
O ur m o n th ly p o t-p o u rr i o fh a rd w a re and
so ftw a re tip s fo r the p o p u la r m ic ros . I f you have

a fa v o u rite tip to pass on, se n d i t to TJ's
W orkshop, PCW, 62 O x fo rd S tree t, L o n d o n W l.

Please keep y o u r c o n tr ib u tio n s concise. We w il l p a y £5-£30 fo r a n y tip s w e p u b lis h . PCW can
accep t no re s p o n s ib ility fo r dam age caused b y u s in g th e s e tip s , a n d reade rs s h o u ld be

a d v ise d th a t a n y h a rdw a re m o d if ic a tio n s m a y re n d e r the m a ke r's g u a ra n te e inva lid .

USE OF
JOYSTICKS WITH
MEMOTECH MIX
The manual for the
Memotech MTX series
micro does not make clear
the method by which the
joystick ports may be
accessed within a user's
program. Connecting
joysticks to the Memotech
quickly shows that the
joysticks map into the
keyboard asshown below.

This means that any game
requiring joysticks can be
played from the keyboard
instead (albeit more
clumsily). Also, it means
that to use joysticks within
your own programs, you
need only read the keyboard
(for example, with INKEY$
in Basic) to determine the
joystick status.

The problem with using
INKEY$ (or the CHARGET
routine in machine code) is
that multiple key closures
cannot be sensed in this
way, so one is confined to
the four primary directions
plus fire. It is frequently
desirable in a game to
permit diagonal movement
on the screen or to allow
firing while moving, making
it necessary to sense a
number of key closures
simultaneously (right and
up, for example). To do this
on the Memotech, one first
needs to understand how

the keyboard may be read
directly.

The Memotech keyboard
is arranged on two of the
Z80's ports, 5 and 6. To
sense the status of the
keyboard, a byte has first to
be output on port 5 to
activate the appropriate
sense lines of the keyboard.
These lines are active low,
so are activated by the
presence of a zero in the
appropriate bit of this 'sense
byte'. The status of the
keyboard read lines may
then be determined by
performing an input on port
5 (or 6) to yield a 'read byte'.
Wherever a read line is
active (because a key has
been pressed), azero will
appear in the corresponding
bitoftheread byte.The
problem istodeterminethe
appropriate sense/read byte
combinations for the keys of
interest. (Normally, of
course, this is all handled for
us by the CHARGET routine
in ROM).

The Basic routine in Fig 1
will cycle through the sense
bytes to set each sense line
in turn and display the
resulting read byte. By
running this routine while
holding down keys, one can
determine the combination
needed to examine specific
keys. The routine only
inputs from port 5 as the
majority of keys appear here
(note that the space bar is
one exception).

It's a simple matter to
change the routine to
investigate port 6, too. Be

Right-hand joystick : FIRE — HOME key;
LEFT, RIGHT, UP, DOWN — fcorresponding cursor keys

Left-hand joystick : FIRE — SPACE BAR;
LEFT— Z key;

RIGHT— C key;
UP— B key;

DOWN|— M key.

aware, however, that only
the bottom two bits of the
read byte from port 6 are
keyboard read lines.

Once the sense/read byte
combinations have been
determined, they can be
incorporatedintoa
user-written keyboard read
routine. Machine code is
best for this as it's much
quickerthan Basic, and
avoids the timing problems
which close examination of
the output from the Basic
routinewill reveal.

Two machine code
routines for reading the
joysticks (or equivalent keys
of the keyboard) are given
here: one to look at the
right-hand joystick, the
other the left. Each is used
from Basic in exactly the
same way; the differences
between the two routines
merely reflect the different
sense/read byte
combinations required.
Ironically, the left-hand
joystick is the more
convenient to code for. Each
routine will scan the
appropriate joystick and set
bits of an internal byte
(called KEYS) to reflect the
joystick status. These bits
are set as follows:
KEYS: BIT 4 set if FIRE

pressed;
BIT 3 set if
DOWN
pressed;
BIT 2 set if UP
pressed;
BIT 1 set if

RIGHT
pressed;

(LSB) BIT 0 set if LEFT
pressed.

The final value of this byte
will, therefore, be
determined by the
combination of joystick
controls active. The value
may be retrieved in Basic
using a PEEK instruction.

The complete program
(Fig 2) shows the routines as
they may be used from
Basic (note that the
variables KEYR and KEYL
point to the KEYS bytes
within the routines). The
exact values of these
variables will depend upon
the memory size of your
Memotech (adjust the
variable MTX as indicated in
the program) and also upon
the degree of comment
included in the machine
code routines. Adjust the
values to equal those
indicated by the appropriate
assembler symbol table
(lines 20 and 30).

When the program is
RUN, a balloon will appear
which can be moved around
the screen with either
joystick (although the
right-hand one has priority)
and will change colour
whenever the fire key is
pressed. This program
shows how easy (and
convenient) it is to blend
machine code and Basic on
the Memotech to impressive
effect.
S teve B enner

290 REM * * * * * * * * * * * * *
292 REM ** Routine to strobe keyboard

295 LET PORT=5
300 FOR S=0 to 7: LET 55=255-2-5: OUT (5),SS
305 LET R=INP(PORT): PRINT "Sense ";SS,"Read ";R
310 NEXT
315 PAUSE 1000: PRINT : PRINT : GOTO 300

F ig 1 S ense: read b y te ro u tin e

198 PCW

1 GOTO 100
20 CODE
4010 GETRTJ : XOR A : Clear A
4011 LD HL.KEYS
4014 LD (HL),A ;Clear KEYS
4015 FIRE: LD A,£DF ;Strobe for HOME
4017 CALL STROBE
401A JR, NZ,LEFT
401C SET 4,(HL)
401E LEFT: LDA,£F7 ;Strobe for left
4020 CALL STROBE
4023 JR NZ,RIGHT
4025 SET 0,(HL)
4027 RIGHT: LDA,£EF ;Strobe for right
4029 CALL STROBE
402C JR NZ,UP
402E SET 1,(HL)
4030 UP: LDA,£FB ;Strobeforup
4032 CALL STROBE
4035 JR NZ,DOWN
4037 SET 2,(HL)
4039 DOWN: LDA,£BF ;Strobe for down
403B CALL STROBE
403E JR NZ,DONE
4040 SET 3,(HL)
4042 DONE: RET
4043 KEYS DB0
4044 STROBE OUT (5),A ;Do joystick strobe
4046 IN A,(5)
4048 CP 127
404A RET

S ym b o ls
GETRTJ 4010 KEYS 4043
STROBE 4044 LEFT 401E
RIGHT 4027 UP 4030
DOWN 4039 DONE 4042
FIRE 4015

21 RETURN
30 CODE
41A6GETLTJ: XOR A ;Clear A
41A7 LDHL,KEYS
41AA LD (HL),A ;Clear KEYS
41AB FIRE: LD A,127 ;Strobe SPACE-BAR
41 AD OUT (5),A
41AF IN A,(6)
41B1 BIT 0,A
41B3 JR NZ,STROBE
41B5 SET 4,(H L)
41B7 STROBE: LD A,127 ;Strobe left joystick
41B9 OUT (5),A
41BB IN A,(5)
41 BD LD D,A
41 BE AND £F0 ;Check bottom row keys
41C0 CP £F0
41C2 JR, NZ,DONE ;lgnoreifnot
41C4 LD A,D ;Restore A
41C5 CPL ;Set all bits in one go!
41C6 ADD A,(HL) ;Add in FIRE bit
41C7 LD (HL),A
41C8 DONE: RET
41C9 KEYS: DB0
41CA RET

S ym b o ls
FIRE 41 AB STROBE 41B7
DONE 41C8 GETLTJ 41A6
KEYS 41C9

31 RETURN
97 REM * * * * * * * * * * * * * * * * *
98 REM **
99 REM ** MAIN CODE STARTS HERE — SETUP

SCREEN FIRST

100 GENPAT 3,0,24,60,60,24,00,24,24,00
110 VS 4: CLS : COLOUR 0,1: COLOUR 4,1
120 CTLSPR 2,1: CTLSPR 6,1
125 LET X=10: LET Y=8: SPRITE 1,0,X,Y,0,0,10
126 REM
127 REM * * * * * * * * * * * * * * * * * * *
128 REM ** Set up SPEED; & PEEK locations (MTX=8

for 500); See M/C for values

130 LET SPEED=4: LET MTX = 4
150 LET KEYL=MTX*4096+256*1+12*16+09: LET

KEYR = MTX*4096+4*16+3
190 REM
191 REM
192 REM * * * * * * * * * * * * * * * * * * *
193 REM **
194 REM ** Poll keyboard and recalculate coordinates

200 GOSUB20: LET JOYS = PEEK (KEYR): IF
JOYS = 0 THEN GOSUB 30: LET JOYS = PEEK (KEYL)

210 IF JOYS=0 THEN GOTO 200
215 IF JOYS>15THEN LETJOYS=JOYS-16: ADJSPR

1,1,RND*14 + 1
220 IF JOYS>7THEN LET JOYS=JOYS-8: LET

Y=Y+SPEED* (Y> 10)
225 IF JOYS>3 THEN LET JOYS=JOYS-4: LET

Y=Y-SPEED* (Y< 180)
230 IF JOYS>1 THEN LET JOYS=JOYS-2: LET

X = X-SPEED*(X<250)
235 IF JOYS>0THEN LET JO YS=JO YS-1: LET
X=X+SPEED* (X>10)
240 ADJSPR 2,1,X: ADJSPR 3,1,Y: GOTO 200
250 REM
251 REM *

F ig 2 C om p le te p ro g ra m

SORDTIPS
Ifyou ever getfed upwaiting
forlong programstoload,
then perhapsyou haven't
found the secret of changing
the rate at which prog rams
aresaved.

TypePOKE&7019,&12
beforeyou savea program,
and the cassette baud rate
will be almost doubled. (This
workson BASIC-land
BASIC-G). Ifyourcassette
recorder cannot cope with
the given valueof&12,try
others until you find the
fastestyou can safely use.
ThehigherthevaluePOKEd,
the slower the baud rate.
N o te : You do not needto
changethePOKEd value to
load in files recorded at
different speeds— the
computer works out what

speed itwassaved at.
The manual for BASIC-G

givesthe impressionthatyou
must save Basic prog rams by
using LIST “name". This isn't
necessary— SAVE will dothe
job just as well, and much
faster.

The advantages of using
LIST, however, arethat only
certain lines needto be
saved, if required and, more
importantly, prog rams can
bemerged. Forinstance,you
could save a frequently used
subroutinewith LIST,and
then OLD itwheneveryou
need it. The merged prog ram
lines will replaceanything
with the same number in
memory, so it is bestto have
yoursubroutine renumbered
to, say, 10000 onwards.

Another advantage of files
saved with LISTisthatthey

PCW199

