
Introducing
BBC BASIC

R. B. Coats

Introducing
BBC BASIC
R.B. Coats
Principal Lecturer in Computer Studies
Leicester Polytechnic

Edward Arnold (Publishers) Ltd. hereby warrant that this book is in no way
connected with either the BBC or the manufacturers of the computer, Acorn.

Edward Arnold

© R. B. Coats 1984

First published in Great Britain 1984 by
Edward Arnold (Publishers) Ltd, 41 Bedford Square, London WC1B 3DQ

Edward Arnold, 300 North Charles Street, Baltimore, Maryland 21201, U.S.A.

Edward Arnold (Australia) Pty Ltd, 80 Waverley Road, Caulfield East, Victoria 3145, Australia

ISBN 0 7131 3520 4

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of Edward Arnold (Publishers) Ltd.

Printed in Great Britain by Butler & Tanner Ltd, Frome and London

Preface

As the title suggests, the aim of this book is to introduce you
to BASIC on the BBC computer. Because of its size, it cannot
cover ALL features of BBC BASIC. However, by the end of the book,
you will have met the important features of BASIC, and you should
be able to use these features in simple programs. Indeed, if you
complete all the exercises contained in the book, then you will
have written some twenty-four programs.

'Introducing BBC BASIC' is written in such a way that young
people (aged about 12 and upwards) will be able to use it. Simple
examples are used throughout. These examples are easy to
understand, and require no mathematics other than simple
numeracy. Many of the examples are, in fact, drawn from a school
environment, so the book is particularly relevant to schools and
colleges.

This book is suitable for use as a classroom text. It is
divided into relatively short units. Each unit focusses on a
particular feature of BASIC, and contains:

explanatory text;
test questions;
practical exercises.

The majority of units are short enough for the explanatory text
and the test questions to be covered in one lesson. The practical
exercises may be undertaken individually by pupils on a computer
if sufficient access to computers is available. Alternatively,
the teacher may demonstrate these exercises on a single computer
in front of the class. Those practical exercises which involve
writing programs should be tackled by each pupil first writing
his or her answer on paper. These answers can then by tried on a
computer. Again, if sufficient access to computers is available,
each pupil can type his/her own program into a computer and run
it. Otherwise, the teacher can select one or two of the pupils'
answers, and run those on a single computer in front of the whole
class. Constructive criticism of programs written by others is a
valuable part of learning to program.

There is a section at the end of the book containing
additional questions, over and above those provided at the end of
a unit. These questions cover fundamental ideas of BASIC. The
additional questions on a particular unit may be tacked any time
after completing the unit, either immediately to reinforce the
ideas, or later as revision. If you can answer ALL these
questions correctly, you will have gained a good grasp of the
fundamentals of BASIC.

This book is also suitable as a self-study text, provided
you have a BBC computer of your own, or have reasonable access to
one. The practical approach encourages you to learn by trying
things out directly on the computer, and the carefully sectioned
text allows you to progress at your own pace.

How does 'Introducing BBC BASIC' (128 pages) relate to the
book 'BBC BASIC' (256 pages) written by the same author and
published by Edward Arnold? Both books introduce you to the
important features of BASIC, and teach you how to use these
features in simple programs. This book leaves you at this stage,
however, whereas 'BBC BASIC' progresses to describe more advanced
features of BASIC, and also describe how to design, construct,
test and implement larger and more complex programs. Both books
place strong emphasis on 'good' programming - sound programming
techniques are taught throughout. In summary, 'Introducing BBC
BASIC' will provide you with a good grasp of programming
fundamentals, and a firm foundation should you wish to take
programming further.

I am grateful to Peter Messer for checking the final draft
of this book. I also wish to thank Leicester Polytechnic for the
use of their computer facilities to prepare the book.

Finally, I am very grateful to my wife and children for
their encouragement and help, without which this book could not
possibly have been written. In particular, I would like to thank
David (aged 13) and Martin (aged 10) for working through the
units to check them.

February 1984 R.B.Coats

iv Preface

Contents

 Preface iii

1 Introduction 1
2 Variables 7
3 What is a program? 14
4 Input and output 19
5 Looking after your programs 26
6 Editing 35
7 REPEAT loops 39
8 Strings 44
9 Graphics 49
10 Colour 55
11 FOR loops 59
12 READ and DATA 67
13 Numbers 71
14 Sound 76
15 Timing 81
16 The IF command 86
17 Procedures 94

APPENDICES

A Answers 102
B Summary of BASIC 105
C Additional Questions 108
D Answers to Additional Questions 116

 Index 120

1 Introduction

1.1 Using this book

BASIC is a language which was designed to be easy for beginners
to learn. Because of its simplicity, it has become widely
available, and nearly all computers provide it. The aim of this
book is to teach you how to program the BBC computer in BASIC.

This book is organised into Units. Each unit concentrates on
a particular aspect of BASIC, and assumes that you understand the
previous units. Therefore, the units must be tackled in order. In
each unit there are three components:

The written text describing the particular aspect of
BASIC covered in the unit.

Practical exercises to be carried out on your computer.
L e a r n i n g t o p r o g r a m i s s i m i l a r t o
learning to ride a bicycle - you learn
by trying to ride, and not by reading
about it. Hence, these exercises are
very important, because they reinforce
your understanding of the unit.

Questions at the end of the unit, to challenge you
to apply the knowledge that you have
just acquired. Answers are provided in
Appendix A to SOME of these questions;
those with an answer are indicated by an
* immediately following the question
number.

All the practical exercises and the questions should be completed
before going on to the next unit.

Appendix C contains Additional Questions for selected units
of the book. These questions cover the fundamentals of BASIC; if
you can answer them all correctly you will have a good grasp of
these fundamentals. The questions on a particular unit may be
tackled any time after completing that unit, either immediately
to reinforce the ideas, or later as revision. Answers to ALL the
Additional Questions are provided in Appendix D.

1.2 Computers

There are three main parts to a computer.

1. The KEYBOARD, which is used to enter information into the
computer. The information that is entered into a computer is
called the input.

2. The COMPUTER itself, which manipulates information. For
example, it might add two numbers together. Or it might sort
a list of names into alphabetical order.

3. The TELEVISION (or MONITOR), which is used to display the
results produced by the computer. For example, it might show
the answer obtained from adding the two numbers. Or it might
display the names in alphabetical order. The information
that is sent out by the computer to the screen is called the
output.

1.3 The PRINT command

You can get the computer to do something by giving it a command.
A command is typed on the keyboard. When you have finished typing
the command, you must always press the RETURN key, to let the
computer know that you are ready for it to obey the command. The
computer will now obey the command, and then wait for you to
enter another command.

PRINT is an example of a command. It tells the computer to
display something on the screen.

Type
PRINT 3+1 and then press RETURN.

The computer should display 4 on the screen.

2 Introduction

Keyboard Computer Television
(Monitor)

Normally, the word 'execute' is used to describe what a computer
does with a command, rather than the word 'obey' ('execute' means
'carry out'). Hence, a computer is said to execute a command. You
can tell when the computer is waiting for a command because it
displays a 'prompt' on the screen. The prompt on the BBC computer
is the > character. Pressing the RETURN key causes a new line to
be taken. If you forget to press RETURN, it will be obvious since
you will have two commands on the same line.

- -
Type

PRINT 5+2

PRINT 6+3

PRINT 7-4

PRINT 10-5

Did you remember to press the RETURN key each time? Note that '-'
is on the same key as '=', and means subtract (take). Check that
the computer's answers are correct.

- -
Type

PINT 3+1

Note that PRINT has been spelt incorrectly: you missed out the R.
Typing mistakes are common, especially for the beginner.
Fortunately, there is no harm done. The computer only recognises
certain commands, and PINT is not one of them. So it tells you
that you have made a mistake.

If you realise that you have made a mistake BEFORE you press
the RETURN key, then you can correct it. If you press the DELETE
key once, the last character you typed is deleted. If you press
it again, another character is deleted. And so on.

- -
Type

PINT but don't press the RETURN key.

Press DELETE and the T should disappear.

Press DELETE and the N should disappear.

Press DELETE and the I should disappear.

1.3 The PRINT command 3

Now type

RINT 3+1 and press RETURN.

The command should be executed correctly. From now on, you won't
be reminded to press RETURN after each command. This is something
you will have to remember for yourself.

- -
Type

CALCULATE 3+1

DISPLAY 3+1

Although the English looks correct, the computer does not know
the meaning of the words CALCULATE and DISPLAY, and so thinks you
have made a mistake. The computer will only accept words it
knows, and the one for displaying something on the screen is
PRINT.

- -
The computer can also perform multiplication (times) and division
(divides).

Type
PRINT 2*4

PRINT 5*5

PRINT 8/2

PRINT 9/3

The asterisk (*) tells the computer to do multiplication; the
slash (/) tells the computer to do division. Check that the
computer's answers are correct.

- -
This exercise shows the effect of inserting spaces in a command.

Type
PRINT2*3

PRINT 2*3

PRINT 2 * 3

PRIN T 2*3

4 Introduction

All these are valid commands except the last one. Spaces can be
inserted between words and numbers, but it is wrong to insert
spaces between the letters making up a word: PRIN T is incorrect
because of the space between the N and the T.

You should always put a space after a command word. For
example:

PRINT 6/2 is clearer than

PRINT6/2

It is even more important when dealing with more complicated
commands, which we meet in later units:

IF AGE < 11 THEN PRINT "CHILD" is clearer than

IFAGE<11THENPRINT"CHILD"

The PRINT command tells the computer to display
something on the screen

Questions

1. What is meant by the word input?

2. How do you provide 'input' to your computer?

3. What is meant by the word output?

4. Where does the 'output' from your computer appear?

5. What is a command?

6. You have met one command in this unit. What is it?

7. How do you give a command to the computer?

8. What is meant by executing a command?

1.3 The PRINT command 5

9. What happens when you press the RETURN key after typing in a
command?

10. What happens if you give the computer a command that is
spelt incorrectly?

11. Work out what the computer will do with these commands.
Write your answers in the 'your answer' column.

command your answer computer

PRINT 5+3

PRINT 5-3

PRINT 2*3

PRINT 15/5

PING 2+3

PRINT 5 + 3

CALCULATE 5+3

PRI NT 5+3

PRINT 4+3+2

PRINT 4+3-2

Now type the commands into the computer, and see if you were
right.

12. How do you correct typing mistakes? Make some deliberate
mistakes, and then practise correcting them.

6 Introduction

2 Variables

2.1 Computer memory

A computer has a memory. It stores information in its memory just
as you store information in your memory. Information can be both
recalled (got back from memory) and remembered (saved in memory
for future recall). This unit describes how you can use BASIC to
save information in, and recall information from, your computer's
memory.

You can think of a computer's memory as being made up of a
large number of boxes.

Each box can hold one piece of information. At this stage we will
only consider numbers being stored in the boxes, but in later
units we will see that other information (this book, for example)
can be stored as well. In the diagram above, the third box from
the left contains the number 12, and the fifth box from the left
contains the number 9.

2.2 The LET command

Suppose you want to tell the computer about the age of a boy
called DAVID. This can be done by typing the command

LET DAVIDSAGE=12

The computer will respond to the command as follows:

a) it selects ONE of its unused memory boxes;
b) it attaches the name DAVIDSAGE to this box;
c) finally it stores the number 12 in the box.

12 9

The boxes making up a computer's memory are 'electronic
boxes' which cannot be seen with your eyes. So how can you be
sure that the computer has created a box called DAVIDSAGE?
Remembering that the PRINT command causes something to be
displayed on the screen, try typing

LET DAVIDSAGE=12
PRINT DAVIDSAGE

and see what happens. Success! The computer will display the
contents of the named box.

A name such as DAVIDSAGE is called a variable. It is said to
be 'variable' because the contents of its box can be altered. For
example, after David's next birthday, you might type

LET DAVIDSAGE=13

The box for DAVIDSAGE already exists, and it currently holds the
number 12. This command simply stores a new number (13) in the
box, and the previous number (12) is forgotten.

The LET command puts a value into one of the boxes making
up the computer's memory.

Type
LET MARTINSAGE=9
PRINT MARTINSAGE

Does the computer do as you expect?

- -

12

DAVIDS
AGE

8 Variables

Type

LET MARTINSAGE=10
PRINT MARTINSAGE

The MARTINSAGE memory box should now contain the number 10.

- -
Type

PRINT ALISONSAGE

The computer should tell you that there is 'no such variable'. A
memory box called ALISONSAGE can only be created by a LET command
such as LET ALISONSAGE=5. Since you haven't typed such a command,
the computer doesn't have a box called ALISONSAGE, and therefore
it cannot display its contents.

- -
Type

PRINT DAVIDSAGE
NEW
PRINT DAVIDSAGE

The NEW command tells the computer to forget about all the names
that have so far been attached to the boxes, and to start again.
You can think of the computer rubbing off the names. Hence,
following the NEW command, it doesn't know about DAVIDSAGE and
MARTINSAGE, and when you try to use one of these names, the
computer tells you that there is 'no such variable'.

The NEW command rubs off any names that you have attached
to the boxes making up the computer's memory.

Suppose David is paid pocket money by his parents. Each week he
receives five pence for each year of his age. If he is 10, he
gets 50 pence per week; if he is 11, he gets 55 pence; and so on.

Type
LET DAVIDSAGE=10 10
PRINT DAVIDSAGE DAVIDSAGE

The LET command creates a box called DAVIDSAGE, and stores the
number 10 in it.

2.2 The LET command 9

Type
LET PAYFORDAVID=5*DAVIDSAGE

This command creates a box called PAYFORDAVID. The value assigned
to PAYFORDAVID is calculated by multiplying 5 by the number in
the DAVIDSAGE box. This number is 10. 5 times 10 makes 50, so the
box called PAYFORDAVID should contain 50.

Type
PRINT PAYFORDAVID 50
 PAYFORDAVID

and check that it contains 50.

Type
PRINT DAVIDSAGE

and check that it still contains 10. The value of a variable is
not changed if it appears on the right-hand side of the = in a
LET command (for example LET ... = 5*DAVIDSAGE). The computer
simply finds out what value is in the box called DAVIDSAGE, and
then uses that value in its calculations.

- -
Type

LET MARTINSAGE=9 9
PRINT MARTINSAGE MARTINSAGE

Type
LET MARTINSAGE=MARTINSAGE+1

Although this command may look rather odd at first, the computer
processes it in a similar way to the last exercise. Firstly it
gets the value held in MARTINSAGE, which is 9. Then it adds 1,
giving 10. Finally it assigns the value 10 to MARTINSAGE.

Type
PRINT MARTINSAGE 10
 MARTINSAGE

and check that it is correct. Note that the previous value (9)
has been lost.

- -

10 Variables

The numbers in the boxes below show the values that will be
stored in the computer's memory after the following LET commands
have been executed.

NEW
LET A=2 2 A

LET B=3 3 B

LET C=A+B 5 C

LET C=C-1 4 C

Type these commands into the computer, and check (using PRINT
commands) that the values in the computer's memory boxes agree
with the values above.

- -
Again, the numbers in the boxes below show the values that will
be stored in the computer's memory after the following LET
commands have been executed. However, a deliberate mistake has
been made. Can you spot it?

 2 A 3 B 4 C

LET A=A+4 6 A

LET B=A-C 2 B

LET C=B*B 9 C

LET A=A/2 3 A

Type these commands into the computer, and see (using PRINT
commands) whether the computer finds the same mistake as you did.

- -

2.2 The LET command 11

2.3 Variable names

To finish this unit we look more closely at variable names.

Variable names can be any length.

They can contain: capital letters (A, B,... Z);
 small letters (a, b,... Z);
 numbers (0, 1,... 9);
 the 'underline' character.

No other characters may be used. Because there is a
danger of confusing the 'underline' character with the
'minus', we will not use the 'underline' until much
later in this book.

A name must start with a letter.

Spaces are not allowed in the middle of a name.

The following are examples of correct names:

GALLONS
AD1984
AGE

The following are examples of names that are incorrect:

55BC because it doesn't start with a letter.
PETER*SMITH an asterisk is not allowed in a name.
GOALS IN MONTH spaces are not allowed in a name.

You have to be careful on the BBC computer to make sure that
variable names do not begin with BASIC "keywords" such as LET and
PRINT. If they do, the computer gets confused.

Type
LET LETTER=9
LET PRINTER=4

LETTER is invalid because it starts with the letters LET. PRINTER
is wrong because it starts with the letters PRINT. If you
encounter a 'syntax error' such as this, and there is nothing
obviously wrong with the line you have typed, then suspect the

12 Variables

variable name you have used, and try a different one.
One way round this problem is to use only small letters for

variable names. This requires greater skill at typing, however,
because you are continually using the SHIFT key. Until you become
good at typing, you will find it easier to use capital letters
for variable names, and avoid using names which begin with BASIC
keywords. With a bit of practice this becomes straightforward.

Finally, you should always choose names which remind you
what the variables are being used for (DAVIDSAGE, for example).

Questions (See Page 108 for Additional Questions on this unit)

1. What is the name of the part of a computer that stores
information?

2. What is a variable in BASIC?

3. Which are the variables in the following command?

LET CENTIMETRES = METRES * 100

4. Write a command which will set a variable called DAY to hold
a value of 7.

5. What happens if you try to use a variable which has not yet
been given a value?

6. What is the purpose of the NEW command?

7. Work out what values will be in the memory boxes after the
computer has processed each of the following commands. Write your
answers in the boxes provided.

your answers computer

LET A=6 A A

LET B=A/2 B B

LET C=A-B C C

LET C=3-C C C

Now type the commands into the computer, and check (using PRINT
commands) that your answers are correct.

Questions 13

3 What is a program?

3.1 A simple program

Up to now, whenever you have typed a command at the keyboard the
computer has executed it immediately. If you want the computer to
do the same thing again you must re-enter the command. This can
be boring. It would be nice if there was a way of saving commands
somewhere, and then telling the computer to execute the commands
you have saved. This unit describes how to do this.

A program is a sequence of commands. Each line of a program
consists of a line-number followed by a command. For example:

1 LET AGE=10
2 PRINT AGE
3 LET PAY=5*AGE
4 PRINT PAY
5 END

The program is stored in the computer's memory. You can tell the
computer to execute the commands of the program by typing RUN. In
response, the computer will fetch from memory the command
contained in Line 1 of the program, and execute it. Then the
computer will fetch the command contained in Line 2, and execute
that. This continues until it reaches the end of the program. As
you can see, the line-numbers tell the computer the order in
which the commands are to be executed.

How do we get a program into the computer's memory in the
first place? Easy. Simply type the line-number, followed by the
command, and repeat for each line of the program.

- -
Remembering the line-numbers, type

1 LET AGE=10
2 PRINT AGE

Notice that the computer simply accepts what you type, and then
displays its prompt, waiting for another command. It does not
execute the commands; if it did, you would see the number 10
appear on the screen, resulting from the PRINT AGE command.

Type
3 LET PAY=5*AGE
4 PRINT PAY
5 END

The program should now be in the computer's memory.

- -
Type

LIST

The LIST command causes the program stored in memory to be
displayed on the screen. Check each line and make sure that the
program is correct. If any line is wrong, then just re-type that
line (not forgetting the line-number).

- -
Type

RUN

The numbers 10 and 50 should be displayed on the screen. The 10
results from Line 2 (PRINT AGE) being executed. The 50 results
from Line 4 (PRINT PAY) being executed.

A program is a sequence of commands.

The RUN command tells the computer to execute the program
stored in its memory. This is called running the program.

The LIST command causes the program stored in the
computer's memory to be displayed on the screen.

3.2 The TRACE command

The TRACE command tells the computer to display the line-number
of a command on the screen just before it executes that command.
Hence, you can see which lines the computer has executed.

- -
Type

TRACE ON
RUN

3.2 The TRACE command 15

The computer should display:

<1> <2> 10
<3> <4> 50
<5>

The numbers between the < > pairs are the line-numbers. Line 1 is
displayed first because it was executed first; then comes Line 2,
followed by the display of 10 resulting from the PRINT AGE
command; Line 3 is next; then Line 4, followed by the display of
50 resulting from the PRINT PAY command; finally Line 5 is
executed.

- -
Type

TRACE OFF

This tells the computer to stop tracing. Try the RUN command
again, and confirm that the computer is no longer printing line-
numbers.

The TRACE command tells the computer to print out the
line-number of a command before it executes that command.
Hence, you can see which lines the computer has executed.

3.3 The AUTO command

Type
NEW
LIST

In Unit 2 we saw that the NEW command tells the computer to
forget about all variable names. In addition, it tells the
computer to forget about the program in its memory. In fact, the
NEW command clears memory completely. Hence, the LIST command has
no effect, because there is now no program in memory.

Type
5 END
2 PRINT AGE
1 LET AGE=10

16 What is a program?

and list the program. Even though we typed the program in reverse
order, the computer stores the program in its memory in line-
number order.

- -
Type

3 LET PAY=5*AGE
4 PRINT PAY
LIST

Again, the computer maintains the program in line-number order.
Line 3 is inserted after Line 2, and Line 4 is inserted after
Line 3. Check that the program runs as before.

In the last exercise we were able to insert two lines in the
middle of the program, between Line 2 and Line 5, by giving them
line-numbers of 3 and 4. We couldn't insert another line,
however, because there aren't any more unused line-numbers.
Instead of using line-numbers of 1, 2, 3,... etc., it is common
to make the first line of a program line-number 10, the second
line of the program line-number 20, and so on. In this way, there
are nine unused line-numbers between any two lines, and so up to
nine lines can be inserted, if necessary.

BBC BASIC provides the AUTO command to generate line-numbers
automatically in steps of 10 when you are typing in a program.
This very useful command makes entering programs simpler, because
you need type only the commands.

- -
Type

NEW
AUTO

10 should appear on the screen. Type LET AGE=10
20 should appear on the screen. Type PRINT AGE
30 should appear on the screen. Type LET PAY=5*AGE
40 should appear on the screen. Type PRINT PAY
50 should appear on the screen. Type END
60 should appear on the screen. Press ESCAPE

To terminate automatic line-numbering you must press the ESCAPE
key.

- -
Type

LIST

and check that your program is correct. If any line is incorrect,
then simply re-type that line (not forgetting the line-number).

3.3 The AUTO command 17

Type
TRACE ON
RUN
TRACE OFF

Notice that the computer executes the line with the smallest
line-number (10) first, then the line with the next smallest
line-number (20), and so on.

The AUTO command generates line-numbers automatically
when you are typing in a program.

Questions (See Page 109 for Additional Questions on this unit)

1. What is a program?

2. How do you tell the computer to run a program?

3. Where is the program stored while it is being run?

4. What happens to the program in the computer's memory when
you type NEW?

5. What is the purpose of a line-number? Why do you normally
use line-numbers of 10, 20, 30... ?

6. What is the purpose of the TRACE command?

7. What command do you use to display a program on the screen?

8. When you are typing a program into your computer, what
command will cause the computer to generate line-numbers
automatically?

9* The distance that a car travels in a certain time can be
calculated by multiplying its speed by the time. Using variable
names of SPEED, HOURS and MILES, write a program to calculate the
distance travelled in 4 hours when travelling at 60 miles per
hour. The program should display the speed, the time and the
distance on the screen, in this order. Type the program into the
computer, list it and check that you have typed it correctly. Now
run the program, and check that it produces the correct answer.

18 What is a program?

4 Input and output

4.1 More about the PRINT command

10 LET AGE=10
20 PRINT AGE
30 LET PAY=5*AGE
40 PRINT PAY
50 END

When it is run, this pocket money program displays two numbers on
the screen. These numbers are 10 and 50. From our knowledge of
the program, we know that 10 means '10 years of age', and 50
means '50 pence per week'. However, someone not familiar with the
program is unlikely to know this. This section describes how we
can make output easier to understand.

So far we have used the PRINT command in two ways:

PRINT 2+3 : the computer works out 2 add 3, and then displays
the answer on the screen.

PRINT AGE : the computer displays on the screen the number
stored in the memory box called AGE.

Type
PRINT "HELLO"

The computer displays HELLO on the screen. We can get the
computer to display any message on the screen by using a PRINT
command of this form. The message is written between two
quotation marks ("...........").

What will be displayed by the command PRINT "AGE"?

Type
PRINT "AGE"

Were you correct? Now type

LET AGE=10
PRINT AGE

The command PRINT "AGE" tells the computer to display the word
AGE. The command PRINT AGE tells the computer to display the
contents of the box called AGE (10 in this case). It is important
that you understand the difference between these two cases.

Using AUTO, type the following program into the computer:

10 PRINT "A"
20 PRINT "B";
30 PRINT "C"
40 PRINT "D"
50 END

Did you notice the semi-colon in Line 20? If not, retype the
line. Now run the program. You should see the following output:

A
BC
D

The cursor is the name given to the marker that the computer
displays on the screen to show you where the next character will
appear. Cursors vary from computer to computer - on the BBC
computer it is a flashing underline character.

PRINT "A" tells the computer to display the letter A at the
cursor position, and then to move the cursor to
the beginning of the next line.

PRINT "B"; tells the computer to display the letter B at the
cursor position. The ; at the end of the command
tells the computer to leave the cursor on the same
line, immediately following the B. The cursor is
NOT moved to the beginning of the next line.

PRINT "C" tells the computer to display the letter C at the
cursor position. Hence, the C is displayed
immediately after the B. The cursor is then moved
to the beginning of the next line.

PRINT "D" is the same as for A and C.

If there is no semi-colon at the end of a PRINT command,
the cursor is moved to the beginning of the next line.

If there is a semi-colon at the end of a PRINT command,
the cursor is left on the same line as the output.

20 Input and output

- -
What output would you expect this program to produce?

10 PRINT "123";
20 PRINT "45"
30 PRINT "6";
40 PRINT "78"
50 END

Try it on your computer, and see if you were right.

- -
Enter into the computer the pocket money program shown at the
start of this unit (don't forget to type NEW before you start).

Type
15 PRINT "AGE = ";
35 PRINT "POCKET MONEY = ";
LIST

You have inserted two extra lines into the program. Now run the
program. The output should be:

AGE = 10
POCKET MONEY = 50

Is the output as you would expect? Notice that both Line 15 and
Line 35 have a semi-colon at the end of the line.

- -
Type

15 PRINT "AGE = "
35 PRINT "POCKET MONEY = "
LIST
RUN

Note the effect of missing off the semi-colons.

- -
Up to now we have only used the PRINT command with one item, for
example PRINT AGE. BASIC allows us to include a number of items
in one PRINT command; the items are separated by semi-colons.
When the command is executed by the computer, all the items will
be displayed on one line.

Type
PRINT "ABC" ; "123" ; "DE" ; "45"

4.1 More about the PRINT command 21

You should see ABC123DE45 displayed on the screen. The spaces
around the semi-colons are not necessary - they have been
included simply to make the command easier to read.

- -
Type

LET AGE=10
PRINT "AGE = ";AGE

and you should see AGE = 10 displayed on the screen. Notice that
there are two items in the PRINT command ("AGE = " and AGE).

- -
Our pocket money program now becomes:

10 LET AGE=10
20 PRINT "AGE = ";AGE
30 LET PAY=5*AGE
40 PRINT "POCKET MONEY = ";PAY
50 END

Type this program into the computer, and see if it works
correctly.

4.2 The INPUT command

Our pocket money program works well for a boy or girl who is aged
10. Suppose, however, that we want to work out the pocket money
for David, who is 12 years old. As it stands, the program will
not work. We must change Line 10 to LET AGE=12, and then run the
program.

Type
10 LET AGE=12
LIST
RUN

and see if the results are correct.
If we now want to work out the pocket money for Martin, who

is 9 years old, we will have to change the program yet again.
This is becoming very boring. This difficulty can be overcome by
using the INPUT command.

Type
10 INPUT AGE
LIST
RUN

22 Input and output

When the computer executes the INPUT AGE command, it displays a
question mark on the screen, and waits for you to type a value on
the keyboard. This value is then stored in the memory box called
AGE.

Type
10 in response to the ?, and press the RETURN key.

The output should be the same as we obtained previously for a 10
year old.

Type
RUN

and 5 in response to the ?, and press the RETURN key.

Has the computer produced the correct answer? We can now run the
program as often as we like, and obtain the pocket money for
whatever age we enter.

The INPUT X command accepts a number typed at the keyboard
and stores this number in the memory box called X.

When the computer executes the INPUT command in the pocket money
program, and it displays the ? on the screen, we know that the
computer is asking us to enter the child's age because we are
familiar with the program. However, someone not familiar with the
program is unlikely to know this. The problem is the same as we
met when dealing with output (the numbers 10 and 50), and it can
be overcome in exactly the same way.

Type
5 PRINT "ENTER AGE ";
LIST
RUN

When the computer executes Line 5, it will display the message
ENTER AGE on the screen. The semi-colon at the end causes the
cursor to remain on the same line. Line 10 displays the ?, and
then we can type a number (say 10). The program then continues
exactly as before.

4.2 The INPUT command 23

The message can be included in the INPUT command itself. For
example

10 INPUT "ENTER AGE ",AGE

has the same effect as the two lines

 5 PRINT "ENTER AGE";
10 INPUT AGE

Making this change, our pocket money program now becomes:

10 INPUT "ENTER AGE ",AGE
20 LET PAY=5*AGE
30 PRINT "POCKET MONEY = ";PAY
40 END

Notice that the PRINT "AGE = ";AGE command is no longer needed,
because we can see the age from the message produced by Line 10.

Questions (See Page 109 for Additional Questions on this unit)

1. What new commands have you met in this unit?

2. What output will the following program produce?

10 PRINT "A"
20 PRINT "BB";
30 PRINT "CCC"
40 PRINT "DDDD"
50 END

3. Type in the program, run it and see if you were correct.

4. What output will the following program produce?

10 PRINT "A";"B";
20 PRINT "C";"D"
30 PRINT "E";"F"
40 END

5. Type in the program, run it and see if you were correct.

24 Input and output

6. Write an INPUT command which has the same effect as:

PRINT "ENTER WEEKLY AMOUNT ";
INPUT WEEKLY

7. How can you stop the cursor moving to the next line after a
PRINT command is executed?

8* In the present version of the pocket money program, the
weekly amount for each year of the child's life is fixed at 5
pence per week. Modify the program so that this amount can be
entered from the keyboard.

Hints:

 a) you will need another INPUT command between Line 10 and Line
20, asking for the weekly amount. Use a variable called
WEEKLY.

 b) you will need to replace Line 20 by a line that calculates
PAY by multiplying WEEKLY by AGE, rather than 5 by AGE.

Type the program into the computer, and then run it. When the
program has run, the screen should look something like:

ENTER AGE ?10
ENTER WEEKLY AMOUNT ?6
POCKET MONEY = 60

9* Modify the program you produced for question 8 so that the
words PENCE PER WEEK are added to the final line of output. An
example line of output is:

POCKET MONEY = 60 PENCE PER WEEK

Hint : you will need to modify Line 30.

Questions 25

5 Looking after your programs

5.1 Backing store

A program is a sequence of commands. When the computer is given
the RUN command, it will execute the program stored in its
memory. Type the following program into your computer.

10 PRINT "I AM A CLEVER COMPUTER"
20 PRINT "GOOD BYE"
30 END

Type
LIST
RUN

Does the program work correctly? Now switch off your computer,
and then switch it back on again.

Type
LIST

You should find that the program has disappeared. If you want to
run this program again, you will have to re-type it all.

A computer's memory is cleared when the computer is
switched off, and any program it contains is lost.

It is boring to have to type in a program every time you want to
use it. Therefore, nearly all computers provide a memory in which
programs can be saved even when the computer is switched off.
This memory is called a backing store. Cassette tapes are the
most common form of 'backing store' on small computers. Larger,
and more expensive computers, may use 'floppy disks'. This book
deals only with cassette tapes.

5.2 Cassette tapes

Recording a program on tape is just like recording music on tape;
you can play the cassette back later, and the music will still be
there. If you were to unwind a cassette tape, you would find it
similar to the following diagram:

 leader brown tape leader

Most of the tape is brown, and it is on this part of the cassette
that programs are recorded. Both sides of the tape can be used,
simply by turning the cassette over. The length of the tape
depends on the capacity of the cassette. For example:

a C15 cassette provides 15 minutes recording (seven-and-a-
half minutes on each side);

a C30 cassette provides 30 minutes recording (15 minutes on
each side);

Fixed to either end of the brown tape there is a short plastic
'leader'. These leaders attach the tape to the two spools inside
the cassette.

IT IS IMPORTANT TO REMEMBER THAT PROGRAMS CANNOT BE
RECORDED ON THESE LEADERS.

- -
Many of the units in this book require you to save programs on a
cassette. One C15 cassette will hold all the programs contained
in this book, so get a C15 cassette.

- -
Every cassette should be given a name which reflects the purpose
of the programs on that cassette. A suitable name for our
cassette might be UNIT PROGRAMS, reflecting the fact that the
programs on it are the programs associated with the units of this
book. If your cassette has a label already, then write UNIT
PROGRAMS on this label. If not, then get a sticky label, write
UNIT PROGRAMS on it, and stick the label to the cassette.

- -
Insert the cassette into your recorder, with Side 1 uppermost.
Rewind the tape, and set the tape counter to 000 (if your
recorder has one). Press the PLAY button on the recorder, and let

5.2 Cassette tapes 27

the tape wind forward until the tape counter reads 003. Take the
cassette out of the recorder. The 'leader' should have been wound
onto the right-hand spool, and you should see just brown tape. If
the leader is still visible, you will have to wind it a little
further. Put the cassette back into the recorder. It is now ready
for recording programs.

5.3 Program titles

You will need to give a name to each program that you save on
tape. A maximum of 10 characters is allowed in the name if you
are saving programs on cassette, and a maximum of 7 characters if
you are saving programs on disk. This book uses names of 7
characters or less, so that the programs may be saved on either
cassette or disk without having to alter the names used.

Choose sensible names such as:

"ALIENS" for an 'aliens' program.

"POCKET" for our 'pocket money' program. Note that the name
has been shortened because there are 11 letters in
the words 'pocket money', which exceeds the
maximum we are using (7).

People modify programs after they have been written, and often
keep several versions of the same program. If you use 6
characters or less for the program name, then there will be a
spare character which can be used for the version number. For
example, "POCKET1" for version 1 of the pocket money program,
"POCKET2" for version 2, and so on.

It is good practice to start every program with a title.
With its title, the pocket money program becomes:

10 REM POCKET1
20
30 INPUT "ENTER AGE ",AGE
40 LET PAY=5*AGE
50 PRINT "POCKET MONEY = ";PAY
60 END

Line 10 is the 'title'. REM is short for REMARK. We use remarks
in BASIC when we want to include some lines to make the
purpose of the program clearer to ourselves. When the
computer executes a REM command, it ignores everything
else on that line. Hence, a REMark is purely for the
reader's benefit. The title (POCKET1) explains the

28 Looking after your programs

purpose of the program, and is the name under which it
is saved on cassette.

Line 20 is a blank line to separate the header from the rest of
the program. This line is not essential, but it does
make the program more readable. To insert a blank line
into a program:

1. press the space bar once;
2. then press the RETURN key.

Pressing the RETURN key by itself will not produce a
blank line.

5.4 Cassette contents sheet

You cannot see the programs recorded on a cassette. However, you
can use a cassette contents sheet to help you to remember the
programs that are stored on the cassette. Every time you save a
program on the cassette, add its name, and the final tape counter
reading, to the Contents Sheet.

 Contents of UNIT PROGRAMS cassette

program tape counter
 003

Make a 'cassette contents' sheet for your UNIT PROGRAMS cassette,
as shown above. This sheet should be kept with the cassette.

5.5 The SAVE command

The SAVE command saves on cassette the program that is
currently stored in your computer's memory.

Type the pocket money program shown on Page 28 into the computer.
Run it to make sure that it is working correctly.

5.5 The SAVE command 29

1. Type SAVE "POCKET1"

The message 'RECORD then RETURN' will be displayed on the
screen.

2. Press the RECORD button on your recorder. The tape should
start moving.

3. Pause for 2-3 seconds, to produce a short gap on the tape.

4. Press the RETURN key on the keyboard.

The computer will record the program on the tape. When the
computer has finished, the > prompt will appear on the
screen. If your cassette has automatic motor control, then
the tape will stop automatically. If it hasn't, you will
have to stop the recorder manually.

5. Release the RECORD button on your recorder.

- -
Add the name of the program (POCKET1), and the final reading of
the tape counter, to the 'cassette contents' sheet, as below:

 Contents of UNIT PROGRAMS cassette

program tape counter
POCKET1 003
 007 (e.g.)

003 is the position of the start of POCKET1
007 is the position of the end of POCKET1. It also becomes the

position of the start of the next program that you save on
the cassette.

- -
Type the following program into your computer:

10 REM CLEVER1
20
30 PRINT "I AM A CLEVER COMPUTER"
40 PRINT "GOOD BYE"
50 END

30 Looking after your programs

Make sure that the program is working correctly. Now save it on
the tape immediately after POCKET1, calling it CLEVER1. The steps
are similar to those you used to save POCKET1, except that the
SAVE command is SAVE "CLEVER1".

- -
Add the name of the program (CLEVER1), and the final reading of
the tape counter, to the 'cassette contents' sheet, as below:

 Contents of UNIT PROGRAMS cassette

program tape counter
POCKET1 003
CLEVER1 007
 011 (e.g.)

The layout of the tape is now:

 Leader POCKET1 CLEVER1

000 003 007 011

The shaded areas represent short gaps between the programs. These
gaps are caused by the pause between pressing the RECORD button,
and pressing the RETURN key, when saving programs.

5.6 The LOAD command

The LOAD command loads a program into the computer's
memory from cassette.

5.6 The LOAD command 31

1. Insert the UNIT PROGRAMS cassette into the recorder.

2. Type
LOAD "POCKET1"

The message SEARCHING will be displayed.

3. Rewind the tape.

4. Start the cassette playing by pressing the PLAY button on
the recorder. Whenever the computer finds a program on the
tape, it will display its name on the screen. If that
program happens to be the one it is looking for, it will
also display the message LOADING. When the loading is
complete, the > prompt will reappear. If your cassette has
automatic motor control, the tape will stop automatically;
otherwise, you will have to stop the recorder manually.

5. Release the PLAY button on your cassette.

- -
The program is now in the computer's memory. List it, and check
that it is correct. Now run the program. Does it perform
correctly?

- -
With the UNIT PROGRAMS cassette as it was at the end of the last
exercise, type

LOAD ""

and press the PLAY button on your recorder. The two quotes are
typed one after the other with no space between. If you omit the
program name in the LOAD command, and just type LOAD "", then the
computer will load the next program on the tape, no matter what
it is called. In this case, CLEVER1 should be loaded.

- -
List the program, and check that it is correct. Now run the
program. Does it perform correctly?

5.7 Cataloguing a cassette

To find out what programs are saved on a cassette, rewind it to
the beginning, type

*CAT (CAT stands for CATalogue)

32 Looking after your programs

and press the PLAY button on the recorder. The name of each
program is displayed on the screen as it is encountered on the
tape. No program is loaded into memory.

5.8 Backup

A cassette occasionally develops a fault which prevents one of
its programs from being loaded into memory. When this occurs, the
program is lost. Sometimes, several programs from one cassette
may be lost. The solution to this problem is to keep a duplicate
copy on a separate cassette. If your cassette becomes corrupted,
you should still be able to retrieve the program from the second
cassette. This process is called backup; the duplicate cassette
is called the backup cassette. Each of your cassettes should have
its own backup cassette. These should be kept in a safe place
separate from the main cassettes, so that any mishap occurring to
the main ones is unlikely to affect the backup cassettes as well.

You make a backup copy of a program by first loading it into
memory from your main cassette (using the LOAD command), then
saving it on your backup cassette (using the SAVE command).

5.9 The OLD command

The NEW command clears the computer's memory in readiness for you
typing in your next program. What happens if you accidently type
NEW before you have saved your present program? With many
computers, the program will be lost, and you will have to retype
it all. The BBC computer provide a safety net. If you type OLD
before you have entered any lines of the new program, then the
previous program will be restored to memory.

The REM command is ignored by the computer. Use it when
you want to include explanatory text in a program.

The *CAT command displays on screen a catalogue of
the programs saved on a cassette.

The OLD command restores to memory a program previously
lost by typing NEW (or by pressing the BREAK key), so long
as you haven't started entering a new program.

5.9 The OLD command 33

Questions

1. What new commands have you met in this unit?

2. What happens to the program in the computer's memory when
the computer is switched off?

3. What is a backing store?

4. What is the purpose of the program title?

5. What is the purpose of the SAVE command?

6. If a program is saved on cassette as GUESS3, what does the 3
mean?

7. Why should you keep a cassette contents sheet?

8. What will happen to your program if you try to record it on
the plastic 'leader' at the start of a cassette?

9. What is the purpose of the LOAD command?

10. What is the effect of the command LOAD ""?

11. How can you obtain a catalogue of the programs on a
cassette?

12. W h a t i s b a c k u p ? W h y i s i t n e c e s s a r y t o b a c k u p y o u r
cassettes?

13. What is the effect of the OLD command?

34 Looking after your programs

6 Editing

As we have already seen, programs are almost always altered after
they have been written. The process of altering a program is
called editing. This unit describes how you edit programs.

6.1 Modifying whole lines

- -
Load the POCKET1 program from your cassette. List it and run, and
make sure that it is working correctly. Suppose we now want to
make the computer appear a little more polite.

Type
30 INPUT "PLEASE ENTER YOUR AGE ",AGE

List and run the program. The previous Line 30 has been replaced
by the line you have just typed in. ANY line can be replaced by
typing a new line with the same line-number.

- -
Type

55 PRINT
56 PRINT "GOOD BYE"
57 PRINT

List and run the program. A new line can be inserted into a
program by choosing its line-number to be BETWEEN the line-
numbers of the lines above and below the new line. Hence, Lines
55, 56 and 57 are inserted between Line 50 and Line 60. Notice
that a PRINT command by itself (as in Line 55) simply produces a
blank line on the screen when it is executed by the computer.

- -
Type

RENUMBER

List and run the program. The program should run exactly as
before. Note, however, that the line-numbers have been altered so
that each line-number is 10 more than the previous one. You
should always renumber the line-numbers after inserting lines,

because programs whose line-numbers increase in regular steps are
easier to understand.

- -
Type

RENUMBER 1,1
LIST
RENUMBER 100,100
LIST
RENUMBER 100,10
LIST

Look at each listing carefully. You should be able to work out
that the RENUMBER n,m command alters the line-numbers so that the
first line-number is n, and each subsequent line-number is m more
than the previous one.

- -
Type

110
LIST

Notice that Line 110 has been deleted. The simplest way to delete
a single line is to type its line-number, and then press the
RETURN key. Contrast this with inserting a blank line, where we
type the line-number, a SPACE, and then press the RETURN key.

- -
Type

DELETE 150,170
LIST

A group of lines may be deleted by the DELETE command. Line 150,
Line 170, and all the lines between 150 and 170 (in this example,
only Line 160) are deleted.

- -
RENUMBER the program. It should now be:

10 REM POCKET1
20 INPUT "PLEASE ENTER YOUR AGE ",AGE
30 LET PAY=5*AGE
40 PRINT "POCKET MONEY = ";PAY
50 END

36 Editing

 To replace a line: type the new line with the same line-
 number as the line to be replaced.

 To insert a line: type the new line with a line-number
 BETWEEN the line-numbers of the lines
 above and below the new line.

 To delete a line: type the line-number by itself. To
 delete a group of lines, use DELETE x,y
 where x is the smallest line-number of
 the group, and y is the largest.

 The RENUMBER command causes the lines of a program to be
 renumbered. Steps of 10 are usual.

6.2 Modifying part of a line

When you find an error in a line of your program, you can correct
it by retyping the whole line. The new line will replace the
previous line if it is given the same line-number. The BBC
computer provides a means by which you can correct PART of a line
without having to retype the WHOLE line.

 screen

 10 PRINT "I AM A CLEVER COMPUTER"
 20 PRINT "GOOD BYE"
 30 END

 DELETE COPY
 20 PRINT "GOO scratchpad

On the right-hand side of the keyboard of the BBC computer are
six special keys. The keys with the arrows on them allow you to
move the cursor to any point on the screen. As soon as you press
one of these arrow keys, the computer enters 'edit mode', and a
scratchpad appears on the screen. You construct your new line in
the scratchpad. Any characters typed at the keyboard are

6.2 Modifying part of a line 37

� �

� �

displayed in the scratchpad. In addition, you can move the cursor
to any line on the screen, and copy characters from that line
into the scratchpad by pressing the COPY key. The underline of
the D in Line 20 indicates the cursor. Characters are deleted
from the scratchpad in the normal way using the DELETE key.
Pressing the RETURN key takes the computer out of 'edit mode',
and the line in the scratchpad becomes the new program line.

- -
Use 'edit mode' on your computer to change the following lines of
the pocket money program:

20 INPUT "PLEASE TYPE YOUR AGE ",AGE
40 PRINT "YOUR POCKET MONEY IS ";PAY;" PENCE PER WEEK"

List and run the program.

Questions

1. What is meant by editing?

2. How do you replace a line in a program?

3. How do you insert a new line into a program?

4. How do you delete a line from a program?

5. How do you delete a group of lines from a program?

6. What is the effect of the RENUMBER command?

38 Editing

7 REPEAT loops

A program is a sequence of commands. In all the programs we have
met so far, the computer executes the first command, then it
executes each of the following commands in turn, until it reaches
the END of the program. If we want to use the pocket money
program to find the pocket money of several children, then we
have to RUN the program several times, and enter a different age
on each run. What we would like to be able to do is to run the
program ONCE, and during that run get the computer to execute a
group of commands over and over again, until we tell it to stop.
This can be written as:

repeat
 a group of commands
until told to stop

This can be translated into BASIC very easily on the BBC
computer. The pocket money program becomes:

10 REPEAT
20 INPUT "ENTER AGE ",AGE
30 PAY=5*AGE
40 PRINT "POCKET MONEY = ";PAY
50 UNTIL told to stop
60 END

The REPEAT command in Line 10 tells the computer to execute over
and over again all the commands between Line 10 and the UNTIL in
Line 50. Hence, Lines 20, 30 and 40 form the group of commands to
be repeated. How can we tell the computer to finish its
repetition? As we are not interested in the pocket money of a
child whose age is zero, we could use a zero value of age to tell
the computer to finish repeating the group of commands. Hence,
Line 50 becomes:

50 UNTIL AGE=0

Notice that we have typed two spaces at the start of Lines 20, 30
and 40. This is known as indentation. We indent the group of
commands between the REPEAT and the UNTIL so as to make the
program easier to read. if there are several REPEAT commands in a

program, and you are not using indentation, then it isn't always
easy to see which UNTIL belongs to a particular REPEAT. With
indentation it is obvious.

- -
Type

10 REPEAT
20 INPUT "ENTER AGE ",AGE
30 PAY=5*AGE
40 PRINT "POCKET MONEY = ";PAY
50 UNTIL AGE=0
60 END

List and run the program. Try it with values of 5, 12, 7 and 0.
You should be asked to ENTER AGE four times, and then the program
should stop running. Does it work correctly?

- -
Type

45 ..PRINT (replacing the two dots by two spaces).

List and run the program. Try it again with values of 5, 12, 7
and 0. It should produce the same results as before, but they
should be displayed more clearly on the screen because of the
blank line between each set of results (produced by the computer
executing Line 45). You should always try to make your results as
clear as possible.

- -
Type

TRACE ON
RUN

The computer should display:

<10> <20> ENTER AGE ?

The computer executes Line 10, and then waits at Line 20 for you
to enter an age.

Type
5

The computer stores this value in the memory box called AGE.

40 REPEAT loops

The computer should now display:

<30> <40> POCKET MONEY = 25
<45>
<50> <20> ENTER AGE ?

The computer executes Line 30, followed by Line 40, which causes
POCKET MONEY = 25 to be displayed on the screen. Then it executes
Line 45, producing a blank line on the screen.

Now the computer comes to Line 50 (UNTIL AGE=0). The computer
gets the value contained in the memory box called AGE (5 in this
example) and says 'is this equal to 0?'. Obviously it is not, so
the computer goes back to the first line of the group of commands
(Line 20) and asks you to enter the age again.

Type
0

The computer stores this value of 0 in the memory box called AGE.

It now continues as it did above, displaying:

<30> <40> POCKET MONEY = 0
<45>
<50> <60>

When the computer comes to Line 50, it gets the value contained
in the AGE memory box (0 this time) and says 'is this equal to
0?'. It is. The computer has repeated the commands UNTIL AGE=0,
and it is now time to stop the repetition. So the computer goes
on to Line 60, which ends the program.

5

AGE

REPEAT loops 41

0

AGE

First time through: it executes Lines 10 20 30 40 45 50
Second time through: it executes Lines 20 30 40 45 50
Other times through: it executes Lines 20 30 40 45 50
 until it is told to stop.

The computer keeps returning to Line 20 and executing all the
commands through to Line 50. This sort of structure is called a
loop. The name 'loop' is used because the idea is similar to a
loop in a piece of string; if you start at the top of a loop, and
run your hand along the string, it will come back to the top of
the loop again. Likewise, the path that the computer takes when
executing the commands making up a program loop eventually leads
back to the top of the loop. The group of commands being executed
again and again is called the body of the loop. The commands
controlling the number of times a loop is executed are known as
loop control commands. Hence, a loop can be thought of as:

loop control command

 loop body loop

loop control command

Notice that the loop 'body' is indented a few spaces so as to
make it stand out. All loops have this general form. The loops
described in this unit are called 'REPEAT loops' because they are
controlled by the REPEAT command.

- -
Type

TRACE OFF

- -
Modify the pocket money program to become:

10 REM POCKET2
20
30 REPEAT
40 INPUT "ENTER AGE ",AGE
50 PAY=5*AGE
60 PRINT "POCKET MONEY = ";PAY
70 PRINT
80 UNTIL AGE=0
90 END

List and run the program. Make sure that it is working correctly.
Now save the program on your UNIT PROGRAMS cassette as POCKET2.
Don't forget to fill in the 'cassette contents' sheet.

42 REPEAT loops

The REPEAT command marks the start of a group of commands
that are to be executed over and over again.

The UNTIL command is paired with a REPEAT command, and
marks the end of the group of commands being repeatedly
executed. The commands are repeated until the condition
specified immediately after the UNTIL is satisfied.

Questions (See Page 110 for Additional Questions on this unit)

1. What is a loop? Why is it called a 'loop'?

2. What is the body of a loop?

3. What are loop control commands?

4. What is meant by the word indented? Why should the loop body
be indented?

5* Suppose you have been shopping and have bought a number of
items. The shop gives you a bill showing you how much you paid
for each item, and how much you paid altogether. Write a program
to check that the bill is correct. Written in ordinary English,
the program should be something like:

set bill to 0
repeat
 input item
 add item to bill
until item=0
print bill
end

Translate this into a BASIC program, and use variable names ITEM
and BILL. List the program to check that it is correct, and then
run it with the following data:

the first item cost 5 pence;
the second item cost 15 pence;
the third item cost 11 pence.

Did you remember a value of 0 to finish the list?
When the program is working correctly, save it on your

cassette as SHOP1. Don't forget the 'cassette contents' sheet.

Questions 43

8 Strings

In previous units we have used the PRINT command to display
messages on the screen. For example

PRINT "POCKET MONEY = "

will display the message 'POCKET MONEY = ' on the screen. The set
of characters between the quotes is called a string. A character
is any of the symbols on the keys of the keyboard. This includes:

the capital letters A, B, C,... Z
the small letters a, b, c,... z
the numbers 1, 2, 3,... 9
a space
the special characters <, >, ?, $, %,...

Note that a space is counted as a character. Hence, there are 15
characters in the string "POCKET MONEY = " (11 letters, 3 spaces
and an =). Because the quote character(") is used to mark the
beginning and the end of a string, there are difficulties in
using it as a character within the string; at this stage you are
advised to avoid doing so.

The command LET AGE=10 defines a memory box called AGE, and
stores the number 10 in it. This memory box is really a 'number'
memory box because it is used to hold numbers. Strings can be
stored in memory just as we can store numbers in memory.

The command

LET WORD$="COMPUTER"

defines a 'string' memory box
called WORD$, and stores the
string "COMPUTER" in it.

The $ at the end of the variable name tells the computer that
this is a string variable, and distinguishes it from the number

COMPUTER

WORD $

variable of the same name (i.e. WORD). The rules for naming
string variables are the same as those for naming number
variables; the name is chosen, and a $ is then added at the end.

- -
Type

10 INPUT "PLEASE TYPE YOUR NAME ",NAME$
20 PRINT "HELLO ";NAME$
30 PRINT
40 PRINT "I AM YOUR CLEVER BBC COMPUTER"
50 END

and run the program. Type your name when invited to do so. The
characters you type are stored in the string variable called
NAME$. The contents of NAME$ are then displayed on the screen by
Line 20.

- -
Type

LET A$="12"
PRINT A$

A string can consist of just numbers (e.g. 1, 2, 3...) between
quotes. Here we have stored the string "12" in A$. The string
"12" is NOT the same as the number 12.

- -
Type

LET B="12"+3

The computer will report a 'type mismatch' error, because it
cannot add numbers to strings. In fact, it cannot perform any
arithmetic (adds, takes, times or divides) on strings.

- -
Type

LET A$=3

Again, the computer will report a 'type mismatch' error, because
you are not allowed to assign a number to a string variable. Only
strings can be assigned to string variables.

- -

You are now in a position where you can type English words into
the computer, and it can display English words on the screen.
Type the following program into your computer.

Strings 45

 10 REM JOKES1
 20
 30 INPUT "PLEASE TYPE YOUR NAME ",NAME$
 40 CLS
 50 PRINT "HELLO ";NAME$
 60 PRINT
 70 PRINT "I AM YOUR CLEVER BBC COMPUTER"
 80 PRINT
 90 PRINT "********************************"
100 PRINT "WHAT DID THE SEA SAY TO THE SAND";
110 INPUT PAUSE$
120 PRINT
130 PRINT
140 PRINT "NOTHING - IT JUST WAVED"
150 PRINT
160 PRINT
170 PRINT "BET YOU DIDN'T GET THAT ONE, ";NAME$
180 PRINT
190 PRINT
200 PRINT "********************************"
210 PRINT "WHAT WOBBLES AND FLIES";
220 INPUT PAUSE$
230 PRINT
240 PRINT
250 PRINT "A JELLYCOPTER. HA HA"
260 PRINT
270 PRINT
280 PRINT "********************************"
290 PRINT
300 PRINT "BYE FOR NOW"
310 END

- -
List the program and check that you have typed it correctly. Now
run the program. Does it perform correctly?

CLS in Line 40 is a command which clears the screen
(it stands for CLear Screen).

INPUT PAUSE$ causes the computer to pause waiting for you to
press any key. When you do so, it continues to the
next command.

- -
When the program is working correctly, save it on your UNIT
PROGRAMS cassette as JOKES1. Don't forget to fill in the
'cassette contents' sheet. You can obviously extend this program
by putting in your own jokes.

46 Strings

- -
Type

LIST

As the program contains more lines than can be displayed on one
screen, the early lines of the program are lost off the top of
the screen before you have time to read them. The computer is
said to be in scroll mode.

- -
You can set the computer into paging mode so that it stops at the
bottom of each page.

Type

CTRL N (hold down the CTRL key, then press the letter N)
LIST

You now have chance to read the text on the screen.

- -
Press

SHIFT

and the next page will be displayed.

- -
To set the computer back to 'scroll' mode:

Type

CTRL O (hold down the CTRL key, then press the letter O)
LIST

and check that the program scrolls off the top of the page, as it
did previously.

- -
Type

LIST 100,200 to list all lines between 100 and 200

LIST ,100 to list all lines up to and including 100.

LIST 200, to list all lines beyond 200

- -

Strings 47

Questions (See Page 111 for Additional Questions on this unit)

1. What is a string?

2. How many characters are there in the string "XRY 382 T"?

3. How do you tell the computer that a variable is actually a
string variable?

4. Which of the following are illegal as string variables? Give
reasons.

a) NUMBER b) NUMBER$ c) AD1984$
c) 1984AD$ d) FIRST NAME$ e) FIRST-NAME$

5. Which of the following are incorrect BASIC commands?

a) LET A$="10"
b) LET A$=10
c) LET A=10
d) LET A="10"

6. What will the following program do when it is executed?

10 REPEAT
20 INPUT NAME$
30 PRINT "I LIKE ";NAME$
40 PRINT
50 UNTIL NAME$="STOP"
60 END

7. What command clears the screen when it is executed?

8. What command can you use to make the computer pause waiting
for you to press a key?

9. What is meant by paging mode? How do you set the computer
into paging mode?

10. What is meant by scroll mode? How do you set the computer
into scroll mode?

11. What command would you use to:

a) list all lines of a program up to Line 60;
b) list all lines of a program after Line 100;
c) list all lines of a program between Lines 50 and 90.

48 Strings

9 Graphics

9.1 Introduction

Many of the computers now cheaply available in shops are able to
draw pictures on their screens. These pictures often involve
several colours. The ability to draw pictures is called graphics.
The BBC computer provides very many facilities for graphics, but
it is beyond the scope of this book to deal with them all in
detail. Indeed, whole books have been written just on graphics.
The aim of this unit, therefore, is to provide you with a basic
understanding of graphics, from which you can build a deeper
knowledge.

F i r s t l y , w e s h o u l d d i s t i n g u i s h b e t w e e n ' t e x t ' a n d
'graphics'.

Text : Up to now, we have displayed only characters on the
screen. These characters have been the same as those
which appear on the keyboard. Characters such as these,
appearing on the screen, are called text.

Graphics: There are special BASIC commands which instruct the
computer to draw lines and shapes on the screen, in a
variety of colours. These lines and shapes are referred
to as graphics.

The BBC computer has EIGHT modes in which it can operate. These
modes are numbered from 0 to 7, and are called Mode 0, Mode 1,...
Mode 7. Only one mode can be used at a time. Each mode has
different capabilities regarding 'text' and 'graphics'. The
differences between the modes are explained in the User Guide
which came with your BBC computer.

We will use Mode 1 for both the graphics in this unit and
the colour in the next unit. Mode 1 is available on a Model B BBC
computer, or a Model A with 32K of memory. If your computer is a
standard Model A, then use Mode 5 instead (i.e. whenever you come
across the command MODE 1, replace it by MODE 5).

9.2 Drawing lines

You can think of a computer display screen as consisting of a
large number of dots. Each dot can be made to emit light. Hence,
by carefully choosing which dots to light up, you can draw
pictures on the screen.

BBC BASIC caters for 1280 dots across the screen, and 1024
dots up the screen. The horizontal dots are numbered 0, 1,..1279,
and the vertical dots are numbered 0, 1,.. 1023. Numbering starts
from the bottom left-hand corner of the screen, as shown in the
following diagram:

The position of a particular dot on the screen is specified in
terms of:

1. how far across the screen the dot is. For example, Dot
A is at position 200 across the screen. This is often
called the X co-ordinate of the point.

2. how far up the screen the dot is. For example, Dot A is
at position 800 up the screen. This is often called the
Y co-ordinate of the point.

Hence, Dot A has co-ordinates (200,800). Notice that the X
coordinate is written before the Y co-ordinate.

50 Graphics

1023

200
X A

X B

800

0

800

200

1279

x co-ordinate

y
co

-o
rd

in
at

e

What are the co-ordinates of Dot B in the diagram?

- -
Type

10 MODE 1 (MODE 5 on a Model A BBC computer)
20 MOVE 200,800
30 DRAW 900,100
40 END

and run the program. You should see a line on the screen, drawn
from the top left-hand corner towards the bottom right-hand
corner of the screen.

The MODE command switches the computer into the mode
specified, Mode 1 in this case. When the computer is
first switched on, it is in Mode 7.

The MOVE command moves the cursor to the position
specified by the co-ordinates, in this case (200,800).
This is, of course, our Dot A.

The DRAW command draws a line from the point specified,
in this case Dot B at (900,100), to the last point
visited (which is Dot A at (200,800) : we went there with
the MOVE command).

- -
Type

35 DRAW 900,800

and run the program. You should see an extra line on the screen,
drawn vertically upwards from point (900,100).

- -
Type

36 DRAW 200,800

and run the program. You should see an extra line on the screen,
drawn horizontally from point (900,800) and completing the
triangle.

- -

9.2 Drawing lines 51

52 Graphics

Figure 9.1 A grid representing the screen of the BBC computer.

10
00

90
0

80
0

70
0

60
0

50
0

40
0

30
0

20
0

10
0

10
00 90
0

80
0

70
0

60
0

50
0

40
0

30
0

20
0

10
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

x
co

-o
rd

in
at

e

y co-ordinate

9.3 Drawing shapes

So far we have seen how the computer can draw a single line using
the MOVE command and the DRAW command together; more complex
shapes can be drawn by adding further DRAW commands. Let us now
get the computer to draw the house shown in Figure 9.1 opposite.

- -
Type

10 REM HOUSE1
20 MODE 1
30
40 MOVE 200,300
50 DRAW 200,600
60 DRAW 1000,600
70 DRAW 1000,300
80 DRAW 200,300

and run the program. You should see on the screen a rectangle
representing the front wall of the house. Look at the commands
closely, and make sure that you understand how they work.

- -
Type

 90
100 MOVE 200,600
110 DRAW 400,800
120 DRAW 800,800
130 DRAW 1000,600

and run the program. The roof should now be added to the house.
Notice that we have left a blank line between the group of
commands which draws the front wall, and the group of commands
which draws the roof. The blank line makes the program easier to
follow when you make a mistake and have to go back to correct it.

- -
When the program is working correctly, save it on your UNIT
PROGRAMS cassette as HOUSE1. Don't forget to fill in the
'cassette contents' sheet.

- -

9.3 Drawing shapes 53

Questions

1. What new commands have you met in this unit?

2. What is the difference between text and graphics?

3. How many modes does the BBC computer have?

4. What are co-ordinates?

5. Write a program to draw a line between point (300,100) and
point (700,200). Test it on your computer. Don't forget the MODE
command.

6. Write a program to draw a triangle with corners at points
(300,100), (900,200) and (500,800). Test it on your computer.

7. Draw a grid similar to that shown in Figure 9.1 on a piece
of squared paper. On this paper draw a rectangle with opposite
corners at points (300,100) and (700,800). The edges of the
rectangle are to be parallel to the X and Y axes.

8. Write a program to draw the rectangle you produced in answer
to Question 7. Test it on your computer.

9* Load HOUSE1 from your UNIT PROGRAMS cassette. Extend the
program to draw the remainder of the house, and the pathway, as
shown in Figure 9.1. Leave a blank line between each group of
commands. Test the program on your computer.

10. When the program is working correctly, change its title to
HOUSE2, then save the program on your cassette as HOUSE2. Don't
forget to fill in the 'cassette contents' sheet.

54 Graphics

10 Colour

10.1 Text colour

Mode 1 (or Mode 5) has four colours - black, red, yellow and
white. When you first switch to Mode 1, characters are printed in
white on a black background. If the colours are displayed on a
black-and-white screen, they will appear as shades of grey.
Different colours are selected using the COLOUR command.

COLOUR 0 sets the foreground colour to BLACK.
COLOUR 1 sets the foreground colour to RED.
COLOUR 2 sets the foreground colour to YELLOW.
COLOUR 3 sets the foreground colour to WHITE.

- -
Load the HOUSE2 program from your UNIT PROGRAMS cassette. Run the
program and check that it is working correctly.

- -
Type

MODE 1
COLOUR 1
LIST red characters on a black background.

COLOUR 2
LIST yellow characters on a black background.

COLOUR 3
LIST white characters on a black background.

- -
Type

COLOUR 0
LIST

You should see nothing. COLOUR 0 selects a black foreground. As
the background is also black, no characters will be visible.

56 Colour

Type
COLOUR 129
LIST

The characters will be black (selected in the previous exercise)
on a red background. If the number in a COLOUR command is 128 or
greater, then the COLOUR command sets the background colour.

- -
Type

COLOUR 130
LIST black on a yellow background.

COLOUR 131
LIST black on a white background.

- -
Type

CLS

The screen will be cleared, and left in the background colour.

 COLOUR 128 sets the background colour to BLACK (128=128+0)
 COLOUR 129 sets the background colour to RED (129=128+1)
 COLOUR 130 sets the background colour to YELLOW (130=128+2)
 COLOUR 131 sets the background colour to WHITE (131=128+3)

 Notice that the number used to select a background colour
 is simply 128 more than the number used to select the same
 colour in foreground.

 CLS clears the screen and leaves it in the current
 background colour. CLS stands for CLear Screen

10.2 Graphics colour

The COLOUR command changes the colour of the text foreground and
background. It cannot be used for Graphics. There is a similar
command for graphics, however, and this is the GCOL command. GCOL
stands for Graphics COLour.

10.2 Graphics colour 57

Type
35 GCOL 0,1

and run the program. The lines drawn on the screen should be red.

- -
Type

35 GCOL 0,2

and run the program. The lines drawn on the screen should be
yellow. GCOL is followed by two numbers. The first is normally 0
(it is beyond the scope of this book to explain the purpose of
the non-zero values of this first number). The second determines
the graphics colour, using the same values as before (1=red,
2=yellow, etc).

- -
Type

36 GCOL 0,129
37 CLG

and run the program. A background colour can be set by the GCOL
command in much the same way as with the COLOUR command. 129 in
the GCOL command sets the background to red. Hence, in this
example, you should see yellow lines on a red background. The
command in Line 37 clears the screen, and leaves it in the
background colour. CLG stands for CLear Graphics.

- -
Type

CLG

The screen should be cleared, and left in the background colour.

 GCOL 0,N sets the Graphics COLour. N takes values of 0, 1,
 2 and 3 for foreground colours, and values of
 128, 129, 130 and 131 for background colours.

 CLG clears the screen of graphics and leaves it in the
 background colour. CLG stands for CLear Graphics

58 Colour

Questions

1. What new commands have you met in this unit?

2. What commands do you need to enter to list the HOUSE2
program in black on a yellow background? Try them on your
computer (don't forget that Mode 1 is needed).

3* Modify your HOUSE2 program so that:

the background is white;
(use CLG after setting the background colour);

the house and roof are drawn in red;

the door and windows are drawn in yellow;

the garden path is drawn in black.

4. When your house program is working correctly, change its
title to HOUSE3, then save it on your UNIT PROGRAMS cassette as
HOUSE3. Don't forget to fill in the 'cassette contents' sheet.

11 FOR loops

11.1 The FOR and NEXT commands

We saw in Unit 7 that REPEAT loops are used when you want to
execute a group of commands repeatedly until some condition is
satisfied. For example, you can enter as many ages into the
pocket money program as you like - it makes no difference whether
it is one age, or ten ages, or fifty-seven ages. The computer
keeps on executing the group of commands within the loop until
you enter an age of zero, at which point the program finishes.

There are many instances when you want to execute a group of
commands a fixed number of times. FOR loops are used in this
situation. The structure of a FOR loop is similar to the
structure of a REPEAT loop.

FOR command

 loop body a FOR loop

NEXT command

The commands between the FOR command and the NEXT command make up
the body of the loop. Notice that the loop body is indented just
as it is in a REPEAT loop.

- -
Type

10 FOR J=1 TO 5
20 PRINT "HELLO"
30 NEXT J
40 END

The FOR command in Line 10 marks the start of the loop; the NEXT
command in Line 30 marks the end of the loop. The loop body in
this example consists solely of Line 20, which is indented by two
spaces.

- -
Now run the program. The word HELLO should be displayed on the
screen 5 times.

The FOR J=1 TO 5 command tells the computer to:

set J to 1, and execute the body of the loop;
then set J to 2, and execute the body of the loop;
then set J to 3, and execute the body of the loop;
then set J to 4, and execute the body of the loop;
and finally, set J to 5, and execute the body of the loop.

Hence, the loop is executed five times, with J taking values of
1, 2, 3, 4 and 5.

- -
Modify Lines 10 and 30 to become:

10 FOR K=1 TO 5
30 NEXT K

and run the program again. The results should be the same.
The variable used in the FOR command controls how many times

the loop is executed, and so is called the loop-control-variable.
We can use any name for the loop-control-variable, so long as it
is a valid variable name. Many programmers use a single letter
for the name (such as J or K), and we will follow this convention
in the rest of the book.

- -
Modify Line 20 to become:

20 ..PRINT "K = ";K

replacing the two dots by two spaces to preserve the correct
indentation. Now run the program. The output should be:

K = 1
K = 2
K = 3
K = 4
K = 5

You can see that K takes successive values of 1, 2, 3, 4 and 5
during the five executions of the loop.

- -
Modify Line 10 to become:

10 FOR K=3 TO 7

and run the program. The starting value of K can be any value: it

60 FOR loops

does not have to be 1. In this example, the loop will be executed
five times, with K values of 3, 4, 5, 6, and 7.

The NEXT command marks the end of a loop. It tells the
computer to go back to the FOR command, and execute the loop
again with the 'next' value of K. The loop finishes when it has
been executed with K set to the value specified after the TO,
which is 7 in this example.

- -
Modify your program to become:

10 FOR K=3 TO 7
20 PRINT "K = ";K
40 END

and run the program. If you omit the NEXT command, as we have
done here, then the K will still be set to 3 by the FOR command,
and the loop body will still be executed. However, as there is no
NEXT command to send the computer back to Line 10, the program
will finish at Line 40, and the loop will have been executed only
once.

- -
Type

NEW
20 PRINT "HELLO"
30 NEXT K
40 END

and run the program. Here, we have missed out the FOR command. As
there is no FOR command to match the NEXT command at Line 30, the
computer doesn't know which line to go to, and so it tells you
that you have made a mistake.

FOR and NEXT commands are always used in pairs.

The FOR command marks the start of a FOR loop.
The NEXT command marks the end of a FOR loop.

The FOR command takes the form FOR K=2 TO 5. This tells
the computer to execute the loop with K values of 2, 3, 4
and 5. Hence, the loop will be executed five times.

11.1 The FOR and NEXT commands 61

Type
10 KSTART=3
20 FOR K=KSTART TO 7
30 PRINT "K = ";K
40 NEXT K
50 END

and run the program. A variable can be used to give the start-
value; we have used KSTART here.

- -
Modify your program to become:

10 KSTART=3
15 KFINISH=7
20 FOR K=KSTART TO KFINISH
30 PRINT "K = ";K
40 NEXT K
50 END

and run the program. A variable can also be used to give the
finish-value; we have used KFINISH here.

- -
Type

40 NEXT KSTART

and run the program. The computer will display the error

Can't Match FOR at Line 40.

There is no loop with KSTART as its loop-control-variable, and so
the computer can't find a FOR command to match the NEXT command.

- -
Modify your program to become:

10 FOR K=5 TO 3
20 PRINT "K = ";K
30 NEXT K
40 END

and run the program. The loop will be executed once, with K set
to 5. Even though the start-value is greater than the final-value
when the computer first encounters the FOR command, the loop will
still be executed. It is only when the computer gets to the NEXT
command that it compares the K. value with the final-value, and
is able to terminate the loop.

62 FOR loops

A FOR loop is ALWAYS executed at least once.

11.2 Using a STEP in the FOR command

In all the examples we have used so far, the computer increases
the value of the loop-control-variable by 1 each time it goes
round the loop. We can extend the FOR command to include a STEP-
value, so that each time the computer goes round the loop, it
increases the loop-control-variable by this step-value.

- -
Modify your program to become:

10 FOR K=1 TO 5 STEP 2
20 PRINT "K = ";K
30 NEXT K
40 END

and run the program. The loop will be executed with K values of
1, 3, and 5. In other words, K increases in steps of 2.

- -
Change Line 10 to:

10 FOR K=1 TO 5 STEP 1

and run the program. The loop will be executed with K values of
1, 2, 3, 4, and 5. This is exactly the same as a FOR command of
FOR K=1 TO 5. Hence, if you omit STEP from the FOR command, a
step of 1 is assumed.

- -
Change Line 10 to:

10 FOR K=9 TO 5 STEP -2

and run the program. Notice that minus STEP-values can be used.
In this example, the loop will be executed three times, with K
values of 9, 7, and 5.

- -

11.2 Using a STEP in the FOR command 63

11.3 A ‘tables’ program

Suppose you want the computer to work out and display 'tables'.
The output for the 5-times table might be:

 1 TIMES 5 = 5
 2 TIMES 5 = 10
 3 TIMES 5 = 15

10 TIMES 5 = 50

You want to be able to select which particular table is displayed
(5-times, 3-times, and so on), but for any table you want ten
lines of output.

Type
10 REM TABLES1
20
30 INPUT "WHICH TABLE ",TABLE
40 FOR K=1 TO 10
50 LET ANSWER=K*TABLE
60 PRINT K;" TIMES ";TABLE;" = ";ANSWER
70 NEXT K
80 END

List and check the program, and then run it.

Type
5 when invited to enter a table.

The output should be:

 1 TIMES 5 = 5
 2 TIMES 5 = 10
 3 TIMES 5 = 15

10 TIMES 5 = 50

The loop is executed ten times, because it is controlled by the
command FOR K=1 TO 10, and K takes values of 1, 2,.. 10. A line
of output is displayed on the screen each time Line 60 is
executed, and so there are ten lines of output.

- -
When the program is working correctly, save it on your UNIT
PROGRAMS cassette as TABLES1. Don't forget to fill in the
'cassette contents' sheet.

64 FOR loops

Questions (See Page 112 for Additional Questions on this unit)

1. What new commands have you met in this unit?

2. What output will the following program produce?

10 NUMBER=3
20 FOR K=1 TO NUMBER
30 PRINT K
40 NEXT K
50 END

Type in the program and then run it. Is the output as you expect?

3. What output will the following program produce?

10 KSTART=5
20 KFINISH=9
30 FOR K=KSTART TO KFINISH STEP 2
40 PRINT K
50 NEXT K
60 END

Type in the program and then run it. Is the output as you expect?

4. For each of the FOR commands below, write down in the boxes
the value that K holds each time the loop is executed. The first
has been done for you, to show you what to do:

FOR K=2 TO 3 the 1st time round the loop, K has a value of 2;
 the 2nd time round the loop, K has a value of 3.

 value of K this time round the loop
 1st 2nd 3rd 4th 5th
FOR K=2 TO 3 2 3

FOR K=1 TO 7 STEP 2

FOR K=1 TO 11 STEP 3

FOR K=4 TO 2 STEP -1

FOR K=8 TO 3 STEP -2

FOR K=4 TO 2

Check your answers on the computer.

Questions 65

5. Here is an alternative solution to the 'shopping' program
described in Question 5 of Unit 7. Rewrite the program using
proper indentation.

 10 REM SHOP2
 20
 30 LET BILL=0
 40 INPUT "ENTER NUMBER OF ITEMS ",NUMBER
 50 PRINT
 60 FOR K=1 TO NUMBER
 70 PRINT "COST OF ITEM ";K;" = ";
 80 INPUT ITEM
 90 LET BILL=BILL+ITEM
100 NEXT K
110 PRINT
120 PRINT "TOTAL BILL = ";BILL
130 END

6. Type your indented version into the computer, and run it
with the following data:

5

7
3
2
4
1

When the program is working correctly, save it on your UNIT
PROGRAMS cassette as SHOP2. Don't forget to fill in the 'cassette
contents' sheet.

66 FOR loops

12 READ and DATA

Up to now, we have entered data at the keyboard in response to an
INPUT command, when the program is being executed. Another way of
getting data into a program is to store it in DATA commands
within the program itself, and to READ the items of data from
these DATA commands.

Type
 10 READ A$
 20 PRINT "A$ CONTAINS ";A$
 30 READ B
 40 PRINT "B CONTAINS ";B
 50 READ C$
 60 PRINT "C$ CONTAINS ";C$
 70 DATA "ALPHA"
 80 DATA 10
 90 DATA "BRAVO"
100 END

The items of data contained in the DATA commands are formed into
a data list by the computer, in the same order as they appear in
the program:

"ALPHA" 10 "BRAVO"

Every time the computer comes to a READ command, it takes the
next item of data from this data list, and assigns it to the
variable specified in the READ command. Run this program, and
check that it works correctly (A$ should contain "ALPHA", B
should contain 10, and C$ should contain "BRAVO").

- -
Type

70 DATA "ALPHA", 10, "BRAVO"

and delete Line 80 and Line 90. Several data items may be placed
in a single DATA command, so long as they are separated by
commas. Run the program and check that it works.

- -

Type
70 DATA "ALPHA", "BRAVO", 10

and run the program. The string "ALPHA" is assigned to A$, but
when the computer tries to execute the READ B command in Line 30,
it finds that the next item in the data list is the string
"BRAVO". A string cannot be assigned to a 'number' memory box, so
the computer will tell you that there is a 'type mismatch'.

- -
Type

70 DATA "ALPHA", 10

and run the program. The computer should tell you that it is 'out
of DATA' at Line 50, because you haven't provided sufficient data
items (two data items for three READ commands).

- -
Type

10 READ A$,B,C$
70 DATA "ALPHA", 10, "BRAVO"

and delete Line 30 and Line 50. Several variable names, separated
by commas, can be included in a single READ command. Run the
program and check that it performs correctly.

- -
The following program asks you to enter the number of a month (1
is January, 2 is February,... 12 is December). The computer then
tells you the name of that month. The program makes use of DATA
commands for storing the names of the months.

Type

 NEW
 10 REM MONTHS1
 20
 30 INPUT "MONTH NUMBER = ",M
 40 FOR K=1 TO M
 50 READ MONTH$
 60 NEXT K
 70 PRINT "MONTH ";M;" = ";MONTH$
 80
 90 DATA "JAN", "FEB", "MAR"
100 DATA "APR", "MAY", "JUN"
110 DATA "JUL", "AUG", "SEP"
120 DATA "OCT", "NOV", "DEC"
130 END

68 READ and DATA

Check that you have typed the program correctly. Now run the
program.

Type
1 when asked for the month number.

The computer should reply that

MONTH 1 = JAN

- -
Run the program again, and enter 12 when asked for the month
number. Does the computer give the correct answer?

- -
Run the program again, and enter 13 when asked for the month
number. The computer will attempt to execute the FOR loop
thirteen times. As there are only 12 data items in the DATA list,
the computer will report an 'out of DATA' error when it tries to
execute Line 50 for the thirteenth time.

- -
When the program is working correctly, save it on your UNIT
PROGRAMS cassette as MONTHS1. Don't forget to fill in the
'cassette contents' sheet.

Any number of DATA commands can be included in a program.
They can be placed anywhere. It is good practice, however,
to group them at the end of the program.

An item in the data list must be the same type (string or
number) as the variable into which it is being read.

There must be sufficient items in the data list to match
the number of READ commands executed in the program.

DATA commands are normally used when the data required by
the program is the same each time the program is run. In
the previous example it is unlikely that the names of the
months will change!

READ and DATA 69

Questions (See Page 112 for Additional Questions on this unit)

1. What new commands have you met in this unit?

2. From where does the READ command get its data?

3. What errors can arise with READ and DATA commands?

4* Modify MONTHS1 so that it displays:

the name of the requested month;
the number of days in the requested month.

The number of days in the requested month is to be read from DATA
commands into an extra variable called DAYS.

When the program is working correctly, save it on your UNIT
PROGRAMS cassette as MONTHS2. Don't forget to fill in the
'cassette contents' sheet.

70 READ and DATA

13 Numbers

13.1 Simple arithmetic

In Unit 1 we saw that the computer can perform simple arithmetic
- adding, subtracting, multiplying and dividing.

Type
PRINT 3+1
PRINT 5-3
PRINT 2*5
PRINT 15/3

and check that each answer is correct.

- -
Type

PRINT 1+4*3

Arithmetic operations can be combined. In this example, the
answer is 13. The computer performs the multiply before the
addition. Hence

1 + 4 * 3 becomes

1 + 12 which becomes

 13

- -
Type

PRINT (1+4)*3

The answer is 15. By putting brackets around 1+4, we tell the
computer to work this out first, giving an answer of 5. This 5 is
then multiplied by the 3 to give an answer of 15:

(1 + 4) * 3 becomes

 5 * 3 which becomes

 15

- -
Type

PRINT 5+12/4

The answer is 8. The computer performs the division before the
addition (12/4 = 3, then 5+3 = 8).

 BASIC performs arithmetic in a certain priority order:

 1. It works out whatever is contained in brackets. If there
 are brackets within brackets, it will do the innermost
 first.

 2. It works out multiplication and division.

 3. It works out addition and subtraction.

 For example:

 2 * (1 + (6 - 2) * 2) becomes

 2 * (1 + 4 * 2) which becomes

 2 * (1 + 8) which becomes

 2 * 9 which becomes

 18

Type
PRINT 1+2*3

The answer is 7. Multiplication is 2nd in the priority order,
whereas addition is 3rd, so the multiplication is done before the
addition.

- -
Type

PRINT 7-3+2

The answer should be 6. Both addition and subtraction are 3rd in
the priority order. When operations of the same priority occur in
the same line, as here, the computer deals with them from left to
right. Hence,

72 Numbers

7 - 3 + 2 becomes

 4 + 2 which becomes

 6

13.2 Decimal numbers

Up to now, we have only used whole numbers in our programs. The
computer can also hold decimal numbers (i.e. numbers with a
decimal point and a fractional part).

Type
PRINT 4/2
PRINT 5/2
PRINT 5/4
PRINT 5/3

The first answer is a whole number. All the other answers are
decimal numbers.

- -
Type

LET X=4/2
PRINT X
LET X=4/3
PRINT X

A 'number' box in the computer's memory can hold both whole
numbers and decimal numbers.

13.3 DIV and MOD

Type
PRINT 12345/100

The answer should be 123.45, which has a whole-number part and a
decimal part.

Type
PRINT 12345 DIV 100

DIV performs a divide just as '/' does, but the answer that it
produces is a whole-number. In this example the answer is 123,
because 12345 divided by 100 goes 123 times, with a remainder of
45. This remainder can be calculated on the computer using MOD.

13.3 DIV and MOD 73

Type
PRINT 12345 MOD 100

The answer is 45, the remainder after dividing 12345 by 100.

13.4 Random numbers

Many games are based on chance (sometimes called luck). This
'chance' is often provided by throwing a dice. For example, the
game of 'Snakes and Ladders' involves the players moving counters
on a board according to the number of spots shown on the face of
a dice. These games often require you to throw a 'six' before you
can start. Sometimes you can throw a 'six' almost immediately,
yet at other times your luck seems to be out, and you have to
wait a long time for a 'six'. Many games available on computers
also involve 'chance'. For example, the computer may produce
enemy space ships for you to shoot down, and these space ships
seem to appear at random, with no apparent pattern. In contrast,
all the programs we have written so far produce the same answers
on every run of the program, so long as we provide the same data.
This section describes how we can tell the computer to produce
what appears to be random behaviour.

- -
Type

10 REM DICE1
20
30 FOR K=1 TO 10
40 LET X=RND(6)
50 PRINT X
60 NEXT K

and run the program. You should see ten numbers displayed on the
screen, just like the numbers you might get by throwing a dice
ten times. Line 40 generates a whole number at random, and stores
it in memory box X. The 6 in Line 40 tells the computer that the
number must be in the range 1-6 (that is, 1 or 2 or 3 or 4 or 5
or 6). To generate random numbers between 1 and 10 say, replace
RND(6) by RND(10).

- -
Run the program again. The ten numbers now displayed will be
different from the previous numbers. In fact, each time you run
the program you will get a random set of numbers - you should not
be able to PREDICT what numbers will be displayed. In this sense,
the numbers are said to be random numbers.

74 Numbers

- -
When the program is working correctly, save it on your UNIT
PROGRAMS cassette as DICE1. Don't forget to fill in the 'cassette
contents' sheet.

DIV gives the whole number part of the result of a
 divide. For example, 7 DIV 2 is equal to 3.

MOD gives the remainder after a divide. For example,
 7 MOD 2 is equal to 1.

RND(K) gives a whole number chosen at random from the
 numbers 1, 2, 3,... K.

Questions (See Page 113 for Additional Questions on this unit)

1. What answers will the computer produce when it executes the
following commands? Write down your answers below.

Your answer computer

PRINT 3+3*3

PRINT 7-4+2

PRINT 3*4/2

PRINT (1+3)*3-4/2

PRINT 9 DIV 4

PRINT 9 MOD 4

Try them on the computer, and check whether you were right.

2. What are random numbers?

3* We want to make the computer look as if it is tossing a coin
twenty times. We can do this by writing a program which displays
twenty 1's and 2's chosen at random, and assume that 1 means
'heads' and 2 means 'tails'. Write this program.

When the program is working correctly, save it on your
cassette as COIN1. Don't forget the 'cassette contents' sheet.

Questions 75

14 Sound

14.1 The SOUND command

The BBC computer can generate sounds through its internal loud-
speaker. There are two commands which control the sounds produced
- these are SOUND and ENVELOPE. We will only deal with the SOUND
command in this book. It has the form:

SOUND 1, A, P, D

A is the Amplitude (or loudness). This parameter controls the
loudness of the sound, and can be varied between 0 (off) and
-15 (loudest).

D is the Duration of the note (the length of time that the
note is emitted). This is in twentieths of a second. Hence,
if D is 10, the sound will last 10 twentieths of a second,
that is, half a second.

P is the Pitch of the sound. This is a number which relates to
musical notes as shown below:

P value : 53 61 69 73 81 89 97 101
Note : Middle C D E F G A B C

- -
Type

SOUND 1,-15, 53, 10
SOUND 1, -7, 53, 10
SOUND 1, -1, 53, 10

and compare the sounds produced for different amplitudes.

- -
Type

SOUND 1,-15, 53, 5
SOUND 1,-15, 53, 10
SOUND 1,-15, 53, 20

and compare the sounds produced for different durations.

- -
Type

10 FOR K=1 TO 8
20 READ P
30 SOUND 1,-15, P, 10
40 NEXT K
50 DATA 53, 61, 69, 73, 81, 89, 97, 101
60 END

and run the program. The musical scale will sound.

- -
Type

35 ..SOUND 1,0,0,3

replacing the two dots by two spaces. The musical scale will
again sound, but there will be a distinct pause between each
note, produced by Line 35 sounding a note of zero loudness and
zero pitch for a very short duration.

14.2 Playing music on your BBC computer

Now that we can sound individual musical notes, we should be able
to program the BBC computer to play music.

Music is writers on a special set of lines known as a stave.

The pitch of a note is indicated by its vertical position on the
stave. The first note on the stave shown above is 'middle C'; its
position is on the lowermost line. Successively higher notes (D,
E,...) occupy lines higher up the stave. Notice that the names
of notes go as far as G, and then start again at A. Two notes
with the same name (C, for example) sound the same, but the
second is at a higher pitch than the first; in music they are
said to be an octave apart. The pitch values to produce each note
on the BBC computer are written at the end of the stave, to make
it easier for you to relate a note to its pitch value.

The duration of a note is expressed as a multiple of some

14.2 Playing music on your BBC computer 77

121
109
97
81
69
53

117
101
89
73
61

note: C D E F G A B C D E F
pitch: 53 61 69 73 81 89 97 101 109 117 121

basic time unit (perhaps half a second), and is indicated by the
symbol drawn for that note.

means the note lasts for 2 time units;

means the note lasts for 1 time unit;

means the note lasts for .5 time units;

means the note lasts for .25 time units.

A dot following a note increases its duration by half its normal
duration. Hence

lasts for 1.5 time units (1 + .5)

lasts for .375 time units (.25 + .125)

An example should help to clarify all this. The music for the
Nursery Rhyme 'Jack and Jill' is:

The program shown opposite will play this tune. Each note of the
tune has a corresponding DATA statement specifying the pitch and
duration of that note.

The first note of the music is G. You can read off the pitch
value for this note at the end of the stave. It is 81. The
duration of the note is 1 time unit. This information is coded in
Line 100 of the program as DATA 81,1.

78 Sound

121
109
97
81
69
53

117
101
89
73
61

121
109
97
81
69
53

117
101
89
73
61

121
109
97
81
69
53

117
101
89
73
61

Jack and Jill went up the hill, To

fetch a pail of —water;— Jack fell down, And

broke his crown, And Jill came tumbling —after.—

The following program will play the Nursery Rhyme 'Jack and Jill'
on the BBC computer.

 10 REM MUSIC1
 20
 30 LET TIMEUNIT=10
 40 REPEAT
 50 READ PITCH,DURATION
 60 SOUND 1, -15, PITCH, DURATION*TIMEUNIT
 70 SOUND 1, 0, 0, 3
 80 UNTIL DURATION=0
 90
100 DATA 81,1
110 DATA 81,.5
120 DATA 81,1
130 DATA 81,.5
140 DATA 53,1
150 DATA 53,.5
160 DATA 53,1
170 DATA 53,.5
180
190 DATA 61,1
200 DATA 61,.5
210 DATA 61,1
220 DATA 61,.5
230 DATA 69,1.5
240 DATA 53,1.5
250 DATA 81,1
260 DATA 81,.5
270 DATA 81,1
280 DATA 81,.5
290
300 DATA 89,1
310 DATA 89,.5
320 DATA 89,1
330 DATA 89,.5
340 DATA 81,1
350 DATA 73,.5
360 DATA 69,1
370 DATA 61,.5
380 DATA 53,1.5
390 DATA 53,1.5
400
410 DATA 0,0
420 END

14.2 Playing music on your BBC computer 79

The second note of the music is also G, so its pitch value
is 81 too. Its duration, however, is .5 time units. This is
coded in Line 110 of the program as DATA 81,.5.

This process is repeated for all 28 notes of the music. A
final DATA command of DATA 0,0 is included at Line 410 to
tell the program that it has read all the data.

- -
Enter the program into the computer, and check that you have
typed it correctly. Run the program. Does it perform correctly?

- -
When the program is working correctly, save it on your UNIT
PROGRAMS cassette as MUSIC1. Don't forget to fill in the
'cassette contents' sheet.

Question

1. Write a program for the Nursery Rhyme 'Hey Diddle Diddle'.

When the program is working correctly, save it on your UNIT
PROGRAMS cassette as MUSIC2. Don't forget to fill in the
'cassette contents' sheet.

80 Sound

121
109
97
81
69
53

117
101
89
73
61

Hey —diddle,— —diddle,— The cat and the —fiddle,— The
121
109
97
81
69
53

117
101
89
73
61

cow jumped —over— the —moon;— The
121
109
97
81
69
53

117
101
89
73
61

—little— dog laughed To see such sport, And the
121
109
97
81
69
53

117
101
89
73
61

dish ran —away— with the spoon.

15 Timing

15.1 Using the computer's clock

Your Electronic
program 12345 clock inside
 TIME computer

There is an electronic clock inside the BBC computer which your
programs can use for timing. Every one-hundredth of a second,
this clock will add 1 to a variable called TIME, and it continues
to do so no matter what your program is doing. Hence, the TIME
variable can be used to keep track of how much time has passed
since some particular event occurred.

- -
Type

PRINT TIME

The number displayed on the screen shows the amount of time (in
hundredths of a second) that has passed since the computer was
first switched on.

- -
Type

LET T=TIME

The variable T now holds the value that was in TIME when this
command was executed. This is the amount of time that has passed
since the computer was first switched on.

Type
PRINT T

This amount of time is displayed on the screen, in hundredths of
a second.

Type
PRINT T DIV 100, T MOD 100

The amount of time is now displayed in seconds and hundredths of

a second.

Type
PRINT TIME DIV 100, TIME MOD 100

Notice that the TIME variable has been increased by the
electronic clock while you have been doing these exercises. The
difference between T and TIME is the time that it has taken you
to do the exercises.

- -
Type

10 TIME=0
20 REPEAT
30 LET T=TIME
40 PRINT T DIV 100, T MOD 100
50 UNTIL FALSE
60 END

and run the program. The value of the TIME variable (in seconds
and hundredths of a second) is repeatedly displayed on the
screen. The UNTIL FALSE means the loop executes for ever (or
until you interrupt it). Let the program run for 10-20 seconds,
and then press the ESCAPE key. Study the program, and try to
understand how it works. Notice that you can give a value to the
TIME variable: we set it to zero in Line 10.

Now look carefully at the output displayed on the screen,
and notice that the second number (the hundredths) increases in
steps of 2 (and occasionally 3). Why does it not increase in
steps of 1, since the electronic clock adds 1 to TIME every one-
hundredth of a second? The answer is that our program takes more
than two hundredths of a second to execute Lines 40 and 50.
Hence, when the computer gets back to Line 30, and samples the
value in TIME again, it has increased by two or three hundredths
of a second.

- -
If you have a stop-watch, then try the following experiment to
see how accurate the clock within the computer is.

1. Type RUN but do not press the RETURN key.
2. Press the RETURN key, and, at the same time, start your

watch.
3. Do not look at the screen, but keep a careful eye on

your watch. When it gets to 50 seconds, press the
ESCAPE key.

4. Look at the last time displayed on the screen, and see
how close it is to 50 seconds.

82 Timing

15.2 Causing delays on the computer

The following program causes the computer to pause for a
specified length of time.

10 LET DELAY=200
20 TIME=0
30 LET NOW=TIME
40 REPEAT UNTIL TIME>=NOW+DELAY
50 PRINT TIME
60 END

Line 10 sets the delay to 200 hundredths of a second, that is,
2 seconds.

Line 30 sets the variable NOW to the current value in TIME.

Line 40 causes the computer to wait until 2 seconds have
passed. Notice that there are no commands in the REPEAT
loop.

Enter the program, and then run it. The program should pause for
two seconds before printing the current value in TIME. You will
find that the value is actually 201, the extra one-hundredth of a
second being used to execute the PRINT command itself.

- -
Type

10 LET DELAY=500

and run the program. Does it perform correctly?

- -
Type

10 FOR DELAY=1500 TO 7500 STEP 1500
20 TIME=0
30 FOR K=1 TO DELAY : NEXT K
40 PRINT DELAY; " "; TIME
50 NEXT DELAY
60 END

and run the program. You can use a FOR loop to get the computer
to pause for a period of time, as we have done in Line 30. Notice
in Line 30 that we have put the FOR and the NEXT on the same
line, separated by a colon; normally you should put them on
separate lines, but in this particular example it makes the
program clearer to have them on the same line. The length of the
pause can be varied by changing the final value in the FOR loop.

15.2 Causing delays on the computer 83

The output should show that a value of 1500 in the delay
loop causes a delay of about one second. If you wanted a delay
of, say, 4 seconds, you would need a value of 6000.

15.2 Reaction-time program

This program uses the TIME variable to measure the time that it
takes a person to react to some event.

 10 REM REACT1
 20
 30 CLS
 40 LET ADDUP=0
 50
 60 FOR K=1 TO 10
 70 LET DELAY=200+RND(500)
 80 LET NOW=TIME
 90 REPEAT UNTIL TIME>NOW+DELAY
100 SOUND 1, -15, 53, 5
110
120 TIME=0
130 INPUT "" X$
140 LET T=TIME
150
160 LET ADDUP=ADDUP+T
170 PRINT T
180 NEXT K
190 PRINT
200 PRINT "AVERAGE = ";ADDUP/10;" HUNDREDTHS"
210 END

Type the program into the computer, and check that that it is
correct. Now run the program, and make a note of your average
reaction time. The following notes may help you to understand how
this program works.

Line 30 clears the screen.

Lines 70-90 cause the computer to pause. The length of the
pause is random between 200 and 700 hundredths of
a second (i.e. between 2 and 7 seconds).

Line 100 sounds a note. As soon as you hear the noise,
press the RETURN key as quickly as you can.

Lines 120-140 measure how long it takes you to press the key.
This time is displayed by Line 170.

84 Timing

- -
Save the program on your UNIT PROGRAMS cassette as REACT1. Don't
forget to fill in the 'cassette contents' sheet.

- -
Type

100 ..PRINT "PRESS";

replacing the two dots by two spaces. Instead of the bell being
sounded, the word PRESS is displayed on the screen. As soon as
you see the word on the screen, then press the RETURN key as
quickly as you can. Run the program, and make a note of your
average reaction time. You will probably find that this average
is larger than the previous average - indicating that you react
more quickly to signals from your ears than you do to signals
from your eyes.

- -
Save the program on your UNIT PROGRAMS cassette as REACT2. Don't
forget to fill in the 'cassette contents' sheet.

TIME is used to read or set the computer's clock. This
 clock can be used by your program for timing.

: You can put several commands on one line (as we
 did in Section 15.2) so long as the commands are
 separated by colons. Normally, you should put ONE
 command per line; occasionally, however, it makes
 your program clearer to put several on a line.

Questions

1. What does the electronic clock inside your computer do?

2. What will the command 'PRINT TIME' display on the screen?

3. What will the command 'TIME=0' do?

4. What command should you use to display the time in seconds
and hundredths of a second?

Questions 85

16 The IF command

16.1 The IF command

Decisions are part of everyday life. For example:

IF you are hungry THEN eat some food.

IF it is raining THEN put on a coat before going outside.

IF you are tired THEN go to bed.

These examples all have the same form:

IF some condition is true THEN take some action.

Taking the first example, the condition is 'you are hungry' and
the action is 'eat some food'. If the condition is true, then you
take the action.

A computer can also take decisions. Indeed, it is this
capability which makes it into such a powerful and versatile
piece of equipment. A computer can take different actions
depending on the data that it is given. The command which tells
the computer to do this is the IF command.

- -
Type

10 FOR AGE=8 TO 11
20 PRINT AGE;
30 PRINT
40 NEXT AGE
50 END

Did you notice the semi-colon at the end of Line 20? Now run the
program. The output should be:

 8
 9
10
11

- -
The local football club runs a junior team called the under-10's.
Only boys who are under 10 years of age are eligible to play.
Let's get the computer to tell us the ages that can play for this
team.

Modify the program to become:

10 FOR AGE=8 TO 11
20 PRINT AGE;
25 IF AGE<10 THEN PRINT " IS OK";
30 PRINT
40 NEXT AGE
50 END

and run the program. The output should be:

 8 IS OK
 9 IS OK
10
11

The '<' in Line 25 means is less than. Hence, Line 25 really
means

IF AGE is less than 10 THEN print 'IS OK' alongside the
 age printed out by Line 20.

When AGE has a value of 8, then the condition AGE<10 is true
(8 is less than 10), and so the message 'IS OK' is printed.

When AGE has a value of 9, then the condition AGE<10 is also true
(9 is less than 10), and so the message 'IS OK' is printed.

When AGE has a value of 10, then the condition AGE<10 is false
(10 is not less than 10, it is actually equal to 10), and so the
message 'IS OK' is not printed.

When AGE has a value of 11, then the condition AGE<10 is again
false (11 is not less than 10, it is actually greater than 10),
and so the message 'IS OK' is not printed.

- -
The local school is organising a class outing. However, only
children who are over 8 years of age can go, because it would be
too tiring for younger children. Let's get the computer to tell
us the ages that can go on this outing.

16.1 The IF command 87

Modify Line 25 to become:

25 ..IF AGE>8 THEN PRINT " IS OK";

replacing the two dots by two spaces. Now run the program. The
output should be:

 8
 9 IS OK
10 IS OK
11 IS OK

The '>' in Line 25 means is greater than. Hence, Line 25 really
means:

IF AGE is greater than 8 THEN print 'IS OK' alongside the
 age printed out by Line 20.

Obviously, ages of 9, 10, and 11 satisfy this condition, because
they are greater than 8, but an age of 8 does not.

16.2 What conditions can be tested?

Up to now, we have encountered TWO conditions:

< meaning 'is less than' e.g. IF AGE<10
> meaning 'is greater than' e.g. IF AGE>8

There are FOUR other conditions that are commonly used in BASIC:

= meaning 'is equal to'
<> meaning 'is not equal to'

<= meaning 'is less than or equal to'
>= meaning 'is greater than or equal to'

- -
A children's competition has been organised by the local library.
However, only 10-year olds can enter. Let's get the computer to
tell us the ages that can enter this competition.

Modify Line 25 to become:

25 ..IF AGE=10 THEN PRINT " IS OK";

and run the program. The '=' in Line 25 means is equal to. Is the

88 The IF command

output what you would expect? The message 'IS OK' should only be
printed alongside an age of 10.

- -
For those children who were not eligible to enter the competition
the library has organised a film show.

Can you work out what ages (from 8, 9, 10, and 11-year olds) can
go to the film show?

Modify Line 25 to become:

25 ..IF AGE<>10 THEN PRINT " IS OK";

and run the program. The '<>' in Line 25 means is not equal to.
If 10 is the only age that can enter the competition, then those
children who are NOT 10 (i.e. 8, 9, and 11-year olds) can go to
the film.

- -
A swimming club is entering a team for a swimming gala. One of
the age groups is '9 and under'. This means that only children
who are 9 or under 9 can be entered. Let's get the computer to
tell us the ages that can be entered in this age group.

Modify Line 25 to become:

25 ..IF AGE<=9 THEN PRINT " IS OK";

and run the program. The '<=' in Line 25 means is less than or
equal to. Hence, Line 25 selects all children who are '9 or under
9'.

- -
Only children who are '10 or over' are allowed to take the
YOURTOWN cycling proficiency test. Let's get the computer to tell
us the ages that can take this test.

Modify Line 25 to become:

25 ..IF AGE>=10 THEN PRINT " IS OK";

and run the program. The '>=' in Line 25 means is greater than or
equal to. Hence, Line 25 selects all children who are '10 or over
10'.

16.2 What conditions can be tested? 89

< means 'is less than'
> means 'is greater than'

= means 'is equal to'
<> means 'is not equal to'

<= means 'is less than or equal to'
>= means 'is greater than or equal to'

16.3 A program to play ‘guess the number’

The following program plays a game called GUESS-THE-NUMBER. The
computer thinks of a number between 1 and 100, and you have to
guess it. The computer gives you clues as to whether your guess
is too large or too small.

 10 REM GUESS1
 20
 30 CLS
 40 PRINT "THE COMPUTER WILL THINK OF"
 50 PRINT "A NUMBER BETWEEN 1 AND 100"
 60 PRINT
 70 PRINT "TRY TO GUESS IT"
 80 LET NUMBER=RND(100)
 90
100 REPEAT
110 PRINT
120 INPUT "ENTER GUESS ",GUESS
130 IF GUESS>NUMBER THEN PRINT "TOO LARGE"
140 IF GUESS<NUMBER THEN PRINT "TOO SMALL"
150 UNTIL GUESS=NUMBER
160 SOUND 1, -15, 53, 5
170 PRINT "WELL DONE"
180 END

The program is basically just a REPEAT loop (Lines 100-150). This
loop is terminated when your GUESS is equal to the computer's
NUMBER. The RND command in Line 80 generates a random number in
the range 1..100. The SOUND command in Line 160 sounds a note
when you have guessed the number correctly.

- -

90 The IF command

Type in the program. List it, and then check that you have typed
it correctly. Now run the program. Does it work correctly? If
not, go back and re-check, correcting any mistakes.

- -
When the program is correct, save it on your cassette as GUESS1.
Don't forget to fill in the 'cassette contents' sheet.

16.4 Modifying the pocket money program

You may remember that the pocket money program of Unit 7 prints
the pocket money when an AGE of 0 is entered to finish the
program. This is a bit untidy. Let us see how we can use the IF
command to overcome this problem.

- -
Load POCKET2 from your UNIT PROGRAMS cassette. Run the program,
and make sure that it is working correctly.

- -
Modify the program to become:

10 REM POCKET3
20
30 REPEAT
40 INPUT "ENTER AGE ",AGE
45 IF AGE=0 THEN 80
50 LET PAY=5*AGE
60 PRINT "POCKET MONEY = ";PAY
70 PRINT
80 UNTIL AGE=0
90 END

We have inserted line 45, which shows the IF command being used
differently. This version of the IF command has the form:

IF some condition is true THEN transfer to a line-number

Hence, the IF command in Line 45 tells the computer to transfer
to Line 80 if AGE is equal to 0. If it is not, then the computer
continues to the next line, which is Line 50. Consequently, Lines
50, 60, and 70 will not be executed when we terminate the program
by entering 0 for AGE, and so we have solved our problem.

- -
When the program is correct, save it on your cassette as POCKET3.
Don't forget to fill in the 'cassette contents' sheet.

16.4 Modifying the pocket money program 91

We have used two forms of the IF command:

IF condition THEN command

IF condition THEN line-number

Questions (See Page 114 for Additional Questions on this unit)

1. What new commands have you met in this unit?

2. What character or characters are used in BASIC to mean:

is less than?
is greater than?

is equal to?
is not equal to?

is less than or equal to?
is greater than or equal to?

3. Which condition would you use to test for ages:

under 10?

equal to 8?

9 or under?

over 10?

10 or over?

not 9?

92 The IF command

4. For each of the conditions shown below, put a tick against
each value of AGE which makes the condition true. The first has
been done to show you what to do.

condition AGE

AGE<7 5 6 7 8 9

AGE>8 5 6 7 8 9

AGE<>7 5 6 7 8 9

AGE>=7 5 6 7 8 9

AGE=8 5 6 7 8 9

AGE<=8 5 6 7 8 9

AGE>3 5 6 7 8 9

AGE<5 5 6 7 8 9

5* In the following fragment of a program, will Line 40 or Line
70 be executed after Line 30?

10 LET A=17
20 LET B=8
30 IF A+B>25 THEN 70
40 ...

6* In a match between two football teams, the team that plays
on its own ground is called the HOME team, and the visitors are
called the AWAY team.

If the HOME team wins the match, the result is a 'HOME win'.
If the AWAY team wins the match, the result is a 'AWAY win'.
If the scores are equal, the result is a 'DRAW'.

Write a program which will accept as input

a. the number of goals scored by the HOME team
b. the number of goals scored by the AWAY team

and then print the result of the match (HOME, AWAY or DRAW).

When the program is working correctly, save it on your cassette
as FTBALL1. Don't forget the 'cassette contents' sheet.

ü ü

Questions 93

17 Procedures

17.1 Introduction

In the reaction-time program developed in Unit 15, we included
commands to cause the computer to delay for an amount of time
chosen at random between two and seven seconds. The actual
commands were:

LET DELAY=200+RND(500)
LET NOW=TIME
REPEAT UNTIL TIME>=NOW+DELAY

Delays could be required in a number of places in one program;
they could also be needed in other programs. BBC BASIC allows you
to put commands together into a group, and to attach a name to
that group. Such a group is called a procedure.

The beginning of a procedure is marked by the DEFine
PROCedure command (DEF PROCxxxx); xxxx is the name that we
are attaching to this group of commands. You should choose a
name which indicates the purpose of the commands. PAUSE
might be a suitable name for a delay procedure, for example.

The end of a procedure is marked by the END PROCedure
command (ENDPROC).

Hence, our delay procedure could be:

DEF PROC_PAUSE
LET DELAY=200+RND(500)
LET NOW=TIME
REPEAT UNTIL TIME>=NOW+DELAY
ENDPROC

To make the program easier to read, we have used the 'underline'
character (which is on the same key as the 'pound') to separate
the word PROC from the actual procedure name (PAUSE). In Mode 7,
the 'underline' character looks like a 'minus' when displayed on
the screen, so you have to be careful to use the right character.

17.2 Calling a procedure

Type

 10 TIME=0
 20 PROC_PAUSE Main program
 30 PRINT TIME
 40 END

 50

 60 DEF PROC_PAUSE
 70 LET DELAY=200+RND(500)
 80 LET NOW=TIME Procedure
 90 REPEAT UNTIL TIME>=NOW+DELAY
100 ENDPROC

and list the program. Check that you have typed it correctly.

Line 20 contains the procedure name by itself. This tells
the computer to start executing the procedure, and
is known as calling the procedure.

Lines 70-90 The computer transfers to Line 70, which is the
first line of the procedure, and starts executing.
It continues executing commands until it meets the
ENDPROC command in Line 100.

Line 100 At this point it returns to the line immediately
after the line which called the procedure, Line 30
in this case.

- -
Type

TRACE ON
RUN

and check that the commands are executed in the order that you
expect. Line 60 (the DEF PROC... line) does not appear in the
trace - the first line of the procedure is actually Line 70.
Notice the pause in the trace at Line 90 while the computer
executes the REPEAT loop.

- -

17.2 Calling a procedure 95

Type
35 PROC_PAUSE
36 PRINT TIME

and run the program again. Notice that the procedure is now
called twice. Each time, the computer begins at Line 70, and then
executes Line 80, 90, and 100. However, when the procedure is
finished, the computer returns to Line 30 after the first call,
and to Line 36 after the second call. Hence, the computer
remembers the line-number of the line calling the procedure, so
that it can return correctly.

17.3 Parameters

We have used RND on a number of occasions in previous units to
generate random numbers. For example, RND(6) generates random
numbers between 1 and 6; RND(10) generates random numbers between
1 and 10. The number within the brackets is called a parameter.
It tells RND the range of numbers from which to select a random
number. We can specify a different range each time we call the
procedure, simply by changing the value of the parameter.

We can also use parameters with procedures. Modify the
program to become:

10 TIME=0
20 PROC_PAUSE(200)
30 PRINT TIME
40 END
50
60 DEF PROC_PAUSE(DELAY)
70 NOW=TIME
80 REPEAT UNTIL TIME>=NOW+DELAY
90 ENDPROC

and run the program. The procedure should cause a delay of about
2 seconds. Lines 60-90 define a procedure called PROC_PAUSE.
Notice that we have now written the name of a variable (DELAY) in
brackets immediately after the name of the procedure.

The procedure is called in Line 20, with a value of 200
written in brackets following the procedure name. This number of
200 is the parameter; it is the value we want the procedure to
work with on this occasion. Before executing the first command of
the procedure, the variable (DELAY) is set to 200. The computer
then executes the commands in the procedure, with DELAY having a
value of 200.

- -

96 Procedures

Modify Line 20 to become:

20 PROC_PAUSE(500)

and run the program again. This time, the procedure is called
with a parameter of 500. Before executing the first command of
the procedure, the variable DELAY in the procedure is set to 500.
The computer then executes the commands in the procedure, with
DELAY having a value of 500. Hence, there should be a delay of
about 5 seconds.

- -
Type

20 PROC_PAUSE(200 + RND(500))

and run the program again. Notice that the parameter may involve
arithmetic (we have used + and RND here).

- -
Type

15 LET WAIT=500
20 PROC_PAUSE(WAIT)

and run the program again. Notice that the parameter may be a
variable (we have used WAIT here).

- -

The general form of a procedure is:

DEF PROCprocedure-name (parameters)
...
... the commands making up the procedure.
...
ENDPROC

Values are passed to a procedure by means of parameters.
A procedure may use more than one parameter.

A procedure is called by including its name in a line
of the program.

17.3 Parameters 97

17.4 Some ‘graphics’ procedures

One of the advantages with procedures is that you can use
procedures written by someone else without having to understand
the details of the commands within the procedures. So long as a
procedure does what you are wanting, and you know its name and
the parameters it expects, then you can use it.

In units 9 and 10 we developed a program to draw a house on
the screen. This was a simple line drawing. In this unit we will
use procedures to draw shapes such as rectangles, triangles and
circles on the screen; these shapes will be completely filled in
with a colour of our choosing. Hence, instead of representing the
wall of the house as red lines on the screen (as we did in Unit
10), we will be able to colour the entire-wall red.

We can think of the screen as a sheet of PAPER, and of us
drawing the shapes in INK. Hence, we need to be able to change
the colour of both the PAPER and the INK.

Let us now look at the procedures provided. These procedures
use features not described in this book, and so you won't be able
to understand them in detail. That won't prevent you from using
them, however.

PROC_PAPER(colour) allows you to change the colour of
the paper. You can use BLACK, RED,
YELLOW or WHITE.

PROC_INK(colour) allows you to change the colour of
the ink. You can use BLACK, RED,
YELLOW or WHITE.

PROC_LINE(X1,Y1, X2,Y2) draws a line between (X1,Y1) and
(X2,Y2) in the INK colour.

PROC_RECT(X1,Y1, X2,Y2) draws a filled-in rectangle in the
INK colour whose opposite corners
are at (X1,Y1) and (X2,Y2). The
sides of the rectangle are parallel
to the X and Y axes.

PROC_TRI(X1,Y1, X2,Y2, X3,Y3) draws a filled-in triangle in the
INK colour with corners at (X1,Y1),
(X2,Y2) and (X3,Y3).

PROC_CIRC(XC,YC, radius) draws a filled-in circle in the INK
colour, with centre at (XC,YC), and
radius of 'radius'.

98 Procedures

 10 REM HOUSE4
 20
 30 MODE 1
 40 LET BLACK=0
 50 LET RED=1
 60 LET YELLOW=2
 70 LET WHITE=3
 80 GOTO 500
 90
100 DEF PROC_PAPER(colour)
110 GCOL 0,(128+colour)
120 CLG
130 ENDPROC
140
150 DEF PROC_INK(colour)
160 GCOL 0,colour
170 ENDPROC
180
190 DEF PROC_LINE(X1,Y1, X2,Y2)
200 MOVE X1,Y1
210 DRAW X2,Y2
220 ENDPROC
230
240 DEF PROC_RECT(X1,Y1, X2,Y2)
250 MOVE X1,Y1
260 MOVE X2,Y1
270 PLOT85,X1,Y2
280 PLOT85,X2,Y2
290 ENDPROC
300
310 DEF PROC_TRI(X1,Y1, X2,Y2, X3,Y3)
320 MOVE X1,Y1
330 MOVE X2,Y2
340 PLOT85,X3,Y3
350 ENDPROC
360
370 DEF PROC_CIRC(XC,YC, radius)
380 LOCAL X,Y,K,ANGLE
390 LET X=XC : LET Y=YC+radius
400 FOR K=5 TO 360 STEP 5
410 MOVE XC,YC
420 MOVE X,Y
430 LET ANGLE=K*PI/180
440 LET X=XC+radius*SIN(ANGLE)
450 LET Y=YC+radius*COS(ANGLE)
460 PLOT85,X,Y
470 NEXT K
480 ENDPROC

17.4 Some ‘graphics’ procedures 99

490
500 PROC_PAPER(WHITE)
510
520 PROC_INK(RED)
530 PROC_RECT(200,300, 1000,600)
540 PROC_TRI(200,600, 400,600, 400,800)
550 PROC_RECT(400,600, 800,800)
560 PROC_TRI(800,600, 800,800, 1000,600)
570
580 PROC_INK(YELLOW)
590 PROC_RECT(500,300, 600,500)
600
610 PROC_INK(YELLOW)
620 PROC_RECT(300,400, 400,500)
630 PROC_RECT(700,400, 900,500)
640
650 PROC_INK(BLACK)
660 PROC_TRI(200,0, 500,0, 500,300)
670 PROC_TRI(600,300, 500,0, 500,300)
680
690 PROC_INK(WHITE)
700 PROC_LINE(200,600, 1000,600)

- -
Type the HOUSE4 program into your computer. List it and check
that you have typed it correctly. Now run the program. Is the
picture drawn on the screen the same as Figure 9.1? The wall and
roof should be red, the door and windows yellow, the path black,
and the background white.

- -
When the program is working correctly, save it on your UNIT
PROGRAMS cassette as HOUSE4. Don't forget to fill in the
'cassette contents' sheet.

- -
You can now experiment with this program. For instance, you could
draw the sun in the top right-hand corner, using PROC_CIRC.

- -
Lines 10-510 of this program form the basis of other picture-
drawing programs; you simply change lines from 520 onwards, using
any combination of the procedure calls to draw the picture you
want.

Delete Lines 520-700. Change the title in Line 10 to PROCS1.
Now save the program on your UNIT PROGRAMS cassette as PROCS1.
Don't forget to fill in the 'cassette contents' sheet.
- -

100 Procedures

Questions (See Page 115 for Additional Questions on this unit)

1. How do you define a procedure?

2. How do you call a procedure?

3. How are values passed to a procedure?

4. Load PROCS1 from your UNIT PROGRAMS cassette. Change the
title in Line 10 to CAR1. Now extend the program from Line 520
onwards to draw the picture shown below. The car body is to be
red, the windows yellow, the wheels and radio aerial black, with
a white background.

5. When the program is working correctly, save it on your UNIT
PROGRAMS cassette as CAR1. Don't forget to fill in the 'cassette
contents' sheet.

Questions 101

 100 200 300 400 500 600 700 800 900 1000 1100 1200

 100 200 300 400 500 600 700 800 900 1000 1100 1200

1000

900

800

700

600

500

400

300

200

100

0

1000

900

800

700

600

500

400

300

200

100

x co-ordinate

y
co

-o
rd

in
at

e

Appendix A — Answers

Unit 3: Question 9

10 LET SPEED=60
20 PRINT SPEED
30 LET HOURS=4
40 PRINT HOURS
50 LET MILES=SPEED*HOURS
60 PRINT MILES
70 END

Unit 4: Questions 8 and 9

10 INPUT "ENTER AGE ",AGE
15 INPUT "ENTER WEEKLY AMOUNT ",WEEKLY
20 LET PAY=WEEKLY*AGE
30 PRINT "POCKET MONEY = ";PAY;" PENCE PER WEEK"
40 END

Unit 7: Question 5

 10 REM SHOP1
 20
 30 LET BILL=0
 40 REPEAT
 50 INPUT "ENTER ITEM ",ITEM
 60 LET BILL=BILL+ITEM
 70 UNTIL ITEM=0
 80 PRINT
 90 PRINT "TOTAL BILL = ";BILL
100 END

Unit 9: Question 9

Add the following lines to HOUSE1:

140
150 MOVE 500,300
160 DRAW 500,500
170 DRAW 600,500
180 DRAW 600,300
190 DRAW 500,300

200
210 MOVE 300,400
220 DRAW 300,500
230 DRAW 400,500
240 DRAW 400,400
250 DRAW 300,400
260
270 MOVE 700,400
280 DRAW 700,500
290 DRAW 900,500
300 DRAW 900,400
310 DRAW 700,400
320
330 MOVE 500,300
340 DRAW 200,0
350
360 MOVE 600,300
370 DRAW 500,0
380 END

Unit 10: Question 3

Add the following lines to HOUSE2:

 35 GCOL 0,131
 36 CLG
 37 GCOL 0,1
145 GCOL 0,2
325 GCOL 0,0

Unit 12: Question 4

 10 REM MONTHS2
 20
 30 INPUT "MONTH NUMBER = ",M
 40 FOR K=1 TO M
 50 READ MONTH$,DAYS
 60 NEXT K
 70 PRINT "MONTH ";M;" = ";MONTH$
 75 PRINT "IT HAS ";DAYS;" DAYS"
 80
 90 DATA "JAN", 31
100 DATA "FEB", 28
110 DATA "MAR", 31
...
200 DATA "DEC", 31
210 END

Answers 103

Unit 13: Question 3

10 REM COIN1
20
30 FOR K=1 TO 20
40 LET X=RND(2)
50 PRINT X
60 NEXT K
70 END

Unit 16: Question 5

Line 40, because A+B is NOT greater than 25 - it is actually
equal to 25. Hence, the condition is FALSE.

Unit 16: Question 6

 10 REM FTBALL1
 20
 30 REPEAT
 40 INPUT "HOME TEAM GOALS = ",HOME
 50 IF HOME<0 THEN STOP
 60 INPUT "VISITORS GOALS = ",VISITORS
 70
 80 IF HOME>VISITORS THEN PRINT "HOME WIN"
 90 IF HOME<VISITORS THEN PRINT "AWAY WIN"
100 IF HOME=VISITORS THEN PRINT "DRAW"
110 PRINT
120 UNTIL FALSE
130 END

Notice the STOP command in Line 50. It has the same effect
as the END command in that it stops the execution of the
program. In addition, however, the STOP command displays a
message on the screen showing the line-number at which the
program stopped.

104 Answers

Appendix B — Summary of BASIC

AUTO automatic. The computer automatically generates line-
numbers when you are typing in a program. Pressing the
ESCAPE key terminates the automatic numbering.

CLG clear the graphics screen. The graphics area of the
screen is cleared, and left in the current graphics
background colour.

CLS clear the text screen. The text area of the screen is
cleared, and left in the current text background
colour.

COLOUR selects the foreground and background colour in which
the computer will print text.

DATA stores numeric and string data items within the program
itself, for use by the READ command.

DEF define. This command is used to define a procedure. For
example, DEF PROC_PAPER.

DELETE this command is used to delete a group of lines.

DIV division of whole numbers. This gives the whole number
part of the result of a division. For example, 7 DIV 2
is equal to 3.

DRAW this command draws lines on the screen. It can be used
in graphics Modes 0, 1, 2, 4, and 5.

END tells the computer that it has reached the end of the
program.

ENDPROC marks the end of a procedure.

FOR marks the start of a FOR... NEXT loop. FOR K=3 TO 6,
for example, will execute a loop four times, with K
values of 3, 4, 5 and 6.

GCOL graphics colour. This command is used to select the
foreground and background colours in which the computer
will perform graphics.

IF is part of the 'IF condition THEN...' command. It
creates a test condition which controls what the
computer will do next.

INPUT accepts information typed at the keyboard, and stores
it in the computer's memory, for use by the program.

LET The LET command puts a value into a memory box, for
example LET AGE=9.

LIST causes the program stored in the computer's memory to
be displayed on the screen.

LOAD causes a program to be loaded from cassette into the
computer's memory.

MOD modulus. This gives the remainder after division. For
example, 7 MOD 2 is equal to 1.

MODE K sets the graphics mode to K, which may take values of
0, 1, 2, 3, 4, 5, 6 or 7.

MOVE t h i s c o m m a n d m o v e s t h e g r a p h i c s c u r s o r t o s o m e
specified point on the screen.

NEW this command removes the program currently in the
computer's memory.

NEXT marks the end of a FOR... NEXT loop.

OLD this command recovers a program after NEW has been
entered, or the BREAK key pressed.

PLOT is a multi-purpose command for drawing points, lines or
triangles on the screen.

PRINT displays strings and numbers on the screen.

PROC procedure. PROC attached to a variable name indicates a
procedure. For example, PROC_INK(YELLOW).

READ this command tells the computer to read values from
DATA commands, and assign these values to variables.

106 Summary of BASIC

REM REMark. This command causes the computer to ignore the
rest of a line. The REM command enables you to put
comments into a program to explain how it works.

RENUMBER this command causes the lines of a program to be
renumbered. Normally, line-numbering begins at 10, and
increases in steps of 10.

REPEAT marks the start of a REPEAT... UNTIL loop.

RND(K) random. This function returns a number generated at
random from the whole numbers 1, 2, 3,... K.

RUN causes the computer to execute the program in memory.

SAVE this command causes the program currently in memory to
be saved on cassette.

SOUND causes the computer to emit sounds.

STEP is the part of the FOR command which specifies the size
of the step to be added to the loop-control-variable
each time the loop is executed.

STOP stops the execution of the program. It has the same
effect as END, except that, in addition, a message is
displayed on the screen showing the line-number at
which the program stopped.

THEN is part of the 'IF condition THEN... command'. The
commands on the THEN branch are executed if the
condition is TRUE.

TIME is used to read or set the computer's electronic clock.

TO is the part of the FOR command which specifies the
upper limit of the loop-control-variable. The loop will
terminate when the loop-control-variable reaches or
exceeds this upper limit.

TRACE makes the computer display the line-number of each line
of the program just before it is executed.

UNTIL marks the end of a REPEAT... UNTIL loop

Summary of BASIC 107

Appendix C — Additional
Questions

This section contains additional questions for selected units of the
book. These questions cover the fundamental ideas of BASIC and are, on
the whole, not just applicable to the BBC computer. If you can answer
all these questions correctly, you will have a good grasp of the
fundamentals of BASIC, and should be able to apply these ideas to OTHER
computers.

The question number tells you to which unit the question relates.
For example, Questions 2A, 2B, 2C, 2D and 2E are five questions
relating to Unit 2. Do not attempt to answer these questions until you
have completed Unit 2. Likewise for the other questions.

2A Which of the following are invalid variable names in BBC BASIC?

(a) WEIGHT (b) A2 (c) 2A
(d) R2D2 (e) Weight in grams (f) w
(g) HOLE-IN-ONE (h) W (i) abcd
(j) 1234 (k) LETTER

2B Which are the variables in each of the following commands?

(a) LET AGE=5 (b) LET A=B+1 (c) PRINT HEIGHT
(d) PRINT 5+2 (e) PRINT X+3 (f) PRINT 5*PRICE

2C Write a LET command:

(a) to put the number 5 into a memory box called A.
(b) to add 4 to 3, and store the result in memory box B.
(c) to subtract 2 from the number contained in memory box A,

and store the result in memory box C.
(d) to add 1 to the contents of memory box C.
(e) to add the contents of memory box C to the contents of

memory box A, and store the result in memory box D.

2D Write down the number that will be contained in each memory box
after the LET commands of Question 2C have been executed.

A B C D

2E Work out what values will be in the memory boxes after the
computer has processed each of the following commands. Write your
answers in the boxes provided.

(a) LET A=3*3 A (b) LET M=2 M
 LET B=A-3 B LET M=M+3 M
 LET C=B/2 C LET N=2*M N
 LET D=A+1 D LET M=N-2 M

3A What output will the following program produce?

10 LET GOALS=30
20 PRINT GOALS
30 LET GAMES=10
40 PRINT GAMES
50 PRINT GOALS/GAMES
60 END

3B The following program works out the cost of 10 apples, when each
apple costs 5 pence. Complete the program by filling in the gaps.

10 LET NUMBER =
20 LET = 5
30 LET BILL = NUMBER PRICE
40 PRINT
50 END

3C The following program works out how many centimetres there are in
2 metres. Unfortunately, the commands have got mixed up. Put the
commands into their correct order.

PRINT CENTIMETRES
LET CENTIMETRES=METRES*100
PRINT METRES
END
LET METRES=2

3D Correct the mistakes in the following program:

10 LET 5=AGE
20 PRINT AGE
30 PRINT PAY=10 x AGE
30 PRINT PAT
50 END

3E Write a program to work out how many grams there are in 3
kilograms, and then print the answer. Use variable names of GRAMS
and KILOGRAMS. 1 kilogram = 1000 grams.

4A What output will the following commands produce?

(a) PRINT 2 (b) PRINT 2*3 (c) PRINT 4/2
(d) PRINT "A" (e) PRINT "A";"B" (f) PRINT "ANSWER = "
(g) PRINT "ANSWER = ";4*3 (h) PRINT "ANSWER = 4*3"
(i) PRINT "A";"B";"C" (j) PRINT "A;B;C"

Additional Questions 109

4B What output will the following programs produce?

(a) 10 PRINT "X" (b) 10 PRINT "A";"B";
 20 PRINT "Y"; 20 PRINT "C";
 30 PRINT "Z" 30 PRINT "DE"
 40 END 40 END

4C The following program asks for two numbers to be entered via the
keyboard, then it displays their sum. Fill in the gaps.

10 INPUT
20 SECOND
30 LET SUM = SECOND
40 PRINT
50 END

4D What output will the following program produce?

10 LET SPEED = 50
20 LET HOURS = 2
30 PRINT "SPEED OF CAR = "; SPEED; " MILES PER HOUR"
40 PRINT "TRAVELLING TIME = "; HOURS; " HOURS"
50 PRINT "DISTANCE TRAVELLED = "; SPEED*HOURS; " MILES"
60 END

4E Modify the program shown in 4D to accept values of 'speed' and
'time' via the keyboard, as shown below:

ENTER SPEED ?50
ENTER HOURS ?2

The 50 and the 2 are typed by the user in response to the
questions displayed on the screen by the computer.

4F When it is executed, the command PRINT "COST=";10;"POUNDS" will
display the message COST=10POUNDS on the screen. Modify the
command so that the message includes three extra spaces, and
appears as COST = 10 POUNDS.

7A Rewrite the following program using proper indentation:

10 REPEAT
20 PRINT "STILL IN THE LOOP"
30 PRINT "ENTER 0 TO EXIT"
40 INPUT "ENTER A NUMBER ",NUMBER
50 UNTIL NUMBER=0
60 END

110 Additional Questions

7B If values of 1, 2, and 3 are entered via the keyboard when the
following program is run, what output will it produce?

10 PRINT "START NOW"
20 REPEAT
30 INPUT "ENTER NUMBER ",X
40 PRINT 2*X
50 UNTIL X=3
60 END

7C If you were to TRACE the execution of the program in 7B, what
line-numbers would be displayed on the screen?

7D What output will the following program produce?

10 LET X=1
20 REPEAT
30 INPUT "ENTER NUMBER ",Y
40 UNTIL X=0
50 END

7E Write a program which will add together the ages of a group of
children, entered via the keyboard. Use a REPEAT loop, and exit
the loop when an age of 0 is entered. At the end of the program,
display the total age of all the children.

8A How many characters are there in the following strings?

(a) "xyz" (b) "12345" (c) "Henry Smith"

8B Which of the following are illegal as string variables?

(a) A$ (b) R2D2 (c) 876$ (d) ADDRESS$

8C Which of the following are incorrect BASIC commands?

(a) LET X=10 (b) LET X$=10 (c) LET X="10"
(d) LET X$="10" (e) LET B=A$+3 (f) LET A$=B+3

8D Write a command which will accept a name typed at the keyboard,
and store it in a variable called NAME$.

8E The following program is intended to display JOHN SMITH at the top
of the screen. Fill in the gaps to complete the program.

10 CLS
20 FIRST$="JOHN"
30="SMITH"
40 PRINT ;; LAST$

8F Write a program that displays your name and address on the screen

Additional Questions 111

11A Write a FOR command which will cause a loop to be executed with K
values of:

(a) 1 2 3 4 5
(b) 3 4 5 6
(c) 10 20 30 40 50
(d) 7 6 5 4
(e) the odd numbers from 1 to 9
(f) the even numbers from 12 to 18
(g) the numbers starting at 10 and counting in 5's until 40

11B The following FOR loops are all incorrect. Can you find the
mistake in each?

(a) FOR K=1 TO 5 (b) LET K=1 TO 5
 PRINT K PRINT K
 NEXT J NEXT K

(c) FOR K=1,5 (d) FOR K$=1 TO 5
 PRINT K PRINT K$
 NEXT J NEXT K$

11C What output will the following program produce if it is executed
and a value of 3 is entered in reply to ENTER A NUMBER?

10 INPUT "ENTER A NUMBER ",NUMBER
20 ADDUP=0
30 FOR K=1 TO NUMBER
40 ADDUP=ADDUP+K
50 NEXT K
60 PRINT ADDUP
70 END

11D Write a program which uses a FOR loop to produce the following
output:

1 x 1 = 1
2 x 2 = 4
3 x 3 = 9
4 x 4 = 16

12A What values will the variables contain after the following
commands have been executed?

(a) READ A, B, C$, D (b) READ NAME$,TELEPHONE
 DATA 10,20,"A",30 DATA "JONES",143729

12B Can you find the errors in the following commands?

(a) READ SCORE,TEAM$ (b) READ A$,B,C$
 DATA "TOTTENHAM",5 DATA "WXYZ",123

112 Additional Questions

12C What output will the following program produce?

10 READ NUMBER 60 DATA 3
20 FOR K=1 TO NUMBER 70 DATA "DRILL",30
30 READ ITEM$,PRICE 80 DATA "SCREWDRIVER",5
40 PRINT ITEM$ 90 DATA "HAMMER",7
50 NEXT K 100 END

12D Make a list of names and ages of FOUR people, in the form:

DATA "MARTIN", 10
....

Write a program which uses a FOR loop to read this information
into the computer, and display it on the screen.

13A How would you write the following in BASIC?

(a) 1+2 (b) 7-3 (c) 8÷2 (d) four times three
(e) 3+4+5 (f) 5x2-3 (g) 20÷2+4 (h) 2x3x4

13B 17 marbles are to be shared equally between 5 children. Using DIV
and MOD, write PRINT commands which will display:

(a) how many marbles each child receives;
(b) how many marbles are left over.

13C Work out the values of the following:

(a) 3+3 (b) 5-2 (c) 4*2 (d) 8/4
(e) 1+2*3 (f) 9-6/3 (g) 7-2+3 (h) 3*4/2
(i) (1+2)*3 (j) (9-6)/3 (k) (7-2)+3 (l) 3*(4/2)
(m) 5 DIV 2 (n) 5 MOD 2 (o) 5/2

13D Fill in the boxes to show the values of the variables AFTER each
line of the program has been executed.

 A B C D
10 READ A,B,C
20 LET D=A+B*C
30 LET B=(A+C)/B
40 DATA 4,3,2
50 END

13E Write a command which will set X to:

(a) a value selected at random between 1 and 5.
(b) a value selected at random between 6 and 10.
(c) a value selected at random from 10, 20, 30, 40 and 50.

Additional Questions 113

13F What output will the following program produce?

 10 READ NUMBER
 20 RANDOM=RND(NUMBER)
 30 FOR K=1 TO RANDOM
 40 READ NAME$
 50 NEXT K
 60 PRINT "I HAVE CHOSEN ";NAME$
 70 DATA 7
 80 DATA "JOHN","ALAN","SUSAN","CHRISTINE"
 90 DATA "ANDREW","JONATHAN","ALISON"
100 END

16A Answer YES or NO to the following:

(a) Is 7 > 8 ? (b) Is 7 < 8 ?
(c) Is 7 >= 8 ? (d) Is 7 <= 8 ?
(e) Is 7 = 8 ? (f) Is 7 <> 8 ?
(g) Is 4 <= 4 ? (h) Is 4 >= 4 ?
(i) Is 4 = 4 ? (j) Is 4 <> 4 ?
(k) Is 4 > 4 ? (l) Is 4 < 4 ?

16B Using only < and >, complete the following statements:

(a) Is 4 .. 6 ? Yes (b) Is 5 .. 8 ? No
(c) Is 8 .. 6 ? Yes (d) Is 8 .. 3 ? No
(e) Is 5 .. 5 ? No

16C Using only <= and >=, complete the following statements:

(a) Is 4 .. 6 ? Yes (b) Is 5 .. 8 ? No
(c) Is 8 .. 6 ? Yes (d) Is 8 .. 3 ? No
(e) Is 5 .. 5 ? Yes

16D What output will the following program produce?

10 FOR K=1 TO 4
20 READ X
30 PRINT X;
40 IF X<10 THEN PRINT " is less than 10"
50 IF X=10 THEN PRINT " is equal to 10"
60 IF X>10 THEN PRINT " is greater than 10"
70 NEXT K
80 DATA 8,9,10,11
90 END

114 Additional Questions

17A Using the procedures described on Page 98, write commands to:

(a) Set the paper colour to white.

(b) Set the ink colour to red.

(c) Draw a rectangle with opposite corners at (400,300) and
(800,600).

(d) Set the ink colour to yellow.

(e) Draw a circle with centre at (600,700) and radius 100.

(f) Set the ink colour to black.

(g) Draw a triangle with corners at (200,400), (400,500) and
400,600).

(h) Draw a triangle with corners at (1000,400), (800,500) and
(800,600).

(i) Draw a triangle with corners at (400,300), (500,100) and
600,300).

(j) Draw a triangle with corners at (600,300), (700,100) and
(800,300).

(k) Draw a line from (500,400) to (700,400).

(l) Draw a line from (500,500) to (700,500).

Additional Questions 115

Appendix D — Answers to
Additional Questions

2A (c) doesn't start with a letter (e) contains spaces
(g) contains minus signs (j) doesn't start with a letter
(k) starts with a BASIC keyword (LET)

2B (a) AGE (b) A and B (c) HEIGHT (d) none (e) X (f) PRICE

2C (a) LET A=5 (b) LET B=4+3 (c) LET C=A-2 (d) LET C=C+1
(e) LET D=A+C

2D A=5 B=7 C=4 D=9

2E (a) A=9 B=6 C=3 D=10 (b) M=8 N=10

3A 30 10 3 on separate lines

3B Fill in the gaps with: 10 PRICE * BILL

3C LET METRES=2
PRINT METRES
LET CENTIMETRES=METRES*100
PRINT CENTIMETRES
END

3D Line 10 should be 10 LET AGE=5
Line 30 should be 30 LET PAY=10 * AGE
30 PRINT PAT should be 40 PRINT PAY

3E 10 LET KILOGRAMS=3
20 PRINT KILOGRAMS
30 LET GRAMS=KILOGRAMS*1000
40 PRINT GRAMS
50 END

4A (a) 2 (b) 6 (c) 2 (d) A (e) AB (f) ANSWER =
(g) ANSWER = 12 (h) ANSWER = 4*3 (i) ABC (j) A;B;C

4B (a) X (b) ABCDE
 YZ

4C Fill in the gaps with: FIRST INPUT FIRST + SUM

4D SPEED OF CAR = 50 MILES PER HOUR
TRAVELLING TIME = 2 HOURS
DISTANCE TRAVELLED = 100 MILES

4E 10 INPUT "ENTER SPEED ",SPEED
20 INPUT "ENTER HOURS ",HOURS

4F PRINT "COST = ";10;" POUNDS"

7A Lines 20, 30 and 40 should be indented.

7B START NOW
ENTER NUMBER ?1
2
ENTER NUMBER ?2
4
ENTER NUMBER ?3
6

7C 10 20 30 40 50 30 40 50 30 40 50 60

7D It will keep printing ENTER NUMBER until you press the ESCAPE key
or the BREAK key.

7E 10 LET ADDUP=0
20 REPEAT
30 INPUT "ENTER AGE ",AGE
40 ADDUP=ADDUP+AGE
50 UNTIL AGE=0
60 PRINT "TOTAL AGE = ";ADDUP
70 END

8A (a) 3 (b) 5 (c) 11

8B (b) $ missed out (c) doesn't start with a letter

8C (b) putting a number into a string variable
(c) putting a string into a number variable
(e) adding a number to a string
(f) putting a number into a string variable

8D INPUT NAME$

8E Fill in the gaps with: LAST$ FIRST$ " "

8F 10 PRINT "A. N. OTHER"
20 PRINT "12 ANDOVER STREET"
30 PRINT "YOURTOWN"
40 PRINT "ENGLAND"
50 END

11A (a) FOR K=1 TO 5 (b) FOR K=3 TO 6
(c) FOR K=10 TO 50 STEP 10 (d) FOR K=7 TO 4 STEP -1
(e) FOR K=1 TO 9 STEP 2 (f) FOR K=12 TO 18 STEP 2
(g) FOR K=10 TO 40 STEP 5

Answers to Additional Questions 117

11B (a) NEXT J should be NEXT K
(b) LET K=1 TO 5 should be FOR K=1 TO 5
(c) FOR K=1,5 should be FOR K=1 TO 5
(d) K$ should be K in all three lines

11C 6

11D 10 FOR K=1 TO 4
20 PRINT K; " x "; K; " = "; K*K
30 NEXT K
40 END

12A (a) A=10 B=20 C$="A" D=30
(b) NAME$="JONES" TELEPHONE=143729

12B (a) READ SCORE,TEAM$ should be READ TEAM$,SCORE
(b) No data item for C$

12C DRILL
SCREWDRIVER
HAMMER

12D 10 FOR K=1 TO 4
20 READ NAME$, AGE
30 PRINT NAME$; " is aged "; AGE
40 NEXT K
50 DATA "MARTIN",10
60
70
80
90 END

13A (a) 1+2 (b) 7-3 (c) 8/2 (d) 4*3
(e) 3+4+5 (f) 5*2-3 (g) 20/2+4 (h) 2*3*4

13B (a) PRINT 17 DIV 5 (b) PRINT 17 MOD 5

13C (a) 6 (b) 3 (c) 8 (d) 2
(e) 7 (f) 7 (g) 8 (h) 6
(i) 9 (j) 1 (k) 8 (l) 6
(m) 2 (n) 1 (o) 2.5

13D A B C D
READ A,B,C 4 3 2
LET D=A+B*C 10
LET B=(A+C)/B 2

13E (a) LET X=RND(5) (b) LET X=5+RND(5) (c) LET X=10*RND(5)

13F It will choose a name at random from the 7 names given.

118 Answers to Additional Questions

16A (a) NO (b) YES (c) NO (d) YES
(e) NO (f) YES (g) YES (h) YES
(i) YES (j) NO (k) NO (l) NO

16B (a) < (b) > (c) > (d) < (e) < or >

16C (a) <= (b) >= (c) >= (d) <= (e) <= or >=

16D 8 is less than 10
 9 is less than 10
10 is equal to 10
11 is greater than 10

17A (a) PROC_PAPER(WHITE)

(b) PROC_INK(RED)

(c) PROC_RECT(400,300, 800,600)

(d) PROC_INK(YELLOW)

(e) PROC_CIRC(600,700, 100)

(f) PROC_INK(BLACK)

(g) PROC_TRI(200,400, 400,500, 400,600)

(h) PROC_TRI(1000,400, 800,500, 800,600)

(i) PROC_TRI(400,300, 500,100, 600,300)

(j) PROC_TRI(600,300, 700,100, 800,300)

(k) PROC_LINE(500,400, 700,400)

(l) PROC_LINE(500,500, 700,500)

You might draw these shapes on a grid similar to that shown in
Figure 9.1, and colour each shape in its correct colour.

Now load the PROCS1 program from your cassette, extend the
program by adding the commands listed above, and run the program.
Is the drawing on the screen the same as on your grid?

Answers to Additional Questions 119

Addition 3, 71
Amplitude 76
Arrow keys 37
AUTO 16-18, 105

Background 56
Backing store 26
Backup 33
BASIC iii, 1
BBC iii, 1
Blank line 29
Body 42, 59
Boxes 7, 41
Brackets 72

C15, C30 27
Calling 95
Cassette contents sheet 29-31
Cassette tapes 26-8
*CAT 32, 33
Catalogue 32
Character 44
Circle 98
CLG 57, 105
Clock 81
CLS 46, 56, 105
Coin program 75, 104
Colon 83, 85
Colour 55-8, 98-101
COLOUR 55, 105
Command 2
Computer 2
Conditional branch 91-2
Conditions 86, 88-90
Co-ordinates 50-1
COPY key 37-8
CTRL key 47
Cursor 20

DATA 67-70, 105
Decimal numbers 73
DEF 94, 105
Delay 83-4, 94-6
DELETE

command 36-7, 105
key 3

Dice program 74-5
DIV 73-4, 75, 81, 105
Division 4, 71
DRAW 51, 105
Drawing

Lines 50-1
Shapes 52-3, 98-102

Duration 76

Editing 35-8
Delete a line 36, 37
Insert a line 35, 37
Replace a line 35, 37
Screen 37-8

END 14, 105
ENDPROC 94, 105
ENVELOPE 76
ESCAPE key 17, 82
Execute 3, 14

FALSE 82, 104
Floppy disk 26
Football program 93, 104
FOR 59, 61, 83, 105
Foreground 55

GCOL 56-7, 106
Graphics 49-54, 98-101
Grid 54
Guess-the-number program 90

Index

House program 53, 54, 58, 99

IF 86-93, 106
Indentation 39, 59
Ink 98
Input 2, 22-4
INPUT 22, 46, 106

Jokes program 46

Keyboard 2
Keys

COPY 37-8
CTRL 47
DELETE 3
ESCAPE 17, 82
RETURN 2
SHIFT 47

Leader 27
LET 7, 106
Line-number 14, 16, 17
LIST 15, 47, 106
LOAD 31, 106
Loop 42

Body 42, 59
Control command 42
Control variable 60

Loops
FOR 59-66
REPEAT 39-43

Meaningful names 13
Memory 7, 14, 26
Mistakes 3
MOD 73-4, 75, 81, 106
MODE 49, 51, 106
Model A, B 49
Modes 49
Monitor 2
Months program 68-9, 70, 103
MOVE 51, 106
Multi-command line 83
Multiplication 4, 71
Music 77-80

NEW 9, 16, 33, 106
NEXT 59, 61, 106

Notes 77
Numbers 71-5

Octave 77
OLD 33, 106
Output 2, 19-22

Paging mode 47
Paper 98
Parameters 96-7
Pitch 76
PLAY button 27, 32
PLOT 99, 106
Pocket money program 28, 42, 91
PRINT 2, 19, 106
Priority order 72
PROC 94, 106
Procedures 94-101
Program 14-8
Programs

CAR1 101
CLEVER1 30, 32
COIN1 75, 104
DICE1 74-5
FTBALL1 93, 104
GUESS1 90
HOUSE1 53
HOUSE2 54
HOUSE3 58
HOUSE4 99-100
JOKES1 46
MONTHS1 68-9
MONTHS2 70, 103
MUSIC1 79
MUSIC2 80
POCKET1 28, 30
POCKET2 42
POCKET3 91
PROCS1 100, 101
REACT1 84
REACT2 85
SHOP1 43, 102
SHOP2 66
TABLES1 64

Program title 28
Prompt 3

Index 121

Quote marks 19, 44

Random numbers 74-5
Reaction-time program 84-5
READ 67-70, 106
RECORD button 30
Rectangle 54, 98
REM 28, 33, 107
RENUMBER 35, 37, 107
REPEAT 39, 43, 107
REPEAT loops 39-43
RETURN key 2
RND 74, 96, 107
RUN 14, 107
Running a program 14

SAVE 29, 107
Scroll mode 47
Semi-colon 20
SHIFT key 47
Shopping 43, 66, 102
Sound 76-80
SOUND 76, 107
Stave 77
STEP 63, 107
STOP 104, 107
Stop-watch 82
Strings 44-8
Subtraction 3, 71

Tables program 64
Tape 27
Television 2
Text 49
THEN 86, 107
TIME 81, 107
Timing 81-5
Title 28
TO 59-61, 107
TRACE 15, 18, 40, 95, 107
Triangle 54, 98

Units 1
Underline 12, 94
UNTIL 39, 43, 107

Variable names 12

Variables
number 7-13
string 44

Version number 28

122 Index

All the important features of BASIC are covered in this
short introduction and the reader is shown how to use
these in simple programs. The book is divided into short
units. Each unit focuses on a particular feature of
programming on the BBC microcomputer and consists of
explanatory text, test questions and practical exercises. The
practical exercises can be undertaken individually or
demonstrated by a teacher on a single computer in a
classroom.

For readers who have reasonably free access to a BBC
microcomputer this book is an ideal first self-study text.
Those wishing to progress to the more advanced aspects
of BASIC and to learn how to design, construct, implement
and test larger, complex programs are recommended to
BBC BASIC by the same author.

Also published by Edward Arnold

BBC BASIC
R. B. Coats

Spectrum BASIC
R. B. Coats

Applesoft BASIC
B. M. Peake

Microcomputing with the PET
J. Arotsky, J. Taylor and D. W. Glassbrook

Microcomputing in BASIC on the RML 380Z/480Z
W. R. McDonough

Computer Keyboard Mastery
Stan Harcourt

Basic BASIC
Donald M. Monro

Basic BASIC on the BBC MICRO (in preparation)
Donald M. Monro

Edward Arnold
ISBN 0 7131 3520 4

	Preface
	1. Introduction
	2. Variables
	3. What is a program?
	4. Input and output
	5. Looking after your programs
	6. Editing
	7. REPEAT loops
	8. Strings
	9. Graphics
	10. Colour
	11. FOR loops
	12. READ and DATA
	13. Numbers
	14. Sound
	15. Timing
	16. The IF command
	17. Procedures
	Appendix A - Answers
	Appendix B - Summary of BASIC
	Appendix C - Additional Questions
	Appendix D - Answers to Additional Questions
	Index

