Servicing the BBC Micro

6502 Assembly Language

-

Assembly language

The 6502 microprocessor

The 6302 is the ‘brains’ of the computer containing all the logic
required to recognise and execute the list of instructions called the
program. All the time the machine is switched on the micro-
processor is busy, reading numbers {rom memory, interpreting them
as instructions and then carrying out the operations specified by
these instructions. To help it with this task there are a number of
special memory locations, called registers, on the microprocessor
chip itself. These are identified by name rather than number, i.c.
they are not part of the so-called Memory Map.

The registers of the 6502 are indicated in Fig. /.

7 -0
A Accurmuistar
? 0
Y Inden regster ¥
7 0
X lnden regater X
19 ? 0
PCH PCL Progr am counter
7 0
ol S Stack pomter
? 0
NiviBlOfI1|2]C Procemor status regster, P
‘— m
2ero
~ Inmterrupt disadie
Decimal mode
Breal command
Overfiow

Negstive Fig. L.

The accumulator A is the register involved in most of the mathe-
matical and logical functions because of its greater power than other
registers and memory locations. The X and Y registers are used to
store values for counting, timing and indexing (identify an address
or sequence of addresses referenced to some base address and parti-
cularly useful in scanning tables of values with the minimum of
programming). The program counter, PC, registers the current
address; the stack pointer keeps records of information put aside
when the microprocessor is temporarily diverted from its main task,
and the status register is a collection of individual bits identifying
features of the previous instruction.

The program followed by the microprocessor bears little resem-
blance to BASIC. The only language the processor understands is the
language of 0s and Is, or MACHINE CODE. For example, the set of
binary numbers below forms a short machine code program thatstores
the number 21 (hex) in memory location 1600 (hex):

Binary In Hex Representation
10101001 A9
00100001 21
10001101 8D
00000000 00
00010110 16

Some of these numbers are called OPERATION CODES or ‘OP
CODES’, and tell the processor what it has to do. In the example,
A9 tells the processor to load its accumulator with the next number,
namely 21. The next code, 8D, tells it to store the contents of the
accumulator in location 1600 (hex), the memory location defined by
the next two numbers.

Although it is possible to write programs directly in machine code
(in some early microcomputers it was the only method, e.g. KIM), it
is a slow process, prone to error, requiring the programmer to make
continuous reference to instruction tables similar to those shown in
Appendix B . An alternative approach is to write programs in a
more ‘human friendly’ format called ASSEMBLY LANGUAGE.
This language uses alphabetic abbreviations for each type of instruc-
tion rather than binary or hex OP codes. For example, abbreviations
such as LDA and STA are used to represent the operations LoaD
the Accumulator and STore the Accumulator. These abbreviations
are often called ‘mnemonics’ because they are more easily remem-
bered than OP codes. Written in mnemonics, the example program
becomes: '

LDA #21
STA 1600

The question now arises, ‘How does this assembly language pro-
gram become the machine code program stored in the computer’s
memory” The answer is to use a special program called an
ASSEMBLER which translates the ‘easily understood by humans’
assembly program into the language of the processor, machine code.

Fig. 2. Assembler

Using the assembler

Entering an assembly language program on the BBC micro is simi-
lar to entering a BASIC program. There are some extra instructions
required that can best be explained with the aid of an example (Fig.

3).
10 P$ = 21500
20(C
30 LDA 821
40 STA 41600
50 RTS
60]

Fig. 8.

—Line 10 acts as an ‘origin’ statement for the program, telling the
assembler where the machine code has to be positioned in the
computer’s memory. The integer variable P% is used for this task.

—Lines 20 and 60 contain square brackets (they appear as arrows in
MODE 7) that enclose the Assembly Language program.

—Line 30 contains the instruction to LoaD the Accumulator with
21 (hex).

—Line 50 contains a ReTurn from Subroutine instruction which
returns control to BASIC on completion of the machine code

program.
The RUN command will assemble the program, placing the

machine code in memory. An assembler listing of the mnemonics
and the machine code will also be sent to the display.

1500
1500 49 21 LOA #&21
1302 80 00 16 STA 21600

1505 60 RTS
Machine code Mnemonics
Fig. 4.

Examination of memory location & 1600 will show that the pro-
gram has not yet been executed. Try:

PRINT ~ ? &1600

i.c. it is unlikely that it contains &21.
To execute the machine code program we use the CALL state-
ment followed by the starting address of the routine, i.c. type:

CALL &1500

The computer will execute the program and return to BASIC, dis-
playing the ‘>’ prompt. Check memory location & 1600 again. It
should now contain &21.

The CALL statement can be included at the end of the program,
see Fig. 5.

10 P = £1500
20 C

30 LOA #221
40 STA 11600
350 RTS

60]

70 CALL 81500 Fig. 5.

On the command RUN the program will be assembied and then
executed.

Comments and labels

Documentation considerably improves a program, making it easier
to read. In BASIC, comments are added using REM statements.
Unfortunatcly REM statements are not allowed within the assem-
bler program and comments must be attached to assembler state-

ments using a semi-colon or backslash (\)
e.g. 40 STA &1600; THIS IS A COMMENT

Variable names can be used to represent memory addresses or mem-
ory contents. However, they must be defined outside the square

brackets holding the assembler program

e.g. NUMBER=&21
STORE =&1600

An exception to this rule is the definition of program addresses. [f we
wished to label the starting address of a program ‘START it could be

done as follows.

30 START LDA #&21

The label is prefixed by a full stop (period) ‘.’ and separated from the
assembler mnemonic by at least one space.
Using comments and labels the previous program becomes that

listed in Fig. 6.

10 REM 206G RAEAREERGRRERENS

20 REM DEMD ASSEMBLER PROGRAMME
30 REM "88830830088888000000008
40 P$=41500

S0 NUMBER=421

60 STORE=41600

70

80 .START LOA #NUMBER ;GET NUMBER
90 STA STORE ;STORE NUMBER
100 RTS ;BACK TO BASIC
110]

120 CALL START

Fig. 9.6.

Finally a word of caution on the choice of labels. The same restrictions
are placed on variable names as in BASIC. In particular, BASIC
‘keywords’ like PRINT, NEXT, REPEAT, END, etc. are definitely
NQ'E(;\LLOWED. However, their lower case equivalents are per-
mitted.

WPTIGEINE I JIETTLY Y UUTUBLINES
The BBC micro’s operating system ROM contains many useful

machine code subroutines that can be included in your assembler pro-
gram. Three routines of particular interest are:

I. OSRDCH—OPERATING SYSTEM READ CHARACTER
Address— &FFEO:

Reads a character from ‘theinput channel’, normally the keyboard,
placing it in the accumulator.

2. OSWRCH—OPERATING SYSTEM WRITE CHARACTER
Address—&FFEE:

Writes a character in the accumulator ‘down the output channel’,
normally to the screen.

3. OSASCI—OPERATING SYSTEM ASCII Address—&FFE3:
As for OSWRCH except that a line feed is automatically inserted
with a carriage return.

(Note: The X and Y registers are not affected by any of these
routines.)

The example in Fig. 7 turns the computer into an electronic type-
writer that will ignore all BASIC keywords and merely display
depressed keys on the screen. The subroutine OSRDCH is used to
obtain the ASCII code of any depressed key. OSASCI then transfers
this code from the accumulator to the display. The JMP START
instruction sends the processor back to the keyboard to look for
another depressed key.

10REM tstsssscsncacsanssaseqens

20REM USING THE 0S SUBROUT INES
jmm A L R R R R YN IYLY)

35 DiIM SPACE 100

40 OSASCI=&FFES

50 OSROCHS&FFEQ

60 P$=SPACE

70

80 .START JSR OSROCH ;GET CHART. FROM KB
90 JSR OSASC! ;PLACE ON SCREEN
100 JMP START ;REPEAT

110]

120 CALL START

oF22

0F22 20 EO FF .START JSR OSRDCH ;GET CHART. FROM KB
OF25 20 E3 FF JSR OSASCI ;PLACE ON SCREEN

OF28 4C OF JMP START ;REPEAT

Fig. 7.
In this example we have used a different technique to instruct the

assembler where to position the machine code. Rather than defining
uniquely where the code has to be placed, the DIM statement in line

35 reserves 101 byvtes and places the machine code in this reserved
space at the end of the BASIC program. This technique has the
advantage that the assembler will ensure that the machine code
program is positioned in a safe place within the system memory and
will not corrupt either the original BASIC program or memory loca-
tions allocated to the screen.

Two pass assembly

The BBC assembler uses the full stop to define labels within an
assembly program. However, problems arise when a label is referred
to before it is defined. This situation is illustrated in the example in
Fig. 8 where the ‘typewriter’ program has been modified to return
control to BASIC whenever the asterisk key is depressed:

35 DIM SPACE 100
40 OSASCI=&FFES
50 OSROCB=4FFEOQ

60 PE=SPACE
70 C
80.START JSR OSROCH ;GET CHART. FROM B
8s O® FASCT®® ;IS IT AN "o
87 BEQ FINI $IF SO QUIT
90 JSR OSASC! ;PLACE ON SCREEN
100 JMP START ;REPEAT
105.§|m RTS ;RETURN TO BASIC
110 ‘
120 CALL START
Fig. 8

The label FINT appears in line 87 but is not defined until line 105.
An attempt to assemble the program would give the result shown in
Fig. 9

OF28
OF28 20 EO FF .START JSR OSROCH ;GET CHART. FROM KB
OF28 C9 2A QP JASCTe® ;IS IT AN ne®

No such varlablie at |ine 87

Fig. 9.

—namely the assembler stops, displaying an error message. The
solution is to allow the assembler to pass through the source program
twice. In the first pass the assembler establishes a table of labels and
their addresses. In the second pass it uses these addresses to construct
the final machine code program. Due to the assembler being ‘em-
bedded’ in BASIC, the extra programming required to initiate the two

pass assembly is relatively simple, requiring only a FOR ... NEXT
loop to sent the assembler through the program twice, see Fig. /0.

FOR N = 1 TO 2

Pg = SPACE
C
Assambly language
program
]
NEXT N
Fig. 10.

However two points are worth noting:

(1) The equate statement for the origin P% must be enclosed
within the loop so that it is reset to the correct value at the start
of each pass.

(1) A ‘OPT statement is required to suppress crror messages and
prevent the assembler halting during the first pass. A number
between 0 and 3 is used with this statement to give the following
options during assembly:

OPTO assembler errors suppressed, no listing
OPT1 assembler errors suppressed, listing
OPT2 assembler errors reported, no listing
OPT3 assembler errors reported, listing

A reasonable choice of options might be OPT1 during the first pass
to suppress error messages and OPT3 during the second pass to dis-
play any errors still remaining. This is achieved in the example in
Fig. 11 by placing the counter N after the OPT statement in line 70
and assigning it the values | and 3 in line 55:

35 DIM SPACE 100
40 OSASCI=&FFES
50 OSROCH=&FFEQ
35 FOR N=1 TO 3 STEP 2

60 PS=SPACE

70 [oPTN

80 .START JSR OSROCH ;GET CHART. FROM KB
85 O SASCT®® ;S IT AN nae

87 BEQ FINI $IF SO QUIT

90 JSR OSASC!I ;PLACE ON SCREEN
100 JMP START ;REPEAT :

105 +FINI RTS ;RETURN TO BASIC
110

115 NEXT N

120 CALL START

Fig. 11

With these options the assembler produces a listing on the display
during each pass. However the relative displacement of 06 at
&OF4C is only resolved in the second listing.

OF 46 OPTN
OF46 20 EO FF ,START JSR OSROCH ;GET CHART. FROM KB

OF49 C9 2A OMP SASC™e® ;|S IT AN "e®
OF48 FO FE BEQ FINI 3IF SO QUIT
OF40 20 E3 FF JSR OSASC! ;PLACE ON SCREEN
OFS0 4C 46 OF JMP START ;REPEAT

OF53 00 .FINI RTS ;RETURN TO BASIC

OF 48 OPTN
OF46 20 EO FF .START JSR OSRDCH ;GET CHART. FROM B8

OF49 C9 2A O JASC"*® ;IS IT AN "e®

OF48 FO 06 BEQ FINI 3IF SO QUIT

OF40 20 E3 FF JSROSASC! ;PLACE ON SCREEN
OFS0 4C 46 OF JMP START ;REPEAT

OF53 60 .FINl RTS ;RETURN TO BASIC

Fig. 12

A final point worth noting is the use of the statements VDU 14 and
VDU 15 to switch the ‘PAGE MODE'’ on and off. This can prove
useful when assembling large programs to examine the assembly
listing a page or ‘screenful’ at a time.

Mixing machine code and BASIC

Two statements allow control to pass to a machine code routine
from BASIC—'CALL’ and ‘USR’. With both statements the pro-
cessors A, X, and Y registers are initialised to the least significant
bytes of the integer variables A%, X% and Y% and the carry flag is
set to the least significant bit of the variable C% on entry to the
machine code routine.

e.g. 10 A%=&4l 10 A%=&4l
20 CALL &FFEE 20 Z=USR(&FFEE)
30 END 30 END

Each of these programs would send 41 hex or ASCII ‘A’ to the dis-
play routine OSWRCH at FFEE hex.

On completion of the machine code routine USR return a 32 bit
number made up of the processor’s status, Y, X and A registers. For
example, see Fig. .13. |

The CALL statement offers greater flexibility, allowing program
variables of all types to be passed to and from a machine code sub-
routine. To aid this transfer a ‘parameter block’, starting at &0600,

{1 OREM (222X LS)

2CREM DEMD OF THE "USR™ FUNCT |ON
BOREN I X Y Y Y XXX RS EREZSSSRREEZZZZY YY)
40 DIM SPACE 100

S0 P$=SPACE

60 C

70 LDA #8AA ;SET A=8AA

80 LOX 7488 ;SET X=488

90 LDY #8CC ;SET Y=4CC

100 SEC ;SET CARRY =1
110 RTS ;RETURN TO BASIC
120]

130 RESULT=USR(SPACE)
140 PRINT-RESULT

OF35

OF35 A9 AA LDA f#8AA ;SET A=2AA
OF37 A2 B8 LOX #4B8 ;SET X=488
OF39 A0 CC LDY #£4CC ;SET Y=4CC

OF38 38 SEC ;SET CARRY =1
OF3C 60 RTS ;RETURN TO BASIC
]
/ VvV Vv N\
P Y X A
Fig. 13.

contains details of the number, location and type of variables to be
passed. The block has the following structure:

0600—number of parameters

0601—Ilow byte of address st parameter
0602—high byte of address 1st parameter
0603—code defining parameter type
0604—Ilow byte of address 2nd parameter
0605—high byte of address 2nd parameter
0606—code defining parameter type

etc.

The codes used to define parameter types are:

0—38 bit byte (e.g. ?X)

4—32 bit integer variable (e.g. X%)

5—40 bit floating point number (e.g. T) -
128—A string at a defined address (e.g. $X)
129—A string varniable (e.g. A$)

In the example in Fig. /4 the structure of the parameter block is
illustrated by passing two variables, B% and C%, in the subroutine
CALL to &FFEE in line 60:

1089=4C0112233
20CY=444556677

30AL=455

60 CALLAFFEE,2%,CS

70 FER N=4(06G0 TO 4&C61Q
80 PRINTMIN

GO NEXT N

Fig. 14
Lines 70 to 90 print details of the start of the parameter block in hex:

Address 0600 contains 02 — number of vanables

0601 v 08 YADL Ist vanable
0602 . 04 JADH lIst vanable

0603 . 04 - codec for integer vanable

060+ ’ CC) ADL 2nd varable
ADH 2nd variable

0605 ,, 04
0606 ,, 04 - code for integer variable

FF

ctc.

Investigating &0408 and &040C, we find the values of the two vari-
ables B% and C% (Fig. 13).

100 FOR N=80408 TO &040F

110 PRINTAIN
120 NEXT N
33
22 2} §
i1
0 &
77
66
55 ct :
44 Fig. 15.

The final example illustrates a machine code program that will con-
vert and display decimal numbers between 0 and 255 as binary. The
program begins by assembling and inserting the machine code pro-
gram. A small BASIC program then calls the conversion utility, pass-
ing the parameter NUMBER % which is then displayed in binary.

10 DIV BINARY 1CO ,TEMP 4

20 CSASCl=4FFEZ

30 FCR N=Q TO 2 STEP 2

40 PY=BINARY

50 [cPTN

50 LOY #00 ;SETY=0

70 LDA 4C601 ;TRANSFET POINTERS TO ZERO PAGE
30 STA 180

90 LCA 4C602

100 STA 481

110 LDA (380),Y ;GET NUMBER

120 STA TEMP ;PLACE IN TEMPCRARY STORE
130 LDX #08 ;USE COUNTER TO EXAMINE 8 BITS
140 . START BIT TEMP ;"™1" CR "Q"

150 8PL ZERQ ;BRANCH IF ITS A ZERO
160 LOA JASC®1™ ;PRINT "1?

170 JSR OSASCI ;TO DISPLAY

180 JMP ROTATE

190 .ZERO LCA FASC™0® ;PRINT ®Q®

200 JSR OSASCI

210 .ROTATE ROL TEMP ;ROTATE BYTE LEFT
220 DEX ;NEXT BIT

230 BNE START
240 LDA #00 ;C-RETURN TO DISPLAY
250 JSR OSASCI
260 RTS ;BACX TO BASIC
270]
280 NEXT N
290 REN (22 SRR EERREYY)
300 REM BASIC PROGRAMME
310 REM TO GENERATE
320 REM BINARY MUMBERS
330 REN 2222222222 XY}
340 FCR NUMBERS=0 TO 16
350 CALL BINARY,NUMBERS
360 NEXT NUMBERS
370 ENO
>RUN

00000000

00000001

00000010

00000011

00000100

00000101

00000110

00000111

00001000

00001001

00001010

00001011

00001100

00001101

00001110

00001111

00010000

Fig. 16.

Driving graphics from machine code

All the BASIC keywords used to control the display have their
equivalent VDU statement, e.g:

PRINT *“A” is the same as VDU 63
MODE 5 is the same as VDU 22,5
COLOUR 3 is the same as VDU 17,3

etc.

The link between the BASIC VDU statement and operating sys-
tem display routine OSWRCH is easily understood if the keyword
‘VDU’ is interpreted as ‘SEND THE FOLLOWING BYTE (S) TO

OSWRCH?, i.e. the assembly language equivalent of

(a) PRINT “A” or VDU 65 is: LDA #65
JSR OSWRCH

(b) MODE 5 or VDU 22,5is: LDA #22
JSR OSWRCH

LDA #5
JSR OSWRCH

The VDU statements use all 32 ASCII control codes (i.e. ASCII
codes not used as symbols or alphanumeric characters). The first
byte after the VDU statement, i.e. the first byte sent to OSWRCH,
selects the desired display function. The operating system then
knows how many more bytes are required to complete the instruc-
tion, e.g. MODE selection only requires one byte after the code,
whereas redefining the shape of a display character requires 9.

The example program in Fig. 7 sclects the display mode.

10 REM tessssscessiencesnaes

20 REM SELECTING SCREEN MOOE

30 REM FROM AN ASSEMBLY

40 REM LANGUAGE ROUTINE

50 RE" 4444440040000 0004A88

60 OSWRCH=&FFEE

70 DIM SPACE 100

80 INPUT™WHICH MODE"™M

90 PL=SPACE

100

110 LDA 122 ;CONTROL CODE FOR MOOE SELECT
120 JSR OSWRCH ;DOWN OUTPUT CHANNEL
130 LDA M ;SELECT MOOE

140 JSR OSWRCH ;DOWN OUTPUT CHANNEL
150 RTS ;BACK TO BASIC

160]

170 CALL SPACE

180 PRINT "THIS IS MOOE™;M

190 ENO

Fig. 17.

Using control codes as a means of selecting and driving different dis-
play functions adds greatly to the BBC micro’s flexibility. [t can be
adapted as a colour graphics terminal communicating through
either its RS423 serial port to a larger mainframe computer, or
through its own system bus, called the ‘Tube’, to a second processor

option.

‘ EINRERTN R f:‘;

MOS TECHNOLOGY MCS6502
SERIES

The MOS Technology 6502 series microprocessors are
nMOS 8-bit types, of which the 6502 is probably the
most commonly found. Other processors in this series
are mainly simplified variants designed to fit into smaller
packages.

In many respects the basic design philosophy of the
6502 follows the same lines as that of the Motorola 6800
series. The 6502 is a slightly less complex processor in
terms of its architecture, but it can in some respects be
considered as an enhanced version of the 6800, par-
ticularly in its comprehensive range of addressing
modes.

Because of the similar hardware design, the bus
systems for the 6502 and 6800 appear to be the same, but
in fact they are not directly compatible. Generally the
support chips for the 6800 can readily be used with a 6502
CPU and the reverse is also true, although in some cases
additional external logic may be required. The instruc-
tion sets may also appear to be similar, but are totally
incompatible as far as machine code is concerned.

Some of the wide popularity of the 6502 series can be
attributed to their use in such popular personal com-
puter systems as the CBM PET and the Apple II.

Prime manufacturer

MOS Technology Inc., which is a subsidiary of
Commodore Business Machines (CBM).

Devices available

MCS6502 Basic type 65k address on-chip clock

MCS6512 As 6502 but external clock

MCS6503 4k address range on-chip clock

MCS6504 8k address range on-chip clock, no NMI

MCS6505 4k address range on-chip clock, no NMI

MCS6506 4k address range on-chip clock, no NMI

MCS6507 8k address range on-chip clock, no
interrupts

MCS6513 As 6503 but external clock

MCS6514 As 6504 but external clock

MCS6515 As 6505 but external clock

Alternative source devices

Rockwell
R6502, R6503, R6504, R6505, R6506, R6507
R6512, R6513, R6514, R6515

Synertek

SY6502, SY6503, SY6504, SY6505, SY6506, SY6507
SY6512, SY6513, SY6514, SY651S

EMM-Semi

6502, 6503, 6504, 6505, 6506, 6507
6512, 6513, 6514, 6515

Note that all of the 6502 series types are available with
various clock speed options, with versions for 1 MHz,
2 MHz and 3 MHz maximum clock frequency.

Architecture

[f the architecture diagram for the 6502 (fig. 3.17) is
compared with that of the 6800 it will be seen that the
6502 is similar in design to the 6800, though rather less

complex.
‘ ALU (8) >

8 BIT REGS

ACC

STATUS
X - >
<& Y
SP

«— PC (16)]

v
ADDRESS

aus
(12 - 18) (8)

Only one 8-bit accumulator is provided, compared
with the two accumulators of the 6800, and this handles
all arithmetic and logic operations via the ALU.
Although slightly less flexible when dealing with 16-bit
numbers, the single 8-bit accumulator is perfectly
adequate for all normal computing requirements.

An 8-bit status register privides flags for zero, minus,
carry and overflow results of operations, and for the
interrupt, break and decimal modes.

Unlike the 6800 the 6502 has two 8-bit index registers
rather than a single 16-bit index register. This limits the
index range to 256 but provides much greater flexibility
in dealing with data tables.

The stack pointer of the 6502 has only 8 bits and the
stack is always located within page 1 of the memory map.
It is possible to have any stack length up to 256 bytes and
a number of separate stacks may be set up within page 1.
This is slightly less flexible than the 6800, where the
stacks may be set up anywhere in memory, but is
perfectly adequate.

As with the 6800 there are no general purpose
registers provided in the 6502, since it uses general
memory locations for this purpose. Similarly all input—
output devices will be treated simply as memory
locations by the processor.

In the 6502 and 6512 the program counter register is 16
bits wide, allowing up to 65k of memory to be addressed.
In other devices of the series the program counter length
is cut to 12 or 13 bits, allowing either 4k or 8k of address
space.

Like the 6800 the bus system of the 6502 comprises an
8-bit bidirectional data bus, a 16-bit address bus and
some control signals. All operations are controlled by a
2-phase clock, and memory access is made on phase 2 of
each cycle of the clock. Internal operations occur during
phase 1.

The basic memory map for the 6502 is:

MOS TECHNOLOGY MCS6502 SERIES

FFFF
FFFA
FFF9

0200
OlFF

0100
O00OFF

0000

Package

The 6502 and 6512 are supplied in 40-pin dual in line
All other types use a 28-pin dual in line package

Vectors for int.

and reset

Main user
space

Stack area

Zero page

All types use a plastic encapsulation

Pin connections

6502 and 6512

18
19
20

Vs
RDY
1
IRQ

No conn. (6502)

Vi (6512)
NMI
SYNC
Vee
ABO
ABI1
AB2
AB3
AB4
ABS
AB6
AB7

ABS
AB9

AB10
AB11

6503 28 pin

RESET
Vs
IRQ
NMI
Ve
ABO
AB1
AB2
AB3
AB4

. ABS

AB6
AB7
ABS

6504/6507 28 pin

1
2

RESET
Vss

AB9
AB10
ABI11
DB7
DBé6
DBS
DB4
DB3
DB2
DB1
DBO0
R/W
&V IN

Vs
ABI2
AB13
AB14
AB15

DB7
DBé6
DBs
DB4
DB3
DB2
DB1
DBO
R/W

No conn.

No conn. (6502)

DBE (6512)
$0 (6502)
62 (6512)
S.0.
$20UT
RESET

$2 OUT

15 ABI10
16 ABI11

3 IRQ (6504) 17 ABI2

RDY (6507)

4 Vi 18 DB7

5 ABO 19 DB6

6 ABI 20 DBS

7 AB2 21 DB4

8 AB3 22 DB3

9 AB4 23 DB2
10 ABS 24 DBI1
11 AB6 25 DBO
12 AB7 26 R/W
13 ABS 27 ¢0IN
14 AB9 28 ¢20UT

Other 28-pin types have same AB and DB con-
nections as above, according to whether they have 12 or
13-bit address. Other pins are different and manufac-
turer’s data sheets should be consulted.

Signal functions

DB0-DB7 Bidirectional data bus
ABO-ABI15 Address bus (output)

Vs, Vx Power supplies

R/W Read-write (low = write)

IRQ,NMI Interrupt req. inputs active low

RDY Ready input used to halt CPU

SYNC Output (1 during instruction fetch)

RESET Reset input (active low)

S.0. Set overflow input

@0, #1,#2 Clock signals

DBE Data bus enable (active high)
Power requirements

V=0V

Ve=+5V 5%
Power dissipation 700 - 800 mW

Signal levels

Inputs are TTL compatible 300 uA loading
Outputs will drive one TTL load
Data bus is tri-state

Input—output

The 6502 series treat all input—output as memory
locations, data being presented or accepted via the data
bus.

Interrupt facilities

The 6502 provides both maskable (IRQ) and non-
maskable (NMI) interrupts. There is also a software
interrupt facility using the BRK instruction. On an in-
terrupt execution the program counter and status
register are pushed to the stack. These are restored by
the RTI instruction at the end of the interrupt routine.
BRK is the same as [RQ, but not maskable and sets a
flag bit in the status register. Interrupt vector addresses
are stored at the top of memory as shown:

FFFF [RQ vector (MSB)
FFFE [RQvector (LSB)
FFFD Resetvector (MSB)
FFFC Resetvector (LSB)
FFFB NMIvector (MSB)
FFFA NMlvector (LSB)

Reset causes a reset sequence within the CPU and the
instruction address is obtained from FFFC/FFFD.

Multilevel interrupt operation is readily achieved and
priorities.may be dealt with either by polling software or
by external hardware.

Instructiqn set

The 6502 instruction set contains 52 different instruc-
tions, and at first sight may appear to be very similar to
that for the 6800 series microprocessors. Instructions
may have one, two or three bytes.

Arithmetic and logic

Addition and subtraction with carry or borrow are pro-
vided using the 8-bit accumulator. A decimal mode also
allows addition and subtraction of BCD format
numbers. There are no complement or negate instruc-
tions and the accumulator cannot be directly in-
cremented or decremented, although memory locations
can.

AND, OR and EXCLUSIVE OR operations can be
carried out between accumulator and memory. There
are also shift and rotate left and right instructions for
both memory and accumulator.

Branch and jump
A useful series of conditional branch instructions is pro-
vided, although this is not as extensive as those on the
6800. Status register bits may be set and reset by
program. Tests for zero, negative, carry and overflow
are provided.

Only unconditional jump and jump to subroutine are
available. A subroutine jump automatically stores the
return address on the stack.

Register and transfer operations
Data can readily be transferred between the A accumu-
lator, the X and Y index registers and the stack pointer,
or memory. Push and pull instructions allow data from
the accumulator or status register to be transferred to
the stack. Both index registers may be incremented or
decremented.

Memory or accumulator words may be tested bit by
bit if desired.

Timing

Like the 6800, the 6502 series uses a 2-phase processor
clock. and all memory access is carried out during &2
clock cycles. Most instructions take 2, 3 or 4 clock cycles
and may use 1, 2 or 3 bytes of machine code.

The standard parts operate with a | MHzclock, giving
instruction execution times of some 2 — 4 us. Special
high speed parts are available with clock frequencies of
2 or 3 MHz. These are coded with suffix A (6502A)
for 2 MHz operation or suffix B (6502B) for 3
MHz operation.

Types 6502 to 6507 have on-chip clock phase
generators but need an external crystal oscillator to
provide the 40 input, whilst types 6512 to 6515 require an
external 2-phase non-overlapping clock signal applied to
the ¢1 and ¢2 clock inputs.

Support devices

A wide range of support devices is available for the 6502
series microprocessors. Some of these are:

6520 PIA Two 8-bit bidirectional programmable
ports (identical to 6820)

6522 Versatile interface adapter (VIA) 2 x
8-bit ports as in 6520, plus 2 X 16-bit
interval timers and a serial [/O facility

6530 1k ROM, 64-byte RAM, 2 Xx 8-bit parallel
ports plus an 8-bit interval timer.

6531 2k ROM, 128 byte RAM, 2 x 8-bit
parallel I/O, serial I/O and a 16-bit
timer/counter

6532 128-byte RAM, 2 x 8-bit parallel I/O
ports, 8-bit timer

6541 Keyboard/display controller

6545 Raster scan CRT controller

6551 Asynchronous serial [/O

6591 Floppy disk controller

The 6502 series may also be used with most of the 6800
series support devices. Some care may be needed with
address decoding, however, since the 6500 has its lower
address byte in the lower memory location whilst the
6800 stores its addresses in memory with the high
address byte first.

Development aids
MOS Technology

KIM1 Stand alone board with keypad and LED
displays

Appendix

6502 instruction set

Add memory 10 accumulator with carry ADC

Operation: A+M+C—A, C NZCiIDV
111--1

Addressing Assembly language orP No. ~.<e.
mode Jorm Code Bytes Cycles
Immediate ADC #Oper 69 2 2
Zero Page ADC Oper 65 2 k]
Zero Page, X ADC Oper, X 3 2 4
Absulute ADC Oper 6D 3 4
Absolute, X ADC Oper, X)] 3 4°
Absolute, Y ADC Oper, Y 79 3 4°
(Indirect, X) ADC (Oper, X) 61 2 6
(Indirecr), Y ADC (Oper), Y 7 2 5¢

® Add | it page boundary is crossed.

AND memory with accumulator AND
Operation: AAM—A Z\N\O IDV
Addressing Assembly language or No. No.
mode Sorm Code Bytes Cycles
Immnediate AND #Oper 29 2 2
Zero Page AND Oper 25 2 3
Zecro Page, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X iD 3 4
Absolute, Y AND Oper, Y 39 3 4°
(Indirect, X) AND (Oper, X) 21 2 6
(Indirect), Y AND (Oper), Y 3 2 5°

* Add | il page boundary is crussed.

ASL Shift Left One Bit (Memory or Accumulator)
Operation: C—76543210—¢

NzZC1Dbv
117 ---
Addressing Assembly language opP No. No.
mode Jorm Code Bytes Cyeles
Accumulator ASL A UA 1 2
Zero Page ASL Oper 6 2 5
Zero Page, X ASL Oper, X 16 2 6
Absolute ASL Oper VE 3 6
Absolute, X ASL Oper, X IE 3 7
BCC Branch on Carry Clear
Operation: Branch on C=0¢ NZCIDV
Addressing Assembly language or No. No.
mods Jorm Code Bytes Cycles
Relative BCC Oper 9 2 2¢
® Add | if branch occurs 10 same page.
¢ Add 2 if branch occurs 10 different page.
Branch on carry set BCS
Operation: Branch on C=1 NZCcli1bDv
Addressing Assembly language or No. No.
mode Jorm Code Bytes Cycles
Relative BCS Oper BY 2 2¢
* Add | il branch occurs to same page.
* Add 2 if branch occurs 1o next page.
Branch on result zero BE
Operation: Branch on Z=1 NZCID
Addvressing Assembly language or No. No.
mode Sorm Code Bytes Cycles
Relative BEQ Oper Fo 2 2°

°® Add | if branch occurs to same page.
¢ Add 2 if branch occurs 10 next page.

|
BIT ‘Fest bits in memory with accumulator BRK Force Break

Operation: aAM, M;—N, M,—V NzZCIDbV Operation: Forced Interrupt PC+2|P| NZCIDV

Zu\ - - |7—= - _-
Addressing Assembly language or No. No. Addressing Assembly language or No. No.
mode Jorm Code Bytes Cycles mode Jorm Code Bytes Cycles
Zero Page BIT Oper 24 2 3 Implied BRK ']'] | 7
Absulute BI'T Oper 20 3 4

* A BRK command cannot be masked by seuting I.

_ BVC Branch on overflow clear
Operation: Branch on V=0 NzcCclIDbvV
BMI Branch on result mipns
Operation: Branch on N=1 NZC1lDV Addressing Assembly language orP No. No.
|||||| mode Sorm Code Bytes Cycles
Addressing Assembly language orP No. No. Relative BVC Oper 50 2 9
mode Jorm Code Bytes Cycles
Relative BMI Oper 30 2 2° ® Add | if branch occurs 10 same page.
* Add 2 if branch occurs to dilferent page.
* Add | it branch occurs to same page.
® Add 2 il branch occurs to dilferent page.
‘ Faneh o P Branch on overflow set BVS
Operation: Branch on V=1 NzZzClDV
Addressing Assembly language or No. No.
Branch on resuit not zero BNE mode Jorm Code Bytes Cycles
Operation: Branch on Z=0 NzCiIDV Relative BVS Oper 70 2 9e
Addressing Assembly language o°P No. No. ® Add | if branch occurs 10 same page.
mode Jorm Code E.\-«u ﬁ..ﬁ?.- ® Add 2 if branch occurs 1o dilferent page.
Relative BNE Oper Do 2 2°
Clear carry flag CLC
¢ Add 1 il branch vccurs 1o same page. Ofoﬂb:C..: ¢—C NZCIDV
* Add 2 it branch occurs o diflerent page. R I
Addressing Assembly language OF" No. No.
mode Sorm Code Bytes Cycles
Implicd CLC 18 1 2
Branch on result plus BPL
Operation: Branch on N=¢ NZCIDYV
|||||| CLD Clear decimal mode
Addressing Assembly language oP No. No. Operation: §—D NZCIDV
mode Sorm Code Bytes Cycles I
Relative BPL Oper 10 2 2¢ Addressing Assembly language oP No. No.
mode Jorm Code Bytes Cycles
* Add ! if branch occurs to same page. .
® Add 2 if branch occurs 10 different page. Implied CLD b8 1 2

CLI

Clear interrupt disable bit

NzZCcIDV
Operation: Y—1 MR
l or No. No.
;..&“5..::.“ s_u..ei.\mw..:“:n:gn« e s Cole
mode
X 8 | 2
Implied CL1 5
CcPX Compare memory and index X NZC 1DV
. h
Opcration: X—M P
i 4 or No. No.
;&..“Rt:.n ;:aium“:-._.zh:awn o s Cocls
mode
Inimediate CPX #QOper ——N.._. M M
Zcero Page crx Oper 4 2 :
Absolute CcPX Oper E
CPY Coumpare memory and index Y NZC 1DV
Operation: Y—M bV
/111
Assembly language or No. No.
Muu“a::w o .\ﬂ-s ¢ Code Bytes Cycles
Immediate CPY #QOper M.e W N
Zero Page CcprYy Oper Gm 2 :
Absolute CPY Oper
Clear overtlow fag 4 Fﬁ—h—w«
Operation: §—V Wh Leipy
i Assembly language oP No. No.
“Nuha:aw .\WE_ ¢ Code Bytes Cycles
Implied CLV B8 1 2

Compare memory and accumulator

CMP

Operation: A—M NZCIDV
il - -
Addressing Assembly language or No. N
mode Jorm Code Bytes Cyder
Immediate CMP #Oper Y 2 2
Zero Page CMP Oper €5 2 3
Zcero Page, X CMP Oper, X 15 2 |
Absolute CMP Oper Ch 3 4
Absolute, X CMP Oper, X bD 3 i
Absolute, Y CMP Oper, Y DY 3 1°
(Indivect, X) CMP (Oper, X) Cl 2 6
(Indirect), Y cMmp (Oper), Y DY 2 5°
® Add | il page boundary is crossed.
Decrement memory by one DEC
Operation: M-1—M Nzclibv
/1l -=---
Addressing Assembly language orp No. Nu.
mode Jorm Code Bytes Cyles
Zero Page DEC Oper €6 2 5
Zero Page, X DEC Oper, X Do . [
Absolute DEC Oper E 3 6
Absolute, X DEC Oper, X DE 3 7
Decrement index X by one DEX
Operation: X-1X NZCIDbyV
/) ----
Addressing Asiembly language or Nu, No.
mode Sorm Code Bytes Cycles
Implied DEX CA | 2
DEY Decrement index Y by one
Operation: Y-1—Y NZCIDV
/) -—---
Addressing Assembly language op No. No.
mode Jform Code Bytes Cycles
Implied DEY 88 1 2

EOR Exclusive—Qr memory with accumulator NZC 1DV
Operation: A-M-—A PR
orP No. No.
Addressing ;:«5““ -”:n..nn- o Hyes Cocls
mode
: 2
Immediate EOR #Oper “w M 2
Zero Page EOR Oper 1 2 3
Lero Page, X EOR Oper, X 5 2 b
%_.v:_::. EOR Oper o 3 4
Absolute, X LOR Oper, X N 3 +
Absolute, ¥ LOR Oper, Y p) ‘
(Indirecy, X) LOR (Oper, X) " > .
(Indirear), Y LEOR (Oper), Y
* Add 1l page boundary is crussed.
Increment memory by one NZ F—_dm
Opcration: M+1—M e
or No. No.
;mu.e::n \..:«Ev_.e‘ -““:h.:_wa ke Bys Gyl
mode
y . Oper E6 2 5
Zero Page INC P . : >
\M”M —.H””. X INC Oper, X MM M e
Absolute INC Oper - 3 -
Absolute, X INC Oper, X
Increment index X by one NZ Pm_z_u«
Operation: X+1—X Le1by
or No. No.
;&..“2::._“ ;:QS»\W -”:n:nun Ol s el
mode
EB | 2
Implied INX
INY lucrement index Y by one NZC 1DV
Operation: Y+1—=Y eciby
or No. No.
;&uz.:an 3.:«:&_“ h“:n..an« o Btes ol
mode
1 (0] | 2
Tmplied INY

MP

Jump 10 new location
peration: (PC+1)—PClL.

NzCciLpyv
(PC+2)—PCH - - - -
Addressing Assembly language or No Ao
mode Jorm Code Byies Crides
Absvlute JMP Oper 1C 3 3
lndirect JMP (Oper) 6C 3 5
Jump to new location saving return address SR
Operation: PC+2|, (PC+ 1)—PCL NzZCTDyY
(PC+2)—PCH -
Addressing Assembly language or No. Ne
mode Sorm Code Bytes Cyides
Absolute JSR Oper 20 3 N
Load accumulator with k:..:.c.i —.\—U>
Operation: M—A NZC1IDbyV
[----
Addressing Assembly language or No. No.
mode Jorm Code Bytes Cnles
Immediate LDA #Oper A9 2 2
Zero Page LDA Oper A5 2 3
Zero Page, X LDA Oper, X B5 2 4
Absolute LDA Oper AD 3 9
Absolute, X LDA Oper, X BD 3 i
Absolute, Y LDA Oper, Y B9 3 1
(Indirect, X) LDA (Oper, X) Al 2 6
(Indirect), Y LDA (Oper), Y BI 2 5°
® Add | if page boundary is crossed.
LDX Load index X with memory
Operation: M—X NZCibpv
/1l -- -
Addressing Assembly language or No. ANo.
mode Jorm Code Bytes Cycles
Immediate LDX #Opcr A2 2 2
Zero Page LDX Oper A6 2 3
Zero Page, Y LDX Oper, Y B6 © 2 q
Absolute LDX Oper AE 3 4
Absolute, Y LbX Oper, Y - BE 3 4

¢ Add | when page boundary is crossed.

LDY Load index Y with memory

Operation: M—Y NZCIDV
lrl----
Addressing Assembly language or No. No.
mode Sorm Code Bytes Cycles
linmediate - LDY #Oper Al 2 2
Zero Page LDY Oper A4 2 3
Zero Page, X] LDY Oper, X B4 2 4
Absolute LDY Oper AC 3 4
Absolute, X LDY Oper, X BC k) 4°

® Add | when page boundary is crossed.

ORA OR memory with accumulator
Operation: AVM—A NzCIDV
1/ ----
Addressing Assembly language or No. No.
mode Jorm Code Bytes Cycles
Immediate ORA #Oper 99 2 2
Zero Page ORA Oper 95 2 3
Zero Page, X ORA Oper, X 15 2 4
Absolute b ORA Oper (1)) 3 4
Absoulte, X ORA Oper, X ID 3 4°
Absolute, Y ORA Oper, Y 19 3 4°
(Indirect, X) ORA (Oper, X) gl 2 6
(Indireqr), Y ORA (Oper), Y 1 2 5¢
* Add | on page crossing
PHA Push accumulator on stack
Operation: Al NZCIDV
Addressing Assembly language orP No. Noe.
mods Sorm Code Bytes Cycles
fmplicd PHA 48 | 3
Shilt right one bit (memory or accumulator) —Lm-.ﬂ
Opcerationn Y—76543210—C NZCIDV
0/l ---
Addressing Assembly language orP No. No.
mode Sorm Code Bytes Cycles
Accumulator LSR A 4A 1 2
Zero Page LSR Oper 46 2 5
Zero Page, X LSR Oper, X 56 2 6
Absolute LSR Oper 4E 3 6
Absolute, X LSR Oper, X SE 3 7

Operation: No operation (2 cycles) o vperation NZ Plﬁ_ww
Addressing Assembly language or No. No
mode Sorm Code Bytes Cycles
Implied NOP EA 1 2
Operation: P Push processor status on stack NZ FMV_—“”W
Addressing Assembly language - opP No. No.
mode form Code Bytes Cycles
Implied PHP 'L} 1 3
Operation: Al Pull accumulator from stack Nz Cm_v-—.wo
/] --=-~
Addressing Assembly language oP No. No.
mode Sform Code Bytes Cyiles
Implied PLA 68 l 4
PLP) Pull processor status from stack
Operation: P NzZCcibv
From Stack
Addressing Assembly language or No. No.
mode Jorm Code Bytes Cycles
Implied PLP 28 1 4
ROL Rotate one bit left (memory or accumulator)
_ Mor A _
Operation: 76543210-C NZCIDYV
1 ---
Addressing Assembly language or No No.
mode Sform Code Bytes Cycles
Accumulator ROL A 2A 1 2
Zero Page ROL Oper 26 2 5
Zero Page, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7

Rotate one bit right (memory or accumulator)

_ Mor A _

ROR

Opoaration: C--76543210 NZClDbYV
111 ---
Addrersing Assembly language or No. No.
mode form Code Bytes Cycles
Accumutator ROR A 6A | 2
Zero Page ROR Oper 66 2 5
Zero Page, X ROR Oper, X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute, X ROR Oper, X 7E 3 7
Return from interrupt RTI
Operation: P | PC| NZCIDV
From Stack
Addressing Assembly language oP No. No.
mode Jorm Code Bytes Cycles
Iniplied RT1 9 1 6
RTS Return from subroutine
Opcration: PC |, PC+1—PC NzZzCIDbvV
Addressing Assembly language or No. Noe.
mode form Code Bytes Cycles
lmplied RTS 60 | 6
SBC Subtract memory from accumulator with borrow
Operation: A-M-C—A NZCIDbV
Note: .C = Borrow 111--1
Addressing Assembly language or No. No.
mode Jorm Code Bytes Cycles
Immediate SBC #Oper E9 2 2
Zero Page SBC Oper E5 2 3
Zero Page, X SBC Oper, X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 4°
Absolute, Y SBC Oper, Y F9 3 4°
(Indirect, X) SBC (Oper, X) El 2 6
(Indirect), Y SBC (Oper), Y Fl 2 5¢

* Add | when page boundary is crossed.

Set carry fla
Operation: 1—C ¢ NZcC mmm
- - - _
Addressing Assembly language or No. No.
mode form Code Bytes Cycles
Implied SEC 38 1 2
Set decimal mode SED
Operation: 1—D NzclIbyv
- —— 0 -
Addressing Assembly language or No. No.
mode Jorm Code Bytes Cycles
Implicd SED F8 1 2
. Set interrupt disable status SEI
Operation: 1—1 NzZClibv
——] -
Addressing Assembly language opP No. No.
node Jorm Code Bytes Cycles
{mplied SEl 78 1 2
]
v.ﬂ.> Store accumulator in memory
Iperation: A—M NZCibv
ddressing Assembly language or No. No.
ode SJorm Code Bytes Cycles
cro Page STA Oper 85 2 3
ero Page, X STA Oper, X 95 2 4
bsolute STA Oper 8D 3 4
bsolute, X STA Oper, X 9D 3 5
E:-o. Y STA Oper, Y 99 3 5
:a_..nn-. X) STA (Oper, X) 81 2 6
ndirect), Y STA (Oper), Y 91 2 6

m‘—;x Store index X in memory NZC 1DV
Operation: X-—M . HeEITT
1 [} orP No. No.
;&u-«::ﬂ ;:«3“.“3._5&:&« Code Bytes Cycles
mode
T 86 2 3
Zero Page STX Oper
Zero Page, Y STX Oper, Y N—mW W N
Absolute §$IX Oper
Store index Y in memory NZ OM_H.U«
Operation: Y—M T EEITT
i bly | opP No. No.
;uuhe:an Avem .Mﬂ:.a.an.:_n. Code Bytes Cycles
m
T 84 2 3
Zero Page STY Oper
Zero Page, X STY Oper, X Nm N “
Absolute STY Oper
Transfer accumulator to index X N N ij«
Operation: A—X Le1ey
. Assembly language orP No. No.
“uu.::.an .\ﬂa._ Code Bytes Cycles
Linplied TAX AA 1 2
TAY T'ransfer accumulator to index Y
- NZCIDV
Operation: A—Y ee1by
Assembly language orP No. No.
“.una::.:n - .\“5. £t Code Bytes Cycles
Implied TAY AB 1 2
TYA Transfer index Y to accumulator
Operation: Y—A Z\Nxﬁl —ln.vu&.
Assembly language oP No. No.
“_Mu“:::n .\.WS Code Bytes Cycles
Implied TYA 98 | 2

Transfer stack pointer 1o index X TSX

Operation: S—X

Nzcibv
rl-—---
Addressing Assembly language o°P No. No.
mode Sorm Code Bytes Cycles
Implied TSX BA l 2
‘Transfer index X to accumulator TXA
Operation: X—A NZCIDV
/1l --=--
Addressing Assembly language or No. No.
mode Jorm Code Bytes Cycles
Implied TXA 8A | 2
Transfer index X to stack pointer TXS
Operation: X—S$ NzcibDv
Addressing Assembly language oP No. No.
mode Jorm Code Bytes Cycles
Implicd TXS 9A 1 2
0¢ -BRK 13 —Future Expansion

@1 -ORA—(Indirect, X)
02 —Future Expansion
U3 —Future Expansion
04 —Future Expansion
05 -ORA—Zero Page
06 ~ASL—Zero Page
07 —Future Expansion
08 —-PHP

9 ~-ORA—Immediate
JA -ASL—Accumulator
UB —Future Expansion
0C ~Future Expansion
0D -ORA—Absolute

UE -ASL—Absolute

JF —Future Expansion
19 -BPL

Il “ORA—(Indirect), Y
12 ~Future Expansion

14 —Future Expansion
15 “ORA—Zero Page, X
16 ~ASL—Zero Page, X
17 —Future Expansion
18 -CLC

19 —-ORA—Absolute, Y
1A —Future Expansion
IB —Future Expansion
1C —Future Expansion
ID -ORA—Absolute, X
IE ~ASL—Absolute, X
IF —Future Expansion
20 -JSR

21 ~AND—(Indirect, X)
22 ~Future Expansion
23 -Future Expansion
24 -BIT—Zero Page

25 ~AND—Zero Page

26 -ROL—Zero Page 52 —Future Expansion 7E -RUR—Absolute, X AA-TAX

27 -Future Expansion 53 —Future Expansion 7F —Future Expansion AB-Fuwure Expansion
28 -PLP 54 —Future Expansion 80 —Future Expansion AC-LDY—Absolute

29 —AND—Immediate 55 —-EOR—Zero Page, X 81 -STA—(Indirect, X) AD-LDA—ADbsolute

2A —ROL—Accumulator 56 —-LSR—Zero Page, X 82 —Future Expansion AE-LDX—Absolute

2B -Futurce Expansion 57 —Future Expansion 83 —Future Expansion AF ~Future Expansion
9C —BI'T—ADbsolute 58 —CLI 84 -STY—Zcro Page B@ -BCS

21D ~AND—ADbsolute 59 —-EOR—Absolute, Y 85 -STA—Zero Page Bl —-LDA—(Indirect), Y
2L: ~ROL—Absolute 5A —Future Expansion 86 -STX-—Zcro Page B2 —Futurc Expansion
2F -Future Expansion 5B —Future Expansion 87 -Future Expansion B3 ~Futre Expansion
3¢ -BMI 5C —Future Expansion 88 -DEY B4 -LDT—Zcro Pagc, X
31 ~AND—(Indircct), Y 5D -EOR—Absolute, X 89 -Future Expansion B5 ~-LDA—Zero Page, X

5E —LSR—Absolute, X
5F —Future Expansion

32 —Future Expansion
33 -Future Expansion

8A -TXA

B6 —-LDX—Zcro Page, Y
8B —Future Expansion

B7 ~Fuuwre Expansion

34 -Future Expansion 60 —RTS 8C -STY—Absolute B8 -CLV

35 ~AND—Zero Page, X 61 ~ADC—(Indirect, X) 8D -STA—Absolute B9 -LDA—Absolute, Y
36 -ROlL—Zero Page, X 62 —Future Expansion 8E -STX—Absolute BA-TSX

37 —Future Expansion 63 —Future Expansion 8F —Future Expansion « BB -Future Expansion
38 -SEC 64 —Futurc Expansion 99 -BCC BC-LDY—Absolute, X
39 —_AND—Absolute, Y 65 —ADC—Zecro Page 91 -STA—(Indirect), Y BD-LDA—Absolute, X
3A —Future Expansion 66 —~ROR—Zero Page 92 —Future Expansion BE -LDX—Absolute, Y
3B -Futurce Expansion 67 —Future Expansion 93 —Future Expansion BF -Future Expansion
3C ~Future Expansion 68 -PLA 94 -STY—Zcro Page, X C¢ CPY—Ilmmmecdiate
3D ~AND—Absolute, X 69 —ADC—Immediate 95 -STA—Zero Page, X Cl -CMP—(Indirect, X)
3E -ROL—Absolute, X 6A - ROR—Accumulator 96 -STX—Zero Page, Y C2 —~Future Expansion
3F ~Future Expansion 6B —Future Expansion 97 -Future Expansion C3 -Fuuure Expansion
40 -RTI 6C -JMP—Indirect 98 -TYA C4 -CPY—Zero Page

41 —-EOR—(Indirect, X) 6D ~ADC—Absolute : 99 -STA—Absolute, Y C5 ~-CMP—Zero Page
42 —Future Expansion 6E —ROR—Absolute 9A -TXS

. C6 -DEC—Zero Page
43 —Future Expansion 6F —Future Expansion 9B —Future Expansion

C7 —Future Expansion
44 —TFuwure Expansion 70 -BVS 9C —Future Expansion C8 -INY
45 -EOR—Zero Page 71 —ADC—(Indirect), Y 9D -STA—Absolute, X C9 -CMP—Immecdiate
46 -LSR—Zcro Page 72 —Future Expansion 9E -Future Expansion CA-DEX
47 —Future Expansion 73 —Future Expansion 9F —Future Expansion CB-Future Expansion
48 -PHA 74 —Future Expansion A0 -LDY—Immcdiate CC-CPY—Absolute
49 —-EOR—Immediate 75 —ADC—Zero Page, X Al -LDA—(Indirect, X) CD-CMP—Absolute
4A -L.SR—Accumulator 76 -ROR—Zero Page, X A2 -LDX—Immediate CE-DEC—Absolute
4B -Future Expansion 77 —Future Expansion A3 —Future Expansion CF -Future Expansion
4C -JMP—Absolute 78 -SEI A4 -LDY—Zero Page D¢ -BNE
4D -EOR—Absolute 79 -ADC—Absolute, Y A5 ~-LDA—Zero Page DI -CMP—(Indireat), Y
4E -LSR—Absolute 7A —Future Expansion A6 -LDX—Zero Page D2 ~Fuwre Expansion

4F -Future Expansion
50 -BVC
51 -EOR—(Indirect), Y

7B —Future Expansion
7C —Future Expansion
7D -ADC—Absolute, X

A7 —Future Expansion
AB -TAY
A9 -LDA—Immecdiate

D3 —Future Expansion
D4 —Future Expansion
D5 -CMP—Zero Page, X

uoisuedxyg armin J— 44
X “mjosqy—oNI- AJd
X ‘amnjosqy—oas-aJd

uoisuedxg arnin -4

uorsuedxg amng— g4

uoisuedxq aanming- v §
A ‘anjosqy—odgs- 64
ags- s4d

uotsuedxq axmin §— /4

X ‘98eq 0197—ONI- 94
X “98eg 0197—0gS- 64

uotsuedxyq arming— §4

uoisuedxy aming— ¢4

uotsuedxg aaning— z 4

A ‘(wanpup)—ogs- 14
Odd- nd

uotsuedxg srning- g
ANOSQY—INIT— A
ANosqY—DogS—-(Ad

NMosqy—Xd 00— DA
uowsuedxyg aamn J- g

dON-V3
aepaww[—HFS- 67
XNI- 83
uotsuedxg aamin - /9
adeg 0197—ONI- 949
afed o137—ngs- 3

adey o107—x 40~ ¥3
uoisuedxy aaming- ¢q

vorsuedxy axming- 74

(X “anpup)—ogs- 11
aetppww]—xX 40~ 0l
uoisuedxy aamin §— (1

X “mjosqy—oaa-Ad

X mposqy—dWO-dd
uorsuedxg a1min g-n(Q
uotsuedxy axmng-gq
uoisuedxq aimin -y

A M[OsqV—dND- 61
a1o-8a
uoisuedxg aaming- /(1

X ‘a8rg 0197—040- 901

