
Understanding Logic Analyzer Triggering

22 Volume 4 • Issue 3 • 1999

To debug an embedded sys-
tem, you need to monitor
the real-time behavior of its

many signals and data streams,
and logic analyzers still provide
the most intimate look within an
embedded system. However, logic
analyzers don’t work like magic;
you must connect to the right sig-
nals and establish the right trig-
gers to obtain the information you
need for debugging.

Setting up logic analyzer trig-
gers can be difficult and time con-
suming. You might assume that if
you know how to program, you
should be able to set up a logic
analyzer trigger with no difficulty.
However, this assumption could
lead to a rude awakening as there
are many concepts that are unique
to logic analysis. Once these are
understood, you can easily set up
a logic analyzer to provide the
needed data.

The Conveyor Belt of Data

The memory of a logic analyzer
can be compared to a very long
conveyor belt, with samples
acquired from the Device Under
Test (DUT) as boxes on the con-
veyor belt (Figure 1). At one end
new boxes are placed on the con-
veyor belt, and at the other end
the boxes fall off. In other words,
because logic analyzer memory is
limited in depth (number of sam-
ples it can store), whenever a new
sample is acquired, the oldest
sample currently in memory is
thrown away if the memory is full.

Continuing with the conveyor
belt analogy, a logic analyzer trig-
ger is similar to someone standing
at the beginning of the conveyor
belt who has been told to look for
a special box and to stop the con-
veyor belt when that box reaches
a particular position on the belt.
The special box is the “trigger
sample”. Once a logic analyzer
detects a sample that matches the
trigger condition, it stops acquir-
ing more samples when the trigger
is located appropriately in memo-
ry. The location of the trigger in
memory is the “trigger position”.
Normally, the trigger position is
set to the middle so that an equal
number of samples occurring
before and after the trigger sample
are in memory. However, the trig-
ger position can be set to any
point in memory.

Trigger Sequence

Table 1 is a summary of typical
logic analyzer triggering capabili-
ties. Although logic analyzer trig-
gers are often simple, they can
require complex programming. For
example, you may want to trigger
on the rising edge of one signal
that is followed by the rising edge
of another signal. Because there is
a sequence of steps to find the trig-
ger, this is known as a “trigger
sequence”. Each step of the
sequence is called a “sequence
level” or a “state”.

Each sequence level consists of
two parts, the conditions and the
actions. The conditions are
Boolean expressions such as “If
ADDR = 1000” or “If there is a ris-
ing edge on SIG1”. The actions are
what the logic analyzer should do
if the conditions are met. Exam-

S O F T W A R E / H A R D W A R E I N T E G R A T I O N

Use capable triggering features to zero in on problems.

Doug Beck, Hewlett-Packard

Oldest sample Trigger sample

TIME

Newest sample

Figure 1. A logic analyzer is analogous to a conveyor belt. As new data enters,

old data falls off the end.

23Volume 4 • Issue 3 • 1999

ples of actions include triggering the
logic analyzer, going to another
sequence level, or starting a timer.
This is similar to an If/Then state-
ment in programming.

Each sequence level in the trigger
sequence is assigned a number. The
first sequence level to be executed
is always Sequence Level 1, but
because of Go To actions, the rest
of the sequence levels can be exe-
cuted in any order.

When a sequence level is execut-
ed for a sample and its conditions
are not met, then the logic analyzer
acquires the next sample and exe-
cutes the same sequence level. Con-
sider the following trigger sequence:

1. If DATA = 7000 Then Trigger

The logic analyzer will keep acquir-
ing samples until the data has a value
of 7000, and then it will trigger. Once
a logic analyzer triggers, it will not
trigger again, even if more than one
sample meets the trigger condition.

If the conditions in a sequence
level are not met, the logic analyzer
will acquire the next sample and
execute the same sequence level
again. A trigger condition of
“ADDR = 7000” is equivalent to
“Keep acquiring more samples
until you find one that has
ADDR = 7000”. If you set up a trig-
ger condition that is never met, the
logic analyzer will never trigger.

If a sample meets the condition,
another sample is always acquired
before the next sequence level is
executed. Therefore it is not possi-
ble for a single sample to be used to

meet the conditions of more than
one sequence level, and each
sequence level represents events
that occur at different points in
time. Two sequence levels can never
be used to specify two events that
happen simultaneously. For exam-
ple, consider the following trigger
sequence:

1. If ADDR = 1000 Then Go To 2
2. If DATA = 2000 Then Trigger

If the following samples were
acquired, the logic analyzer would
trigger on sample 7.

Sample No. ADDR DATA
1 1000 2000

This sample meets the condition in

Sequence Level 1

2 1010 3000
3 1020 4000
4 1030 5000
5 1040 6000
6 1050 7000
7 1060 2000

This is where the logic analyzer

triggers

The logic analyzer will not trigger
on Sample 1 because a new sample
is acquired between the time that
the condition in Sequence Level 1 is
met and when the condition in
Sequence Level 2 is tested. A good
way to think of this trigger sequence
is “Find ADDR = 1000 followed by
DATA = 2000 and then trigger”.

Where to go next

When a sequence level’s conditions
are met and there is a “Go To” in the
actions, it is clear which sequence
level will be executed next, but if
there is no “Go To”, the next
sequence level to be executed
depends upon the logic analyzer’s
implementation. On some logic ana-
lyzers, if there is no “Go To” the
next sequence level is executed. On
others, the same sequence level is
executed again. Because of this
ambiguity, it is good practice to
specify a “Go To” action rather than
relying on the default.

Table 1. Summary of Logic Analyzer Triggering Capabilities.

24 Volume 4 • Issue 3 • 1999

If you need to trigger on multi-
ple conditions occurring simulta-
neously, you can use a Boolean
expression within a sequence,
such as “If ADDR = 1000 And
DATA = 2000”. For this condition
to be met, ADDR must equal 1000
in the same sample that DATA
equals 2000.

It is a common mistake to try to
use two sequence levels when a
Boolean expression should be
used or to use a Boolean expres-
sion when two sequence levels
should be used.

Boolean expressions are used
for events that happen at the
same time, and multiple sequence
levels are used when one event
follows another.

Branching

A branch is similar to the Switch
statement in the C language and
the Select Case statement in Basic.
It provides a method for testing
multiple conditions, each with its
own actions. A Branch example is
shown in the next column:

1. If ADDR < 1000 Then Go To 2
This is a branch of Sequence

Level 1

Else If ADDR > 2000 Then Go To 3
This is a second branch of

Sequence Level 1

Else If DATA = 2000 Then
Trigger This is a third branch

of Sequence Level 1

2. If DATA <= 7000 Then Trigger
3. If there is a rising edge on SIG1

Then Trigger

In Sequence Level 1 there are
three branches, so there are three
possible actions. When the condi-
tion of one branch is met, all of the
branches below it are not tested:
Each branch is an “Else If”. Only
one branch can be executed based
upon a single sample, even if the
sample causes the conditions for
more than one branch to be met.

Another method to zero in on
the data you need is to wait for an
event to occur a specified number
of times before triggering. Occur-
rence Counters are used when you
want to find the nth occurrence of
an event. For example, if you want
to trigger on the fifth time that
ADDR = 1000, you could set up
the trigger as:

1. If ADDR = 1000 occurs 5 times
Then Trigger

Using Time to Trigger

In some cases, you are interested
in when something happens with
respect to other events. Timers
are used to check the amount of
time that has elapsed between
events. If you want to trigger on
one edge followed by another
edge that occurs within 500 ns
(Figure 2), then a timer should be
used. The most critical point to
remember in using timers is that
they must be started before they
are tested.

The key to setting up a timer is
to identify where it should be
started and where it should be
tested. Consider the example in
Figure 2. The timer should be
started when the rising edge on
SIG1 is detected, and it should be
tested when the rising edge occurs
on SIG2. It may seem that the
proper setup for this measurement
is:

1. If there is a rising edge on SIG1,
Then

Start Timer1
Go To 2

2. If there is a rising edge on SIG2
And Timer1 < 500 ns Then
Trigger

The above trigger sequence
actually has a critical flaw. What
happens if there is a rising edge
on SIG1 but SIG2 doesn’t occur
within 500 ns? The logic analyzer
will never trigger, because Timer1
will keep running and the condi-
tion “Timer1 < 500 ns” will never
be met. Later on, there might be
another rising edge on SIG1 that

S O F T W A R E / H A R D W A R E I N T E G R A T I O N C O N T I N U E D

SIG1

<500ns

SIG2

Figure 2. Locating some events requires the element of time. In this case, a trig-

ger occurs when the edge of SIG2 follows the edge of SIG1 within 500 ns.

25Volume 4 • Issue 3 • 1999

is followed within 500 ns by the ris-
ing edge on SIG2.

To fix this problem, whenever the
timer exceeds 500 ns without trig-
gering, the sequence should loop
back to Level 1 to look for another
rising edge on SIG1. The correct
sequence is:

1. If there is a rising edge on SIG1,
Then

Start Timer1
Go To 2

2. If there is a rising edge on SIG2
And Timer1 < 500 ns Then Trigger
Else If Timer1 >= 500 ns Then

Reset Timer1
Go To 1

Take Only What You Need

To efficiently use the memory in the
logic analyzer, you may want to
store only those samples you are
interested in. Storage qualification
is used to specify whether an
acquired sample should be placed in
memory or discarded. The simplest
method to establish storage qualifi-
cation is to set up the Default Stor-
age. This is specified separately
from the trigger sequence, such as
in a separate tab or another dialog.
Default Storage establishes which
samples are stored unless a
sequence level specifies otherwise.
For example, you may want to store
samples only if ADDR is in the
range 1000 to 2000, so the Default
Storage should be set to “ADDR In
Range 1000 to 2000”.

Sequence-level storage qualifica-
tion overrides the Default Storage
and establishes which samples are

stored within a particular sequence
level. This storage qualification
applies until a “Go To” or “Trigger”
action is used to leave the sequence
level. This is useful when you need
a different storage qualification for
each sequence level. For example,
you may want to store nothing until
ADDR = 1000 and then store only
samples with ADDR in the range
1000 to 2000 for the rest of the mea-
surement.

Setting up sequence level storage
requires the use of an additional
branch. The following sequence
level could be used to store only
samples with ADDR in the range
5000 to 6FFF while looking for
DATA = 005E:

1. If DATA = 005E Then Trigger
Else If ADDR In Range
5000 to 6FFF Then

Store Sample
Go To 1

Note the use of the Store Sample
action. It means “store the most
recently acquired sample in memory
now”, not “from now on, start stor-
ing”. Because the Store Sample
action is never executed unless
ADDR is in the range 5000 to 6FFF,
this branch essentially means
“While in this sequence level, store
only samples with ADDR between
5000 and 6FFF”.

Simplifying the Setup

While setting up logic analyzer trig-
gers can be difficult, trigger func-
tions greatly simplify the process.
Trigger functions are commonly
needed building blocks that can be
combined to set up a trigger
sequence. You can set up a com-
monly used trigger sequence simply
by selecting the appropriate func-
tion and filling in the data.

The most difficult part of setting
up a complex trigger is often break-
ing down the problem. How do you
map a complex trigger into
sequence levels, branches, and
Boolean expressions? Here are step-
by-step instructions:

1. Break down the problem into
events that don’t happen simulta-
neously. These correspond to
sequence levels.

2. Scan the list of available trigger
functions to try to find some that
match the events identified in
Step 1.

3. Break down the remaining events
into Boolean expressions and
their corresponding actions. Each
Boolean expression/action pair
corresponds to a separate branch
within a sequence level. Remem-
ber that “Store” branches can be
used to handle storage qualifica-
tion only for that sequence level.

Figure 3. Documenting trigger sequences allows you to easily use them again.

26 Volume 4 • Issue 3 • 1999

Document your Trigger

Sequences

If a trigger sequence is important
at one time, it is likely to be
important again, so documenting
trigger sequences is a valuable
investment in time. Complex trig-
ger sequences generally are diffi-
cult to understand without some
accompanying explanation, so
inline documentation is impor-
tant, as shown in Figure 3. Inline
documentation is included in the
trigger definition itself, allowing
you to describe how different
parts of the trigger work.

Setting up logic analyzer trig-
gers is very different than writing
software. The job can be greatly
simplified if other work can be
leveraged by using pre-defined
trigger functions and previously
written triggers that are well doc-
umented. Write your own trigger
sequence only if nothing else is
available. Finally, when faced
with a difficult trigger to set up,
break down the problem into
smaller chunks and deal with
each one separately.

S O F T W A R E / H A R D W A R E I N T E G R A T I O N C O N T I N U E D

he capabilities of modern
logic analyzers must expand
along with the ever-increasing

complexity of the systems being
created. HP’s new VisiTrigger tech-
nology allows you to easily use
these added capabilities even if
you don’t use your logic analyzer
every day. You can spend more
time making measurements and
less time paging through manuals
and setting up the logic analyzer.

VisiTrigger technology is avail-
able in the HP 16600A/16700A
logic analysis systems. It com-
bines increased trigger functionali-
ty with a user interface that is
easy to understand and use. With
VisiTrigger, capturing complex
events is as simple as point-and-

T

Intuitive User Interface Improves Your Productivity

click to choose the trigger func-
tion and fill-in-the-blank to cus-
tomize it to your specific task.

Three new state-and-timing
modules enhance the VisiTrigger
technology with the addition of
four-way branching and global
counters. The HP 16715A, 16716A,
and 16717A state-and-timing mod-
ules offer up to 333-MHz state and
up to 2-GHz timing on each chan-
nel all of the time. See page 34 for
more information on these new
modules.

For additional information on
products mentioned in this article,
check 5 on the reply card, or visit
http://www.hp.com/info/insight3.

T

