
MEMU-Pi Hardware Config

Introduction
As well as providing a version of Andy Key's excellent MTX emulator on the Raspberry Pi, 
MEMU-Pi provides the ability to interface with legacy hardware to provide an even more authentic 
experience.

Since different people may have different requirements, and may wish to connect hardware in 
different fashions, the software has been made flexible in terms of hardware configuration. This is 
achieved via a hardware configuration file, which is described in this document.

The hardware configuration file consists of blocks defining a particular interface, introduced by a 
name in square brackets, followed by the definition of that interface.

Pin Definitions
Most of the hardware definition file is defining which digital I/O pins on the Raspberry Pi are 
connected to what hardware. These may be the Raspberry Pi's built in GPIO pins. Or, since some 
applications may require more I/O than is built-in, there is also support for one or more MCP23017 
I2C port expanders.

These pin definitions take the form:

GPIO, <bcm pin no>

MCP23017, <i2c dev>, <i2c addr>, <mcp pin no>

The first form is used for the Raspberry Pi's built-in GPIO pins. The pin number is specified 
according to the Broadcom convention.

The second form is used for a port expander, where:

<i2c dev> = The device name of the I2C bus used. This will typically be “/dev/i2c-1” on more 
recent Raspberry Pis. It may be “/dev/i2c-0” for Rev.1 Raspberry Pis, or if the 
nominally reserved GPU I2C bus is being used.

<i2c addr> = The I2C address of the port expander. This will typically be 0x20, although up to 
8 simultaneous port expanders on different addresses are supported.

<mcp pin no> = The number of the pin on the port expander. This may either be a number in the 
range 0-15, or a letter and number in the ranges A0-A7 or B0-B7.

For speed reasons, it is recommended that, when possible, keyboard or joysticks are connected to 
built-in GPIO pins.



Keyboard
This block of the configuration file is used to define the connection of a MTX matrix keyboard or 
equivalent. It takes the form:

[keyboard]
kb0 = <pin definition>

:
kb9 = <pin definition>
dr0 = <pin definition>

:
dr7 = <pin definition>
reset = <pin definition>
reset2 = <pin definition>
dr_reset = <gnd | dr0dr7>

The lines kb0 – kb9 define the 10 keyboard sense lines, and the lines dr0-dr7 define the 8 keyboard 
drive lines.

For an unmodified MTX keyboard, the reset line defines the I/O pin that one of the keyboard reset 
lines is connected to. The other reset line should be connected to ground (0v). In that case the reset2
and dr_reset lines would be omitted.

The MTX keyboard may be modified by soldering an additional connection to the track joining the 
two reset keys. In that case both the existing keyboard reset lines should be connected to IO pins, 
and defined by the reset and reset2 lines. The additional connection between the reset keys should 
either be connected to ground (0v) or to one of the keyboard drive lines. The dr_reset line specifies 
how this is connected (gnd is the default).

Joysticks
If a matrix keyboard is fitted, then Atari style joysticks may be connected to the drive and sense 
lines, in parallel with the keyboard, as per the MTX. In that case no joystick definition is required. 
Alternately, the separate joystick switches may be connected to I/O pins, and the common 
connection to ground, as per earlier versions of MEMU-Pi. In that case, the joystick connections are
defined by a block of the form:

[joystick_1]
left = <pin definition>
right = <pin definition>
up = <pin definition>
down = <pin definition>
fire = <pin definition>

The second joystick, if fitted, is defined similarly in a [joystick_2] block.



Printer
A Centronics style printer port may be provided. It should be noted that the Centronics connector 
uses 5v logic, while the Raspberry Pi GPIO connections are only 3.3v and are not 5v tolerant. 
Therefore some form of level shifting is required, Probably the simplest solution is to use an 
MCP23017 powered from 5v, and then use I2C compatible level shifters between that and the 
Raspberry Pi. The printer hardware block takes the form:

[printer]
d0 = <pin definition>

:
d7 = <pin definition>
strobe = <pin definition>
busy = <pin definition>
error = <pin definition>
pe = <pin definition>
slct = <pin definition>

Parallel Input/Output Port
Note that the MTX PIO port is 5v logic while the Raspberry Pi GPIO connections are only 3.3v 
tolerant. Also it is not practical to implement the INSTB and OTSTB lines in software. HCT244, 
HCT245 or HCT373 are examples of devices that could provide an OTSTB function and 3.3v to 5v 
step-up (not HC chips). A HC373 or HCT373 are examples that could provide INSTB, but the 
outputs would need resistor dividers to connect to the Raspberry Pi GPIO. The PIO hardware 
definition block takes the form:

[pio]
pot0 = <pin definition>

:
pot0 = <pin definition>
pin0 = <pin definition>

:
pin7 = <pin definition>



Example
An example of a complete hardware configuration file for a matrix keyboard and Centronics printer 
is shown below:

[keyboard]
kb9 = gpio,  4
kb8 = gpio, 17
kb7 = gpio, 27
kb6 = gpio, 22
kb5 = gpio, 10
kb4 = gpio,  9
kb3 = gpio, 11
kb2 = gpio,  5
kb1 = gpio,  6
kb0 = gpio, 13
dr0 = gpio, 19
dr1 = gpio, 26
dr2 = gpio, 21
dr3 = gpio, 20
dr4 = gpio, 16
dr5 = gpio, 12
dr6 = gpio,  7
dr7 = gpio,  8
reset = gpio, 25
[printer]
d0 = mcp23017, “/dev/i2c1”, 0x20, a0
d1 = mcp23017, “/dev/i2c1”, 0x20, a1
d2 = mcp23017, “/dev/i2c1”, 0x20, a2
d3 = mcp23017, “/dev/i2c1”, 0x20, a3
d4 = mcp23017, “/dev/i2c1”, 0x20, a4
d5 = mcp23017, “/dev/i2c1”, 0x20, a5
d6 = mcp23017, “/dev/i2c1”, 0x20, a6
d7 = mcp23017, “/dev/i2c1”, 0x20, a7
busy = mcp23017, “/dev/i2c1”, 0x20, b0
error = mcp23017, “/dev/i2c1”, 0x20, b1
pe = mcp23017, “/dev/i2c1”, 0x20, b2
slct = mcp23017, “/dev/i2c1”, 0x20, b3
strobe = mcp23017, “/dev/i2c1”, 0x20, b7


