MEMOTECH

SYNTAX

SOFTWARE

EDaASM =1 BIT MACRO/ASSEMBLER

FOR

MT X SERIES COMPUTERS

SYNTAX SOFTWARE- PRODUCES SUFTWARE £XCLUSTVELY FOR GENPAT THE
OFFICTAL USER €R0UP FOR NTX COMPUTERS. THIS PRODUCT IS HOT FOR
RE-SALT BY ANY OTHER MEANS WITHOUT PRIOR ARRANGEMENT WITH THE
CLUB. (C) 1984 GENPAT

3. Bulcock Street, Burnley, BBI0 10 0282-57427

S¥NTAX
SOFTWARE

MTX — EDITOR/ASSEMBLER Version 1.00 (tape)

Thankyou for your purchase of the MTX-E/A package. The facilities included within
this package makes this one of the most advanced Editor/Assembler packages currently
available for any tape-based micro.

NOTE: Any keywords will be signified by enclosing them within '<' and '»' characters

(e.g. <RET> signifies the key 'RET') in order to avoid confusion.
LOADING

1. Connect the EAR socket on your cassette recorder to the EAR socket on your MTX
computer .

2. Make sure the cassebtte is ful ly rewound.

3. Type:
LOAD "ED/AS" <RET>
Set your cassette recorder to play mode and wait.

4. If you can hear the tones of the tape from your television speaker but the computer
gives no indication of loading, then rewind the tape and try again with the recorder on a
different volume setting.

NEW COPIES
Making back-up copies that are identical to the one supplied is very sinple
procedure.

1. Follow the section on LOADING to load the Editor/Assenbler.
2. Save as though it was just another Basic program with any name that you prefer.

Making new copies after you have modified the 780 macro library (on the
reverse side of the tape provided)y, or replaced it completely, for exanple, with a 6502
macro library, and assembled it onto the Editor/Assembler (see assembler manuall, 1s a
slightly longer process.

1. Assemble the new macro library onto the Assembler using the assembler ‘K! option.

2. Quit the editor using the ‘0" command.

3. Re-load an old copy of the editor/assembler but do not RUN it.

4. Follow exactly the section on RUNNING under the sub-heading "Running after a SYSTEM
RESET" for entry back into the new Editor/Assembler.

5. Answer the "New/0ld file 7" with a 'N' followed by <RETx.

6. Use the 'X' command answering the "New copy (Y/N) 7" question with a 'Y',

7. Use the '@ command to quit the editor and save the new Editor/Assembler as you would a
Basic program with any name you prefer.

MEMORY USABE

The Editor/Assembler occupies the memory from 0000H to 4000H, which is situated under
the system ROMs. Source files begin at 4010H, so even if the system has to be RESET the
file will remain intact and can be recovered by following the section on RUNNING.

Although this means that no Basic programs can be entered while there is a source
file present, there is just room for one line that can be used to execute the generated
code (e.g. code at AOOOH can be executed by entering the fol lowing Basic line.

10 RAND USR (40360)
and by typing RUN to execute the code

RUNNING
La) Running from load up
Type:

RUN <RET> - Inintializes the program for use
USER <{RET> - Enter EDITOR

Mow follow the seckion on INITIALIZATION.

(b Running from monibor

NOTE: This will not work after a SYSTEM RESET. If you are not sure that a system reset
has occured then &ry this entry method and if you get a 'Mismatch' error then follow
method (c).

Type:
USER <RET>

Now read the section on INITIALIZATION.
(c) Running after a SYSTEM RESET

Depending on what caused the system to reset you may find this method does not work.
In that case you must re-load the Editor/Assembler from tape. §

1. Enter panel by typing: PANEL <RET>
2. Set address by typing: DFO0O <RET>
3. Now enter the following code:

F3 <RET>

3E {RET>

80 <RET>

D3 {RET> 5

00 <RET>

CD <RET>

YE <{RET>

01 <{RET> and now press ‘.' to leave command.

Type: 'B' & '¥! to exit from panel.

4. Type: RAND USR (61440) <RET>

INITIALIZATION - warm or cold start 2

At this stage you should be faced with a clear screen (yellow) except for the question
"New/0ld file 27",

ANSWER N’ - (Creates an empty source file)
Used: - after loading Editor/Assenbler.

- when file has been corrupted.

ANSWER 'D’ - (Enter existing source file)
Used: - when re-entering editor.

Fress <RET> to enter EDITOR.

INSIDE THE EDITOR

The display is divided into just two areas. The top 22 lines are a window on your
source file. By use of the cursor keys you have the ability to move the cursor to any
column and any line of your source file.

The very bottom line has two uses:
1. Status

The status line is divided into three areas. The first displays the current input
modey which is either CHANGE or INSERT (see 'INS' command). The second shows the coloumn
number of the cursor, which has a range from 001 to 128. The third section is used for
displaying error messages or other reports connected with commands in use. For speed
considerations, the status line is only updated when no keys are being pressed.

2. Command information entry

When a command is activated, that requires input from the user of some kind, the
bottom line will be cleared and used for this purpose. Commands will always prompt you for
for this information.

INPUTING TEXT

You are now in the position to enter text into your source file. Initially the file
is made up of just one empty line and up/down cursor keys therefore have no effect. By
pressing <RET> you will immediately create a new empty line and the cursor will be set to
start of it. To demonstrate text inputing, enter the following.

<TAB> LD HL,1000H <TAB»; Comments can go here {RET>
<TAB> LD DE,2000H <RET>
; Comments can also go here <RET>

There are other keys that will make the entering of text easier, such as DEL, F1i and
FS etc. For details of these commands and more read through the following section.

COMMANDS IN DETAIL

All letter commands are activated by holding down the CTREL key at the same time as
pressing one of the letter keys. Other commands are used as stated.

A - Assemble file
Enter assembly options (see assembler user guide) followed by <RET>. You will now be
prompted to enter the assembler workspace address in hexidecimal. When getting this, you
must make sure it is within free memory. By pressing <RET> only, the workspace will
automatically be placed after the current source file.

B - Bottom line of file
Set the cursor to the very last line of the source file and update screen.

C - Copy text block
To copy a block of text, simply place a signal string at the start of the line
immediately before the block (the string must be unique to avoid confusion)y and a
delimeter code '-' (must always be a minus sign) at the start of the line immediately
after the block.
eg.; '-¥f1' before, and '~ after.
Set the cursor to where you want the block to be copied to (the cursor must not be
positioned inside the delimetered block). Now activate command 'C’ which will prompt you
for the signal string (eg., '-##1')., Enter this and then press <RET». The signal string
will be located and the text will be copied to the current cursor position.
1f you now wish to delete the first block, use command 'Z' fol lowed by command .
The copy can be aborted by holding down the BRK key.

D - Delete text block
You are prompted for whether you want to delete up to a delimeter code, positioned
at the very start of a line, or right up to the end of the file. Notice that by pressing
<RET» only, it defaults to delimeter mode. The delimeter must always be a minus sign.

F - Find text string
Enter the string you wish to be found and press <RET:>. FRemember that the cursor
position determines the end of the string. You are now prompted to specify where the
string should be. Specifyihg 'S8" will only look for the string at the start of lines and
is therefore useful for finding labels. Specifying "A' wil look for a string anywhere
along a line. Use command 'Z' to find subsequent strings.

J - Join two source files
Similar to the 'L’ command, but instead of loocking over the current source file, wil
load in at the end of the source file. Useful for moving routines from one program to
another.

L ~ Load source file from tape
Enter the name of the source file you wish to leoad, or clear to spaces to load the
next source file, and press <RET>. Now switch on tape and wait for file to load. BRK can
be used to abort command, but only while data is being scanned from the tape recorder.

M - Load object file from tape
This command will load an object code file at a specified memory address.

N =~ Save object file to tape
Save a named cbject file to tape. You will prompted for start and end addresses.

P - Print text block

Print the file from the cursor line to either; the end of the file, or until a '-'
delimeter is found at the start of a line. Printing will start when a 'Y’ is entered in
response to the prompt. BRK will abort printing at any time.

@ - Quit editor
Upon a 'Y’ response to the prompt, control will be handed back to the system ROM.

P - Beplace text string
Firstly you will be prompted to enter the string you wish to replace. After entering

this and pressing <RET?, you now have to enter the string you wish to replace it by,
followed by <RET>. Now enter the number of strings you wish to replace (from 1 to 99) or &
47 indicates all.After pressing <RET> you will now be prompted on whether you want the
editor to stop it before it replaces a string, and allow you to decide, or whether you
want it to replace them continuously.

. As with the FIND and COPY commands the end of each string is determined by the
cursor position.

S - Save source file to tape
Enter the name you wish the file to be saved with and press <RET>. Now enter the
number of copies you wish 1t to save (1 to 93). This has the advantage of saving a number
of copies, equally spaced, without you having to stand over it. Switch tape to record and
press <RET>.

T -Top line of file
Set the cursor to the very first line of the source file and update screen.

V - Verify source file from tape

Verify the current source file with a named source file on tape. Enter name, press
<RET> and switch tape to play.

W - Back tab
Moves the cursor backwards, clear as it goes, to the previous tab stop.

X = Copy ed/as for making new copy
This command is used for the sole purpose of creating new copies of the
editor/assembler after re-assembling the inbuilt macro library (see section on NEW
COFIES), and should not be used while there is a source file present (other than
completely empty).

RET - Split line
This has the affect of splitting the cursor line at the cursor position.

EOL - Clear rest of line

Clear the line, from the current cursor position right up to the very end of the
line (column 128).

BRK - Abort
Abort from any command while the cursor is flashing, and some while not flashing.

TAB - Tab forwards
Move forward, clearing as it goes, to the next tab stop (every eight columns).

DEL - Delete character

Move back cne and clear character. When used on column one, the current cursor line
is appended to the preceding line.

ARROW UF - Cursor up
Move cursor up one line. Hold key down for fast downward scrolling.

ARROW DOWN - Cursor down
Move cursor down one line. Hold key down for fast upward scralling.

ARROW LEFT - Cursor left
Move cursor left one character. When used in column one, the cursor will move to the
first non-space of the previous line and the screen will be updated to display this.

ARRDW RIGHT - Cursor right
Move cursor right one character. The cursor will move to the proceding line after
reaching column 128 of the present line.

HOME - Cursor home
Move the cursor to column one and update the screen display if necessary.

INS - Insert/change mode toggle

This is very similar to the normal use of this key, but it is worth just pointing

out the difference between the two modes. Note that the status line shows you which

you are currently using.
CHANGE MODE

1. Characters over-write other characters.
2

2. 'DEL' only clears characters.
INSERT MODE

1. Characters are inserted between characters.

mode

2. 'DEL' clears characters and uses the 'W1' comand to move the text right of the cursor.

Fl - Text towards cursor

Move all the text right of the cursor (on current line) towards to the cursor.

FS - Text away from cursor

Move all the text right of the cursor (on current line) away from the cursor.

F4 = Scroll file right

Scroll the file horizontally right eight characters, making the cursor move

columns to the left.

F8 - Scroll file left

Scroll the file horizontally left eight characters, making the cursor move

columhs to the right.

SHIFT F4 - Delete cursor line

eight

eight

Delete the current cursor line. This is similar to the 'D? command but only deletes

ohe line.

COMMANDS IN BRIEF

COMMAND DESCRIPTION
A Assenble the current source file.
o Move cursor to the very bottom line of the source file.
(> Copy a specified text block to the current cursor position.
D Delete a black of text, or delete from the cursor to end of source file.
F Find a specified string.
J Join a named tape file to the current source file.
5 Load a named source file from tape.
M Load a named object file from tape.
N Save a named object file to tape.
p Send file, beginning at the cursor position, to the printer.
2 Quit Editor/Assembler.
R Replace one specified string of text with another.
s Save the current source file to tape.
T Set cursor to the very top line of the source file.
Y Verify a named source file on tape with the current file.
W Move back, and clear, to the previous tab stop.
X Transfer the editor/assenbler to saveable memory.
Z Find next occurrence of the string stored in the 'FIND BUFFER'.

)
m
-

Split the current line at the cursor position.
EOL Clear all of the line right of the cursor.

BRK Abort command.

TAB Move cursor forward to next tab stop.

DEL Move cursor left one and clearposition.

upr [Arrowl Move cursor up line.
DOWN [Arrow] Move cursor down ohne line.
LEFT [Arrowl Move left one character.
RIGHT [Arrowl] Move right one character.
HOME Move cursor to column 001 and update screen.
INS Change/Insert mode toggle.

F1 Move text, right of cursor, towards cursor.
FS Move text, left of cursor, way from cursor.
F4 Scroll file horizontally right.
F8 Scroll file horizontally left.

SHIFT F4 Delete the current cursor line.

MACRO ASSEMBLER

OQVERVIEW

There are many types of macro assembler to be found these days. Most of these offer a
"hardwired" instruction set for a particular machine and allow macros to be defined in
terms of these instructions. This is quite reasonable as assenblers are generally used on
a single machine to generate code for that machine and a built in instruction set does
decrease assembly time. So why depart from this tried and trusted recipe 7. Well, this
assembler was conceived with two main goals in mind - (i) to be able to assemble code for
CPU's other than the host, (ii) to be able to assemble code in times comparable to
assemblers with hardwired instruction sets. In our opinion both these goals were realised.

USER_GUIDE
This guide assumes a knowledge of normal assembly code.

Code format
Considerable freedom exists in the format of files acceptable to this assembler.
Multi-statement Iines are allowed and lines can be up to 128 characters long. But there
are a few basic conditions that must be adhered to in order that the assembler knows what
the code is supposed to mean, these are.

(a) Labels/variables may appear anywhere along a liney, but if they do not start in column
one then they must be immediately followed by a colon (unless they are part of/or form an
expression).

(b) Multi-statement lines may be constructed by separating instructions with the backslash
character "\".

(c) Files must be terminated by an END statement.

Basic primitives: DB & EQ

It was revealed earlier that the 780 mnemonic set was not built into the assembler
but were defined as macros in terms of more primitive instructions. We will now consider
these primitives and define their syntax.

1) Define byte "DB". .

This is the most used primitive in instruction set macro definitions (have a look at
the 1780 macro library source). Its job is to generate one byte of code representing the
value of the expression or list of expressions following it. These expressions must yield
values between -256 and 255 inclusive. Here are some examples of the use and forms of the
DB instruction and the code it generates. (This also shows off the expression handling
capabilities of this assembler, so see the section on expressions for a detailed
description of these facilities.)

0000 00 DB O A comment
0001 1234 DB 12H,34H

0003 4B8454C4C

0007 4F205448

000B 45524521 DB "HELLO THERE!"

000F FE DB 11111111B - 1

0011 2C DB "H"-70{{2

0012 00010203

0016 04050607 DB 041,2,3,445,6,7

001A FFOOFF DB 12 , 5>20 , "B"<=42H

P

A

Program

counter Code as entered in file

b T A

Code generated
by DB
instructions

2) Label equate "EGQU"

This is the same as in other assemblers and is used to set labels to particurar
values (which cannot be changed - more on this later). For example:

1234 LABEL1: EGU 1234H

AAAA A_NAME: EQU 1010101010101010B

ocec TT_TT: EQU 123%64-LABEL1

003F COLZERD EQU 770 ;Label in column zero
Result of
assignment

is put here

Notice that "$"'s and "_"’s are allowed as part of label names. Labels can be of any
length but only the first eight characters are significant.

1) Expressions
As stated earlier, this assembler supports guite extensive arithmetic and logic
capabilities. These facilities are no luxury and are used extensively later in macro

definitions. Algebraic logic is supported with nestable parenthesises and four number
bases. Here is a list of cperators, their functions and precedence.

8.

OPERATOR PRECEDENCE USE FUNCTION

+ <] +A Unary Plus
= 1 -A Megate

i ! S ‘A Logical complement

i > 4 A>*B Rotate A right B bits !
H €< 4 AC{B PRotate A left B bits

1 ¥ 4 A%B Multiply !
H g 4 A/B Integer division i
H % 4 AYB A modulo B i
i * 3 A+B Addition i
d - 3 A-B Subtraction H
H H
!] 2 ALB Logical AND i
H H 2 AlB Logical OR H
H o 2 A~B Logical EX-OR i
' '
H = 1 A=E Test equality H
H > 1 AB Greater than i
) = 1 A¥=B GBreater or equal H
H < I ALB Less than i
H {= 1 A{=B Less or equal H

Precedence (the relative binding of an operator) is given as a number from 1 to 5 -
where 35 indicates the highest binding power. Of course brackets may be used to alter the
order of evaluation of an expression.

Labels and undefined values

In the preceding section on the EGU instruction it was shown that labels could be set
to the value of an expression, and that expression could contain label references. In such
situations the reference must be to a previously equated label otherwise a default wvalue
of zero will be used. ie.

In this group of statements the first label wil be set to zero when it is meant to be
set to 200H:

0000 LABEL1: EQU LABELZ¥100H
0002 LABEL2: EQU 2

With each label there is stored a flag which indicates whether or not the [label
contains a totally correct value, this will be set true in the second equate but false in
the first one. Certain statements that use expressions test this flag and will give an
error if the expression contained an uninitialised value. This flag is propogated whenever
a label/variable is set to an expression, even through macro arguments (see section on
macros with arguments).

2) Macro definitions

For the uninitiated a macro is a single entity which represents a number of other
entities. ie.» A macro instruction will invoke a number of other instructions which can
themselves be macros. To illustrate this further let us now define a macro.

DEFMAC ("MACRONAME") ;This is how we
jdefine the macros name
DB 770 jGenerate a byte
jcontaining 77 octal
END. ;This is how we end

ja macro definition
sNow let’s use this macro

0000 3F MACRONAME iThis is how we
END ;End of source code

Notice that the macro definition did not generate any code but wheh the macro was
invoked it generated a byte containing 77 octal (3F hexadecimal). So the upshot is that
invoking a previously defined macro assembles the code present inside its macro
definition. Macros can be thought of as procedures in some high level languages, such as
PASCAL, which must be defined before their use. This type of macro is of limited use
thoughy because it always generates the same code when invoked and in the folowing
sections we will deal with how to define macros which generate different code when invoked
in different ways, but it is worth looking at how we can define macros to be used as 1B0
instructions with this type of macro.

;Definitions of the ZBO instructions NOP & HALT
DEFMAC ("NOP")

DB OOH
END. -

DEFMAC ("HALT")

DB 76H
END.
0000 00 NOP
0001 76 HALT
END

It is also possible to define madros which consist of more than one word as in this
example.

DEFMAC ("DO-THREE-NOPS")

DB 00, 00,00
END.
0000 000000 DO THREE NOPS
Although this is a silly example it illustrates that "-"'s are used to separate the

wards in nultiple word macros. MNotice that spaces canot be used inside the DEFMAC
statement.

10.

Macros with arguments

In order that macros can change the code they generate - we must have some method of
passing information to macros when they are invoked. We do this by embedding arguments
into the macro when we invoke it. There are two types of argument that we need to
differentiate between.

1) Numbers, including expressions labels/variables and numeric constants.
2) Constants, including register names and some opcode mnemonics.

Most macros that have register names as arguments usually only use a subset of the
total number of registers available and similarly macros that require numeric arguments
require only numbers within certain bounds., So to cater for this requirement the assembler
has the ability to define sets of registers (formally called constants) or subranges of
numbers. 2

Constants

Constants are names which can take on a value (a bit like labels) but which are
totally distinct from labels and variables in that they cannot be used in expressions. The
value a constant takes depends on its use. Here is how we define constant names.

DEFCONST (BC,DE,HL,AF).

This definition does not generate any code, of course, and its purpose is to inform
the the assembler which names are constant names thus preventing them from being used
accidentally as labels.

Sets of constants

We are now in a position to use the constants we defined earlier. To do this we must
col lect them up into sets, we do this in the following way.

DEFSET REG16 = (BC,DE,HL).

We have now defined a set called REGIE containing the constants BC,DE and HL these
constants now have a value if used in the context of REGLE - their values are assigned
starting at zero and increment for each name in the set, so BC has the value 0, DE has the
value 1 and HL has the value 2. It must be emphasised that constants are not treated in
the same way as labels and cannot be used in expressions and further more, they only have
a value when they can be found in a set and their value depends on which set they are used
from. To illustrate the use of sets and show how arguments are used we will now consider
how we would define a macro which will generate the code for all the ZB0 8 bit register
load instructions. ie., LD ByL etc.

Firstly we must define a set of constants which contains the name of all the
registers this instruction is valid for.

DEFCONST (A,B,C,DyE,H,L, INVALID).
DEFSET RB = (ByC,DsEsH,L, INVALID,A).

Notice that the order in which constants are entered into the DEFCONST statement is
not important but the order they are put in the DEFSET statement is, and also that a
"junk" constant was needed to pad out the list. ie., we need L to have the value 5 and A
to have the value 7 and no register has a value corresponding to 6 so a junk name is used.

Now let us define the macro.

DEFMAC ("LD¥,*",R8,R8)
DB 40H + £0%8 + £1
END.

The asterisks in the macro name define where the arguments are to appear and the list
of setnames after the macro name string define which set each argument belongs to. Each
sethame corresponds to each asterisk in the name string. The argument values are passed to
the macro in a set of local variables that only the macro may access, these have the names
£ny where n has a value in the range 0 to 255.

A look at the opcode for the instruction we are defining shows that its value is a
combination of some preset data and the numbers of the registers is is to use. The DB
instruction in the macro will faithfully generate the opcode for this instruction.

Now let us use this macro.

0000 78 LD AB
0001 SF LD E,A
0002 S5A LD E' ¢y D

Notice how spaces are ignored when invoking macros. Spaces are allowed anywhere
except in the middle of a name (ie., HELLO is one name and HE LLO is two names) so spaces
can be used to separated arguments from the mnemonic for example.

Number subranges

It 'is also desirable to define ranges of numbers and attach a name to then as we did
with constant sets and so another function of the DEFSET statement is to do just that.

DEFSET BYTE = 0 TO 255.

This has now defined a subrange of numbers called BYTE containing all the numbers
from 0 to 255 inclusive. We can now use this set to define another ZB0 macro - load
immediate B8 bit register. ie., LD C,4

DEFMAC (\"LD%,*",R8,BYTE)
| DB & + £0¥8
DB £1
END.

Notice that only difference between this macro and the last is the type of the second
argument, and, so that the assenbler knows that the macro name string "LD¥, %" has already
been defined, the "\" is inserted before it in the definition. This must be done whenever
a macro name string is repeated otherwise the "Double identifier" ervor message will be
generated.

Here is how we can use this new macro.

0003 0620 LD B,00100000B
0005 3EFA LD A,OFAH
0007 2645 LD H, "E"

12.

It is worth pointing cut that constants may be used in any number of different sets
and the user must make sure that ambiguities do not arise because of this.

Certain ZBO instructions require an argument that has only one value to follow them
(such as EX DE,HL where DE and HL are constant). Using the above methods of defining
macros we would have to define two sets; one with HL in and the other with DE in. Which is
a bit silly. So in order to obviate the need to do this constant names may be used in
macro definitions and will mean a set with one element. To illustrate this let us define
the macro EX DE,HL.

sAssuming that HL and DE have been defined as constants

DEFMAC ("EX¥,%",DE,HL)
DB OEBH
END.

0000 EB EX DE,HL jUse of this macro

By now you may wondering why we did not define a macro that used no arguments in the
above case.

DEFMAC ("EX-DE,HL™) ;This is illegal
DB OEBH
END.

If the names DE and HL were not defined as constants this macro would be perfectly
acceptable but as they have been defined as constants the assembler would search for a
macro mask like this - “EX¥,%" and so the "Undefined" error will occur.

With the facilities so far covered it should now be possible for the user to write
his/her own macros which can simulate any mnemonic in the 780 instruction set and much
mare.

Conditional assembly

The main conditional assembly statement supported by this assembler is the IF-END and
the IF-ELSE-END statement combinations. These are used to enclose parts of the assembly
code and enable/disable the assembler assembling it. This is mostly used for allowing one
source listing to produce a number of different versions of a program depending on
‘switches' set at the start of the source code, Here is a brief example of its use.

Here is a notional data storage routine — for disk systems it must contain code to
write to the disks and for tape systems it must contain code to write to tape.

DISK: EQU O
TAPE: EQU 1

SWITCH: EBU DISK
++.lots of source code...
WRITE:
IF SWITCH=TAPE
...Tape interface code...

END T
IF SWITCH=DISK 3
...Disk interface code...
END

«::Rest of source file...
% - The code so indicated can be replaced with a single ELSE statement.

One point worthy of note is that the IF statement works by evaluating the expression
and if it is zero it is taken as *'false’, if it is non-zero considered ‘true’. This means
that the first IF statement could have been replaced with the following.

IF SWITCH

But in this example it makes the statement less clear.

The IF statement may also be used inside macro definitions, enabling macros to change
at invocation time the way they assemble.

Here is a small but useful example to illustrate this.
Supposing we wish to define a macro which performs the following operation - LD

rry(HL) where rr is ancther 16 bit register from the set HL,DE,BC. So if we were to invoke
LD BC,(HL), the following instructions would be used.

1) LD C, (HL) ;Get low byte
2) INC HL

3) LD B, (HL) iBet high byte
4) DEC HL jRestore HL

A similar sequence would be required for the register DE.

On the other hand we might wish to do this instruction = LD HL, (HL). In this case the
fol lowing instructions would be needed.

12 PUSH AF ;Save AF

2) LD A, (HL) ;Get low byte

] INC HL

4) LD H, (HL) ;Get high byte

5 LD L,A jLoad up low byte
&) POP AF jRestore AF

So we need three different code sequences for each type of instruction. This can be
done with the IF statement in a macro definition.

DEFCONST (HL,DE,BC).
DEFSET RR = (BC,DE,HL).
DEFMAC ("LD¥, C¥)",RR,HL)

IF £0=0 jCase for LD BC, (HL)
LD Cy CHL)
INC HL
LD B, (HL)
DEC HL

ELSE IF £0=1 jCase for LD DE, (HL)
LD E, (HL)
INC HL
LD D, (HL)
DEC HL

ELSE IF £0=2 jCase for LD HL, (HL)
PUSH AF
LD A, (HL)
INC HL
LD Hy C(HL)
LD L,A
POP AF

END END END

END. iOne for each IF

0000 FS7E2366

0004 EFF1 LD HL, (HL) jInvocations of the macro
0006 4E23462B LD BC, (HL)

000A SE23562B LD DE, (HL)

Argument modi fication

When wusing macros inside macros it is possible to modify the value that a macro
definition sees a constant argument as. This is done by immediately following the argument
in the macro invocation with a value to be added on to the constants (set related) value
in square brackets. ie., LD CL[11,A if invoked inside a macro would generate the code for
LD DyA (see the ZBO macro library).

This facility can be used to simplify the above example.

DEFMAC ("LD¥, (¥)",RR,HL)
IF £0<2 3BC & DE case
LD CL£0%21, (HL)
INC HL
LD BLE£0¥21, (HL)
DEC HL
ELSE
PUSH AF
LD A, (HL)
INC HL
LD H, CHL)
LD LsA
POP AF
END
END.

15

So although this is a complex facility to use it does simplify the code in certain
circumstances.

Iteration and the variable

It is often useful for macros to produce tables etc., and to do this they must have a
conditional looping statement - this assembler has two. The $WHILE - END sequence and the
$REPEAT - S$UNTIL sequence and there is a $BREAK statement for breaking out of these
sequences. Their wuse is best illustrated by example because they are not very different
from similar statements in high level |anguages.

Here is a macro which will fill a number of bytes with a particular value at assembly
time.
DEFVAR (COUNTER).
DEFSET NN = 0 TO 256.

DEFMAC ("FILL*¥BYTES-WITHX", NN, NN)
COUNTER:= £0

$WHILE COUNTER>O
DB £1
COUNTER:= COUNTER-1

END
END.
0000 AAAAAAAA
0004 AAAAAAAA
0008 AA FILL 9 BYTES WITH OAAH jHere is how we use it

Netice that we used what looked like a label as a counter. This was in fact a
variable and was defined as such in the DEFVAR statement which works in much the same way
as DEFCONST. Variables may be used anywhere that labels are used but must be assigned fo
using the rather than the EQU for normal labels. The advantage of variables over
labels is that wvariables may be assigned to more than once without the assembler
objecting. They can, of course, be used anywhere labels are used and can sometimes be used
to advantage instead of labels but it is best to restrict their use, otherwise mistakes
can be made which will not be picked up by the assembler.

The $REFEAT is used in much the same way as the $WHILE except that the condition is
tested at the end of the loop rather than at the beginning.

ie., $REPEAT
.. .S0me code...
SUNTIL expression

When the $BREAK statement is encountered inside one of the above loops, assenbly
breaks from its current position and continues after the end of the loop. This can also be
used to break out of macros.

Assenbler terminating informaticon

When the assembler terminates it prints out on the screen a few statistics about the
assembly - the final value of the pseudo program counter ($), the final value of the LDAD
pointer, the start and end addresses of the workspace used and, if any errors, the number
of errors and the assembler pass they occurred on.

Creating a library

As has been stated earlier this assembler comes with a built in macro library
containing all the 280 instruction set. It is possible for the user to change this library
and thus personalisé the assembler as little or as much as he/she likes'. It would be
possible, for instance, to get rid of the Z80 set and put in the macra definitions for the
6502 instruction set or probably any other microprocessor. One need not even put in micro
instructions sets, the user could create his own language made out of macros.

To add a new library the user wust first write it as he/she would any other assembler
program (the 780 macro library built into the assembler is supplied on the tape provided
so that the user may modify its contents). The file is then assembled using the "K"
option. The tables thus generated are then put at the end of the assembler. To save the
modi fied editor/assembler see the section on NEW COPIES at the begining of the manual .

GENERAL USER GUIDE

Assuming that a file has been created, containing assembly source code in the correct
format, it is assembled as follows.

1) Type CTRL 'A’ while in the editor.

2) Enter option letters required and press <RET>.

3) Enter workspace address, or simply press <RET? in which case the workspace will go
immediately after the source file.

4) Eithery the assembler will return with no errors or any errors will be indicated and
the user nust correct and reassemble,

Guide to options

- Stop and indicate error position with curser.

- Produce listfile.

- Produce symbol table of labels/variables.

= Produce other symbol tables (macros, sets % constants).
- Send any output to the printer.

= If file contains a load directive then store object in memory.
= Create a new "built in library" (see section on libraries),

"I VAOC-M

LOAD directive

This will cause any object generated to be put into memory at address fuliou:ng the
Iocad address (if the *M' option is on).

1é.s
ORG 1000H
LOAD 8000H
1000 47 LD B,A

1001 21 02 00 LD HL,2

END

1.

will put hex codes 47,21,02 & 00, starting at 8000H, into RAM (although the code is
assembled as if it was to go at 1000H).

LIST directive

This is a macro in the built in library which will switch on and off the list option
(above) whilst printing a source listing. It is used as follows.

sreesoUrce code (A)
LIST OFF
»weas0Urce code (B)
LIST ON
«:ssS0Urce code (C)
In this example (providing the list option was used in invoking the assembler)

section (A) would be listed, section (B) would be missed and section (C) would be listed.
If the assembler was invoked with the list option then only section (C) would be listed.

System variables

Certain system variables are available for use (with care) by the source file during
assenbly. These are accessed by putting "$n" where n is between 0 % 9. These may be used
anywhere a standard label/variable is used and contain the fol lowing.

$0 (or just $) Pseudo program counter.
$1 Load address pointer.
$2 Option flags.
== bit 0 reserved

bit 1 print flag

bit 2 reserved

bit S list option

bit 4 symbol option

bit 5 reserved

bit & reserved

bit 7 error stop option

bit 8 'T' option

bit 9 ™! option

bit 10 Store to memory enable
bit 11 reserved

bit 12 '0’ option

bit 13 *1' option

bit 14 2’ option

bit 15 *3' option

The '0',%1",'2" & '3' options are not used by the assembler but are available as a
method of external ly passing information into an assenbling source file, This could be
used in conjunction with the conditional IF statements tao perform assembly switches
without affecting the source file.

12

ie.,

IF $2 % 0001000000000000B

--.source code (A)

ELSE

...s0urce code (B)

END

Soy if the assembler was invoked with the '0" option only source code (A) would be
assembled and if the '0' option was omitted then only source code (B) would be assembled.
Ervors

There are ten different error responses and each of these will cover a number of
different but similar error conditions.

Here is a list of their meanings.
FHASE =-- A label had a different value on pass three to that on pass two. This can be

caused by macros generating different code on each pass, or labels not being initialized
correctly.

SIZE -- This emcompasses a number of conditions mostly concerned with the size of a
value.

SYMBOL -- A symbol of one type was found where one of another type expected.

ARGM -- Argument error. Usually on macro definitions.

UNDEF -- A symbol /macro has not been defined.

SYNTAX -- Syntax error often occurs in macro name strings when illegal characters are
used.

INFINITE -- A loop using $WHILE or $REPEAT has iterated over 65535 times and is
possibly an infinite loop.

INIT -- Label initialization error.
EOF -- Unexpected end of file found. Usually too few ENDs in file.
5YS -- System error — this is generated if a library was made which overran the start

of the source file.

Copyright ©

Memotech Computer User Club
3 Bulcock Street Burnley BB10 [UH
TeL:(0282) 52T

19.

	edasm00001
	edasm00002
	edasm00003
	edasm00004
	edasm00005
	edasm00006
	edasm00007
	edasm00008
	edasm00009
	edasm00010
	edasm00011
	edasm00012
	edasm00013
	edasm00014
	edasm00015
	edasm00016
	edasm00017
	edasm00018
	edasm00019
	edasm00020

