The mysteries of the Memotech’sscreen handling featuresare dispelled by Keith Hook s expert

Screenstudies of an

he Memotech’s screen handling can
Tinilially seem difficult to get to grips

with—superficially it doesn’t seem to
have directmemory mapping of the screen,
and the manual doesn’t explain how you
can write to and read from the screen using
pokE and peek. The confusion is basically
caused by the way the display operations
are managed. The Memotech uses the
Texas TM 9929A Video Display Processor
(VDP) to handle all data relating to the
screen, while other micros tend to use the
cpu for this.

So, although the presence of the VDP is
confusing, it is actvally an advantage,
giving you 16K of video RAM on topof the
normal RAM, and giving you added
flexibility once you get to grips with it

Normally the screen is memory mapped
in RAM. Forinstance, the Colour Genie s
memory mapped at 4400Hex to 47FFHex
for the low-resolution screen. Fast writes
or reads from/to screen can be accom-
plished by PEEK (address) or POKE address,

-value (as shown in Diagrams 1 and 2).

At first sight it seems that writing to the
screen using pokes or reading from the
screen using PEEKS is not possible on the
MTX — the instruction manual certainly
doesn’t mention the subject. However,
memory mapping of the screen via VRAM
is directly comparable with the system
described above for the Colour Genie,
except that it is managed by the VDP and
not the Z80 cpu.

MTX Basic sets the start of the text
screen (Diagram 3) at 1C00 Hex (7168
decimal) in VRAM. This address corres-
ponds to the first position on the screen
top, left-hand corner.

Writing data to VR AMinvolves sending

the destination address tothe VDP viaport
2. Once the address has been set up data
can be transferred to VRAM through port
1. But bear in mind the following:
@ The VDP contains an ‘Auto Inc-
rementing Logic’, which means that once
the address has been set up, sequential
writes to the screen need only involve
sending data, for example:

Write three blank spaces one after the
other.

oUT (02), ADDRESS

ouT (01),32

ouT (01),32

ouT (01),32
@ All addresses must be sent to the VDP
LSB first, followed by MSB.
® The valueofeachaddressiscontainedin
14 bits. Bits 6 and 7 of the MSB inform the
VDP which type of operation it has to
perform, eg write to registers, write to
VRAM, read from VRAM, read Status

DIAGRAM 1
PATTERN PORT1
\TOR | = e i
c_i_E_"_EF_A___ ey NDP | o e CPU_ |*,| ROMRAM |
PATTERN PORT2
NAME TABLE | |
\ s
P
| AR i
MTXMEMORY RELATIONSHIP
DIAGRAM 1

L+~ | SCREEN

DIAGRAM 2 ¥

——— 4400 — P
SCREEN|=— | #— _cPu__ |
— 4800

N
USUAL TYPE OF MEMORY MAPPED SCREEN
(COLOUR GENIE)

DIAGRAM 2

DIAGRAM 3

0000
GRAPHIC GENERATOR
MODE 2
e GRAPHIC GENERATOR
k& TEXT
il SCREEN TEXT
8128 UNUSED
8192 COLOUR TABLE
MODE 2
14336 |SPRITE GENERATOR
1530 |SCREEN MODE 2
16128 |SPRITE ATTRIBUTE
i TABLE
16256 UNUSED

VRAM MEMORY LAYOUT UNDER MTX BASIC

2

PCN AUGUST251984

explanations.

Register. When writing to VRAM, bit 7
must be 0 and bit 6 must be 1. This is taken
care of with line 130 in Listing 1. The
subroutines to pokk and peek VRAM
differ slightly in their make-up; when
reading from VR AM both bits 7 and 6 must
be zero.

rokeing and peeking VS 4 — the
high-resolution screen — is a very compli-
cated business. In fact, PEEKing in the
normal sense of the word is almost
impossible, as in the high-resolution mode
no values are contained in the pattern
generator, and eachvalueisloadedinto the
pattern name table and then the relevant
colour byte is set. We will therefore restrict
our routines to the text screen.

Sprite collision
Itis a surprising fact that the MTX does not
contain any Basic command dedicated to
the detection of sprite collisions.

Sprite collisions can be detected by
examining the value of bit 5 in the Status
(Read Only) Register. Whenever the ‘1°
bits of two sprites coincide on the screen
the VDP sets bit 5 in the Status Register to
1, otherwise bit 5 is zero.

Bit:7 6 5 4 3210
F 5s C — Sthsprite no.

However, there is one drawback to this
method of checking sprite collisions: the
VDP will detect collisions between sprites
which are not on the visual plane, and will
detect them between those that are not
even active, if their X,Y cocrdinates
coincide. To overcome this problem you
have to place a value of 208 in the Y
coordinate of the sprite number directly
after the lastsprite you wishtoinclude. The
VDP will then terminate its checking when
this value is encountered. This procedure
can be accomplished by ADJSPR 3, sprite
number, 208.

Listing 2 gives details of the subroutine
that will check bit 5 and return to the main
program with the value of 0 = no collision,
1 = sprite collision. The Status Register is
read by INP (02).

Joysticks

The left-hand joystick is mapped to the
cursor control keys, and the functions of
the joystick are identical to those of the
cursor keys, eg cursor left = joystick left.

Detecting multiple key presses with the
mkeys function involves calling a sub-
routine at least twice. A better way to
detect keyboard movement is to by-pass
the mvkEYs function and carry out a strobe
of the computer’s sense-lines.

Onthe MTX each key has a unique value

Status
Register

thatis output on port 5— this is termed the
sense-byte. If the key is then depressed, a
value of 127 will be returned when port S is
read.

You can test this for yourself with:
10 LET A = PEEK (64894); System LASTDR
20 PRINT A}
30 GOTO 10

The screen should fill up with the value
of 127. If you press any key, say the Home
key, the value of 223 will be printed on the
screen— thisis the value that is sentout via
port 5 to test if the Home key has been

LISTING 1

3 SUBROUTINE TO SET UP URAM ADDRES:!
THIS IS ON THE ASSUMPTION THAT
'LOC* = ACTUAL SCREEM ADDRESS

UARIABLE

QD = 1924 * 7 5
= AD + LOC
QD (INT(ﬁDIZSS)*ZSS)

RD

SUBROUTINE TO SEND DATA TO ADDRESS
UARIABLE *DTA®

200 O0UT <81>.DTA
210 RETURN

i ON EXIT FROM ROUTINE UARIABLE

380 LET AD = 1824 * 7 : LET AD =
310 LET LSB = ﬁD—(IN’T(nD/QSﬁ)*?ﬁG)
320 LET MSB =

338 0UT {BI);LSB WT (@2>,MsB
348 LET URD THPC@.

358 RETURI

RKE SURE BIT 7=8 & BIT 6=1

= UALUE OF DATA TO WRITE TO SCREEM,

3 SUBROUTIME TO READ A UALUE FROM TEXT SCREEM.
TURD® = UALUE OM SCREEM.

Al + LOC

depressed.

Listing2willreturn the following values:
223 Fire Button
247 Joy left
239 Joy right
251 Joyup
191 Joy down

Listing 3 is a subroutine that allows you
to test for a multiple key press. Asstated in
the listing, you will have to build a routine
around this that will allow you to take the
appropriate action for either a single key
press or a multiple key press.

S
UARIABLE "MD" ALWAYS = START ADD

START OF TEXT SCREEN
ACTUAL SCREEN LOCATION

SET UF WITH ABOVE ROUTINME.

;BB LET SCOL =
418 LET COL =
428 RETURN

INFCO2)
MODCINTCSCOL-32),2)

3 SUBROUTINE TO READ UDP STATUS REGISTER FOR SPRITE COLLISION.
3 UARIABLE 'COL* WILL BE = 1 IF COLLISION DETECTED ELSE = @

E.# FIRE BUTTON AND MOVE LEFT

THE QPPROPRIQTE ACTION. .

UALUES RETURNED ARE:- 1
2

© LET RB = INPCES>

28 IF RB = 127 THEN SRD = 5

LET = 247 1 OUT (@5),58

LET RB = INF(@S)

IF RE = 127 THEN SRD = SRD + 1

LET 8B = 239: OUT (85),58

LET RB = INP(BS)

300 IF RE = 127 THEH SRD = SRD + 2
LET SB = 251 1 OUT (@S,

600 LET RE = INP(B5>

IF RB = 127 THEN SRD = SRD + 3

LET $B = 191 = OUT (@5),5B

LET RE = INP(@S)

IF RE = 127 THEN SRD = SRD + &

RETURN

4 SUBROUTINE TO READ SENSE LINES FOR MULTIFLE MOUEMENT OF JOVSTICK

i AFTER CALLING THIS ROUTIME SOME PROGRAM WILL BE NEEDED TO TAKE
EG

36 EN SRD GOSUB 5@,68,70,80,98,100 etc ,
JOVSTICK LEFT
JOYSTICK RIGHT
3 JOYSTICK UP
4 JOYSTICK DOWN
FIRE BUTTON PRESSED
FIRE BUTTON AND J'DVSTICK LEFT RETURNS A UALUE OF & AND SO ON...

LET SRD = @ 1+ LET SB = 223: OUT (@5).SB

etc

© RETURN

& RETURN

: RETURN

PCN AUGUST251984

	lc-p022
	lc-p023

