

BBC BASIC (Z80) FOR THE BRITISH BROADCASTING CORPORATION MICROCOMPUTER PLUS Z80
SECOND PROCESSOR RUNNING CP/M*

Part no 409003
Issue no 2
Date September 1984

NOTE: Within this publication the term 'BBC' is used as an
abbreviation for 'British Broadcasting Corporation'.

® Copyright Acorn Computers Limited 1984

Neither the whole nor any part of the information contained in, or the product
described in, this manual may be adapted or reproduced in any material form
except with the prior written approval of Acorn Computers Limited
(Acorn Computers).

The product described in this manual and products for use with it are subject
to continuous development and improvement. All information of a technical
nature and particulars of the product and its use (including the
information and particulars in this manual) are given by Acorn Computers in good
faith. However, it is acknowledged that there may be errors or omissions in this
manual. A list of details of any amendments or revisions to this manual can
be obtained upon request from Acorn Computers Technical Enquiries. Acorn
Computers welcome comments and suggestions relating to the product and this
manual.

All correspondence should be addressed to:

Technical Enquiries Acorn Computers
Limited Newmarket Road Cambridge CB5 8PD

CP/M® is a registered trademark of Digital Research Inc

First published 1984 Published by Acorn Computers Limited

CONTENTS

Introduction 1

1 Running BBC BASIC 3

2 Program flow control 5
 Loop operations 5
 Local variables 6
 Stack pointer control 6

3 Assembly language and operating system calls 7
 The assembler 7
 The USR function 7
 The CALL statement 8
 Operating system access 8
 'Star' commands and the OSCLI statement 9

4 The CP/M® filing system 11
 Filenames 11
 Filing system operations 11
 CP/M 'operating system' commands 11
 File size, EXT# and EOF# 12
 Random access files 13

5 Data file formats 15

6 Other differences between the 6502 and Z80 versions 17

7 Transfer of programs from the BBC Microcomputer DFS 19

Introduction

The Z80 version of BBC BASIC has been designed to be compatible with the 6502
version supplied with the BBC Microcomputer. In general, therefore, the BBC
Microcomputer user guide can be used as a reference manual for both versions.
There are, however, a number of differences between the two versions that the
user should be aware of. Some of these differences result from the
characteristics of CP/M, some from the use of the Z80 processor and some from
the dual processor architecture

1 Running BBC BASIC
BBC BASIC (Z80) is supplied on a CP/M format floppy disc, suitable only for
use with the Z80 second processor. The name of the file is BBCBASIC.COM. To run
BBC BASIC type

BBCBASIC

and press RETURN. The system will reply:

Acorn BBC BASIC (Z80) Version 2.00 (0 Copyright
R.T.Russell 1983

>

Alternatively, you may type BBCBASIC

<filename>

Where <filename> is the filename of a BASIC program. In this case the
introductory message will not appear and the system will proceed as if a CHAIN
"filename" command had been issued after initialisation. A default extension
of .BBC is used if none is supplied. This can be useful in allowing BBC BASIC
programs to be executed in batch mode using the CP/M SUBMIT facility. Such
programs should terminate with a *CPM command to return to CP/M and allow the
next program in the batch stream to execute.

2 Program flow control

BBC BASIC (Z80) uses a single control stack (the processor's hardware stack)
for all looping and nesting operations, whereas the 6502 version uses
separate stacks for FOR...NEXT, REPEAT...UNTIL and GOSUB...RETURN
operations. The main effects of this difference are as follows.

Loop operations

There is no limit (except memory size) to the level of nesting of FOR...NEXT,
REPEAT...UNTIL and GOSUB...RETURN operations. The error messages

Too many FORs Too many REPEATS Too
many GOSUBs

do not exist; instead the

No room

message (not trappable) will be issued if all stack space is used up.

In some circumstances the Z80 version is less tolerant of jumping out of loops.
For example, consider the following program:

100 PROCtest(5)
110 END
120 DEF PROCtest(x)
130 FOR i=l TO 10
140 IF i=x THEN GOTO 160 : REM Jump out of loop
150 NEXT i
160 ENDPROC
If this is run on the 280 version it will result in the error message No PROC

at line 160

because ENDPROC was encountered when NEXT was expected. On the 6502 version the
program will run without error, but if PROCtest is called more than ten times
the

Too many FORs

error will result. This situation should not be encountered in a properly
structured program, but if it is there are three main solutions:

- Eliminate the necessity of jumping out of the loop by rewriting as a
REPEAT...UNTIL loop, or otherwise. This is the preferred solution:

120 DEF PROCtest(x)
130 i=0
140 REPEAT i=i+1
150 UNTIL i=x OR i=10
160 ENDPROC

- Exit the loop prematurely by setting the loop variable to a value greater
than the limit value (assuming a positive step) and jumping

to the NEXT statement:

120 DEF PROCtest
130 FOR i=1 TO 10
140 IF i=x THEN i=11 : GOTO 150
150 NEXT
160 ENDPROC

Enclose the loop in a dummy outer loop and utilise the BASIC capability
to 'pop' an inner FOR...NEXT loop, as follows:

120 DEF PROCtest(x)
125 FOR duimny=1 TO 1
130 FOR i=1 TO 10
140 IF i=x THEN GOTO 155 : REM Jump to an outer NEXT is OK
150 NEXT i
155 NEXT dummy
160 ENDPROC

Local variables

Local variables are also stored on the processor's stack, so you cannot make
an array LOCAL by using a FOR...NEXT loop. For example:

200 DEF PROCtest
210 FOR i=l TO 10
220 LOCAL A(i)
230 NEXT i

will give the message:

Not LOCAL at line 220

if run on the Z80 version. In this instance it is necessary to fabricate the
loop using IF...THEN:

200 DEF PROCtest
210 i=l
220 LOCAL A(i)
230 i=i+l
240 IF i<= 10 THEN 220

Stack pointer control

HIMEM determines the initial value of the stack pointer, which can be changed
only when the stack is empty. Therefore, HIMEM cannot be changed within a
procedure, function, subroutine, FOR...NEXT loop or REPEAT. . . UNTIL loop .

3 Assembly language and operating calls

Because the language processor is a Z80 rather than a 6502, the assembler
and machine code calls (CALL and USR) operate somewhat differently. It is
assumed in the following sections that you are reasonably familiar with the Z80
instruction set and the standard Zilog assembly language mnemonics.

The assembler

The Z80 assembler included as part of BBC BASIC (Z80) is accessed in the same
way as the assembler in the 6502 version. It includes those facilities provided
on Issue 2 of the 6502 version. The main differences to note are as
follows:

- The standard Z80 mnemonics are accepted, ie those in the Z80
Assembly Language Programming Manual. 'ADD', 'ADC', and 'SBC' must be followed
by 'A' or 'HL' (eg ADD A,C is accepted but ADD C is not), but the brackets
around the port number in 'IN' and 'OUT' are optional (ie both OUT (5),A
and OUT 5,A are accepted). The instruction 'IN F,(C)' which is not
explicitly mentioned in the Z80 programming manual, is NOT accepted but the
equivalent object code is produced from the instruction 'IN <HL),(C)'.

- There must always be at least one space between the op-code and the operand(s).

- Comments are introduced by a semi-colon (;) or by a backslash (\).

- Pseudo-op's provided are DEFB (define byte), DEFW (define word) and DEFM
(define message). These behave in the same fashion as EQUB, EQUW, and EQUS
on the 6502 version. Those used to other Z80 assemblers should note
that DEFB and DEFW must be followed by a single value only. OPT may be used
to simulate a MACRO capability. There is no equivalent to EQUD.

- Because the Z80 has no privileged zero page instructions the 'Byte' error does
not exist; instructions needing an 8-bit operand simply take the least
significant byte of the operand value. 'Out of range' is issued if the
destination of a relative jump (JR or DJNZ) instruction is too distant,
and also if an RST instruction has an illegal operand.

- A few illegal instructions (eg ADD HL,IX) are accepted without an error
messsage being issued.

The USR function

This function calls a machine code subroutine whose address is its argument and
returns a 32-bit integer value. The processor's A, B, C, D, E, F, H and L registers
are initialised to the least significant bytes of the integer variables A%, B%,
C», D%, E%, F%, H%, and L% respectively, and the returned value is the 32-bit
integer composed of the Z80 registers H, L, H', L', most significant to least
significant. USR behaves differently if the argument is in the range &FF00 to
&FFFF (see 'Operating System access' overleaf).

The CALL statement

CALL allows a machine code subroutine to be called, with optional passing of
parameters. The CALL statement sets up a parameter block which contains details
of the parameters (their types and addresses). Parameters are passed by
reference and can therefore be altered by the machine code routine. On entry
to the subroutine the processor's registers are set up as described for USR
above; also the Z80's IX register is set to the address of the parameter block
and IY to the address of the subroutine (this can be useful if the machine code
routine needs to find out where it is). The parameter block contains the
following information:-

number of parameters - 1 byte (IX)
1st parameter type - 1 byte (IX+1)
1st parameter address - 2 bytes (IX+2, IX+3), LS first
2nd parameter type - 1 byte) repeated as often
2nd parameter address - 2 bytes) as necessary.

Note that parameter type and parameter address are exchanged compared with the
6502 BASIC. Parameter types are as follows:-

0 - 8-bit byte (eg ?X)
4 - 32-bit integer variable (eg !X or X%)
5 - 40-bit floating point number (eg V)

128 - A 'fixed string' (eg $X)
129 - A string variable (eg A$)

Except in the case of a string variable, the parameter address is the actual
address at which the parameter is stored. Integer variables are stored least
significant byte first and fixed strings as the characters of the
string followed by a carriage return (&0D). Floating point variables are stored
least significant byte first, the fifth byte being the binary exponent. If
the exponent is zero, then the variable is either zero or has an integer value
determined by the other four bytes. If the exponent is non-zero then the variable
has a floating point value; if the exponent is 127 then 0.5<=value<l, if 128
then 1<=value<2, if 129 then 2<=value<4 etc. The most significant bit of the
fourth byte is the sign bit (=1 for negative). Note that an integer value can
be represented in two ways, for example the value -5 can be represented as
&00FFFFFFFB or as &82A0000000; X=-5 will result in the former and X=-5.0 in the
latter.

In the case of a string variable, the parameter address is the address of a
'string descriptor' which gives the current length of the string, the number
of bytes allocated to the string and the address of the string (LS byte first)
in that order. Note that, once again, the order of these items is not the same
as in the 6502 version.

Operating system access

Addresses in the range &FF00 to &FFFF provide access to the machine operating
system, as with the BBC Microcomputer on its own. In order to achieve the greatest
compatibility between the 6502 and the Z80 versions of BBC BASIC, CALL and USR
behave differently when addressing this area of memory. In both cases, the
processor's A, H, and L registers are initialised to the least
significant bytes of the integer variables A%, Y%, and X% respectively. In
the case of USR, the returned 32-bit value is composed of the processor's F,
H, L and A registers corresponding to the 6502's P, Y, X and A registers, most

significant to least significant. Assuming that the address used is one of the
legal OS entry points, the call will be communicated through the Tube to
the 6502 processor where it will be executed as normal. Any result returned will
be communicated through the Tube back to the Z80, the Z80' s F, H, L and A
registers corresponding to the 6502's P, Y, X and A registers. Although the
format of the Z80's flags register F is not identical to the 6502's status
register P, the carry bit is in the same position, so nearly all OS calls made
from BASIC will work correctly.

'Star' commands and the OSCLI statement

As with the 6502 version, operating system commands can be issued from BASIC
either by preceding them with a star (eg *FX 4,1) or by using the OSCLI statement
(eg OSCLI "FX 4,1") However, before being passed to the operating system the
command is checked to see if it corresponds to one of the CP/M filing
system commands (see overleaf). If it does, the appropriate CP/M function is
carried out and control is returned to BASIC; if it does not, the command is
passed to the 6502 operating system in the usual way. If you need to pass
an operating system command to the 6502 which happens to have the same name as
one of the CP/M commands (eg *DIR) then it should be preceded with another star;
ie **DIR $ or OSCLI "*DIR $" will cause the Acorn DFS to set its default directory
to "$" rather than result in a CP/M disc directory listing.

4 The CP/M filing system

BBC BASIC (Z80) runs under the CP/M operating system. Generally, input/output
(eg the console) bypasses CP/M and uses the standard BBC Microcomputer operating
system conventions (eg CTRL B switches on the printer) ; this is to maintain
the best compatibility with the 6502 BASIC. File operations, however, use CP/M
as the filing system and this gives rise to some characteristics of which you
should be aware.

Filenames

Filenames accord with the usual CP/M conventions, ie they consist of an optional
drive letter, a filename of up to eight letters and an optional 'extension' of
up to three letters, eg D:FILENAME.EXT. The colon is part of the drive
specification and the full stop is part of the extension. If the drive letter
is omitted, the current drive is assumed. If the extension is omitted, .BBC is
assumed. Lower case letters within filenames are converted to their
upper case equivalents.

Filing system operations

The statements and functions which access the CP/M filing system are SAVE, LOAD,
CHAIN, OPENOUT, OPENIN, OPENUP, EXT#, PTR#, BPUT#, BGET#, PRINT#, INPUT#. EOF#
and CLOSE#. As CP/M does not provide the facility for opening a file for 'input
only', OPENIN and OPENUP have identical effect. Note that CP/M is used
unconditionally as the filing system;
it is not possible to change to another (eg TAPE). Access to other BBC
Microcomputer filing systems may be achieved by direct calls (from BASIC or
machine code) to the various entry points in page &FF (eg OSFIND, OSBGET, OSBPUT
etc).

CP/M operating system commands

Those filing system operations which are not provided directly by BASIC
statements and functions (eg file deletion and renaming) are made available as
pseudo operating system commands. That is, they appear to the user to be normal
operating system commands but are actually processed by the Z80 and are not sent
to the 6502 I/O processor. These commands are similar to the facilities provided
by CP/M's console command processor and use the same syntax:

*ERA filename Erase (delete) the file 'filename'. If the filename contains
a wildcard (? or *) then all files matching the name are
deleted. The drive defaults to the current drive and the
extension to .BBC unless otherwise specified.

*REN file2=filel Rename filel to be called file2. The filenames must be
unambiguous (wildcards are not permitted). The extensions
default to .BBC.

*TYPE filename Type the contents of the specified text file to the screen.

*DIR List the disc directory (catalogue). The default drive is
the currently logged drive and the default extension is .BBC
(ie all .BBC files are listed). The command *DIR *.* will
list all files on the disc.

Six more commands, which are not standard CCP commands, are provided:

*RESET Resets the CP/M disc system. This command must be issued
after changing a disc.

*CPM Return to CP/M (warm boot).

*BYE Has the same effect as *CPM.

*DRIVE d Selects drive d as the current drive for
subsequent file operations. The colon is
mandatory.

*LOAD file aaaa Loads the named file to memory address aaaa
(hexadecimal). Note that this command differs from the
normal BBC Microcomputer command in that the load address
must always be explicitly given.

*SAVE file aaaa bbbb Saves an area of memory to a disc file, where aaaa is the
hexadecimal start address and bbbb-1 is the end address.
Instead of specifying the end address, the length of the
data block to be saved may be given, preceded by a plus
sign (eg *SAVE file aaaa +1111). Note that this command
differs from the normal BBC Microcomputer command
in that the saved file is always a multiple of
128 bytes long, and that there is no execute address or
reload address associated with the file.

Operating system commands may be entered in lower case, and filenames may
optionally be enclosed within quotation marks. Commands may be abbreviated by
using a full stop, eg *DR. is equivalent to *DRIVE. Filing system commands other
than those listed above (eg *DUMP) are not intercepted by the Z80 and are passed
to the current filing system selected on the 6502.

File size, EXT# and EOF#

CP/M (2.2) maintains file lengths only as a multiple of 128 bytes, and this is
reflected in the value returned by EXT#. Another effect of this limitation is
that the end-of file flag EOF# cannot be used to indicate the precise end of
data in the file with any certainty: up to 127 bytes (nulls) may be read after
the last data item before the EOF# flag is found to be TRUE. If these
additional nulls cannot be tolerated, a deliberate end-of-file marker
should be included in the file (eg an illegal data value, if the file's content
allows this) or alternatively the file's exact length (the value of PTR# after
the last data item has been written) can be written as the first record of the
file:

100 file=OPENOUT(filename$)
110 IF file=Q PRINT "Directory full":END
120 PRINT# file,0 : REM. write dummy value to reserve space
.... REM. write data to file
200 length=PTR# file
210 PTR# file=0
220 PRINT# file,length : REM. write length as first record
230 CLOSES file

EXT# performs a directory read operation so is quite slow. If repeated use of
the file length is necessary, use EXT# once and save the result in a variable.

Random access files

CP/M supports random access files, and unlike the Acorn DFS such files need not
occupy contiguous space on the disc. There is therefore no equivalent to the
'can't extend' error, and it is quite acceptable to lengthen an existing file
by opening it for update and writing new data items at its end:

100 file=OPENUP(filename$)
110 IF file=0 PRINT "File not found":END
120 INPUT# file,length : REM. length stored as first record
130 PTRft file=length
... REM. write new data at end of file
200 length=PTR# file
210 PTR» file=0
220 PRINT# file,length
230 CLOSE# file

CP/M files may be 'sparse', ie areas of a random access file to which data has
never been written need not occupy any disc space. Such unwritten areas are
limited by this implementation of CP/M to blocks of 2K bytes in size; if the
file pointer (PTR#) is set to a value within an unwritten block, EOF will be
set to TRUE. It is possible for the 'virtual length' of a file (returned by EXT#
) to be greater than the total capacity of the disc, but is limited by CP/M to
8M bytes (&800000 bytes).

5 Data file formats

Data files written by the PRINT* statement, and read by the INPUT# statement,
have a different format from files used by the 6502 BASIC. String items consist
of the characters of the string followed by carriage return (and therefore occupy
n+1 bytes where n is the length of the string) and numeric items (whether integer
or floating point) consist of five bytes of binary data. The stored items are
not 'typed', therefore the 'Type mismatch' error is not produced when reading
files; if no carriage return is found within 256 characters when reading a string
value, a null string is returned.

Because strings are written in a straightforward fashion, it is possible to
create a conventional text file (compatible with a Text Editor for example) by
using the PRINT* statement. To separate lines of text with carriage-return
line-feed it is simply necessary to add the line feed character using BPUT# :

150 PRINT file,text$: BPUT# file,10

Programs which use PTR# to position the file pointer when reading a data file
with INPUT will probably need modifying if transferred from the 6502 BASIC to
the Z80 BASIC.

6 Other differences between the 6502 and Z80 versions

The following differences are of a minor nature, and will not normally be of
importance to the programmer. They are listed here for the sake of completeness:

END, or an untrapped error, closes all open files. STOP leaves files open to
aid debugging. File control blocks are contained within the dynamic variable
area so all files should be closed before using CLEAR, CHAIN etc or editing the
program.

The default prompt from an INPUT statement is '? ' rather than '?' (ie there
is a space after the query).

REPORT does not issue a new-line preceding the error string, so you can position
the message anywhere on the screen.

A program line with a line number of zero cannot be entered (it is treated as
an immediate command).

Integer variables do not increment or decrement in a 'circular' fashion; you
get "Too big" if you try to increment above &7FFFFFFF or decrement below
&80000000.

Leading spaces are automatically stripped from program lines.

The random number generator is initialised by RUN, therefore RND will return
zero until RUN (or CHAIN) is first issued.

LISTO defaults to 7.

Characters with an ASCII value of less than 13 have no effect on COUNT.

MODE can be used within a procedure or function, and has no effect on HIMEM.
HIMEM can be returned to its initial value with
HIMEM=(!6)AND&FF00.

Trapped errors neither restore the DATA pointer nor turn off TRACE mode.

The 'Bad program' error performs a NEW operation.

The numeric range of floating-point numbers is approximately 5.9E-39 to 3.4E38.

INSTR returns the value zero if the string being searched for is a null string.

The exact result of complex calculations may differ from the 6502 version because
of differing rounding techniques.

7 Transfer of programs from the BBC Microcomputer DFS

The filing systems used by the BBC Microcomputer alone and with the Z80 second
processor differ. The BBC Microcomputer alone uses DFS and with the Z80 it uses
CP/M. A utility program DIP has been provided to transfer programs or data
between these filing systems.

As is usual for CP/M utilities, DIP can be invoked for a single operation, eg

A>DIP FRED=:1.$.BERT

Alternatively, DIP can be invoked and will then prompt repeatedly until
terminated by CTRL C, eg

A>DIP
*FRED=:1.$.BERT
*:1.$.JIM=BILL
*CTRL C A>

To copy from CP/M to DFS the valid syntax for a command is:

<DFS filename>=<CP/M filename>[,/B][/Ixxxx]

and to copy from DFS to CP/M the valid syntax is:

<CP/M filename>=<DFS filename>[/B]

where [. . .] indicates that the contents of the brackets are optional (the
brackets should not be typed). <DFS filename> represents a filename acceptable
to the Acorn DFS. The filename must be given in full, ie :drive.dir.name. <CP/M
filename> represents a filename following the usual CP/M conventions, eg FRED,
B.FRED, FRED.EXT, A:FRED.EXT

The /B switch

6502 and Z80 BBC BASIC store BASIC programs in slightly different formats. The
/B switch is used to convert between these formats, eg

>DIP DESTN.BBC=:3.B.SOURCE /B >DIP
:1.$.DEST=A:SOURCE.BBC /B
Note that there must be at least one space before /B. The /I switch

Some CP/M assemblers produce object files always starting at 100 (hex). It is
therefore sometimes convenient to ignore the first N characters of a CP/M file
'when transferring to DFS. This is done with the ignore characters switch (I).
The switch takes an argument representing the hexadecimal number of characters
to be ignored, eg

>DIP :1.$.THING=THING.COM /I 0F00

to ignore the first &F00 characters when transferring THING.COM from CP/M to
DFS.

Note that there must be at least one space before /I; the leading zeros are
optional.

The /I switch does not affect DFS load and execution addresses. These can be
sorted out later if necessary using OSFILE 2 and 3.

