation, 275 INPUT SWITCH MATRIX. 494 **INPUT-PAIRED**, 494 inputs registered, 384, 401 installation disk. 4 Instruction code. 125 interconnection resources, 295 Intermediate. 106 intermediate (.TRE) file, 103 **INTERMEDIATE FILE, 494** intermediate file. 29 intermediate TRE file, 29 **INVERTER**, 495 IPAIR, 154 Iterate between partition & place/route, 85

J JDC FILE, 495 JDM FILE, 495 JDM file, 108 JED FILE, 495 **JEDEC**, 495 downloading, 28 Jedec, 106 JEDEC data, viewing, 111 JEDEC FILE, 495 JEDEC file for the specified operation, 126 JK, RS to best, 94 JK, RS to D, 94 JK, RS to T, 94 JTAG chain file viewing, 118 JTAG chain file editor form, 124 JTAG chain file editor modes, 121 JTAG programming cable, 28 Κ KEYWORD, 495 keywords, 131

L

Last successful placement, 80, 81, 89 latch emulation, MACH 1xx, 382 LATCHED, 156 LATCHED EQUATION, 495 latched equation, 130 latches, 382, 383, 399 hardware, 399 implementation, 400 latches, in simulation, 253 less than, 130 less than or equal, 130 LIM file, 101 LOCAL DEFAULT, 495 local default, 130 Local Defaults, 474 LOG FILE, 495 LOG file, 29 log file, 103 LOGIC EQUATION, 495 LOGIC MINIMIZER, 496 Logic Minimizer, 14 logic synthesis options, 90, 101 long vector names, 259 Low, active low, 95 LOW_POWER_LIST, 156

М

MACH 1XX/2XX combinatorial output with node feedback or pin feedback, 391 default clock, 380 design considerations, 380 global set and reset, 392 inputs registered, 384 latches, 382 node feedback vs. pin feedback, 387 PAL22V10-compatible register behavior, 393 power-up, 393 registered output with node feedback or pin feedback, 388 synchronous vs. asynchronous operation, 393 T-type flip-flops, 381 XOR with D-type flip-flops, 381 product term cluster steering, 380 MACH 2xx latches. 383

MACH 2xx/3XX/4XX vs. MACH1xx latch implementation, 400 MACH 3XX/4XX asynchronous macrocell power-up operation, 416 asynchronous mode, 419 combinatorial output with node feedback or pin feedback, 407 controlling MACH 3XX/4XX Set/Reset behavior, 412 cluster size. 394 default clock, 395 design considerations, 394 flexible clock generator, 408 Global Clock Rules, 304 global set and reset, 409 hardware latches, 399 higher block utilization with the Set/Reset selector fuse, 414 latches, 399 MACH 3XX/4XX asynchronous macrocells, 413 node vs. pin feedback, 403 PAL22V10-compatible register behavior, 411 power-up, 415 registered output with node feedback or pin feedback, 404 set/reset compatibility, 410 set/reset design recommendations, 416 synchronous forcing conditions, 419 synchronous mode, 418 synchronous vs. asynchronous operation, 417 T-type flip-flops, 396 XOR with D-type flip-flops, 395 MACH 4xx

registered inputs, 401 MACH family features summary, 377 MACH fitter options, 78 MACH fitting options, 78, 102 MACH SEG x, 157, 487, 496, 501 MACH110 global node, 423 pin and node summary, 423 MACH111 global node, 425 pin and node summary, 425 MACH120 global node, 427 pin and node summary, 427 MACH130 global node, 430 pin and node summary, 430

MACH131 global node, 433 pin and node summary, 433 **MACH210** global node, 436 pin and node summary, 436 MACH211 global node, 438 pin and node summary, 438 MACH215 global node, 440 pin and node summary, 440 MACH220 global node, 442 pin and node summary, 442 MACH231 global node, 445 pin and node summary, 445 **MACH355** global node, 448 pin and node summary, 448 **MACH435** cross-programming designs, 421 global node, 453, 456, 460 pin and node summary, 453

MACH445 cross-programming with MACH435 designs, 421 pin and node summary, 456 **MACH465** pin and node summary, 460 MACHXL, 496 MACROCELL, 496 macrocells asynchronous, 393, 417 asynchronous, Set and Reset, 413 synchronous, 393, 417 Manual State-Bit Assignment, 476 manual-assisted fitting, 292 Mealy machine, defined, 469 MEALY STATE MACHINE, 496 MEALY_MACHINE, 158 menu bar, 65 menu commands, choosing, 66 menu settings, preserving, 69 MINIMIZE_OFF, 159, 241 MINIMIZE_ON, 160, 241 Mode, 124 modeling of registers and latches, in simulation, 268 Modify pin & node numbers, 105 monochrome screen, 2 Moore machine, defined, 469 MOORE STATE MACHINE, 496 MOORE MACHINE, 161 **MS-DOS version**, 3 Multiple State Machines, 486 multiple state machines, 230 MUX, 496 MXL file, 69

Ν

Name, 18 Name entry field, 18 NCLKF, 161, 496 network environments, 2 new design form, 16 new design, creating, 16 NEXT STATE, 497 No Change, 79 No. of bits in instruction register, 125 NODE, 162 node feedback, 387, 403 node number entry field, 18 node or pin selector field, 18 NOMINAL DELAY, 497 NOT, 130 not equal, 130 Number, 18, 87

0

octal radix, 129, 219 Off, don't care option, 96 **OPAIR**, 164 opening a menu, 68 opening an existing design, 20 Optimize registers for D/Ttype, 93 **OPTION LIST, 497** option list field, 67 options viewing, 20 OR, 130 other file, editing, 99 other file, viewing, 116 Other operations, 104 output combinatorial, 391, 407 registered, 388, 404 output buffers, 209

output buffers, in simulation, 274 OUTPUT ENABLE EQUATION, 497 output enable, in simulation, 253 output equations, 472 Output file name, 106, 107, 108 output files, 103 output pairing, 200 OUTPUT SWITCH MATRIX, 497 OUTPUT-PAIRED, 497

Ρ

P/N, 18 PAIR, 165, 497 Paired with PIN, 19 Paired with PIN entry field, 19 pairing, 193 automatic, 193 explicit, 193 explicit, rules, 199 implicit, 193 implicit, rules, 193 input, 203 output, 200 PAL BLOCK, 497 PAL22V10 compatibility, 393, 411, 412 PALASM, 1 **PALASM 4, 498** PARSER, 498 Parser, 13 Part name, 124 PARTITION, 498 partitioning, 282 partitioning limit file, 101

PATH statement. 7 PATTERN, 167 Pattern. 17 Pattern entry field, 17 PDS FILE, 498 PDS file, simulating from, 103 PIN, 167, 498 pin and node summary MACH110, 423 MACH111, 425 MACH120, 427 MACH130, 430 MACH131, 433 MACH210, 436 MACH211, 438 MACH215, 440 MACH220, 442 MACH231, 445 MACH355, 448 MACH435, 453 MACH445, 456 pin and node summary, MACH435, 460 pin feedback, 387, 403 pin number entry field, 18 pin or node selector field, 18 **PL2 FILE, 498** PLA FILE. 498 PLACEMENT. 498 placement, 284 placement file, 27 placement files, editing, 80 Plc display, 103 PLC FILE. 498 PLC file, 80 polarity, 205 components of, 205 controlling from CASE statements, 206 controlling from equations, 205

controlling from PIN statement, 206 power-up, 393, 415 asynchronous, 416 power-up preload on floating pins, in simulation, 274 power-up sequence, in simulation, 269 power-up, in simulation, 268 powerdown, 393 PRELOAD, 169, 247, 498 using vectors, 250 preload on floating pins, in simulation, 274 preload sequence, in simulation, 269 preloaded registers, in simulation. 254 PRESENT STATE, 498 preserving menu settings, 69 PRESET, 499 PRESET, RESET, and **OUTPUT ENABLED signal** summary, 327 Press [F9] to edit file containing, 80 preventing unexpected simulation behavior, 276 Preview JTAG results. 128 **PRIMARY EQUATION, 499** printers, 3 printing simulation history, 113 simulation waveform, 115 problem designs fitting, 43 processing a design, 30 **PRODUCT TERM, 499** product term steering, 380

product term-driven clocks, in simulation, 270, 273 product-term clock, 212 PRODUCT-TERM STEERING, 499 Program device, 125, 127 program module descriptions, 13 program via cable, 118 PROGRAMMABLE POLARITY, 499 **PROGRAMMED FUSE, 499** programmer **JTAG**, 28 programmer emulation at power-up, in simulation, 268 Programming result file, 126 Provide compile options on each run, 75 Provide simulation options on each run, 75

Q

Q OUTPUT, 499 Quit, 97

R

RADIX, 499 radix operators, 219 RANGE, 499 range, 130 ranges of pins or nodes, 216 Read device, 125 Read Jtag ID, 125 Read user code, 125 recalculate JEDEC checksum, 108 Reduce non-forced global clocks, 86 Reduce non-foSpread placement, 86 Reduce routes per placement, 87 reduce routes per placement, 295 **REGISTER, 499 REGISTERED**, 170 **REGISTERED EQUATION**, 500 registered equation, 130 registered inputs, 384, 401 registered output, 388, 404 registers controlling Set and Reset, 412 Reinitialize MACHXL Setup files, 4 reports PRESET, RESET, and OUTPUT ENABLED signal summary, 327 reports, viewing, 110 **RESERVED WORD, 500** reserving unused macrocells and I/O pins, 289 **RESET**, 500 Reset controlling, 214 sharing, 215 reset compatibility, 410 global, 392, 409, 410 Retrieve existing design, 71 **Review JTAG status**, 128 **REVISION. 171** Revision, 17 Revision entry field, 17 rising-edge clock, 211 ROUTING, 500 routing, 284 **RPT FILE, 500**

Rte display, 103 Run Both, 104 Compilation, 100 Other operations, 104 Simulation, 103 Run menu, 66, 99 Run required modules through, 77 Run time upper bound in 15 minutes, 84 RUN-TIME LOG, 500 run-time status display, 102

S

Save last successful placement, 80 Saved placement, 80, 81, 89 scan path file, JTAG, 118 screen layout, 65 selecting a field, 68 separator, 131 SET, 500 Set compatibility, 410 controlling, 214 global, 392, 409, 410 sharing, 215 set and reset global, 423, 425, 427, 430, 433, 436, 438, 440, 442, 445, 448, 453, 456, 460 Set IO pins to be, 126 Set up, 74 set/reset compatibility, 410 set/reset selector, 414 Set/Reset treated as DON'T **CARE**, 82 SETF, 174, 247 using vectors, 250 SETF COMMAND, 500 sharing Set and Reset, 215 SIM files, 26 simulating the design, 26 SIMULATION, 175, 176, 247 simulation boolean equation design, 263 buried nodes, 253 command summary, 246 constructs, 261 design examples, 263 driving active-low clocks, 271 flip-flops, 252 FOR loop, 261 full evaluation of input pins, 270 If-Then-Else, 262 input signal ordering, 275 latches, 253 modeling of registers and latches, 268 notes on using, 267 output buffers, 274 output enable, 253

overview, 245 placement information missing, 276 power-uppreload on floating pins, 274 power-up sequence, 269 preloaded registers, 254 preventing unexpected behavior, 276 product term-driven clocks, 270, 273 programmer emulation at powerup, 268 running, 103 Set/Reset signals swapped, 276 Set/Reset signals treated as Don't Care, 277 simultaneous events, 274 software preload sequence, 269 state machine design, 266 text display non-vectored, 258 vectored. 259 uncontrollable power-up conditions. 277 vectors, 250 verified signal values, 254 viewing all signals, 255 viewing results, 254 viewing trace signals only, 257 waveform display non-vectored, 260 vectored, 261 WHILE loop, 262 simulation data, viewing, 111 simulation file, auxiliary, 103 simulation file, creating, 246 simulation history printing, 113 Simulation options, 88

Simulation Options form, 26 SIMULATION PROGRAM, 500 SIMULATION SEGMENT, 500 SIMULATION segment, 15 simulation segment vs. auxiliary file, 248 simulation statements writing, 40 simulation waveform printing, 115 simultaneous events, in simulation. 274 software preload sequence, in simulation, 269 Software Requirements, 3 Space, 131 Specify manufacturer option, 126 Start-Up, example, 485 START_UP, 177 START_UP.OUTF, 178 **STATE**, 179 creating state machine equations, 470 Illegal State Recovery, 482 Moore and Mealy machines, 469 overview, 468 STATE ASSIGNMENT, 500 STATE BIT ASSIGNMENT, 500 State Bits as Outputs, 480 State Bits As Outputs, example, 485 State Bits, assigning, 475 STATE BRANCH, 501 STATE DIAGRAM, 501 STATE EQUATION, 501

STATE MACHINE DESIGN. 501 State Machine, clocking, 484 state machines building with CASE, 224 initializing, 481 MACH 1xx/2xx devices, 481 multiple, 230 State Machines, multiple, 486 state names checking in simulation, 61 STATE OUTPUT EQUATION, 501 STATE SEGMENT, 501 STATE segment, 15 STATE SYNTAX, 501 STATE SYNTAX EXPANDER, 501 State Syntax Expander, 13 state transition, 130 State-Bit Assignment automatic, 475 choosing, 477 manual, 476 manual, example, 479 state-machine equations, creating, 470 state-machine, example, 472 status display, 102 status field, 67 status line. 66 stop compiling, 29 Storage, 19 Storage entry field, 19 strategies for fitting, 291 STRING, 181, 501 string delimiters, 129 structure of a MACHXL design file, 15 substitute. 131

SUM-OF-PRODUCTS, 501 SYNC_LIST, 182 synchronous macrocells, 393, 417 synchronous operation, 393, 417 SYNCHRONOUS REGISTER, 501

Т

tab, 131 TAL FILE, 502 **TARGET DEVICE**, 502 term brackets, 131 TEST2.PDS, 23 text editor, 20, 21 text field, 67 text file, editing, 98 THREE-STATE BUFFER, 502 three-state output buffers, controlling, 209 Threshold =, 91, 92 threshold number of product terms, 91 time remaining display, 103 **TITLE**, 183 Title, 17 Title entry field, 17 TOGGLE, 502 Total, 124 **TRACE**, 502 TRACE FILE, 502 trace signals only, 112, 115 TRACE_OFF, 184, 248 TRACE_ON, 186, 248 using vectors, 252 TRANSITION, 503 transition equations, 471 TRE FILE, 503 TRE file, 103

TRF FILE, 503 Turn on security fuse 1, 126 Turn on security fuse 2, 126 Turn system bell on, 76

U

UNCONDITIONAL BRANCH, 503 unconstrained pinout, 293 UNPROGRAMMED FUSE, 503 Use 'IF-THEN-ELSE', 'CASE' default as, 95 Use automatic gate splitting?, 91 Use automatic pin/node input pairing?, 90 Use automatic pin/node pairing?, 91 Use auxiliary simulation file, 88 Use fast minimization?, 96 Use placement data from, 79, 89 Using State Bits as Outputs, 480 using the text editor, 21 UTILIZATION, 503

V

VCC, 188, 503 VECTOR, 503 vector long names, handling, 259 vectors, 216 CHECK, 251 CHECKQ, 251 CLOCKF, 252 comma-delimited, 218 defining, 36 in simulation, 250 PRELOAD, 250 SETF, 250 TRACE_ON, 252 Vectors + Fuse Data, 111 verified signal values, in simulation, 254 Verify device, 125 view configuration file, 118 View menu, 66, 109 View/edit output file(s), 128 viewing available options, 20 viewing compilation results, 25 viewing simulation results, 254

W

waveform display, viewing, 114 WHILE loo[, 262 WHILE loop, 248 WHILE-DO, 188 WHILE-DO LOOP, 503 working environment, 74

Х

x..y, 130 XOR, 130, 381, 395

Z Zero Hold Time for Input Registers, 88 zero hold time for input registers, 402