
 Power Graphics

 for

Memotech, MSX & Einstein Computers

 by

 AFW Software

CONTENTS

Chapter 1: The Beginning 01 - 19

1.0 Introduction 01
1.1 Overview of the Graphics Chip 01
1.1.1 VDP & VRAM 01
1.1.2 CPU-VDP Communication 02
1.1.3 Screen Mode – G2 03
1.1.4 Colour 03
1.2 The VDP subroutines & Listing Format 05
1.2.1 The Format 05
1.2.2 VDP Subroutines 07

V01. VDPREGSET8 07
V02. VDPWRTSEL 08
V03. VDPREADSEL 09

1.3 Worked Example 10

Chapter 2: Graphics Kernel Subroutines (Z80) 20 - 38

G01. PLOTXY 20
G02. POINTXY 21
G03. TOGGLEXY 22
G04. CARTXYTOVRAM 23
G05. INVCOLBYTE 25
G06. GRPSCRCLS 26
G07. DRAWBOX 28
G08. FILLBOX 29
G09. DRAWLINE 31
G10. TRIANGLE 35
G11. GRPINK / GRPPAPER / GETCOL 36
G12. BORDER 37

Copyright Notice

Information enclosed within is free from the authors claim.

Disclaimer

Every effort has been made to guard against errors and the author
cannot be held responsible for any errors or omissions or damage
resulting from the use of the information within this reference
manual. Every effort has been made to avoid infringing copyright
holders from any source material the author may have read. Please
advise the author of any unintentional infringements or issues as
soon as possible for correction &/or acknowledgement.

Trademarks

The following references &/or trademarks are acknowledge:

IBM - International Business Machines
CPM - Digital Research
MSX - Microsoft
MTX - Memotech Computers Ltd
TMS - Texas Instruments
Z80A - Zilog Corporation
Einstein - Tatung

Note:

MTX Advanced Referenced Manual was updated to include MTX, MSX and
Einstein computers and was renamed as VDP Discovered manual.

Chapter 1: The Beginning

1.0 Introduction

The objectives of this manual are too:

a) provide a suitable Z80 based graphics kernel for the VDP.
b) be compatible with the MTX, MSX and Einstein computers.
c) have the subroutines in a informative and simple format
 that they are self explanatory and ready to be used.
d) form a basis of a methodology, so that users design code
 that follows this easy to use format.

I have not provided too many graphic commands because I felt
that the best way to learn a subject is to have hands on
experience. However, the graphics kernel in chapter 2 does
include all the key building block commands like : PLOTXY ,
DRAWLINE, GRPINK ,GRPPAPER, BORDER, SCRCLS. From this it is
possible to design any command ie, Drawing a box , colouring
a box , drawing a triangle ,these have been included as
examples in how to use the building blocks. For in depth
study on graphics, sound ,RAM and ROM, text and keyboards, I
refer you to the "VDP Discovered" Manual by AFW Software.

Throughout this manual the prefix # is used to signify that
the number following it is a hexadecimal number,ie #9000.
However, some other computers/compilers use the ampersand
sign to prefix hex numbers,ie &A000. Some other systems use
the postfix H to indicate a hex number,ie DF99H. Use the
nomenclature that your system uses.

1.1 Overview of the Graphics Chip

1.1.1 VDP and VRAM

The Video Display Processor, VDP , as used in the Memotech
MTX series, the Tatung Einstein and the MSX microcomputers is
the Texas Instruments TMS 9918/19/29 or compatible. The VDP
is a dedicated graphics processor with eight write only
registers [R0 - R7] and one read only register [R8].
These registers have specific functions like selecting the
screen mode, or positioning pattern or colour tables or what
the INK and PAPER colours should be. It is not the aim of
this manual to cover this,see "VDP Discovered" manual by AFW
Software, chapter 2.

Unlike many other computer systems that use CPU RAM to store
graphic information, the VDP comes with its own dedicated
Video Ram, called VRAM. This special RAM block is 16384 bytes
long. VRAM is used to store key graphical information like
the text font or sprite shapes or other graphical patterns.
It also stores the colour information.Most importanatly part
of VRAM is configured as the screen. Figure 1, illustrates
the relationship between the VDP/VRAM and CPU/RAM systems.

Page 1

VDP

VRAM (16KB)

A B

CPU

CPU RAM (64 KB)

Figure 1: CPU/RAM and VDP/VRAM architecture

The advantages of a dedicated graphics processor with its own
private RAM are threefold:

1. Programming space in CPU RAM is at a premium.

2. The VDP/VRAM architecture allows better and faster graphic
 manipulation as needed in arcade style games. The hardware
 sprites provide fast flicker-free animation.

3. Because the VDP is also a processor, just like the CPU, it
 is able to control all the graphic,text & sprite functions
 without CPU help. The consequence of this is that the CPU
 is released to do other tasks and thus the speed of CPU
 processing is greatly improved , which may be crucial in
 number crunching.

1.1.2 CPU-VDP Communication

The CPU communicates with this external graphics processor
using two of the 256 possible IN/OUT mapped ports on the Z80A
CPU. These ports or channels , as illustrated in figure 1,
allow two-way communication between the CPU and VDP.
Communication is only needed when access to the screen is
required ,ie in order to read the screen for screen dumps or
to write to the screen, ie to change to different fonts or
sprites. Table 1, details the port numbers used by the CPU
to communicate with the VDP on the Memotech, MSX and
Einstein. Subroutines V1,V2 and V3 are the most important
subroutines for communication between the VDP/VRAM and
CPU/RAM, see section 1.2.2 .

Page 2

Table 1: The ports used by the Memotech,MSX and Einstein Z80A
 microcomputers for VDP-CPU communication. Where r/w
 is for reading or writing data transfers.

--
: Computer : port A (data r/w) : port B (addressing) :
--
: Memotech : #01 : #02 :
: Einstein : #08 : #09 :
: MSX : #98 : #99 :
--

1.1.3 Screen Mode - G2

The VDP provides the programmer with 4 predefined screen
modes: TEXT, Graphics 1 and 2 and MultiColour. The latter 3
screen modes can display upto 32 hardware sprites. This
allows fast flicker-free animation with very little
programming effort. However, this manual is only concerned
with Graphics mode 2 (G2). For detailed discussion of all 4
modes , see "VDP Discovered" manual by AFW Software ,
chapters 2 to 7.

G2 or bit mapped or high resolution graphics mode allows the
programmer the flexibility to address (access) every dot or
point or pixel on the screen. This access is essential for
serious graphic applications like CAD and DTP, and for normal
graphic work like plotting points and drawing lines.

The VDP has a screen resolution of 256 by 192 dots.
Therefore, we have the ability to plot upto 49152 (256*192)
dots or bits of graphical information. Notice the use of the
analogy between dots and bits. The Z80A and the VDP both
prefer to handle 8 bits of data at a time, or in byte wise
chunks. Thus, every 8 linear dots of graphical information is
stored as one byte of screen data in the VRAM Pattern
Generator Table (PGT). The PGT acts as the high resolution
graphics screen in G2 mode. The PGT is 6144 bytes in length
(49152/8) and is positioned in VRAM at 0000 to 6143.

1.1.4 Colour

The VDP provides the user with a colour palette of 16 ,
numbered 0-15, see table 2. As already stated, each dot on
the screen can be either on (1) or off (0). All the ON dots
will be set to the INK colour and all the OFF dots will be
set to the PAPER colour. A palette of 16 colours can be
represented by 4 bits as 2^4 equals 16, see table 2. Both the
INK and PAPER colours use this representation.

Page 3

Table 2: The 16 colour palette on the VDP in G2 mode.

: Colour : Bit Pattern : Hexadecimal : Decimal :

: Transparent : 0 0 0 0 : #00 : 00 :
: Black : 0 0 0 1 : #01 : 01 :
: Medium Green : 0 0 1 0 : #02 : 02 :
: Light Green : 0 0 1 1 : #03 : 03 :
: Dark Blue : 0 1 0 0 : #04 : 04 :
: Light Blue : 0 1 0 1 : #05 : 05 :
: Dark Red : 0 1 1 0 : #06 : 06 :
: Cyanate : 0 1 1 1 : #07 : 07 :
: Medium Red : 1 0 0 0 : #08 : 08 :
: Light Red : 1 0 0 1 : #09 : 09 :
: Dark Yellow : 1 0 1 0 : #0A : 10 :
: Light Yellow : 1 0 1 1 : #0B : 11 :
: Dark Green : 1 1 0 0 : #0C : 12 :
: Magenta : 1 1 0 1 : #0D : 13 :
: Grey : 1 1 1 0 : #0E : 14 :
: White : 1 1 1 1 : #0F : 15 :

Therefore, one byte (8 bits) can hold two colours. The VDP
uses a particular colour byte format to represent both the
INK and PAPER on the screen,see figure 2.

INK = #01 |<-- msn INK -->|<- lsn PAPER ->|
= black ---------------------------------

PAPER = #09 : 0 : 0 : 0 : 1 : 1 : 0 : 0 : 1 :
= Light Red ---------------------------------

Figure 2: The Colour byte format. Note the actual colour byte
value for the above is 16*(INK) + PAPER = 25 or #19.
Where msn/lsn = most/least significant nybble.

As shown in figure 2, one byte holds both the INK (msn) and
PAPER (lsn) information. This colour byte sets the colour for
8 linear screen dots. The VDP can only resolve 2 colours per
byte (or 8 dots) of graphical information. Therefore, the
dot resolution is BIT mapped but the colour resolution is
only BYTE mapped.

If it was possible to allow full individual colour
addressing, for every dot on the screen, ie for every dot
there was a corresponding separate colour byte ,from a
palette of 16, would require 49152 bytes for the 49152 bits
of screen data. This is physically impossible because the VDP
is a 14 bit microprocessor, ie it can only access 2^14 or
16384 bytes. Therefore, one of the constraints of the system
was to limit the colour resolution. Since only one colour
byte (contains both INK & PAPER) per 8 screen bits, the
colour table is only 6144 (49152/8) bytes long.

Page 4

By a matter of coincidence!! this is the same length as the
PGT. This makes life a lot easier when trying to colour the
correct dot on the screen. When x,y coordinates are converted
to VRAM locations (addresses) means that a dot can only be
pinpointed to the nearest VRAM byte address. Which bit in the
in the byte is also calculated and the desired bit is set to
on (1). Well, ignoring the latter part, this VRAM address or
offset (since the PGT starts at zero) will correspond to a
similar displacement in the Colour Table. In actual fact ,the
correct colour byte will be + 8192 further forward, because
the colour table starts at address 8192 in VRAM.

1.2 The VDP Subroutines & Listing Format

1.2.1 The Format

This manual uses a standard listing format that should help
improve program design and subsequent documentation. What I
mean by helping in program design, is that when you use any
of the included subroutines, you will know what data
variables that are needed, what other subroutines that are
needed to run the desired subroutine and most importantly of
all, demos are provided to remind you , how the subroutine is
to be used in a program. Even, if you only use a subroutine
,once in a blue moon, you will always know what the code does
, what the code is and how to use the code constructively.
The format is described below and for examples see 1.2.2 and
chapter 2.

Each program is assigned a simple code number for quick
indexing, ie V1 , V2 for VDP subroutine 1 or 2 , and a title.
The title is the subroutine name, ie PLOTXY. Where possible I
have tried to use names that correspond to BASIC commands
with a similar syntax or structure.

Lines / Bytes / Stacksize and Datasize are a summary of the
actual code. The Stacksize is the amount of RAM reserved to
hold any PUSHed registers or CALL addresses used in the
subroutine. Every PUSH or CALL counts as two bytes. The
Datasize is the reserved RAM needed to hold static data
variables, a bit like variables in BASIC ,ie LET a=10 .

Language tells the user what language the listing was written
in, ie Z80A or PASCAL or C or BASIC or etc. Any specific
Hardware that the code refers to,is noted , ie VDP (graphics
& text) or PSG (sound) or PRT (printer port) or etc.
Lastly on this line,we say whether error checking has been
included in the subroutine or not. The error checking may be
a check to see if a note is out of the sound range or to stop
a piece of text running over the edge of the screen or etc.

Machine, notes which computers this piece of code can be run
on, ie MSX or MTX or Einstein or CPM or IBM or etc. The
Description is a brief note on what the subroutine does and
any other notes needed for running the code.

Page 5

For instance, Z80 register A ,must hold the ink colour before
calling GRPINK. Details of the subroutine design, for
instance, what the algorithm used in the subroutine was,
should be referenced, see later.

The Data Variables and Service Subroutines go hand in hand.
The service subroutines are the subroutines that this
subroutine requires in order to function properly. The data
variables are all variables used, this includes those for the
service subroutines and the current subroutine. The data
variables are reserved RAM locations which the subroutines
uses to store data. The order of these data variables in RAM
is very important. The data variables should be read from
left to right and from top to bottom. For Example:

LSBPGTADDR: DS 1 MSBPGTADDR: DS 1
COLOUR: DS 1

this should be read thus:

LSBPGTADDR: DS 1
MSBPGTADDR: DS 1
COLOUR: DS 1

and NOT:

LSBPGTADDR: DS 1
COLOUR: DS 1
MSBPGTADDR: DS 1

The reason for this is when the Z80 register pair HL, reads
the location LSBPGTADDR, HL is actually storing the contents
of the location LSBPGTADDR in L and MSBPGTADDR in H. HL now
holds a PGT address in the Z80 LSB/MSB format. However, in
the second case, the colour is taken as the MSB of the PGT
address and the VRAM pointer is positioned at the wrong
address. This will cause a BUG in your program with unknown
consequences so BEWARE.

When the current subroutine is eventually run, none or some
or all of the registers (as used in Z80 or C or VDP or PSG)
may be changed from its initial value. This may be important
and in many situations is the primary cause of program
crashes. The Reference section is where , I have tried to
indicate where further reading on a particular subroutine can
be obtained. The reference usually includes algorithms ,
figures and text to help explain the subroutine.

I have included a "How to use" section because in a few days
or weeks or months time you will have forgotten all about
this subroutine and may need to be reminded of its function
or purpose and how you can use it in your listings. Finally
the Code. The code is the actual subroutine code. For Z80
users I haven't included an ORG address, I leave that upto
you where you want the code to be placed. Memotech users can
use the built in Z80 assembler if so desired. No ORG is
needed in this case.

Page 6

1.2.2 VDP Subroutines

V1. Title: VDPREGSET8 (Configure VRAM for G2 mode)

Lines = 11 Bytes = Stacksize = 0+2 Datasize = 8

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

This subroutine loads the 8 VDP registers with the
appropriate data to configure VRAM to G2 mode. This involves
positioning the PGT at 0000 and the Colour Table at 8192. For
a more detailed description, I refer you to the " VDP
Discovered” manual by AFW Software. Also, register HL must be
pointing to the G2DATA, prior to calling VDPREGSET8.

Data Variables:

G2DATA: DB #02,#C2,#0F,#FF,#03,#7E,#07,#F5 ; MTX G2 mode

or

G2DATA: DB #02,#C2,#0F,#FF,#03,#76,#03,#F4 ;Einstein G2 mode

or

G2DATA: DB #02,#C2,#06,#FF,#03,#36,#07,#F5 ; MSX G2 mode

Service Subroutines:

None

Registers Altered:

None

How to use:

INITVDPREG: LD HL,G2MODE ; could use MTXG2 or EING2 or MSXG2
CALL VDPREGSET8
RET

Reference:

"VDP Discovered", chapter 2

Page 7

Code:

VDPREGSET8: LD BC,#0800
REGWRTVDP: LD A,(HL)

OUT (#02),A ; #09 =EINSTEIN #99 =MSX
LD A,C
OR #80
OR #40
OUT (#02),A ; #09 = EINSTEIN #99 =MSX
INC C
INC HL
DJNZ REGWRTVDP
RET

V2. Title: VDPWRTSEL (Writing to VDP/VRAM)

Lines = 8 Bytes = Stacksize = 2+2 Datasize = 0

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

Whenever, the CPU is required to write information to VRAM,it
would need to tell the VDP to select VRAM WRITE mode and then
it would pass the appropriate VRAM addresses to be written
to. Therefore this function is needed for all CPU-VDP address
transfers. The VRAM address will be held in register HL prior
to calling VDPWRTSEL.

Data Variables:

None

Service Subroutines:

None

Registers Altered:

None

How to use:

Refer to chapter 2 of this manual,there are many examples.

Reference:

"VDP Discovered", chapters 2 - 7

Page 8

Code:

VDPWRTSEL: PUSH AF
LD A,L
OUT (#02),A ; #09 =EINSTEIN #99 =MSX
LD A,H
OR #40 ; tell VDP to go into WRITE mode
OUT (#02),A ; #09 =EINSTEIN #99 =MSX
POP AF
RET

V3. Title: VDPREADSEL (Reading from VDP/VRAM)

Lines = 8 Bytes = Stacksize = 2+2 Datasize = 0

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

Whenever, the CPU is required to READ information from VRAM,
it would need to tell the VDP to select VRAM READ mode and
then it would pass the appropriate VRAM addresses to be read
from. Therefore this function is needed for all CPU-VDP
address transfers. The VRAM address will be held in register
HL prior to calling VDPREADSEL.

Data Variables:

None

Service Subroutines:

None

Registers Altered:

None

How to use:

Refer to chapter 2 of this manual,there are many examples.

Reference:

"VDP Discovered", chapters 2 - 7

Page 9

Code:

VDPREADSEL: PUSH AF
LD A,L
OUT (#02),A ; #09 =EINSTEIN #99 =MSX
LD A,H
AND #3F ; tell VDP to go into READ mode
OUT (#02),A ; #09 =EINSTEIN #99 =MSX
POP AF
RET

1.3 Worked Example

As a postscript to this chapter, I thought I would provide
you with a short demo of one of the commands in action. Using
an ASCII editor, type in the listing below. Compile at the
desired ORG address. Memotech users can use the inline Z80
assembler instead,remember no need to specify the ORG
address, use a BASIC line of 40. Once the code has been
successfully checked and compiled, save to disk or tape as:
DEMOCAD .

Now reload the desired code into the appropriate RAM address.
The Memotech inline assembler versions will be reload as if a
BASIC listing. Now insert the following code to run the demo:

10 ORG=#9000 : REM &9000 or 9000H or use decimal 36864
20 DEF USR(ORG) : REM some systems use RAND USR (ORG)
30 GOTO 30 : REM some computers run the code & default to TEXTSCR
40 STOP

type RUN

For users of the MTX inline assembler use:

LOAD "DEMOCAD"

10 GOSUB 40
20 GOTO 20
30 STOP
40 CODE : REM the listing would be here
50 RETURN

ASS.40

<CLS> <RET> to exit. The inline assembler will move the code
up to take into account the BASIC text before it.

type RUN

I hope you find this manual very useful.

Page 10

ORG #9000 ; don't use with MTX built in assembler

; main program

DI ; disable BASIC interrupts

LD HL,NEWSTACK
EX (SP),HL ; the stack pointer now at NEWSTACK
PUSH HL ; save old stack

LD HL,MTXG2 ; or EING2 or MSXG2
CALL VDPREGSET8 ; set to G2 mode

LD HL,#4040 ; x1,y1 is 64,64
LD (X1),HL
PUSH HL
LD HL,#8080 ; x2,y2 is 128,128
LD (X2),HL
PUSH HL

LD A,15 ; white ink
CALL GRPINK
LD A,5 ; blue paper
CALL GRPPAPER

CALL DRAWBOX

LD A,1 ; black ink
CALL GRPINK

POP HL ; restore x2,y2
LD (X2),HL
POP HL ; restore x1,y1
LD (X1),HL

CALL FILLBOX

POP HL ; restore old stack
LD (SP),HL

EI ; enable interrupts

RET ; exit program

; subroutines from library

PLOTXY: PUSH AF
PUSH BC
PUSH HL
CALL CARTXYTOVRAM
LD C,A
LD A,(BITNUMBER)
LD HL,DOTVALUE
ADD A,L
LD L,A
LD A,(HL)

Page 11

OR C
LD HL,(LSBPGTADDR)
CALL VDPWRTSEL
OUT (#01),A ; #08 =Einstein #98 =MSX
LD BC,8192
ADD HL,BC
CALL VDPWRTSEL
LD A,(COL)
OUT (#01),A ; #08 =Einstein #98 =MSX
POP HL
POP BC
POP AF
RET

CARTXYTOVRAM:PUSH BC
PUSH HL
XOR A
LD A,(X)
SRL A
SRL A
SRL A
AND A ; INT (X/8)
SLA A
SLA A
SLA A ; INT(X/8)*8
LD C,A
XOR A
LD A,(Y)
SRL A
SRL A
SRL A
AND A ; INT(Y/8)
LD B,A
LD A,23
SUB B ; 23-INT(Y/8)
LD H,A
LD (MSBPGTADDR),A
LD A,(Y)
AND 7
LD B,A
LD A,7
SUB B
ADD A,C
LD L,A
LD (LSBPGTADDR),A

GETBITNUM: LD A,(X)
AND 7
LD (BITNUMBER),A
CALL VDPREADSEL
IN A,(#01) ; #08 =Einstein #98 =MSX
POP HL
POP BC
RET

Page 12

DRAWBOX: PUSH HL
PUSH DE
PUSH AF
LD HL,(X1)
LD DE,(X2)
PUSH HL
PUSH DE
LD D,H
LD (X2),DE
CALL DRAWLINE ; x1,y1 to x2,y1
EX DE,HL
LD (X1),HL
POP DE
LD (X2),DE
CALL DRAWLINE ; x2,y1 to x2,y2
POP HL
PUSH HL
LD H,D
LD (X1),HL
CALL DRAWLINE ; x1,y2 to x2,y2
POP DE
EX DE,HL
LD (X2),DE
LD (X1),HL
CALL DRAWLINE ; x1,y1 to x1,y2
POP AF
POP DE
POP HL
RET

FILLBOX: PUSH HL
PUSH DE
LD HL,(X1) ; ASSUMES BOX IS DRAWN FIRST.
LD DE,(X2)
PUSH BC
PUSH DE
PUSH HL
INC H
DEC L
DEC D
INC E
LD A,H
CP D
JR C,DGTH
PUSH AF
SUB D

YCOUNT: LD B,A
POP AF

FBOXLOOP: LD (Y1),A
LD (Y2),A
PUSH AF
CALL DRAWLINE
POP AF
DEC A
DJNZ FBOXLOOP
POP HL
POP DE
LD (X1),HL

Page 13

LD (X2),DE
POP BC
POP DE
POP HL
RET

DGTH: LD A,D
PUSH AF
SUB H
JR YCOUNT

DRAWLINE: PUSH HL
PUSH DE
PUSH BC
CALL INITVARS
CALL SETINCX
CALL SETINCY
CALL GETDIST
CALL DLINE
POP BC
POP DE
POP HL
RET

INITVARS: XOR A
LD (YERR),A
LD (XERR),A
LD (SGNX),A
LD (SGNY),A
LD HL,(X1)
LD DE,(X2)
LD A,E
CP L
JR NC,SXFLAG
LD A,1
LD (SGNX),A
LD A,L
LD L,E

SXFLAG: SUB L
LD (DX),A
LD A,D
CP H
JR NC,SYFLAG
LD A,1
LD (SGNY),A
LD A,H
LD H,D

SYFLAG: SUB H
LD (DY),A
RET

NEGX: XOR A
INC A
JR SXFLAG

Page 14

NEGY: XOR A
INC A
JR SYFLAG

SETINCX: LD BC,(DX)
LD A,1
CP B
JR Z,SDX
DEC A
CP C
JR Z,SDX
INC A

SDX: LD (INCX),A
RET

SETINCY: LD BC,(DY)
LD A,1
CP B
JR Z,SDY
DEC A
CP C
JR Z,SDY
INC A

SDY: LD (INCY),A
RET

GETDIST: LD A,(DY)
LD B,A
LD A,(DX)
CP B
JR C,DYGTDX

DXGTDY: LD (DISTANCE),A
RET

DYGTDX: LD A,B
LD (DISTANCE),A
RET

DLINE: LD HL,(X1)
LD (X),HL
XOR A
LD B,A

DRAWLOOP: LD A,(DISTANCE)
INC A
CP B
RET C
CALL PLOTXY
LD A,(DY)
LD C,A
LD A,(YERR)
ADD A,C
LD (YERR),A
PUSH AF
LD A,(DX)
LD C,A
LD A,(XERR)
ADD A,C
LD (XERR),A

Page 15

PUSH AF
XERRGTDIST: LD A,(DISTANCE)

LD C,A
POP AF
PUSH BC
CP C
JR C,YERRGTDIST
JR Z,YERRGTDIST
SUB C
LD (XERR),A
LD A,(INCX)
LD C,A
LD A,(SGNX)
CP 0
JR Z,ADDINCX

SUBINCX: LD A,L
SUB C

RETINCX: LD L,A
YERRGTDIST: POP BC

POP AF
CP C
JR C,UPDXY
JR Z,UPDXY
SUB C
LD (YERR),A
LD A,(INCY)
LD C,A
LD A,(SGNY)
CP 0
JR Z,ADDINCY

SUBINCY: LD A,H
SUB C

RETINCY: LD H,A
UPDXY: LD (X),HL

INC B
JR DRAWLOOP
RET

ADDINCX: LD A,L
ADD A,C
JR RETINCX

ADDINCY: LD A,H
ADD A,C
JR RETINCY

GRPINK: LD (INKCOL),A
CALL GETCOL
RET

GRPPAPER: LD (PAPERCOL),A
CALL GETCOL
RET

Page 16

GETCOL: PUSH BC
PUSH AF
LD A,(INKCOL)
AND #0F
SLA A
SLA A
SLA A
SLA A
LD B,A
LD A,(PAPERCOL)
AND #0F
ADD A,B
LD (COL),A
POP AF
POP BC
RET

VDPREGSET8: LD BC,#0800
REGWRTVDP: LD A,(HL)

OUT (#02),A ; #09 =EINSTEIN #99 =MSX
LD A,C
OR #C0
OUT (#02),A ; #09 =EINSTEIN #99 =MSX
INC C
INC HL
DJNZ REGWRTVDP
RET

VDPWRTSEL: PUSH AF
LD A,L
OUT (#02),A ; #09 =EINSTEIN #99 =MSX
LD A,H
OR #40
OUT (#02),A ; #09 =EINSTEIN #99 =MSX
POP AF
RET

VDPREADSEL: PUSH AF
LD A,L
OUT (#02),A ; #09 =EINSTEIN #99 =MSX
LD A,H
AND #3F
OUT (#02),A ; #09 =EINSTEIN #99 =MSX
POP AF
RET

; Data Variables:

X: DS 1
Y: DS 1
LSBPGTADDR: DS 1
MSBPGTADDR: DS 1
X1: DS 1
Y1: DS 1
BITNUMBER: DS 1
X2: DS 1
Y2: DS 1

Page 17

DOTVALUE: DB 128,64,32,16,8,4,2,1
DX: DS 1
SGNX: DS 1
INCX: DS 1
XERR: DS 1
DY: DS 1
SGNY: DS 1
INCY: DS 1
YERR: DS 1
DISTANCE: DS 1
INKCOL: DS 1
PAPERCOL: DS 1
COL: DS 1
NEWSTACK: DS 100 ; 14+8+22+18+24+10 +4 to round up
MTXG2: DB #02,#C2,#0F,#FF,#03,#7E,#07,#F5
EING2: DB #02,#C2,#0F,#FF,#03,#76,#03,#F4
MSXG2: DB #02,#G2,#06,#FF,#03,#36,#07,#F5

Page 18

page 19 is intentionally left blank.

Page 19

Chapter 2: Graphics Kernel Subroutines (Z80)

G01. Title : PLOTXY (PLOT x,y)

Lines = 23 Bytes = Stacksize = 12+2 Datasize = 14

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

This subroutine requires that the x and y coordinates have
previously been loaded into the appropriate data variables.
Also that the x coordinate is in the range 0-255 and the y
coordinate in the range 0-191. The VDP must be set to G2 mode
(high resolution).

This subroutine plots a point at the desired x,y location
according to the cartesian coordinate map ,ie origin at the
bottom left hand corner of the screen , 0,0 . The point or
pixel (short for picture element) will be drawn in the INK
colour set as default or to the colour specified by you , see
G11.

Data Variables:

X: DS 1 Y: DS 1 LSBPGTADDR: DS 1 MSBPGTADDR: DS 1
COL: DS 1 BITNUMBER: DS 1
DOTVALUE: DB 128,64,32,16,8,4,2,1

Service Subroutines:

CARTXYTOVRAM ; VDPWRTSEL ; VDPREADSEL

Registers Altered:

None

How to Use:

LD HL,#80A0 ; H=#80 (128) and L=#A0 (160)
LD (X),HL ; H is loaded into Y and L into X.
CALL PLOTXY
RET

Reference:

"VDP Discovered" , chapter 6 ,page 57

Code:

PLOTXY: PUSH AF
PUSH BC
PUSH HL
CALL CARTXYTOVRAM

Page 20

LD C,A
LD A,(BITNUMBER)
LD HL,DOTVALUE
ADD A,L
LD L,A
LD A,(HL)
OR C
LD HL,(LSBPGTADDR)
CALL VDPWRTSEL
OUT (#01),A ; #08 =Einstein #98 =MSX
LD BC,8192
ADD HL,BC
CALL VDPWRTSEL
LD A,(COL)
OUT (#01),A ; #08 =Einstein #98 =MSX
POP HL
POP BC
POP AF
RET

G02. Title : POINTXY (POINT x,y)

Lines = 18 Bytes = Stacksize = 6+2 Datasize = 14

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

This subroutine requires that the x and y coordinates have
previously been loaded into the appropriate data variables.
Also that the x coordinate is in the range 0-255 and the y
coordinate in the range 0-191. The VDP must be set to G2 mode
(high resolution).

This subroutine,looks at the x,y position on the screen and
tests to see if the pixel is on (1) or off (0) and
returns the appropriate number in register A or in the data
variable POINTSTATUS. The screen is unchanged.

Data Variables:

X: DS 1 Y: DS 1 LSBPGTADDR: DS 1 MSBPGTADDR: DS 1
BITNUMBER: DS 1 POINTSTATUS: DS 1
DOTVALUE: DB 128,64,32,16,8,4,2,1

Service Subroutines:

CARTXYTOVRAM ; VDPREADSEL

Registers Altered:

AF

How to Use:

page 21

Page 21

LD HL,#4041 ; H= #40 (64) and L= #41 (65)
LD (X),HL ; x = L and y = H
CALL POINTXY ; result in reg A or in POINTSTATUS.
CP 1 ; IS pixel on
JR Z,PIXELON ; if on goto pixelon code,else pixeloff
RET

Reference:

"VDP Discovered" , chapter 6 ,page 59

Code:

POINTXY: PUSH BC
PUSH HL
CALL CARTXYTOVRAM
LD C,A
LD A,(BITNUMBER)
LD HL,DOTVALUE
ADD A,L
LD L,A
LD A,(HL)
AND C
JR Z,POINTON

POINTOFF: XOR A
JR STOREPOINT

POINTON: LD A,1
STOREPOINT: LD (POINTSTATUS),A

POP HL
POP BC
RET

G03. Title : TOGGLEXY (TOGGLE x,y)

Lines = 18 Bytes = Stacksize = 10+2 Datasize = 14

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

This subroutine requires that the x and y coordinates have
previously been loaded into the appropriate data variables.
Also that the x coordinate is in the range 0-255 and the y
coordinate in the range 0-191. The VDP must be set to G2 mode
(high resolution).

This subroutine, like POINTXY , looks at the status of the
pixel located at x,y. If the pixel is on ,then it is switched
off and if the pixel was off ,then it was switched on. Unlike
POINTXY , this subroutine carries out an on screen action.
Therefore the screen is changed by this process. This is
equivalent to the XOR functions on most CAD programs.

Page 22

Data Variables:

X: DS 1 Y: DS 1 LSBPGTADDR: DS 1 MSBPGTADDR: DS 1
COL: DS 1 BITNUMBER: DS 1
DOTVALUE: DB 128,64,32,16,8,4,2,1

Service Subroutines:

CARTXYTOVRAM ; VDPWRTSEL ; VDPREADSEL

Registers Altered:

None

How to Use:

LD HL,#0201 ; H= #02 and L= #01
LD (X),HL ; x = L and y = H
CALL TOGGLEXY
RET

Reference:

"VDP Discovered" ,chapter ,page 60

Code:

TOGGLEXY: PUSH AF
PUSH BC
PUSH HL
CALL CARTXYTOVRAM
LD C,A
LD A,(BITNUMBER)
LD HL,DOTVALUE
ADD A,L
LD L,A
LD A,(HL)
XOR C
LD HL,(LSBPGTADDR)
CALL VDPWRTSEL
OUT (#01),A ; #08 =Einstein #98 =MSX
POP HL
POP BC
POP AF
RET

G04. Title : CARTXYTOVRAM (x,y to VRAM address)

Lines = 39 Bytes = Stacksize = 6+2 Datasize = 13

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

Page 23

This subroutine requires that the x and y coordinates have
previously been loaded into the appropriate data variables.
Also that the x coordinate is in the range 0-255 and the y
coordinate in the range 0-191. The VDP must be set to G2 mode
(high resolution) and the PGT must be located at #0000.

The x,y coordinate values which we are so familar with, have
to be converted into VRAM addresses that the VDP can handle
and understand. The PGT in mode G2 or graphics screen is 6144
bytes long. As the last sentences suggests; the VDP handles
positions on the screen as bytes, whereas pixels are more
like bit size. Therefore the VRAM address is only accurate to
8 bits or one byte. This VRAM address is stored in the data
variables: LSB/MSB PGTADDR. The subroutine also calculates
which bit in the byte the x,y coordinates actually refers
too.This is stored in BITNUMBER.

Data Variables:

X: DS 1 Y: DS 1 LSBPGTADDR: DS 1 MSBPGTADDR: DS 1
BITNUMBER: DS 1 DOTVALUE: DB 128,64,32,16,8,4,2,1

Service Subroutines:

VDPREADSEL

Registers Altered:

AF

How to Use:

This subroutine is an integral part of the PLOTXY subroutine.
Therefore refer to G01,for use.

Reference:

"VDP Discovered" ,chapter 6 ,pages 56-57

Code:

CARTXYTOVRAM:PUSH BC
PUSH HL
XOR A
LD A,(X)
SRL A
SRL A
SRL A
AND A ; INT (X/8)
SLA A
SLA A
SLA A ; INT(X/8)*8
LD C,A
XOR A

Page 24

LD A,(Y)
SRL A
SRL A
SRL A
AND A ; INT(Y/8)
LD B,A
LD A,23
SUB B ; 23-INT(Y/8)
LD H,A
LD (MSBPGTADDR),A
LD A,(Y)
AND 7
LD B,A
LD A,7
SUB B
ADD A,C
LD L,A
LD (LSBPGTADDR),A

GETBITNUM: LD A,(X)
AND 7
LD (BITNUMBER),A
CALL VDPREADSEL
IN A,(#01) ; #08 =Einstein #98 =MSX
POP HL
POP BC
RET

G05. Title : INVCOLBYTE (INVERSE COLOUR at x,y)

Lines = 20 Bytes = Stacksize = 12+2 Datasize = 7

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

This subroutine requires that the x and y coordinates have
previously been loaded into the appropriate data variables.
Also that the x coordinate is in the range 0-255 and the y
coordinate in the range 0-191. The VDP must be set to G2 mode
(high resolution),with the PGT at #0000 and the colour
table at #2000 (8192).

The VDP contains the colour information in one byte per VRAM
address. As this suggest,we only get 2 colours per 8 bits.
The colour byte has a MSN (upper 4 bits)= INK colour
between 0 and 15 and a LSN (lower 4 bits) = PAPER colour
again between 0-15. The subroutine also requires that both
the INK and PAPER colours had already been converted into the
colour byte form , see G11.

The subroutine calculates the PGT VRAM address closest to the
x,y coordinate and adds 8192 to get the colour table
equivalent. The colour byte at this location is inverted ,
ie new INK = old PAPER and new PAPER = old INK. The screen is

Page 25

changed.

Data Variables:

X: DS 1 Y: DS 1 LSBPGTADDR: DS 1 MSBPGTADDR: DS 1
COL: DS 1 INKCOL: DS 1 PAPERCOL: DS 1

Service Subroutines:

CARTXYTOVRAM ; VDPREADSEL ; VDPWRTSEL ; GETCOL
GRPPAPER ; GRPINK

Registers Altered:

None

How to Use:

LD A,#0F ; set to white ink
CALL GRPINK
LD A,#01 ; set to black paper
CALL GRPPAPER ; colour byte setup.
LD HL,#8101 ; H = #81 (129) L = #01 (1)
LD (X),HL ; x = L and y = H
CALL INVCOLBYTE
RET

Reference:

"VDP Discovered" ,chapter 6 ,page 63

Code:

INVCOLBYTE: PUSH HL
PUSH DE
PUSH AF
LD HL,(X)
CALL CARTXYTOVRAM
LD HL,(LSBPGTADDR)
LD DE,8192
ADD HL,DE
CALL VDPREADSEL
IN A,(#01) ; #08 =Einstein #98 =MSX

INVERT: RLCA
RLCA
RLCA
RLCA
CALL VDPWRTSEL
OUT (#01),A ; #08 =Einstein #98 =MSX
POP AF
POP DE
POP HL
RET

Page 26

G06. Title : GRPSCRCLS (CLS)

Lines = 14 Bytes = Stacksize = 6+2 Datasize = 4

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

Requires that the VDP is in G2 mode and that the PGT is
located at #0000. The PGT holds the graphic information what
we see on the screen. By clearing or setting every one of the
6144 bytes in the PGT to ZERO ,we have effectively cleared
the PGT or the screen. Note that this subroutine doesn't
clear the clour attributes of the screen. This must be done
be setting the colour table to the default INK and PAPER
colours. This can be done by loading PGTBASE with #2000
instead of #0000 and changing XOR A to LD A,(COL). Note that
the PGT and Colour tables are both 6144 bytes long.

Data Variables:

PGTBASE: DS 2 PGTLEN: DS 2

Service Subroutines:

VDPWRTSEL ; VDPREADSEL

Registers Altered:

None

How to Use:

LD HL,#0000 ; the setup of PGTBASE and PGTLEN would
LD (PGTBASE),HL ; carried at the program initialisation
LD HL,6144 ;
LD (PGTLEN),HL
CALL GRPSCRCLS
RET

Reference:

"VDP Discovered" ,chapter 6 ,page 50

Code:

GRPSCRCLS: PUSH AF
PUSH HL
LD HL,(PGTBASE)
CALL VDPWRTSEL
LD HL,(PGTLEN)

GRPSCRCLS1: XOR A
OUT (#01),A ; #08 =Einstein #98 =MSX
DEC HL
LD A,H
OR L
JR NZ,GRPSCRCLS1

Page 27

POP HL
POP AF
RET

G07 Title : DRAWBOX (DRAWBOX x1,y1,x2,y2)

Lines = 29 Bytes = Stacksize = 20+2 Datasize = 27

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

This subroutine requires that the x1,y1 and x2,y2 coordinates
have previously been loaded into the appropriate data
variables. Also that the x1 and x2 coordinates are in the
range 0-255 and the y1 and y2 coordinates are in the range
0-191. The VDP must be set to G2 mode (high resolution).

The x1,y1 and x2,y2 coordinates can be anywhere on the screen
but must be in opposite diagonal corners, so that the box can
be drawn. The box is drawn in the INK and PAPER colours
defined in the colour byte: COL. The screen is changed.

Data Variables:

X: DS 1 Y: DS 1 LSBPGTADDR: DS 1 MSBPGTADDR: DS 1
X1: DS 1 Y1: DS 1 COL: DS 1 BITNUMBER: DS 1
X2: DS 1 Y2: DS 1 DOTVALUE: DB 128,64,32,16,8,4,2,1
DX: DS 1 SGNX: DS 1 INCX: DS 1 XERR: DS 1
DY: DS 1 SGNY: DS 1 INCY: DS 1 YERR: DS 1
DISTANCE: DS 1

Service Subroutines:

CARTXYTOVRAM ; VDPWRTSEL ; VDPREADSEL ; DRAWLINE ; PLOTXY

Registers Altered:

None

How to Use:

LD HL,#4080 ; H= #40 (64) L= #80 (128)
LD (X1),HL ; x1 = L y1 = H
LD HL,#8080 ; H= #80 (128) L= #80 (128)
LD (X2),HL ; x2 = L y2 = H
CALL DRAWBOX
RET

Reference:

None

Page 28

Code:

DRAWBOX: PUSH HL
PUSH DE
PUSH AF
LD HL,(X1)
LD DE,(X2)
PUSH HL
PUSH DE
LD D,H
LD (X2),DE
CALL DRAWLINE ; x1,y1 to x2,y1
EX DE,HL
LD (X1),HL
POP DE
LD (X2),DE
CALL DRAWLINE ; x2,y1 to x2,y2
POP HL
PUSH HL
LD H,D
LD (X1),HL
CALL DRAWLINE ; x1,y2 to x2,y2
POP DE
EX DE,HL
LD (X2),DE
LD (X1),HL
CALL DRAWLINE ; x1,y1 to x1,y2
POP AF
POP DE
POP HL
RET

G08. Title : FILLBOX (FILLBOX x1,y1,x2,y2)

Lines = 37 Bytes = Stacksize = 16+2 Datasize = 18

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

This subroutine requires that the x1,y1 and x2,y2 coordinates
have previously been loaded into the appropriate data
variables. Also that the x1 and x2 coordinates are in the
range 0-255 and the y1 and y2 coordinates are in the range
0-191. The VDP must be set to G2 mode (high resolution).

The coordinates entered are those for the box already drawn.
The x1,y1 and x2,y2 coordinates can be anywhere on the screen
but must be in opposite diagonal corners, so that the box can
be drawn. The box is drawn in the INK and PAPER colours
defined in the colour byte: COL. The area of the box is also
coloured likewise,although the filled area can be of a
different colour because,the Fillbox subroutine doesn't
redraw the box perimeter.

Page 29

Note that during any fill area subroutines,if BASIC/OS is
running in the background,then it will be interrupting the
execution of our code for things like checking if BRK has
been pressed,or the screen needs updating, etc. During,this
screen glitches can occur. This is whereby,one or two pixels
are not coloured during the fill subroutine. Enclosing,
FILLBOX with DI/CALL FILLBOX/EI will disable the interrupts
to give a better picture.

Data Variables:

X: DS 1 Y: DS 1 LSBPGTADDR: DS 1 MSBPGTADDR: DS 1
X1:DS 1 Y1:DS 1 COL: DS 1 BITNUMBER: DS 1
X2:DS 1 Y2:DS 1 DOTVALUE: DB 128,64,32,16,8,4,2,1
DX: DS 1 SGNX: DS 1 INCX: DS 1 XERR: DS 1
DY: DS 1 SGNY: DS 1 INCY: DS 1 YERR: DS 1
DISTANCE: DS 1

Service Subroutines:

DRAWLINE ; PLOTXY ; CARTXYTOVRAM ; VDPWRTSEL ; VDPREADSEL

Registers Altered:

AF

How to Use:

LD HL,#4080 ; H= #40 (64) L= #80 (128)
LD (X1),HL ; x1 = L y1 = H
LD HL,#8080 ; H= #80 (128) L= #80 (128)
LD (X2),HL ; x2 = L y2 = H
DI ; avoid glitches
CALL FILLBOX
EI
RET

Reference:

None

Code:

FILLBOX: PUSH HL
PUSH DE
LD HL,(X1) ; ASSUMES BOX IS DRAWN FIRST.
LD DE,(X2)
PUSH BC
PUSH DE
PUSH HL
INC H
DEC L
DEC D
INC E
LD A,H
CP D

Page 30

JR C,DGTH
PUSH AF
SUB D

YCOUNT: LD B,A
POP AF

FBOXLOOP: LD (Y1),A
LD (Y2),A
PUSH AF
CALL DRAWLINE
POP AF
DEC A
DJNZ FBOXLOOP
POP HL
POP DE
LD (X1),HL
LD (X2),DE
POP BC
POP DE
POP HL
RET

DGTH: LD A,D
PUSH AF
SUB H
JR YCOUNT

G09. Title : DRAWLINE (DRAWLINE x1,y1,x2,y2)

Lines = 137 Bytes = Stacksize = 22+2 Datasize = 27

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

This subroutine requires that the x1,y1 and x2,y2 coordinates
have previously been loaded into the appropriate data
variables. Also that the x1 and x2 coordinates are in the
range 0-255 and the y1 and y2 coordinates are in the range
0-191. The VDP must be set to G2 mode (high resolution).

This subroutine uses the Bresenham algorithm for drawing
lines. The advantages of this method, are that it avoids
divisions and floating point arithmetic. Therefore,it is
quick and efficient on the Z80. Basically, what this method
does is to work out where every point on the line is on the
screen and the subroutine PLOTXY , plots it. The screen is
changed.

Data Variables:

X: DS 1 Y: DS 1 LSBPGTADDR: DS 1 MSBPGTADDR: DS 1
X1:DS 1 Y1:DS 1 COL: DS 1 BITNUMBER: DS 1
X2:DS 1 Y2:DS 1 DOTVALUE: DB 128,64,32,16,8,4,2,1
DX: DS 1 SGNX: DS 1 INCX: DS 1 XERR: DS 1

Page 31

DY: DS 1 SGNY: DS 1 INCY: DS 1 YERR: DS 1
DISTANCE: DS 1

Service Subroutines:

CARTXYTOVRAM ; PLOTXY ; VDPWRTSEL ; VDPREADSEL

Registers Altered:

AF

How to Use:

LD HL,#3040 ; H= #30 (48) L= #40 (64)
LD (X1),HL ; x1 = L y1 = H
LD HL,#A020 ; H= #A0 (160) L= #20 (32)
LD (X2),HL ; x2 = L y2 = H
CALL DRAWLINE
RET

Reference:

"Draw the Line" by A.Redfern ,PCW March 1989 ,pages 216-218
"C:The Complete Reference" by H.Schildt ,ch 24, pages 650-651

Code:

DRAWLINE: PUSH HL
PUSH DE
PUSH BC
CALL INITVARS
CALL SETINCX
CALL SETINCY
CALL GETDIST
CALL DLINE
POP BC
POP DE
POP HL
RET

INITVARS: XOR A
LD (YERR),A
LD (XERR),A
LD (SGNX),A
LD (SGNY),A
LD HL,(X1)
LD DE,(X2)
LD A,E
CP L
JR NC,SXFLAG
LD A,1
LD (SGNX),A
LD A,L
LD L,E

SXFLAG: SUB L
LD (DX),A
LD A,D

page 32

Page 32

CP H
JR NC,SYFLAG
LD A,1
LD (SGNY),A
LD A,H
LD H,D

SYFLAG: SUB H
LD (DY),A
RET

NEGX: XOR A
INC A
JR SXFLAG

NEGY: XOR A
INC A
JR SYFLAG

SETINCX: LD BC,(DX)
LD A,1
CP B
JR Z,SDX
DEC A
CP C
JR Z,SDX
INC A

SDX: LD (INCX),A
RET

SETINCY: LD BC,(DY)
LD A,1
CP B
JR Z,SDY
DEC A
CP C
JR Z,SDY
INC A

SDY: LD (INCY),A
RET

GETDIST: LD A,(DY)
LD B,A
LD A,(DX)
CP B
JR C,DYGTDX

DXGTDY: LD (DISTANCE),A
RET

DYGTDX: LD A,B
LD (DISTANCE),A
RET

DLINE: LD HL,(X1)
LD (X),HL
XOR A
LD B,A

DRAWLOOP: LD A,(DISTANCE)
INC A

Page 33

CP B
RET C
CALL PLOTXY
LD A,(DY)
LD C,A
LD A,(YERR)
ADD A,C
LD (YERR),A
PUSH AF
LD A,(DX)
LD C,A
LD A,(XERR)
ADD A,C
LD (XERR),A
PUSH AF

XERRGTDIST: LD A,(DISTANCE)
LD C,A
POP AF
PUSH BC
CP C
JR C,YERRGTDIST
JR Z,YERRGTDIST
SUB C
LD (XERR),A
LD A,(INCX)
LD C,A
LD A,(SGNX)
CP 0
JR Z,ADDINCX

SUBINCX: LD A,L
SUB C

RETINCX: LD L,A
YERRGTDIST: POP BC

POP AF
CP C
JR C,UPDXY
JR Z,UPDXY
SUB C
LD (YERR),A
LD A,(INCY)
LD C,A
LD A,(SGNY)
CP 0
JR Z,ADDINCY

SUBINCY: LD A,H
SUB C

RETINCY: LD H,A
UPDXY: LD (X),HL

INC B
JR DRAWLOOP
RET

ADDINCX: LD A,L
ADD A,C
JR RETINCX

ADDINCY: LD A,H

Page 34

ADD A,C
JR RETINCY

G10. Title: TRIANGLE (TRIANGLE x1,y1,x2,y2,x3,y3)

Lines = 17 Bytes = Stacksize = 12+2 Datasize = 29

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

This subroutine requires that the x1,y1 and x2,y2 and x3,y3
coordinates have previously been loaded into the appropriate
data variables. Also that the x1,x2 and x3 coordinates are in
the range 0-255 and the y1,y2 and y3 coordinates are in the
range 0-191.The VDP must be set to G2 mode (high resolution).

This subroutine draws lines to the three corners of a
triangle in the INK and PAPER colours held in the colour
byte. The screen is changed.

Data Variables:

X: DS 1 Y: DS 1 LSBPGTADDR: DS 1 MSBPGTADDR: DS 1
X1:DS 1 Y1:DS 1 COL: DS 1 BITNUMBER: DS 1
X2:DS 1 Y2:DS 1 DOTVALUE: DB 128,64,32,16,8,4,2,1
X3:DS 1 Y3:DS 1
DX: DS 1 SGNX: DS 1 INCX: DS 1 XERR: DS 1
DY: DS 1 SGNY: DS 1 INCY: DS 1 YERR: DS 1
DISTANCE: DS 1

Service Subroutines:

PLOTXY ; CARTXYTOVRAM ; DRAWLINE ; VDPWRTSEL ; VDPREADSEL

Registers Altered:

AF

How to Use:

LD HL,#4040 ; H= #40 (64) L= #40 (64)
LD (X1),HL ; x1 = L y1 = H
LD HL,#8080 ; H= #80 (128) L= #80 (128)
LD (X2),HL ; x2 = L y2 = H
LD HL,#2020 ; H= #20 (32) L= #20 (32)
LD (X3),HL ; x3 = L y3 = H
CALL TRIANGLE
RET

Reference:

None

Page 35

Code:

TRIANGLE: PUSH HL
LD HL,(X1)
PUSH HL
LD HL,(X2)
PUSH HL
CALL DRAWLINE
LD HL,(X3)
LD (X2),HL
CALL DRAWLINE
POP HL
LD (X1),HL
CALL DRAWLINE
LD (X2),HL
POP HL
LD (X1),HL
POP HL
RET

G11. Title : GRPINK / GRPPAPER / GETCOL (INK i / PAPER p)

Lines = 22 Bytes = Stacksize = 8+2 Datasize = 3

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

The VDP needs to be in G2 mode. INK and PAPER colours are
limited to the 16 (0-15) provided by the VDP. See G05,for a
description of the colour byte.

Register A holds the INK colour prior to calling GRPINK. This
subroutine will update the colour byte. Register A holds the
PAPER colour prior to calling GRPPAPER. This subroutine will
update the colour byte.

GETCOL subroutine is used by both GRPINK and GRPPAPER to get
the colour byte in the correct format.

Data Variables:

INKCOL: DS 1 PAPERCOL: DS 1 COL: DS 1

Service Subroutines:

None

Registers Altered:

AF

Page 36

How to Use:

LD A,#0E ; grey INK
CALL GRPINK
LD A,#01 ; black PAPER
CALL GRPPAPER
RET

Reference:

"VDP Discovered" ,chapter 3 ,pages 23-25

Code:

GRPINK:LD (INKCOL),A
CALL GETCOL
RET

GRPPAPER: LD (PAPERCOL),A
CALL GETCOL
RET

GETCOL: PUSH BC
PUSH AF
LD A,(INKCOL)
AND #0F
SLA A
SLA A
SLA A
SLA A
LD B,A
LD A,(PAPERCOL)
AND #0F
ADD A,B
LD (COL),A
POP AF
POP BC
RET

G12. Title : BORDER (BORDER b)

Lines = 7 Bytes = Stacksize = 0+2 Datasize = 1

Language = Z80A Hardware = VDP Error Checking = No

System = MSX , Memotech (MTX) and Einstein

Description:

Can be in any mode. The border colour (0-15) is passed to
the BORDER subroutine via register A. In TEXT mode, the
BORDERCOL is the same as the PAPER colour. In G1,G2 and MC
modes, the border colour is independent of the INK and PAPER
colours. The screen is changed.

Data Variables:

BORDERCOL: DS 1

Page 37

Service Subroutines:

None

Registers Altered:

AF and the VDP register number 7.

How to Use:

LD A,#0F ; set border colour to White
CALL BORDER
RET

Reference:

"VDP Discovered" ,chapter 2 ,page 16 and chapter 3,page 25.

Code:

BORDER: AND #0F
LD (BORDERCOL),A
OUT (#02),A ; #09 =Einstein #99 =MSX
LD A,7
OR #C0
OUT (#02),A ; #09 =Einstein #99 =MSX
RET

Page 38

