

g

S

|
i

i

-

Still gettihg tolgrips with your bran

e Memotech is an attractive micro,
but as happens so often with new
machines, the manual doesn’t cover

everything. The MTX offers the program-
mer an excellent variety of display modes
for use with text or graphics:

Text mode User definable graphic charac-
ters; 40 X 24 character screen.

Text with graphics User definable
graphics, sprites; 32 X 24 character
screen.

Text with 256 x 192 pixel graphics User
definable graphics, sprites, 16 colours for
characters.

Using these different modes via Basic
creates no problems, as the instruction

DATA TRANSFER FORMAT

Write to registers of VDP
Out (02), data

Write to video RAM
Out (02), LSB address

Out (01), data

Read from VRAM
Out (02), LSB address

In (02), data

In (02), data

Out (02), register number (bit 7 must be set to 1)

Out (02), MSB address (bit 7 must be 0: bit 6 must be set to 1)

Out (02), MSB address (bits 7 & 6 must be 0)

Read from DP registers (status register ‘read only’)

VIDEO RAM LOCATIONS FOR GRAPHIC MODE 2

Take a memo

manual is very thorough in this respect —
although it does omit instructions on how
the novice can easily detect sprite colli-
sions. Implementing the assortment of
screens using Assembly language is a more
daunting task. It is not made any easier by
the omission of ROM entry points from the
manual, which seems a lack of concern for
the more advanced programmer, by a
company that took the trouble to incorpo-
rate an editor/assembler in the front end
of the machine. On the other hand there
are numerous pages in the manual devoted
to the graphic facilities, though in some
places it is so thorough, it is a headache to
sort the wood from the trees.

The following explanations and sub-
routines, using the in-built assembler,
should allow the end-user to easily set up
different display modes.

Graphic Mode 2 gives the programmer a
great deal of scope when designing games
programs, and it is this mode that’s been
chosen for the illustrations. It should,
however, be a simple matter to convert the
information given, to set up other display
modes.

Using this mode, 768 different charac-
ters can be designed and displayed at one
time. It also provides a choice of defining 2
colours for each byte of the 8 byte
character, with the effect that each of the
768 (32%x24) screen locations can display
an exclusive character.

The following descriptions, use the
conventions used by Memotech in their
manual 7e: the bits of a byte are numbered
MSB bit = 0 and LSB bit = 7.

The MTX decides which mode it should
operate in by looking at VDP Registers 0

and 1. Mode 2 is entered by setting bit 6 in

Register 0 to 1 and resetting bits 3 and 4 in
Register 1.

Whensetting up a screen the MTX uses the ‘

followingtables which are located in Video
RAM: pattern generator table; pattern
name table; colour table; sprite attribute
table; sprite generator table.

Pattern generator table This is really a
sophisticated form of character generator
which is normally installed in a ROM chip
in other computers, characters so gener-
ated are numbered chr$(0) to chr$(255).
With the MTX you can design all 256 and
more.

Pattern name table This table is a copy of the
screen in VRAM. If the value of 128 is
placed in location 32, it is like saying:

Pattern name table Start Ioca't!on 1800H END 1AFF H translation but it illustrates the function of

Colour table Start location 2000H END 37FF H the pattern name table

Sprite attribute table Start location 1C00 H (32x4 byte entries) Colourtable Each byte O%thiS table holdsthe

Sprite generator table Start location 3800 H (2048 byte table) colour information for the corresponding
PCN JANUARY 28 1984 25

29 >

25

byte of the character in the pattern
generator table.

The colour and pattern Generator tables
are 6144 bytes long. Each character is
8 x 8 pixels and 8 pixels are held in each

byte. Since there are 768 locations on the
screen8 X 768 = 6144 bytes. The pattern
name table is 768 bytes long.

As there are only 256 character codes
available at any one time, the MTX
overcomes this problem by splitting the
pattern generator table into 3 sections of
2048 bytes (8 bytes x 256 chars). There-
fore, the 256 character names (0 —255) are
used 3 times, once in each section of the
table.

The pattern name table is similarly
dividedinto 3 sections to match the pattern
generator table. The top section of the
table corresponds to the top 3rd of the
screen. The colour table follows the same
format. Itis plain that if character code 128
describes a space invader in the top section
of the screen, and the invader is moved
around the screen, the code 128 must also
describe the invader in the screen section it
movesinto. This is not strictly true, but for
the sake of simplicity let’s stick to this
explanation. See diagram 1.

Once the tables have been set up in
VRAM, animation is easily achieved by
changing the values in any of the 3 tables.
And, asthe VDP automatically increments
the address register, once the start address
has been loaded into the VDP sequential
writes to VRAM only need the 1 byte data
transfer by Out (01),data.

Setting up VRAM tables The location of each
table in VRAM is set by transferring the
relevant information to the VDP via the
VDP Registers. (see tables 1 and 3). The
values chosen set each table to addresses
which allow for easy translation between

i the different tables.

VDP registers The correct procedure for
writing information to the VDP Registers
is: :
Data first byte

Register number 2nd byte

The VDP then calculates the correct
location in VRAM according to the value

| of the Data byte, eg For Register 2 (name

table), the value transferred is multiplied
by 1024, and the resulting value is the start
address of that table. In our examples
Register 2 is located at 6144 (1800h) in
VRAM.

For all writes to the VDP Registers, bit 0
must be set to 1 in the Register number
byte. This is accomplished by adding 128
(80h) to the value. The sub-routine in
listing 1 takes care of VDP writes. First
define your values with Data first, register
number second. eg
vaLuges:db data, Reg no, data,Reg
Then set up a loop as in listing 1 until all 8
Registers have been fed information.
Write to VRAM Data is written to VRAM by
feeding the DESTINATION address to
the VDP LSB first MSB second followed
by the data byte. Note that the bit 7 must be
Oandbit6setto 1 inthe MSB of the address
byte. Thisis done by adding 64 (40h) to this
byte. The sub-routine for writing to

STOR:

REG:

URAM:

DATA:

LOaF:

ADE REGSET:
4PE@ INUS
48ES

Sumbols:

PCN JANUARY 28 1984

STOP48A4

HOF

HOF ; <[S H

HOPs BLA CHERACTERS LIGHT RED BACKGROUMD MIDDLE 3RD
HOF: RES SCREEM AHMD BORDER MAGEMTA

HOF

ALL DATA

DEC HL

Ll* A-H

oR-L

JR NZ.LOOP

RET

DE $82, 00, #02, #01 , #0906, #02, #FF ., $63, #03. #04, #38, #05. #07, #O6, #6D, #67
DE €6.165, 182,219,668, 36,66, 123

RET

RET

FEGIEATREGEET 4806
LF14@822URAM40E4
LOOP48CT INVU4BED
AGN4862DATA4AEC]
AGN14874FL4B2D

TOF

= k] LOAL STACK POIMTER FROM
ZERD ALL REGISTERES

SYSTEM STACK

HUMEER OF REGISTERS
MAKE HL FOIMT TO D&Té BUFFER
PUT CHTH IH CE
HEXT DETA SET

SEHD TO REGISTER

oo o8 TIMES
TOTAL LEMGTH OF LREAM
ZERD ALL URAM

STERT OF COLOUR THELE TOF 3RD OF SCREEM
MO FCC

JCTER 175 f= COLOUR OF @°<

L T
LT GRS
0 UMTIL FIM

T0 REGI
= FOR TOF

EEM POS 2

\RACTER TO BE DISFLAVED AT

T
SAME AS ABOVE EUT SEMD 2 OHE AFTER THE OTHER

30 >

<29

L
VRAM is shown in Listing 2.

See table 1.

achieved:

IN A,(02)

BIT 6,A (Normal Z80 bit convention)
JR NZ,COLLIDE

jP Move

in the manual.

text, in the other modes. See Diagram 2.

Reading from VRAM This is accomplished by
writing the address from which you want
the information, followed by a ‘READ”.

Reading from the VDP status register IN (02)
data. Bit 2 is the sprite collision flag set
whenever pixels from two active sprites
overlap. The state of this bit can easily be

The function of the other bits is described

After filling the pattern generator, the
colour table requires setting to the correct
values for each of the characters. The first4
bits (LSB), describe the colour of the O’sin
your design, and the MSBits describe the
colour of the 1’s; in fact, background and

MEMOTECHNIQUES

display. Don’t forget that sequential writes
to the pattern name table can be accom-
plished with only one address transfer ie
ouT (02), LSB ADDRESS

ouT (02), MSB ADDRESS

ouT (01),DATA

our (01), DATA . . . etc

This format holds true for all tables.
Sprites Sprites are introduced to the display
by using the sprite generator and sprite
attribute tables.

The attribute table requires a 4 byte
entry for each sprite. Using all of the 32
sprites available will cause the table to be
128 Bytes long. The format for this tables:
byte 1 Vertical distance from top of screen
byte 2 Horizontal distance from LHS of
screen
byte 3 Pointer to sprite pattern
byte 4 Colour of sprite

The sprite generator functions in the
same way as the pattern generator table.
The maximum length is 2048 bytes, which

Sprites are displayed on the screen by
setting the X,Y values in the sprite
attribute table. Movementisaccomplished
by updating the values. Diagram 1 shows
the relationship between X,Y and pattern
name table addresses. 1 should be de-
ducted from the Y positions shown in
actual practice, as X=0, y=—1 is the top
most lefthand corner of the screen.
Positioning of the sprite is from the top
lefthand bit of the sprite pattern.

So, changing the pattern or the colour of
a sprite is easily accomplished by altering
therelevantbyteinthe attribute table. This
leads to veryimpressive movingdisplays. If
you restrict the majority of movement to 8
pixels each move, calculating the corres-
ponding screen position for checking
collisions with other graphics is easily
accomplished. Listing 4 takes care of these
calculations. Listing 3 calculates the re-
verse positions.

We have included a fully documented

Completion of these steps allows you to
direct the desired format to the screen by
loading the pattern name table with the
correct value for the character you wish to

allows you to define 256 different patterns
for the normal size 0 sprite. Using size one
(16%16 pixels) reduces the number to 64
(32 bytes each sprite pattern).

listing that illustrates the practical use of
some of these points within a program.

The possibilities available to you are only
limited by your own imagination. PCN

INRREMER S ie e e e TR R 16 REM Convert screen to H.Y% CO-ORDIMATES

2@ REM ON ENTRY HL POINTS TO DATA S8 REM

3@ REM D = REGISTER NUMBER sl

4@ REM E = DATA I8 REN

5@ REM 4@ REM

€@ CODE =@ REM OM EMTEY HL FOIMTS TO SCREEM POSITION

4@98 BUFFER: DB #@C: DATA o F‘;E’.‘

4@9C DB ©d; REGISTER 78 REM

4690 DE 1273 AND S0 ON FOR ALL ERGISTERS | 88 CODE

4@9E LD HL.EUFFER: BUFFER HOLDS DATA

40A1 LD B, #8E: MUMEER OF REGISTERS

49A3 LOOP: LD E. CHLYS GET DATA

4064 IHC HL P
4BA5 LD Do CHLD: GET REGISTER HUMBER SCREEM LOCATION
4ORE INC HL: ALIGH FOR LOOP COLLIMHE

4647 CALL SETUP: G0 AND TRANSFER IT Mo

460A DJINZ LOOF3 po IT & TIMES

48AC SETUP: LD %A, E: CaTa FIRST

4BAD OUT B2y, a: SEMD IT

ABHF LD A.D GET REGISTER HUMEER

40E@ DD #s ST MAKE SURE EIT 7 SET

4@E2 OUT <82y, a3 SEME 1T : e
4084 RET: ALL DOME RETURM O D IT UNMTIL MIMUS
4885 RET GET TRUE REMAIMHDE
HEE RET: oM RETURH HL=4 FOSIT & E=\ FOSIT
Sumbolst

EUFFER4@3BSETUP4EAC

LOOP48A3

LISTING 4 Register set up for above values

EXIT IF MIMUS
IHC BUOTIEWT

Register 0 : Value 02 H ‘set to mode 2
2!21 REM Convert ¥.4% to SCREEM FOSITION Register 1:ValueC2H ‘8% 8 spn'te Mag 1
B Register 2 : Value 06 H
= Eg: e Register 3 : Value FF H ‘MSB set to 1
e A L GRoertion Register 4 : Value 03 H ‘MSB set to 0
€8 REM Register 5 : Value 38 H
f? Register 6 : Value 07 H
S Register 7 : Value A1 H (sets Text/Background colours)

e o aTIEnT NBSetting bit 7 to 1in REGISTER 3, puts the colour table in the top 8K of VRAM. Setto O would

B sl 1‘%‘[-15“2,_“'- KE:T'F;E'??’_M put it at the location of the pattern generator in this example — as would setting bit 7to 1 in

the pattern generator register, put it in the location of the colour table in this example.
eg Value FF H= location 2000

JR iLl_)DF‘.:

UNTI
AL HL - HL]
MDD HL . HL3
AOD HL» HL ;
ADL HL» HL ! Next weel’s issue of PCN
FOD HL - HL 29 KER N ENTRY DE HOLDS ADDRESS — ill include a handy di
OoE oEs 30 REM ON ENTRY DE HOLDS ADDRESS will include a handy dia-
fg;[;,[EL#E : gg EE: ON ENTRY C HOLDS DATA gram which will help you
1 DE, 515k
ADD: HL» DE EEN POSITION 69 REM understand the
RET: EEH LOCATION 70 CODE Memotech’s screen mod-
Eg 493C LDTﬂ,gsz . GET LSE‘SEZDQ??RESS es better, and will further
: 409D 0UT <@2),A3 ; §
s 4000 Do iojaos RESET BIT7 SET BIT 6 clapf{:pe p:_mlts P
“=las . 48A0 ADD A, #403 € on in this article.
R e rrITdon 40a2 OUT <@2) 8 SEMD IT
40A4 LD @,Cs GET DATA INTO A
48A5 OUT <81, As SEND IT
40a7 RET; RETURN TO CALL OUT
| 30 4008 RET

	EPSON001
	EPSON002
	EPSON003
	EPSON005

