

 INTRODUCTION

The Ring allows up to 255 Memotech MTX and FDX series of micro-
computers to exchange programs and data, and is an example of a
local-area network. The network is constructed in the form of a
ring, with the output of one computer, or node, connected to the
input of the next. The links between the nodes carry RS232
signals along single-core coaxial cable at a rate of 19200 bits
per second. The maximum data transfer rate is approximately 30000
bytes every minute.

A computer connected into the Ring appears to the user to behave
no differently to a normal machine, since the Ring operates in
the background, under the control of the processor interrupts.
The top line of the text screen is used to show information on
the operation of the Ring and a real-time clock. This display may
be turned off when not required.

Each node in the Ring is identified by a twelve character name,
which can be changed by the user at any time. Information can be
transferred by typing BASIC instruction lines beginning with the
keyword NODE. The NODE commands can be used to send BASIC
programs, Noddy pages and electronic mail, and send or request
BASIC string variables and blocks of memory. Transfers can be
addressed to individual nodes or to all nodes in the Ring. A node
is not obliged to receive all transmissions and specific
categories may be rejected by using a NODE instruction. NODE
instructions are also used to give a name to a node, to list the
names of other nodes in the Ring, and for various other functions
that are described in detail in the following chapters.

Information is moved from one node to another in the form of data
packets which are transmitted around the Ring from the source
node to destination node. A data packet consists of a string of
ASCII characters with a maximum length of 255. Only one node is
able to transmit a data packet at any time and transmission times
are allocated to each node by using a token passing system. The
token is a three character group which is passed from one node to
the next. When a node receives the token, it can transmit a data
packet containing upto 64 bytes of data. The destination node
sends back an acknowledgement and the source node passes on the
token. A node with a large block of data to transmit splits the
data into groups of 64 bytes and transmits one group each time it
receives the token.

When the physical continuity of the Ring is established and the
ROM packs that contain the Ring operating software are installed
in all of the nodes, the Ring is started by the first node to
enter a name. The initialising node is called the master and is
assigned a node number of 1.
The numbers of the other nodes are determined by counting round
the Ring from the master; this happens automatically and the user
need not be aware of the number assigned to the each node. The
master nodes creates the token and transmits it to the next node

in the Ring. The other nodes are divided into two categories,
senders and repeaters. A sender node is identified by a name and
can transmit and receive data. A repeater node can neither
transmit nor receive data, but simply passes on any packets it
receives; a repeater is converted into a sender by entering a
name at the node or remotely, by an instruction executed at one
of the other nodes in the Ring.

A RING ERROR is a condition that arises when the token is no
longer being passed round the Ring. It can occur for several
reasons, such as a break in the cable, a computer in the Ring
being reset or electrical interference along the data links. When
the cause of the error is removed, the Ring will be re-
initialised by the master node. If the master is reset or
physically removed from the Ring, the sender node with the
first name in an alphabetic list of the senders will become the
master and initailise the Ring. All of the nodes that were
senders before the error occured will continue to be senders
after the Ring recovery.

If a node instruction to transfer a large block of data is
entered from the keyboard, or is encountered whilst running a
program, it will be found that the execution time for the command
is very short. It may take several seconds to completely transfer
the data, but the BASIC interpreter is free to do other
instructions while the transfer is in progress. If a ring error
happens during the transfer, the remaining data will not be sent
after the Ring is re-initialised. In some circumstances, for
instance in applications programs, this may be undesirable. To
ensure that data is successfully transferred, the error trapping
mode can be selected by using a NODE instruction. In error
trapping mode, a NODE instruction will not pass control to the
next program line until the data transfer is complete. If an
error occurs during the transfer, program control will be passed
to a BASIC line specified in the instruction that selected error
trapping mode. An error handling routine at this line number
could then decide what action to take, which might be a jump back
to the data transfer command to re-transmit the data.

Assembling the Ring Hardware

The Ring hardware is simple to assemble. Each Memotech computer
that is to be included in the Ring should have:

1. A Ring ROM.
2. RS232 communications board.
3. RS232 cable to connect adjacent computers together.

The RS232 communications board should already be inside your
Memotech computer. If it is not, consult your dealer. The Ring
ROM attaches to the expansion slot on the end of the computer,
and the RS232 connector wires plug into the RS232 socket at the
back of the computer. The Ring is physically completed by
inserting the male plugs on the wire to the female plugs on the

computer that is to be next in the Ring.

The Ring software

The Ring should now be ready to be started up. Reset all of the
computers in the Ring so that the standard Memotech BASIC screen
is displayed. A clock should appear on the top line of the screen
at each computer. (This is the Ring Clock, which gives the same
time as the normal BASIC clock.) If the clock does not appear,
check that all necessary elements of the Ring as given above are
present.

To send or receive information via the Ring, each node must be
given a name. (A node is simply the short-hand name for a
computer connected in the Ring, which will be used throughout the
remainder of this document.) This name may be chosen by the
operator at each node, or assigned automatically from another
node. To give a node a name, enter the following command

 NODE NAME,<node_name>

where <node_name> is a string expression that begins with a
capital letter and is truncated to twelve characters, e.g.

 NODE NAME,"A"

 or equivalently

 LET NODENAME$="A": NODE NAME,NODENAME$

(Note. The NAME command is just one of a number of extended BASIC
commands that are used with the Ring, each prefixed by the word
NODE. These new commands can be treated like any other BASIC
command, with the exception that they must be the last command on
a line, like REM.)

The message

 Ring initialised

should appear on the top line of the screen at the node at which
the NAME command was executed. The 'top line of the screen' is
called the node display screen, or just node screen. This screen
is constantly re-written, which means that it overwrites any
characters printed at the top of the screen, and also that the
CLS command, for instance, will clear the node screen only
temporarily.

At each of the other nodes

 Ring in operation

should be displayed. If this has not happened then check that all

nodes are connected together in the proper manner and try again.
Do not be concerned about any other messages that might be
displayed - these will be discussed later.

Should the correct messages still not appear after checking the
connections between nodes, there is likely to be a hardware
problem. The following procedure ought to be adopted to isolate
the error. Reset all machines, connect the output from each
computer into its own input, and enter a NODE NAME command. Each
machine should display the

 Ring initialised

message, and will be passing the token back to itself. Any
computer that fails to do this is almost certainly the source of
the problem. Now join the nodes together in pairs and repeat the
NODE NAME command. If any pair fails to operate, the problem is
likely to be faulty connectors. Continue connecting the machines
into bigger groups until they are all in the same Ring.

Hopefully, the Ring has now been successfully initialised, which
means that information can be transferred around the Ring. At
this stage, however, there is only one node 'in the Ring' (only
one node has been given a name. Remember that in order to send or
receive data a node must have a name). This first-named node is
the most important node in the Ring, and is called the master
node. The person operating the master node has ultimate control
of all other nodes in the Ring, if he chooses to exercise it.
This will described in more detail later.
All of the other nodes, which are currently nameless and
therefore 'not in the Ring', can be forced to enter the Ring by
typing the following command at the master node

 NODE ENTER

The message

 Node is in Ring

should appear at each node. The name given to a node that has
been entered by another node is its ring number. The master node
has, by definition, the ring number 1; thus node number 1 is the
master node. The node that receives the transmissions of the
master is number 2, the one that receives the transmissions of
number 2 is number 3, and so on.

To find out which nodes are in the Ring, and their names (and ring
numbers), the command

 NODE LIST

is available, which prints on the screen a list of all nodes in
the ring. The use of this command is best explained by examples.
Supposing the master node, named A, is the only node with a name
and there are two other nodes. The NODE LIST command will then
produce the following screen output

(i) at the master node

 <Node name> <Ring No.>

 A 01 on the main display screen

 Node is in Ring on the node screen

(ii) at node number 2

 2 02

 A 01 on the main display screen

 Node is not in Ring on the node screen

(iii) at node number 3

 3 03

 A 01 on the main display screen

 Node is not in Ring on the node screenAt each node, the
name (if it has one) and ring number of the
node is displayed first, then a line is skipped and the other
nodes in the Ring are listed. Therefore, at the master node, it
can be seen that the master is the only node in the Ring. In
other words, node A is the only sender node (the only node that
is capable of sending and receiving data). At the other two
nodes, it can be seen that the node is a repeater node (it is not
in the Ring), and that the only node that is in the Ring is the
master, A.

If the NODE ENTER command is now typed at the master node, the
following screen output will be produced by a NODE LIST command

(i) at the master node

 A 01

 2 02
 3 03 on the main display screen

 Node is in Ring on the node screen

(ii) at node number 2

 2 02

 A 01
 3 03 on the main display screen

 Node is in Ring on the node screen

(iii) at node number 3

 3 03

 A 01
 2 02 on the main display screen

 Node is in Ring on the node screen

This time all three nodes are in the Ring, and at each node the
names of the other two are given.

An important point regarding names of nodes is that a node may be
given a name, using the NODE NAME command at that node, at ANY
time, even if it already has a name or was forced to enter the
Ring with a name equivalent to its ring or node number.

This means that an operator at a node can change the name of his
node whenever he wishes, which might lead to trouble if, for
example, an important message destined for FRED fails to be
delivered because FRED has been re-named BERT.

Fortunately, this problem can be solved with the aid of the
command

 NODE DIR,<string>,<node number>

where <string> is the name of a string variable that has been
defined and can hold at least twelve characters, and <node
number> is a numeric expression that corresponds to the number of
a node (this must be in the range 1 - 255). This command is used
to discover the name of a node that has a particular number, e.g.

 NODE DIR,A$,1

With the node names as listed above, this will assign A to string
variable A$, which will then have length 1. If the node specified
by the number either does not exist because the number is greater
than the number of nodes physically connected into the Ring, or
the node is not in the Ring, then the string variable is assigned
the null string, e.g.

 NODE DIR,NAME$,6

Here the variable NAME$ is a null string (it has length 0) since
the parameter 6 is greater than the largest node number. The NODE
DIR command supplies the same information as NODE LIST, but in a
different manner and is intended for use mainly inside programs.
(NODE commands in programs will be dealt with later.)

A node, although part of the ring, can be treated as a standard
Memotech computer if desired. All Ring facilities will still be
available to the operator, but Ring-independent programs may be
written and run. The node screen is turned off by

 NODE OFF

Although still part of the ring, neither messages nor the Ring
clock will be displayed, and the computer can be treated (almost)
as if there were no Ring at all. The differences occur with the
cassette commands, SAVE/LOAD/VERIFY (this is explained in Chapter
6).

 NODE ON

switches the node screen on, re-displaying node messages and the
clock.

To clear the node screen of any old messages or unwanted
information, use the command

 NODE CLS

This chapter has covered starting the Ring, but so far no
information has been sent around the Ring. This will be dealt
with in Chapter 2.

Sending messages

The simplest form of communication between nodes in the ring is
by sending messages with the message

 NODE MESSAGE,<nodename>,<message>

where <nodename> is a string expression that is the name of the
destination node, and <message> is a string expression that is
the message (truncated to 30 characters) which will be displayed
on the node screen of the destination node, e.g.

 NODE MESSAGE,"2","Hallo Number Two!"

 or equivalently

 LET NODENAME$="2": LET MESSAGE$="Hallo Number Two!":
 NODE MESSAGE,NODENAME$,MESSAGE$

At the node 2, the node screen will display

 Hallo Number Two!

If the name of the destination node is given as *, then the
message will be sent to all nodes that are in the Ring. (N.B.
This star convention can be used with all node commands that
require a destination node name except NAME, RCV and MRCV. These
last two commands will be discussed later.)

 NODE MESSAGE,"*","Hallo everyone!"

It should be noted that any information sent with the NODE
MESSAGE command will be over-written by the next node message
that is displayed. It does have the advantage of being displayed
immediately on receipt so that an operator at the node can see
it. Information that requires to be kept, or is larger than
thirty characters, should be sent as post.

Sending Post

Each node in the Ring has a mail-box which can receive and store
mail until the operator of the node wishes to look at it. (The
words post and mail are used here interchangeably.) The command

 NODE POST,<nodename>,<string_variable>

will send the contents of <string_variable> to the node specified
by <node_name>.
E.g.

 NODE POST,"JOHN",INFO$

which sends string INFO$ to the mail-box of node JOHN. The star
name * may be used to send post to all nodes in the Ring.

When a piece of mail is sent successfully, the message

 Mail sent

appears on the node screen of the sending node. At the receiving
end, the message displayed is

 Mail received

If the node specified by <node_name> does not exist, or does not
begin with a capital letter, then the node message

 Bad node name

will result. Attempting to use the name of another node in a NODE
NAME command will also give this message. (This is an example of
a node error, which is explained later.)

If the post item is too large to fit in the available space in
the mail-box of the receiving node, or the mail-box is full, then

 Data too large

will appear on the node screen of the sender. This is another
node error message. The post item could be made smaller and the
NODE POST command repeated, or

 NODE MESSAGE,"JOHN","Delete some mail please"

could be sent, followed some time later by the post, after JOHN

has made some room in his mailbox (see below).

Looking at the Mail-Box

To display the contents of a mail-box use the command

 NODE MAIL

Each item of post is displayed with the name of the node that
sent it and also the time at which it arrived. (Remember, this
time is just the normal BASIC clock and can be set using the
BASIC command CLOCK.) The item that arrived earliest is displayed
first.

Unwanted items of post can be selectively removed from the mail-
box by

 NODE CLEARQ

This command displays each mail item separately and asks the
question

 Delete?

If the Y key is pressed then the item will be deleted from the
mailbox. If the BREAK key is pressed the command will be
terminated, and if any other key is pressed the next item (if
there is one) will be displayed.

All of the items in the mail-box can be deleted in one go by
using the command

 NODE CLEAR

There is an optional parameter to this command that specifies the
size of the mail-box, i.e.

 NODE CLEAR,<mail-box size>

where <mail-box size> is a numeric expression which is less than
8192 (8192 bytes is the maximum size that the mail-box can be set
to). For example

 NODE CLEAR,1000

This will remove all items of post from the mail-box and create a
new mail-box of size 1000 bytes. If this parameter is missing,
then the size of the mail-box will remain unchanged. The initial
size of the mail-box is approximately 6000 bytes.

After any NODE CLEAR command, the node screens displays

 Mailbox empty

This message will also appear if NODE MAIL or NODE CLEARQ is
attempted when there is nothing in the mail-box.

Printing Post

The contents of the mail-box may be sent to a printer that is
connected to the node by

 NODE PRINT,ON
This causes the first item of mail to be printed, and then the
next item, etc. An important point to note is that as a post item
is printed it is deleted from the mail-box. Therefore, if no mail
arrives whilst the printer is operating, the mail-box will become
empty when the last item of mail has been printed. Post that
arrives in the middle of printing is stored in the mail-box as
normal and will in its turn be spooled (printed). Post arriving
when the mail-box is empty will be stored, spooled and deleted as
it is received.

The commands NODE MAIL, NODE CLEAR and NODE CLEARQ are not
allowed while the spooler is 'ON'. The node message

 Mailbox in use

will result if these commands are tried. Incidentally, this
message is also produced if post is sent to a node where NODE
CLEAR or NODE CLEARQ is currently being done, or when NODE CLEAR
or NODE CLEARQ are tried at a node which is in the process of
receiving post.

The spooler is turned off by

 NODE PRINT,OFF

This command can be entered at any time and will have no effect
if the spooler is not on. (The default state for the spooler is
'OFF'.) NODE MAIL, NODE CLEAR, or NODE CLEARQ will all now
operate as usual. (The NODE MAIL and NODE CLEARQ commands may
show that the first item in the mail-box is one which has been
half-printed.) Assuming that nothing has been deleted from the
mail-box by the node operator, a NODE PRINT,ON command will set
the spooler going again from where it left off, with no loss of
mail-box information.

A node may act as a telex machine by leaving it in the PRINT,ON
mode.

This chapter deals with the transfer of BASIC string variables
and memory blocks.

Sending and receiving strings

To send a string variable from one node to another use the

command

 NODE SEND,<node_name>,<string_1>,<string_2>

This statement means that string variable <string_1>, which
exists at the sending node, is to be sent to string variable
<string_2>, which exists at the receiving node <node_name>.
E.g.

 10 LET A$="ABCDEF"
 20 NODE SEND,"JOHN",A$,B$
 30 GOTO 10

In this program, the contents of string variable A$ (namely
ABCDEF) will be sent to the node JOHN and put into string
variable B$. Note that the receiving string variable MUST exist
before the NODE SEND command is issued, unless the destination
node is given as *, in which case any nodes receiving the string
simply ignore it. (Remember that all NODE commands are like any
other BASIC instruction and can be used either directly or within
programs. However, any command following a NODE command in the
same BASIC line will be ignored.)

Node messages that the NODE SEND command may produce are listed
below:

(i) At the sender node

 Variable does not exist The receiving string is
 undefined (only if
 destination not *)

 Data too large String is too big to fit
 into receiving string
 variable

 Variable sent if success

(ii) At the receiving node

 Variable received if success

To request that a string variable be sent from a node, there is
the command

 NODE RCV,<node_name>,<string_1>,<string_2>

This works in a similar way to NODE SEND, with the difference
that string variable <string_2> is received from node
<node_name> into string variable <string_1> at the requesting
node. Both string variables must exist, and <node_name> cannot be
* (a string variable cannot be requested from all nodes).

Supposing that the example for NODE SEND is followed by

 LET A$="": NODE RCV,"JOHN",A$,B$

The LET statement will make A$ a null string, and the NODE RCV
will cause B$ (which is ABCDEF) to be sent from JOHN and put into
A$. Therefore, A$ will be ABCDEF once again. This illustrates
that the Ring provides true two-way communication; sending data
and receiving data requested.

Node messages that the NODE RCV command may produce are listed
below:

(i) At the sender node

 Variable does not exist The string that is being
 requested does not exist

 Data too large The requested string is
 too big to fit into
 receiving string variable

(ii) At the receiving node

There are no messages.

Some time after a NODE RCV command is successfully executed, the
message

 Variable received

will be displayed at the requesting node, indicating that the
string variable has been transferred.

Sending and receiving blocks of memory

The transfer of a block of memory is done in much the same way
as the transfer of a string variable. The commands NODE MSEND and
NODE SEND are analagous to NODE SEND and NODE RCV.
 NODE MSEND,<node_name>,<p1>,<a1>,<p2>,<a2>,<size>

This sends a memory block from RAM page <p1> at address <a1>
to RAM page <p2> at address <a2> in destination node <node_name>.
The number of bytes transferred is given by <size>.
As an example, the BASIC real-time clock, which consists of seven
bytes at location 64855 decimal, can be sent from one node to
all the rest. This has the effect of synchronizing all clocks in
the Ring.

 10 CLOCK "000000"
 20 NODE MSEND,"*",0,64855,0,64855,7

A check is made to see whether the block to be sent actually
exists at the sending node. If not, the BASIC error Out of range
is generated. If there is insufficient memory at the receiving
node to store the memory block, then the node message

 Memory does not exist

is displayed at the sender. If the command is successful, the
messages shown are

 Memory block sent at the sender node
 Memory block received at the receiver node

In the example below, the block of memory specified will not be
sent if the node JOHN has only one RAM page, since the
destination address of the block is in RAM page 1.

 NODE MSEND,"JOHN",0,32768,1,40000,256

For any address greater than or equal to C000 hexadecimal or
49152 decimal, the address is in the top 16K of RAM and therefore
always switched in, and so the value of the source page <p1> is
unimportant, but it is advised that the value 0 be used to avoid
confusion (this is done in the command that sends the clock).

To request a block of memory use

 NODE MRCV,<node_name>,<p1>,<a1>,<p2>,<a2>,<size>

This command operates in exactly the way one would expect, e.g.

 NODE MRCV,"JOHN",0,50000,0,64855,7

This gets the clock bytes from node JOHN and stores them at
address 50000 decimal. As with NODE RCV, a node name of * is not
allowed. If the block of memory requested does not exist

 Memory does not exist

is displayed at the requesting node. Memory block received

is given at the requesting node when the block of memory arrives.
No messages are produced at the node that received the NODE MRCV
request.

The NODE MSEND and NODE MRCV commands are designed of
transferring blocks of RAM memory; blocks of ROM memory cannot be
sent or received using these two commands.

Sending programs

BASIC programs may be sent from one node to another by

 NODE PROGRAM,<node_name>

<node_name> is the node to which the program is sent, e.g.

 10 FOR X=32 TO 128
 20 PRINT ASC(X);
 30 NEXT X

 NODE PROGRAM,"JOHN"

The program will be sent to the node JOHN, overwriting any
existing program. Two useful variations to this command are

 NODE PROGRAM,<node_name>,RUN

which causes the program to run on loading at the destination
node, and

 NODE PROGRAM,<node_name>,LLIST

which causes the program to be listed to a printer at its
destination. (The options RUN and LLIST cannot be used at the
same time.)

Sending Noddy Pages

Before any Noddy pages can be sent, it is necessary to make room
for them at the receiving node with the command

 NODE RESERVE,<no_of_bytes>

where <no_of_bytes> is a numeric expression that gives the size
of space to allocate for incoming Noddy pages. This command
destroys any BASIC variables at the node at which the command is
entered, and is probably best done shortly after starting to use
a node, but it may be done at any time and any number of times.

 NODE RESERVE,1000

The above statement will set aside 1000 bytes for receiving Noddy
pages.

To send a Noddy page use

 NODE SNODDY,<node_name>,<Noddy_page>

For this command, <Noddy_page> is the name of the Noddy page to
be sent from the sending node, and is also the name that the
Noddy page will be assigned at the receiving node. There should
not already be a Noddy page with the same name at the receiving
node, otherwise the node message

 Noddy page exists

is displayed at the sending node and the Noddy page is not
accepted. If there is insufficient space at the destination node
for the Noddy page, the node screen at the sender will show

 Data too large

Assuming success, the node messages will be

 Noddy page sent at the sending node

 Noddy page received at the receiving node

A Noddy page that has travelled around the Ring can be treated in
identical fashion to Noddy pages created at the node which
received the Noddy page. It can be edited, displayed, deleted,
etc.

To effectively prevent any Noddy pages appearing unexpectedly,

 NODE RESERVE,0

will do the trick. However, this is a rather crude way of
rejecting Noddy pages. In Chapter 6, the concepts of accepting
data sent from another node or not, and disabling NODE commands
will be discussed.

There are three NODE instructions which enable the computer to
perform subroutines on given conditions: NODE FLAG, NODE GOSUB,
and NODE RETURN. At every node, there exists always a GOSUB flag,
which is normally set to zero. The value of this flag can be
changed by another node using the NODE FLAG command, and if it
becomes non-zero and a program being run encounters a NODE GOSUB
command, then the BASIC subroutine starting at the line number
specified in the NODE GOSUB command will be performed. The
command NODE RETURN sets the GOSUB flag equal to zero.

The GOSUB flag can be looked at using the NODE STAT command, e.g.

 10 DIM T(20)
 20 NODE STAT,T
 30 PRINT T(13)

The GOSUB flag at a node may be given a value by

 NODE FLAG,<node_name>,<value>

<Value> is a numeric expression, which evaluates to an integer in
the range 0 to 255. This value is assigned to the GOSUB flag at
node <node_name>. It should be noted that this GOSUB flag has
nothing whatsoever to do with the ordinary Memotech BASIC command
GOSUB; it only has an effect on the NODE GOSUB command. The NODE
FLAG instruction produces the node messages

 Flags sent at the sending node
 Flags received at the receiving node

As an example, suppose that whenever a GOSUB flag is given a
value, that value is equal to the number of the node that sent
the flag. The next program prints the name of the last node to
send a GOSUB flag.

 10 DIM T(20): LET M$=""
 20 LET A$="GOSUB flag received"
 30 NODE GOSUB 100
 40 GOTO 30

 50 REM
 100 NODE STAT,T
 110 NODE DIR,M$,T(13)
 120 PRINT "Flag set by ";M$
 130 NODE SEND,M$,A$,B$
 140 NODE RETURN
 150 REM Clear GOSUB flag
 160 RETURN

As mentioned before, NODE RETURN puts the value 0 in the GOSUB
flag. However, this may also be done by sending a GOSUB flag
which is zero, eliminating the need for a NODE RETURN command to
clear the GOSUB flag.

E.g.
 10 NODE GOSUB 100
 20 PRINT "Gosub flag is zero"
 30 GOTO 10
 100 PRINT "Gosub flag is non-zero"
 110 RETURN

In the above program, if a GOSUB flag is received with a value
greater than 0, the subroutine at line 100 will be executed, and
it will continue to be done until a GOSUB flag of 0 is received.

It is always interesting to 'spy' on a node and see what it is
doing, and this can be done very simply with the commands NODE
FLAG, NODE GOSUB and

 NODE SCREEN,<string>

For the latter, <string> is an already existing string variable
that must be capable of holding at least 960 or 1920 characters.
The effect of the NODE SCREEN command is to copy the contents of
the entire text screen into the specified string. If the default
BASIC screen is 40 columns wide (which it will be for MTX
machines), then 40 * 25 (960) characters will be read. If the
default BASIC screen is 80 columns wide (which it generally will
be for FDX machines), then 80 * 25 (1920) characters will be
read.

The program below shows how NODE SCREEN is used.

 10 INPUT "Enter size of text screen: ";SIZE
 20 IF SIZE<>960 AND SIZE<>1920 THEN GOTO 10
 30 DIM TEXT$(SIZE): DIM T(20)
 40 REM TEXT$ is for text screen, T is for NODE STAT
 50 NODE GOSUB 10000

 <Main part of program>

 10000 REM Find out who sent GOSUB flag
 10010 NODE STAT,T
 10020 REM T(13) is number of spying node
 10030 NODE SCREEN,TEXT$
 10040 REM Read text screen into TEXT$

 10050 NODE DIR,SPY$,T(13)
 10060 REM SPY$ is name of spying node
 10070 NODE SEND,SPY$,TEXT$,A$
 10080 REM Send screen in TEXT$ to string A$ at node SPY$
 10090 NODE RETURN
 10100 RETURNWhen this program is run and a GOSUB flag
received, the
subroutine at line 10000 will be executed. Assuming that the
value of the flag is the number of the node that sent the flag,
then a NODE STAT command is done to get this value, which is used
in a NODE DIR command to get the name of the node. The text
screen is read into the string variable TEXT$ and this is sent to
the string A$ at the node which sent the GOSUB flag.

At this node, it is a trivial matter to display the contents of
A$ and thus see what was on the text screen of the node to which
the GOSUB flag was sent, i.e.

 CLS: PRINT A$;

However, there is one small complication that arises from the
fact that for a 40-column screen all 40 columns are read into A$,
including the left-hand column which is purposely left blank and
not printed to. Therefore, displaying A$ on the normal 39-column
text virtual screens will produce a staggered effect. This can be
overcome by

 10 CRVS 6,0,0,0,40,24,40
 20 REM Virtual screen 6 is a 40-column screen
 30 VS 6:CLS
 40 PRINT A$;

This problem does not arise with 80-column screens.

Calling machine-code routines

It is possible to call machine-code routines at other nodes with

 NODE CALL,<node_name>,<page>,<address>,<parameter>

This command will cause the machine-code routine in the page
given by the numeric expression <page> at the address given by
the numeric expression <address> at node <node_name> to be
called, with the HL register pair containing the two-value
<parameter>. It is the responsibility of the person using the
NODE CALL command to ensure that the machine-code subroutine
contains a RET instruction, and also that it does not last too
long since it is called during a processore interrupt.

Note The NODE CALL instruction has been included for the benefit
of those who understand machine-code, and is potentially an
extremely destructive command if used incorrectly. It is also
very powerful, especially in view of the fact that <page>
supplies full page information for the address of the routine,
allowing calls to any ROM or any RAM page.

Example

 10 REM Call to sound bell at a node
 20 NODE LIST
 30 INPUT "Ring the bell of node: ";NODE$
 40 NODE CALL,NODE$,0,2387,0
 50 GOTO 30
 60 REM Bell routine is located at decimal
 70 REM address 2387 in ROM page 0.
 80 REM Input parameter not needed.

Saving, loading and verifying programs on cassette

In order to save, load or verify programs on cassette tape, it is
first necessary to suspend the Ring so that these operations can
be performed. This is required because the cassette routines,
like the Ring routines, use the interrupts. To suspend the ring,
type

 NODE SUSPEND

Supposing this command is entered at node JOHN, then assuming
that the command is enabled, the node message

 Ring suspended

will be displayed at JOHN.

At every other computer connected in the Ring, the node message
will be

 Ring suspended by JOHN

This indicates to other nodes that node JOHN has issued the NODE
SUSPEND command. Saving, loading and verifying can now be done
without affecting the Ring. It is extremely important to realise
that whilst the Ring is suspended no information whatsoever is
able to travel around the Ring so each node is isolated.

When the saving, loading or verifying has finished, the Ring can
be re-activated by the command

 NODE CONT

which can only be issued by the node that suspended the Ring,
otherwise the node error message

 Suspend error

is produced. (This will also occur if the Ring is already
suspended when a NODE SUSPEND command is attempted.)
Due to to the effect that these two commands have on the Ring,
a NODE SUSPEND command should be done just before the cassette is
needed, and a NODE CONT command be done as soon as the cassette
is no longer required. When using a disc system to load or save a

program, the ring need not be suspended.

RS232 Instructions

The RS232 channels can be controlled with the following set of
instructions:

1. NODE BAUD,<channel_no>,<baud_rate>

This command sets the baud rate (data transfer rate in bits per
second) for the RS232 channel specified by the numeric expression
<channel_no> equal to the numeric expression <baud_rate>. The
values that <channel_no> can be are 0 or 1, and the values that
<baud_rate> can be are 50, 75, 110, 150, 300, 600, 1200, 2400,
4800, 9600 or 19200.

Example

 NODE BAUD,1,1200

This sets the baud rate for channel 1 to 1200 baud.

2. NODE FORMAT,<Data_bits>,<Stop_bits>,<Parity>

This command specifies the format for data transmitted or
received on RS232 channel 1. <Data_bits> is a numeric expression
specifying the number of data bits, which can be 5, 6, 7, or 8.
<Stop_bits> is a numeric expression specifying the number of stop
bits, which can be 1, 1.5, 2. <Parity> specifies either even
parity if +, odd parity if -, or no parity if 0.

 NODE FORMAT,8,2,0

The above statement will set the channel 1 data format to 8 data
bits, 2 stop bits and no parity. N.B. The Ring uses channel 0,
for which the data format cannot and must not be changed.

3. NODE IN,<string>,<no_of_chars>

This command will take in the number of characters given by the
numeric expression <no_of_chars> from RS232 channel 1 and put
them into the string variable <string>, e.g.

 NODE IN,A$,10The receiving string variable, A$ in this
instance, must be large
enough to hold 10 characters, otherwise the BASIC No space error
results.

4. NODE OUT,<string>,<no_of_chars>

This command works in an opposite way to NODE IN, e.g.

 NODE OUT,A$,10

This outputs to channel 1 the first 10 characters of string
variable A$, which must be at least 10 characters long.

The NODE IN and NODE OUT commands allow a node to communicate
with any other device equipped with an RS232 socket, such as
different make of computer or a terminal, and also allows two or
more Rings to be linked, with a node in one Ring connected to a
node in another Ring via RS232 channel 1. It would not be too
difficult to get any node in one Ring to communicate with any
node in a second Ring, through the 'link nodes'.

Node reset instructions

When the ring is in operation, the BASIC command NEW should never
be used. To perform the equivalent of a BASIC NEW, there is the
command

 NODE NEW

which should always be used in place of NEW. This resets the
BASIC program pointers, clears all variables, and restores the
sound buffers.

The direct node equivalent of resetting the computer is the BASIC
command

 ROM 7

This resets all internal node variables, and also destroys the
mail-box amongst other things. It should, therefore, be used with
great care.

Each node has a set of parameters which tells the node whether to
accept or reject various data sent from other nodes. There is
also a set of parameters that tells the node which NODE commands
it can do. These parameters are listed below.

Data Accept Flags

 Mail and messages
 Ring mail
 Strings and memory blocks requested by other nodes
 Strings and Noddy pages sent by other nodes
 Memory blocks sent by other nodes
 Calls
 Programs
 External parameter set

Command Enable Flags

 POST,MESSAGE

 RCV,MRCV,FLAG
 SEND,MSEND,SNODDY
 Ring packets
 SET
 PROGRAM,CALL
 ENTER,SUSPEND,CONT
 EXT

Notice that each set of flags contains eight separate groups.

To change these operating parameters, type

 NODE SET,<accept_flags>,<enable_flags>

where <accept_flags> is a numeric expression that corresponds to
the desired data accept parameters, and <enable_flags> is a
numeric expression that corresponds to the desired command enable
parameters, e.g.

 NODE SET,135,31

To understand what the numbers 135 and 31 mean in terms of the
accept and enable flags, it is necessary to think of them as two
8-bit numbers, each bit of which indicates whether a certain
group of data will be accepted or not, or a certain group of
commands will be enabled or not. (The groups have been already
been mentioned above.) If a bit is set (1), then the data will be
accepted or the command enabled (the flag is ON). If a bit is
reset (0), then the data will be rejected or the command disabled
(the flag is OFF).
For the accept flags, the binary equivalent of 135 decimal is

Bit: 7 6 5 4 3 2 1 0
Value: 1 0 0 0 0 1 1 1

 (128 + 0 + 0 + 0 + 0 + 4 + 2 + 1 = 135)

It is now quite simple to see what this means:

Bit Group Accept?

 0 Mail and messages Yes
 1 Ring mail Yes
 2 Strings and memory blocks requested Yes
 3 Strings and Noddy pages sent No
 4 Memory blocks sent No
 5 Calls No
 6 Programs No
 7 External parameter set Yes

Thus the node will accept only mail and messages (of any sort),
requests for strings and memory blocks, and external operating
parameters. If any other data is sent to the node, then the
node message

 Data rejected

will be displayed at the node which sent the data, and the data
will NOT be accepted at the receiving node. Note that messages
are ALWAYS accepted from the master node, regardless of the
accept flags.

For the enable flags, the binary equivalent of 31 decimal is

Bit: 7 6 5 4 3 2 1 0
Value: 0 0 0 1 1 1 1 1

 (0 + 0 + 0 + 16 + 8 + 4 + 2 + 1 = 31)

It is now quite simple to see what this means:

Bit Group Enabled?

 0 POST,MESSAGE Yes
 1 RCV,MRCV,FLAG Yes
 2 SEND,MSEND,SNODDY Yes
 3 Ring packets Yes
 4 SET Yes
 5 PROGRAM,CALL No
 6 ENTER,SUSPEND,CONT No
 7 EXT No
Thus the node is allowed do all NODE commands, except
PROGRAM, CALL, ENTER, SUSPEND, CONT and EXT. If these commands
are attempted, the node message

 Command disabled

will appear, and the command will NOT be executed.

The command for setting the operating parameters of another node
is

 NODE EXT,<node_name>,<accept_flags>,<enable_flags>

where <node_name> is the name of the node to which the flags are
sent, and can be * for all nodes. This command works in the way
that is to be expected.

 NODE EXT,"JOHN",255,255

turns ON all operating parameters for the node JOHN. For this
command to be successful, the node at which the command is
entered must be able to do NODE EXT (bit 7 of the command enable
flags must be 19, and also the receiving node must be accepting
external parameters (bit 7 of the data accept flags must be 1).
If both conditions are met, the following node messages will
result

 Flags sent at the sending node
 Flags received at the receiving node

When the ring is initialised, the master node has all of its
operating parameters turned ON, which means the master node is in
a position to alter not only his own operating parameters, but
also those of any other node. All other nodes have all their
parameters ON, with the exception of the EXT flag. This means
that they can do everything but set the operating parameters of
another node. They can accept everything.

It is not possible, by using the NODE SET command, to change the
values of the external parameter set accept flag or the EXT
command enable flag. Therefore

 NODE SET,255,255

is interpreted as

 NODE SET,127,127

These two flags can only be changed by a NODE EXT command entered
at another node.
Status of the Ring

It is very useful to know what is happening with the Ring at any
given time. The command that supplies information about the
status of the Ring is

 NODE STAT,<numeric_array>

The numeric array variable <numeric_array> must consist of one
dimension of at least 20 elements, since there are 20 status
values. The following program illustrates how the NODE STAT
command operates.

 10 DIM T(20)
 20 NODE STAT,T
 30 FOR I=1 TO 20
 40 PRINT I,T(I)
 50 NEXT I

The list of numbers produced by running this program is explained
fully below.

Array Meaning
Element

T(1) Ring Status: 0 = Ring not initialised
 1 = Ring in operation
 2 = Ring suspended
 3 = Ring recovery in progress

T(2) Number of nodes in ring (Range 1-255)

T(3) Number of sender nodes (Range 1-255)

T(4) Node type: 0 = Repeater (not in Ring)
 1 = Sender (in Ring)

 2 = Master (in Ring)

T(5) Data accept flag byte

T(6) Instruction enable flag byte

T(7) Number of instructions being transmitted

T(8) Number of instructions being received

T(9) Last data received sender number

T(10) Last data received type

T(11) Error trapping mode status: 1 = ON
 0 = OFFT(12)
Error number

T(13) Value of GOSUB flag

T(14) Default baud rate for channel 0

T(15) Channel 0 baud rate

T(16) Number of items in mailbox

T(17) Instruction received flag

T(18) New name flag

T(19) Non-token packet counter (modulo 256)

T(20) Token counter (modulo 256)

Notes

1. The baud rate is given by dividing 19200 by the the baud
 rate number.

2. The instruction received and new name flags are set to non-
 zero values when an instruction is received or the name list
 is changed. They are set to zero after a NODE STAT command
 is executed.

The following example programs show how these status values may
be examined.

Example 1

 100 REM *** Ring Status Flag ***
 105 REM
 110 DIM T(20)
 115 NODE STAT,T
 120 CSR 2,2

 125 ON T(1) GOSUB 145,150,155,160
 130 IF INKEY$="" THEN GOTO 130
 135 CLS: GOTO 115
 140 REM
 145 PRINT "Ring is not initialised": RETURN
 150 PRINT "Ring is in operation": RETURN
 155 PRINT "Ring is suspended": RETURN
 160 PRINT "Ring recovery in progress": RETURN

Example 2

 200 REM *** Number of nodes, node types ***
 205 REM
 210 DIM T(20)
 215 NODE STAT,T
 220 PRINT "There are";T(2);" nodes in the ring"
 225 ON T(4) GOSUB 245,250,255
 230 IF INKEY$ = "" THEN GOTO 230
 235 CLS: GOTO 215
 240 REM
 245 PRINT "This is a repeater node": RETURN
 250 PRINT "This is a sender node": RETURN
 255 PRINT "This is the master node": RETURN

Example 3

 300 REM *** Last instruction ***
 305 REM
 310 DIM T(20): LET M$=""
 315 NODE STAT,T
 320 NODE DIR,M$,T(9)
 325 PRINT "Last instruction received from ";M$
 330 PRINT "Last instruction type received: ";
 335 ON T(10)-1 GOSUB 353,356,359,362,365,368,371,
 374,377,380,383,386,389,392
 340 IF INKEY$="" THEN GOTO 340
 345 CLS: GOTO 315
 350 REM
 353 PRINT "CALL": RETURN
 356 PRINT "EXT": RETURN
 359 PRINT "FLAG": RETURN
 362 PRINT "MESSAGE": RETURN
 365 PRINT "POST": RETURN
 368 PRINT "MSEND": RETURN
 371 PRINT "SEND": RETURN
 374 PRINT "SNODDY": RETURN
 377 RETURN
 380 RETURN
 383 PRINT "PROGRAM": RETURN
 386 PRINT "MRCV": RETURN
 389 PRINT "RCV": RETURN
 392 PRINT "DISC": RETURN

Example 4

 400 REM *** Mail-box items ***
 405 REM
 410 DIM T(20)
 415 NODE STAT,T
 420 PRINT "There are ";T(16);" items in your mailbox"
 425 STOP
From Example 3, it can be seen that each type of data received
has an associated number. This number is the number of the NODE
command that caused the data to be sent. These numbers and their
NODE commands are

 Code Meaning

 1 CALL
 2 EXT
 3 FLAG
 4 MESSAGE
 5 POST
 6 MSEND
 7 SEND
 8 SNODDY
 9
 10
 11 PROGRAM
 12 MRCV
 13 RCV
 14 DISC

Codes 9 and 10 will never occur.

An explanation of the error trapping mode and the error number
status variables is given in the next chapter.

A node error occurs when a NODE command fails, for some reason,
to do what is expected of it. This may be due to a machine in the
Ring being reset causing a RING ERROR, or data being rejected or
a variable not existing, and so on. It is vital that a program
using the Ring knows whether a node command has been successfully
executed or not, so that when a node error occurs appropriate
action can be taken.

The command

 NODE ERROR,<line_no>

turns on error trapping mode (which by default is OFF). In error
trapping mode, a number of NODE commands do NOT pass program
control onto to the next BASIC line until it is known that the
command was successful. If there is a node error, then program
control is passed to the BASIC line specified by the <line_no>
parameter in the NODE ERROR instruction. Each node error has an
associated error number, which is the number of the node error

message that is displayed on the node screen when the error
occurs.

From the previous discussion of the NODE STAT command, it can be
seen that status variables 11 and 12 refer to errors. The
eleventh variable indicates whether error trapping mode is
enabled or not, e.g.

 10 DIM T(20)
 20 NODE STAT,T
 30 PRINT "Error trapping ";
 40 IF T(11)=1 THEN PRINT "ON" ELSE PRINT "OFF"

The twelfth variable gives the number of the last node error.
There is a total of 18 distinct node errors and these are listed
below.

Number Node Error Message

1 RING ERROR

A node has been reset; the token or part of a data packet has
been lost; a node has not acknowledged receiving data within a
certain time limit. The master node will recover the Ring
automatically.

2 MASTER RESET

Internal node variables have been changed at a node, so that they
are no longer the same at each node. The master node has been
forced to reset the Ring, making all other nodes repeaters. This
seldom happens.

3 Data transmission error

Data sent to a node or an acknowledgement sent back has been
corrupted, due to bad electrical transmission. With good
connections between nodes, this error should never occur.

4 Node is not in Ring

A NODE command involving sending data to a node or requesting
data from a node has been entered at a repeater node.

5 Bad node name

For NODE NAME: a name has been typed in that either does not
begin with a capital letter, or is the name of another node.
Generally: the node name specified is not the name of a node in
the Ring.

6 * not allowed

A node name beginning with * has been entered in NODE NAME or
NODE RCV or NODE MRCV.

7 Command disabled

The command enable flags do not allow this command.

8 Data rejected

The data sent has been rejected by the receiving node.

9 Node busy

Happens occasionally with NODE RCV or NODE MRCV. A request to
send a string or a block of memory has been received by a node
which is the middle of a NODE command that sends data. The
request should be made again.

10 Receiver buffer full

When a node receives data such as a string, memory block, post or
a program, an entry is made in the command receiver buffer. This
entry tells the node how much data to expect and where to put it,
so that when the next packet of data arrives (if there is one) it
knows what to do with it. The entry is deleted when all the data
has been received.This error indicates to the node that is sending the data
that
the receiving node is unable, at the moment, to accept the data
because its command receiver buffer is full. The user should keep
trying to send the data until there is room in the receiver
buffer. (Note. This error can also occur when a request for data
is sent to a node that has no room in its command transmitter
buffer. See directly below.)

11 Transmitter buffer full

The command transmitter buffer operates in a similar way to the
command receiver buffer, except that this buffer is used to hold
entries containing information about data to be transmitted. This
error occurs when any command that involves sending data is
entered at a node which has no free space in its command
transmitter buffer. The user should try the command again until
there is room in the transmitter buffer.

12 Data too large

NODE POST, NODE SEND or NODE SNODDY. The data being sent cannot
be accomodated at the receiving node. Also occurs with NODE RCV
if the requested string is bigger than the maximum size of the
receiving string.

13 Memory does not exist

NODE MSEND or NODE MRCV.

14 Variable does not exist

NODE SEND or NODE RCV.

15 Noddy page exists

NODE SNODDY.

16 Program already loading

NODE PROGRAM. Results if a program is sent to a node to which a
program is already being sent.

17 Mailbox in use

NODE POST. Post is sent to a node that is in the middle of a NODE
CLEAR or NODE CLEARQ command.

18 Suspend error

NODE SUSPEND: The Ring is already suspended. NODE CONT: The Ring
was not suspended by this node.

If a command is successful in error trapping mode, then the error
number produced is 0. To turn off error trapping mode use

 NODE RESTORE

Example
 10 NODE ERROR,100
 20 REM Error trapping mode on
 30 INPUT "What name would you like? ";I$
 40 NODE NAME,I$
 50 NODE RESTORE
 60 REM Error trapping mode off
 70 STOP
 100 PRINT "Please enter a proper node name"
 120 GOTO 30

The following is list of all NODE commands and the errors (and
numbers) that may be trapped in error trapping mode.

 Node Error Error
 Command Number Message

 NAME 1 RING ERROR
 5 Bad node name
 6 * not allowed

 CLS None

 DIR None

 MAIL None

 CLEARQ None

 RESERVE None

 SUSPEND 1 RING ERROR
 4 Node is not in Ring
 7 Command disabled
 18 Suspend error

 ENTER 1 RING ERROR
 4 Node is not in Ring
 7 Command disabled

 FORMAT None

 IN None

 SCREEN None

 SET 4 Node is not in Ring
 7 Command disabled

 STAT None

 ERROR None

 CALL 1 RING ERROR
 2 MASTER RESET
 3 Data transmission error
 4 Node is not in Ring
 5 Bad node name
 7 Command disabled
 11 Transmitter buffer full

 EXT 1 RING ERROR
 2 MASTER RESET
 3 Data transmission error
 4 Node is not in Ring
 5 Bad node name
 7 Command disabled
 11 Transmitter buffer full

 FLAG 1 RING ERROR
 2 MASTER RESET
 3 Data transmission error
 4 Node is not in Ring
 5 Bad node name
 7 Command disabled
 11 Transmitter buffer full

 MESSAGE 1 RING ERROR
 2 MASTER RESET
 3 Data transmission error
 4 Node is not in Ring
 5 Bad node name
 7 Command disabled
 11 Transmitter buffer full

 POST 1 RING ERROR
 2 MASTER RESET
 3 Data transmission error
 4 Node is not in Ring
 5 Bad node name
 7 Command disabled
 10 Receiver buffer full
 11 Transmitter buffer full
 12 Data too large
 17 Mailbox in use

 MSEND 1 RING ERROR
 2 MASTER RESET
 3 Data transmission error
 4 Node is not in Ring
 5 Bad node name
 7 Command disabled
 10 Receiver buffer full
 11 Transmitter buffer full
 13 Memory does not exist

 SEND 1 RING ERROR
 2 MASTER RESET
 3 Data transmission error
 4 Node is not in Ring
 5 Bad node name
 7 Command disabled
 10 Receiver buffer full
 11 Transmitter buffer full
 12 Data too large
 14 Variable does not exist

 SNODDY 1 RING ERROR
 2 MASTER RESET
 3 Data transmission error
 4 Node is not in Ring
 5 Bad node name
 7 Command disabled
 10 Receiver buffer full
 11 Transmitter buffer full
 12 Data too large
 15 Noddy page exists

 PROGRAM 1 RING ERROR
 2 MASTER RESET
 3 Data transmission error
 4 Node is not in Ring
 5 Bad node name
 7 Command disabled
 10 Receiver buffer full
 11 Transmitter buffer full
 16 Program already loading

 MRCV 1 RING ERROR
 2 MASTER RESET
 3 Data transmission error
 4 Node is not in Ring

 5 Bad node name
 7 Command disabled
 9 Node busy
 10 Receiver buffer full
 11 Transmitter buffer full

 RCV 1 RING ERROR
 2 MASTER RESET
 3 Data transmission error
 4 Node is not in Ring
 5 Bad node name
 7 Command disabled
 9 Node busy
 10 Receiver buffer full
 11 Transmitter buffer full
 12 Data too large
 14 Variable does not exist

 BAUD None

 CLEAR None

 CONT 1 RING ERROR
 4 Node is not in Ring
 7 Command disabled
 18 Suspend error

 GOSUB None

 LIST None

 NEW None

 OFF None

 ON None

 OUT None

 PRINT None

 RESTORE None

 RETURN None

Notice that for commands like NODE CLEAR or NODE CLEARQ, error
trapping mode does not apply, even though messages that are node
error messages can occur, such as

 Mailbox in use

if the spooler is operating for example. This is not considered
to be a true node error (most node errors take place with
commands that send or request data).

There are a total of 40 node screen messages, of which 18 are
error messages. For the sake of completeness, the remaining non-
error messages are as follows:

 Message Message
 Number

 0 Clears node screen

 19 Ring

 20 Ring initialised

 21 Ring in operation

 22 Ring suspended by

 23 Node is in Ring

 24 Code executed

 25 Flags received

 26 Flags sent

 27 Message sent

 28 Mailbox empty

 29 Mail received

 30 Mail sent

 31 Memory block received

 32 Memory block sent

 33 Variable received

 34 Variable sent

 35 Noddy page received

 36 Noddy page sent

 37 Program loading

 38 Program received

 39 Program sent

 RING INSTRUCTION SET SUMMARY

1. Definitions

 I$ is a string variable which is truncated to 12
 characters.
 S$ is a string expression which is truncated to
 40 characters.
 M$, A$, B$ are string variables.
 J, K, L, P are numeric variables with integer
 values in the range 0 - 255.
 N, X, Y are numeric variables with integer
 values in the range 0 - 65535.
 T is a numeric array with dimension >= 20
 n is a BASIC line number.
 < > denotes an optional field in an instruction
 line.

 All instructions (except ROM) are preceded by the
 BASIC reserved word NODE. A NODE instruction
 cannot be followed by another instruction on the
 same line. If the name of the destination node
 I$, in any instruction except NAME, is replaced
 by "*", then the instruction will be sent to all
 nodes in the ring.

2. Node Name Instructions

NAME, I$

 Enter name for node. This instruction causes the
 node to initialise the ring or, if ring is in
 operation, to enter the ring when the next token
 is received. If the node is already in the ring,
 the instruction changes the name of the node. A
 name must begin with an upper case alphabetic
 character.

LIST

 List names of nodes in ring.

DIR, M$, J

 If J is the number of a node in the ring, then M$
 is equated to the 12 character string which is
 the name corresponding to J. If J is not the
 number of a node in the ring, M$ is equated to
 the null string.3. Mail Instructions

POST, I$, A$

 Send string A$ to mail-box of node I$.

MAIL

 Display contents of mail-box.

CLEAR <,N>

 Clear mail-box. N sets size of mail-box, where N
 < 8192.

CLEARQ

 Step through mail-box with option to clear
 individual items.

PRINT,ON

 Print contents of mail-box and thereafter print
 items of post as they are received. Entries are
 deleted from mail-box after printing. The maximum
 length of an entry is 8192 characters.

PRINT,OFF

 Stop printing of mail.

MESSAGE,I$,S$

 Send message S$ to node screen in node I$. Does
 not return to BASIC until message is sent.

4. Memory Transfer Instructions

MSEND,I$,P1,X1,P2,X2,Y

 Send memory block with length Y and start address
 X1 on RAM page P1 to start address X2 on RAM page
 P2 in node I$.

MRCV,I$,P1,X1,P2,X2,Y

 Receive memory block with length Y and start
 address X2 on RAM page P2 in node I$ and write to
 start address X1 on RAM page P1.
5. String Transfer Instructions

SEND,I$,A$,B$

 Send string A$ to string B$ in node I$.

RCV,I$,A$,B$

 Receive string B$ from node I$ and write to
 string A$.

6. Program Transfer Instruction

PROGRAM,I$ <,RUN> <,LLIST>

 Transfer program to node I$. The first optional
 field causes program to run after loading. The
 second causes the program to be listed to a
 printer at the destination node.

7. Ring Operating Instructions

SUSPEND

 Suspend ring operation when next token received.

CONT

 Continue ring operation.

ENTER

 Cause all repeater nodes to enter ring with
 identifiers equal to their ring numbers.

8. Node Screen Instructions

ON

 Switch node screen on.

OFF

 Switch node screen off.

CLS

 Clear node screen.

9. BASIC Subroutine Instructions

FLAG,I$,N

 Set GOSUB flag N in node I$.

GOSUB n

 Call subroutine at line number n if GOSUB flag N
 <> 0.

RETURN

 Clear GOSUB flag.

10. Subroutine Call Instruction

CALL,I$,P,X,Y

 Call machine code routine on page P at address X
 in node I$ with parameter Y in register pair HL.
 Bits 0 -3 of P select the RAM page and bits 4 - 6
 select the ROM page. If bit 7 is set, the CP/M
 RAM configuration is selected.

11. Node Parameter Set Instructions

SET,J,K

 Set operating parameters for node. This instruc-
 tion cannot set bit 7 of the flag bytes below.

EXT,I$,J,K

 Set operating parameters for node I$. J and K are
 8-bit numbers. J gives the data accept flags and
 K gives the instruction enable flags.

Accept flags: Bit J 0 = reject 1 = accept Default = FFH

 0 Mail and messages

 1 Ring mail

 2 Strings and memory blocks requested by
 nodes

 3 Strings and Noddy pages sent from other
 nodes

 4 Memory blocks sent from other nodes

 5 Calls

 6 Programs

 7 External parameter set

Enable flags: Bit K 0 = disable 1 = enable Default = 7FH
 (FFH for master)

 0 Post and messages

 1 Receive and flag

 2 Send strings, memory blocks and Noddy
 pages

 3 Ring packets

 4 Set

 5 Programs and calls

 6 Enter, suspend and continue

 7 External parameter set

12. Error Trapping Instructions

ERROR,n

 Enable error trapping mode. If an error occurs
 during a node instruction, a BASIC program jump
 to line number n is executed.

 In error trapping mode, all node instructions
 which cause data to be transmitted do not pass
 control to the next program line until the
 transmission is complete or an error is detected.

RESTORE

 Clear error trapping mode.

13. Ring Status Instruction

STAT,T

 Write status parameters to one-dimensional
 numeric array T. The contents of T are as
 follows:

 T index

 1 Ring status: 0 = Ring not initialised
 1 = Ring in operation
 2 = Ring suspended
 3 = Ring recovery in
 progress

 2 Number of nodes in ring (1 - 255)

 3 Number of sender nodes (1 - 255)

 4 Node type: 0 = repeater
 1 = sender
 2 = master

 5 Data accept flag byte

 6 Instruction enable flag byte

 7 Number of instructions being transmitted

 8 Number of instructions being received

 9 Last instruction received: sender
 number

 10 Last instruction received: instruction
 type

 11 Error trapping mode ON (1) or OFF (0)

 12 Error number

 13 GOSUB flag

 14 Default baud rate number for channel 0

 15 Channel 0 baud rate number

 16 Number of items in mailbox

 17 Instruction received flag

 18 New name flag

 19 Non-token packet counter (modulo 256)

 20 Token counter (modulo 256)

 The baud rate is given by dividing the baud rate
 number into 19200. The instruction received and
 new name flags are set to non-zero values when an
 instruction is received or the name list is
 changed. They are cleared after a STAT command is
 executed.

14. RS232 Instructions

BAUD,0,r

 Set channel 0 baud rate to r (75 to 19200).If the
 ring is in operation, the baud rate will not be
 changed until the node suspends the ring.

BAUD,1,r

 Set channel 1 baud rate to r (75 to 19200).

FORMAT,b,s,p

 Set data format for channel 1. b is the number of
 data bits (5,6,7,8), s is the number of stop bits
 (1, 1.5, 2) and p is the parity (-, 0, +).

IN,A$,N

 Read N characters to string A$ from channel 1
 input. The length of A$ is set equal to N.
OUT,A$,N

 Write the first N characters of string A$ to
 channel 1 output.

15. Noddy Instructions

RESERVE,X

 Reserve X bytes of Noddy program space for Noddy
 pages sent from other nodes.

SNODDY,I$,"page name"

 Send specified Noddy page to node I$.

16. Screen Instruction

SCREEN,A$

 Causes 40 * 24 bytes to be read from the video
 RAM into an already existing string A$. These
 bytes are the characters currently held in the
 full text screen.

17. Node Reset Instructions

NEW

 Resets the BASIC program variables and pointers,
 and the sound buffers. This instruction should be
 used instead of the BASIC instruction NEW when
 the ring is in operation.

ROM 7

 Reset node variables (Node cold-boot).

18. Error Numbers

 The error numbers are used in error trapping
 mode. If an instruction is successfully executed
 the error number is 0. The error number is given
 by the STAT command.
 Number: Error Type:

 1 RING ERROR

 2 MASTER RESET

 3 Data transmission error

 4 Node is not in ring

 5 Bad node name

 6 '*' not allowed

 7 Command disabled

 8 Data rejected

 9 Node busy

 10 Receiver buffer full

 11 Transmitter buffer full

 12 Data too large

 13 Memory does not exist

 14 Variable does not exist

 15 Noddy page exists

 16 Program already loading

 17 Mailbox in use

 18 Suspend error

19. Instruction Types

 The instruction type code is given by the STAT

 command. It indicates the type of the last
 instruction received by the node.

 Code: Instruction:

 1 CALL
19. Instruction Types (cont.)

 Code: Instruction:

 2 EXT

 3 FLAG

 4 MESSAGE

 5 POST

 6 MSEND

 7 SEND

 8 SNODDY

 9

 10

 11 PROGRAM

 12 MRCV

 13 RCV

 14 DISC

