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1 Introduction

Figure 1: PK-8100 Oscilloscope Probe

Measuring an electrical signal inevitably
affects that signal. This applies to all mea-
surements, including the display of an os-
cilloscope waveform. Affecting the sig-
nal cannot be totally eliminated, but it can
be minimized sufficiently that the effect is
unimportant. Then the measured result is a
sufficiently accurate representation of the
real signal.

It is therefore critical for the measure-
ment engineer to understand the effect of
the instrument on the signal.

A x10 scope probe (figure 1) is useful
in several applications:

• To reduce loading effect on the cir-
cuit under test

• To compensate for the effect of test
cable capacitance

• To permit the measurement of large
voltages

The paper discusses these applications in
detail. For those who wish to skip the ex-
planations, the results are summarized in section 8 on page 4.

2 Example: Voltmeter Loading Effect
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Figure 2: Loading Example 1

Consider the circuit of figure 2, one volt in series with a resis-
tance of 1MΩ. (That is, the Thevenin Equivalent is a circuit
with an open-circuit voltage of 1 volt, and an internal resis-
tance of 1MΩ.) Suppose an ideal voltmeter, which presents
an open circuit to the measurement circuit, is used to measure
the voltage. There is no current through an ideal voltmeter,
so there is no voltage drop in the resistor, and the voltage at
the terminals of the voltmeter is 1 volt. The voltmeter shows
a reading of 1 volt, the correct result.
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Figure 3: Loading Example 2

Now consider figure 3. The same measurement is at-
tempted with a voltmeter that presents a load of say, 2MΩ
to the circuit. Then the 1MΩ internal resistance and the 2MΩ
voltmeter resistance Rmeter form a voltage divider and the
meter reading will be 0.666 volts. This is a misleading result
caused by the loading effect of the voltmeter.

Back in the days of moving-coil meters loading effect was
a major issue: moving coil meters require significant current
to operate so their relatively low resistance compromised the
voltage reading. These days, most electronic voltmeters ap-
pear as a very large input resistance, and loading effect isn’t an issue.

3 Loading Effect and The Oscilloscope

Figure 4: Coaxial Test Lead

The input circuit of a general-purpose os-
cilloscope consists typically of a 1MΩ re-
sistor in parallel with a small capacitance,
perhaps 30pF 1.

Let’s consider the effect of this 1MΩ
resistance in parallel with 20pF of capaci-
tance (the input impedance of the Syscomp
DSO-101 oscilloscope).

At low frequencies, the capacitance ap-
pears as an open circuit, so the input re-
sistance is on its own. To make an accu-
rate measurement, we must ensure that the
source resistance (the Thevenin resistance
of the circuit) is much less than 1MΩ. For
example, to obtain 1% accuracy, the source
resistance must not exceed 10kΩ.

Now consider the situation at a high
frequency. At 2MHz, a 20pF capacitor has
an impedance of approximately 4000Ω.
For an accurate amplitude measurement,
the source resistance must be much less than this. In many situations, that’s not going to be the case.

In the frequency domain, a signal that is flat over the frequency range of interest would appear to decrease at high
frequencies. In the time domain, the edges of a pulse waveform would show excessive rise and fall times.

4 Coaxial Test Lead

In addition to the input capacitance of the scope, a coaxial test lead (figure 4) has significant capacitance. Coax
has the advantage that it shields the measurement signal from electrostatic interference, but it does have an inherent
capacitance. For example, RG58/8 coax has a capacitance of 26.4pF/ft. A three foot length of this coax, plus the

1Some oscilloscopes are equipped with - or have the option of - a 50Ω input resistance. This is far too low a resistance for general purpose
work. It’s intended for applications where the oscilloscope input must present a 50Ω input resistance to match a 50Ω transmission line. Matching
the impedance of the measurement circuit prevents reflections at the oscilloscope input connector.
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20pF input circuit capacitance of the oscilloscope, present the circuit with a total load of 100pF. At a frequency of
2MHz, the input impedance is about 800 ohms. This is significant capacitive loading: it may even cause the circuit to
malfunction2.

5 Reducing Loading: The x10 Scope Probe

The electrical equivalent circuit of the x10 scope probe shown in figure 1 on page 1 is a 9MΩ resistor in parallel with
a small adjustable capacitor, shown as Rp and Cp in figure 5.

........................

........................

........
........
........
........
........
........
........
.

......
......
................

........................

........................

..............................
..........
..........
..........
..........

..........

..........

.............. ..........

Ri Ci

20pF1MΩ

Rp

9MΩ

2.2pF

Oscilloscope

x10 Probe

Probe Tip

Probe Ground

Cp

.................
.....
.....
..........................
.....
.....
...............

..............................................
......
.....
....
.....
..

.....
.........................................
....

..............................................
......
.....
....
.....
..

.....
.........................................
....

..............................................................................
......
...............................

.....................................

r r

rr

rr

Figure 5: x10 Probe Circuit

At low frequencies, where we can ignore the effect of
the circuit capacitances, the 9MΩ probe resistance and 1MΩ
scope input resistance are in series and present the circuit un-
der test with a total resistance of 10MΩ. The x10 probe re-
duces the resistive loading on the circuit by a factor of 10.

Now, what will be the value of the adjustable capacitance
in the probe? We can get that by the following reasoning: in
order for the frequency response to be flat, the ratio of the
probe impedance to the input impedance must be constant
over frequency. That is, the probe capacitive reactance must
be 9 times the scope input capacitive reactance. Now capaci-
tive reactance is inversely proportional to capacitance, so the
probe capacitance is 20/9 = 2, 2pF. The measurement circuit
sees a total capacitance Ct formed by the two capacitors in
series.

1

Ct

=
1

Cin

+
1

Cprobe

from which Ct = 2pF.
The x10 probe reduces the capacitive loading by a factor of ten.3

(This relationship is shown in analytical form in equation 6 of the appendix on page 7.)
As a by-product, the probe impedance and the oscilloscope input impedance function as a frequency invariant

(flat frequency response) voltage divider which reduces the signal amplitude by a factor of 10. For large and medium
amplitude signals, one can simply increase the scope vertical scale factor by 10 to compensate. However, very small
signals may be attenuated out of sight.

2If you’re lucky, it will cause a malfunctioning circuit to start working, but that contravenes Murphy’s Law.
3This is a simplified analysis that ignores the effect of the capacitance of the probe cable. In fact, the capacitive load is not as low as this

simplified theory would indicate, but it is less than it would be for an ordinary coaxial cable connected to the oscilloscope. For example, in the
PK-8100 ×10 probe of figure 1 , the capacitance presented to the circuit is 15pF. This compares to something like 100pF for an ordinary coax cable
directly into the scope.
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6 Probe Compensation
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Figure 6: Probe Compensation Adjustment

The compensation capacitance (Cp in figure 5) of the ×10
probe must be adjusted to suit the input capacitance of the
oscilloscope. This requires adjusting the compensation each
time the probe is moved to a different scope. To compensate
the probe, it is driven with a square wave4. The resultant
scope display will appear as one of the three waveforms in
figure 6.

The upper display is under-compensated; the compensa-
tion capacitance is too small. In the lower display, it is over-
compensated, the compensation capacitance is too large. The
centre display is the Goldilocks version: just right.

These square waves indicate the response of the probe
over a range of frequencies. The upper waveform, with its
undershoot, corresponds to a depressed high-frequency re-
sponse. The lower waveform corresponds to an emphasized
high-frequency response. The centre waveform corresponds
to a flat frequency response.

The compensation capacitance may typically be found in
one of three locations:

• As a screwdriver adjustment in the body of the probe (visible as the small dot on the probe body in figure 1).

• As a screwdriver adjustment in the base of the probe cable, where the cable plugs into the scope.

• As a coaxial capacitor adjustment in the probe. In this case, the probe body includes a locking ring, which is ro-
tated to unlock the compensation adjustment. Part of the probe is then rotated to adjust the probe compensation.
When the compensation is correct, the locking ring is re-tightened.

7 Caution: The ×1/×10 Switch

Many oscilloscope probes include a ×1/×10 switch. This is convenient, but it must be understood that the resistive
and capacitive load on the circuit increase significantly in the ×1 position. As well, the compensation capacitance has
no effect in the ×1 position.

For example, the PK-8100, 100MHz scope probe presents a load capacitance of 15pF to the circuit in the ×10
position and 46pF plus the scope input capacitance (for a total of something in the order of 70pF) in the ×1 position.

8 Summary: When to Use a Scope Probe

You should use a scope probe for measurements when:

• The circuit impedance is approaching the input impedance of the scope, or

• The measurement includes high frequencies or fast edges and it’s important to measure these accurately, or

4On the DSO-101 scope, this squarewave must be provided by a signal generator. On some oscilloscopes, a suitable square wave is provided at
a front-panel test point labelled Cal or Probe.
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• The input capacitance of the scope causes the test circuit to malfunction. (This is frequently the case for circuits
operating at radio frequencies. An RF oscillator will change frequency or simply stop operating.)

• You need to minimize the length of the ground return lead, or

• The measurement voltage exceeds the range of the scope.

You do not need a scope probe – and can use two separate leads or a shielded test cable (figure 4) – when:

• The circuit impedance is much less than the input impedance of the scope, and

• The frequencies being measured are low or accurate measurement of rise time is not important, and

• The signals are large enough that introduction of noise into the circuit via a long ground lead is not a problem,
and

• The signal magnitude is not too large to display on the scope.

9 Grounding the Scope Probe

The oscilloscope measurement circuit must be complete: there must be a return path to the circuit common (aka
ground).

There are a variety of ways that the ground may be connected. In order of increasing effectiveness:

1. Power Line Ground In this case, the operator has thrown away the probe ground lead as an unnecessary
nuisance. The scope probe is connected into the circuit at the measurement point without a ground lead. The
circuit common is somehow connected to the power-line ground. Perhaps the circuit power supply has a third
(green) terminal (the power-line ground) and the circuit common is connected to that. The oscilloscope also
connects to the power-line ground, and that completes the measurement circuit.

This is a terrible measurement setup, for several reasons:

(a) The measurement circuit is a large loop (sometimes referred to as a ground loop) and this will tend to act
as an inductive pickup for noise

(b) The large measurement loop and its inductance result in terrible transient response so square waves are
badly distorted, showing spurious overshoot and ringing.

(c) Power-line currents, in the power ground connection in the length of wire between the power supply ground
and oscilloscope ground, create a noise voltage that is superimposed on the measurement.

2. Separate Ground Wire to Scope The circuit common is connected by a separate wire to the oscilloscope. This
might go from the common terminal on the power supply to the ground terminal on the oscilloscope.

Again, this is a very poor measurement setup. It eliminates the problem of noise due to power-line currents, but
it retains the disadvantages of poor transient response and serious inductive noise pickup because of the large
area in the measurement loop.

3. Probe Ground Clip The probe ground clip can be seen in the photo of figure 1 as a short wire with an alligator
clip at the end. In this ground arrangement, the clip is attached to a ground point in the vicinity of the measure-
ment point. Now the measurement circuit loop is reduced to a small area which includes the scope probe and
the ground clip wire.

This measurement setup is adequate for many applications. However, if you notice that moving the ground
clip wire changes the shape of the scope waveform or has some effect on the amount of noise pickup, then the
measurement loop is having an effect.
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4. Probe Ground Ring In the photo of a scope probe in figure 1 can be seen a silver ring in the vicinity of the
probe tip. This ring is at ground potential and the ultimate ground connection is at this point. This arrangement
is not the most convenient, but it can be accomplised by wrapping stiff wire around the ground ring and then
connecting that ground wire into the circuit with the shortest possible wire length. Some authors suggest using
a knife blade to connect the scope ground ring to a circuit ground. For a permanent test point, there are sockets
that receive the scope probe and simultaneously connect the ring to a circuit ground.

It helps to have a strong suspicion of all measurements. Ask the question: is this waveform what is really happening
in the circuit or is some or all of it an artifact of the measurement setup?

10 Resources

Syscomp DSO-101 PC-Based Oscilloscope
www.syscompdesign.com

Measurement Concepts: Probe Measurements
Walter E.McAbel, Tektronix, 1969
A definitive work on oscilloscope probes.

11 Appendix: Compensation Analysis
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Figure 7: The Compensated Divider

The x10 probe of figure 5 on page 3 has the equivalent circuit
shown in figure 7.

The upper part, which we’ll call Z1, represents the x10
probe and is composed of R1 ‖ Cc. (Cc is the adjustable
compensation capacitance).

The lower part Z2 represents the input circuit of the oscil-
loscope and is composed of R2 ‖ Cl. We’ll use the shorthand
symbol s to represent jω, where ω = 2πf and f is the fre-
quency.

Then the voltage division ratio K (the ratio of output to
input signal) is equal to

K =
Z2

Z1 + Z2

(1)

where

Z1 = R1 ‖ 1/sCc

=
R1

1 + sR1Cc

(2)

(3)

and

Z2 = R2 ‖ 1/sCl

=
R2

1 + sR2Cl

(4)
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Substitute for Z1 and Z2 in equation 1:

K =

R2

1 + sR2Cl

R1

1 + sR1Cc

+
R2

1 + sR2Cl

=
R2(1 + sR1Cc)

R1(1 + sR2Cl) + R2(1 + sR1Cc)
(5)

If we make adjust the compensation capacitance Cc so that

R1Cc = R2Cl (6)

(that is, the divider is compensated correctly) then equation 5 simplifies to

K =
R2

R1 + R2

(7)

which is independent of frequency, since it contains no s terms.
Put another way, the compensated divider has a flat frequency response and it will reproduce a waveform without

distortion.

12 Appendix: Oscilloscope Input Capacitance

If oscilloscope input capacitance is a problem, why don’t scope manufacturers design lower capacitance input circuits?
One issue is noise.

The voltage noise generated in a resistor due to thermal agitation is given by

en =
√

4kTBR (8)

where the quantities are:

en voltage noise, rms volts
k Boltzmann’s constant, 1.38× 10−3

T absolute temperature, kelvins (293 for 20◦)
B measurement bandwidth, Hz
R resistance, ohms

For a 1MΩ resistor connected into an amplifier with 20MHz bandwidth, the voltage noise en is about 0.5mV. This
sets a lower limit to the measurement sensitivity of the scope.

Now consider the effect of a capacitor of 20pF across this 1MΩ resistor. The capacitor acts as path for noise
current at high frequencies, reducing the effective noise bandwidth to 8kHz.Then the voltage noise at the input of the
amplifier drops to 11µV.

The tradeoff is the low impedance of the capacitor presented to the measurement circuit.
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