
i

CONTENTS

1.0 Introduction 001 - 008

1.1 Overview 001
1.2 Objectives/Aims 002
1.3 The Listings 002
1.4 The Controller Devices 003
1.5 MTX Memory Map Architecture 004
1.6 ROM Page Switching 005
1.7 RAM Page Switching 007

2.0 Graphics Technical Overview 009 - 019

2.1 Definitions of VDP and VRAM 009
2.2 CPU and VDP Communication 010
2.3 Screen Modes and Resolutions 010
2.4 VDP Registers 011
2.4.1 Description of the VDP Function Table 012
2.4.2 Initialising the VDP Registers 015
2.5 Accessing VRAM 017
2.6 VRAM Map Examples 019

3.0 TEXT Mode 020 - 028

3.1 Introduction 020
3.2 Character Compression/Expansion by Rotation 020
3.3 Colour on the TEXT Screen 023
3.4 VRAM Tables 026
3.4.1 The TEXT Pattern Generator Table 026
3.4.2 TEXT Name Table 026

4.0 Graphics I and Multicolour Modes 029 - 037

4.1 Graphics I Mode 029 - 036

4.1.1 Overview 029
4.1.2 Fast Screen Switching 029
4.1.3 Library Building 034
4.1.4 VRAM Tables - Pattern and Name Tables 035
4.1.5 Colour 036

4.2 Multicolour Mode (64 x 48 Resolution) 037 - 037

5.0 Graphics II Text Mode (32 x 24 characters) 038 - 048

5.1 Introduction 038
5.2 Enhanced Resolution by Partition 038
5.3 The VRAM Tables 039
5.4 Initialisation of the PGT 039
5.5 Colour Mapping with GII Text Screens 042
5.6 The Name Table & the Text Coordinate System 045
5.7 VDP Picture Mechanism/Screen Refresh 045
5.8 GI Mode Emulation but with Enhanced Colour 046

ii

6.0 Graphics II BIT Mapped Mode (256x192 dots) 049 - 064

6.1 Introduction 049
6.2 The BIT Mapped Mechanism wrt TEXT 049
 Orientated Displays
6.3 The BIT Mapped Mechanism wrt Plotting 053
 and Drawing
6.4 Colour and the BIT Mapped Mode 061

7.0 Sprites 065 - 084

7.1 Introduction - What is a Sprite? 065
7.2 The Sprite and the Sprite Plane 065
7.3 VRAM Setup 067
7.4 The Sprite Pattern Generator (SPG) Table 067
7.5 The Shape and Size of Sprites 068
7.6 Magnification 069
7.7 The Sprite Attribute Table (SAT) 069
7.7.1 Overview 069
7.7.2 The Sprite Vertical Position 071

 7.7.3 The Sprite Horizontal Position 073
7.7.4 The Sprite Pattern Number (SPN) 073
7.7.5 The Sprite Colour 074
7.8 Sprite VRAM Table Interaction 074
7.9 The Fifth Sprite Rule & Collision Detection 074
7.10 Demonstration Programs for the Sprite 076
 Functions
7.10.1 Introduction and Demonstration Listing 076
7.10.2 Demo 1 083
7.10.3 Demo 2 083
7.10.4 Demo 3 084
7.10.5 Demo 4 084

8.0 Screen Dump 085 - 096

8.1 Introduction 085
8.2 Transmitting Data via the Parallel I/face 085
8.2.1 The Hardware 085
8.2.2 The Software 086
8.3 Screen Types & their Screen Dump Software 088
8.3.1 Introduction 088
8.3.2 TEXT Only Screen Dump Software 089
8.3.3 Printer Control Codes 090
8.4 Graphical BIT Mapped Screen Dumps 092
8.4.1 Transposition 092
8.4.2 Printer Density Modes 093

9.0 The Memotech Keyboard and Joystick 097 - 112

9.1 Introduction 097
9.2 Detecting a Keypress 097
9.2.1 Selecting the Sense Line 097
9.2.2 Scaning the Sense Line 098
9.2.3 Testing for a Keypress 101
9.3 Reading the Joystick Ports 102

iii

9.4 MTX Series ROM BIOS - Keyboard Routines 104
9.5 Operating System Independent Keyboard 105
 Utility Routines

10.0 MTX Sound 113 - 120

10.1 Introduction 113
10.2 Description of the PSG 113
10.3 CPU - PSG Communication 114
10.4 Volume Control 115
10.5 Frequency Synthesis 117
10.6 Noise Generation 119
10.7 Sound Off 120

A - C MSX Technical Data Appendix 121 - 128

A. Introduction 121 - 121

B. MSX Hardware Specification 121 - 126

B.1 Devices 121
B.2 Printer Port 121
B.3 Screen Display 122
B.4 Keyboard 123
B.5 Sound 124
B.6 Memory Map 126

C. MSX Data Load,Save and Run 127 - 128

D - F Tatung Einstein Technical Data Appendix 129 - 135

D. Introduction 129 - 129

E. Einstein Hardware 129 - 133

E.1 Devices 129
E.2 Screen Display 129
E.3 Keyboard 129
E.4 Sound 131
E.5 Printer Port 131
E.6 Memory Map 133

F. Einstein Data Load,Save and Run 133 - 135

G - H Miscellaneous Appendix 136 - 138

G. Figures Reference 136 - 137

H. Book List 138 - 138

H.1 Memotech MTX,SDX and FDX 138
H.2 MSX 138
H.3 Tatung Einstein 138
H.4 MTX,MSX and Einstein 138

iv

Copyright Notice

Information enclosed within is free from the authors claim.

Disclaimer

Every effort has been made to guard against errors and the author
cannot be held responsible for any errors or omissions or damage
resulting from the use of the information within this reference
manual. Every effort has been made to avoid infringing copyright
holders from any source material the author may have read. Please
advise the author of any unintentional infringements or issues as
soon as possible for correction &/or acknowledgement.

Trademarks

The following references &/or trademarks are acknowledge:

IBM (International Business Machines) , Epson (Epson) , QL,
Amstrad CPC and ZX Spectrum (Amstard), DEVPAC80 (Hisoft), CPM
(Digital Research) , MSX and MSX 2 (Microsoft) , Einstein and
Einstein 256 (Tatung) , Z80 (Zilog Corporation) , BBC B and
ARM (ACORN and BBC) , Manic Miner (Software Projects) ,
Agrovator (Syntaxsoft) , TI 9929/9939 / SN 76489A (Texas
Instruments) , AY-8910 (General Instruments) , 6502
(Motorola), Atari ST (Atari Corporation) ,CBM 64 and Amiga
(Commodore Business Machines). MGT sam coupe (Miles Gordon
Techology). FDX , SDX and MTX 500/512 (Memotech Computers
Limited). NEWWORD (Newstar). WORDSTAR (Micropro) and
Mastertronic (Mastertronic/Virgin). Dbase II (Ashton Tate).
Supercalc (Sorcim)

v

1.0 Introduction

1.1 Overview

Between 1983 and 1984, three microcomputers sharing almost
identical hardware architecture , ie same CPU & graphics chip
VDP), hit the streets. They were the U.K. based Memotech MTX
and the Tatung Einstein and the mighty Japanese MSX computers
,like the Sony Hibit. All three machines (referred to as the
VDP Compendium) were priced at around ` 300 - ` 500. The VDP
Compendium was offering superb technical specification , but
at a price out of the reach of many potential users. This
allowed the Sinclair ZX Spectrum & the Commodore 64 establish
themselves as the main Competitors in the low cost games and
educational markets.

Following on from this the much awaited new Sinclair computer
,Sinclair Ql, and the arrival of the Amstrad CPC 464 with its
built-in tape recorder and monitor, both priced at about `400
, destroyed any chances the VDP compendium had. Even when all
three machines eventually did cut their prices, thus making
them far more attractive , the lack of software compared with
the Spectrum and Commodore 64 , was a serious drawback , even
though the software produced was far superior.

The next step was the production of a number of excellent
ZX Spectrum, software emulators. The initial emulators , just
allowed ZX BASIC programs to run on the VDP Compendium. The
next stage of emulators allowed specific commercial games
to run. However, the emulator didn't allow the user to go out
and buy ZX Spectrum software, load it in and run it. First of
all they had to buy a special tape that was setup to run at
least 20 games, thus increasing the cost and you were not
guaranteed that the software you wanted was available on a
special tape. [NB: The arrival of the MGT sam coupe computer
does allow proper ZX Spectrum emulation without compromise].

Finally, Version 2's hit the streets , ie the Einstein 256 or
the MSX 2 or the Memotech MTX series 2 , offering far better
performance and specification at competitive prices,but still
didn't woo the public who wanted games software ,NOW . Even
the arrival of the 16-bit Atari ST and CBM Amiga , have taken
4 or 5 years to get a foothold in the games market and even
then its negligible compared with the ZX Spectrum and CBM 64.

The VDP compendium machines have niche markets and because of
their technical excellence , construction and good quality
software available will remain for some time to come.Machines
like the Memotech and Einstein and MSX 2 offer the computer
user the opportunity to upgrade to CPM , the 8 - bit software
business standard. Such classics as Dbase II or Wordstar or
Supercalc are now cheap and readily available.

Page 1

1.2 Objectives/Aims

Originally , this computer manual was aimed at Memotech MTX
owners. However , as I looked at other Z80 based systems, it
became apparent that the Einstein and MSX computers shared
a common architecture with the Memotech MTX series - Z80 CPU
, VDP graphics chip , IN / OUT mapped hardware devices , CPM
expansion , similar sound capabilities (3 channel) .

Rather than a complete rewrite , I decided to leave the bulk
of the text as is and add two short appendixes to help users
of the MSX and Einstein understand and use the information
within the manual.

"VDP Discovered" is a comprehensive technical manual on the
workings of the Texas Instruments VDP graphics processor.
However, the interactive nature of graphics with joysticks ,
keyboard, screen dumps and RAM / ROM , required an expansive
treatment to include such overlap. Certainly , not for the
novice, but anyone who is interested in Z80 machine code
and writing software whether utilities or games or ??? ,
shouldn't be without this excellent source of information.

1.3 The Listings

Throughout this manual the prefix # is used to signify that
the number following it is a hexadecimal number, ie #9000.
However , some other computers/assemblers use the ampersand
sign to prefix hex numbers, ie &A000. Some other systems use
the postfix "H" to indicate a hex number, ie DFFFH. Use the
nomenclature that your system uses.

All listings in this book have been designed to be well
structured, informative and above all modular. The reason for
modularity is that it means that many of the subroutines
designed for one listing can be incorporated into other
program listings. A follow up manual called POWER GRAPHICS ,
extracts many of the subroutines , enhances them and adds new
ones, like DRAWLINE , DRAWBOX , FILLBOX, TRIANGLE ,etc. This
manual is a Z80 graphics (VDP) library. Ideal companion for
all those thinking of writing programs, like CAD,DTP,etc.

All listings were tested on a MTX 512 tape system,
and a FDX/SDX disc system. All listings were as written , see
examples within, ie used the Memotech built-in Z80 assembler
and MTX BASIC (with Disc BASIC,if FDX/SDX disc system used).

However,for the professional Z80 programmer , who prefers too
write and develop utilities/programs ,in CPM mode,then you'll
also find the current listings compatible . The listings were
written using Newword wordprocessor in non-document mode (or
ASCII mode) to generate the Z80 assembly source text , and
compiled (assembled) into Z80 machine code or object code
using Hisoft's DEVPAC80 (v2) Z80 compiler . The procedure for
generating and running the object code is as follows:

Page 2

Save the source text to disc as "fname.gen"
Compile the source text into an object file or COM file, ie
"fname.com" using DEVPAC80 .
Load the Memotech with Disc Basic: FDXB 40 or FDXB07 40 <RET>

This will return you to MTX Disc Basic Mode. Now Load the
compiled Z80 object code with:

DISC (USER) READ "fname.COM",33031

Now type in the BASIC part of the listing, replacing the
occurrences of GOSUB <line number> with RAND USR(33031).

MSX and Tatung Einstein users please refer to the appropriate
appendix for the method of loading , saving and running the
enclosed listings.

Note that the SOURCE file is the Z80 assembly language text
file. Whereas,the OBJECT file is the compiled version of the
source file. The object file is a file in binary form for the
computer to read.

1.4 The Controller Devices

The Memotech MTX series uses dedicated industry standard
IN/OUT mapped hardware devices (controllers) for handling the
computers sound ,graphics , communication and Disc filing
capabilities. This approach was in preference of the in-house
custom designed hardware devices. The use of custom chips
allows one chip to handle a number of different functions,ie
like sound and graphics and reduce the overall chip count and
the size of the computer. This type of approach is certainly
cost effective in the long term but it was extremely
expensive to design and debug in 1983 - 1984, when the
Memotech MTX series was being developed.

However, better design software and cheaper and better
manufacturing technology have greatly improved the speed and
cost effectiveness of this approach as Acorn have found with
its ARM series of RISC CPUs and controllers. Therefore,
Memotech opted to use the industry standard devices because:

a) They were standard hardware devices,there would be a
 plentiful supply as more than one manufacturer. Also
 increased competition between suppliers brings the
 prices of the devices down.

b) Circuit design would be easier because of increased
 literature documentation.

c) Other computers using the same architecture and devices
 ,like the MSX and Einstein machines, should have enticed
 software houses to write for these machines as very little
 re-writing would have been necessary,because they used the
 same graphics chip and the architecture.

Page 3

Chapters 2 to 10 are devoted to explaining how these devices
interface with the CPU and the Z80 programmer.

1.5 MTX Memory Map Architecture

The Memotech MTX series has deen designed to operate as a
ROM/RAM based memory system , as in normal MTX mode,see
Figure 1-1. However, for some purposes,as for CPM mode, the
memory map must also be configured as a RAM only
architecture. This latter architecture is very similar to the
memory map in Figure 1-1,execpt that the 7 pages of ROM (16k)
are used as 16k of RAM. All this will become a lot clearer in
a moment or two but first study the Memory Map below.

: Page: Common : Application : RAM 2 : RAM 1 : Common :
: Num : ROM : ROM : BLOCK : BLOCK : RAM :

: 0 : SYS-A : SYS-Basic : 512 : 500/512 : Common :
: 1 : common : SYS-C : exp : 512 : to all :
: 2 : to all : USER ROM : exp : exp : 16 pages:
: 3 : 7 pages : USER ROM : exp : exp : of RAM :
: 4 : of ROM. : USER ROM : exp : exp : and is :
: 5 : It is : FDX EPROM : exp : exp :available:
: 6 : readily : NODE EPROM : exp : exp : all the :
: 7 :available: KBD EPROM : exp : exp : time,no :
: 8 : / / / / : / / / / / / : exp : exp : matter :
: 9 : / / / / : / / / / / / : exp : exp : what PAG:
: 10 : / / / / : / / / / / / : exp : exp : your on.:
: 11 : / / / / : / / / / / / : exp : exp : This PAG:
: 12 : / / / / : / / / / / / : exp : exp : has the :
: 13 : / / / / : / / / / / / : exp : exp : system :
: 14 : / / / / : / / / / / / : exp : exp : & BASIC :
: 15 : / / / / : / / / / / / : exp : exp :variables:

: SIZE: 8k : 8k : 16k : 16k : 16k :

where:-

exp = 16k RAM expansion.
500 = This label indicates that this RAM block is

 available on the MTX 500 series.
512 = as for 500,except available on the MTX 512.
SYS-A = This ROM holds the startup code and the MTXOS.
SYS-B = This ROM holds the BASIC Interpreter Code.
SYS-C = This ROM holds the PANEL and other utility code.
USER = A User ROM can be inserted here. One of these slots

 is used for the SDX EPROM.
FDX = Holds the FDX bootstrap Code.
NODE = This ROM is needed for Networking.
KBD = This is the Custom KBD EPROM.
Common = These Pages, whether RAM or ROM,have been linked so

 that they are available on all PAGES, see later.

Figure 1-1: The Memotech ROM/RAM Architecture as for MTX 512.

Page 4

Let us take a closer look at the MTX mode architecture. There
are two RAM blocks of RAM providing 16k per page. These two
blocks of 16k provide the user with 32k of RAM per PAGE. This
can be expanded to a maximum of 512k (16*32k). The user Ram
is used to store BASIC and Z80 programs, and text. The user
RAM is located between #4000 and #BFFF. The other 16k of RAM
or Common RAM is located between #C000 and #FFFF. This area
of RAM has been joined to all pages so that it is available
on all pages. Its primary function is to hold the System
variables and the variables and workspace needed to RUN BASIC
programs held in the USER RAM area, ie arrays, variables,
strings.

The 16k ROM block is subdivided into two 8k subblocks.
Located at #0000 to #1FFF is the Common ROM, SYS-A. This ROM
holds all the necessary code to set up the system variables
,etc and holds the gateways to the Graphics and Number
crunching functions, ie RST 10 and RST 28 respectively. The
reason for using Common ROM or RAM will become apparent in
sections 1.6 and 1.7. The Application ROM subblock is located
between #2000 and #3FFF. The Application ROM subblock as its
name suggests holds the ROMs that we need,ie BASIC,PANEL
,networking and Disc Operations. However,we can also plug in
other ROMS/EPROMS like PASCAL, Wordprocessor (NEWWORD), or
even our own.

You may be wondering why we need so many 64k pages when
surely it would be easier to increase the 64k length to say
128 or 512k etc. Well this is because of the limitations
imposed on us by the Z80 CPU. The Z80 only provides 16
address lines. The number of address lines tell us how much
memory the CPU can address or manage on one PAGE. The Z80 can
address or access upto 2^16 or 64k only. The only way around
this constraint is to provide more than one 64k block and to
PAGE Switch as the need becomes necessary. More on this
later.

1.6 ROM Page Switching

The computers Memory (RAM and ROM) is also thought of as a
hardware device and as such is mapped as an IN/OUT device.
This means that the device is accessed by the Z80 CPU via one
of its eight 8-bit INPUT or OUTPUT lines,of which there are
256 respectively. OUTPUT port or line #00,has been reserved
for changing the ROM or RAM page. This technique is known as
BANK switching. On the MTX series one byte is responsible for
controlling which BANK of 64k is used and whether the device
is mapped as a ROM/RAM architecture or just RAM architecture.
Figure 1-2 describes the composition of this one byte.

Bit : 7 6 5 4 3 2 1 0

MODE R2 R1 R0 P3 P2 P1 P0

Figure 1-2:The byte that sets up the Memory architecture and
selects the 64k Page.

Page 5

Bit 7 (MODE) when off (0) means a RAM/ROM architecture has
been selected and if bit 7 is on (1) then a RAM architecture
has been selected. At this stage,we will ignore P3 to P0,
until section 1.7 ,but suffice to say, these 4 bits determine
which BANK of RAM we are in. The remainder of this section
deals with the 3 bits which determine which ROM page has been
selected.

In BASIC a ROM page can be accessed or selected using the
command ROM n ,where n= 0 to 7. What this command does is to
switch in the appropriate ROM/EPROM ,in the desired slot and
executes a CALL to #2010 on the selected ROM/EPROM and this
RUNs the application, ie PASCAL or NEWWORD or the SDX disc
bootstrap. Bits 4 - 6, are used to select the desired ROM
page.,ie 2^3 = 8 permutations or 8 ROM applications.
Selecting a ROM page from Z80 assembly language is a straight
forward excercise,as shown in Listing 1-1.

Listing 1-1: Moving Code from ROM page 0 to RAM Page 0 at
 #9000, so that the MTX keyboard scan code can
 be disassembled with the PANEL.

90 CODE
PUSH HL ;
LD A,(#FAD2) ; SYSTEM VARIABLE #FAD2 HOLDS THE
LD (OLDPAGE),A ; CURRENT PAGE CONFIGURATION. SAVE
AND #8F ; IT AND MASK WITH 10001111. THIS

; WILL LEAVE THE MODE AND RAM PAGE
LD L,A ; UNCHANGED.
LD A,(ROMNUM) ; A = ROM PAGE NUMBER.
SLA A ; *2
SLA A ; *4
SLA A ; *8
SLA A ; ROM PAGE * 16 = ROM NUM IN TERMS

; OF BITS 4,5 & 6.
ADD A,L ; THE NEW PAGE CONFIGURATION.
LD (#FAD2),A ; TELL MTXOS ABOUT THE CHANGE.
OUT (#00),A ; TELL THE Z80.

; INSERT CALL PROGRAM. BUT, I CHOSE
; A PRACTICAL EXAMPLE, see Chapter 9

EX (SP),HL ; SAVE THE STACK POSITION
PUSH HL ;
LD HL,#2000 ; START OF ROM 0.
LD DE,#9000 ; WHERE IN RAM TO MOVE IT TOO.
LD BC,#1FFF ; SIZE OF ROM (8K).
LDIR ; THE CODE IS MOVED TO RAM AT #9000

; INSERT COMPLETED. RETURN TO OLD
POP HL ; PAGE CONFIGURATION.
EX (SP),HL ; DON'T FORGET TO RESTORE THE STACK
LD A,(OLDPAGE) ; GET OLD CONFIGURATION
LD (#FAD2),A ; TELL MTXOS
OUT (#00),A ; TELL Z80.
POP HL ;
RET ;

OLDPAGE: DS 1 ; SAVE OLD PAGE CONFIGURATION.
ROMNUM: DB #00 ; ROM PAGE 0 SELECTED.

Page 6

Save as:
SAVE "ROMSELTXT" (tape users)
DISC (USER) SAVE "ROMSEL.TXT" (disc users)

Reload and RUN <RET> ,the above code. When you are returned
to the BASIC flashing cursor,type PANEL. Now list (L) the
code from #9622. You should get:

LD A,#FB
LD (#FD7E),A
OUT (#05),A
IN A,(#05)
BIT 0,A
JR Z,#9636

The above code is part of the MTX's keyboard scan routines
which is accessed from the common ROM at #0079,which then
jumps to CALL #3618 on ROM Page 0 ,which we have just moved
and can disassembly further if required. Note that,although
we have moved the code from #3618 to #9618 ,all absolute
address calls ,ie CALL #3622 or JP #3618 will remain as such
but relative addresses will change,ie JR #3636 to #9636.

The above listing is straight forward enough and can be
implemented for any ROM page. This process is common practice
on the MTX as it's constantly switching pages especially when
it needs to RUN BASIC listings. At swtich on, ROM Page 1 is
switched in, check this by entering PANEL and Displaying
#FAD2.

1.7 RAM Page Switching

Page switching is very much akin to ROM switching,except that
up to 16 different pages are switchable to ,and thus 4 bits (
P3,P2,P1,P0) are needed for selection,ie 2^4 = 16
permutations.At switch on,RAM Page 0 ,is selected. However,
users with MTX 512s or RS128s or the new MTX Series 2 have
the ability to switch in RAM from other pages. However,this
is a bit tricker than for ROM page switching. The reason for
this will become apparent.

When a program is RUN, an internal pointer keeps track of the
next command to be executed. The commands are usually held in
RAM ,ie BASIC programs or Z80 programs. However,when we start
swapping the RAM page, what we are doing is keeping the
pointer at the address for the next command,but because we
have swapped RAM pages,the code that we were executing is on
a different page and the system will crash,as it cannot
execute the code to switch the code back.

This is however overcome by placing the code in the common
RAM area,ie between #C000 and #FFFF. Because this RAM is
common to all pages,the code will be available to all pages.
Therefore there is no problem in the executing the next
command even though we are switching pages. However,if you
place your code in this area of RAM and if your are running

Page 7

it from within a BASIC program, then the position of the code
will become important as BASIC variables may overwrite it.
This will not be a problem in the next listing.

Listing 1-2: RAM Page Switching Example (not for MTX 500).

95 CODE

8007 PUSH HL ;
8008 PUSH AF ;
800B LD A,(#FAD2) ; SAVE OLD CONFIGURATION
800E LD (#D030),A ;
8010 AND 240 ; MASK WITH 11110000,ie KEEP THE
8011 LD L,A ; CURRENT MODE AND ROM PAGE.
8014 LD A,(#D031) ; A = THE NEW RAM PAGE NUMBER.
8015 ADD A,L ; GET NEW PAGE CONFIGURATION.
8018 LD (#FAD2),A ; TELL MTXOS
801A OUT (#00),A ; TELL Z80
801B EX (SP),HL ; SAVE STACK
801C PUSH HL ;
801F LD A,(#9000) ; READ THE VALUE AT #9000 ON PAGE 1
8022 LD (#D032),A ; SAVE IT TO READ ON PAGE 0.
8023 POP HL ; RESTORE STACK
8024 EX (SP),HL ;
8027 LD A,(#D030) ; RESTORE OLD CONFIGURATION.
802A LD (#FAD2),A ; TELL MTXOS
802C OUT (#00),A ; TELL Z80
802D POP AF ;
802E POP HL ;
802F RET ;
8030 DS 1 ; OLDPAGE
8031 DB #01 ; RAM PAGE NUMBER
8032 DS 1 ; RESULT

Now enter PANEL and move the code from 8007 to D007 ,ie

Move>8007
End> 8033
To> D007

The above listing was written so that moving the code would
involve little effort apart from adjusting the storage
positions as these wouldn't have adjusted on moving as they
are Absolute addresses. Now delete line 95 and type at line
10 RAND USR(53255) <RET>. Now type RUN <RET>. The code at
#D007 would have been executed. Enter PANEL and check the
contents of RESULT at #D032. This value should be CD. This is
a very trival example but it does get the point across.

Finally,FDX owners, when you load the FDX Disc Basic and look
at #FAD2 ,you will find that the value is #90 and not #10 as
in MTX mode. #90 relates to 10010000 ,ie this is a RAM based
system as opposed to the MTX ROM version. This is also the
architecture used in CPM mode as this is a RAM mode.

Page 8

2.0 Graphics Technical Overview

2.1 Definitions of VDP and VRAM

The Video Display Processor,VDP, as used in the Memotech MTX
series,the Tatung Einstein and the Japanese MSX
microcomputers is the Texas Instruments TMS 9918/28/29. The
VDP is a dedicated graphics microprocessor with nine internal
registers (eight of which are write only [R0-R7] and one Read
only ststus register [R8]).

For a microprocessor to function properly,it must have access
to Random Access memory,RAM. The 8-bit/16-bit addressing
architecture of the Z80 CPU can address only 2^16 or 65536
bytes. Note that,the MTX can access upto 512k by bank
switching-see chapter 1.0 .

However,as most computer operating systems,OS,and built in
BASIC Interpreters can grab between 8-32k of RAM and then
reserve another 8-20k for graphics; this doesn't leave the
programmer much room to spare. The BBC B series are prime
examples of this. The amount of RAM the OS reserves for
graphics depends on the screen mode's colour & pixel
resolution;the greater the pixel and/or colour resolution the
more RAM required to store it.

On the other hand,the Memotech,MSX and Einstein machines have
a special RAM block which is used only for graphics. This
block of RAM is 2^14 or 16384 bytes long and is independent
of the CPU's RAM. The special RAM is called Video RAM, VRAM.
VRAM is used for storing all graphic,sprite and text
patterns. Figure 2-1,illustrates the relationship between the
VDP/VRAM and the CPU/RAM systems.

Figure 2-1: VRAM Memory Architecture.

Figure 2-1 is a IN - OUT mapped architecture, where the Z80
CPU communicates with the VDP via the READ (IN) & WRITE (OUT)
data lines on the CPU,see chapter 10 on SOUND for a more
detailed description. The advantages of a IN-OUT mapped
dedicated graphics processor with its own private ram,VRAM,is
threefold:

Page 9

(i) Programming space in normal RAM is at a premium.
(ii) A dedicated graphics processor and its own RAM, will
 allow better and faster graphic manipulation as needed
 in arcade style games and particularly in animation.
(iii) The CPU can get on with the rest of the program without
 having to stop executing the program in order to update
 the screen map. This speeds up processing,which may be
 essential in number crunching.

2.2 CPU and VDP Communication

As already stated the VDP communicates with the host CPU via
communication lines,ie Ports A & B,see figure 2-1. Port A is
used for data transfers to and from the VDP & CPU,ie the
moving (writing) of data to VRAM or reading data from
VRAM,for example,reading the screen as required for screen
dump printouts,see chapter 8.

Port B,is used to set the VDP addressing for either Reading
(ie, status register) or Writing (ie, setting the screen
pointer to a specific VRAM address). Once the VRAM address
has been selected,we can send via PORT A, for instance, a
sprite shape. Table 2-1 gives the actual port numbers for the
computers under discussion.

Table 2-1: The ports used by the Memotech,MSX and Einstein Z80
microcomputers for VDP-CPU communication.
where r/w =reading or writing data transfers.

: Computer : port A (data r/w) : port B (addressing) :

: Einstein : #08 : #09 :
: Memotech : #01 : #02 :
: MSX : #98 : 99 :

2.3 Screen Modes and Resolutions

The TI TMS 9928/18/29 VDP provides the programmer with four
built in screen modes: TEXT,Graphics I and II and
Multicolour. The latter 3 screen modes,can display upto 32
hardware sprites. This allows the programmer to animate
characters with ease-see chapter 7.0. The VDP has a dot
resolution of 256x192 .

At this stage,it would be advantageous to skip the rest of
this chapter and read chapters 3,4,5 & 6. These chapters will
give you a better understanding of the functions of the VDP
registers and how to use the VDP more effectively.

Page 10

2.4 VDP Registers

As already stated,the VDP has 9 internal registers numbered
0 to 8. Registers 0-7 are write only and register 8 is the
read only status register. The VDP requires three pieces of
information to alter or set a register:

1. Which register needs setting or altering ?
2. Is it a READ [R8] or WRITE register [R0-R7]. ?
3. What value are we going to set or alter the register to ?

This information can be selected with only two bytes (a)
the data byte and (b) the register/read/write byte. The data
byte is a 8-bit data byte which is used in conjunction with
Table 2-3,to give the VRAM addresses of specific areas like
patterns,colour tables ,etc. The register/read/write byte has
two functions,(i) it tells the VDP which register is selected
and (ii) it tells the VDP whether to READ or WRITE to that
register,see Table 2-2 for a description of this byte.

Table 2-2: VDP Register/READ/WRITE byte description.

--
: 7 6 5 4 3 2 1 0 :
--
: RS R/W 0 0 RS3 RS2 RS1 RS0 :
--
: 1 1 0 0 0 0 0 0 :
: 1 1 0 0 0 0 0 1 :
: 1 1 0 0 0 0 1 0 :
: 1 1 0 0 0 0 1 1 :
: 1 1 0 0 0 1 0 0 :
: 1 1 0 0 0 1 0 1 :
: 1 1 0 0 0 1 1 0 :
: 1 1 0 0 0 1 1 1 :
: 1 0 0 0 1 0 0 0 :
--

where:

RS = Register Selected {1} NOT Selected {0}
R/W = READ {0} or WRITE {1}
RSn = register pattern.

Each of the 8 registers (see register patterns RS3-RS0) has a
specific task ,like setting the colour or testing for sprite
collision,etc. These functions are summarised in table 2-3
and a slightly more detailed description is given below for
each of these functions. The initialisation of the VDP
registers is covered later.

Page 11

Table 2-3: Summary of the Functions of the VDP.

: Reg No. : 7 6 5 4 3 2 1 0 :

: #00 : 0 0 0 0 0 0 M3 EV :
: #01 : 1 BLK IE M1 M2 0 SIZE MAG :
: #02 : 0 0 0 0 <- NAME TABLE BA --> :
: #03 : <------- COLOUR TABLE BASE ADDRESS -------> :
: #04 : 0 0 0 0 <-PATTERN TABLE BA-> :
: #05 : 0 <---- SPRITE ATTRIBUTE TABLE BA ----> :
: #06 : 0 0 0 0 0 <- S.P.T.B.A.-> :
: #07 : <-- INK COLOUR --> <---- PAPER COLOUR ----> :
: #08 : F 5S C <-- 5th SPRITE NUMBER ---> :

All the entries above will be discussed in more detail in the
next couple of pages. It is worth memorising this simple
table as it is a valuable tool to know,especially when
writing and debugging graphical programs.

2.4.1 Description of the VDP Function Table

Register 0:

bit 0: external video control. This bit is disabled at switch
 on {0}. It is used if you require to use an external
 VDP board.

bit 1: M3 is the pattern bit mode. This is used in conjunction
 with M2 & M1 (register 1),to determine the screen mode.
 See Table 2-4.

bits 2 to 7 are NOT USED and are set to Zero.

Table 2-4: VDP Screen Mode Select

--
: Screen Mode : Resolution : Mode Select :
--
: : Text : Graphics : Colour : M1 M2 M3 :
--
: Graphics I : 32x24 : 256x192 : 02xchar : 0 0 0 :
: Graphics II : 32x24 : 256x192 : 16xchar : 0 0 1 :
: Text : 40x24 : : 02xscrn : 0 1 0 :
: Multicolour : : 64x 48 : 02xdot : 1 0 0 :
--

where:
char = 8x8 pixels or dots
scrn = the whole screen
dot = 1x1 pixel.Multicolour mode a dot is 4x4 pixels.

Page 12

Register 1:

bit 0: Sets Sprite Magnification; 0 = *1 ; 1 = *2.
bit 1: Sets the Sprite Size; 0 = 8x8 ; 1 = 16x16.

Table 2-5: Onscreen Sprite Size

: bit 1 : bit 0 : Sprite Size : Dot Size :

: 0 : 0 : 8 x 8 : 1 x 1 :
: 1 : 0 : 16 x 16 : 1 x 1 :
: 0 : 1 : 16 x 16 : 2 x 2 :
: 1 : 1 : 32 x 32 : 2 x 2 :

bit 2: Not used and set to zero.
bit 3: See Table 2-4.
bit 4: See Table 2-5.
bit 5: This is the VDP interrupt signal; 0=disable
 1=interrupt enabled.
bit 6: Blank Screen bit ; 0 = blank ; 1 = normal.
bit 7: Set to 1 on the MTX,MSX & Einstein for 16k Video.

Register 2:

Bits 0 - 3 (or lower nybble,LSN) are used to calculate the
VRAM starting address of the Pattern Name Table .

 NAMEBASE = Register 2 * #400 (or 1024)

Since we are only using the lower 4 bits in the calculation
,the register 2 range is 0-15 and because we are multipling
by 1k,we know that the NAME TABLE BASE or starting address is
located on 1k boundries only ,ie if Register 2 = 10 ,then the
NAMEBASE = 10 * 1024 = 10240 or 10k.

This Table is used to keep track of which patterns are on the
screen at any time. In graphics I or II mode,this table is
768 bytes long giving a text resolution of 32x24. In text
mode,this table is 960 bytes long giving a text resolution of
40x24.This table stores one byte identifiers,or ASCII
numbers. Since the Pattern Name Table is mapped as either
40x24 (TEXT-960) or 32x24 (GRAPHICS-768), the ASCII number is
stored at the desired cursor coordinates.This unique ASCII
number relates to a particular pattern in the Pattern
generator table,see register 4.

At switch on the MTXOS loads both the graphic and text
generator patterns with the desired ASCII patterns. This
process is only required once. When writing to the screen,all
we need to do is send the ASCII number or identifier to NAME
TABLE and the correct character will be displayed on the VDU
(TV picture).

Page 13

This process is a lot simplier and less CPU intensive than
having to send the 8 bytes that make up the shape everytime
we want to write to the screen,instead of the ONE byte ASCII
number. However,as we will see in chapter 6.0,the latter is
essential for plotting points and positioning text as needed
in Desktop Publishing ,DTP.

Register 3:

This register is used to define where the colour table is
located in VRAM. The base address for the colour Table is
calculated as follows:

 COLBASE = Register 3 [0-255] * 64

This register is only applicable in both graphic modes. The
TEXT colour register is set using REG 7 and will be discussed
later. The colour base can be located anywhere in VRAM in GI
mode or GII (text mode). Obviously the location of this table
will be governed by the other defined tables. However,in
Graphics II,high resolution mode,this table can only be
located at #0000 or 8192. In this case the Register 3
value is either #03 or #FF

Register 4:

This register is used to locate the pattern generator table
in VRAM. Only 3 bits [range 0-7] are necessary ,and since
this table is 2k long,and therefore can only be located on 2k
boundries. Therefore,in the 16k VRAM,there are 8x2k
boundries,see Table 2-6.

 PATBASE = Register 4 [0-7] * 2048

Table 2-6: Pattern Generator Boundry Starting Addresses.

: Reg 4 : Reg 4 * 2k :

: 0 : 0000 or #0000 :
: 1 : 2048 or #0800 :
: 2 : 4096 or #1000 :
: 3 : 6144 or #1800 :
: 4 : 8192 or #2000 :
: 5 : 10240 or #2800 :
: 6 : 12288 or #3000 :
: 7 : 14336 or #3800 :

Page 14

However, as with Register 3,in High resolution GII mode only
the two special cases exist: #03 and #FF. Usually,Register 3
is #FF (8192) and register 4 is #03 ,ie located at 0000.

Register 5:

Bit 7 is set to Zero,whilst the other 7 bits are used to
define the starting address of the Sprite Attribute Table,or
SAT. A fuller discussion of this and Registers 6&8 can be
found in Chapter 7. The start of this Table is calculated as:

 SATBASE = Register 5 [0-127] * 128

Register 6:

This 3-bit number defines the boundry starting position of
the Sprite Pattern Generator Table.This table is calculated:

 SPGBASE = Register 6 [0-7] * 2048

See Table 2-6 for actual VRAM starting locations.

Register 7:

This register will be discussed in more detail in chapter
3.0.The MSN holds the INK colour ,whereas the LSN holds the
PAPER colour. The colours are selected from a palette of 16.
(see Table 3-1) Register 7 doesn't relate to a VRAM address
but to the TEXT screen colour and is calculated as:

--
 REGISTER 7 = (INK Colour [0-15] * 16) + PAPER Colour [0-15]
--

Register 8:

This register will be dealt with in chapter 7.0.

2.4.2 Initialising the VDP Registers

The subroutine,VDPREG8SET,initialises the VDP registers
according to the Register values held in VDPDATA.

Page 15

Listing 2-1: Initialising the VDP Write Registers.

100 CODE

INITVDPREG:LD HL,VDPDATA ; THE REGISTER DATA BYTES.
CALL VDPREG8SET ; SET THEM.
RET ; EXIT.

VDPREG8SET:LD BC,#0800 ; THERE ARE 8 VDP WRITE REGISTERS
REGWRTVDP: LD A,(HL) ; TO INITIALISE. HL POINTS TO THE

OUT (#02),A ; 8 VDP DATA BYTES. THESE ARE SENT
LD A,C ; REGISTER AT A TIME TO THE VDP.
OR #80 ; BIT 7 TELLS THE VDP THAT THE

; REGISTERS ARE TO BE ALTERED.
OR #40 ; BIT 6 TELLS THE VDP THAT WE ARE
OUT (#02),A ; WRITING TO THE VDP. THIS IS DONE
INC C ; UNTIL ALL 8 WRITE REGISTERS HAVE
INC HL ; BEEN SET.
DJNZ REGWRTVDP ;
RET ;EXIT SUBROUTINE.

VDPDATA: DB #02,#C2,#0F,#FF,#03,#7E,#07,#16 ;GII HIGH RES.

110 RETURN

Also,listing 2-2,shows you how to alter a VDP register value
during a program,see subroutine TXTSCRCOL. Basically,all you
need to do is send the data byte followed by the register
number and thats all. Finally ,section 2-6 ,at end of this
chapter contains a few example VRAM layouts for you to try.

Listing 2-2: This subroutine alters the TEXT colours as
 stored in VDP Register 7.

120 CODE

TXTSCRCOL: LD A,(COL) ;COL=(INK*16)+PAPER
OUT (#02),A ;SEND THE COL TO THE VDP.
LD A,7 ;VDP REGISTER 7 IS SELECTED.
OR #40 ;WE ARE WRITING TO THE VDP.
OR #80 ;& ITS A VDP REGISTER.
OUT (#02),A ;THE REG,REG NUM & WRITE SENT.
RET ;EXIT SUBROUTINE.

130 RETURN

A subroutine to calculate the combined colour byte is given
in chapter 3.0.

Page 16

2.5 Accessing VRAM

All addressing throughout VRAM is 14-bit and this allows
access to 2^14 or 16384 bytes of Video Ram. Addressing VRAM
thus requires a two byte transfer, but only 14 of the 16 bits
available are necessary for the VRAM address with bits 14 &
15 left over. These two bits tell the VDP whether READ or
WRITE has been selected (bit 14 or MSB bit 6) and whether the
reading or writing is to or from VRAM or the VDP REGISTERS
(bit 15 or MSB bit 7). Table 2-7,gives the truth table for
the bit 14/15 options. Table 2-8 on the otherhand gives a
comprehensive breakdown of CPU and VDP data transfers.

Table 2-7: The bit truth table for VRAM addressing and for
VDP Register updating.

--
: Result of bit setting: WV : RV : WR : RR :
--

: VRAM or VDP bit 15 : 0 : 0 : 1 : 1 :

: READ or WRITE bit 14 : 1 : 0 : 1 : 0 :
--

where WV = Write to VRAM ; RV = Read from VRAM

WR = Write to VDP Regs ; RR = Read from VDP Regs

Note that the VDP requires a delay of 8 microseconds between
successive Reads or Writes. A suitable delay would be PUSH
AF/POP AF. When addressing VRAM,both the MSB and LSB are sent
from the CPU to the VDP via PORT B. PORT A on the otherhand
is only used for actual data transfers,ie Writing Sprite data
or Reading the screen for screen dumps etc.

VRAM is managed by an autoincrementing register. This
register is perfect for sequential data transfers via PORT A.
In Sequential data transferring to or from VRAM, all you have
to do is initialise the starting address of VRAM,and from
that point onwards,no other address transfer is necessary as
the autoincrementing pointer does this for you. However,if
the data transfers are not sequential,then the VRAM address
is required prior to each new data transfer to or from VRAM.

Page 17

Table 2-8: A summary of CPU <-> VDP communication.
Where D signifies a data bit.
and A signifies an address bit.

: Operation : Byte : Description : Port :
: : No. : 7 6 5 4 3 2 1 0 : used :

: Write to : 1 : D7 D6 D5 D4 D3 D2 D1 D0 : B :
: VDP REGISTER : 2 : 1 1 0 0 RS (3 - 0) : B :

: Read from : 1 : D7 D6 D5 D4 D3 D2 D1 D0 : B :
: VDP REGISTER : 2 : 1 0 0 0 1 0 0 0 : B :

: Write to : 1 : A7 A6 A5 A4 A3 A2 A1 A0 : B :
: VRAM : 2 : 0 1 A13 to A8 : B :
: : 3 : D7 D6 D5 D4 D3 D2 D1 D0 : A :

: Read from : 1 : A7 A6 A5 A4 A3 A2 A1 A0 : B :
: VRAM : 2 : 0 0 A13 to A8 : B :
: : 3 : D7 D6 D5 D4 D3 D2 D1 D0 : A :

The above table demonstrates that Writing and Reading the VDP
registers requires only 2 data transfer using PORT B and
Writing or Reading VRAM requires 3 bytes. The first two bytes
specify the VRAM address [A0 - A13] and byte three contains
the byte to be written two [D0 - D7] or holds the byte which
has just been read. The latter byte operations are carried
out using PORT A .

Page 18

2.6 VRAM Map Examples

Table 2-9, summarises the VDP register values to set up the
5 VRAM mappings below. Notice how the IMG computer uses FOUR
different VDP register setups, one for each of the IMG Screen
types. The main drawback of this method,is that it destroys
all the data held in VRAM, when Screen mode is changed. But
it does mean that all four Screen modes are available in IMG
BASIC. Whereas,the Memotech method is to set up VRAM so that
the BASIC programmer can switch between TEXT and GII modes
without losing the information on either,ie whats on the two
screens is still intact. However,the MTX user cannot access
Multicolour or GI screens from MTX BASIC only through a Z80
assembly program. The MTX method,tries to make use of all the
available VRAM. The MTX switches between screens by altering
VDP registers 0,1 and 2. Registers 0 and 1 select the screen
mode and register 2, switches in the appropriate Name Table.

Table 2-9: The VDP register values for VRAM maps (a) to (e).

: VDP Register Num : 00 : 01 : 02 : 03 : 04 : 05 : 06 : 07 :

: (a) - GII : 02 : C2 : 0F : FF : 03 : 7E : 07 : F4 :
: (a) - TEXT : 00 : D2 : 07 : FF : 03 : 7E : 07 : F4 :
: (b) - TEXT : 00 : D0 : 02 : 00 : 00 : 00 : 00 : F5 :
: (c) - GII : 02 : C2 : 0E : FF : 03 : 76 : 03 : 0F :
: (d) - GI : 00 : C0 : 05 : 80 : 01 : 20 : 00 : 01 :
: (e) - MULTICOL : 00 : CB : 05 : 00 : 01 : 20 : 00 : 04 :

IMG = imaginary computer, in actual fact the MSX is set up
 like this, see MSX Technical Appendix.

(a) MTX (b) IMG (c) IMG (d) IMG (e) IMG
 GII & TEXT TEXT GII GI MULTI

Page 19

3.0 TEXT Mode

3.1 Introduction

As the name suggests,only TEXT can be displayed in this mode.
On the MTX and Einstein machines only the first 128 ASCII
characters (0-127) can be displayed except for codes 0-31 as
these are specially reserved non-printable control
codes,refer the ASCII section of the Owners manual. On the
otherhand,the MSX system has been designed to maximise the
TEXT screen to the full by providing not only the 128 ASCII
set but another 128 special MSX characters,providing MUSIC
symbols,scientific characters,etc.

The ASCII character set is stored in the respective computers
ROM and loaded into the Video RAM,VRAM at switch on. A
character is designed typical as a 8x8 dot matrix, see
Figure 3-1. A character requires typically to be 8-bits wide
(1 byte) and needs to be 8 bytes deep.This gives the 8x8
character matrix. I find that this terminology is a little
confusing as its 8 bits by 8 bytes. However,I will be
discussing resolutions later which talk about dots. Here a
dot is defined in pixels,ie 1x1,2x2,4x4. The same terminology
is used on both sides on the multiplier sign.

Figure 3-1: Character Designer Board (8x8 grid)

By using only 6 of the 256 screen wide pixels and 8 of the
192 screen height pixels to represent an ASCII character on
the screen,the VDP can display a maximum of 40 (256/6)
characters across the screen and 24 (192/8) characters down
the screen for a 6x8 character matrix.This is ideal for Diary
,Notepad ,card indexing ,information retrieval and simple
wordprocessing programs.

3.2 Character Compression/Expansion by Rotation

As shown in Figure 3-1,only 5 of the 8 bits in the screen
width byte are necessary to represent the ASCII
character,with bit 6 being left blank,so as to distinguish
neighbouring characters on the screen. Also bits 7 & 8 are

Page 20

not used as in TEXT mode only 6 of the 8 bits are used. Forty
(5x8) bits,ignoring the blank 6th bit, are needed to
represent an ASCII character instead of 64 (8x8) bits.
Therefore,we are wasting 24 bits or 3 bytes of RAM per
character.

The Memotech ROM (page 0) at #35B3 stores the 96 printable
ASCII characters (from 32 to 127). In order to reduce the
above memory waste-age, the MTX programmers rotated the 8
bytes of screen data for the 6x8 character into 5 bytes
(ignoring the blank bit) giving a 8x5 90o rotated form. Thus
instead of 8*96 = 768 bytes to store the ASCII printable
character set it only required 5*96 = 480 bytes. Listing 3-1
demonstrates how to rotate back to printable characters and
Figure 3-3 explains how this is done. See also the screen
dump chapter for a use of the rotated form of the ASCII
character set.

Listing 3-1: Rotating the compressed 8x5 ROM character data
 to the 6x8 screen printable character.

1000 CODE

JR ROTSTART ; bypass the variables.

VRAMASC: DW #1900 ; where to store the ASCII in VRAM.
ROMASC: DW #35B3 ; where the upturned ASCII in ROM.
PORTA: DB #01 ; tells the VDP to write/read data.
PORTB: DB #02 ; tells the VDP to select VRAM

; address & to read or write data.

ROTSTART: EX AF,AF' ; save registers,AF,BC,DE,HL
EXX ; from corruption by this prog.
LD HL,(VRAMASC) ; where the ASCII char set is

; going to be stored in VRAM.
CALL VDPWRTSEL ; This subroutine sets the VDP

; to the correct VRAM address for
; writing the ASCII set to.

LD HL,(ROMASC) ; the position in the MTX ROM of
; upturned ASCII (8x5) char set.

LD B,96 ; only 96 printable ASCII [32-127].
MAINLOOP: PUSH BC ; save this for testing later.

LD B,8 ; Converting into 8 screen bytes
OUTERLOOP: LD C,5 ; From 5 ROM bytes.

XOR A ; clear register (stores screen ASC)
PUSH HL ; save current start of ROM ASC char

INNERLOOP: SLA A ; make space for new bit at bit 0.
LD E,(HL) ; Get the upturned data byte pointed

; to by HL.
SLA E ; move the upturned data byte left

; by 1,catching the displaced bit 7
; which will be stored carry flag.

LD (HL),E ; save the shifted upturned byte
JR NC,NOTSET ; if C=0 then shift 0 into reg A.
SET 0,A ; else place a 1 in reg A.

Page 21

NOTSET: INC HL ; get the next byte in the sequence
; of 5 to have a column stripped off

DEC C ; Each byte contibuting 1 bit to the
JR NZ,INNERLOOP ; screen ASCII character.

WRTVRAM: OUT (#01),A ; as each byte of the 5x8 char is
; reformed, it is sent to VRAM via
: PORT A. NB: VRAM will move its
; own automatic address pointer by 1

POP HL ; restore the ROM start address of
; character being reformed to ASCII.

DJNZ OUTERLOOP ; get next row of char until all 8
; screen bytes have been reformed.

LD C,5 ; BC=0005,the displacement between
ADD HL,BC ; the upturned ROM chars.
POP BC ; decrease the printable ASCII
DJNZ MAINLOOP ; until all 96 have been reformed.
EX AF,AF' ; restore registers.
EXX ;
RET ; end of the prog.

VDPWRTSEL: PUSH AF ; stops the flags from corruption
LD A,L ; A=LSB of VRAM address.
OUT (#02),A ; send to the VDP via PORTB.
LD A,H ; A=MSB of VRAM address.
OR #40 ; select write data to VRAM.
OUT (#02),A ; send MSB to VDP via PORTB.
POP AF ; restore AF.
RET ; end of subroutine.

1010 RETURN

Save as:
SAVE "ROTATETXT" (tape users)
DISC (USER) SAVE "ROTATE.TXT" (disc users)

As a check of the above algorithm,reload the above source
text with LOAD "ROTATETXT" or DISC (USER) LOAD "ROTATE.TXT".
Once installed,add the following lines to the above listing.

10 VS 4:CLS
20 GOSUB 1000
30 STOP

Before running the above,edit the code at 1000. VRAMASC
should be changed to point to DW #0000. This change will also
recompile the code to account for the BASIC text inserted at
the start.

RUN <RET>

You will see the character set in the correct screen
format,displayed on the graphics screen for demonstration. In
reality,this character set will be hidden at 6144 of VRAM,the
TEXT Pattern Generator Table.

Page 22

Figure 3-2: Rotation of the compressed 8x5 ROM character to
 a screen orientated 6x8 character.

3.3 Colour on the TEXT Screen

The TEXT screen can only have one background or PAPER colour
and one foreground or INK colour,selected from any of the 16
possible colours, see Table 3-1. The non-active part of
the screen or BORDER defaults to the PAPER colour. The VDP
Register 7 holds the INK & PAPER colour of the TEXT screen.
Figure 3-3,shows how the TEXT screen colour is represented.
This technique of representing both the INK & PAPER colours
in a single byte is also used in GI and GII modes. However,in
the latter modes, 32 and 6144 bytes of colour information is
required for these screens respectively.

Table 3-1: The 16 colours available for the TMS 9928/29 VDP.

: COLOUR : HEX value : Decimal Value :

: Transparent : 00 : 00 :
: Black : 01 : 01 :
: Medium Green : 02 : 02 :
: Light Green : 03 : 03 :
: Dark Blue : 04 : 04 :
: Light Blue : 05 : 05 :
: Dark Red : 06 : 06 :
: Cyanate : 07 : 07 :
: Medium Red : 08 : 08 :
: Light Red : 09 : 09 :
: Dark Yellow : 0A : 10 :
: Light Yellow : 0B : 11 :
: Dark Green : 0C : 12 :
: Magenta : 0D : 13 :
: Grey : 0E : 14 :
: White : 0F : 15 :

Page 23

The upper 4 bits,the so called Most Significant Nybble,MSN,
holds the INK (foreground) colour & the lower 4
bits,LSN,holds the PAPER (background) colour. The full byte
is the colour attribute and is calculated as follows:

--
 Colour byte value = (16 * INK) + PAPER
--

See GETCOL subroutine for the code to perform the above
calculation. One byte holds the colour information for the
entire TEXT screen.

INK = #01
=Black

Paper = #09
= Light Red

Figure 3-3: Colour Attribute Representation.

Listing 3-2 illustrates how we can set the text INK and PAPER
colours from assembly language. This example keeps the INK
colour constant but toggles the PAPER colour from 1 to 13. To
select the PAPER Toggle press Function key <F1>.

Listing 3-2: PAPER toggle in TEXT mode.

1100 CODE

KEYS: XOR A ; reset Z-flag.
CALL #0079 ; use MTX key scan routine to
JR Z,KEYS ; check for F1.
CP 128 ; Is key=<F1>.
CALL Z,PAPERTOG ; toggle the Paper colour.
CP 27 ; press <ESC> to end,ie
RET Z ; return to BASIC.
JR KEYS ;

PAPERTOG: PUSH AF ; save current keypress.
LD A,(PAPER) ; Get current PAPER colour.
CP 14 ; If >13 then reset to 1.
JR C,GT13 ; if <13 then increase PAPER
XOR A ; col by 1. Else reset it to

GT13: INC A ; one or increment by one.
LD (PAPER),A ; store new value.
CALL GETCOL ; update TEXT screen colours.
CALL TXTSCRCOL ; send it to VDP register 7.
POP AF ; restore keypress,so as not to
RET ; invoke another option in the

; KEYS menu.

 page 24

Page 24

GETCOL: PUSH BC ; don't affect BC register.
LD A,(INK) ; this part loads the MSN with
AND #0F ; the INK colour.
SLA A ;
SLA A ; Equivalent to Multiplying
SLA A ; by 16 (ie 2^4).
SLA A ; INK in position in col byte.
LD B,A ; save it temporarily.
LD A,(PAPER) ; now load the PAPER into the
AND #0F ; LSN. NB:Mask unwanted bits.
ADD A,B ; COLour byte is formed.
LD (COL),A ; save it. NB:This subroutine
POP BC ; can be used as is in GI & GII
RET ; add to Library of Z80 code.

COL: DS 1 ; stores the colour attribute.
INK: DB #0F ; defaults to White ink.
PAPER: DB #01 ; defaults to black paper.

TXTSCRCOL: LD A,(COL) ; update the TEXT screen colour
OUT (#02),A ; via VDP register 7.
LD A,7 ; select reg 7.
OR #40 ; select WRITE to VDP.
OR #80 ; select VDP reg to write too.
OUT (#02),A ; VDP reg 7 updated with new
RET ; colour attribute byte.

1110 RETURN

Save as:
SAVE "TXTCOLOURTXT" (tape users)
DISC (USER) SAVE "TXTCOLOUR.TXT" (disc users)

To test it simply enter the following:

10 VS 5:CLS
20 GOSUB 1100
30 STOP

Note the code at line 1100 started at #8007,but after the
addition of lines 10,20 & 30,this code when recompiled moves
to #8020. AS.1100 <RET> then <CLS> <RET> recompiles the code
at 1100 to take into account the new BASIC text and points
all the JP and CALL and system variables to the new RAM
locations or addresses.

RUN <RET>

Every time you Press <F1> the PAPER colour will move to the
next colour in the list,see Table 3-1. Only colours 1 to 13
are valid in this example. This cycle is in a continuous
loop.

Page 25

3.4 VRAM Tables

3.4.1 The TEXT Pattern Generator Table

As already stated, the ASCII character set (well the 96
printable ones) are stored from 6144 to [6144+(8*98)] in the
VRAM map. As shown in Figure 3-1,each character requires 8
pattern bytes to make up its shape (note that the bottom byte
is nearly always zero ,so that text from one row can be
distinguished from the next row). In order to find the
correct TEXT pattern for a particular character in VRAM,we
use the following:

--
 TEXT PATTERN POSn = PATBASE + (8 * (ASCII Num - ASCII Sp))
 in VRAM
--
Where:

ASCII num = a printable ASCII character between 32 & 127
ASCII Sp = the first printable ASCII character (number 32).
PATBASE = the start of the pattern table in VRAM,ie 6144.

For example,the capital letter 'A' pattern can be found at
6408 to 6415, ie VRAM start for pattern 'A' = 6144 + (8 *
(65-32)) = 6408. Note that the ASCII number of the letter
'A' will always be 65 no matter the computer. The TEXT screen
makes use of this.

3.4.2 TEXT Name Table

Whenever,the computer needs to display a character on the
screen,all the Operating System,OS,has to do is send the TEXT
Name Table VRAM address (on the MTX this is between
7168-8127) depending on the cursor position to the VDP. This
is followed by the ASCII character number [ie between
32-127]. The VDP will automatically store this ASCII number
at the VRAM address. The VDP will then extract the pattern
corresponding to this ASCII number from the TEXT Pattern
Generator Table. The VDP will then echo this to the TV
picture or VDU.

We see the TEXT screen as a Rectangular area on the VDU,with
a 40x24 Text screen resolution. However,in VRAM,the TEXT Name
Table which keeps track of what is displayed on the VDU,is
really a sequential block of 960 bytes of VRAM,see figure
3-4. Therefore,to relate the TEXT coordinate system to a VRAM
address is a simple matter, see SETVRAM subroutine ,Listing
3-3 and the calculation which follows.
--
 NAME TABLE POSITION in VRAM = NAMEBASE + xpos + (ypos * 40)

where xpos = 0 to 39 and ypos = 0 to 23 and NAMEBASE=7168.
Note that the NAMEBASE is held in VDP register 2.

Page 26

Figure 3-4: The TEXT screen and the TEXT Name Table.

The following listing will show you how to use the above to
write text to the TEXT screen:

Listing 3-3: Writing to the TEXT screen. This example echoes
 what you type at the keyboard to the screen.

1200 CODE

;this routine assumes that the VDP's registers have been
;setup for the TEXT screen to start at VRAM= 7168 and for
;ASCII character set to start at VRAM = 6144. MTX BASIC
;sets these values to the appropriate registers at switch
;on.

EXAMPLE: LD HL,#0000 ; set xpos=0 and ypos=0,ie top LHC.
LD (XY),HL ; xpos & ypos stored.
 ; Set the VDP auto incrementing
CALL SETVRAM ; address pointer to the TEXT SCRN.

GETCHAR: XOR A ; reset the Z-flag.
CALL #0079 ; MTX ROM routine for getting a
JR Z,GETCHAR ; keypress (stored in Reg A). The

; Z-flag is set if no key pressed.
CP 27 ; if ESC is pressed then end.
JR Z,ENDCODE ;
CP 32 ; if keypress is not in the ASCII
JR C,GETCHAR ; printable region of 32 to 127 then
CP 128 ; try again,until valid.
JR NC,GETCHAR ;

VALIDCHAR: OUT (#01),A ; send ASCII number to PORT A.
JR GETCHAR ; there is no check for screen end.

ENDCODE: RET ; return to BASIC.

; subroutine & system variables used.

Page 27

SETVRAM: PUSH AF ; saved main registers. AF holds the
EXX ; ASCII keypress.
LD HL,(TEXTSCRN) ; The start of the TEXT SCRN in VRAM
PUSH HL ; to be used latter on.
LD BC,(XY) ; B=ypos and C=xpos.
XOR A ; A=0
LD HL,#0000 ;
CP B ; A=B=0 then row 0,don't add 40 or
JR Z,ROW0 ; VRAM will be on the wrong row.
LD DE,(SCRNWIDE) ; screen width.

LOOP1: ADD HL,DE ; this gives ypos*40
DJNZ LOOP1 ;

ROW0: POP DE ; DE=7168
ADD HL,DE ; this gives 7168+(ypos*40).

LD A,L ; A=LSB of the current address
ADD A,C ; this gives:
LD L,A ; 7168+xpos+(ypos*40).
CALL VDPWRTSEL ;
POP AF ; restore keypress.
EXX ; restore other register pairs.
RET ; end of subroutine.

VDPWRTSEL: ; insert the code for this subroutine here
; see listing 3-1 for the source text.

TEXTSCRN: DW 7168 ; start of TEXT SCREEN in VRAM.
; ie start of the Name Table.

XY : DS 2 ; holds the xpos & ypos values.
SCRNWIDE: DW 0040 ; screen width.

1210 RETURN

Save as:
SAVE "WRITETXT" (tape users)
DISC (USER) SAVE "WRITETXT.TXT" (disc users)

To test listing 3-3,add the following:

10 GOSUB 1200
20 STOP

As before recompile the code at 1200 and RUN <RET>.

Note that the above listing has no error checking for screen
end. Also because the VDP has an autoincrementing VRAM
address pointer,we only use SETVRAM subroutine once. This
routine works like the MTX CSR x,y command for positioning
text on the screen.The bulk of the above could be adapted as
a CSR x,y command equivalent in Z80 assembly language. Notice
that the above routine also uses VDPWRTSEL subroutine from
the previous listing. It is possible to build up a library
of such subroutines to make a programmers life easier.

Page 28

4.0 Graphics I and Multicolour Modes

4.1 Graphics I Mode

4.1.1 Overview

Both the Memotech MTX and the Tatung Einstein machines do not
support this mode from their respective BASIC Interpreters.
The Japanese MSX system supports all 4 hardware screen modes
from BASIC. Even though the Einstein and MTX machines BASIC
Interpreter doesn't support it,you are able to reconfigure
the VDP from the Z80 assembler.

Graphics mode I,is a more colourful! and characterful version
of the TEXT screen. GI mode has a screen resolution of
256x192 pixels. However,it is a text orientated graphic
screen because of its limited colour capabilities. It
offers the user 256 User Defineable Graphics,UDG's. Each UDG
is defined as an 8x8 matrix and therefore the screen text
resolution is 32x24. The screen can only support 2
colours per block of 8 characters.

I may have been a bit unfair to GI mode when I implied it was
a text orientated screen. In actual fact,it has the same
resolution as the ZX Spectrum without the 2 colours per
character but with the addition of 32 hardware sprites,see
the chapter 7.0 . Also ,in GI , mode less VRAM is required
than GII mode (see next chapter) and this extra Video Ram
can be used for storing other UDG's or graphical
information,ie like a second screen,without using up valuable
CPU RAM as in other machines.

4.1.2 Fast Screen Switching

The advantage of being able to store a second screen or
character set in VRAM is very useful,because,all that is
needed to switch to this new screen,is to change the value of
the VDP register which holds the starting address of the
pattern table. Obviously this is a lot faster than having to
block move all the new screen information to the screen,1
byte at a time. The example described in Listing
4-1,simulates a very fast screen change. However,as I am no
artist,I have decided to demonstrate this principle by
swapping the onscreen font by a user defined font. This
example also introduces the user to VDP setup,this was
discussed in chapter 2.0 .

Before we can precede with Listing 4-2,we will first have to
define an alternative character set. I have listed below an
alternative ASCII character set based on a 8x8 matrix. When
you have typed in all the data,save it to tape or disc as a
source file,so that errors can be corrected later.

Page 29

SAVE "RAMASCIITXT" (tape users)
DISC (USER) SAVE "RAMASCII.TXT" (disc users)

Listing 4-1: The alternative ASCII character set.

1300 CODE

DB 0,0,0,0,0,0,0,0 ; space (32)
DB 16,16,16,16,16,0,16,0 ; ! (33)
DB 72,72,72,0,0,0,0,0 ; " (34)
DB 72,72,252,72,252,72,72,0 ; # (35)
DB 16,124,144.124,20,124,16,0 ; $ (36)
DB 132,136,16,32,64,132,132,0 ; % (37)
DB 112,136,112,96,148,136,112,0 ; & (38)
DB 16,32,64,0,0,0,0,0 ; ' (39)
DB 48,64,128,128,128,64,48,0 ; ((40)
DB 48,8,4,4,4,8,48,0 ;) (41)
DB 132,72,48,252,48,72,132,0 ; * (42)
DB 0,16,16,124,16,16,0,0 ; + (43)
DB 0,0,0,0,48,16,32,0 ; , (44)
DB 0,0,0,0,0,252,0,0 ; - (45)
DB 0,0,0,0,0,12,12,0 ; . (46)
DB 4,8,16,32,64,128,128,0 ; / (47)

DB 48,72,140,148,164,72,48,0 ; 0 (48)
DB 48,80,16,16,16,16,124,0 ; 1 (49)
DB 56,68,4,8,16,32,124,0 ; 2 (50)
DB 120,132,4,60,4,132,120,0 ; 3 (51)
DB 128,128,128,144,144,252,16,0 ; 4 (52)
DB 248,128,128,248,4,4,248,0 ; 5 (53)
DB 48,64,128,248,132,132,120,0 ; 6 (54)
DB 252,4,8,16,32,64,128,0 ; 7 (55)
DB 120,132,132,120,132,132,120,0 ; 8 (56)
DB 120,132,132,120,16,32,64,0 ; 9 (57)

DB 0,0,16,16,0,16,16,0 ; : (58)
DB 0,0,16,0,48,16,32,0 ; ; (59)
DB 24,32,64,128,64,32,24,0 ; < (60)
DB 0,0,252,0,0,252,0,0 ; = (61)
DB 96,16,8,4,8,16,96,0 ; > (62)
DB 48,72,4,8,48,0,32,0 ; ? (63)
DB 120,132,4,52,84,84,56,0 ; @ (64)

DB 48,72,132,132,252,132,132,0 ; A (65)
DB 248,132,132,248,132,132,248,0 ; B (66)
DB 120,132,128,128,128,132,120,0 ; C (67)
DB 240,136,132,132,132,136,240,0 ; D (68)
DB 252,128,128,248,128,128,252,0 ; E (69)
DB 252,128,128,248,128,128,128,0 ; F (70)
DB 120,132,128,156,132,132,124,0 ; G (71)
DB 132,132,132,252,132,132,132,0 ; H (72)
DB 124,16,16,16,16,16,124,0 ; I (73)
DB 124,4,4,4,132,132,120,0 ; J (74)
DB 132,136,144,224,144,136,132,0 ; K (75)
DB 128,128,128,128,128,128,252,0 ; L (76)
DB 104,84,84,68,68,68,68,0 ; M (77)
DB 132,132,196,164,148,140,132,0 ; N (78)

Page 30

DB 120,132,132,132,132,132,120,0 ; O (79)
DB 248,132,132,248,128,128,128,0 ; P (80)
DB 112,136,136,136,168,152,116,0 ; Q (81)
DB 248,132,132,248,160,144,136,0 ; R (82)
DB 120,132,128,120,4,132,120,0 ; S (83)
DB 124,16,16,16,16,16,16,0 ; T (84)
DB 132,132,132,132,132,140,116,0 ; U (85)
DB 132,132,132,132,132,72,48,0 ; V (86)
DB 204,132,132,132,132,180,72,0 ; W (87)
DB 132,72,48,48,48,72,132,0 ; X (88)
DB 68,68,68,56,16,16,16,0 ; Y (89)
DB 252,4,8,16,32,64,252,0 ; Z (90)

DB 240,128,128,128,128,128,240,0 ; [(91)
DB 128,64,32,16,8,4,4,0 ; \ (92)
DB 60,4,4,4,4,4,60,0 ;] (93)
DB 16,40,68,0,0,0,0,0 ; ^ (94)
DB 0,0,0,0,0,0,252,0 ; _ (95)
DB 32,16,8,0,0,0,0,0 ; ' (96)

DB 0,0,120,4,124,132,124,0 ; a (97)
DB 0,128,128,248,132,132,120,0 ; b (98)
DB 0,0,112,136,128,136,112,0 ; c (99)
DB 0,4,4,60,68,68,60,0 ; d (100)
DB 0,0,120,132,252,128,120,0 ; e (101)
DB 48,72,64,240,64,64,64,0 ; f (102)
DB 0,0,120,132,124,4,132,120 ; g (103)
DB 128,128,128,248,132,132,132,0 ; h (104)
DB 16,0,48,16,16,16,16,0 ; i (105)
DB 4,0,12,4,4,68,56,0 ; j (106)
DB 128,128,136,144,224,144,136,0 ; k (107)
DB 48,16,16,16,16,16,16,0 ; l (108)
DB 0,0,88,164,164,164,164,0 ; m (109)
DB 0,0,184,196,132,132,132,0 ; n (110)
DB 0,0,120,132,132,132,120,0 ; o (111)
DB 0,0,248,132,248,128,128,0 ; p (112)
DB 0,0,120,136,120,8,12,0 ; q (113)
DB 0,0,184,196,128,128,128,0 ; r (114)
DB 0,0,60,64,56,4,120,0 ; s (115)
DB 0,32,252,32,32,36,24,0 ; t (116)
DB 0,0,132,132,132,140,116,0 ; u (117)
DB 0,0,132,132,132,72,48,0 ; v (118)
DB 0,0,132,132,132,180,72,0 ; w (119)
DB 0,0,132,72,48,72,132,0 ; x (120)
DB 0,0,132,132,124,4,132,120 ; y (121)
DB 0,0,124,8,16,32,124,0 ; z (122)

DB 48,64,64,128,64,64,48,0 ; { (123)
DB 16,16,16,0,16,16,16,0 ; | (124)
DB 48,8,8,4,8,8,48,0 ; } (125)
DB 32,84,84,136,0,0,0,0,0 ; ~ (126)
DB 252,252,252,252,252,252,252,252 ; DEL (127)

RET ; END OF DATA.

1310 RETURN

Page 31

Listing 4-2:Setting up the VDP registers for a GI screen and
 how to use the extra VRAM for switching screens.
 As I am no artist,I will refrain from composing 2
 screens and show the screen switching by swapping
 the ASCII character table.

Reload listing 4-1.

 LOAD "RAMASCIITXT"
or DISC (USER) LOAD "RAMASCII.TXT".

Now add the following lines of text:

10 CODE

8007 LD HL,#0000 ; move the code in line 1300 to
LD DE,#9000 ; #9000 IN RAM.
LD BC,768 ; 96 chars of 8 bytes = 768.
LDIR ; block move it.
RET ; exit

20 GOSUB 1400
30 STOP

1300 CODE
insert the ascii character set above

1310 RETURN

1400 CODE

START: LD HL,REGGIMTX ; SET MTX VRAM MAP AS A
CALL VDPREGSET8 ; GRAPHICS I TEXT MODE.
CALL ROTSTART ; STORE MTX ROM ASCII SET

; AT #0000+(8*32).
LD HL,(VRAMASC2) ; STORE THE NEW ASCII SET
CALL VDPWRTSEL ; AT 2048+(8*32). ONLY THE
LD C,96 ; 96 PRINTABLE ONE'S ARE
LD HL,RAMASC ; STORED IN THE PATTERN

LOOP: LD B,8 ; TABLE AND THAT'S WHY THE
LOOP2: LD A,(HL) ; 32*8 DISPLACEMENT. NOW

OUT (#01),A ; THAT THE VRAM AUTO
INC HL ; INCREMENTER IS PRIMED.
DJNZ LOOP2 ; COPY THE RAMASC SET TO THE
DEC C ; VRAM BLOCK AT 2304,FOR EACH
JR NZ,LOOP ; 8 PATTERN BYTES FOR EACH OF

; THE 96 CHARACTERS.

SCRNCLS: LD DE,#0000 ; SET SCRN TO 0,0 & THIS ALSO
CALL SETSCRN ; ACTS AS A SCREEN LOCATOR,ie
LD BC,768 ; DE=00 TO 767 (32x24). AT

SCRCLS1: LD A,32 ; STARTUP BOTH CHARACTER SETS
OUT (#01),A ; ARE COPIED TO THE SCREEN &
DEC BC ; NEEDED TO BLANKED FROM THE

Page 32

LD A,B ; GI SCRN OR NAME TABLE,BUT
OR C ; NOT FROM THE PATTERN TABLE.
JR NZ,SCRCLS1 ; ALL WILL BE CLEAR LATTER.

INITSCRN: CALL SETSCRN ; SET SCRN TO 0,0.NB:DE HOLDS
; THE X,Y VALUES.STILL AT 0,0

GETCHAR: XOR A ; THE CODE THAT FOLLOWS IS AN
CALL #0079 ; UPDATE OF LISTING 2-2.IT NOW
JR Z,GETCHAR ; INCLUDES A CHECK FOR SCREEN

CP 128 ; END BY LOOKING AT REG DE.
CALL Z,SWITCHMODE ; IT ALSO CHECKS FUNCTION KEY
CP 27 ; F1,TO SEE IF THE ASCII SET
JR Z,ENDCODE ; TOGGLE IS SELECTED.
CP 32 ;
JR C,GETCHAR ;
CP 128 ; ONLY 32 TO 127 ALLOWED AS
JR NC,GETCHAR ; VALID PRINTABLE CHARACTERS.

;
VALIDCHAR: LD HL,768 ; IS SCREEN END BEEN REACHED.

SBC HL,DE ; IF AT THE END DON'T UPDATE
JR C,GETCHAR ; SCREEN OR CURSOR. WAITS
INC DE ; UNTIL ESC HAS BEEN PRESSED.
OUT (#01),A ;
JR GETCHAR ; STAYS IN LOOP UNTIL ESC.

ENDCODE: RET ; RETURN TO BASIC.

ROTSTART: EX AF,AF' ; MERGE THIS SOURCE TEXT WITH
; THAT OF THE ROTATE SOURCE
; TEXT AND INSERT HERE. NB:
; VRAMASC IS NOW VRAMASC1 AND

RET ; IT NOW POINTS TO #0000+256.

VDPWRTSEL: PUSH AF ; SUBROUTINE AS IN LISTING
; 2-1.

RET ; END SUBROUTINE.

VDPREGSET8:LD BC,#0800 ; THERE IS 8 VDP REGISTERS TO
REGWRTVDP: LD A,(HL) ; SET [R0-R7]. THESE DEFINE THE

OUT (#02),A ; VRAM MAP. SEND THE DATABYTE
LD A,C ; FIRST FOLLOWED BY THE VDP
OR #C0 ; REG NUMBER.BIT 7&6 HAS TO BE
OUT (#02),A ; SET TO INDICATE WRITING TO
INC C ; VDP REG's INSTEAD OF VRAM.
INC HL ; HL POINTS TO THE DATA BYTES
DJNZ REGWRTVDP ; WHICH DEFINES VRAM.SEE LAST
RET ; SECTION OF THIS CHAPTER.

SETSCRN: LD HL,(GISCRN) ; POINT THE VDP TO THE GI/GII
ADD HL,DE ; NAME TABLE OR SCREEN.REG DE
CALL VDPWRTSEL ; HOLDS THE CURSOR X,Y VALUES
RET ; NB:NEED THIS INFO WHEN SCRN

Page 33

; NB: SWITCHING CAUSES THE VDP POINTER TO MOVE
; ANOTHER PART OF VRAM. SINCE WE HAVEN'T RESTORED IT
; THE TEXT WILL BE SENT TO THIS NEW VRAM AREA. THIS
; IS WHY THE TEXT APPEARS INVISIBLE. IN ACTUAL FACT
; WE ARE CORRUPTING ANOTHER VRAM TABLE.

SWITCHMODE:PUSH AF ; THIS SUBROUTINE SWITCHES
LD A,(FLAG) ; BETWEEN THE TWO ASCII SETS
XOR 1 ; USING REG VDP 4 AS A TOGGLE
LD (FLAG),A ; AS ONLY TWO SETS OR SCREENS
OUT (#02),A ; ARE USED ,IT'S A SIMPLE
LD A,#04 ; TOGGLE OF BIT 0. WHEN IT IS
OR #C0 ; '0' THEN VRAM POSn = 0*2048
OUT (#02),A ; '1' THEN VRAM POSn = 1*2048
CALL SETSCRN ; REMEMBER ON SCRN SWITCHING
POP AF ; THE NAME TABLE POSn IN VRAM
RET ; IS LOST & NEEDS UPDATING.

VRAMASC1: DW 0256 ; POSn OF STORED ROMASC IN VRAM
ROMASC: DW #35B3 ; POSn OF ROM ASC CHARACTER SET
VRAMASC2: DW 2304 ; POSn OF STORED RAMASC IN VRAM
RAMASC: DW #9000 ; STORE AT #9000 IN RAM.
GISCRN: DW 15360 ; START OF NAME TABLE OR SCRN.
FLAG: DB #00 ; CAN ONLY BE 0 or 1.DEF=1.
REGG1MTX: DB #00,#C2,#0F,#9F,#00,#7E,#07,#16

1410 RETURN

Now recompile the code at 1300. Then edit line 10 and change
HL to the new starting address of line 1300. Now Save:

SAVE "GISWITCHTXT" (tape users)
DISC (USER) SAVE "GISWITCH.TXT" (disc users)

To run: RUN <RET>

Obviously,switching fonts as in this example is useless,but
the ability to switch screen displays as in a program like
MANIC MINER will greatly speed up graphics and because of the
extra VRAM space,it is possible to store upto 7 full screen
displays if you configure VRAM correctly. This also releases
valuable CPU RAM ,especially if you want your program to run
on a 32k Ram machine.

4.1.3 Library Building

Example VRAM maps similar to the example above is at the end
of chapter 2.0. The above program,involved little development
time because the majority of the code was already available
as re-usable subroutines,ie like procedures in PASCAL ,
MODULA ,etc. It is very important to spend longer on intial
program development in order to build up a library of
powerful MACRO's as they are called in assembly language. You
will reap the benefits later on.

Page 34

4.1.4 VRAM Tables - Pattern & Name Tables

Listing 3-3,can also be used on the Graphics I or II screens.
I will leave the latter to you to solve. To give you a
clue,you will have to glue bits of Listing 4-2 with it,ie the
VDPREGSET8,etc. The formula to calculate the start of the
Name Table and the position of a character shape in the
Pattern table has already been covered in the TEXT section.
NB: the NAMEBASE=15360 and PATBASE=0000.However,the
calculation for the character in the pattern table is
different than in the text mode as you do not need to
account for the 32 control codes,as all 256 UDG's are
printable. Thererfore the (-ASCII Sp) part is to be
ignored.The values of NAMEBASE & PATBASE are dependent on the
VRAM configuration. Also the ypos range in GI mode will be
0-31 instead of 0-39 for TEXT Mode.

Figure 4-1,below,shows how the VDP builds up a character on
the screen which you view. The VDP's registers point to
specific areas in VRAM. In GI mode the pattern table is
stored at 0000, the colour table at 8192 and the Name Table
at 15360. When the user presses a key,the ASCII number that
represents this key,is then sent to the VDP.The VDP stores
this number in the name table,ie the letter 'A' would be
stored in the Name table as '65'. The VDP would then get the
pattern for ASCII 65 from the pattern table,and from the
colour table the appropriate colour and then echo this
information to the VDU.

Figure 4-1:How the three VRAM tables (NAME ->PATTERN ->COLOUR)
are used to make up a Graphics picture on the VDU
in GI mode.

Page 35

4.1.5 Colour

For every eight sequential ASCII patterns held in the PGT,
there are two corresponding colours (one INK & one PAPER).
This poor colour resolution - although better then in TEXT
mode - is a serious disappointment. As shown in Figure 4-1,
the GI colour table is only 32 bytes long [0-31]. With each
location in the 32 byte table, holding a single colour byte
,see Figure 3-3 for the colour byte representation. In order
to calculate which of the 32 colour locations is responsible
for setting the colour of a particular pattern is calculated
thus:

--
 GICOL = GICOLBASE + INT (ASCII Number / 8)
--

where GICOLBASE = start of the colour table in VRAM

For example,the colour location that holds the colour of the
the letter 'A' (ASCII = 65) is GICOLBASE + 8.

Listing 4-3: Setting the colour of a ASCII character in GI
 mode or colouring a screen byte in GII mode
 using the subroutine below.

140 CODE

GSCRCOL: LD A,(ASCIINUM) ; CPU REG A holds the ASCII number.
SRL A ;
SRL A ;
SRL A ; A = ASCIINUM/8
AND A ; A = INT (ASCIINUM/8)
LD HL,(GICOLBASE) ; start of the colour table in VRAM.
ADD A,L ; get the colour position by adding
LD L,A ; the colbase to the displacement.
CALL VDPWRTSEL ; tell VDP,see Listing 3-1.

; When GETCOL is called,it is
; assumed that INK & PAPER are set
; to the desired values.

CALL GETCOL ; see listing 3-2.Now get VRAM colour
LD A,(COL) ; byte to send to screen.
OUT (1),A ; send colour byte to screen.
RET ; exit subroutine.

150 RETURN

Note that the relationship between GI colour mapping and GII
colour mapping is completely different , see chapter 5.0 .

Page 36

4.2 Multicolour Mode (64x 48 resolution)

This is the worst mode with respect to pixel resolution only
64x48. In this mode each dot is equivalent to 4x4 pixels in
GI or GII mode. In actual fact,this mode doesn't deal with
graphical pixels but with colour pixels. Each pixel can have
its own unique colour,ie offers pixel colour but at such low
resolution that its virtually non-descript.

Its okay for large chunky graphics,as would be used in
kiddies early learning programs and for that reason I have
mentioned it in this book. However,I will not discuss it but
for more detail,I refer you to the comprehensive TI 9929A VDP
technical manual,which should be easy to understand
considering what you've hopefully learnt in this book.

Page 37

5.0 Graphics II Text Mode (32 x 24 characters)

 5.1 Introduction

 The screen resolution of this screen is as for Graphics I
 mode , 256x192. Also,as in GI mode,three VRAM tables are
 required to generate a display on the Visual Display
 Unit,VDU. The tables are the Pattern Generator Table (where
 the shapes are stored) ;The Colour Table and the Name Table.

 Graphics II mode can operate in one or two modes depending on
 the application - bit-mapped as required for plotting points
 and drawing lines as used in Desktop publishing,DTP, and
 Computer Aid Design,CAD ; or as a colourful Text screen as
 would be used for wordprocessors and front-end systems. The
 bit-mapped mode will be dealt with in chapter 6.0.

 Both GI and GII modes have a name table of 768 bytes, giving
 a text resolution of 32x24. However, GII modes allows 768
 UDG's as opposed to the normal 256 patterns. This allows a
 unique pattern to be created for every possible Name Table
 position. If this wasn't all,you can have 2 colours per byte
 or 16 colours per character (8 INK and 8 PAPER colours per
 8x8 character).

 5.2 Enhanced Resolution by Partition

 This enhanced graphic and colour resolution requires about
 three quarters of VRAM. A screen resolution of 256x192
 requires 49,152 bits (dots) or 6144 bytes of graphic
 information. The same number of bytes is needed for the
 colour table. Both the pattern generator and colour tables
 are segmented into 3 blocks of 2048 bytes. This block is
 further divided into 256 by 8 pattern or colour bytes (see
 figure 4-1,where the PGT of 2048 bytes in GI mode is
 equivalent to only one third of the GII mode PGT) .

 Having a pattern and colour table of the same length means
 that finding the corresponding colour information for a
 particular character is a simple task.This is because,the
 formula for both pieces of information are identical except
 for the start of the respective VRAM tables.

 Start of character = PATBASE + BLOCK + (8 * ASCII Num)
 in the PGT

 Start of colour for = COLBASE + BLOCK + (8 * ASCII Num)
 char in the COLTAB

 where:
 BLOCK = 0000 (top) or 2048 (middle) or 4096 (bottom)
 COLBASE = 8192 for a MTX

Page 38

PATBASE = 0000 for a MTX
ASCII Num= 0 - 255.

5.3 The VRAM Tables

As shown in figure 4-1, the name table is a sequence of 768
locations which hold a particular ASCII code [0-255]. As you
are well aware,only numbers between 0 & 255 are allowable.
This raises the question of how we access the other 512
UDG's. As already stated,the pattern generator and colour
tables are divided horizontally into thirds of 2048 bytes .
Well this is also the case for the Name Table,except that its
in blocks of 256 bytes,see Table 5-1 . The ASCII Numbers
0-255 apply to all three blocks. However,depending on which
third of the screen, the character is to be displayed in,
determines which block of the PGT and Colour Table the
information should be extracted from.

Table 5-1: Sectioning in GII mode increases resolution.

: Thirds : Name Table : Colour Table : Pattern Table :

: TOP : 000 - 255 : 0000 - 2047 : 0000 - 2047 :
: MIDDLE : 256 - 511 : 2048 - 4095 : 2048 - 4095 :
: BOTTOM : 512 - 767 : 4096 - 6143 : 4096 - 6143 :

Please note that the actual positions of all three tables
depends on the VRAM setup. The values quoted above are the
undisplaced ranges. VDP registers 2,3 and 4 hold the base
addresses of the Name Table,Colour Table and Pattern Tables
in VRAM respectively. What you then do is add to the above
displacements the Base values,ie 15360 (NAMEBASE),8192
(COLBASE) and 0000 (PATBASE) respectively for the MTX.

As with GI mode the user only needs to send the appropriate
ASCII code and depending on the cursor position on the screen
,the correct pattern from the correct 2048 byte block will be
selected automatically by the VDP,see later for matching Name
Table positions with the TEXT coordinates.

5.4 Initialisation of the PGT

Problems will arise if the patterns in the three thirds
of the PGT are not mapped the same . The example below will
highlight this problem.

Listing 5-1 is simply a reworking of listing 4-2. There is no
toggling between two character sets on the whole screen. This
time ,as you move from the TOP to the MIDDLE third of the

Page 39

screen,you will notice that the font from this point will be
differnt from the font above. But, when you move from the
MIDDLE to the BOTTOM third of the screen, you will see
nothing appearing on the screen. This is because no character
set has been loaded into the bottom third of the PGT.

Listing 5-1: GII mode and the Pattern table.

Reload the source text of listing 4-2 with :

SAVE "GISWITCHTXT" (for tape users)
DISC (USER) SAVE "GISWITCH.TXT" (for disc users)

Now Edit it with AS.1400 <RET>. The following changes and
deletions are needed. Please do in the order set down. The
CHANGES:

REGGIIMODE:DB #02,#C2,#0F,#FF,#03,#7E,#07,#16
GIISCRN: DW 15360
SETSCRN: LD HL,(GIISCRN)
START: LD HL,REGGIIMTX

THE FOLLOWING LINES ARE REDUNDANT,THEREFORE DELETE:

FLAG: DB #00

SWITCHMODE:PUSH AF to RET ; ie the SWITCHMODE subroutine.

CP 128
CALL Z,SWITCHMODE

Now save the source text:

SAVE "GIISWITTXT" (for tape users)
DISC (USER) SAVE "GIISWIT.TXT" (for disc users)

then RUN <RET>. Now type a couple of paragraphs of a book
onto the screen. After 256 characters have been displayed the
on screen font will change to the RAMASC font. NB:the
previous 256 characters will stay in the old font mode.

When the MTX switches to VS 4 screen mode, the MTXOS
initialises GII screen mode, by copying the ASCII characters
into all three sections of the screen pattern table,similar
to Listing 5-1,except that the font will not vary from
section to section. Listing 5-2,describes how to initialise
GII mode as for VS 4 mode in MTX BASIC.

Page 40

Listing 5-2: Initialise all 3 sections of the Graphics II
 mode pattern table with the User Defined ASCII
 character set,in Listing 4-1. This example only
 loads the 96 printable ones. However,as this is a
 graphics orientated text screen, you could add
 your own patterns for ASCII characters >127,ie
 like Greek letters, italics , music symbols etc.
 Remember to change the number of ASCII characters
 to send to the pattern tables.

10 GOSUB 1500
20 STOP

1300 CODE

RAMASC: ; see listing 4-1.

1310 RETURN

1500 CODE

START: LD HL,REGGIIMODE ; SET VDP TO VS 4 MODE.
CALL VDPWRTSEL ;
CALL INITASCTAB ; LOAD 3 SECTIONS WITH ASC SET.
CALL TXTSCRCLS ; CLS THE NAME TABLE OF THE 3
LD HL,(GIISCRN) ; ASC SETS. THEN POINT THE CSR
CALL VDPWRTSEL ; TO THE START OF THE GII SCRN.

GETCHAR: XOR A ;
CALL #0079 ; READ KEYBOARD.
JR Z,GETCHAR ;
CP 27 ; RETURN TO BASIC WHEN "ESC" IS
RET Z ; PRESSED.
CP 32 ; ONLY CHARS BETWEEN 32 AND 127
JR C,GETCHAR ; ARE VALID KEYPRESSES.
CP 128 ;
JR NC,GETCHAR ;

VALIDCHAR: OUT (#01),A ; SEND ASCII CHAR NUMBER TO THE
JR GETCHAR ; NAME TABLE (SCRN).

INITASCPAT:LD HL,256 ; POSITION IN VRAM,SECTION 1,THAT
LD DE,2048 ; THE PRINTABLE ASC CHARS ARE TO
LD B,3 ; STORED. DE=DISPLACEMENT TO NEXT

LDPATTAB1: CALL VDPWRTSEL ; SECTION. THEY ARE 3 SECTIONS.
PUSH BC ; KEEP TRACK OF WHICH SECTION.
PUSH HL ; STORE ASC PRINTABLE START DISP.
LD C,96 ; 96 PRINTABLE CHARACTERS TO BE
LD HL,RAMASC ; SENT TO EACH SECTION.RAMASC IS

; OBTAINED BY LOOKING AT LINE 1300
; & ENTERING ITS STARTING VALUE.

LDPATTAB2: LD B,8 ; 8 BYTES PER CHARACTER ARE TO BE
LDPATTAB3: LD A,(HL) ; START COPYING THE PATTERN BYTES

OUT (#01),A ; LISTED IN LISTING 4-1,INTO THE
INC HL ; THREE SECTIONS OF THE PATTERN
DJNZ LDPATTAB3 ; TABLE.
DEC C ; UNTIL ALL 96 HAVE BEEN STORED.

Page 41

JR NZ,LDPATTAB2 ;
POP HL ; RESTORE PRINTABLE DISPLACEMENT
ADC HL,DE ; GET PRINTABLE START IN THE

; NEXT PATTERN SECTION.
POP BC ; REDUCE THE PATTERN SECTION
DJNZ LDPATTAB1 ; BY 1,UNTIL ALL SECTIONS HAVE
RET ; LOADED.

TXTSCRCLS: LD HL,(GIISCRN) ; THIS SHORT SUBROUTINE CLEARS
CALL VDPWRTSEL ; THE GII NAME TABLE OR SCREEN
LD BC,768 ; .THIS IS IMPORTANT,AFTER THE

TXTSCRCLS1:LD A,32 ; PATTERN IS LOADED,AS THE
OUT (#01),A ; PATTERN IS ECHOED TO THE NAME
DEC BC ; TABLE OR SCRN AND TO THE VDU.
LD A,B ; THIS SUBROUTINE HAS BEEN
OR C ; MODULARISED SINCE LISTING 4-2
JR NZ,TXTSCRCLS1 ; WHEN IT WAS CALLED SCRNCLS.
RET ;

VDPWRTSEL: see listing 3-1 ;

VDPREGSET8:see listing 4-2 ;

GIISCRN: DW 15360 ; NAME TABLE OR SCRN START IN VRAM.

REGGIIMODE:DB #02,#C2,#0F,#FF,#03,#7E,#07,#16;

Now save this:

SAVE "INITVS4TXT" (tape users)
DISC (USER) SAVE "INITVS4.TXT" (disc users)

As for Listing 5-1,type RUN <RET>,and start typing. Notice
that the same font is used throughout the whole screen. I
hope by now that you will have realised the potential of
modular programming and building applications from these
modules or building blocks. As you become more proficient
with Assembly language,your library will start to swell and
programs will be designed and debugged a lot quicker.

5.5 Colour Mapping with GII text screens

Figure 5-1,see later,graphically describes how the VRAM
tables : Pattern ,Colour and Name relate to each other in GII
text mode. As I will demonstrate by way of an appropriate
example, see listing 5-3,that the way the GII TEXT mode is
setup,you will not be able to use the colour table
effectively because it behaves like the pattern generator
table.

As already stated,both the pattern and colour tables are
mapped similarly,ie same length in VRAM and each pattern byte
has a corresponding colour byte,see the formula in section
5.2 . At present , we send the ASCII character number to the

Page 42

NAME Table where this number is stored according to the
current cursor coordinates. The VDP then finds out which
third of the screen the character is to be displayed and then
looks up the appropriate character pattern from the correct
pattern table third.

The same principle is adopted in the way the VDP gets the
colour of a particular character by reading the same location
as in the PGT except that it is a further 8192 bytes higher
up in VRAM. The significance of this is that once you have
ascribed a particular colour pattern to a particular
graphically pattern,this colour will stay with this pattern
throughout that third of the screen. This means that it is
impossible in this particular TEXT mode to change the colour
of a specific character without affecting the previous colour
of this character at different screen coordinates in the same
third of the screen. Obviously this will cause problems.

Listing 5-3: This listing demonstrates the colour resolution
 problem discussed in the last few paragraphs.

1300 CODE
; SEE LISTING 4-1

1310 RETURN

1600 CODE

START: LD HL,REGGIIMTX ; SET TO GRAPHICS II MODE.
CALL VDPWRTSEL ;
CALL INITASCTAB ; INITIALISE THE PATTERN TABLE

; WITH THE RAM ASCII CHAR SET.
LD A,31 ; INK=BLACK AND PAPER=WHITE.
LD HL,8712 ; LOAD THE COLOUR 8 BYTES WHICH
CALL VDPWRTSEL ; CORRESPOND TO THE PATTERN OF
LD B,8 ; ASCII CHARACTER 'A",ie 65*8

COLLOOP1: OUT (#01),A ; VRAM=8192+520. ONLY COLOURING
DJNZ COLLOOP1 ; THE 8 BYTES OF CHAR 'A' IN THE

; TOP THIRD OF THE SCREEN.
CALL TXTSCRCLS ; CLS THE SCREEN BEFORE USE.
LD HL,(GIISCRN) ; SET CURSOR TO 0,0.
CALL VDPWRTSEL ;
CALL GETCHAR ; ECHOES VALID ASCII CHARS
RET ; [32-127] TO THE GII SCREEN.

; SUBROUTINES

INITASCTAB: ; SEE LISTING 5-2.

TXTSCRCLS: ; SEE LISTING 5-2.

VDPWRTSEL: ; SEE LISTING 3-1.

VDPREGSET8: ; SEE LISTING 4-2.

Page 43

GETCHAR: XOR A ;
CALL #0079 ;
CP 27 ; ESC THEN EXIT
RET Z ;
CP 128 ; INVERT COLOUR OF CHARACTER 'A'.
CALL CHANGEACOL ;
CP 32 ; MAKE SURE ONLY VALID CHARS ARE
JR C,GETCHAR ; SENT TO THE SCREEN.
CP 127 ;
JR NC,GETCHAR ;

VALIDCHAR: OUT (#01),A ;
JR GETCHAR ; ESC TO EXIT LOOP.

CHANGEACOL:PUSH AF ; DON'T CORRUPT ANY REGISTERS.
PUSH BC ;
PUSH HL ;
LD HL,8712 ; CHANGE THE COLOUR OF LETTER 'A'
CALL VDPWRTSEL ; BY INVERTING IT.
LD A,225 ;
LD B,8 ;

COLLOOP2: OUT (#01),A ;
DJNZ COLLOOP2 ;
POP HL ;
POP BC ;
POP AF ;
RET ;

;SYSTEM VARIABLES

REGGIIMTX: DB #02,#C2,#0F,#FF,#03,#7E,#07,#16
GIISCRN: DW 15360
SCRNLEN: DW 768

1610 RETURN

Save as:
SAVE "G2TXTCOLTXT" (tape users)
DISC (USER) SAVE "G2TXTCOL.TXT" (disc users)

To test the above listing, simply enter the following:

10 GOSUB 1600
20 STOP

Remember to recompile lines 1300 and 1600 and update RAMASC
in line 1600 to the start of line 1300. RUN <RET>. Now start
typing text. Everytime you type the letter 'A' it will be in
a white box with black ink. When you press <F1>,this will
invert the colour of letter 'A' to white on black paper for
all letter A's on the top third of the screen.

Also, after you switched the colour, anything else you type
will not appear on the screen. We have already come across
this problem. When you jump around VRAM, we are also changing

Page 44

the VRAM address pointer,in this case to 8712-8719. To regain
control of it to the name table will require a special
program pointer to reset the address pointer after a quick
jump in the VRAM table,see listing 4-2,SETSCRN.

5.6 The Name Table and the TEXT Coordinate System

Relating the the TEXT screen coordinates as used by the MTX
BASIC command CSR X,Y to positions in the Name Table is a
simple task:

 NAMETABPOS = NAMEBASE + (Y * 32) + X

where Y = y-coordinate ,range 0-23.
X = x-coordinate ,range 0-31.
NAMEBASE = set according to VDP Register 2.

5.7 VDP Picture Mechanism/Screen Refresh

Without repeating myself too much,the VDP requires
information from three specialised VRAM tables - PATTERN,
COLOUR, and NAME, so that a computer generated TEXT
orientated GRAPHICS screen can be produced on the VDU. Figure
5-1,graphically describes what information these tables hold
and how they interact to produce the characters we see on the
VDU. As you will have realised by now,that this mechanism is
true for all TEXT orientated modes,except that as the
resolution increases then the memory required to hold the
information increases,ie more VRAM is used up.

In summary,the VDP sequentially reads the Name Table
locations ,(NAMEBASE + 0) to (NAMEBASE + 767),converting the
ASCII Numbers held in these locations into the desired shape
with corresponding colour. This information is then sent to
the VDU for display on the VDU picture display. This
mechanism is repeated every 1/50 th of a second (depends on
the Hz frequency - UK = 50 and US =60).

An illustration of the screen refresh procedure : If you
change the pattern of ASCII 65 from 'A' to 'A',then the new
pattern will almost instantaneously be echoed to the VDU
picture. Not only this,but ALL other 'A's in the same third
of the screen will be underlined simultaneously,because they
have the same pattern. Obviously, this is a major drawback of
this screen mode. However, the character pattern and colour
uniqueness at different positions on the screen will be
covered in chapter 6.0.

Page 45

Figure 5-1:Interaction of the VRAM tables to give a
character on the VDU picture.

5.8 GI Mode Emulation but with Enhanced Colour

Finally,as I said in the introduction of this chapter,that
GII text mode was ideally suited to wordprocessing,
spreadsheeting and for front-end systems. However,GII mode
requires over 12k of VRAM,whereas in GI mode only 2-3k is
needed. Because of the reduced VRAM constraints of GI
mode,this mode can be used to store other screens,or
alternative character sets,and as shown in chapter 4,it is
possible to quickly switch fonts or entire screens.

Well,it is possible to emulate GI mode from within GII mode.
This is easily done by setting Registers 0,3 & 4. The
allowable values and there VRAM addresses is given in Table
5-2. It is obvious from this table,that only 3 other fonts or
screens can be stored in VRAM,and likewise for the colour
tables. At this point it is worth mentioning,that GI
emulation,retains the colour prowess of GII mode.
Therefore,for the 256 unique ASCII patterns,there are 256
equivalent colour patterns,unlike the 8 ASCII characters per
colour pattern in normal GI mode.

Table 5-2: GI Emulation VDP Register Values & VRAM addresses.
Includes GI values for comparison.

: R0 : R1 : R3 : R4 : COLBASE : PATBASE : SCREEN/FONT :

: #02 : #C2 : #80 : #00 : 8192 : 0000 : one :
: #02 : #C2 : #A0 : #01 : 10240 : 2048 : two :
: #02 : #C2 : #C0 : #02 : 12288 : 4096 : three :

: #00 : #C2 : #80 : #00 : 8192 : 0000 : actual GI :

Page 46

Note that,all the information enclosed in chapter 4,is now
pertinent to this section. Try a few of the listing with the
above R0,R3 & R4 values. Once,you have convinced yourself of
the emulation,type in the following short utility,to see the
increased colour potential - ie 16 colours per unique ASCII
character.

Listing 5-4: Illustration of the Increased Colour Resolution
 of GI & GII modes & GII mode emulating GI mode.

1700 CODE

COLRES: LD HL,VDPREGGII ; SET VDP REGISTERS (*)
CALL VDPREGSET8 ;
LD HL,8192 ; THE START OF THE COLOUR TABLE.
CALL VDPWRTSEL ;
XOR A ; SET COLOUR TO TRANSPARENT.
EX AF,AF' ;
XOR A ; AF'=TRANSPARENT.
LD BC,(BCGIIMODE) ; LENGTH OF COLOUR TABLE. (*)

COLLOP: EX AF,AF' ; GET START OF COL. RANGE=0-15.
OUT (#01),A ; SEND COLOUR BYTE TO COL TABLE
INC A ; GET NEXT COL,SEE TABLE 3-1.
CP 16 ; IF COL=16 THEN RESET COL=0.
JR NZ,NORESET ;

RESETCOL: XOR A ;
NORESET: DEC BC ; DO THIS UNTIL THE WHOLE COLOUR

EX AF,AF' ; TABLE IS FILLED.SAVE THE UPDATED
LD A,B ; COLOUR NUMBER IN AF'.
OR C ;
JR NZ,COLLOP ;
RET ;

; SUBROUTINES

VDPWRTSEL: ; SEE LISTING 3-1

VDPREG8SET: ; SEE LISTING 4-2

VDPREGGII: DB #02,#C2,#0F,#FF,#03,#7E,#07,#16 ; GII MODE.

VDPREGEMGI:DB #02,#C2,#0F,#80,#00,#7E,#07,#16 ; GII ->GI.

VDPREGGI: DB #00,#C2,#0F,#80,#00,#7E,#07,#16 ; GI MODE.

BCGIIMODE: DW #1800 ;BC=6144 ; GII COLOUR TABLE SIZE.
BCGIIEMGI: DW #0800 ;BC=2048 ; GII EMULATING GI BUT WITH

; INCREASED COLOUR RESOLUTION
; EQUIVALENT TO A 3rd OF GII.

BCGIMODE: DW #0020 ;BC= 32 ; GI COLOUR TABLE SIZE

1710 RETURN

Page 47

Save as:
SAVE "COLRESTXT" (tape users)
DISC (or USER) SAVE "COLRES.TXT" (disc users)

Add the following lines of BASIC to test the above:

10 VS 4:CLS
20 GOSUB 1700
30 GOTO 30

Now: RUN <RET>

When this program is run with the first set of data ,ie the
VDP is configured as a high resolution GII mode,the you will
see a multicoloured screen with every byte (8x1) a different
colour. Every 16th byte,the colour will reset back to
transparent and repeat colouring the succesive bytes
according to table 3-1.Press <BRK> key to exit to BASIC.

Now,if we change the second of the two lines marked with the
asterixes (*),to LD BC,(BCGIIEMGI),and leaving the Registers
setup as normal GII mode,you will see only the top third
coloured in. This is as expected,because we've only coloured
2048 bytes out of the 6144 bytes.

Next,change both *-lines to:
LD HL,VDPREGEMGI
LD BC,(BCGIIEMGI)

The Registers have been configured to emulate GI mode. When
the program is rerun with this data,you will get the same
effect as the first run ,even though we have only sent 2048
bytes of colour information. This is because we have reduced
the size of the GII colour table from 6144 bytes to 2048. In
this emulation,each of the 256 ASCII patterns has a unique
8x8 colour pattern,unlike the original GI mode,see below.

Finally,change the *-lines to:
LD HL,VDPREGGI
LD BC,(BCGIMODE)

When this is rerun with the normal GI register setup,you get
the same colour for 8 8x8 patterns rather than 1 colour per
8x1 pattern in GII mode and in GII emulating GI mode.

The restrictions discussed in section 5.5 and demonstrated
in listing 5-3,will hold for the Emulation mode also.

Page 48

6.0 Graphics II Bit Mapped Mode (256x192 dots)

6.1 Introduction

Bit mapped screen display allows the programmer the
flexibility to address (access) every dot on the GRAPHICS
plane or screen. This access is essential for plotting points
,as shown in Listing 6-3,and drawing lines as required for
paint/sprite designers,CAD,DTP,etc. The VDP has a screen
resolution of 256x192 dots or the ability to plot 49k of dots
or bits of graphical information. However,the VDP can only
resolve 2 colours per byte of graphical information - see
colour section for further explanation. In summary,the dot
resolution is bit mapped but the colour resolution is byte
mapped.

We have seen in this and in previous chapters,that the TEXT
modes are interesting and useable to some extent,but they
lack the flexibility and colourfulness of a bit mapped
display.However,a bit mapped display will cost us in terms of

(1) VRAM - requires >12k.

(2) CPU RAM - required for colour and graphical data.

(3) Performance - CPU is needed to transfer a lot more
information ,ie pattern and colour data. This makes
the VDP less independent.

6.2 The Bit Mapped Mechanism wrt Text Orientated Displays

Both the TEXT mode and the BIT mapped mode share the same
display mechanism as outlined in section 5.7. The TEXT
mode,maps the 768 byte Name Table as a 32x24 VDU screen,with
each of the Name Table Positions,NTP,corresponding to a CSR
X,Y Text coordinate. When we want to display an ASCII
character on the VDU,we would send its ASCII number to the
correct NTP,where it would be stored. This ASCII number would
correspond to one 8x8 shape in the PGT and one 8x2 colour in
the Colour Table. The VDP would extract this information and
echo it to the VDU.

The problem with this technique was that,if we wanted to
change the colour (see listing 5-3) or the shape of a ASCII
character then all ASCII characters with that number in that
particular third of the screen or PGT had to adopt the new
shape or colour according to the mechanism outlined in
section 5.7. It for is this reason that you couldn't write
a WYSIWYG wordprocessor in this mode.

In Bit mapped mode,we load the Name Table Positions with
predefined numbers [0-255],see figure 6-1. This table like
the PGT in the above mechanism is held in this state
throughout switch on,ie, no changes. The Colour and PG tables

Page 49

on the other hand are both empty at setup,see listing 6-1 for
PGT clear,ie VS 4:CLS in BASIC.However,there is a PGT and
Colour Table (CT) set up in RAM instead of VRAM,the purpose
of this will become apparent shortly.

Figure 6-1: The VRAM Pattern Name Table (PNT)

Listing 6-1: This subroutine Mimics the MTX BASIC Command:-
 VS 4:CLS. Assumes that the VDP registers have
 already been set to GII mode.

160 CODE

VS4CLS: PUSH AF ;
PUSH HL ;
LD HL,(PGTBASE) ; START OF THE PGT IN VRAM.
CALL VDPWRTSEL ; SEE LISTING 3-1.
LD HL,(PGTLEN) ; NUMBER OF BYTES TO CLEAR.

CLSPGT: XOR A ; PLACE 0 IN THE 6144 BYTE
OUT (#01),A ; TABLE.
DEC HL ; DO UNTIL ALL CLEARED.
LD A,H ;
OR L ;
JR NZ,CLSPGT ;
POP HL ;
POP AF ;
RET ; EXIT SUBROUTINE

; SUBROUTINE VARIABLES

PGTBASE: DW #0000 ;
PGTLEN: DW #1800 ; 6144 BYTES LONG.

170 RETURN

Whenever,we want to print an ASCII character on the VDU,we
have to extract the relevant colour and pattern data from
RAM. The colour and pattern information are held in the RAM

Page 50

CT & PGT's respectively. These tables have the same function
as the VRAM CT & PGT's. However,as CPU RAM is extremely
precious,instead of 3 blocks of 2048 bytes holding the same
colour and pattern information,it would make sense only
having one table for the 256 patterns and another for the
colour information. To extract a ASCII pattern from the
RAMPGT and RAMCT ,is a simple matter:

--
 CPURAMPOSn = RAMASC (or RAMCOL) + (ASCII Num * 8)
--

At this stage we can take this shape (or colour) and store it
in a 8-byte temporary buffer and make changes where
necessary,ie underlining as in a wordprocessing example. This
ability to make pattern/colour changes without affecting the
database shape or other on screen characters with the same
ASCII number is an extremely powerful asset. When the data is
ready,it is sent to the VDP,and directed towards the VRAM PGT
and CT at positions which correspond to the CSR X,Y
coordinates,see calculation and listing 6-2.

 CHARPOSn in VRAM PGT = PGTBASE + (Y * 256) + (X * 8)

 COLPOSn in VRAM CT = COLBASE + (Y * 256) + (X * 8)

 where:
X = 0 to 31.
Y = 0 to 23.
PGTBASE = start of the PGT in VRAM.
COLBASE = start of the CT in VRAM.

Listing 6-2: Two subroutines which do the above calculations.

180 CODE

; this subroutine gets the PGT VRAM address corresponding to
; the MTX BASIC CSR X,Y text coordinates.

GETCHARPOS:PUSH AF ;
PUSH HL ;
LD HL,(XY) ; H=Y AND L=X
LD A,L ;
SLA A ;
SLA A ;
SLA A ; A=X*8
LD L,A ; L RANGE = #00 TO #FF
LD A,H ;
SLA A ; A=Y*256
LD H,A ; H RANGE = #00 TO #17.
LD (CHARPOSn) ; SAVE IT
POP HL ;
POP AF ;
RET ; EXIT SUBROUTINE

Page 51

; subroutine variables

X: DS 1 ; HOLDS THE CSR X COORDINATE
Y: DS 1 ; HOLDS THE CSR Y COORDINATE.
CHARPOSn: DS 2 ; WHERE CHAR TO BE STORED IN PGT

; this subroutine takes the above CHARPOSn and adds 8192 to
; get the VRAM colour address corresponding to this CSR X,Y.

GETCOLPOS: PUSH HL ;
PUSH DE ;
LD HL,(CHARPOSn) ; GET PGT POSITION.
LD DE,8192 ; AND ADD TO 8192 TO GET THE
ADD HL,DE ; COL POSITION.
LD (COLPOSn),HL ; SAVE IT
POP DE ;
POP HL ;
RET ; EXIT

COLPOSn: DS 2 ; WHERE THE COL TO BE STORED.

190 RETURN

The CHARPOSn formula requires an explanation as to how it was
derived. The CSR X,Y coordinate system has X= 0-31 and Y=
0-23. The bit mapped resolution is 256x192. To calculate the
X-dot displacement is X * (256/32=8). Each screen row is 256
dots wide and therefore,to move the Y pointer down , involves
moving Y by 256 dots at a time,ie Y*256.

For example,to load a character pattern at CSR 11,10,would
relate to a PGT position of 256*10 + (11*8) = 2648. The shape
would be loaded at 2648-2655. This VRAM address also tells us
which third of the PGT , the character will be loaded at:
TOP <2047 ; MIDDLE >2048 & <4095 ; BOTTOM >4096. In
this example,the shape is located in the Middle section.

The above mechanism will be repeated,whenever we have to
print a character on the VDU,whilst in Bit mapped mode.
Therefore,any position in the PGT can be loaded with any 8x8
character shape. This shape will become unique to this
screen location (or PGT position). In this way,when we change
an ASCII character slightly as required for a WYSIWYG
wordprocessor,only the shape at the desired screen coordinate
(or PGT position) is changed,all other ASCII characters with
the same ASCII number are left untouched. Obviously,writing a
WYSIWYG wordprocessor is more complicated than this,but the
principle is the same.

I have produced a subroutine flowchart of Listing 5-2 , which
highlights the TEXT mode display mechanism and along side of
this I have included the Bit mapped TEXT display mechanism,
see flowchart at end of this chapter.

Page 52

6.3 The Bit Mapped Mechanism wrt Plotting and Drawing

In the previous section,we were dealing with 8x8 characters
which were displayed on the 32x24 TEXT coordinate system.
However,when dealing with individual dots as necessary for
drawing lines,circles,etc,involves displaying these on the
256x192 dot or cartesian coordinate system. Both the PGT and
CT's are organised similar to the TEXT coordinate system in
that it works in bytes rather than bits (dots).

When working with screen dots (or VRAM bits),we have to
remember that the Z80/VDP handles all information as bytes
and NOT as bits. The consequences of this will reflect in the
extra processing required to relate cartesian coordinates to
VRAM addresses. The process of plotting a point on the VDU,by
writing to the PGT in VRAM involves:

1. Calculate the PGT VRAM address to the nearest BYTE.

2. Determine which BIT in the BYTE,gives the exact PLOT
 coordinates on the VDU.

3. Convert BIT NUMBER to its BIT VALUE,see figure 6-2.

4. READ this PGT VRAM address and get the current SCREEN
 byte.

5. This byte holds the screen coordinates adjacent and
 including the one we require. Care must be taken to
 SET the bit in question , leaving the other bits as
 before.

6. Take the new SCREEN byte and send it to the same PGT
 VRAM address as READ earlier. This will echo the new
 PLOT X,Y DOT on the VDU.

BIT NUMBER 7 6 5 4 3 2 1 0

BIT VALUE 128 64 32 16 8 8 2 1

BIT PATTERN 0 1 0 1 0 0 0 0

SCRN PATTERN

Figure 6-2: How the Bit & Screen Patterns correspond.

Before I continue with this discussion,it is appropraite that
we diverge and briefly mention Three important Z80 assembly
language commands which allow us to manipulate individual or
multiple bit(s) of the data/screen byte. These commands are
OR,AND and XOR. Table 6-1 summarises the effects of
ANDing,ORing and XORing bits of information. As we will see
later,simply by changing these operator commands,we can

Page 53

produce three new graphic commands. How these commands work
can be found in any good Z80 assembly language book,however,I
will give examples of these logical operators in the text
where applicable.

Table 6-1: The Truth tables of the Logical Operators: AND,OR
and XOR.

: BIT States : Result of the Logical Operations :
: of A & B : OR : AND : XOR :

: 0 : 0 : 0 : 0 : 0 :
: 0 : 1 : 1 : 0 : 1 :
: 1 : 0 : 1 : 0 : 1 :
: 1 : 1 : 1 : 1 : 0 :

The next step in this complex jigsaw,is the conversion of the
PLOT X,Y cartesian coordinates to the PGT VRAM addresses.
This calculation is not as straight forward as in the other
chapters. As already stated,both the Z80 and VDP handle
information in BYTE chuncks. For this reason,we can only
determine the VRAM address to the nearest byte. To calculate
this:

--
 LSB of the VRAM address = (INT(X/8) * 8) + (7 - Yremainder)
--
 MSB of the VRAM address = 23 - INT (Y/8)
--

where:
X = 0 to 255.
Y = 0 to 191.
Yremainder = the reminder of the calculation: Y/8.

Note that,the above VRAM address should be added to PATBASE
to get the actual PGT VRAM address. However,as most people
set the PATBASE to 0000,we can therefore ignore it.

Now that the correct VRAM address has been calculated,the
next step is to calculate which bit of the byte this address
refers too, that gives the exact PLOT coordinates:

--
 BIT Number = Xremainder (ie the remainder of X/8)
--

The INT(X/8) and 23-INT(Y/8) (the reason for the 23- ,is
because of the different origins of the TEXT and Cartesian
systems ,see figure 6-3) values give the TEXT coordinates,
see previous section. The Xremainder and Yremainder values
of X/8 and Y/8 respectively,both give a number between 0 & 7.

Page 54

These numbers refer to the bit column or BIT Number and row
byte respectively,see figure 3-1, that makes up this 8x8
block of graphical information for the TEXT coordinate
positions. You should keep a note of this fact as it may help
you write a WYSIWYG wordprocessor or more importantly a DTP.

Figure 6-3:The two coordinate systems used by the VDP: TEXT
(32x24) and CARTESIAN (256x192).

We can now pin-point the exact position in the PGT that
corresponds to the PLOT X,Y coordinates. However,we will have
to just set the BIT Number in question and leave all other
bits in the byte untouched. As already stated,this is easily
acheived by OR ing the old screen byte with the BIT Value,see
Figure 6-2. For example:

current Byte pattern : 0 0 1 0 0 1 1 1 = 39

Bit 6 is to be set : 0 1 0 0 0 0 0 0 = 64

OR result : 0 1 1 0 0 1 1 1 = 103

Therefore,the old screen byte of 39 will be overwritten with
103. The next listing includes two subroutines: CARTESIANXY
and PLOTXY. The first of which performs the above
calculations and the PLOYXY subroutine,mimics the MTX BASIC
command PLOT X,Y.

Listing 6-3: The following code mimics the MTX BASIC command
 PLOT X,Y. Where X = 0 - 255 and Y = 0 - 191.

Page 55

1800 CODE

; When you divide by 8 (= 3 SRL A's) then we are shifting the
; lower 3 bits [0-7] out of the byte. These 3 bits make up
; the remainders.The simplest way of getting the remainder is
; to mask all bits except the first three and the new byte
; value will reflect the remainder. This is acheived in Z80
; by ANDing the X or Y value with 7 ,the result being the
; Xremainder and Yremainder's respectively.

; MAIN PROGRAM

LD HL,GIIBITMODE ; SET VDP TO BIT MODE.
CALL VDPREGSET8 ;
LD HL,#1001 ; Y = 16 AND X= 1

; THESE VALUES CAN BE CHANGED
CALL PLOTXY ; PLOT X,Y
RET ; END PROGRAM

; SUBROUTINES.

CARTESIANXY:PUSH BC ; HL HOLDS THE X & Y COORDs.
; ON CALLING THIS SUBROUTINE.

XOR A ;
LD A,L ; L=X-COORDINATE
SRL A ; DIVIDE BY 8
SRL A ;
SRL A ;
AND A ; INT (X/8)
SLA A ; MULTIPLE BY 8
SLA A ;
SLA A ;
LD C,A ; INT (X/8) * 8

XOR A ;
LD A,H ; H=Y-COORDINATE
SRL A ; DIVIDE BY 8
SRL A ;
SRL A ;
AND A ; INT(Y/8)
LD B,A ;
LD A,23 ;
SUB B ;
LD (MSBPGTADDR),A ; SAVE 23-(INT(Y/8)).

LD A,H ; H=Y-COORDINATE
AND 7 ; GIVES YREMAINDER.
LD B,A ;
LD A,7 ;
SUB B ; 7-YREMAINDER

ADD A,C ; INT(X/8)*8 + (7-YREMAINDER)
LD (LSBPGTADDR),A ; SAVE IT.

Page 56

GETBITNUM: LD A,L ; L=X-COORDINATE
AND 7 ; XREMAINDER
LD (BITNUMBER),A ; SAVE IT.

LD HL,(LSBPGTADDR) ; HL=PGT VRAM ADDRESS
CALL VDPREADSEL ; READ THE BYTE AT HL.
IN A,(#01) ; THIS STORES THE BYTE IN A.
POP BC ;
RET ; A HOLDS THE SCREEN BYTE

; HL POINTS TO PGT POSITION.

PLOTXY: PUSH AF ;
PUSH BC ; GET VRAM ADDRESS AND THE
PUSH HL ;
CALL CARTESIANXY ; BIT NUMBER.
LD C,A ; C=THE OLD SCREEN BYTE.
CALL VDPWRTSEL ; TELLS VDP TO WRITE TO THE

; PGT VRAM ADDRESS.
LD A,(BITNUMBER) ; A=BITNUMBER
LD HL,DOTVALUE ; NOW CONVERT THE BIT NUMBER
ADD A,L ; INTO ITS CORRESPONDING
LD L,A ;
LD A,(HL) ; A=BIT VALUE.

OR C ; CHANGE BIT NUMBER ONLY AND
OUT (#01),A ; LEAVE OTHER BITS UNCHANGED
POP HL ;
POP BC ; AND SEND TO THE PGT/SCREEN
POP AF ;
RET ; EXIT

VDPWRTSEL: ; SEE LISTING 3-1

VDPREGSET8: ; SEE LISTING 4-2

VDPREADSEL:PUSH AF ;
LD A,L ; SEND LSB OF ADDRESS TO VDP
OUT (#02),A ;
LD A,H ; SEND MSB OF ADDRESS TO VDP
AND #3F ; SELECT READ VRAM.
OUT (#02),A ;
POP AF ; VDP READY FOR READING VRAM
RET ;

; PROGRAM VARIABLES

LSBPGTADDR:DS 1 ;
MSBPGTADDR:DS 1 ;
BITNUMBER: DS 1 ; HOLDS THE BIT NUMBER

DOTVALUE: DB 128,64,32,16,8,4,2,1
GIIBITMODE:DB #02,#C2,#0F,#FF,#03,#7E,#07,#16

1810 RETURN

Page 57

Save as:
 SAVE "PLOTXYTXT" (tape users)
 DISC (or USER) SAVE "PLOTXY.TXT" (disc users)

Now add:

10 GOSUB 1810
20
30 GOTO 30

When this program is RUN,a dot at cartesian coordinates 1,16
will be plotted on the Graphics screen. You can try other
coordinates by changing the HL value in the program main
section. To test,that the dots match up with the MTX BASIC
command PLOT X,Y,add at line 20 PLOT 2,16. This will plot a
dot at the next X-coordinate. NB: if the dots are not
adjacent then check the above code.

As mentioned already,by using the other logical operators:
XOR and AND,you can provide two new functions based around
the above PLOTXY code. The two new commands are : POINTXY
,see listing 6-4, and TOGGLEXY,see listing 6-5. Those of you
who are proficient with BASIC will recognise that BASIC has a
POINT X,Y commmand also. Both,return either a 0 or 1
depending on whether the screen position at X,Y is reset or
set. The TOGGLEXY subroutine as its name suggests,toggles the
dot at X,Y. If position X,Y is in the reset state,then it
will be set and vice versa for the set condition.

Listing 6-4: This mimics the BASIC command: POINT X,Y.
 Useful command for detecting collisions in
 Arcade games.

1900 CODE

;program main

LD HL,GIIBITMODE ;
CALL VDPREGSET8 ; SET TO GII BIT MODE.
LD HL,#8010 ; X=16 AND Y=128
CALL POINTXY ; SEE IF DOT SET.
LD A,(POINTSTATUS) ; 0=OFF 1=ON.
CP 0 ; IS IT OFF?
JR Z,PTOFF ; GOTO THE PTOFF SUBR.

PTON: INSERT CODE HERE FOR PTON.

PTOFF: INSERT CODE HERE FOR PTOFF.

; SUBROUTINES

Page 58

POINTXY: PUSH AF ;
PUSH BC ;
PUSH HL ;
CALL CARTESIANXY ; RETURNS A=SCREEN BYTE
LD C,A ; C=SCREEN BYTE.
LD A,(BITNUMBER) ; GET THE BIT VALUE.
LD HL,DOTVALUE ;
ADD A,L ;
LD L,A ;
LD A,(HL) ;
AND C ; TEST BIT,IF EQUAL
JR Z,POINTON ; THEN Z SET.

POINTOFF: XOR A ; SET FLAG TO ZERO.
JR STOREPOINT ; SAVE IT

POINTON: LD A,1 ; SET FLAG TO ONE.
STOREPOINT:LD (POINTSTATUS),A ; STORE FLAG VALUE.

POP HL ;
POP BC ;
POP AF ;
RET ; EXIT

CARTESIANXY: ; SEE LISTING 6-3

VDPWRTSEL: ; SEE LISTING 3-1

VDPREGSET8: ; SEE LISTING 4-2

VDPREADSEL: ; SEE LISTING 6-3

; PROGRAM VARIABLES

POINTSTATUS: DS 1 ;
LSBPGTADDR: DS 1 ;
MSBPGTADDR: DS 1 ;
BITNUMBER: DS 1 ;

DOTVALUE: DB 128,64,32,16,8,4,2,1
GIIBITMODE: DB #02,#C2,#0F,#FF,#03,#7E,#07,#16

1910 RETURN

Save as:
SAVE "POINTXYTXT" (tape users)
DISC (or USER) SAVE "POINTXY.TXT" disc users)

Listing 6-5: This subroutine toggles the dot at X,Y. This
 command is ideal for DTP and CAD.

2000 CODE

;program code

LD HL,GIIBITMODE ; SET VDP TO GII MODE
CALL VDPREGSET8 ;
LD HL,#7F80 ; X=128 AND Y=127.
CALL TOGGLEXY ; SWITCH THE DOT AT
RET ; X,Y ON OR OFF.

Page 59

; SUBROUTINES

TOGGLEXY: PUSH AF ;
PUSH BC ;
PUSH HL ;
CALL CARTESIANXY ;
LD C,A ; C=OLD SCREEN BYTE.
CALL VDPWRTSEL ;
LD A,(BITNUMBER) ; GET BIT VALUE.
LD HL,DOTVALUE ;
ADD A,L ;
LD L,A ;
LD A,(HL) ;
XOR C ; TOGGLE BIT
OUT (#01),A ; SEND NEW BYTE TO SCRN
POP HL ;
POP BC ;
POP AF ;
RET ;

CARTESIANXY: ; SEE LISTING 6-3

VDPWRTSEL: ; SEE LISTING 3-1

VDPREGSET8: ; SEE LISTING 4-2

VDPREADSEL: ; SEE LISTING 6-3

; PROGRAM VARIABLES

LSBPGTADDR:DS 1 ;
MSBPGTADDR:DS 1 ;
BITNUMBER: DS 1 ;
DOTVALUE: DB 128,64,32,16,8,4,2,1
GIIBITMODE:DB #02,#C2,#0F,#FF,#03,#7E,#07,#16

2010 RETURN

Save as:
SAVE "TOGGLEXYTXT" (tape users)
DISC (or USER) SAVE "TOGGLEXY.TXT" (disc users)

Now add this:

10 GOSUB 2000
20 GOTO 20
RUN <RET>

This will plot a point at 128,127. However,if you press <BRK>
and re-RUN the code,the previously on dot will be knocked
off.

Finally,drawing lines and circles is a simple matter and I
refer you to an excellent article by M.Parlour,see PCW
,September 1987,pages 130-135. Drawing lines requires a
mathematical algorithm to calculate the X,Y coordinates along
the length of the line. These coordinates are then Plotted
using a subroutine like PLOTXY.

Page 60

6.4 Colour and the Bit Mapped Mode

In GII mode,the colour table has been expanded from 1 byte in
TEXT mode,to 32 bytes in GI mode to 6144 bytes in GII mode.
This enhanced colour resolution can be addressed as in GII
TEXT,GII BIT TEXT and GII BIT Graphics modes. The only
difference occuring in the latter mode where only row bytes
of graphics can be coloured as opposed to column bits. The
reason why is explained next.

The VDP has a 16 colour palette ,numbered 0 to 15. Each dot
on the screen can either be on or off. All ON dots will be
coloured according to the INK colour and all OFF dots will be
in the PAPER colour. To select a colour,whether INK or PAPER
,from a palette of 16 ,can only be defined by 4 bits,as 4
bits gives 16 different patterns,with each pattern
corresponding to one of the 16 colours. Therefore,as shown in
chapter 3,section 3.3,one byte holds both the INK (msn) &
PAPER (lsn) information.

This colour information ,sets the colour for all 8-bits
(dots) in a byte. If it was possible to allow full individual
colour addressing,ie a INK/PAPER colour for each dot on the
screen,then we would require a CT of 48k. Because 1 byte is
required for the INK/PAPER colour,a screen resolution of
256x192 (or 48k of dots) will require 1 colour byte per dot.
Because of this colour limitation,multicoloured pie charts
cannot be drawn properly because of colour clashing.
However,by carefully placing coloured graphics or text on the
screen,can avoid the above problem.

The System used by the BBC micro,would have been more
satisfactory. By reducing the colour palette,the BBC system
could offer the user increasing dot and or colour resolution
and vice versa. For instance,by reducing the VDP palette to 4
colours would increase the colour addressability from 2
colours per byte to 4 different colours per byte.

Listing 6-6 ,mimics the BASIC commands:VS 4:PAPER p:INK i:CLS
This utility can be successfully adapted to provide windowing
capabilities. Why not,set yourself this task,as it shouldn't
be beyond you with your new found knowledge. PS:use the MTX
BASIC commands as a guide.

Listing 6-6: This code mimics: VS 4: PAPER p:INK i:CLS

2100 CODE

; PROGRAM CODE

LD HL,GIIBITMODE ; SET VDP TO BIT MODE
CALL VDPREGSET8 ;

CLSVS4SCR: LD HL,0000 ; START OF PGT IN VRAM.
CALL VDPWRTSEL ; TELL VDP
LD BC,6144 ; LENGTH OF PGT & CT

Page 61

PUSH BC ; SAVE CT LENGTH
CALL CLSPGT ; CLS PGT OR SCREEN.

INKPAPSET: LD HL,8192 ; START OF CT IN VRAM.
CALL VDPWRTSEL ; TELL VDP
LD HL,#010E ; INK=BLACK,PAPER=LT RED
CALL GETCOL ; GET COLOUR BYTE
POP BC ; RESTORE CT LENGTH
CALL SETINKPAP ; SET SCREEN COLOURS.
RET ; EXIT

; SUBROUTINES

VDPWRTSEL: ; SEE LISTING 3-1

VDPREGSET8: ; SEE LISTING 4-2

GETCOL: ; SEE LISTING 3-2

SETINKPAP: LD A,(COL) ; A = COLOUR BYTE
EX AF,AF' ; SAVE IN AF'
PUSH AF ; SAVE OLD AF'
JR CLSLOOP ; NOW SET SCREEN COLOUR

CLSPGT: XOR A ; SEND 0 TO BLANK PGT
EX AF,AF' ; SAVE IN AF'
PUSH AF ; SAVE OLD AF'
JR CLSLOOP ; CLEAR SCREEN

CLSLOOP: EX AF,AF' ; GET BLANK OR COLOUR
OUT (#01),A ; SEND TO PGT OR CT
DEC BC ; DECREASE LENGTH BY 1
EX AF,AF' ; RESAVE BLANK/COLOUR
LD A,B ; CHECK LENGTH NOT ZERO
OR C ;
JR NZ,CLSLOOP ; DO UNTIL ALL 6144 BYTES
POP AF ; RESTORE OLD AF'
EX AF,AF' ;
RET ; RETURN

; PROGRAM VARIABLES

COL: DS 1 ; HOLDS COLOUR BYTE.

GIIBITMODE:DB #02,#C2,#0F,#FF,#03,#7E,#07,#16

2110 RETURN

Save as:
SAVE "VS4CLSIPTXT" (tape users)
DISC (or USER) SAVE "VS4CLSIP.TXT: (disc users)

What you need to do is write TEXT or Graphics to VS 4, via
BASIC & then call the above code to CLS it with GOSUB 2100.

Page 62

Addressing the colour when dealing with the BIT mode graphics
,is as for the graphics, except that we don't need to worry
about determining which bit in the byte needs setting as the
colour byte is the same for all 8-bits in the PGT byte.

There will be many instances where you will want to highlight
a piece of TEXT or Graphics. The most common method of doing
this is to invert the INK and PAPER colours, ie White on Black
becomes Black on White. This is easily done from assembly
language, using the following steps:

1. Calculate the CT address in VRAM to be inverted.
2. Tell the VDP to READ this address.
3. READ the appropriate colour byte(s). Graphics = 1 byte
 and TEXT = 8 bytes to be READ,store in buffer.
4. INVERT all the colour bytes.
5. Tell the VDP to WRITE to the same VDP address as READ.
6. Send the new colour byte(s).

When inverting TEXT,all 8 bytes of colour information will be
READ unless you have set them all to the same colour. The
listing below demonstrates how to invert the colour.

Listing 6-7: Colour Inversion. Assumes VDP set to GII or GI
 mode.

200 CODE

INVCOLBYTE:LD HL,CTVRAMADDR ; HL=CT VRAM ADDRESS TO
PUSH HL ; READ.
CALL VDPREADSEL ;
IN A,(1) ; READ BYTE.

INVERT: RLCA ; SHIFTS THE LSN TO MSN
RLCA ; & THE MSN TO THE LSN.
RLCA ;
RLCA ;
POP HL ; GET VRAM ADDRESS
CALL VDPWRTSEL ; AND TELL VDP TO WRITE
OUT (#01),A ; SEND INVERTED COLOUR.
RET ; EXIT

VDPWRTSEL: see LISTING 3-1

VDPREADSEL:see LISTING 6-3

210 RETURN

Finally,to set the border colour in the Graphic modes
requires writing to VDP 7 register. The Border colour
defaults to the colour of the TEXT mode PAPER colour.
Therefore,if we set the TEXT mode PAPER colour to the colour
we want the BORDER to be and send this to VDP register 7,ie
CALL TXTSCRCOL (see listing 3-2) and make sure COL=BORDERCOL.

Page 63

Figure 6-4:The flowchart below briefly summarises the
mechanisms involved in GII TEXT & BIT mapped
modes for echoing characters to the VDU.

(a) is the TEXT mechanism.
(b) is the BIT mapped mechanism.

Page 64

7.0 Sprites

7.1 Introduction - What is a Sprite?

The TI TMS 9929 handbook describes a sprite as "Special
animation orientated patterns that can be made to move
rapidly about the screen and change shape with very little
programming effort". This is true for all hardware
sprites,but not true for software sprites. Hardware sprites
as available on the MTX,MSX and Einstein computers,are
controlled by a specialised graphics chip - the VDP. Hardware
sprites have a number of important features:

(a) Sprites are usually of fixed (same) size,see section 7.5.
(b) Sprite Movement is flicker-free,see section 7.2 .
(c) A sprite can be set to any of the INK colours , but the
 background has to be transparent,so that the background
 screen graphics behind the sprite can be seen , see
 section 7.7.5.
(d) Sprites are on different hardware planes,see section 7.2.
(e) Sprites have a priority associated with them. Coupled
 with sprites on different planes, it is possible to have
 3-D type displays,see sections 7.2 .
(f) Sprites have the ability to appear/disappear and to bleed
 on and off the VDU picture,see section 7.7.2 and 7.7.3 .
(g) Sprite collision detection . Most specialised graphics
 processors are able to recognise when two sprites have
 collided,see sections 7.9.
(h) Sprites are located on the screen according to cartesian
 coordinates, X and Y , see section 7.7.2 and 7.7.3 .

As you will have gathered from the above list of functions
,the programmer has a powerful Sprite toolbox at his or hers
disposal. This toolbox will speed up program design and lead
to more stunning and faster arcade games.

I will leave the story of Software Sprites for you to
investigate. As a starter - read the article "Graphic Detail"
by K.Garroch,PCWeekly,pg 22,issue 16-22 October 1987.

7.2 The Sprite and the Sprite Plane

The MTX,MSX and Einstein computers graphic processor,the
VDP,supports 32 hardware sprite planes numbered 0 to 31. Each
of these planes can display only one sprite pattern ,selected
from a list of 256 from size 0 sprites or from 64 for size 1
sprites,more on this later.

The VDP supports 35 different hardware planes: 32 sprite ,an
active pattern plane ,a non-active backdrop plane and an
external plane (not considered). A plane is a flat or level
surface,analogous to a sheet of paper. Keep this simplistic
definition in your head. We will consider what we mean by the
pattern and backdrop planes and how these planes are arranged
in space.

Page 65

The whole VDU picture is equivalent to the non-active
non-active (non-displayable) backdrop plane. Positioned on
top of and in the middle of this backdrop plane is the
pattern plane. The pattern plane holds all the TEXT and
GRAPHIC patterns held in VRAM,ie its the Graphics screen
(256x192 dots) or the TEXT screens (32x24 or 40x24
characters). Both the pattern and backdrop planes are fixed
in space. Since the non-active (non-displayable) backdrop
plane is bigger than the active (or displayable) pattern
plane,you would expect to see the non-active part around the
edges of the pattern plane. And this is the case,this region
is called the BORDER,which you should all be familar with by
now.

Consider the backdrop plane as a sheet of white A3 paper and
the pattern plane as sheet of blue A4 paper. Now place the A4
blue plane on top of the white A3 plane,in the middle. The
white area is the border region and the blue area is the
computer screen. As you can see,the blue area is only
covering the backdrop and not overwriting it. This principle
is important to comprehend. Therefore,if the blue A4 pattern
plane wasn't fixed but was variable,we could move it to any
position on the backdrop plane,covering/exposing different
areas as we moved it. The backdrop wouldn't be overwritten as
this would violate the intergrity of a plane,ie whats on one
plane does NOT overwrite but rather HIDES whats on the plane
below it.

There are 32 sprite planes of the same dimensions and
position in space as the pattern plane. These 32 sprite
planes are stacked on top of each other like the slices of
bread in a loaf. As we'll see later ,each sprite plane can
only display one sprite of a maximium size of 32x32 dots.
However the majority of the plane, apart from the area
covered by the sprite,is invisible because the background is
transparent or see through. Therefore it is probably easier
to think of each sprite as a tiny pattern screen which can
located anywhere on the main pattern plane,rather than as
large invisible sprite planes with one sprite per plane.

As you can see from figure 7-1,that I have numbered the
displayable sprites according to there priority or distance
from the user. Sprite 0,is closest to the user and
threfore,the user will see this sprite first. Therfore
sprite 0 has the highest priority with sprite 31 having the
lowest sprite priority,ie furthest from the viewer.

Figure 7-1:Displaced stacked sprites,to give a 3-D type
display.

Page 66

We are able to get this stacked/priority effect because each
of these sprites are held on different sprite PLANES. Note
that the above figure also tells us that the pattern and
backdrop planes are the second lowest and lowest priority
planes repectively. The area covered by the sprite is
analogous to the area covered by a filing cabinet. When you
move the cabinet (ie Sprite) ,you cover another part of the
carpet (ie screen) but uncover the previously covered area.

Therefore a sprite plane is a transparent screen which covers
the whole VDU picture. There are 32 such planes,stacked on
top of each other. Each plane can only display one sprite
pattern of maximum size of 32x32 dots,and the sprite can be
coloured with any of the 16 colours available. The sprites
can move anywhere on the sprite plane freely and flicker
free,without affecting other sprites (except when the fifth
sprite rule is violated) or affecting the graphics screen on
the pattern plane,because the sprites are on different and
higher priority planes.

7.3 VRAM Setup

Three VDP registers [R1 , R5 and R6] control the size,
position, shape and movement of the sprites. However a
Fourth VDP register, R8 ,is also required for checking sprite
collisions, fifth sprite rule violations ,see later. This
latter register,is READ only,ie can only provide information
, whereas, R1,R5 & R6 can be updated or changed. How these
VDP registers are used will be covered in the following
sections.

7.4 The Sprite Pattern Generator (SPG) Table

The SPG table holds all the shape data for the sprites,just
like the TEXT and Graphic VRAM pattern generator tables which
store the shape data that make up the ASCII characters or
User Defined Graphics,UDG's, respectively. VDP register
6,determines the position of the SPG table in VRAM. The
starting address of the SPG table is calculated from:

 SPGBASE = Register 6 [0-7] * 2048

VDP register 6 on the MTX is set to 7,which gives the SPGBASE
= 7 * 2048 = 14336. This table has a maximium length of 2048
bytes or 2k. For this reason,the SPG table can only start on
2k boundries,see chapter 2. A 2048 byte pattern table
corresponds to 256 8x8 sprite shapes or 64 16x16 sprite
shapes,see next section.

Page 67

7.5 The Shape and Size of Sprites

The VDP is limited to only two different sizes of Sprite,
either 8x8 or 16x16, see figure 7-2. The size of ALL sprites
is selected by altering the status of bit 1 of VDP Register
1,see chapter 2. When bit 1 is 'OFF' (=0) then 8x8 sprite
patterns selected, however when this bit is 'ON' (=1) then
16x16 sprites have been selected. Note that,all sprites have
to be the same size because only one bit is used to define
the sprites size. Individual Sprite size control would
require one bit per sprite.

Figure 7-2:Sprite Pattern Grids for size 0 sprites (8x8)
and for size 1 sprites (16x16). Size 1 sprites
are equivalent to four 8x8 sprite patterns.

As already stated,the Sprite Pattern generator Table is 2048
bytes long. A size 0 sprite is built up from one block of 8
bytes of pattern information. On the other hand,a size 1
sprite is defined by 4 blocks of 8 bytes. As shown in Figure
7-2,the VDP takes 4 smaller size 0 sprites and pieces them
together jigsaw style to give 8x8 quadrant. Figure 7-3,shows
how the SPG table relates to Sprite Pattern Numbers (SPN).
Please note that a sprite pattern number is NOT the same as
the Sprite number,more on this latter on.

Figure 7-3:The SPG table mapping for 8x8 sprites (size 0) &
for 16x16 sprites (size 1).

Page 68

The number of sprite patterns that are allowed for size 0 in
a 2048 byte SPG table is 256 ,ie 2048/8. This number falls to
only 64 patterns for size 1 sprites,ie 2048/(4*8). To load
the SPG table with the sprite pattern data,is a simple task.
First decide on whether its a SIZE 0 or 1 Sprite. Then decide
what sprite pattern number you are going to allocate to the
data to be loaded in VRAM. Then calculate the correct VRAM
address to load the data,using either the SIZE 0 or 1
formula:

 SIZE 0 SPGTPOS = SPGBASE + (Sprite Pattern Number * 8 * 1)

 SIZE 1 SPGTPOS = SPGBASE + (Sprite Pattern Number * 8 * 4)

where SPN = 0 - 255 for SIZE 0 and 0 - 63 for SIZE 1 sprites
and SPGBASE is the starting address of the Sprite Generator
table in VRAM - on the MTX SPGBASE=14336.

7.6 Magnification

Before we leave the topic of sprite sizing,let us consider
magnification. Magnification ,enlarges the sprite to double
its onscreen size. Therefore,a 8x8 sprite will be magnified
to 16x16 and a 16x16 sprite to 32x32. However,although the
onscreen sprite appears to have doubled in size,it hasn't
doubled in resolution,ie no more data is needed to define a
32x32 sprite than a 16x16. All the VDP has done is take each
bit of the sprite data of the 16x16 and copied it once in
both the horizontal and vertical directions and then
redisplayed it. Therefore the a 1x1 screen dot would become
2 x 2 in size.

The VDP uses only 1 bit of Register 1 (bit 0) to control ALL
the sprites magnification. Therefore,you cannot magnify
individual Sprites seperately. Once the Magnification bit has
been set or reset,then ALL the onscreen sprites will either
double or remain unchanged respectively,refer chapter 2.

7.7 The Sprite Attribute Table (SAT)

7.7.1 Overview

The VDP reserves one 128 byte section of VRAM for the Sprite
Attribute Table (SAT). The location of this table in VRAM is
determined by the contents of VDP register 5,as shown in the
following calculation:

 SATBASE = Register 5 [0-127] * 128

Page 69

This 128 byte table is subdivided into 32 blocks of 4 bytes
(32*4=128). Each of these blocks contains the four sprite
attribute bytes which are necessary for controlling,
positioning, displaying and colouring the 32 allowable
onscreen sprites. A more informative description is given in
the forthcoming sections,however,the following summary will
suffice for this overview.

1. Y-coordinate or Vertical Sprite Position.
2. X-coordinate or Horizontal Sprite Position.
3. The Sprite Pattern Number (SPN). Remember that this not
 same as the 32 onscreen sprites.
4. The Sprite Colour and Early clock bit.

Figure 7-4:The SAT mapping

The above sprite map ,see figure 7-4,allows the programmer
increased flexibility. This flexibility is best illustrated
by way of a practical example.For example,an arcade explosion
sequence as would be used when something was blown up or
zapped. Let us consider the process of an object exploding.
The object goes from the original unzapped state via a number
of breaking up stages,eventually leading to the destroyed (or
zapped) object. Therefore, designing an explosion sequence
would involve imagining how the object would break up in slow
motion ,ie like taking a series of still photographs at
points in time as the object was exploding.

We would then overlay these photos onto either a 8x8 or 16x16
grid . Then translate these into data bytes ,ie 8 for 8x8 and
32 for 16x16. Do this for all photos in the sequence. At this
stage we should have 4 or 5 different sprite patterns
including the starting object and destroyed object. Store
these patterns in the SPG table. These patterns are located
in the SPG VRAM table at addresses corresponding to the SPN's
assigned to them,see section 7.5 for calculations.

Page 70

Whenever,a sprite blows up, we would, use a simple timing
loop,and by switching the SPN of the sprite,acheive a
realistic explosion sequence. The timing is crucial to give
it that animated look. A similar concept is used in
animation,where 4 or 5 different still frames are stored and
switched between to give movement. One of the demos at the
end demonstrates this technique using a simple
countdown. Obviously this wouldn't be a sprite function,
however it does graphically demonstrate the above principle.
See flowchart below for the programming technique.

Figure 7-5: Overview Flowchart for Animation.

7.7.2 The Sprite Vertical Position

The vertical position byte is the most complex of the
attribute bytes to understand and may take one of two
readings before the information becomes clear in your mind.
Also,it would be advantageous to you if you read up on binary
negative number representation before tackling the rest of
this section. Also type in Demos 1 and 2,see section 7.10 .

Page 71

The vertical position or Y-coordinate of a sprite is
controlled by the value held in the first byte of the 4-byte
attribute blocks. The sprite coordinate system is a hybrid of
the cartesian and the TEXT coordinate systems. Therefore,the
axis origin is at the top left hand corner of the screen,but
the sprite is positioned on the 256x192 dot screen. The
Sprite coordinate system is the mirror image of the cartesian
coordinate system. The sprite can roam all over the VDU
screen.

The cartesian y-axis range is 0 to 191 (bottom to top of
screen), but the sprite range is -1 to 190 (top to bottom)
The relationship between dot coordinates and sprite
coordinates is:

 SPRYCOORD = 190 - DOTYCOORD

A negative number in binary starts from 255 or #FF
downwards,it is assumed that when bit 7 is set then this
signifies a negative number and the other 7 bits represent
the number. For instance, #FF or 255 is = -1 , #FC is -4
,refer Z80 book. However,as only one negative number is
used,the sprite y-coordinate range is 255,0 to 190,ie -1 to
190. Note that a value of Y=191 will place a sprite of the
bottom of the screen, RUN Demo1.

Vertical Sprite Bleeding,ie a sprite that can gradually
scroll from offscreen onto the VDU picture,is another
powerful effect at our fingertips. Sprites can smoothly
scroll from an area off picture,onto the VDU picture in dot
increments,and if required,then move on down the y-axis,until
it scrolls off the bottom of the screen and vice versa for
the upward scrolling. This technique is successfully used in
games like Agrovator,where the "pacman" type object scrolls
off the bottom of the screen and if by magic,scrolls back
onto the screen at the top,see Demo 1.

Finally,there are two special conditions that the vertical
position byte can tell the VDP to take action over:

1. Y=208 (#D0),when this number is placed in the vertical
 byte position,then all the sprites below this are made
 invisible. For example,If we place 208 in the vertical
 byte of sprite attribute block 5, then sprites 6 to 31
 will be made invisible. The other sprites are restored
 to the screen,when a Y-value between -1 and 190 is put
 in the Y-byte of attribute block 5. It is important to
 remember this when sprites scroll up or down to avoid
 the 208 and 209 conditions.

2. Y=209 (#D1) , as with point 1.,except ALL sprites are
 made invisible. They are restored when another number
 other than 208 or 209 is place in the Y-byte that 209
 was in. This is what the TI technical manual says,but
 Demos 1&2 didn't show this !!!

Page 72

7.7.3 The Sprite Horizontal Position

This is the second byte in each of the 4-byte attribute
blocks. This byte holds the X-coordinate information of the
sprite. The sprite range is 0 to 255. Again the sprite can
move horizontally in dot steps if required. However,the
sprites horizontal range or more correctly,horizontal OFFSET
isn't as straight forward as one would expect.

Figure 7-6: How the EC bit affects the horizonatal axis.

Figure 7-6,will give you a clue to what I mean. As you will
have gathered from this figure,that the origin of the X-axis
can be in one or two positions depending on the condition of
the early clock bit,which is held in the fourth byte of the
block,to be exact ,bit 7. When the EC bit = 0,then the x-axis
origin is at the BORDER / SCREEN interface. However,when
EC=1 ,the x-axis origin is shifted left by 32
dots.Whenever,the original x-value (ie when EC=0) is < 32
dots,and EC is set to ONE, part or all of the sprite may be
shifted off the edge of the screen and that part of the
sprite will appear invisible. This latter example is
necessary for sprite bleeding from the left hand side of the
screen,see Demo 4.

In the EC=1 state,the sprites can bleed on from the left edge
of the VDU and when EC=0,the the sprites can bleed off the
right edge of the VDU. Therefore,if you want to position the
sprite according to the normal dot coordinates of the
graphics screen,then make sure EC=0.

7.7.4 The Sprite Pattern Number (SPN)

The sprite pattern number is the specific number of a sprite
shape in the SPG table. There are 256 8x8 sprite patterns for
size 0 sprites or 64 16x16 sprite patterns for size 1
sprites. When we want to use one of these sprite patterns,we
load its number into the SAT,and store it in the 3rd byte of
the 4 byte attribute blocks. This tells the VDP when it reads
the block information that sprite x (where x=0 to 31),is to
have the pattern assigned by the SPN. This principle is used
in the TEXT modes.,where an ASCII number (equivalent to the
SPN) signifies a specific pattern in the PGT and SPGT's
respectively.

Page 73

7.7.5 The Sprite Colour

A normal colour byte contains the INK and PAPER colours in
the MSN and LSN of the colour byte respectively,see chapter
3,figure 3-3. However,as already stated sprites only have INK
colours because the PAPER colour has been deliberately set to
transparent (hardware set). This gives real time object
movement because the background is retained. The LSN (lower 4
bits of the byte) are used to determine the sprites colour
from a palette of 16. Bits 6,5,4 are unused and are set to 0.
As stated in 7.7.4,Bit 7,is the early clock bit which is used
in the positioning of the horizonatal axis origin.

7.8 Sprite VRAM Table Interaction

Figure 7-7 is self explanatory,but to summarise,this figure
describes how the SAT and SPG tables interact to produce an
onscreen sprite at the desired screen location,in the correct
colour and with the right sprite shape.

Figure 7-7: Sprite Vram Table Interaction

7.9 The Fifth Sprite Rule and Collision Detection

The VDP imposes a 4 sprite on one Horizontal line only
restriction. Even if a fifth sprite temporarily has to cross
the same horizontal row,whether partly or fully,the area of
the fifth sprite which intersects will disappear,this
principle is described graphically in figure 7-8. See also
Demos 1 and 2 for this violation.

Page 74

Figure 7-8: Sprite, S5 ,is scrolling downwards,but it has to
violate the 5th Sprite Rule. This results in the
partial or complete disappearance of S5, as it
intersects with the other 4 sprites.

- non visible part of sprite.

- visible of the sprite.

It should be noted that,its the four highest priority sprites
which will remain viewable if a 5th sprite rule violation
occurs. If you reconsider,the example in figure 7-8,ie swap
the roles of S5 and S4,so that S4 is scrolling downwards. The
instance that S4 intersects the horizontal line,whether
partially or fully,then S5 will completely disappear. This is
because,all of S5 is on the same line and therefore all of S5
will be made invisible.

The 5th sprite rule also affects the contents of the read
only VDP register 8,when the above rule is violated. Let us
consider what the status registers functions are,see Fig 7-9.

a. Reporting the 5th Rule Status.
b. Check for Sprite Collision or coincidence.
c. Check for External Interrupt Signal.

BIT Num: 7 6 5 4 3 2 1 0

F 5SPR SC <---- Sprite Number ---->
(0 - 31)

Figure 7-9: The Read only Status byte (VDP register 8).

where:
F = interrupt flag.
SC = sprite coincidence.
5SRF = 5th sprite rule violation (=1).

When this happens , the sprite
number (0-31) is stored in LSN
for the programmer to use.

Page 75

When the VDP has completed refreshing the VDU picture,it puts
F=1 and this allows the VDP to access and read VDP
register 8,so that the programmer can check for 5th rule
sprite violations,or sprite collisions,etc. When F is reset
to 0,the VDP regains control. This is called internal
interrupting. There is second interrupt process which occurs
when F=1 and when bit 5 of VDP register 1 is also = 1. This
is called the external interrupt. This allows the Z80 CPU
interrupt mechanism to also interrupt the VDP.

The mechanism by which this rule is violated has already been
discussed. The violation is echoed to the VDP by the setting
of 5SRF=1 and the sprite number that caused the violation is
also stored in the status byte. This is a useful tool for
program development,where you want to check to see if sprites
crossing each other as in a fast moving arcade game,are
suddenly going to disappear because of such a violation.

Finally,sprite coincidence. The SC flag when set to 1,tells
us that 2 or more sprites have collided,ie have overlapping
dots,this would be set in our 3D display example earlier in
this chapter. Note that it is physically impossible for two
sprites to collide with each other because they are on
different planes,thats why the overlapping dots clause. This
collision detection will also check that transparent or
invisible sprites,as well as those partially on or off the
screen are not overlapping. This type of checking is not
really of any use,because it doesn't tell us which sprites or
sprite numbers have collided.

7.10 Demonstration Programs for the Sprite Functions

7.10.1 Introduction and Demonstration Listings

In this chapter,I have collected all the demos into one large
listing. I have done this because it will minimise typing and
it will show up a few interesting points to be wary about
when you start using sprites in your own listings. Four
simple demos have been devised to highlight the major
learning points of this chapter:

1. Fifth Sprite Rule
2. Sprite Priority
3. Sprite Scrolling
4. Sprite Bleeding
5. Sprite Coordinates
6. Size and Magnification
7. Sprite Setup and Programming.

Type in Listing 7-1 and save to disc and tape in the usual
way.

Page 76

Listing 7-1: Sprite Demonstrations: Demos's 1 to 4.

10 VS 4:CLS
20 GOSUB 2200
30 STOP

2200 CODE

DEMO: CALL VDPSETUP ; SET VDP TO GII MODE
CALL LOWERPGTSET ; LOAD THE ASCII SET IN THE BOTTOM

; THIRD OF THE SCREEN.
CALL SPGSETUP ; FILL THE SPG WITH SHAPES.
CALL WRTXONSCR ; PUT X= and Y= ON THE SCREEN

DEMOKEY: XOR A ; SCAN THE KEYBOARD FOR KEYPRESSES
CALL #0079 ;
JR Z,DEMOKEY ;
CP 27 ; <ESC> TO RETURN TO BASIC
RET Z ;
CP 128 ; <F1> FOR DEMO 1
CALL Z,DEMO1 ;
CP 129 ; <F2> FOR DEMO 2
CALL Z,DEMO2 ;
CP 130 ; <F3> FOR DEMO 3
CALL Z,DEMO3 ;
CP 131 ; <F4> FOR DEMO 4
CALL Z,DEMO4 ;
JR DEMOKEY ;

DEMO1: LD HL,#FF90 ; H=Y-VALUE AND L=X-VALUE OF
LD (X),HL ; SPRITE 5 (S5).STORES THESE VALUES
CALL SATSETUP ; SET THE SAT VALUES
LD A,20 ; DISPLACEMENT IN SAT TO S5 INFO.
CALL SPRSCRXY ; DISPLAY S5's COORDINATES ON SCRN
LD HL,16148 ; SAT POSITION FOR Y IN S5.
LD (SATPOINTER),HL ; POINTS TO S5.

DEMO1KEY: XOR A ; SCAN KEYBOARD FOR <ESC> OR <DOWN>
CALL #0079 ; KEY.
JR Z,DEMO1KEY ;
CP 27 ; <ESC> TO EXIT TO DEMO LOOP.
RET Z ;
CP 10 ; IS THE DOWN ARROW BEEN PRESSED.
CALL Z,MOVESPRY ; IF SO MOVE S5 AND UPDATE Y-VALUE
JR DEMO1KEY ; END OF DEMO1.

DEMO2: CALL SATSETUP ; SET SAT FOR DEMO2.
LD HL,#FF80 ; THE X & Y-VALUES FOR SPRITE 4,
LD (X),HL ; (S4).
LD A,16 ; 4*4=16 DISPLACEMENT TO S4 ATTR.
PUSH AF ; POSITION IN VRAM FROM SPGBASE.
PUSH HL ; KEEP TRACK OF THIS INFORMATION.
CALL GETSATPOS ; GET THE S4 SAT POSITION.
CALL VDPWRTSEL ; TELL VDP WHERE THE START OF S4's
POP HL ; Y-VALUE. RESTORE X & Y
LD A,H ; SEND THE Y-COORDINATE TO THE
OUT (#01),A ; SAT TO UPDATE S4'S SCREEN POSITn
LD A,L ; DO LIKEWISE FOR THE X-COORDINATE
OUT (#01),A ; ie,PUT S4 AT TOP OF SCREEN

Page 77

POP AF ;
CALL SPRSCRXY ; DISPLAY S4 COORDINATES ON SCREEN
LD A,20 ;
CALL GETSATPOS ;
CALL VDPWRTSEL ;
LD A,10 ;
OUT (#01),A ; PUT S5 ON SAME ROW AS S1,S2 & S3.
LD HL,16144 ; START OF S4 IN SAT
LD (SATPOINTER),HL ; STORE THIS FOR LATER.
CALL DEMO1KEY ; MOVE S4 DOWN SCREEN INSTEAD OF
RET ; S5.

DEMO3: LD HL,(SATBASE) ; HL=START OF SAT IN VRAM.
CALL VDPWRTSEL ; INITIALISE VDP TO POINT HERE.
LD HL,SATDATA3 ; LOAD THE ATTRIBUTE DATA.
LD B,4 ; 4 BYTES TO SEND TO VRAM.
CALL SENDINFO ; SEND THEM VIA THIS SUBROUTINE.

D3LOOP1: CALL COUNTDOWN ; DISPLAY S5 THEN S4 TO S1 THEN
D3WAIT: LD B,255 ; BACK TO S5,ie THE COUNTDOWN LOOP
D3WAITLP: NOP ; THIS PIECE OF CODE IS THE DELAY

PUSH AF ; LOOP BETWEEN DISPLAYING THE
POP AF ; UPDATED SPN.
PUSH AF ;
POP AF ;
DJNZ D3WAITLP ;

DEMO3KEY: XOR A ; SCAN KEYBOARD FOR EXIT
CALL #0079 ;
CP 27 ;
RET Z ;
JR D3LOOP1 ;

DEMO4: LD HL,(SATBASE) ; HL=START OF SAT IN VRAM.
CALL VDPWRTSEL ; INITIALISE VDP TO POINT HERE.
LD HL,SATDATA2 ; LOAD THE ATTRIBUTE DATA INTO
LD B,4 ; SPRITE 0 POSITION.
CALL SENDINFO ; WRITE THE 4 ATTRIBUTES.
LD HL,#2A00 ; HL=THE X & Y COORDINATES OF S0.
LD (X),HL ;
XOR A ; DISPLACEMENT IS ZERO SINCE S0.
CALL SPRSCRXY ; DISPLAY THE COORDINATES OF S0.

DEMO4KEY: XOR A ; SCAN THE KEYBOARD
CALL #0079 ;
JR Z,DEMO4KEY ;
CP 27 ; <ESC> TO EXIT.
RET Z ;
CP 25 ; -> (RIGHT) TO MOVE S0 BY 1 DOT.
CALL Z,MOVESPRX ; UPDATE THE S0 AND ITS POSITION.
CP 132 ; <F5> TO TOGGLE SPR MAGNIFICATION
CALL Z,MAGTOG ;
CP 133 ; <F6> TO TOGGLE SPRITE SIZE
CALL Z,SIZETOG ;
CP 134 ; <F7> TO TOGGLE THE EC BIT.
CALL Z,ECTOG ;
JR DEMO4KEY ;

Page 78

;SUBROUTINES

; A Special note about calling and returning from routines
; which involves scanning the keyboard. Subroutine MOVESPR
; is a good example. This subroutine is called from the
; DEMO4KEY code. When this routine calls MOVESPRX, reg A
; =25 (ie move right). However,if MOVESPRX didn't have the
; the lines marked **,then when X increased to 132/133/134
; reg A would equal X on returning from MOVESPRX.This will
; then equal the value for keypresses <F5>/<F6>/<F7> , and
; these subroutines would be called prematurely.So Beware!

MOVESPRX: PUSH AF ; **
LD A,(X) ; UPDATE THE X-COORDINATE OF S0
ADD A,1 ; BY 1 DOT AT A TIME.
LD (X),A ;
PUSH AF ; SAVE THIS VALUE AS ITS NEEDED
LD HL,16067 ; LATER. UPDATE X ON THE SCREEN
CALL VDPWRTSEL ;
CALL HEXTOASC ; THIS CONVERTS X TO ASCII FORM
LD A,1 ; THE X-VALUE FOR S0 IS SATBASE
CALL GETSATPOS ; +1.
CALL VDPWRTSEL ; SEND NEW X-VALUE FOR S0 TO
POP AF ; THIS POSITION IN VRAM.
OUT (#01),A ;
POP AF ; Reg A= THE LAST KEYPRESS. **
RET ; WHICH WAS 25.

COUNTDOWN: LD HL,(SATBASE) ; HL=VRAM SAT ADDRESS FOR S0.
LD A,2 ; BY CHANGING THE SHAPE OF THE
CALL GETSATPOS ; OF S0 BY SWAPPING THE SPN AT
CALL VDPREADSEL ; SATBASE+2,IS IDEAL FOR THE
IN A,(#01) ; ANIMATION TYPE EFFECTS.
DEC A ; THIS ROUTINE IS A COUNTDOWN
CP 0 ; SIMULATIION. IT IS A REPEAT
CALL Z,RESSPN5 ; LOOP.
CALL VDPWRTSEL ;
OUT (#01),A ;
RET ;

RESSPN5: LD A,5 ;
RET ;

MAGTOG: LD A,(REGNUM1) ; REGNUM1 HOLDS THE DEFAULT VALUE
XOR 1 ; OF ALL SPRITES SIZE AND MAG. BY
LD (REGNUM1),A ; TOGGLING BIT 0 OFF AND ON WILL

REGSET: OUT (#02),A ; TOGGLE ALL SPRITES MAGNIFICATION
LD A,#01 ; SEND THE NEW REGNUM1 DATA AND THE
OR #40 ; CORRECT VDP REG NUMBER (1) TO THE
OR #80 ; THE VDP.
OUT (#02),A ;
RET ;

SIZETOG: LD A,(REGNUM1) ; AS FOR MAGTOG EXCEPT TOGGLING THE
XOR 2 ; SIZE OF ALL SPRITES. ie VDP REG 1
LD (REGNUM1),A ; ,BIT 1.
JR REGSET ;

Page 79

ECTOG: LD A,(ECFLAG) ; EC=0 (DEFAULT) OR EC=1. THE EC
XOR 128 ; BIT IS BIT 7 OF THE 4TH SA BYTE.
LD (ECFLAG),A ; THIS IS USED FOR LEFT HAND SPR
PUSH AF ; BLEEDING.
LD A,3 ;
CALL GETSATPOS ;
CALL VDPWRTSEL ;
POP AF ;
OUT (#01),A ;
RET ;

VDPSETUP: LD HL,REGG2MTX ; INITIALISES THE VDP TO GII MODE.
CALL VDPREGSET8 ;
RET ;

LOWERPGTSET:LD HL,(ASCBOT3RD) ; LOADS THE LOWER THIRD OF THE
CALL VDPWRTSEL ; PGT WITH THE 96 PRINTABLE ASCII
LD C,96 ; CHARACTER SHAPES.
LD HL,RAMASC ;

BOT3RD: LD B,8 ;
CALL SENDINFO ;
DEC C ;
JR NZ,BOT3RD ;
CALL TXTSCRCLS ; CLEAR GII SCREEN.
RET ;

SPGSETUP: LD HL,(SPGBASE) ; LOADS THE SHAPE DATA OF ALL THE
CALL VDPWRTSEL ; SPRITES IN THESE DEMOS. THIS
LD HL,SPGDATA ; SUBROUTINE COULD BE ADAPTED TO
LD B,48 ; LOAD MORE THAN 6 SPRITE SHAPES
CALL SENDINFO ; (48/8=6),BY CHANGING THE VALUE
RET ; OF THE B REGISTER.

SATSETUP: LD HL,(SATBASE) ; AS FOR SPGSETUP,EXCEPT THAT THE
CALL VDPWRTSEL ; SPRITES ATTRIBUTE INFORMATION
LD HL,SATDATA ; IS BEING LOADED INTO VRAM.
LD B,24 ; (24/4=6 SPRITES)
CALL SENDINFO ;
RET ;

WRTXONSCR: LD HL,16065 ; WRITE "X=" AT COORDINATES 1,22.
CALL VDPWRTSEL ;
LD A,88 ; ASCII OF X
OUT (#01),A ;
LD A,61 ; ASCII OF =
OUT (#01),A ;

WRTYONSCR: LD HL,16097 ; WRITE "Y=" AT 1,23.
CALL VDPWRTSEL ;
LD A,89 ; ASCII OF Y
OUT (#01),A ;
LD A,61 ;
OUT (#01),A ;
RET ;

Page 80

SENDINFO: LD A,(HL) ; COPIES THE DATA POINTED TO BY HL
OUT (#01),A ; TO VRAM,AT AN ADDRESS SET EARLIER
INC HL ;
DJNZ SENDINFO ;
RET ;

GETWRTSCR: ADD A,L ; HL POINTS TO THE START OF DATA
LD L,A ; & REG A HOLDS THE DISPLACEMENT
LD A,(HL) ; OF THE DATA IN THE LIST,WE WANT
OUT (#01),A ; TO EXTRACT AND SEND TO VRAM.
RET ;

HEXTOASC: PUSH HL ; A HOLDS THE X-COORDINATE TO BE
PUSH AF ; CONVERTED TO ITS HEX ASCII
AND 240 ; EQUIVALENT. NB: NUMBERS IN Z80
SRL A ; ARE STORED IN BINARY AS IT USES
SRL A ; LESS RAM THAN ASCII. THIS CODE
SRL A ; WILL EXTRACT THE 2 PARTS OF A
SRL A ; 8-BIT HEX NUMBER AND FROM THIS
LD HL,HEXCHARS ; CONVERTED INTO A DISPLACEMENT
PUSH HL ; BETWEEN 0 AND 15. BY LOOKING UP
CALL GETWRTSCR ; THE ASCII HEX TABLE,WE CAN GET
POP HL ; PRINTABLE FORMAT EASILY.
POP AF ;
AND 15 ;
CALL GETWRTSCR ;
POP HL ;
RET ;

GETSATPOS: LD HL,(SATBASE) ; A HOLDS THE DISPLACEMENT OF THE
ADD A,L ; SPRITE ATTRIBUTE TO BE CHANGED
LD L,A ; IN THE SAT.
RET ;

SPRSCRXY: PUSH HL ; THIS ROUTINE DISPLAYS THE X & Y
CALL GETSATPOS ; COORDINATES OF THE SELECTED
CALL VDPREADSEL ; SPRITE,IE S5 OR S4 OR S0. THE
IN A,(#01) ; X AND Y HEX COORDINATES ARE HELD
PUSH AF ; (POSITIONED) AT 3,22 AND 3,23.
IN A,(#01) ;
LD HL,16067 ;
CALL VDPWRTSEL ;
CALL HEXTOASC ;
LD HL,16099 ;
CALL VDPWRTSEL ;
POP AF ;
CALL HEXTOASC ;
POP HL ;
RET ;

MOVESPRY: PUSH AF ; AS FOR MOVESPRX,EXCEPT UPDATING Y
LD A,(Y) ;
INC A ;
LD (Y),A ;
PUSH AF ;
LD HL,16099 ;

Page 81

CALL VDPWRTSEL ;
CALL HEXTOASC ;
POP AF ;
LD HL,(SATPOINTER) ;
CALL VDPWRTSEL ;
OUT (#01),A ;
POP AF ;
RET ;

TXTSCRCLS: PUSH AF ; FOR DESCRIPTION SEE LISTING 5-2.
PUSH BC ;
PUSH HL ;
LD HL,(SCRNTYPE) ;
CALL VDPWRTSEL ;
LD BC,(SCRNLEN) ;

TXTSCRCLS1:LD A,32 ;
OUT (#01),A ;
DEC BC ;
LD A,B ;
OR C ;
JR NZ,TXTSCRCLS1 ;
POP HL ;
POP BC ;
POP AF ;
RET ;

VDPWRTSEL: ; SEE LISTING 3-1

VDPREADSEL: ; SEE LISTING 6-3

VDPREGSET8: ; SEE LISTING 4-2

; PROGRAM AND SUBROUTINE VARIABLES

SATPOINTER:DS 2

HEXCHARS: DB 48,49,50,51,52,53,54,55,56,57,65,66,67,68,69,70,72

SCRNTYPE: DW 15360
SCRNLEN: DW 768
REGG2MTX: DB #02,#C0,#0F,#FF,#03,#7E,#07,#16
NAMEBASE: DS 2
X: DB 144
Y: DB #FF

REGNUM1: DB #C0 ; DEFAULT=#C0 = SIZE 0 AND MAG 0.
ECFLAG: DB #0F ; INK = WHITE AND EC = 0.

SATDATA2: DB 10,0,0,15
SATDATA3: DB #80,#A0,#05,#0F
SPGDATA: DB 48,72,140,148,164,72,48,0 ; 0

DB 48,80,16,16,16,16,124,0 ; 1
DB 56,68,4,8,16,32,124,0 ; 2
DB 120,132,4,60,4,132,120,0 ; 3
DB 128,128,128,144,144,252,16,0 ; 4
DB 248,128,128,248,4,4,248,0 ; 5

Page 82

SATDATA: DB 0,0,0,0
DB 10,80,1,15
DB 10,96,2,15
DB 10,112,3,15
DB 10,128,4,15
DB #FF,144,5,15

GIISCRN: DW 15360
SATBASE: DW 16128
SPGBASE: DW 14336
ASCBOT3RD: DW 4352

RAMASC: ; SEE LISTING 4-1

2210 RETURN

Save as:
SAVE "SPRDEMOSTXT" (tape users)
DISC (USER) SAVE "SPRDEMOS.TXT" (disc users)

7.10.2 Demo 1

Reload listing 7-1 and RUN it. Now select Demo 1 by pressing
the function key <F1>. The screen will have cleared and 5
sprites in the form of numbers ,1-5, should have appeared at
the top of the display. Sprite 5 will be at the border/screen
interface. At the bottom of the screen will be displayed the
coordinates of Sprite 5. Using the Down Arrow,to move Sprite
5 down the screen.

As part of Sprite 5 intersects with the horizontal line with
Sprites 1 to 4,Sprite 5 will gradually start disappearing
until it intersects exactly,when it is completely
invisble.However, as it moves further down the screen it will
start reappearing. If you keep Sprite 5 moving down the
screen,it will then disappear off the bottom of the screen.
However,if you keep pressing down,the Y-coordinate will keep
increasing and then Sprite 5 will eventually reappear at the
top of the screen again.

7.10.3 Demo 2

Reload listing 7-1 and RUN it. Selecting with <F2>. As for
Demo 1 ,except that Sprite 4 moves down the screen and Sprite
5 is stationary. This Demo is another example of the Fifth
Sprite Rule and also highlights the Priority of it. This time
as Sprite 4 intersects with the line with Sprites 1,2,3 and
5,it is Sprite 5 that again disappears even though it is
Sprite 4 that is violating the integrity of the line.

Page 83

7.10.4 Demo 3

Reload listing 7-1 and RUN it. Selecting with <F3>. This
example shows the countdown example described in the text
earlier on animation. Notice the speed of the countdown
process. It is so fast even with a delay loop that is is
impossible to disguish the numbers. This example is an
example of what power with respect to animation that can be
acheived by switching the SPN of a Sprite. I will let you
include a few other PUSH's and POP's to slow down the
countdown further to see the actual process.

7.10.5 Demo 4

Again Reload listing 7-1 and RUN it. Selecting with <F4>.
This example demonstrates horizontal scrolling and bleeding
as in used in Demo's 1 and 2. However,this demo also includes
3 toggles:

<F6> : toggles between SIZE 0 and SIZE 1 sprites. It also
shows how a SIZE 1 sprite is made up,see Figure 7-2

<F5> : This will toggle a Sprites magnification.

<F7> : This will toggle the EC bit.

It is possible to toggle all three at the same time or in
combinations thereof. Feel free to experiment. Another
related example is to toggle to SIZE/MAG/EC = 0. Then press
<ESC> and press <F1>. Now press <ESC> and then <F4>. Move the
sprite across the screen. Sprite 0 will glide above sprites 1
to 5 without destroying there shapes as would have happened
in the NON-Sprite modes.

Page 84

8.0 Screen Dump

8.1 Introduction

The Memotech MTX,MSX and Tatung Einstein are all fortunate to
have a centronics parallel interface as part of the computer
hardware. I will first take a look at the parallel interface
and then provide suitable software to use the parallel
interface to give both TEXT and GRAPHIC hardcopy screen
dumps.

8.2 Transmitting Data via the Parallel Interface

8.2.1 The Hardware

There are two common ways of transmitting information: in
Series or in Parallel. Both systems transmit the binary
information of the computer,ie the 0's and 1's ,as electrical
signals ,where 0 volts = "0" and 5 volts = "1". The Parallel
interface,unlike the rival Serial interface,sends data in
BYTE chunks (ie 8 bits at a time). Each bit of the byte data
is sent along a different wire simultaneously. Thus 8 bits of
information is transmitted along 8 parallel data wires to the
printer in one clock (or strobe) pulse,see Figure 8-1.

Whereas,the Serial interface,as its name suggests,sends the
same 8 bits of information down one wire at pulse intervals.
Therefore it will take 8 clock cycles to send the same
information sequentially down one wire. A serial system can
send data to printers or other terminals at distances greater
than 25 metres. However,a parallel system can only send data
at distance of 2 - 5 metres. The greater number of wires
used in connecting ,a computer to a parallel printer (17
wires) than a serial (5 wires), is not only costly but the
signal is prone to deteriate because of the increasing
interference of the wires magnetic fields over distance. This
means greater error correction is needed to do the same job.

Figure 8-1:Parallel Transmission (PT) & Serial Transmission
(ST) of ASCII 65, 01000001 , ie LETTER 'A".

Page 85

If you turn to page 253 of the MTX owners manual,you will
see that the Parallel interface uses more than just 8 of the
data wires.

The ACKNLG or acknowledge signal tells the computer that the
printer is ready.

The BUSY signal tells the computer that data is currently
being transferred along these lines.

The PE or Paper Empty signal is self explanatory.

The ERROR line reports any other faults on the line.

The GND or ground signal indicates what the ground voltage of
the computer is.

The SLCT or select signal is used to indicate that the
computer is ready to send data to the printer device.

The STROBE or strobe signal (or clock pulse) is very
important. It tells the printer that the computer has
assembled the 8 bits of information and is ready to send
them.

8.2.2 The Software

The Memotech MTX series uses ports 0 and 4 of the Z80 CPU to
communicate with the parallel interface device,ie Printer,
see pages 248-249 of the MTX Owners Manual. Briefly:-

IN A,(#00) is used to set the STROBE low,ie primed for
sending data.

IN A,(#04) is used to read the Printers status. Only the
lower 4 bits of the status byte is used:

Bit 0 (d0) = BUSY ; when high (=1) then the line is busy.
Bit 1 (d1) = ERROR ; when low (=0) then error.
Bit 2 (d2) = PE ; when high (=1) then no paper.
Bit 3 (d3) = SLCT ; when high (=1) the printer is selected.

Therefore,for the printer status to be VALID,ie no errors,the
status byte will have to have the following bit pattern:

d7 d6 d5 d4 d3 d2 d1 d0 (d = data)
0 0 0 0 1 0 1 0 = #0A

As you will see,listing 8-1,uses this fact to check the
printer status,prior to printing.

OUT (#04),A sends the data held in register A to the printer
only when the the strobe is forced low ,using IN A,(#00) and
the status byte is Valid (= #0A). Note that after strobing
low,you must then force the strobe high using IN A,(#04)
after 1 microsecond has elapsed,see listing 8-1. As you will
appreciate timing is very important in communication.

Page 86

Now we have dealt with the commands that are needed to
communicate with the parallel interface printer,I will
describe with the use of a flowchart,see figure 8-2,how easy
it is to transmit data to the printer. Listing 8-1,is the
fruits of the flowchart information in figure 8-2. The two
subroutines HARDCOPY and CHBRK are the fundamental building
blocks of any advanced hardcopy facilities that you may
develop latter. These two subroutines are similar to the MTX
ROM code located at #0CE3. However,this code is portable
among both MTX CPM and normal mode. The principles used can
be easily adapted for both Einstein and MSX users.

Figure 8-2: Flowchart of Listing 8-1.

Listing 8-1:This routine passes the data held in Register B
of the Z80 CPU to the HARDCOPY subroutine. This
data will only be sent to the printer if the
following two criteria are met: (a) the status
byte is valid and (b) the <BRK> key hasn't been
pressed,as this terminates the printout.

10 GOSUB 2300
20 STOP

2300 CODE

LD HL,PRINTDATA ; HL POINTS TO THE DATA TO BE
; PRINTED. DATA IN ASCII NUM

PRNTLOOP: LD B,(HL) ; FORMAT. B SENDS THESE ASCII
LD A,#FF ; NUM's TO THE PRINTER UNTIL
CP B ; THE END MARKER (#FF) IS
RET Z ; ENCOUNTERED,THEN EXIT.

Page 87

CALL HARDCOPY ; IS THE PRINTER STATUS VALID
JR PRNTLOOP ; CAN ONLY LEAVE THIS EXAMPLE

; WHEN STATUS IS NOT VALID OR
; #FF IS ENCOUNTERED OR WHEN
; THE <BRK> HAS BEEN PRESSED.

HARDCOPY: NOP ; THIS IS THE PRINTOUT CODE.
CHPRTSTAT: IN A,(#04) ; READ PRINTER STATUS. ONLY

AND #0F ; THE LSN IS NEEDED. IS THIS
CP #0A ; BYTE VALID. IF NOT CHBRK.
JR NZ,CHBRK ;

PRINTBYTE: LD A,B ; LET A=THE DATA BYTE & HAVE
OUT (#04),A ; IT READY TO SEND WHEN THE
IN A,(#00) ; STROBE IS LOW. THEN RESET
IN A,(#04) ; THE STROBE. THE ASCII CHAR
RET ; SHOULD HAVE BEEN PRINTED.

CHBRK: LD A,#FE ; THIS IS THE ROW THE BRK
OUT (#05),A ; IS ON,SEE CH9.SELECT IT
IN A,(#06) ; READ THIS ROWS STATUS.
BIT 0,A ; IS BRK PRESSED. IF NOT
JR NZ,CHPRTSTAT ; CHECK PRINTER STAT AGAIN
POP HL ; THIS REMOVES THE RETURN

; ADDRESS OF CALL HARDCOPY
; FROM THE STACK,EXPOSING

RET ; EXPOSING THE RET ADDRESS
; TO BASIC.

PRINTDATA: DB 84,69,83,84,73,78,71,#FF ; "TESTING"

2310 RETURN

Save as:
SAVE "PRINTERTXT (tape users)
DISC (USER) SAVE "PRINTER.TXT" (disc users)

When you RUN the above code the word "TESTING" will be sent
to the printer. Pressing <BRK> will abort at any stage,But
this listing is too short for <BRK> to respond fast enough
because of the printer buffer.

8.3 Screen Types and their Screen Dump Software

8.3.1 Introduction

On the MTX there are 4 main screen formats: GRAPHICS, TEXT ,
PANEL and NODDY. Fortunately for the MTX programmer,the
latter three screen modes are basically TEXT screens. All
that the Memotech programmers have done is reconfigure the
TEXT screen to act as a Z80 disassembly monitor screen or as
a programming NODDY text editor. Therefore,the software
needed to produce screen dumps of these screens will be very
similar,see next subsection. The GRAPHICS dump is far more
complex and involves rotation of screen data,similar to the
ASCII ROM character set rotation in chapter 3.0 .

Page 88

8.3.2 TEXT Only Screen Dump Software

For people unfamilar with the MTX computer,the PANEL screen
is a Z80 machine code monitor that complements the built-in
Z80 line assembler. This Z80 debugging tool,displays the Z80
register status,a HEX/ASCII memory dump and disassembly. The
Z80 monitor program allows the programmer to run selected
pieces of code,or even to step through the code,checking how
the code affects Z80 registers,flags,memory,etc. NODDY is a
text orientated language which is ideally suited to handling
text as necessary for databasing,information retrieval,card
indexing,diary,etc. The NODDY screens are 39 x 23 (the bottom
line is used for NODDY coding). All data and programs are
handled by the TEXT editor. The TEXT screen is the default
screen on the MTX. It is used for other text applications,
BASIC Program Editor ,Error messages ,etc.

If you've read chapter 3,you will realise that the VDP
handles all character information according to the ASCII
character set protocol. The MTXOS configures the 960 byte
TEXT Name Table as a 40x24 TEXT screen. The Name Table stores
the ASCII character numbers,ie ASCII 65 is the letter A. The
VDP can quickly read this table converting these numbers to
the appropriate character shapes held in the TEXT PGT. All
this information is echoed to the VDU. The TEXT Name table on
the MTX is found at 7168 and the TEXT PGT starts at 6144 in
VRAM. The printer uses a similar mechanism when it prints
TEXT on the paper as the VDP does for displaying TEXT on the
VDU screen.

In normal print mode,the printer receives bytes of
information from the computer. This information is a series
of ASCII numbers,relating to the TEXT on the screen.The
Printer then extracts the correct character shape from its
built-in printer character font and prints it onto the paper.
Similar to the way the Name Table and PGT interact to give an
onscreen presentation. Again ,the reason for only
transmitting the ASCII codes; is due to increased speed. As
you will see later ,when you have to send actual shape data
to the printer,the printing speed greatly decreases.

Thus producing a Hardcopy of the TEXT screen is relatively
easy once you know what information is required:

1. Start of the Text Name Table - NAMEBASE (= 7168 on MTX)
2. Length of the Name Table - NAMETABLEN (= 40 x 24 = 960)
3. Listing 8-1 to send the data to the Printer.

Listing 8-2 demonstrates how this can be done in practice.

Listing 8-2: Text Screen Dump

10 PRINT " This Text Will be displayed on the Screen and "
20 PRINT " the code below will Read the TEXT screen and "
30 PRINT " transmit these ASCII codes to the printer to "
40 PRINT " translate into their respective character shapes"
50 PRINT " . The shapes are extracted from the printers own"

Page 89

60 PRINT " resident character font."

100 GOSUB 2400
110 STOP

2400 CODE

PRNTTEXT: LD HL,7168 ; START OF NAME TABLE IN
CALL VDPREADSEL ; VRAM. TELL THE VDP TO
LD DE,960 ; READ THIS 960 BYTE AREA

TEXTPOUT: IN A,(#01) ; READ THE SCREEN ASCII
LD B,A ; AND PASS IT TO THE
CALL HARDCOPY ; HARDCOPY ROUTINE. THIS
DEC DE ; IS REPEATED UNTIL ALL
LD A,D ; 960 BYTES OR SCREEN
OR E ; LOCATIONS HAVE BEEN
JR NZ,TEXTPOUT ; TRANSMITTED TO PAPER.
RET ; EXIT

; SUBROUTINES

HARDCOPY: ; SEE LISTING 8-1

CHBRK: ; SEE LISTING 8-1

VDPREADSEL: ; SEE LISTING 6-3

2410 RETURN

Save as:
SAVE "TXTPRINTTXT" (tape users)
DISC (USER) SAVE " TXTPRINT.TXT" (disc users)

When you run the above code,the text on the TEXT screen will
be echoed to the printer,only when the printer is on and
ready. However,unless you have told your printer to change
its column width to that of the TEXT screen (ie 40
columns),you will probabely see two lines of screen text
printed on the same line of the printer paper. This nicely
leads on to the next section.

8.3.3 Printer Control Codes

The software so far allows us to copy the screen to the
paper. However,as the last program has highlighted,we need
some way of formatting the TEXT on the paper,ie setting the
printer width to the screen width of 40. The Epson and Epson
compatible printers provide the user with a vast array of
special printing functions,see Table 8-1. These special codes
give us total control of the final printed format.

The VDP TEXT orientated screens cannot even match this
performance because of the way they were designed.
However,programs like Micropro's WORDSTAR,uses keystrokes
like CTRL PS to switch underline on. This 3 key press is

Page 90

stored in RAM as a special ASCII code. This code is one of
the non-printable ASCII 0-31 or a combination of codes ,see
Table 8-1. Whenever,one of these codes is sent to the
printer, the printer switches on the desired function like
Underline or column width or Bold etc. Listing 8-3
incorporates some of these facilities.

Table 8-1: Some Epson printer control codes.

: FUNCTION : Code for ON : Code for OFF :

: Enlarge : DB 27,"W",1 : DB 27,"W",0 :
: Reduce : DB 15,0,0 : DB 18,0,0 :
: Emphasise (bold) : DB 27,"E",0 : DB 27,"F",0 :
: Eite/Pica : DB 27,"P",0 : DB 27,"P",1 :
: Italic : DB 27,"4",0 : DB 27,"5",0 :
: Double Strike : DB 27,"G",0 : DB 27,H",0 :
: Underline : DB 27,"-",1 : DB 27,"-",0 :
: Unidirection : DB 27,"U",1 : DB 27,"U",0 :
: Subscript : DB 27,"S",1 : DB 27,"T",0 :
: Superscript : DB 27,"S",0 : DB 27,"T",0 :
: Backspace : DB 8,0,0 : :
: LineFeed : DB 27,"A",n : :
: : where n=n*1/72" :
: Reset Printer : DB 27,64,0 : :

Listing 8-3: Text Dump Software with Printer Control Codes.

10 PRINT " This Text Will be displayed on the Screen and "
20 PRINT " the code below will Read the TEXT screen and "
30 PRINT " transmit these ASCII codes to the printer to "
40 PRINT " translate into their respective character shapes"
50 PRINT " . The shapes are extracted from the printers own"
60 PRINT " resident character font."

100 GOSUB 2500
110 STOP

2500 CODE

PRNTTEXT2: LD HL,7168 ; START OF NAME TABLE IN
CALL VDPREADSEL ; VRAM. TELL THE VDP TO
LD DE,960 ; READ THIS 960 BYTE AREA
LD HL,LINEFEED ; SET PRINTER TO SCREEN
LD C,6 ; FORMAT.

 CALL SCTRLCODE ; SEND TO PRINTER.

TEXTPOUT: ; SEE LISTING 8-2

Page 91

;SUBROUTINES

HARDCOPY: ; SEE LISTING 8-1
CHBRK: ; SEE LISTING 8-1

VDPREADSEL: ; SEE LISTING 6-3

SCTRLCODE: LD B,(HL) ; READ THE FUNCTION CODE
CALL HARDCOPY ; AND SEND TO PRINTER.
INC HL ;
DEC C ;
JR NZ,SCTRLCODE ;

 RET ;

; PRINTER CONTROL CODE DATA

LINEFEED: DB 27,"A",12 ; SPACING BETWEEN LINES
COLWIDTH: DB 27,"Q",40 ; COL WIDTH SET TO 40.

2510 RETURN

Save as:
SAVE "TXTPRNT2TXT" (tape users)
DISC (USER) SAVE " TXTPRNT2.TXT" (disc users)

When the above program is RUN,the printed output will be
exactly like that of the screen. It is easy to convert the
above to give PANEL and NODDY screens - see "MTX PANEL COPY"
,PCWeekly , Vol 6, No 25 and 26 ; see "MTX PRINT SCREEN",
Memotechniques ,Vol 4,Issue 5 ; see "MTX SCREEN DUMP"
,Memopad ,vol 010 ,issue 8.

8.4 Graphical Bit Mapped Screen Dumps

The advantages of GII and GI modes are that complex graphic
screens can be generated on the screen. However,obtaining
hardcopy of such screens involves a lot of processing.
And unlike the normal ASCII print mode ,we cannot take
advantage of many of the special printer control codes.

8.4.1 Transposition

The MTX,MSX and Einstein Computers treat each byte of screen
data as a horizontal sequence of dots,eg d7 d6 d5 d4 d3 d2 d1
d0 = 1 horizontal byte. However,in todays computer market,the
Epson printer seems to be the industry standard or at least
the most popular one. This causes the programmer a slight
technical problem,because the Epson printers bit image mode
handles graphical data as a sequence of vertical bytes rather
than the screen horizontal byte format,see Figure 8-3.

Page 92

Figure 8-3: Vertical and Horizontal data formats

This means that we have to take the 8 horizontal bytes that
makes up a 8x8 graphical pattern and rotate each of them,a
bit at a time,to obtain the correct vertical format before
sending to HARDCOPY subroutine. The technique of twisting 8
screen bytes of an alphanumeric character is called
Transposition. If you think back to chapter 3.0,in particular
listing 3-1,you will see that we have performed the opposite
of transposition. Figure 3-1 shows the reverse of
transposition and figure 8-4 shows the process of
transposition.

Figure 8-4: Transposition of a 8x8 alphanumeric character.

8.4.2 Printer Density Modes

The computer therefore takes the screen bytes and rotates
them into the Epson vertical byte format. This data is then
sent to the printer. The printer ,when in bit image
mode,takes the 8 vertical bits and assigns them to 8 of the
printer pin heads and depending on whether the bit is ON or
OFF,determines the graphical pattern on the paper (where a
1=strike paper and 0=ignore) . Note that if the printer
hasn't been set to bit image mode,the printer will take each
data byte and print the ASCII character corresponding to it.

Page 93

Thus,before a hardcopy of a screen dump is possible,we must
make sure that the printer has been initialised to the bit
imgae mode. There are 3 bit image modes available on my Epson
compatible printer:

1. Single Density (480 vertical sequences or dots wide).
2. Double Density (960 dots wide).
3. Quadruple Density (1920 dots wide).

As you can see,as the density increases,so does the
resolution or detail of the the hardcopy. What is actually
happening is the size of the dot is getting smaller.
Increased print density is useful if you have a computer
generated painting which is bigger than the MTX screen,you
can with the correct software join screens together in this
manner and by selecting double density get both screens side
by side.

To select which of these print modes is required is a simple
task even from BASIC:

LPRINT CHR$(27);"K";CHR$(n);CHR$(m)

where n = #00 to #FF (LSB) when m = 0 (MSB)
and n = #00 to #E0 when m = 1.

Please refer to the printer manual,as to how these relate to
the above print densities. Listing 8-4 provides a screen dump
utility and is comprehensively documentated. As a
task,extract the transposition subroutine and draw its
flowchart. Refer to "MTX SCREEN DUMP" article ,see earlier.

Listing 8-4:High Resolution Graphic Screen Hardcopy,in
single density print mode. NB: change the
BITIMODE to DB 27,"L",0,1 & see the result.

10 put the graphic screen generating code here.
.....999

2600 CODE

GRAPHDUMP: LD HL,GRAPHICLF ; SET LINEFEED FOR BIT IMAGE
LD C,3 ; MODE.
CALL SCTRLCODE ;
XOR A ; SET HL=0000 THE QUICK WAY
LD H,A ; INITIALISE BYTE COUNTER.
LD L,A ; 6144 SCREEN BYTES TO SEND
LD (COUNTER),HL ; TO THE PRINTER. EVERY BYTE

; IN THE SCREEN WILL BE READ
; AS 8x8 BLOCKS & TRANSPOSED
; TO THE VERTICAL FORMAT.
; COUNTER KEEPS TRACK OF THE
; NUMBER OF 8x8 PATTERNS
; THAT ARE CONVERTED TO THE
; 8x8 VERTICAL FORMAT.

Page 94

LD HL,(PGTBASE) ; START OF THE GRAPHIC SCREEN
CALL VDPREADSEL ; DATA TABLE TO BE READ.

GLOOP: LD HL,BITIMODE ; SET PRINTER TO BIT IMAGE
LD C,4 ; MODE.
CALL SCTRLCODE ;

READPGT: LD HL,DATABUFF ; READ A 8x8 PATTERN OR SCRN
LD B,8 ; IMAGE INTO A BUFFER.

RD1: IN A,(#01) ; READ THE DATA A BYTE AT A
LD (HL),A ; TIME AND STORE IN BUFFER.

 INC HL ; MOVE POINTER FORWARD BY 1.
DJNZ RD1 ; REPEAT UNTIL ALL 8 BYTES

; ARE STORED.

EPSON: PUSH HL ; SAVE DATABUFF-1 POSITION.
LD C,8 ; NUMBER OF DATA BYTES.

EP1: LD B,0 ; INITIALISE THE REGISTER
; TO HOLD THE VERTICAL BYTE

LD D,8 ; 8 BITS IN A BYTE.
EP2: OR #00 ; ZERO FLAGS (CAN USE XOR A)

DEC HL ; MOVE POINTER TO THE BOTTOM
RLC (HL) ; OF THE 8 DATA BUFFER. THEN

; ROTATE DATA LEFT BY 1 BIT.
JR NC,ZERO ; THIS BIT IS MOVED INTO THE

; CARRY FLAG (C).IF C=0 THEN
; SET VERTICAL BIT TO ZERO.

SET 7,B ; ELSE C=1 AND BIT =1. WE ARE

ZERO: OR #00 ; SETTING BIT 7 EVERYTIME WE
DEC D ; PASS HERE. AFTER EVERY SET
JR Z,SEND ; THE VERTICAL BIT IS SHIFTED
RR B ; RIGHT. THIS WILL BE DONE 7

; TIMES UNTIL THE VERTICAL
; BYTE IS READY FOR PRINTING.

JP EP2 ; REPEAT UNTIL BYTE READY.
SEND: CALL HARDCOPY ; SEND VERTICAL DATA BYTE TO

; THE PRINTER FOR PRINTING.
POP HL ; RESTORE DATABUFF-1. WE

; HAVE ROTATED 1 BIT OF EACH
; OF THE 8 BYTES TO MAKE UP
; ONE VERTICAL BYTE. SEE
; FIGURE 8-4 FOR EXPLANATION

DEC C ; REPEAT THIS PROCESS UNTIL
JR NZ,EP1 ; ALL 8 BYTES HAVE BEEN

; TRANSPOSED.

LD HL,(COUNTER) ; INCREASE THE 8x8 PATTERN
INC HL ; COUNTER. THERE ARE 3x256
LD (COUNTER),HL ; BLOCKS OF 8x8 PATTERNS,

; OR 768 PATTERNS TO SEND
; TO THE PRINTER.

ENDOFROW: LD A,L ; 32 PATTERNS PER LINE. IN
AND #1F ; ACTUAL FACT WE ARE TRACKING
JR NZ,READPGT ; WHERE WE ARE ON THE SCREEN

; ACCORDING TO THE GRAPHIC

Page 95

; TEXT COORDINATE SYSTEM OF
; 32x24 SCREEN LOCATIONS.

ENDOFLINE: LD B,#10 ; SEND LINEFEED CODE.
CALL HARDCOPY ;

ENDOFPGT: LD A,3 ; 3 BLOCKS OF 256 PATTERNS.
CP H ;
JR NZ,GLOOP ; REPEAT UNTIL ALL 768 SENT

; OR ALL 24 LINES SENT.

RESETPRINTER:LD B,#1B ; SEND ESC
CALL HARDCOPY ;
LD B,#40 ; SEND 64 OR @.
CALL HARDCOPY ;

EXIT: RET ;

; SUBROUTINES

HARDCOPY: ; SEE LISTING 8-1

CHBRK: ; SEE LISTING 8-1

SCTRLCODE: ; SEE LISTING 8-3

VDPREADSEL: ; SEE LISTING 6-3

; PROGRAM DATA AND VARIABLES

GRAPHICLF: DB 27,"A",8 ; SET TO 8/72" BETWEEN LINES
BITIMODE: DB 27,"K",0,1 ; SET TO SINGLE DENSITY MODE.
PGTBASE: DW #0000 ; START OF GII BIT MODE SCRN.
COUNTER: DS 2 ;
DATABUFF: DS 8 ; STORES THE 8x8 SCREEN

; PATTERN.

2610 RETURN

Save as:
 SAVE "GRAPHDUMPTXT" (tape users)
 DISC (USER) SAVE "GRAPHDUMP.TXT" (disc users)

The above program will only run when you have drawn graphics
or text on the Graphics screen. For example:

10 VS 4
........ code for drawing or printing on graphics screen.

100 GOSUB 2600

110 STOP

Finally,to test your skills,rewrite the above code only in a
more modular format,ie as small subroutines.

Page 96

9.0 The Memotech Keyboard and Joystick

9.1 Intoduction

Memotech,a small British company,first came to my attention
with there add-on range of peripherals (keyboard, ram
expansion) for the Sinclair ZX81. Like all of Sir Clive's
microcomputers : ZX80 , ZX81 , ZX Spectrum , QL ;the lack of
a proper keyboard was a major drawback and probably cost
Sinclair Research Ltd thousands of potential customers
,especially in the business arena with the QL.

This type of criticism (pre-QL) ,obviously influenced the
people at Memotech. As a result ,the Memotech MTX series was
given a full 79 key professional quality keyboard. The
keyboard was split up into three sections : (1) the QWERTY
keypad ; (2) the FUNCTION keypad ; and (3) the CURSOR and
NUMERIC dual function keypad. At this time,no other major
home computer micro (except the very expensive IBM clones)
were graced with such a keyboard,not even the BBC 'B', CBM 64
,Atari or ZX/QL series.

The Memotech MTX series keyboard has been designed to act
internally as a 8 x 10 matrix ,ie 8 rows of 10 keys (columns)
per row. In actual fact this relates to a 80 key keyboard.
However,there are only 77 keys assigned to the extended ASCII
character set,with keys 78 & 79 corresponding to the two
RESET keys,at either side of the space bar key. No 80th key
was provided. Note that,the actual relationship between the
actual keyboard that we the users type and the internal
computer format will be covered later.

This chapter was included for completeness BUT because of
outside constraints it lacks the polished and learning
examples of the other chapters. However, you should have by
now grasped the principles and techniques of getting the most
from your hardware and how to build modular software. This
knowledge is applicable to this chapter also.

9.2 Detecting a Keypress

The 8-bit Z80 CPU has upto 256 individual communication lines
(2^8 = 256). On the Memotech MTX series, ports 5 and 6 were
reserved for selecting the rows (0 - 7) and reading the keys
(0 - 9) on the keyboard. The Z80 likes to handle data in
8-bit or 1-byte chunks. As already stated,the MTX series is
mapped to provide 8 rows of 10 keys. All ready the row range
is in the chunk size for the Z80 to handle. However, the 10
column keys per row will require two 8-bit chunks to be read
per row or per scan.

9.2.1 Selecting the Sense Line

A row or sense line is selected by telling the Z80 CPU to
"latch" onto port 5. As mentioned above,the row number or

Page 97

sense line is activated when the correct bit number
corresponding to the row is selected, see table 9-1. On the
MTX series ,this activation is achieved by setting the bit
"low" or switching the bit "off" ,ie set to "0". Table 9-1
clearly demonstrates this principle and the relationship
between the row number and the bit pattern.

Table 9-1: The relationship between the row number or sense
line with the bit pattern data. This data is used
to select the row to sense or scan for keypresses.
This data is latched on to PORT 05 of the Z80 CPU.

--
: Row : Binary Pattern : The Latched Byte Data :
: Number : : DECIMAL : HEXADECIMAL :
--
: 01 : 1 1 1 1 1 1 1 0 : 254 : #FE :
: 02 : 1 1 1 1 1 1 0 1 : 253 : #FD :
: 03 : 1 1 1 1 1 0 1 1 : 251 : #FB :
: 04 : 1 1 1 1 0 1 1 1 : 247 : #F7 :
: 05 : 1 1 1 0 1 1 1 1 : 239 : #EF :
: 06 : 1 1 0 1 1 1 1 1 : 223 : #DF :
: 07 : 1 0 1 1 1 1 1 1 : 191 : #BF :
: 08 : 0 1 1 1 1 1 1 1 : 127 : #7F :
--

The Z80 CPU communicates with the keyboard with the command:

OUT (port number),data

Port number #05 is used by the CPU for selecting the row (
data) to scan. See listing 9-1 as to how this is acheived in
Z80 assembly code.

Listing 9-1: How the Z80 CPU communicates with the KEYBOARD.

SELROW5: LD A,#EF ; select row 5 to scan
OUT (#05),A ;
RET ;

However,life isn't as simple as that,because in there wisdom
,the MTX series designers decided,whether voluntarily or due
to some other constraint,that row number 1 should be selected
as 1111 1101 and row number 2 selected as 1111 1110. This
would be coded as: LD A,#FD ; OUT (#05),A and LD A,#FE ; OUT
(#05),A respectively. All other rows are as Table 9-1.

9.2.2 Scanning the Sense Line

Once the correct row or sense line has been selected,we can
then scan this row for any keypresses. When a key or keys
have been pressed then the bit(s) that corresponds to that
key(s) will be set to "0". However,as there are 10 keys per
row,we will need 2 bytes for the keypress information. Ports
5 and 6 of the Z80 CPU were reserved for reading the 2
sections of the row, see Table 9-2. Each key in the row has a

Page 98

corresponding bit assigned to it. This is essential for dual
or Multiple keypresses on the same or spread over a number of
rows. The keys are read from left to right. Table 9-3, is a
break down of the internal keyboard format.

Table 9-2: This table describes the relationship between the
key with the Z80 CPU binary or bit pattern.

: Column : Read Z80 : Single k/press data returned from scan:
: number : CPU PORT : Binary Pattern : Decimal : Hexadecimal:

: 01 : 05 : 1111 1110 : 254 : #FE :
: 02 : 05 : 1111 1101 : 253 : #FD :
: 03 : 05 : 1111 1011 : 251 : #FB :
: 04 : 05 : 1111 0111 : 247 : #F7 :
: 05 : 05 : 1110 1111 : 239 : #EF :
: 06 : 05 : 1101 1111 : 223 : #DF :
: 07 : 05 : 1011 1111 : 191 : #BF :
: 08 : 05 : 0111 1111 : 127 : #7F :

: 09 : 06 : 0000 0010 : 002 : #02 :
: 10 : 06 : 0000 0001 : 001 : #01 :

Table 9-3: How the Keyboard is seen by the MTXOS. The key
mapping is for the Unshifted keypresses. Tables
9-4 & 9-5 for the Shifted and Alpha Lock Mappings.

: HEX : FE : FD : FB : F7 : EF : DF : BF : 7F : 02 : 01 :

: FD : ESC : 2 : 4 : 6 : 8 : 0 : ^ : EOL : BS : F5 :
: FE : 1 : 3 : 5 : 7 : 9 : - : \ : PAG : BRK: F1 :
: FB : CTRL : w : r : y : i : p : [: ↑ : TAB: F2 :
: F7 : q : e : t : u : o : @ : LF : ← : DEL: F6 :
: EF : A/LCK: s : f : h : k : ; :] : → : : F7 :
: DF : a : d : g : j : l : : : RET: HOME: : F3 :
: BF : SHIFT: x : v : n : , : / : SH : ↓ : : F8 :
: 7F : z : c : b : m : . : _ : INS: CLS : SP : F4 :

Table 9-4: The keyboard mapping for Shifted keypresses.

: HEX : FE : FD : FB : F7 : EF : DF : BF : 7F : 02 : 01 :

: FD : ESC : " : $: & : (: 0 : ~ : 8 : BS : F13 :
: FE : ! : # : % : ' :) : = : | : 7 : 9 : F9 :
: FB : CTRL : W : R : Y : I : P : { : 5 : 4 : F10 :
: F7 : Q : E : T : U : O : ' : LF : 1 : 6 : F14 :
: EF : A/LCK: S : F : H : K : + : } : 3 : : F15 :
: DF : A : D : G : J : L : * : RET: 2 : : F11 :
: BF : SHIFT: X : V : N : > : ? : SH : . : : F16 :
: 7F : Z : C : B : M : < : _ : 0 : RET: SP : F12 :

Page 99

Table 9-5: The Keyboard mapping for Alpha Lock ON keypresses.

--
: HEX : FE : FD : FB : F7 : EF : DF : BF : 7F : 02 : 01 :
--
: FD : ESC : 2 : 4 : 6 : 8 : 0 : ^ : EOL : BS : F5 :
: FE : 1 : 3 : 5 : 7 : 9 : - : \ : PAG : BRK: F1 :
: FB : CTRL : W : R : Y : I : P : [: ↑ : TAB: F2 :
: F7 : Q : E : T : U : O : @ : LF : ← : DEL: F6 :
: EF : A/LCK: S : F : H : K : ; :] : → : : F7 :
: DF : A : D : G : J : L : : : RET: HOME: : F3 :
: BF : SHIFT: X : V : N : , : / : SH : ↓ : : F8 :
: 7F : Z : C : B : M : . : _ : INS: CLS : SP : F4 :
--

The MTX keyboard that we see consists of 4 main rows of keys
plus a row with the Space bar and the two RESET keys. These
keys have been mapped onto an 8x10 internal matrix which as
shown above in tables 9-3, 9-4 and 9-5. All the odd rows of
the 8x10 matrix correspond to the odd keys on the MTX
keyboard going from left to right. And all the even rows
correspond to the even positioned keys. Simple eh!!!

The Z80 commands for scanning or reading the status of a
keypress(es) on any of the 8 rows are:

(1) IN (#05),A ; this reads key columns 1-8 ,see Table 9-2.
(2) IN (#06),A ; this reads key columns 9-10,see Table 9-2.

As you will have grapsed the actual coding for testing for a
keypress or keypresses is a little complicated. However,
Listing 9-2 will describe the basics.

Listing 9-2: This is the skeleton listing for reading the 8
 rows of keys. However, I haven't included any
 testing routines for determining which keys in
 a row have been pressed but only test to see
 which row the keypress occurred.

10 GOSUB 230
20 PRINT PEEK(ROW) :REM INSERT THE Z80 ADDRESS FOR ROW AND
30 REM AS RESULT IS IN DECIMAL COMPARE
40 REM WITH TABLE 9-2 FOR ACTUAL ROW.
50 STOP

230 CODE

TESTKEYPRES:PUSH DE ; SAVE REGISTERS
PUSH BC ;
PUSH HL ;
LD HL,ROWVALUES ; ROWS 1 TO 8 SEQUENTIALLY
LD B,8 ; YES THERE IS 8 ROWS.

SCANROWS: LD A,(HL) ; SELECT THE ROW TO READ
OUT (#05),A ;

Page 100

IN A,(#05) ; GET STATUS OF COLS 1-8
LD D,A ; TEST IT LATER.
IN A,(#06),A ; GET STATUS OF COLS 9-10
LD E,A ; TEST LATER.
LD A,#FF ; IF 11111111 THEN NO KEY
CP D ; PRESSED IN COLS 1-8.
JR NZ,KEYPRESS ; IF D<#FF THEN KEYPRESSED.
LD A,3 ; IF 00000011 THEN NO KEY
CP E ; PRESSED IN COLS 9-10.
JR NZ,KEYPRESS ; ID E<3 THEN KEYPRESSED.
INC HL ; POINT TO NEXT ROW.
DJNZ SCANROWS ; REPEAT FOR ALL 8 ROWS

; IF REQUIRED.
EXIT: POP HL ; RESTORE REGISTERS

POP BC ;
POP DE ;
RET ;

KEYPRESS: LD A,(HL) ; A=ROW THE THE KEY PRESS
LD (ROW),A ; OCCURRED,SAVE IT.

; INSERT HERE THE CODE FOR
; TESTING THE ROW KEY PATTERNS
; FOR WHICH KEY(S) WERE PRESSED

JR EXIT ;

ROWVALUES: DB #FD,#FE,#FB,#F7,#EF,#DF,#BF,#7F
ROW: DS 1

240 RETURN

Save as:
SAVE "ROWSCANTXT" (tape users)
DISC (USER) SAVE "ROWSCAN.TXT" (disc users)

Reload listing 9-2. Type RUN <RET>. When you press a key or
multiple keys the routine will print the row which it
detected the keypress first. Remember that,the program scans
the rows sequentially from top to bottom.

9.2.3 Testing for a Keypress

As already stated,to check for a keypress,we must perform an
IN from Ports 5 and 6 to get the status of keys 1-8 and 9-10
respectively,ie READ the status. Also,the status of each key
on the scanned row is determined by the value of the
corresponding bit in the Port 5 & 6 data bytes,see last
section,ie if bit = 0 then keypress and if bit = 1 then no
keypress.

Unlike MTX BASIC,the Z80 assembler has access to logical
operator commands: AND/OR/XOR which allow the user to test
individual bits in a byte.The Z80 programmer can also use the
commands: BIT/SET/RES, which work on specific bits of
information. Refer to a good Z80 book for details of these
commands.

Page 101

The use of the BIT/SET and RES Z80 commands to test for
keypresses,is only useful if you are testing for a particular
bit or key ,ie testing to see if <BRK> has been pressed. In
actual fact,we have already covered the test to see if <BRK>
has been pressed in chapter 8 ,see listing 8-1 ,subroutine
CHBRK.

Finally,an essential part of any keyboard scanning routine,is
that test for no keypress on a particular row. By scanning
the row in question and testing the row data against the no
keypressed bit pattern,we can save a lot of processor time
than if we had to test each bit individually. Listing 9-2,has
already covered this,but I think it is important enough for a
reminder . The no keypress bit pattern for PORT 5 is 11111111
and for PORT 6 is 00000011.

9.3 Reading the Joystick Ports

When the Memotech MTX series was being developed a great
number of computer journalists and the public were screaming
out for a good Z80 machine with a built-in Z80
assembler,advanced sound and graphics,joystick ports,proper
keyboard ,and buisness capabilities. When the MTX was
released,it was claimed to be technical excellent,offering as
Jack tramiel of Atari would say,"power without the price".
However,the public never took to it and the MTX since then
has had to take a back seat in British computing.

The inclusion of two joystick ports was meant to attract the
games enthausist and the games programmer,but it never did.
However,a number of excellent joystick games have been
written for the MTX series. The ability to use a
joystick,not only saves the keyboard from wear and tear but
it allows better arcade games control. Positioned at the rear
of the MTX keyboard and to the left they are two ATARI D-type
joystick ports. This section describes how to write a
program for testing the joystick ports.

Reading the joystick is no different from reading the
keyboard. This is because the MTX designers,mapped both the
joystick ports to mimic specific keys on the keyboard. This
is particularly important to the programmer as one set of
coding accommodates both keyboard and joystick games players.
The right hand joystick keys are mapped onto the
up,down,right,left cursor and Home keys of the keyboard. Why
don't you figure out which keys are mapped onto the LEFT Hand
joystick port. Listing 9-3 ,demonstrates how the right hand
joystick is programmed and specific keys tested for.

Listing 9-3: A set of subroutines for scanning the Right Hand
 Joystick port. These subroutines can be easily
 implemented into your own listings.

Page 102

250 CODE

; SUBROUTINES

RHJOYSTICK:NOP ; SEE TABLE 9-3,IN THIS YOU WILL
; NOTICE THAT ALL THE RHJOYSTICK
; KEYS ARE ALL ON THE SAME COLUMN.
; THIS MAKES PROGRAMMING SIMPLER.

FIREKEY: LD A,#DF ; TESTS FOR HOME (KBD) OR FIRE
CALL SCANCOL8 ; (JOY) BEING PRESSED.
CALL Z,FIRE ; IF SELECTED THEN JUMP TO THE

; FIRE SUBROUTINE.

LEFTCUR: LD A,#F7 ; TEST FOR LEFT (KBD OR JOY) BEING
CALL SCANCOL8 ; PRESSED. IF PRESSED THEN GOTO
CALL Z,LEFT ; LEFT SUBROUTINE.

RIGHTCUR: LD A,#EF ; TEST FOR THE RIGHT (KBD OR JOY)
CALL SCANCOL8 ; ETC.
CALL Z,RIGHT ;

UPCUR: LD A,#FB ; TEST FOR UP (KBD OR JOY). ETC.
CALL SCANCOL8 ;
CALL Z,UP ;

DOWNCUR: LD A,#BF ; TEST FOR DOWN (KBD OR JOY). ETC.
CALL SCANCOL8 ;
CALL Z,DOWN ;

CALL LIVELOST ; SUBROUTINE TO TEST FOR A LIVE
; LOST IN AN ARCADE GAME.

REPEAT: JR RHJOYSTICK ;

SCANCOL8: OUT (#05),A ; SELECT ROW TO SCAN.
IN A,(#05) ; READ SELECTED ROW.
CP #7F ; IS KEY ON COL 8 BEEN PRESSED.

; IF IT HAS,Z-FLAG IS SET.
RET ;

FIRE: ; CHECK BULLETS LEFT
; IF SOME LEFT FIRE.
; TEST IF BULLET HIT.
; IF HIT :
; UPDATE SCREEN AND SCORE.
; HAVE YOU WON,ETC.

RET ;

DOWN: ; CHECK SCREEN BOUNDRY.
; IF OFF BOTTOM,IS SCROLLING

 ; POSSIBLE,AS IN A W/PROCESSOR.
; ETC.

RET ;

LEFT: RET ; AS FOR DOWN

Page 103

UP: RET ; AS FOR DOWN.

RIGHT: RET ; AS FOR DOWN.

LIVESLOST: RET ; INSERT CODE HERE IF REQUIRED.

260 RETURN

Save as:
SAVE "RHJOYSTTXT" (tape users)
DISC (USER) SAVE "RHJOYST.TXT" (disc users)

9.4 MTX Series ROM BIOS - Keyboard Routines

You may be wondering,why bother writing our own keyboard
specific routines which address the hardware directly rather
than use the built-in MTX Series keyboard routines stored on
ROM. For example,the above listing (9-3) could have been
written as:

Listing 9-4: Listing 9-3 redone to use the ROM keyboard code.

270 CODE

RHJOY: XOR A ; RESET FLAGS
CALL #0079 ; ACCESS ROM KEYBOARD CODE.
JR Z,RHJOY ;

TESTJOY: CP 26 ; IS FIRE PRESSED?
CALL Z,FIRE ;
CP 8 ; IS LEFT PRESSED?
CALL Z,LEFT ;
CP 10 ; IS DOWN PRESSED?
CALL Z,DOWN ;
CP 11 ; IS UP PRESSED?
CALL Z,UP ;
CP 25 ; IS RIGHT PRESSED?
CALL Z,RIGHT ;
CALL LIVESLOST ;
JR RHJOY ;

; SUBROUTINES FIRE/LEFT/DOWN/UP/LIVESLOST AS FOR LISTING 9-3.

280 RETURN

This method is actually very useful,if you are writing
wordprocessor; spreedsheet type applications. Also,because
most systems use the ASCII system for key
recognition,adapting listing 9-4 to other machines like the
MSX is a simple task of replacing the ROM keyboard call to
the one implemented on the MSX. However,if you are writing
fast interactive arcade games, where speed of movement and
reaction times are crucial ,then we will obviously have to
write hardware specific routines, as in Listing 9-3.

Page 104

Another advantage for writing your own OS utilities for the
MTX series,in particular,is because you can write your
software so that the code will run on either the MTX OS or on
the CPM enviroment. Both Operating Systems ,read the keyboard
differently but both read the hardware in the same way. With
games software this ability to write one program for either
system is a big saving in program development. Throughout
this book,I have been building up your library of specific
hardware orientated software,so that you can get the most out
of your code and to see how to go about writing an operating
system for instance.

The Memotech MTX series ROM code is accessed through a
gateway at #0079. This instructs the OS to RUN the code on
ROM PAGE 0 at #3618. The technique for Page switching was
covered in chapter 1. The example chosen is relevant to this
section. Therefore go back and re-read that subsection. The
CALL #0079, gateway returns the ASCII value of the key
pressed. The ASCII value is returned in Register A. If no key
was pressed then the Z-flag would be set. A simple wait for
keypress routine would be.

Listing 9-5: Wait for a keypress using the ROM keyboard BIOS.

290 CODE

ROMKEYS: XOR A ; RESET THE Z-FLAG AND CLEAR A.
CALL #0079 ; KEYBOARD SCAN GATEWAY.
JR Z,KEYS ; IF Z SET THEN NO KEY PRESSED.
RET ; RETURN WHEN KEY IS PRESSED.

300 RETURN

In actual fact,the CALL #0079 subroutine returns three
parameters in the MTX system variables table, starting at
#FD7B:

LASTKEY: DS 1 ; HOLDS AN INTERNAL FORMAT OF KEY
; PRESSED.

ROWSCAN: DS 1 ; HOLDS THE DRIVE LINE OR ROW No.
LASTASC: DS 1 ; HOLDS THE ASCII KEYPRESS NUMBER.

9.5 Operating System Independent Keyboard Utility Routines

To conclude this chapter,I have included my OS independent
full keyboard scan routine,see Listing 9-6. This code has
been designed to be directly interchangeable with the MTX ROM
CALL #0079. For example,again the ASCII keypress result is
held in register A on returning from KEYS. The Z-flag is set
if no key is pressed. Also ROWSCAN and LASTASC are also
returned,for completeness. Finally,I have included the option
of changing the delay between keypresses,so as to avoid key
repetition occuring. This delay can have a value of 0 (fast)
to 255 (slow). It is set by passing the value in register A
to the keys subroutine,see listing 9-6.

Page 105

To compliment the code in Listing 9-6,I have included the
original flow diagram that I used when I was designing this
listing. As a task,why not produce a similar flow diagram for
the finished listing. For flow diagram symbols, refer to your
MTX Operators Manual, technical section.

Listing 9-6: OS independent keyboard scan routine.

10 CODE

RAMKEYS: XOR A ; EQUIVALENT TO LISTING 9-5.
LD A,8 ; KEYBOUNCE DELAY
CALL KEYS ; INSERT THE ADDRESS FOR KEYS
JR Z,RAMKEYS ;
RET ;

20 LET A=PEEK(ASCIIKEY)
30 CSR 10,10:PRINT A
40 IF A<332 OR A>127 THEN GOTO 10
50 CSR 10,14: PRINT CHR$(A)
60 GOTO 10
70 STOP

2700 CODE

KEYS: CP 0 ; IF A=0 ON ENTRY THEN USE
JR Z,DEFWAIT ; DEFAULT KEYBOUNCE VALUE.
LD (KEYBOUNCE),A ; ELSE USE THE USER ONE.

DEFWAIT: DI ; DISABLE THE INTERRUPTS TO
EXX ; AVOID CLASHING WITH THE
PUSH IX ; BUILT-IN KEYBOARD ROUTINES
CALL TESTMODE ; NOW SCAN FOR KEYPRESSES.
EXX ; REMEMBER TO RESTORE REG's
POP IX ; ON LEAVING KEYS & ALSO TO
EI ; ENABLE THE BASIC INTERRUPT
EX AF,AF' ; NOW WAIT A FEW MOMENTS
LD A,(KEYBOUNCE) ; BETWEEN KEYPRESSES,SO THAT
LD B,A ; WE DON'T END UP WITH THE

; KEYPRESS REPEATING x TIMES
WAITLOOP: HALT ; ACROSS THE SCREEN.

DJNZ WAITLOOP ;
EX AF,AF' ;
AND A ; LASTLY,CHECK TO SEE IF A
CP 0 ; KEY WAS PRESSED. IF NOT
RET ; THEN Z-FLAG SET. EXIT.

TESTMODE: LD B,3 ; FIRSTLY,TEST TO SEE IF
LD HL,ROWBYTE ; KEYS CTRL/SHIFT/ESC HAVE

SR5LOOP: LD A,(HL) ; BEEN PRESSED. IF SET THEN
LD C,A ; SET APPROPRIATE FLAG. NOW
EX AF,AF' ; TEST ALL ROWS TO SEE IF
LD A,C ; ANOTHER KEY IS PRESSED AT

Page 106

OUT (5),A ; THE SAME TIME,ie <CTRL> P
IN A,(5) ; IN CPM SENDS THE SCREEN
LD D,A ; OUTPUT TO THE PRINTER. IF
IN A,(6) ; NO OTHER KEY PRESSES WITH
LD E,A ; IT,THEN EXIT.
LD A,C ; IF ESC/CTRL/SHIFT HAD NOT
LD C,1 ; BEEN PRESSED THEN SCAN ALL
AND A ; ROWS FOR A KEYPRESS. IF NO
CP #BF ; KEYPRESS THEN EXIT.
JR NZ,SR5OVR ; REMEMBER,WHEN TESTING FOR
LD C,65 ; SHIFT,IT HAS TWO KEY COLS.

SR5OVR: LD A,D ;
XOR #FF ;
AND C ;
CP 0 ;
JR NZ,EXITSR5 ;
INC HL ;
DJNZ SR5LOOP ;

SINGKEY: LD BC,UNSHROWTAB ; IF SINGLE KEYPRESS ONLY
LD (ROWTABLE),BC ; THEN LOAD THE UNSHIFTED
JR TESTROWS ; KEY ASCII TABLE.

EXITSR5: LD A,2 ; IF SHIFT/CTRL OR ESC IS
AND A ; PRESSED THEN JUMP TO THE
CP B ; CORRECT SUBFUNCTION & LOAD
JR C,SHIFT ; THE CORRECT ASCII TABLE AS
JR Z,CTRL ; DONE IN SINGKEY.
JR ESC ;

SHIFT: LD HL,SHTABLE ; LOAD THE SHIFTED ASCII
SET 6,D ; TABLE.
LD BC,SHROWTAB ;
JR SCECODE ;

CTRL: LD HL,CTTABLE ; LOAD THE CTRLED ASCII
LD BC,CTROWTAB ; TABLE.
JR SCECODE ;

ESC: LD A,#1B ; NO TABLE TO LOAD. BUT ONE
RET ; COULD BE ADDED. EXIT TO

; BASIC.

SCECODE: LD A,1 ; THIS SUBROUTINE SETS THE
LD (MODEFLAG),A ; MODE FLAG. MODE REFERS TO
LD (ROWTABLE),BC ; CTRL OR SHIFT. THE CODE
SET 0,D ; THEN CHECKS FOR KEYPRESSES
PUSH DE ; ON THE SAME ROW AS SHIFT
POP BC ; OR CTRL. IF NO OTHER KEY
EX DE,HL ; IS PRESSED ON THESE ROWS.
AND A ; THEN THE OTHER ROWS ARE
LD HL,#FF03 ; TESTED USING THE TESTROWS
SBC HL,BC ; SUBROUTINE.
JR Z,TESTROWS ;
PUSH HL ; IF ANOTHER KEY ON THE SAME

Page 107

MATCHOK: XOR A ; ROW AS SHIFT OR CTRL IS
LD (MODEFLAG),A ; PRESSED THEN RESET THE
EX DE,HL ; MODE FLAG AND GET THE
JR GETASCII ; ASCII VALUE OF THE DUAL

; KEYPRESS.

TESTROWS: LD IX,(ROWTABLE) ; THIS SUBROUTINE SIMPLY
ROWLOOP: LD A,(IX+0) ; TESTS THE ROWS OF THE

CALL SCANROW ; KEYBOARD MATRIX FOR KEY-
LD A,(IX+0) ; PRESSES. THE ROWS TO BE
INC IX ; TESTED ARE FOUND AT THE
AND A ; ADDRESS POINTED TO BY
CP #FF ; ROWTABLE. THEREFORE,IT IS
JR NZ,ROWLOOP ; POSSIBLE TO TEST ANY ROW
LD A,(MODEFLAG) ; IN ANY ORDER.
AND A ;
CP 0 ;
JR Z,RETKEYS ;
XOR A ;
LD (MODEFLAG),A ;

RETKEYS: RET ;

SCANROW: LD C,A ; THIS IS THE WORKHORSE OF
EX AF,AF' ; SUBROUTINE TESTROWS. IT
LD A,C ; TELLS THE HARDWARE TO
OUT (5),A ; SELECT ROWS AND TO SCAN OR
IN A,(5) ; READ THEM FOR KEYPRESS(ES).
LD B,A ;
IN A,(6) ;
LD C,A ;
AND A ;
LD HL,#FF03 ;
SBC HL,BC ;
RET Z ;

ELSEMATCH: LD A,(MODEFLAG) ; IF KEY PRESSED THEN CHECK
AND A ; TO SEE IF IT IS A DUAL KEY
CP 1 ; PRESS,ie SHIFT <f1>.
JR Z,MATCHOK ;

ELSECAPS: EX AF,AF' ; IF THE ALPHA (CAPS) LOCK
PUSH AF ; KEY BEEN PRESSED THEN
EX AF,AF' ; GOTO UPDATCAPS.
POP AF ; ELSE CHECK TO SEE IF IT
AND A ; IS ANOTHER KEY BEEN
CP #EF ; PRESSED.
JR NZ,ELSENOCH ;
BIT 0,B ;
JR NZ,ELSENOCH ;

UPDATCAPS: LD A,(CAPSFLAG) ; LOAD THE CAPS FLAG AND
XOR 1 ; TOGGLE IT ON OR OFF FROM
LD (CAPSFLAG),A ; ITS PREVIOUSLY STORED VALUE
LD A,1 ; . NOW EXIT TO BASIC.
POP DE ;
RET ;

Page 108

ELSENOCH: LD A,(CAPSFLAG) ; HAS THE CAPS FLAG BEEN SET
AND A ; PREVIOUSLY. IF SO THEN LOAD
CP 0 ; CAPS ASCII TABLE. IF NOT
JR Z,ELSENOSH ; THEN IT MUST BE A UNSHIFTED
LD HL,CAPSTABLE ; KEYPRESS.
JR GETASCII ;

ELSENOSH: LD HL,UNSHTABLE ; LOAD THE UNSHIFTED ASCII
; TABLE.

GETASCII: EX AF,AF' ; THIS SUBROUTINE CONVERTS
LD (ROWSCAN),A ; THE KEYPRESS(ES) INTO THE
AND A ; CORRESPONDING ASCII KEY
LD D,10 ; VALUE,ACCORDING TO THE
PUSH BC ; THE LOADED ASCII TABLE.
CALL GETKEYPOS ; THIS VALUE IS RETURNED TO
POP BC ; RAMKEYS IN LINE 10, AND IS
LD A,3 ; ALSO STORED IN ASCIIKEY.
CP C ; THE ROW IS ALSO SAVED IN
JR NZ,P6MATCH ; RAM AT ROWSCAN.

ELSEP5: LD A,B ;
LD D,1 ;
CALL GETKEYPOS ;
JR ASCIIVAL ;

P6MATCH: LD A,C ; THIS SECTION IS USED FOR
ADD A,L ; KEYPRESSES IN COLS 9 & 10.
ADD A,7 ;
LD L,A ;

ASCIIVAL: LD A,(HL) ;
LD (ASCIIKEY),A ;
POP DE ;
RET ;

GETKEYPOS: XOR 255 ; THIS CODE PINPOINTS THE
LD BC,#0701 ; ASCII COL AND ROW IN THE
LD E,0 ; LOADED TABLE,SO THAT THE

POSLOOP: CP C ; KEYPRESS ASCII VALUE CAN
JR Z,EXITLOOP ; BE EXTRACTED.
SLA C ;
EX AF,AF' ;
LD A,E ;
ADD A,D ;
LD E,A ;
EX AF,AF' ;
AND A ;
DJNZ POSLOOP ;

EXITLOOP: LD A,L ;
ADD A,E ;
LD L,A ;
RET ;

KEYBOUNCE: DB #00 ;
ROWSCAN: DS 1 ;
ASCIIKEY: DS 1 ;

Page 109

UNSHTABLE: DB #31,#33,#35,#37,#39,#2D,#5C,#1D,#80,#03
DB #1B,#32,#34,#36,#38,#30,#5E,#05,#84,#08
DB #00,#77,#72,#79,#69,#70,#5B,#0B,#81,#09
DB #71,#65,#74,#75,#6F,#40,#0A,#08,#85,#7F
DB #00,#73,#66,#68,#6B,#3B,#5D,#19,#86,#00
DB #61,#64,#67,#6A,#6C,#3A,#0D,#1A,#82,#00
DB #00,#78,#76,#6E,#2C,#2F,#00,#0A,#87,#00
DB #7A,#63,#62,#6D,#2E,#5F,#15,#0C,#83,#20

SHTABLE: DB #21,#23,#25,#27,#29,#3D,#7C,#37,#88,#39
DB #1B,#22,#24,#26,#28,#30,#7E,#38,#8C,#08
DB #00,#57,#52,#59,#49,#50,#7B,#35,#89,#34
DB #51,#45,#54,#55,#4F,#60,#0A,#31,#8D,#36
DB #00,#53,#46,#48,#4B,#2B,#7D,#33,#8E,#00
DB #41,#44,#47,#4A,#4C,#2A,#0D,#32,#8A,#00
DB #00,#58,#56,#4E,#3C,#3F,#00,#2E,#8F,#00
DB #5A,#43,#42,#4D,#3E,#5F,#30,#0D,#8B,#20

CTTABLE: DB #11,#13,#15,#17,#19,#0D,#1C,#1D,#01,#03
DB #1B,#12,#14,#16,#18,#10,#1E,#05,#05,#08
DB #00,#17,#12,#19,#09,#10,#1B,#0B,#02,#09
DB #11,#05,#14,#15,#0F,#00,#0A,#08,#06,#1F
DB #00,#13,#06,#08,#0B,#1B,#1D,#19,#07,#00
DB #01,#04,#07,#0A,#0C,#1C,#0D,#1A,#03,#00
DB #00,#18,#16,#0E,#0C,#0F,#00,#0A,#08,#00
DB #1A,#03,#02,#0D,#0E,#1F,#15,#0C,#04,#20

CAPSTABLE: DB #31,#33,#35,#37,#39,#2D,#5C,#1D,#80,#03
DB #1B,#32,#34,#36,#38,#30,#5E,#05,#84,#08
DB #00,#57,#52,#59,#49,#50,#5B,#0B,#81,#09
DB #51,#45,#54,#55,#4F,#40,#0A,#08,#85,#7F
DB #00,#53,#46,#48,#4B,#3B,#5D,#19,#86,#00
DB #41,#44,#47,#4A,#4C,#3A,#0D,#1A,#82,#00
DB #00,#58,#56,#4E,#2C,#2F,#00,#0A,#87,#00
DB #5A,#43,#42,#4D,#2E,#5F,#15,#0C,#83,#20

ROWBYTE: DB #BF,#FB,#FD,#FF
CAPSFLAG: DB 0
MODEFLAG: DB 0
ROWTABLE: DS 2

UNSHROWTAB:DB #FE,#FD,#FB,#F7,#EF,#DF,#BF,#7F,#FF
SHROWTAB: DB #FE,#FD,#FB,#F7,#EF,#DF,#7F,#FF
CTROWTAB: DB #FE,#FD,#F7,#EF,#DF,#BF,#7F,#FF
ESROWTAB: DB #FE,#FB,#F7,#EF,#DF,#BF,#7F,#FF

2710 RETURN

Save as:
SAVE "RAMKBDTXT" (tape users)
DISC (USER) SAVE "RAMKBD.TXT" (disc users)

Reload this listing. Type RUN <RET>. Whenever,you press a
key,its ASCII value will be displayed on the screen. If,the
ASCII value is between 32 and 127 ,then its corresponding
character pattern will also be displayed.

Page 110

Figure 9-1:Original Flow Diagram ,from which the KEYS
Subroutine was Developed from.

Page 111

Page 112

10.0 MTX SOUND

10.1 Introduction

In a recent PCWeekly survey,9 out of 10 people expect their
computer to be able to make reasonable sound,with two-thirds
of these expecting at least three channel sound.

The two main programmable sound generator (PSG) integrated
chips used in today’s modern home computers are General
Instruments AY-8910 and the Texas Instruments SN 76489A. The
AY-8910 is the most commonly used PSG as it has stereo output
over 8 octaves and is used in the following micros: MSX,
Amstrad CPC, Einstein range, Spectrum 128 & plus 2 and in the
Atari ST range. The SN 76489A is less common but is used on
two of the more sophisticated micros,the powerful 6502 cpu BBC
micro and on the Z80 cpu Memotech MTX series. The SN 76489A is
less powerful as only 4 octaves of mono sound can be
generated.

The SN 76489A PSG can produce three seperate voices and one
noise channel,thus allowing harmonies to be created. As the
MTX series has no onboard speaker,the sound is directed
through the TV/monitor speaker or through the standard HiFi
socket at the rear of the MTX. The latter has the advantage of
giving quality sound output and is very handy for recording
any masterpieces composed.

Unfortunately for MTX owners there are only two composer/music
programs. The main objective of this chapter is to take the
lid off the PSG. As yet nobody has tried to explain the
workings of the PSG or how to program it from within the built
in assembler. I hope this chapter opens up new avenues for the
MTX programmer and inspire somebody to write an excellent
composer program.

10.2 Description of the PSG

The Texas Instruments SN 76489A IC is a bipolar IC and is
capable of producing complex sound generation. The device
consists of three programmable tone generators,a programmable
noise generator,a clock scaler,individual generator
attenuators (ie,volume controls) and an audio summer output
buffer. The PSG has a parallel 8-bit interface through which
the microprocessor transfers the data which controls the audio
output. A pin out or top view of the PSG is given in figure
10-1.

The PSG has a variety of internal registers,0-7 (ie
R0-R7),which are used to control the activities of each of the
three voices. Registers 1,3 and 5 are used to control the
volume of the three tone channels and register 7 for the noise
channel. Registers 0,2 and 4 are used to produce a square wave
signal of varying frequency,see figure 10-2.

Page 113

A seperate noise generator,register 6,provides a more random
waveform. The audio scanner output buffer mixes the outputs of
the frequency generators with the volume and noise signals to
produce the eventual sound we here from the speaker.

Figure 10-1: Top view of the TI SN 76489A PSG

Figure 10-2: Two square waves of differing frequency

10.3 CPU - PSG Communication

The microprocessor,Z80,interfaces with the PSG by means of 8
data lines and 3 control lines,WE,CE and Ready. The Z80
selects the PSG by placing CE into the true state (low
voltage). Unless CE is true,the WE signal strobes the contents
of the data bus to the appropriate control register,as the PSG
has a parallel 8-bit interface to the Z80. The data bus
contents must be valid at this stage.

If the last paragraph was a bit confusing then here it is
again. To write data to the PSG,the Z80 sends valid data via 8
data lines D0-D7 to output port 6 on the Z80. The data waits
here until a dummy read to port 3,sends this data to the
PSG,see listing 10-1.

Listing 10-1: CPU - PSG communication.

Cputopsg: OUT (6),A ; load register A with data and
; store at port 6

IN A,(3) ; This dummy read sends the data
; from the Z80 to the PSG.

RET ; Return to calling routine.

There is one point to beware of and that is that 32 clock
cycles or T-states must elapse before another dummy read can
be performed. More information on this can be found on page
243 of the MTX manual, Technical section.

Page 114

10.4 Volume Control

Three tone generators,0-2,are available in MTX basic. In order
to create music we must specify the music using the following
MTX basic command:

SOUND c,f,v

where c = tone generator or sound channel,range 0-2
f = frequency of the note,range 10-1020,*
v = volume of the note,range 0 (min) to 15 (max)

*,note that this is a pseudo frequency range,the actual
frequency range is 12500 Hz to 122 Hz repectively. The actual
frequency is calculated from equation (1) section 10.5
. A list of pseudo frequencies and their equivalent actual
frequencies are given on page 185 to 187 of the MTX manual.

Unfortunately the MTX machine code programmer cannot use this
format as the PSG is configured differently and the extra code
required to mimic this command is lengthier and takes longer
to execute. The PSG controls the volume of the three available
tone generators via three dedicated volume registers 1,3 and
5. The PSG requires only one byte of information to select the
register and the volume to be outputted. The upper nibble or
upper 4-bits are used define the register and the lower nibble
defines the volume of the note. I emphasise at this point that
the volume range used by the PSG is the reverse of basic,ie 0
(max) and 15 is minimum.
The upper nibble patterns give the volume register,see table
10-1.

Table 10-1: Volume register select

 Sound : PSG : Upper Nibble : Data to select :
channel : register : pattern : PSG register :

0 : 1 : 0 0 0 1 : 16 :
1 : 3 : 0 0 1 1 : 48 :
2 : 5 : 0 1 0 1 : 80 :
3* : 7 : 0 1 1 1 : 112 :

* = This is the noise volume register which is setup as
the tone generators.

I have arranged my assembly code to be as simple and as easliy
understood as possible. Listing 10-2,needs two inputs,ie the
PSG volume 15 to 0 and the PSG register,this is selected from
column 4 of table 10-1. These two bytes are added together and
bit 7 is set and the data is sent using the technique in
cputopsg.

Page 115

Listing 10-2: Setting the Volume Register.

10 SOUND 0,256,0 :REM ** initialise frequency as not
defined yet,until 10.5. **

20 POKE VOL,10 :REM ** volume of 10 **
30 POKE REG,16 :REM ** select register 1 **

40 CODE

VSTART: PUSH AF ; SAVE ANY REGISTERS CORRUPTED
PUSH BC ;
LD A,(VOL) ; GET VOL
AND 15 ; GET RID OF UPPER NIBBLE
LD B,A ; SAVE IT
LD A,(REG) ; GET REG
AND 240 ; GET RID OF LOWER NIBBLE
ADD A,B ; VOL + REG
OR #80 ; SET BIT 7
CALL CPUTOPSG ; SEND TO PSG,see listing 10-1
POP BC ; RESTORE REGISTERS
POP AF ;
RET ; RETURN TO BASIC

VOL: DS 1 ; POKE VOLUME HERE
REG: DS 1 ; POKE REG HERE

50 STOP

You should be able to control the volume of a sound now. The
above code and other listings will form a suite of sound
utilities which I hope someone can develop into a music
composer editor.

Page 116

10.5 Frequency Synthesis

As already stated the MTX uses a 'pseudo' frequency range,0 to
1024. The actual frequency can be calculated from equation
(1).

Actual frequency = N / (32 * f) (1)

where:
N = the reference clock frequency,4,000,000 Hz
f = the 'pseudo' frequency

For example,a frequency of 256 Hz gives a pseudo frequency ,f,
of:

f = 4,000,000 / (32 * actual frequency of 256) = 488

Therefore in basic the programmer would use a value of 488 to
get a frequency of 256 Hz.

The PSG requires 10 bits of information to define the half
period of the desired frequency,. This 10 bit frequency,F0 to
F9,is loaded into a ten stage tone counter which is
decremented at a rate of N/16,where N is the clock speed of
the Z80,ie 4,000,000. When the tone counter reaches zero,a
borrow signal is produced. This borrow signal toggles the
frequency,via flipping over and reloading the tone counter.
Therefore the period of the desired freqency is twice the
value of the period register.

The PSG has three dedicated tone generator registers 0,2 and
4. The register and frequency are sent to the PSG as two
bytes:

MSB LSB
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1 <-REG-> F3 F2 F1 F0 0 x F9 F8 F7 F6 F5 F4

To use this format directly is very confusing,and the extra
programming is a pain. The code used to define the frequency
and its register has been simplified. I have used the same
technique as in basic,ie input the frequency register,ie
0,32,64 or 96(noise register),and then input a pseudo
frequency value. Note that two bytes are required to define
the frequency,ie

MSB LSB
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

x x x x x x F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

Page 117

Listing 10-3: Setting a pseudo frequency of 488 and a volume
 of 10.

10 GOTO 100

20 CODE

VSTART: ; see LISTING 10-2
CPUTOPSG: ; see LISTING 10-1

FSTART: PUSH AF ;
PUSH BC ;
PUSH HL ;
LD HL,(FREQ) ;
LD A,L ; GET F3-F0
AND 15 ; GET RID OF THE UPPER BITS
LD B,A ; SAVE IT
LD A,(REG) ; GET THE FREQUENCY REGISTER
AND 240 ; GET RID OF UNWANTED BITS
OR #80 ; SET BIT 7
ADD A,B ; NOW IN PSG MSB FORMAT
CALL CPUTOPSG ; SEND IT
LD A,L ; GET F7-F4
AND 240 ; GET RID OF UNWANTED BITS
LD L,A ; SAVE IT
LD A,H ; GET F9 AND F8
AND 15 ; GET RID OF UNWANTED BITS
LD H,A ; SAVE IT
LD B,4 ; SET COUNTER

FLOOP: SRL H ; SHIFT H LEFT
RR L ; MOVE INTO L AND MOVE LEFT
DJNZ FLOOP ; REPEAT UNTIL IN PSG LSB FORMAT
LD A,L ;
CALL CPUTOPSG ;
POP HL ;
POP BC ;
POP AF ;
RET ;

FREQ: DS 2 ; STORE PSEUDO FREQUENCY

100 POKE REG,16 :REM SELECT VOL REGISTER
110 POKE VOL,10 :REM SET VOLUME
120 RAND USR(VSTART) :REM CALL VSTART
130 POKE REG,0 :REM SELECT FREQUENCY REGISTER
140 POKE FREQ,232 :REM LSB OF FREQUENCY
150 POKE FREQ+1,1 :REM MSB
160 RAND USR(FSTART) :REM CALL FSTART
170 STOP

The above listing demonstrates how to select frequency and
volume and is equivalent to SOUND 0,488,5 in BASIC.

Page 118

10.6 Noise Generation

As already mentioned, noise is a random mixture of frequencies
which can be used to provide special sound effects like
waves, drumbeats,etc. The noise generator consists of a noise
source and an attenuator. The noise attenuator is setup as
shown in section 10.4. The noise source is actually a shift
register with an exclusive OR feedback network. Note that the
network has provisions to protect the shift register from
locked in the zero state.

Two noise configurations are possible,"periodic" and "white".
"Periodic" noise as suggested by the name has a period
associated with it, unlike "white" noise which is completely
random. To select either noise configuration the
Feedback, FB,bit must be either one or zero respectively. The
FB bit is bit 2. The PSG requires one byte of information to
select the register and the FB and the actual noise selcted.
This combined bit is sent to the PSG. The PSG format is:

7 6 5 4 3 2 1 0
1 1 1 0 x FB NF1 NF0

The upper nibble selects register 6,and doesn't need to
specified as this is automatically selected on calling the
noise code ,see later. NF1 and NF0 define the shift register
and are selected from table 10-2.

Table 10-2: NF patterns and shift rates

--
NF1 : NF0 : Shift Rate :

--

0 : 0 : N/512 :
0 : 1 : N/1024 :
1 : 0 : N/2048 :
1 : 1 : tone 2 output :

--

Therefore the fixed shift rates are derived from the Z80 clock
speed. The shift register will only shift at one of the 3
rates as determined by the two NF bits. Note that whenever the
noise control register is changed the shift register is
cleared.

In one special case though when both NF bits are set,the noise
output is directed through tone generator channel 2 . This
will allow us to envelope and modulate noise as if it were
pure sound. This is necessary to produce drum sounds like the
bass drum,etc.

Page 119

Listing 10-4: Set up white noise with a shift rate of N/512

10 GOTO 100

20 CODE

VSTART: ; SEE LISTING 10-2
CPUTOPSG: ; SEE LISTING 10-1

NSTART: PUSH AF ;
PUSH BC ;
LD A,(SHRATE) ; GET SHIFT RATE
AND 3 ; GET RID OF UNWANTED BITS
LD B,A ; SAVE IT
LD A,(PORW) ; PERIODIC OR WHITE NOISE
AND 4 ; GET RID OF UNWANTED BITS
ADD A,B ; FB + NF
OR 224 ; SELECT REGISTER 6
CALL CPUTOPSG ; SEND IT
POP BC ;
POP AF ;
RET ;

SHRATE: DS 1
PORW: DS 1

100 POKE REG,112 :REM SELECT VOLUME REGISTER
110 POKE VOL,10
120 RAND USR(VSTART)
130 POKE SHRATE,0 :REM SHRATE SETUP AS N/512
140 POKE PORW,1 :REM WHITE NOISE
150 RAND USR(NSTART)
160 STOP

This code simulates SOUND 3,4,5.

10.7 Sound Off

This last section shows you how to switch off all channels.

Listing 10-5: Switching off all sound channels.

10 CODE

VOFF: LD A,15 ; VOL=OFF
LD (VOL),A ; SAVE IT
LD A,16 ; VOLUME REGISTER 1

VOFF1: LD (REG),A ; SAVE IT
CALL VSTART ; UPDATE VOLUME
ADD A,32 ; UPDATE VOLUME REGISTER
DJNZ VOFF1 ;
RET ; RETURN TO BASIC

VSTART: ; SEE LISTING 10-2
CPUTOPSG: ; SEE LISTING 10-1

Page 120

MSX Technical Data Appendix

A. Introduction

The VDP Discovered was originally designed as a technical reference
manual for the Memotech MTX series. However, since both MSX and
Einstein computers share the same IN/OUT mapped device architecture
and more importantly use the same CPU (Z80A) and graphics chip (VDP
) , the manual now caters for all three computers - MSX , MTX and
Einstein.

This appendix is important because it contains the key information to
get a number of the listings within the manual to run. The majority of
the programs in the manual will work ,however, the MTX and MSX
machines use different CPU in/out ports to access the VDP,PSG,etc.
This information was extracted from the MSX Technical Reference
Document (1984).

However,it is worth pointing out that the MSX standard only pertains
to the hardware and to the ROM BIOS call addresses and not to the ROM
BIOS code. This effectively means that different MSX manufacturers may
use different in/out ports to access the VDP, ie instead of writing
VDP data to port #99 ,another manufacturer may use #A5. This point is
worth bearing in mind. Therefore you will be required to do a bit of
investigation and experimentation. For example, to write to the VDP ,
use ROM BIOS call #0047. Why not disassemble the code at this
address. It is worth obtaining a copy of the MSX ROM BIOS
calls,usually the MSX user groups are the best source.

As you will soon see, I have only included the essential information
needed to get the ball rolling. The text in the manual is self
explanatory and it should only be a matter,in chapters 2-8, of
changing the MTX port addresses and one or two MTX BIOS calls to their
MSX equivalents. Chapters 1,9,and 10 are less straight forward. It is
hoped that you read chapters 2 to 8 to get a grounding in writing
practical Z80 code and that by the end of these chapters you will be
writing new routines like drawing lines. If you have managed this,
then you will probabely know what to do with the RAM/ROM
mappings,keyboard and PSG data included in this appendix.

B. MSX Hardware Specification

B.1 Devices

CPU - Z80A running at 3.5795 MHz , 1 wait state in M1 cycle.
VDP - TI TMS 9918A Compatible.
PSG - GI AY-3-8910 Compatible.

B.2 Printer Port

See chapter 8 for a more detailed discussion of printers and screen
dumps. Sending data to a printer can be acheived in one or two ways:

(a) using the assigned in/out ports which will involve writing your
 own code or
(b) using the MSX ROM Bios code accessed via the Bios call address.

Page 121

I will describe both ways briefly. The MSX machines use ports #90 and
#91 to check the printer's status and to send data to the printer,
table b-1, briefly summarises the function of these ports.

Table b-1: Ports used in printing

--
: Register : Read/Write : Description of Port Function :
--
: #90 : Read : Bit 1 indicates the busy status. :
: #90 : Write : Bit 0 for strobe output. :
: #91 : Write : Print data. :
--

When we say the port or register is used to READ data then use the Z80
assembly language command IN A,(port or register) and for writing use
OUT (port or register),A . The code below has not been checked but the
code for sending either text or graphic data to the printer will be
something similar:

Listing b-1: Sending a text message to the printer (hypothetical)

prt: IN A,(#90) ; read port #90
BIT 0,A ; test if status busy
JR Z,PRT ; if busy try again, else
LD A,(prtchar) ; get character to print
OUT (#91),A ; send data
LD A,1 ; strobe output to printer
OUT (#90),A ; send to port #90
RET ;

prtchar: DB 65 ; print the character A

Listing b-2: Using the MSX ROM bios calls to do a similar job:

romprt: LD HL,prtdata ; where the message to be printed
; is located.

LD B,15 ; length of message
loop: CALL #00A8 ; checks the printer status.

JR Z,loop ; Z flag set if not ready
LD A,(HL) ; Reg A holds the MSX/ASCII

; character code when sending text or
; graphic data if in graphics mode.

CALL #00A5 ; this sends the data to the printer.
DJNZ loop ; repeat until message printed and

; exit.
RET ; end of printer routine.

Prtdata: DB "printed message"

Why not disassemble the code at #00A5 and #00A8.

B.3 Screen Display

The MSX at switch on is configured to give the following resolutions
according to the screen mode,see table b-2.

Page 122

Table b-2: Screen Mode resolutions at switch on

: Mode : Dot resolution : Character resolution : Sprites :

: GI : 240 x 192 : 30 x 24 : Yes :
: GII : 240 x 192 : 30 x 24 : Yes :
: TXT : 240 x 192 : 40 x 24 : No :
: MC : 64 x 40 : 30 x 24 : Yes :

The 8 pixels from the left and right of the horizontal are not used by
the ROM Bios software. However, by programming the VDP from Z80
assembly language, you can use the full screen width. The MSX uses
ports #98 and #99 to read and write to the VDP. This is fully
explained in VDP Discovered. Simply replace all the references of #01
or #02 when used with OUT or IN commands with #98 and #99 respectively
. At the end of chapter 2 there are one or two MSX screen mode
mappings. However,the VRAM mappings according to the MSX technical
reference document are slightly different and are given below
for completeness.

Table b-3: Screen mode VRAM mappings

--
: Description : TEXT : GI : GII : Multicolour :
--
: Name Table : #0000 : #1800 : #1800 : #0800 :
: Colour Table : N/A : #2000 : #2000 : N/A :
: PGT : #0800 : #0000 : #0000 : #0000 :
: SAT : N/A : #1B00 : #1B00 : #1B00 :
: SPGT : N/A : #3800 : #3800 : #3800 :

B.4 Keyboard

The majority of the MTX listings in the VDP Discovered use
the MTX Rom call #0079 to read the keyboard.

Listing b-3: MTX ROM Bios keyscan code

mtxkey: XOR A ; clear register A. Call #0079 scans the kbd
CALL #0079 ; matrix then exits,setting the Z-flag if no
JR Z,mtxkey; key pressed or storing in A the ASCII code
RET ; of the key pressed.

MSX users have the ability to do likewise with the MSX ROM call #009F.
Notice from listing b-4,that the MSX keyscan code only returns when a
key is pressed therefore no need to loop as in MTX case.

Listing b-4: MSX ROM Bios keyscan code

msxkey: XOR A ;
CALL #009F ; waits for a character to be typed at the kbd
RET ; before exiting the call.

Page 123

B.5 Sound

MSX uses a completely different sound chip, the AY-3-8910, than the TI
SN 76489A of the MTX . The layout and the registers of this AY chip
are given in tables b-4 & b-5. The CPU accesses the sound registers
via the in/out ports shown in table b-6.Note that there are a number
of MSX ROM Bios calls to access the PSG, so consult your ROM Bios
calls list and disassemble the code to get an idea as to how to
program it.

Table b-4: PSG Registers & Functions

--
: Register : Bit information
: Number : Description : b7 : b6 : b5 : b4 : b3 : b2 : b1 : b0 :
--
: R0 : Tone A :<------ 8-bit Fine Tune on Channel A ------> :
: R1 : Tone A : 0 : 0 : 0 : 0 :<- Coarse Tune on A -> :
: R2 : Tone B :<------ 8-bit Fine Tune on Channel B ------> :
: R3 : Tone B : 0 : 0 : 0 : 0 :<- Coarse Tune on B -> :
: R4 : Tone C :<------ 8-bit Fine Tune on Channel C ------> :
: R5 : Tone C : 0 : 0 : 0 : 0 :<- Coarse Tune on C -> :
: R6 : Noise : 0 : 0 : 0 : <- 5-bit period Control -> :
: R7 : Enable : in/out : noise : tone :
: " : " : i/ob : i/oa: NC: NB : NA : TC : TB : TA :
: R10 : Amplitude A : 0 : 0 : 0 : M : L3 : L2 : L1 : L0 :
: R11 : Amplitude B : 0 : 0 : 0 : M : L3 : L2 : L1 : L0 :
: R12 : Amplitude C : 0 : 0 : 0 : M : L3 : L2 : L1 : L0 :
: R13 : Envelope :<--------- 8-bit Fine Tune E -----------> :
: R14 : Period :<--------- 8-bit Coarse Tune E ----------->:
: R15 : ENV shape : 0 : 0 : 0 : 0 : cont: att : alt : hold:
: R16 : I/OA Data :<------ 8-bit parallel I/O on Port A ------>:
: R17 : I/OB Data :<------ 8-bit parallel I/O on Port B ------>:
--

Register 7 is a very important register. It is the Mixer register and
as such decides what we hear. Each bit can either be set on (1) or
off (0). The combination of these bits determines the sound output.
Note that bits 6 and 7 don't affect the sound as these are in/out
device selectors. Bits 3,4,5 are used for setting channels A,B and C
to that of a noise as needed for drum and other special sound effects.
Bits 0,1 and 2 are used for setting channels A,B and C to sounds
defined by the fine and coarse tones and the amplitude registers. The
only restriction is that you cannot have both noise and tone selected
for the same channel,therefore if you want channel A to be noise then
bit 3 is set to 1 and bit 0 is reset to 0.

Register pairs R1/R0 ,R3/R2 and R5/R4 determine the pitch or tone of
the sound. The register pairs combine to give a 16-bit register like
that of H & L registers of the Z80. However,the top 4 bits of the most
significant register (R1,R3 or R5) are ignored, thus giving a tone
range of 0 to 2^12 (0 to 4095),see figure b-1. The three amplitude
channels determine how loud the sound is. Bits 0-3 or L3 to L0 are
used for volume control. The volume ranges from 0 to 15. The M bit of
R10, R11 or R12 when reset (0), means that the tone the amplitude
register refers to, gives a sound which is normally associated with
most computers, ie the beep.

Page 124

R1/R3/R5 (msb) R0/R2/R3 (lsb)
 ------------------------------- ----------------------------------
 : 0: 0: 0: 0: b11: b10: b9: b8: : b7: b6: b5: b4: b3: b2: b1: b0 :
 ------------------------------- ----------------------------------

Figure b-1: The pitch (tone) of the sound, range 0 - 4095.

However,when the M bit of either R10,R11 or R12 is set (1),then the
associated channel either A,B or C,will adopt the envelope shape, set
by R15. Note that cont, att, alt, and hold of Register 15 define the
envelope of the sound. The predefined envelopes or waveforms of the
sound are like that of a piano key being struck or can be a completely
different sound,for instance, envelope shape 10, which is very much
like that of a police siren where the sound rises and falls and then
repeats over and over again,see table b-5.

The register pair R13/R12 is the envelope sustain on all channels.
This is a full 16-bit register pair offering a range of 0 to 65535.
This means that the envelope waveform defined by R15 when selected
will be repeated x number of times,where x is the number held in
R13/R12.

Table b-5: the PSG Envelopes

The CPU access the PSG through ports #A0,#A1 and #A2,see table b-6,
see chapter 10 of VDP Discovered,for an analogous system.
The MSX PSG offers the programmer more power and greater features
than the MTX PSG.

Table b-6: CPU registers used to access the PSG registers

--
: CPU Register : Read/Write : Description :
--
: #A0 : Write : Address latch :
: #A1 : Write : Write data to PSG :
: #A2 : Read : Read data from PSG :

Page 125

5

B.6 Memory Map

The MSX BASIC rom is located at ram #0000 to #7FFF. #FFFF to #C000
contains the 16k of RAM or on 64k systems, #FFFF to #8000 contains 32k
of user RAM. As you can see from figure b-2, the basic unit has 4
logical areas or slots (0-3). Each slot is 64k wide. Therefore the
total memory space can be expanded to 256k. These 4 logical slots can
be expanded futher to give 4 physical slots per logical slot. Now the
memory space can be further exapnded to 1 mb.

Figure b-2: MSX Memory Map.

Z80 CPU port #A8 is used to access the slot select register. To map
the physical memory space to the logical CPU memory spcae is carried
out in 16k chunks or pages. It is at this point that the MTX
definitions & MSX ones differ:

MTX page = MSX slot MTX block = MSX page

See figure b-3 for an example.

each 2 bit combination gives a
 b7 b6 b5 b4 b3 b2 b1 b0 possible 4 choices or slots:

 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 0 = 0
 --------------------------------- 0 1 = 1
 slot 0 slot 2 slot 0 slot 0 1 0 = 2

on on on on 1 1 = 3
 page 3 page 2 page 1 page 0

Figure b-3: Slot selections example.

Page 126

C. MSX Data Load,Save and Run

MSX users will require a Z80 assembler. Hisoft offer an excellent Z80
assembler called DEVPAC. The advantages offered by this assembler over
many of their rivals is that it is available for Einstein, Memotech,
,MSX ,Amstrad and CPM. All code and libraries developed can be moved
to any of the other computers without having compatibility problems
also the interface and commands remain the same.

In many of the examples within VDP Discovered, the command VS number
has been used. This is the MTX BASIC command for Virtual Screen or the
Screen mode. VS 4 is VDP graphics mode II which is equivalent to MSX
BASICs command SCREEN 2. VS 5 is VDP TEXT mode or SCREEN 0 in MSX
BASIC.

At random, listing 5-4 (pages 47-48) was selected to demonstrate how
easy it is to run this listing on a MSX machine. First of all load in
the Z80 assembler text editor and type in the following source text:

ORG #9000 (or &9000 or 9000H)

; main program

COLRES: LD HL,VDPREGGII
CALL VDPREGSET8
LD HL,8192
CALL VDPWRTSEL
XOR A
EX AF,AF'
XOR A
LD BC,6144

COLLOP: EX AF,AF'
OUT (#98),A
INC A
CP 16
JR NZ,NORESET

RESETCOL: XOR A
NORESET: DEC BC

EX AF,AF'
LD A,B
OR C
JR NZ,COLLOP
RET

; program subroutines

VDPWRTSEL: PUSH AF
LD A,L
OUT (#99),A
LD A,H
OR #40
OUT (#99),A
POP AF
RET

Page 127

VDPREGSET8:LD BC,#0800
REGWRTVDP: LD A,(HL)

OUT (#99),A
LD A,C
OR #C0
OUT (#99),A
INC C
INC HL
DJNZ REGWRTVDP
RET

; program variables

VDPREGGII: DB #02,#C2,#06,#FF,#03,#36,#07,#F5

Now save to DISC or TAPE accordingly using the TEXT editor command to
save. Compile this Z80 source text into Z80 machine code using the Z80
assembler. This should result in either a COM or BIN or OBJ file.
Reset the MSX to BASIC and type in the following MSX BASIC listing:

10 CLEAR &H9000
20 BLOAD "fname",&H9000
30 SCREEN 2: CLS
40 DEF USR0=&H9000
50 A=USR0
60 GOTO 60

Type in RUN <ent> to execute the program, you should see a very
colourful screen,highlighting the VDP's colour resolution in GII mode.
To exit back to MSX BASIC ,press the break key.

The MSX like the Einstein and Memotech default to TEXT mode (Screen 0)
after exery BASIC program is RUN. This means, as in the example above
, if you do not include Line 60, you will miss the colourful effect of
the machine code as the system defaults back to TEXT mode the instant
the machine code is executed. The effect of the Z80 machine code will
only be on the screen for a second , if that , as the system switches
from Graphics mode II (the desired mode for this listing) back to
TEXT mode.

Page 128

Tatung Einstein Technical Data Appendix

D. Introduction

This short appendix, summarises the key technical data needed
to take advantage of the many listings within "VDP
Discovered". The Einstein port numbers for the screen,
keyboard and sound access are supplied with the relevant text
and where required, listings are used to give extra clarity. I
would like to thank the UKEUG for providing the technical
information .

E. Einstein Hardware

E.1 Devices

CPU - Z80A
VDP - TI TMS 9918A Compatible
PSG - GI AY-3-8910 Compatible

E.2 Screen Display

The Einstein screen is configured like that of the Memotech.
This means that both and the text screen and the graphics mode
II screens can be configured so that no overlap of screen data
in VRAM occurs , in other words the integrity of both screens
are retained. Swapping between the two screens requires the
desired screen mode to be selected (VDP registers 0 and 1 ,
see table 2-4 , page 12) and that the name table is pointing
to either the Graphics II Name Table or the TEXT Name Table (
where Name Table is interchangeable with the word for SCREEN
), see Example below:

Table e-1:Einstein VDP register Values for GII and TEXT
screen modes.

: Mode/VDP Reg Num : 00 : 01 : 02 : 03 : 04 : 05 : 06 : 07 :

: Einstein GII : 02 : C2 : 0E : FF : 03 : 76 : 03 : F4 :
: Einstein TEXT : 00 : D2 : 0F : FF : 03 : 76 : 03 : F4 :

As already stated in Chapter 2, the Einstein uses ports 8 and
9 to communicate between the CPU and the VDP/VRAM.

The booklet "Einstein Compendium" from the UKEUG has a
summary chapter on the Einstein VDP configuration,with a
number of examples on Screen Loading and Saving, Fonts and a
character designer and/or refer to chapters 2 - 7 within, for
a more detailed discussion of the VDP.

E.3 Keyboard

The majority of the MTX listings use the MTX ROM call #0079 to
read the keyboard, see listing e-1.

Page 129

Listing e-1: MTX ROM Bios Key scan code

MTXKEY: XOR A
CALL #0079
JR Z,MTXKEY ; loop until key pressed
RET

Einstein users have the ability to do likewise with the
Einstein Machine Call (RST). Notice the difference in
terminology. Let me explain. The Z80A CPU has a number of
special one-byte predefined CALL addresses. These are called
ReStarTs. Normally the Z80 mnemonics for calling a subroutine
would be:

CALL #0008 ; when assembled this would stored as 3 - bytes
; CD 08 00 . The Z80A requires 5 cycles or
; 8.5 usecs @ 2MHz to execute this command.

On the other hand a Restart which has the mnemonic RST, is a
lot quicker than this at only 5.5 usecs @ 2MHz. The above call
would be coded as:

RST #08 ; one byte would be #CF.

The Z80A has 8 of these Restarts:

RST #00 (CALL #0000) ; #C7 RST #08 (CALL #0008) ; #CF
RST #10 (CALL #0010) ; #D7 RST #18 (CALL #0018) ; #DF
RST #20 (CALL #0020) ; #E7 RST #28 (CALL #0028) ; #EF
RST #30 (CALL #0030) ; #F7 RST #38 (CALL #0038) ; #FF

Usually OS designers will use these Restarts for quickly
accessing Graphics or error messages or etc.

On the Einstein RST #08 is used a lot for the main MOS (
Machine Operating System) functions like handling the screen
or the keyboard or the printer. The RST #08 command is usually
followed by a DataByte ,ie DB #9F. The DataByte tells the MOS
which BIOS call you would like to access, for the above
example, we are selecting to send data to the printer. I refer
you to The "Tatung Einstein User" magazine ,vol 1 ,num 4 for a
full list of MCALs or RSTs for the Einstein MOS.
To scan the keyboard the Einstein user has two options:

1. To scan the keyboard, setting Z-flag to zero for a valid
 key and then to continue with the rest of the program.
2. To scan the keyboard until a key is pressed. Again the Z
 flag is set to zero if keypressed.

In both cases, Register A holds the result of the keypress,in
ASCII format , ie 67 for the Letter 'C'.

Option 1 (ZRSCAN) works in a similar manner to the MTX BIOS
as shown in Listing e-2. Option 2 (ZKEYIN) is more like the
MSX Bios where the code waits until a key is pressed, see
listing e-3.

Page 130

Listing e-2: Using ZRSCAN to read Keypress on Einstein

EINKEY1: XOR A
RST #08
DB #9B
JR Z,EINKEY1
RET

Listing e-3: Using ZKEYIN to read Keypress on Einstein

EINKEY2: XOR A
RST #08
DB #9C
RET

E.4 Sound - Programmable Sound Generator (PSG)

The MSX technical data appendix, section B.5 , gives all the
relevant text about the AY-3-8910 PSG. The only change being
that of table b-6 , table e-2 gives the port numbers the CPU
on the Einstein uses to access the PSG.

Table e-2: CPU registers used to access the PSG registers

--
: CPU Register : Read/Write : Description :
--
: #02 : Write : Address latch :
: #03 : Write : Write data to PSG :
: #02 : Read : Read data from PSG:
--

E.5 Printer Port

As you will have noticed if you have read the MSX technical
data appendix, this section appears to be out of sequence. The
reason for this is that a number of other points like RST and
PSG needed to be covered before this section could make sense.

Chapter 8 within and "Einstein Compendium" and the "Einstein
User magazine ,vol 1,num 4 " are useful references for a more
detailed discussion of printers and the software needed for
screen dumping.

The PSG, mentioned earlier , has two registers not associated
with the generation and control of the sound. These two
registers are mapped registers, in the same vain as the Z80
CPU In/Out mapped ports. Register 16 is used as an 8-bit
Parallel In/Out (PIO) port, which the Einstein designers
used for the printer port. Register 7 of the PSG requires that
bit 6 be set before the register 16 can be used.

The Z80 CPU has to communicate with the PSG to tell it to
enable register 16 (setting bit 6 of register 7) and to read
and write to register 16, see table e-3.

Page 131

Table e-3: CPU - PSG communication ports for the printer.

: CPU Port Num : PSG Reg Num : R/W : Description :

: #31 : R7 : Write : Printer Control Reg :
: #30 : R16 : Read : Printer Data Reg :
: #30 : R16 : Write : Printer Data Reg :
: #20 : : Read : Printer Status :

Only bits b2,b3 and b4 of port #20 are used for the printer
status, all other bits can be ignored:

b2 = "BUSY" b3 = "PAPER EMPTY" b4 = "ERROR"

The MSX computers use this and the other PIO (parallel In/Out
port) similarly to the Einstein.

Sending data to a dot matrix printer can be programmed in one
or two ways :

(a) using the assigned In/Out ports, which will involve you
in writing more complex code, see Listing e-4.

(b) using the Einstein BIOS code accessed via the MOS calls.
This requires less programming effort as a number of the
key subroutines are already available,see Listing e-5.

Listing e-4: User Printer Dump Example (hypothetical)

USERPRT: LD HL,PRTDATA ; where the message is stored
UPLOOP: CALL CHKSTAT ; test printer status

LD A,(HL) ; get message, byte at a time
CP #FF ; if #FF then message printed
RET Z ; and exit
PUSH AF ; save message byte
XOR A ; clear reg A
SET 6,A ; set bit 6 of PSG
OUT (#31),A ; PIOA enabled
POP AF ; restore message byte
OUT (#30),A ; byte ready for sending
IN A,(#30) ; strobe data to printer
JR UPLOOP ; keep looping until finished.

PRTDATA: DB "Test Printer",#FF

CHKSTAT: IN A,(#20) ; get printers status
AND #1C ; ignore all bits except 2,3 and 4
CP #10 ; is printer okay for transmission
JR NZ,CHKSTAT ; loop if not
RET ; else okay to proceed.

Listing e-5: Einstein MOS version

MOSPRT: LD HL,PRTDATA ;
MPLOOP: CALL CHKSTAT ;

Page 132

LD A,(HL) ;
CP #FF ;
RET Z ;
RST #08 ; MOS call
DB #9F ; printer send routine
JR MPLOOP ;

PRTDATA: ; as for listing e-4

CHKSTAT: ; as for listing e-4

E.6 Memory Map

Unlike the MSX and the Memotech which require 32k and 16k
respectively for the ROM BIOS code and the BASIC Interpreter,
the Einstein is configured like a CPM computer, with only a
small amount of ROM bootstrap code using RAM, the remaining
64k is available to the programmer. The Einstein user loads
all the necessary DOS and MOS information from Disc.

The advantages of this approach is that new versions are
easily implemented and cheaper whereas MSX and Memotech users
would require a more costly ROM replacement. ROM designers are
limited in coding by the size of the ROM. Note for Taped based
computers ,like the MSX, it is essential to have the OS on ROM
,as it would take an enternity to load from tape.

All Applications from BBC BASIC, Logo to wordprocessing are
all loaded into RAM if and when required. The documentation
supplied with these programs should give memory configuration
of the Einstein after the application has been loaded into
RAM.

F. Einstein Data Load,Save and Run

Einstein users will require a Z80 assembler. Hisoft offer an
excellent Z80 assembler called DEVPAC. The advantages offered
by this assembler over many of their rivals is that it is
available for Einstein, Memotech, ,MSX ,Amstrad and CPM. All
code and libraries developed can be moved to any of the other
computers without having compatibility problems also the
interface and commands remain the same.

In many of the examples within VDP Discovered, the command VS
number has been used. This is the MTX BASIC command for
Virtual Screen or the Screen mode. VS 4 is VDP Graphics mode
II and VS 5 is VDP TEXT mode on the Memotech.

At random, listing 5-4 (pages 47-48) was selected to
demonstrate how easy it is to run this listing on a Einstein
machine. First of all load in the Z80 assembler text editor
and type in the following source text:

Page 133

ORG #9000 (or &9000 or 9000H)

; main program

COLRES: LD HL,VDPREGGII
CALL VDPREGSET8
LD HL,8192
CALL VDPWRTSEL
XOR A
EX AF,AF'
XOR A
LD BC,6144

COLLOP: EX AF,AF'
OUT (#08),A
INC A
CP 16
JR NZ,NORESET

RESETCOL: XOR A
NORESET: DEC BC

EX AF,AF'
LD A,B
OR C
JR NZ,COLLOP
RET

; program subroutines

VDPWRTSEL: PUSH AF
LD A,L
OUT (#09),A
LD A,H
OR #40
OUT (#09),A
POP AF
RET

VDPREGSET8:LD BC,#0800
REGWRTVDP: LD A,(HL)

OUT (#09),A
LD A,C
OR #C0
OUT (#09),A
INC C
INC HL
DJNZ REGWRTVDP
RET

; program variables

VDPREGGII: DB #02,#C2,#0E,#FF,#03,#76,#03,#F4

Now save to DISC accordingly using the TEXT editor command to
save. Compile this Z80 source text into Z80 machine code
using the Z80 assembler. This should result in either a COM
or BIN or OBJ file. Reset the Einstein to BASIC and type in
the following Einstein BASIC listing:

Page 134

10 CLEAR &9000
20 LOAD "fname.com" : REM or "fname.bin" or "fname.obj"
30 CALL &9000
40 GOTO 40

Type in RUN <ent> to execute the program, you should see a
very colourful screen,highlighting the VDP's colour
resolution in GII mode. To exit back to Einstein BASIC
,press the break key.

The Einstein like the MSX and Memotech default to TEXT mode
after every BASIC program is RUN. This means, as in the above
example , if you do not include line 40 , you will miss the
colourful effect of the machine code as the system defaults
back to TEXT mode the instant the machine code is executed.
The effect of the Z80 machine code will only be on the screen
for a second ,if that , as the system switches from Graphics
mode II (the desired mode for this listing) back to TEXT
mode.

Page 135

Miscellaneous Appendix

G. Figures Reference:

Chapter 1.0

1-1: The Memotech ROM/RAM Architecture as for the MTX 512. (04)
1-2: The byte that sets up the Memory Architecture and

selects the 64k page. (05)

Chapter 2.0

2-1: VRAM Memory Architecture. (09)
2-2: VRAM Map Examples. (19)

Chapter 3.0

3-1: Character Designer Board (8x8 grid). (20)
3-2: Rotation of the Compressed 8x5 ROM character to a

screen orientated 6x8 character. (23)
3-3: Colour Attribute Representation. (24)
3-4: The TEXT screen and the TEXT Name Table. (27)

Chapter 4.0

4-1: How the three VRAM tables (NAME ->PATTERN ->COLOUR)
are used to make up a Graphics picture on the VDU in
GI mode. (35)

Chapter 5.0

5-1: Interaction of the VRAM Tables to give a character
on the VDU picture. (46)

Chapter 6.0

6-1: The VRAM Pattern Table (PNT). (50)
6-2: How the Bit & screen Patterns correspond. (53)
6-3: The two coordinate systems used by the VDP: TEXT

(32x24) and CARTESIAN (256x192). (55)
6-4: The Flowchart below briefly summarises the mechanisms

involved in GII TEXT & BIT mapped Modes for echo-ing
characters to the VDU. (64)

Chapter 7.0

7-1: Displaced stacked sprites,to give a 3-D type Display. (66)
7-2: Sprite Pattern Grids for size 0 sprites (8x8) and

for size 1 sprites (16x16). Size 1 sprites are
equivalent to four 8x8 sprite patterns. (68)

Page 136

7-3: The SPG table mapping for 8x8 sprites (size 0) and
for 16x16 sprites (size 1). (68)

7-4: The SAT mapping. (70)
7-5: Overview Flowchart for Animation. (71)
7-6: How the EC bit affects the horizontal axis. (73)
7-7: Sprite VRAM Table Interaction. (74)
7-8: Sprite, S5 ,is scrolling downwards,However it has to

violate the 5th Sprite Rule. This results in the
partial or complete disappearance of S5, as it
intersects with the other 4 sprites. (75)

7-9: The Read only Status byte (VDP Register 8). (75)

Chapter 8.0

8-1: Parallel Transmission (PT) & Serial Transmission
(ST) of ASCII 65, 01000001 , ie letter A . (85)

8-2: Flowchart of Listing 8-1. (87)
8-3: Vertical and Horizontal data formats. (93)
8-4: Transposition of a 8x8 alphanumeric character. (93)

Chapter 9.0

9-1: Original Flow Diagram ,from which the KEYS subroutine
was developed from. (111)

Chapter 10.0

10-1: Top View of the TI SN 76489A PSG. (114)
10-2: Two Square waves of differing frequency. (114)

MSX Technical Data Appendix

b-1: The pitch (tone) of the sound,range 0 - 4095. (125)
b-2: MSX Memory Map. (126)
b-3: Slot selections example. (126)

Page 137

H. Book List

H.1 Memotech MTX,SDX and FDX

New Memotech Manual by Pheonix Publishing
Memotech Computing by Ian Sinclair
MTX Tape to Disc Conversion Booklet by AFW Software
Introduction to Assembly Language by Graysoft
Introduction to BASIC Programming by Graysoft
Midi Projects by R.A.Penfold
Computer Music Projects by R.A.Penfold

H.2 MSX

MSX by Teach Yourself
Behind the Screens of the MSX by M.Shaw
The MSX by T.Marriot
Starting Machine Code on the MSX by G.P.Rodley
Ideas for the MSX by K.Zetie
Programming in MSX Basic by Avalon Software
The MSX Red Book by Avalon Software
Microsoft Technical Document by Microsoft
Midi Projects by R.A.Penfold

H.3 Tatung Einstein

Albert Revealed by Crystal Research
Einstein Compendium by UKEUG
Einstein Hardware Manual by Tatung
BBC (Z80) Basic Manual by Tatung
Using Dr Logo on the Einstein by Tatung

H.4 MTX,MSX and Einstein

Power Graphics (Graphics Toolbox) by AFW Software
VDP Discovered ($) by AFW Software
Programming the Z80 by R.Zaks
VDP Programmers Guide by Texas Instruments

($) = previously released as Advanced Reference Manual for
 the Memotech MTX Series. Renamed as VDP Discovered.

Page 138

